Czechoslovak Mathematical Journal

Miroslav Fiedler
A property of eigenvectors of nonnegative symmetric matrices and its application

to graph theory
Czechoslovak Mathematical Journal, Vol. 25 (1975), No. 4, 619-633

Persistent URL: http://dml.cz/dmlcz/101357

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101357
http://dml.cz

Czechoslovak Mathematical Journal, 25 (100) 1975, Praha

A PROPERTY OF EIGENVECTORS OF NONNEGATIVE
SYMMETRIC MATRICES AND ITS APPLICATION
TO GRAPH THEORY

MirosLAV FIEDLER, Praha

(Received September 12, 1974)

A theorem relating the eigenvectors of a nonnegative symmetric matrix 4 with
the degrees of reducibility of some principal submatrices of A4 is proved and applied
in the theory of algebraic connectivity of non-directed graphs.

1. Notation and algebraic preliminaries. In the whole paper, all numbers will be
real, n will be an integer, n = 2, and N will denote the set {1,2, ..., n}. If 4 is an
n x n matrix and M a proper nonvoid subset of N, we shall denote by 4(M) that
principal submatrix of 4 the indices of the rows (and columns) of which belong to M.
The transpose matrix to 4 will be denoted by A7, the identity matrix by I. A vector
is always considered as a column vector. By the inner product of two vectors x and y,
denoted by (x, y), we mean as usual the number y”x. In the third section, e will
always mean the vector (1, 1, ..., 1), with n ones.

As usual, an n x nmatrix A = (ay) is called irreducible if for no decomposition
of N into two non-void subsets Ny, N,, a; = 0 whenever i e N, k€ N,. We shall
investigate here the case of symmetric real matrices only. For such matrices, we shall
speak about degree of reducibility in the following sense:

A symmetric n x n matrix 4 = (ay,) is of degree of reducibility 5,0 < s < n — 1
if there exists a decomposition of N into s + 1 non-void subsets N = N; UN, U ...
... U N4 such that '

(i) A(N,) are irreducible, i = 1,...,s + 1,
(ii) a,, = O whenever pe N, ge N, i + j.
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This means, of course, that there exists an n X n permutation matrix P such that
PAPT has the block-diagonal form

TAN)O ... 0
0 AN ... 0
oo

An irreducible symmetric matrix is thus of degree of reducibility zero

Given a symmetric matrix A, we shall define its signature s(A) as the row vector

s(4) = (p, q) where p denotes the number of positive and g the number of negative
eigenvalues of A. The following result is classical:

(1,1) If A, is a principal submatrix of a symmetric matrix A then s(4,) < s(4).
A very easy consequence of this result is the following assertion:

(1,2) Let A be an n x n symmetric matrix, A,y = A, =

Then no principal submatrix of the matrix AJ — A (s

= > A, its eigenvalues.
s — 1 negative eigenvalues.

=1, ..., n) has more than

We shall also need the notion of M-matrices or, equivalently, of matrices of class K.

Let us recall (cf. [2]) that a real square matrix A4 belongs to the class K (or K,

respectively) iff all off-diagonal entries of 4 are nonpositive and all principal minors
of A are positive (or nonnegative, respectively).

The following assertions have been proved in [2] and [7]:
(1,3) A matrix from K, belongs to K iff it is nonsingular.
(1,4) If AeK then A=* = 0. If AeK is irreducible then A™" > 0.

(1,5) If AeK, is irreducible and singular then zero is a simple eigenvalue

of A, there exists unique real vector (up to a factor) u =% 0 such that Au = 0, and
this vector is either positive, or negative.

For symmetric matrices, from the definition of class K or K, and the properties
of positive definite or semidefinite matrices follows immediately:

(1,6) A symmetric matrix belongs to K( or Ko, respectively) iff all its off-diagonal
entries are nonpositive and all its eigenvalues positive (or nonnegative, respectively).
From (1,6) and (1,5), the following assertion follows immediately:

(1,7) If A symmetric irreducible has all off-diagonal entries nonpositive and
Az = 0 for a real vector z £ 0 which is neither positive nor negative then A is
not positive semidefinite.

2. Matrix-theoretical results. We shall prove first the following theorem:

(2,1) Theorem. Let A be an n X n nonnegative irreducible symmetric matrix
620



with eigenvalues 7., = A, 2 ... Z ,. Let v = (v;) be a column vector such that
for a fixed se N, s = 2, Av = Aw.

