Skip to main content
Log in

Surface-Enhanced Raman Scattering: A Powerful Tool for Chemical Identification

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The nature of “hot spots” in surface-enhanced Raman scattering (SERS) and the novel fabrication of Ag thin films for efficient SERS measurements are the main focus of this review. By using 4-aminobenzenthiol or 1,4-phenylenediisocyanide molecules we can characterize the nanogap formed by a metal nanoparticle and a flat metal substrate, or the gap between two spherical metal nanoparticles. These nanogaps are indeed SERS-active sites and the apparent size of “hot spots” is found to be very limited. To use SERS for routine chemical identifications, the substrates should be stable, reproducibly prepared, inexpensive, and easy to make. We introduce a method for the facile fabrication of Ag thin films, simply by soaking glass substrates in ethanolic solutions of AgNO3 and butylamine, and their application as efficient SERS substrates. Ag-coated glass capillary and Ag deposited magnetic nanoparticles can be used for the microanalysis of bio- and hazardous chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Chang and T. E. Furtak, “Surface Enhanced Raman Scattering”, 1982, Plenum Press, New York.

    Book  Google Scholar 

  2. M. Kerker, “Selected Papers on Surface-enhanced Raman Scattering”, 1990, SPIE Optical Engineering Press, Bellingham, WA.

    Google Scholar 

  3. M. Moskovits, Rev. Mod. Phys., 1985, 57, 783.

    Article  CAS  Google Scholar 

  4. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Börjesson, Phys. Rev. Lett., 1999, 83, 4357.

    Article  CAS  Google Scholar 

  5. M. Futamata, Y. Maruyama, and M. Ishikawa, Vib. Spectrosc, 2002, 30, 17.

    Article  CAS  Google Scholar 

  6. M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett., 1974, 26, 123.

    Article  Google Scholar 

  7. M. H. Atwan, D. O. Northwood, and E. L. Gyenge, Int. J. Hydrogen Energy, 2007, 32, 3116.

    Article  CAS  Google Scholar 

  8. N. H. Kim, S. J. Lee, and K. Kim, Chem. Commun., 2003, 724.

  9. P. Cao, R. Gu, and Z. Q. Tian, Langmuir, 2002, 18, 7609.

    Article  CAS  Google Scholar 

  10. W. Chu, R. J. LeBlanc, C. T. Williams, J. Kubota, and F. Zaera, J. Phys. Chem. B, 2003, 107, 14365.

    Article  CAS  Google Scholar 

  11. Z. Q. Tian, B. Ren, and D. Y. Wu, J. Phys. Chem. B, 2002, 106, 9463.

    Article  CAS  Google Scholar 

  12. A. Campion and P. Kambhampati, Chem. Soc. Rev., 1998, 27, 241.

    Article  CAS  Google Scholar 

  13. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, J. Phys. Chem. B, 2003, 107, 9964.

