Skip to main content
Log in

Vinylferrocene Homopolymer and Copolymers: An Electrochemical Comparison

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Poly (vinylferrocene) (pVFc) homopolymer was synthesized by free radical polymerization, along with a series of pVFc-based copolymers containing either styrene, vinylanthracene or methylmethacrylate. This report details the electrochemical experiments conducted to examine the stability of the various pVFc based polymers, which is shown to be critically dependent on the extent of copolymerization. A trend was found that when the concentration of co-monomer was decreased, electrochemical stability was enhanced. Furthermore incorporation of a second monomer into the polymer chain produced a profound effect on the scan rate behaviour of the vinylferrocene moiety. As the concentration of co-monomer was decreased, the behaviour tended towards that of a diffusion controlled process. These results are of vital significance for the development of pVFc-based electrochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Hickman, D. Ofer, P. E. Laibinis, G. M. Whitesides, and M. S. Wrighton, Science, 1991, 252, 688.

    Article  CAS  PubMed  Google Scholar 

  2. M. T. Sulak, O. Golkdogan, A. Gulce, and H. Gulce, Biosens. Bioelectron., 2006, 21, 1719.

    Article  Google Scholar 

  3. H. Patel, X. Li, and H. I. Karan, Biosens. Bioelectron., 2003, 18, 1073.

    Article  CAS  PubMed  Google Scholar 

  4. B. Sljukic, C. E. Banks, C. Salter, A. Crossley, and R. G. Compton, Analyst, 2006, 131, 670.

    Article  CAS  PubMed  Google Scholar 

  5. H. Gulce, Y. S. Aktas, A. Gulce, and A. Yildiz, Enzyme Microb. Technol., 2003, 32, 895.

    Article  CAS  Google Scholar 

  6. M. Gundogan-Paul, S. S. Celebi, H. Ozyoruk, and A. Yildiz, Biosens. Bioelectron., 2002, 77, 77.

    Google Scholar 

  7. O. Gokdogan, M. Sulak, and H. Gulce, Chem. Eng. J., 2006, 77(5), 39.

    Google Scholar 

  8. K. L. Robinson and N. S. Lawrence, Electrochem. Commun., 2006, 8, 1055.

    Article  CAS  Google Scholar 

  9. M. Kavanoz, H. Gulce, and A. Yildiz, Turkish J. Chem., 2004, 28, 287.

    CAS  Google Scholar 

  10. A. R. Hillman, D. C. Loveday, and S. Bruckenstein, Langmuir, 1991, 7, 7.

    Article  Google Scholar 

  11. J. Leddy and A. J. Bard, J. Electroanal. Chem., 1985, 189, 203.

    Article  CAS  Google Scholar 

  12. P. J. Peerce and A. J. Bard, J. Electroanal. Chem., 1980, 772, 772.

    Google Scholar 

  13. P. J. Peerce and A. J. Bard, J. Electroanal. Chem., 1980, 114, 89.

    Article  CAS  Google Scholar 

  14. A. Merz and A. J. Bard, J. Am. Chem. Soc, 1978, 100, 3222.

    Article  CAS  Google Scholar 

  15. A. R. Hillman, D. C. Loveday, M. J. Swann, S. Bruckenstein, and C. P. Wilde, J. Chem. Soc, Faraday Trans., 1991, 87, 2047.

    Article  CAS  Google Scholar 

  16. M. Umana, P. Denisevich, D. R. Rolison, S. Nakahama, and R. W. Murray, Anal. Chem., 1981, 53, 1170.

    Article  CAS  Google Scholar 

  17. M. F. Dautartas and J. F. Evans, J. Electroanal. Chem., 1980, 709, 301.

    Article  Google Scholar 

  18. G. Inzelt and L. Szabo, Electrochim. Acta, 1986, 31, 1381.

    Article  CAS  Google Scholar 

  19. J. Q. Chambers and G. Inzelt, Anal. Chem., 1985, 57, 1117.

    Article  CAS  Google Scholar 

  20. R. W. Day, G. Inzelt, J. F. Kinstle, and J. Q. Chambers, J. Am. Chem. Soc, 1982, 104, 6804.

    Article  CAS  Google Scholar 

  21. A. Glidle, J. Cooper, A. R. Hillman, L. Bailey, A. Jackson, and J. R. P. Webster, Langmuir, 2003, 19, 7746.

    Article  CAS  Google Scholar 

  22. S. Bruckenstein, I. Jureviciute, and A. R. Hillman, J. Electrochem. Soc, 2003, 150, E285.

    Article  CAS  Google Scholar 

  23. I. Jureviciute, S. Bruckenstein, and A. R. Hillman, J. Electroanal. Chem., 2000, 488, 73.

    Article  CAS  Google Scholar 

  24. S. Bruckenstein, P. Krtil, and A. R. Hillman, J. Phys. Chem. B, 1998, 102, 4994.

    Article  CAS  Google Scholar 

  25. S. Bruckenstein, A. T. Fensore, and A. R. Hillman, J. Electrochem. Soc, 1998, 145, L24.

    Article  CAS  Google Scholar 

  26. A. R. Hillman, N. A. Hughes, and S. Bruckenstein, J. Electrochem. Soc, 1992, 139, 74.

    Article  CAS  Google Scholar 

  27. C. Barbero, E. J. Calvo, R. Etchenique, G. M. Morales, and M. Otero, Electrochim. Acta, 2000, 45, 3895.

    Article  CAS  Google Scholar 

  28. G. Inzelt and J. Bacskai, Electrochim. Acta, 1992, 37, 647.

    Article  CAS  Google Scholar 

  29. C. Amatore, Y. Bouret, E. Maisonhaute, J. I. Goldsmith, and H. D. Abruna, Chem.–Eur. J., 2001, 7, 7.

    Google Scholar 

  30. C. Amatore, Y. Bouret, E. Maisonhaute, J. I. Goldsmith, and H. D. Abruna, Chem. Phys. Chem., 2001, 2, 2.

    Google Scholar 

  31. M. V. Baker, J. Lu, T. B. Issa, P. Singh, and J. Strauch, Aust. J. Chem., 2004, 57, 207.

    Article  CAS  Google Scholar 

  32. T. Saito and M. Watanabe, React. Funct. Polym., 1998, 37, 263.

    Article  CAS  Google Scholar 

  33. K. L. Robinson and N. S. Lawrence, Electroanalysis, 2006, 18, 677.

    Article  CAS  Google Scholar 

  34. K. L. Robinson and N. S. Lawrence, Anal. Chem., 2006, 78, 2450.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Lawrence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, K.L., Lawrence, N.S. Vinylferrocene Homopolymer and Copolymers: An Electrochemical Comparison. ANAL. SCI. 24, 339–343 (2008). https://doi.org/10.2116/analsci.24.339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.339

Navigation