If M ={ieN | v; = 0} then M is non-void and the degree of reducibility of
the matrix A(M) does not exceed s — 2.

Proof. Suppose first that M is void. Then v < 0 and the vector z = —u satisfies
z > 0 and

(1) Az

liA

AZ .

Since 1,1 — A € K, by (1,6) and is irreducible, there exists by (1,5) — or, of course,
by the Perron-Frobenius theorem [5] — a vector u > 0 such that A"u = A,u, or
equivalently,

uTA = 2u” .
Then

uTdz = 2uz > Ju"z,
since 4, is simple by (1,5). However, by (1)
uT™z < Ju"z

which is a contradiction. Thus M =+ 0.

If M = N, the theorem is true. Thus let @ & M =+ N and suppose that the degree
of reducibility of A(M) is at least s — 1. Without loss of generality, we can assume
that M = {1, ..., m}, m < n, and that

A= A11, 07 RS 07 Al,r+1
O’ A227 1] 0’ AZ r+1
0, 0, ooy Ay Appiy
T T T
._Al,r+1! A2,r+1 ) Ar,r+19 Ar+l,r+1_

where r > s and A4;;, i = 1,...,r, are irreducible, the sum of their dimensions
being m. If the vector v is partitioned conformally,

v=T0oW
o)
e
o0 |
then
(2 W20, i=1,..,r, oD <0.
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According to the assumption in the theorem’

(3) (Aﬁ — lsli) v = — Ay qurr , “1..r
Since
}’sll - All -~
Ay — 4,

is a principal submatrix of 4] — A, it followg from (1,2) tﬁat it has at most s — 1
negative eigenvalues. Thus at least one of the Matrices A1, — A,,, say AJ, — Ay,
has nonnegative eigenvalues only. By (L,6), A, — AuSGIKo and is irreducible.

Suppose first that AJJ, — A, is nonsingular. The, it belongs to K by (1,3) and its
inverse is positive by (1,4). Since (3) and (2) imply

(4) (Ady — Ayy) oD = Ap oD =0,
it follows that
oM < (lsll - An)_l Ay it =0.

Consequently, v =0 by (2) and Ay, v"+D
This is a contradiction to irreducibility of A.
Thus AJ, — Ay, is singular. By (1,5), there exists a vector u(" > 0 such that

=0 which implies 4,,,,; = 0.

(5) u(l)T(’lsll - Au) =0.
Thus
u(l)T()'sll - An) =0,

Since

(Ady = Ayy) o 0
by (4), it follows that

(Al = Agy) v = 0.
By (4), A ,4,0""" = 0 so that, by (2), 4;,,, = 0, a contradiction. The proof is

complete.
From this theorem, two corollaries follow:

(2,2) Corollary. Let A be an n x n nonnegative irreducible, symmetric matrix
with eigenvalues Ay Z 2, Z ... Z A, Let seN, s =2 and let v = (v;) be any
eigenvector corresponding to A. Then M = {ie N | v; = 0} is non-void and the
degree of reducibility of A(M) does not exceed s — 2.
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(2,3) Corollary. Let A be an n X n nonnegative irreducible, symmetric matrix
with eigenvalues Ay = 2, = ... = 1,. Let u = (u;) > 0 be an eigenvector cor-
responding to L, and v = (v;) an eigenvector corresponding to A,. Then for any
a = 0, the submatrix A(M,) is irreducible where M, = {i e N | v; + ou; = 0}.

The proof of (2,2) being immediate, (2,3) follows from (2,1) since v + au satisfies
the assumption for s = 2.

In the sequel, we shall also use (in different terminology) the following lemma
which was proved in [4] (as Lemma (1, 12)):

A=|B ¢
cT d

be an n x n partitioned symmetric matrix, B an (n — 1) x (n — 1) matrix. If,
for some vector u,

(2,4) Lemma. Let

Bu=0, cfu#0
then
s(4) = s(B) + (1,1).

3. Applications in the graph theory. In this section, under a graph we shall always
understand a nondirected finite graph without loops and multiple edges. We shall
denote the vertices of such a graph G by numbers, usually 1, 2, ..., n, and the set of
vertices will then be denoted by N. Thus G = (N, E), E being the set of edges (i, k)
of G (unordered pairs of different indices of N).

