Skip to main content
Log in

Quantification of E. coli DNA on a Flow-through Chemiluminescence Microarray Readout System after PCR Amplification

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on a hybridization assay using DNA microarrays for the quantification of amplification products of the uidA gene of E. coli. Using the stopped-PCR strategy, the amplified target DNA was strongly dependent on the applied gene copies. The quantification was carried out by a flow-through chemiluminescence microarray readout system. The DNA microarrays were based on a poly(ethylene glycol)-modified glass substrate. The probes on the surface were 18 or 25 nucleotides long and the quantified PCR product was 60 nucleotides. The amplification was stopped after 25 cycles; at this point amplification was in the middle of the logarithmical phase, and the spread between different DNA starting concentrations reached the maximum. A conjugate of streptavidin and horseradish peroxidase (HRP) bound to the biotinylated strands on the microarray surface and catalyzed the reaction of luminol and hydrogen peroxide. The generated light emission was recorded by a sensitive charge-coupled device (CCD) camera. The detection limit for the gene uidA (β-galactosidase) of E. coli was 1.1 × 105 copies/mL. This system allowed for a sensitive detection and quantification of E. coli in a concentration range from 106 to 109 copies/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Richardson, Anal. Chem., 2007, 79, 4295.

    Article  CAS  Google Scholar 

  2. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, Biosens. Bioelectron., 1999, 14, 599.

    Article  CAS  Google Scholar 

  3. N. S. Hobson, I. Tothill, and A. P. F. Turner, Biosens. Bioelectron., 1996, 11, 455.

    Article  CAS  Google Scholar 

  4. C. W. Kaspar and C. Tartera, Methods Microbiol., 1990, 22, 497.

    Article  Google Scholar 

  5. J. Hasan, S. States, and R. J. Deininger, Contemp. Water Res. Ed., 2004, 129, 27.

    Article  Google Scholar 

  6. B. Spielbauer and F. Stahl, Mol. Nutr. Food Res., 2005, 49, 908.

    Article  CAS  Google Scholar 

  7. D. Y. Lee, K. Shannon, and L. A. Beaudette, J. Microbiol. Meth., 2006, 65, 453.

    Article  Google Scholar 

  8. C. R. Rowe, L. M. Tender, M. J. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, and F. S. Ligler, Anal. Chem., 1999, 71, 3846.

    Article  CAS  Google Scholar 

  9. G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, Anal. Chim. Acta, 2002, 469, 49.

    Article  CAS  Google Scholar 

  10. J. Tschmelak, G. Proll, J. Riedt, J. Kaiser, P. Kraemmer, L. Barzaga, J. S. Wilkinson, P. Hua, J. P. Hole, R. Nudd, M. Jackson, R. Abuknesha, D. Barcelo, S. Rodriguez-Mozaz, M. J. Lopez de Alda, F. Sacher, J. Stien, J. Slobodnik, P. Oswald, H. Kozmenko, E. Korenkova, L. Tothova, Z. Krascsenits, and G. Gauglitz, Biosens. Bioelectron., 2005, 20, 1499.

    Article  CAS  Google Scholar 

  11. B. Elsholz, R. Wörl, L. Blohm, J. Albers, H. Feucht, T. Grunewald, B. Jürgen, T. Schweder, and R. Hintsche, Anal. Chem., 2006, 78, 4794.

    Article  CAS  Google Scholar 

  12. M. G. Weller, A. J. Schuetz, M. Winklmair, and R. Niessner, Anal. Chim. Acta, 1999, 393, 29.

    Article  CAS  Google Scholar 

  13. K. A. Heyries, M. L. Loughran, D. Hofmann, A. Homsy, L. J. Blum, and C. A. Marquette, Biosens. Bioelectron., 2008, 23, 1812.

    Article  CAS  Google Scholar 

  14. M. Bally, M. Halter, J. Vörös, and H. M. Grandin, Surf. Interface Anal., 2006, 38, 1442.

    Article  CAS  Google Scholar 

  15. A. Roda, M. Guardigli, E. Michelini, M. Mirasoli, and P. Pasini, Anal. Chem., 2003, 75, 462.

    Article  Google Scholar 

  16. R. S. Chouhan, K. Vivek Babu, M. A. Kumar, N. S. Neeta, M. S. Thakur, B. E. Amitha, A. Pasha, N. G. K. Karanth, and N. G. Karanth, Biosens. Bioelectron., 2006, 21, 1264.

    Article  CAS  Google Scholar 

  17. W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüssmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, and K. H. Schleifer, Nucleic Acids Res., 2004, 32, 1363.

    Article  CAS  Google Scholar 

  18. A. Wolter, R. Niessner, and M. Seidel, Anal. Chem., 2007, 79, 4529.

    Article  CAS  Google Scholar 

  19. A. Wolter, R. Niessner, and M. Seidel, Anal. Chem., 2008, 80, 5854.

    Article  CAS  Google Scholar 

  20. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir, 2001, 17, 6336.

    Article  CAS  Google Scholar 

  21. B. G. Knecht, A. Strasser, R. Dietrich, E. Märtlbauer, R. Niessner, and M. G. Weller, Anal. Chem., 2004, 76, 646.

    Article  CAS  Google Scholar 

  22. K. Kloth, R. Niessner, and M. Seidel, Biosens. Bioelectron., 2009, 24, 2106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Seidel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donhauser, S.C., Niessner, R. & Seidel, M. Quantification of E. coli DNA on a Flow-through Chemiluminescence Microarray Readout System after PCR Amplification. ANAL. SCI. 25, 669–674 (2009). https://doi.org/10.2116/analsci.25.669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.669

Navigation