Skip to main content
Log in

Fluorescence Imaging of siRNA Delivery by Peptide Nucleic Acid-based Probe

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on the use of a peptide nucleic acid (PNA)-based fluorescent probe for the analysis of siRNA delivery to living cells. The probe, Py-AA-TO, possesses thiazole orange (TO) and pyrene moieties in the C- and N-termini of PNA, and can function as a light-up probe capable of selective binding to 3′-overhanging nucleotides of target siRNAs. The affinitylabeling of the siRNAs with Py-AA-TO facilitates fluorescence imaging of cellular uptake of polymer-based carriers encapsulating the siRNAs (polyplexes) through endocytosis and subsequent sequestration into lysosome. In addition, flow cytometric measurements reveal that the monitoring of Py-AA-TO fluorescence inside the cells is successfully applicable to the analysis of the polyplex disassembly. These promising functions of Py-AA-TO are presented and discussed as a basis for the design of molecular probes for fluorescent imaging and quantitative analysis of the siRNA delivery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, Nature, 2001, 411, 494.

    Article  CAS  PubMed  Google Scholar 

  2. H. Shen, T. Sun, and M. Ferrari, Cancer Gene Ther., 2012, 19, 367.

    Article  CAS  PubMed  Google Scholar 

  3. M. E. Davis, J. E. Zuckerman, C. H. J. Choi, D. Seligson, A. Tolcher, C. A. Alabi, Y. Yen, J. D. Heidel, and A. Ribas, Nature, 2010, 464, 1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Okumura, P. M. Pitha, and R. N. Harty, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 3974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. V. Morrissey, J. A. Lockridge, L. Shaw, K. Blanchard, K. Jensen, W. Breen, K. Hartsough, L. Machemer, S. Radka, V. Jadhav, N. Vaish, S. Zinnen, C. Vargeese, K. Bowman, C. S. Shaffer, L. B. Jeffs, A. Judge, I. MacLachlan, and B. Polisky, Nat. Biotechnol., 2005, 23, 1002.

    Article  CAS  PubMed  Google Scholar 

  6. A. Gallas, C. Alexander, M. C. Davies, S. Puri, and S. Allen, Chem. Soc. Rev., 2013, 42, 7983.

    Article  CAS  PubMed  Google Scholar 

  7. C. V. Pecot, G. A. Calin, R. L. Coleman, G. Lopez-Berestein, and A. K. Sood, Nat. Rev. Cancer, 2011, 11, 59.

    Article  CAS  PubMed  Google Scholar 

  8. P. Resnier, T. Montier, V. Mathieu, J.-P. Benoit, and C. Passirani, Biomaterials, 2013, 34, 6429.

    Article  CAS  PubMed  Google Scholar 

  9. C. H. Jones, C.-K. Chen, A. Ravikrishnan, S. Rane, and B. A. Pfeifer, Mol. Pharmaceutics, 2013, 10, 4082.

    Article  CAS  Google Scholar 

  10. J. C. Burnett and J. J. Rossi, Chem. Biol., 2012, 19, 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Sato, Y. Sato, K. Iwai, S. Kuge, S. Nishizawa, and N. Teramae, Chem. Commun., 2015, 51, 1421.

    Article  CAS  Google Scholar 

  12. Y.-L. Chiu and T. M. Rana, Mol. Cell., 2002, 10, 549.

    Article  CAS  PubMed  Google Scholar 

  13. M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, J. Cell. Sci., 2009, 122, 753.

    Article  CAS  PubMed  Google Scholar 

  14. J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Biochem. J., 2004, 377, 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Ziegler and J. Seelig, Biophys. J., 2008, 94, 2142.

    Article  CAS  PubMed  Google Scholar 

  16. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J.-P. Behr, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 7297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. Akita, K. Kogure, R. Moriguchi, Y. Nakamura, T. Higashi, T. Nakamura, S. Serada, M. Fujimoto, T. Naka, S. Futaki, and H. Harashima, J. Controlled Release, 2010, 143, 311.

    Article  CAS  Google Scholar 

  18. A. Tamura, M. Oishi, and Y. Nagasaki, Biomacromolecules, 2009, 10, 1818.

    Article  CAS  PubMed  Google Scholar 

  19. E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner, and T. Kirchhausen, Dev. Cell, 2006, 10, 839.

    Article  CAS  PubMed  Google Scholar 

  20. P. M. McLendon, K. M. Fichter, and T. M. Reineke, Mol. Pharmaceutics, 2010, 7, 738.

    Article  CAS  Google Scholar 

  21. Y. Sakurai, H. Hatakeyama, Y. Sato, H. Akita, K. Takayama, S. Kobayashi, S. Futaki, and H. Harashima, Biomaterials, 2011, 32, 5733.

    Article  CAS  PubMed  Google Scholar 

  22. M. Breunig, U. Lungwitz, R. Liebl, C. Fontanari, J. Klar, A. Kurtz, T. Blunk, and A. Goepferich, J. Gene Med., 2005, 7, 1287.

    Article  CAS  PubMed  Google Scholar 

  23. X.-B. Xiong, H. Uludag, and A. Lavasanifar, Biomaterials, 2009, 30, 242.

    Article  CAS  PubMed  Google Scholar 

  24. P. Holzerny, B. Ajdini, W. Heusermann, K. Bruno, M. Schuleit, L. Meinel, and M. Keller, J. Controlled Release, 2012, 757, 297.

    Article  Google Scholar 

  25. Z. ur Rehman, D. Hoekstra, and I. S. Zuhorn, ACS Nano, 2013, 7, 3767.

    Article  CAS  PubMed  Google Scholar 

  26. C. A. Alabi, K. T. Love, G. Sahay, T. Stutzman, W. T. Young, R. Langer, and D. G. Anderson, ACS Nano, 2012, 6, 6133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Lee, I.-K. Kim, and T. G. Park, Bioconjugate Chem., 2010, 27, 289.

    Article  CAS  Google Scholar 

  28. P. Vader, L. J. van der Aa, J. F. J. Engbersen, G. Storm, and R. M. Schiffelers, J. Controlled Release, 2010, 748, 106.

    Article  Google Scholar 

  29. A. Kwok and S. L. Hart, Nanomedicine, 2011, 7, 210.

    Article  CAS  PubMed  Google Scholar 

  30. M. Breunig, U. Lungwitz, R. Liebl, and A. Goepferich, Proc. Natl. Acad. Sci. U. S. A., 2007, 704, 14454.

    Article  Google Scholar 

  31. K. Buyens, M. Meyer, E. Wagner, J. Demeester, S. C. De Smedt, and N. N. Sanders, J. Controlled Release, 2010, 747, 38.

    Article  Google Scholar 

  32. T. F. Martens, K. Remaut, J. Demeester, S. C. De Smedt, and K. Braeckmans, Nano Today, 2014, 9, 344.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Hidetoshi Oikawa and Dr. Tsunenobu Onodera for measurements of physicochemical parameters, and Prof. Tomokazu Matsue and Dr. Hitoshi Shiku for flow cytometric experiments. This work was supported by Grants-in-Aid for Scientific Research (B) (No. 24350033), Challenging Exploratory Research (No. 25620102) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a grant from the Yamada Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yusuke Sato or Seiichi Nishizawa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Sato, Y., Iwai, K. et al. Fluorescence Imaging of siRNA Delivery by Peptide Nucleic Acid-based Probe. ANAL. SCI. 31, 315–320 (2015). https://doi.org/10.2116/analsci.31.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.315

Keyword

Navigation