Under a cut in the graph G we shall understand, as usual, a set of edges C to
which a decomposition N = (Nl, N.,) of the vertex set N of G exists (i.e. Ny = 0 +
# N,, Ny UN, =N, N; n N, = 0) such that C consists exactly of all edges in G
with one vertex in N, and the other in N,. We shall call bank of the cut each of the
subgraphs of G induced by the subsets N; and N,.

It is clear that in this definition, the decomposition N = (N, N,) may not be
uniquely determined by the cut C. However, it is easy to prove the following assertion:

(3,1) Let C be a cut in a graph G. If there is a decomposition N = (N, N,)
of the vertex set N of G corresponding to C such that both corresponding banks
are connected then the decomposition of N corresponding to C is unique.

If G is a graph, it is well known [5] that on its edge set E an equivalence relation R
can be defined as follows: If e, € E, e, € E then e, Re, iff there is a simple circuit in G
containing both edges e, and e,. Let E = E, U E, U ... U E, be the decomposition
of E into classes of equivalence with respect to R. The subgraphs G; (i = 1,...,7)
of G consisting of all edges in E; and of all vertices adjacent to them will be called
blocks of G. As is well known, vertices in common to more than one such block are
points of articulation of G. We shall say that two such points of articulation are
neighbouring if there exists a block of G to which both of them belong. The following
assertion is well known [6]:
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(3,2) Let G be a connected graph, By, B, its two different blocks. Then there is
a unique sequence p, ..., ps (s = 1) of points of articulation such that p, € B,
ps € B, and py, pi.+1 are neighbouring for k = 1,...,s — 1.

To a graph G = (N, E), a matrix 4(G) which we shall call Laplacean of G (in
accordance with Anderson [1]), is assigned as the matrix of the quadratic form

(AG) %, x) = ¥ (xi — x)*.
(i,k)eE
Thus, 4(G) = (a;) where
ag= 0(=a,) if i+k and (i,k)¢E,

ag=—1(=a,) if i+k and (i,k)eE,
i=—Yay, i,keN.

k*i

)
It

In [3], the algebraic connectivity a(G) of the graph G was defined as the second
smallest eigenvalue of A(G) (the smallest is always zero). Many properties of this
notion have been proved and relations to other connectivity numbers found.

We shall recall just one property of a(G) that a(G) > 0 iff G is connected. It is
clear that G is connected iff 4(G) is irreducible.

We shall be interested here in graph-theoretical properties of the eigenvector of
A(G) corresponding to a(G). The coordinates of this eigenvector are assigned to the
vertices of G in a natural way and can be considered as valuations of the vertices
of G. We shall call this valuation characteristic valuation of G. It is always non-zero
and is determined uniquely up to a non-zero factor if a(G) is a simple eigenvalue of G.

To obtain more general results, we shall investigate valuated graphs, i.e. graphs
to each edge (i, k), i * k, of which a positive number c;, = ¢,; is assigned. The
generalized Laplacean A¢(G) of this graph will then be defined by

(6 (4c(G) x, x) =(i2 Ecik(xi - X,)?,

,k)e
ie. Ac(G) = (ay) where
ag=ay = —cy if i+k, (ik)eE,
ag=a,;= 0 if i+k, (i,k)¢E,

a;; = Z Cik -
k#i,(i,k)eE

The second smallest eigenvalue ac(G) will be analogously called algebraic con-

nectivity of G.
We shall prove first the following lemma:
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(3,2) Lemma. Let G = (N, E) be a connected graph valuated by positive numbers
¢y Then the algebraic connectivity of G is positive and equal to the minimum of
the function

Z Cik(xi - xk)z
(i,k)eE

(xi — x)*
(ik), i<k

o(x) = n

over all nonconstant n-tuples x = (x;) (i.e. n-tuples which are not of the form
X;=¢, i =1,...,n). The corresponding characteristic valuations y = (y,-) of G
are then those nonconstant n-tuples for which the minimum of (p(x) is attained
and for which Y y; = 0.
i=1