    Article  CAS  Google Scholar 

  14. D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, Phys. Rev. Lett., 1994, 72, 4149.

    Article  CAS  PubMed  Google Scholar 

  15. A. M. Michaels, M. Nirmal, and L. E. Brus, J. Am. Chem. Soc, 1999, 121, 9932.

    Article  CAS  Google Scholar 

  16. N. Liver, A. Nitzan, and J. I. Gersten, Chem. Phys. Lett., 1984, 111, 449.

    Article  CAS  Google Scholar 

  17. V. M. Shalaev and A. K. Sarychev, Phys. Rev. B, 1998, 57, 13265.

    Article  CAS  Google Scholar 

  18. K. Kim and J. K. Yoon, J. Phys. Chem. B, 2005, 109, 20731.

    Article  CAS  PubMed  Google Scholar 

  19. J. K. Yoon, K. Kim, and K. S. Shin, J. Phys. Chem. C, 2009, 113, 1769.

    Article  CAS  Google Scholar 

  20. K. Kim, H. B. Lee, J. K. Yoon, D. Shin, and K. S. Shin, J. Phys. Chem. C, 2010, 114, 13589.

    Article  CAS  Google Scholar 

  21. K. Ikeda, J. Sato, N. Fujimoto, N. Hayazawa, S. Kawata, and K. Uosaki, J. Phys. Chem. C, 2009, 113, 11816.

    Article  CAS  Google Scholar 

  22. H. K. Park, J. K. Yoon, and K. Kim, Langmuir, 2006, 22, 1626.

    Article  CAS  PubMed  Google Scholar 

  23. H. K. Park, H. B. Lee, and K. Kim, Appl. Spectrosc, 2007, 61, 19.

    Article  CAS  PubMed  Google Scholar 

  24. K. Kim, H. S. Kim, and H. K. Park, Langmuir, 2006, 22, 8083.

    Article  CAS  PubMed  Google Scholar 

  25. K. Kim, H. B. Lee, H. K. Park, and K. S. Shin, J. Colloid Interface Sci., 2008, 318, 195.

    Article  CAS  PubMed  Google Scholar 

  26. H. Hiramatsu and F. E. Osterloh, Chem. Mater., 2004, 16, 2509.

    Article  CAS  Google Scholar 

  27. K. Kim, D. Shin, K. L. Kim, and K. S. Shin, Phys. Chem. Chem. Phys., 2010, 12, 3747.

    Article  CAS  PubMed  Google Scholar 

  28. D. Shin, K. Kim, and K. S. Shin, ChemPhysChem, 2010, 11, 83.

    Article  CAS  PubMed  Google Scholar 

  29. K. Kim, H. J. Jang, and K. S. Shin, Analyst, 2009, 134, 308.

    Article  CAS  PubMed  Google Scholar 

  30. K. S. Shin, J.-Y Choi, C. S. Park, H. J. Jang, and K. Kim, Catal. Lett., 2009, 133, 1.

    Article  CAS  Google Scholar 

  31. K. Kim, J.-Y. Choi, H. B. Lee, and K. S. Shin, ACS Appl. Mater. Interfaces, 2010, 2, 1872.

    Article  CAS  PubMed  Google Scholar 

  32. L. A. Lyon, D. J. Pena, and M. J. Natan, J. Phys. Chem. B, 1999, 103, 5826.

    Article  CAS  Google Scholar 

  33. E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, J. Phys. Chem. B, 2001, 105, 8.

    Article  CAS  Google Scholar 

  34. J. W. Zheng, Y. G. Zhou, X. W. Li, L. Ji, T. H. Lu, and R. A. Gu, Langmuir, 2003, 19, 632.

    Article  CAS  Google Scholar 

  35. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Anal. Chem., 2005, 77, 3261.

    Article  CAS  PubMed  Google Scholar 

  36. J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, Anal. Chem., 1999, 71, 4903.

    Article  CAS  PubMed  Google Scholar 

  37. E. Bailo and V. Deckert, Chem. Soc. Rev., 2008, 37, 921.

    Article  CAS  PubMed  Google Scholar 

  38. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett., 2000, 318, 131.

    Article  Google Scholar 

  39. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron., 2000, 1, 5.

    Article  CAS  Google Scholar 

  40. D. R. Lide, “CRC Handbook of Chemistry and Physics”, 1998, CRC Press, Boca Raton.

    Google Scholar 

  41. M. J. Robertson and R. J. Angelici, Langmuir, 1994, 10, 1488.

    Article  CAS  Google Scholar 

  42. L. A. Lyon, M. D. Musick, and M. J. Natan, Anal. Chem., 1998, 70, 5177.

    Article  CAS  PubMed  Google Scholar 

  43. H. S. Kim, S. J. Lee, N. H. Kim, J. K. Yoon, H. K. Park, and K. Kim, Langmuir, 2003, 19, 6701.

    Article  CAS  Google Scholar 

  44. A. C. Ontko and R. J. Angelici, Langmuir, 1998, 14, 1684.

    Article  CAS  Google Scholar 

  45. N. H. Kim and K. Kim, J. Phys. Chem. B, 2006, 110, 1837.

    Article  CAS  PubMed  Google Scholar 

  46. G. S. Shafai, S. Shetty, S. Krishnamurty, V. Shah, and D. G. Kanhere, J. Chem. Phys., 2007, 126, 014704.

    Article  PubMed  Google Scholar 

  47. S. A. Wasileski, M. T. M. Koper, and M. J. Weaver, J. Am. Chem. Soc, 2002, 124, 2796.

    Article  CAS  PubMed  Google Scholar 

  48. M. Moskovits and D. H. Jeong, Chem. Phys. Lett., 2004, 397, 91.

    Article  CAS  Google Scholar 

  49. Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, J. Chem. Phys., 2006, 124, 074709.

    Article  Google Scholar 

  50. Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, J. Chem. Phys., 2008, 128, 094705.

    Article  CAS  PubMed  Google Scholar 

  51. Q. Zhou, G. Zhao, Y. W. Chao, Y. Li, Y. Wu, and J. W. Zheng, J. Phys. Chem. C, 2007, 111, 1951.

    Article  CAS  Google Scholar 

  52. Q. Zhou, X. W. Li, Q. Fan, X. X. Zhang, and J. W. Zheng, Angew. Chem., Int. Ed., 2006, 45, 3970.

    Article  CAS  Google Scholar 

  53. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, Nano Lett., 2005, 5, 1569.

    Article  CAS  PubMed  Google Scholar 

  54. J. Hu, B. Zhao, W. Xu, Y. Fan, B. Li, and Y. Ozaki, Langmuir, 2002, 18, 6839.

    Article  CAS  Google Scholar 

  55. M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, J. Phys. Chem. B, 2004, 108, 11660.

    Article  CAS  Google Scholar 

  56. Y. Saito, J. J. Wang, D. N. Batchelder, and D. A. Smith, Langmuir, 2003, 19, 6857.

    Article  CAS  Google Scholar 

  57. H. Y. Lee, H. K. Park, Y. M. Lee, K. Kim, and S. B. Park, Chem. Commun., 2007, 2959.

  58. P. Hildebrandt and M. Stockburger, J. Phys. Chem., 1984, 88, 5935.

    Article  CAS  Google Scholar 

  59. D. J. Maxwell, S. R. Emory, and S. Nie, Chem. Mater., 2001, 13, 1082.

    Article  CAS  Google Scholar 

  60. E. J. Bjerneld, P. Johansson, and M. Käll, Single Mol., 2000, 3, 239.

    Article  Google Scholar 

  61. W. F. Nirode, G. L. Devault, and M. J. Sepaniak, Anal. Chem., 2000, 72, 1866.

    Article  CAS  PubMed  Google Scholar 

  62. J.-Y. Choi, K. Kim, and K. S. Shin, Vib. Spectrosc, 2010, 53, 117.

    Article  CAS  Google Scholar 

  63. K. Kim, H. B. Lee, Y. M. Lee, and K. S. Shin, Biosens. Bioelectron., 2009, 24, 1864.

    Article  CAS  PubMed  Google Scholar 

  64. K. Kim, H. B. Lee, J.-Y. Choi, and K. S. Shin, ACS Appl. Mater. Interfaces, 2011, 3, 324.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwan Kim or Kuan Soo Shin.

Additional information

This is an invited review article selected from Keynote presenters at IUPAC International Conference on Analytical Sciences 2011 (ICAS 2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Shin, K.S. Surface-Enhanced Raman Scattering: A Powerful Tool for Chemical Identification. ANAL. SCI. 27, 775–783 (2011). https://doi.org/10.2116/analsci.27.775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.775

Navigation