Proof. Since A¢(G) e = 0 and A(G) is positive semidefinite, zero is the smallest
eigenvalue of 4(G). Since G is connected, it follows easily from (6) that e is the only
linearly independent solution of (4(G) x, x) = 0. This means that zero is a simple
eigenvalue, all remaining eigenvalues are positive and all eigenvectors which cor-
respond to these eigenvalues are orthogonal to e. According to the well known
Courant-Fischer principle [5], the second smallest eigenvalue a(G) of A(G) satisfies

Z Cik(xi - xk)2
ac(G) = min GRE___

x¥0,(x,e)=0 d

X xi

i=1

and the minimum is attained for any eigenvector corresponding to aC(G). By the
Lagrange identity

n

i=1
we have, whenever x 0 and (x, e) = 0,

Z cik(xi - xk)z Z Cik(xi - xn)2

(i,k)eE — p (LREE

2 > (i = x)?
i )

Xi ik

o

i=1

and the right-hand side is invariant with respect to adding a multiple of e to x. The

proof is then easily completed.

(3,3) Theorem. Let G be a finite connected graph with n vertices 1, ..., n, to
every edge (i, k) of which a positive number c;, is assigned. Let y = (y;) be a charac-
teristic valuation of G. For any r = 0, let

M(r)={ieN |y, +r z0}.
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Then the subgraph G(r) induced by G on M(r) is connected.

Proof. Denote by B the symmetric matrix (b,-k), i, k € N, defined by

by =cy if i+k and (i,k)eE,

by=0 if i*k and (i,k)¢E,

by = — Z bik-

kk*i
Since
—(Bx,x) = Y, culx; — x)*,
(i,k)eG
we have
B = —AG).

On the other hand, the off-diagonal part of B being nonnegative, B + oI is non-
negative for a sufficiently large o. The eigenvectors of A.(G) are identical with
those of B + ol and to the second smallest eigenvalue of Ay(G) corresponds the
second largest eigenvalue of B + ¢I. By Corollary (2,3), y + re where y is the
vector of characteristic valuation of G, has the property that the submatrix of B + oI
with indices in M(r) is irreducible. Thus, the subgraph G(r) is connected. The proof
is complete.

(3,4) Remark. A similar statement can be proved for r < 0 and the set M'(r)
of all those i’s for which y; + r < 0.

(3,5) Corollary. Let G be a valuated connected graph with vertices 1,2, ..., n,
lety = (y,-) be a characteristic valuation of G. If ¢ is a number such that 0 < ¢ <
< max y; and ¢ % y; for all i then the set of all those edges (i, k) of G for which
yi<c <y formsacutCof G.IFN, = {keN|y,>c}andN, = {keN |y, < c}
then N = (N, N,) is a decomposition of N corresponding to C and the bank
G(N,) is connected.

(3,6) Corollary. Let G be a valuated connected graph with vertices 1,2, ..., n,
let y = (y;) be a characteristic valuation.

If y; & 0 for all ie N the the set of all alternating edges, i.e. edges (i, k) for
which y;y, < 0, forms a cut C of G such that both banks of G are connected.

(3,7) Remark. By Theorem (3,1), the decomposition and the banks are in this
case uniquely determined. If

N, ={ieN|y;>0}, N,={ieN|y;, <0}

then N = (N, N2) is the decomposition corresponding to C.
In the following theorem, we shall show that, in this manner, all cuts with con-
nected banks in a connected graph can be obtained.
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(3,8) Theorem. Let G be a connected graph, let C be a cut of G such that both
banks of C are connected. Then there exists a positive valuation of edges of G such
that the corresponding characteristic valuation y = (y,) is unique (up to a factor),
y; % 0 for all i, and that C is formed exactly by alternating edges (as in (3,6))
of the valuation y.

Proof. Let N = (N, N,) be a decomposition of the set of vertices N of G =
= (N, E) corresponding to the cut C. For ¢ = 0, define an n x n symmetric matrix
C(e) as the matrix of the quadratic form

(7)) (Cle)x.x)= Y (xi—=xP+ Y (xi—x)+e Y (xi—x)
ieNy keN| ieN 2 ReN, ieNy keN2 .
G K)eE (i )eE G )eE

The matrix C(s) is clearly positive semidefinite. For ¢ > 0, the only vector x = 0
for which (C(e) x, x) = 0, is (up to a multiple) the vector e = (1, 1,...,1)". Thus

for ¢ > 0 the smallest eigenvalue zero is simple and the second eigenvalue 7,(c)
is positive, equal to

(8) min {(C(e) x, x) [ x, (x,x) =1, (x,e) =0}.

Clearly, yz(e) is a continuous function of ¢ and yZ(O) = 0. For ¢ = 0, the third eigen-
value y5(0) of C(0) is already positive since (C(0) x, x) = 0 iff x is a linear combina-
tion of the vectors z* = (z{"), z® = (z{*’) where

D =1 if keN,, zP =0 if keN,,

ZD =0 if keN,, zP =1 if keN,.

(Here, we used the fact that both banks are connected.) Since y,(¢) is also a con-
tinuous function of &,

72(e) < 73(e)

in some open interval I, = (0, n) where > 0. For e e I, U {0}, there exists, up to
multiplication by — 1, a unique eigenvector y(e) of C(&) corresponding to y,(¢) and
such that (y(g), y(e)) = 1, (y(e), e) = 0. Since y(g) is that vector for which the
minimum in (8) is attained and y(0) is clearly the vector y = (y;) (determined up
to the sign) where

Vi IN2|1/2 |N1|“1/2n“”2 if 'iENl,

V; —[Nlll/ziNzl"”zn"”2 if ieN,,

there exists a subinterval I, = (0, ) with 0 < ¢ < 5 in which the sign of yde) is
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positive for i e N, and negative for i € N,. Thus the alternating edges are exactly
those in C. The proof is complete.

(3.9) Let G = (N, E) be a graph with the vertex set N = {1, ..., n}. Let each
edge (i, k) of G be valuated by a positive number c,. If y = (y;) is a characteristic
valuation and ac(G) the algebraic connectivity of G then

9 ac(G)y; = Y. culyi — ») forall ieN,
k,(i,K)eE

and also for any subset M = N

(10) aC(G) Z Vi = Z cik(yi - V).
ieM (i,k)eE
: ieM k¢gM
Proof. (9) follows immediately from Ac(G)y — ac(G)y = 0. If we sum in (9)
over all ie M, we obtain (10) since the terms on the right-hand side for ie M,
k € M cancel.

(3,10) Corollary. Let G be a connected valuated graph with the vertex set N =
={l,...,n}, let y =(y;) be its characteristic valuation. If y, > O then there
exists an index j such that (i, j)€ E and y; < y,.

Proof. Follows immediately from (9) since ac(G) > 0.
We shall investigate now the properties of the characteristic valuation on blocks
of G.

(3,11) Theorem. Let G = (N, E) be a connected graph, y its characteristic valu-
ation. Let k be a point of articulation of G, let Gy, Gy, ..., G, be all components
of the graph obtained from G by removing the vertex k and all adjacent edges.
Then:

(i) If y > O then exactly one of the components G; contains a vertex negatively
valuated in y. For all vertices s in the remaining components y, > y,.

(ii) If yx = O and there is a component G, containing both positively and nega-
tively valuated vertices then there is exactly one such component, all remaining
being zero valuated.

(iii) If y, = 0 and none component contains both positively and negatively
valuated vertices then each component G; contains either only positively valuated,
or negatively valuated, or only zero valuated vertices.

Proof. Let first y, > 0. Since Y. y; = 0, there is a vertex in G with negative value;
ieN

this must be in G, U ... U G,, thus in at least one G;, say G,. To complete the proof

of (i), it suffices to show that for all vertices ¢ in Gy U ... U G,, y, > y, since then
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¢ > 0 as well. Suppose first that y, < y, for some vertex ¢ in G; U ... U G,. Then
there exists an & > 0 for which y, — & > 0 as well as y, — ¢ = y,. By (3,4), the
graph G induced by Gon M = {se N | y, < y, — &} is connected. Since k ¢ M, G is
contained in G, U ... U G,; as it contains at least one vertex in G, (with a negative
value), G = G,. However,t€ G, U ... U G, belongs to M, a contradiction. If y, = y,
for some vertex s in G; U ... U G, then by (3,10), there is a vertex 7 in G for which
(s,t)eEand y, < y,. Since t # k,te G, U ... U G,, a contradiction by the previous
argument.

Let us consider now the case that y, = 0. For notational convenience, we shall
assume that k = n and that

AG)=A=[4,0 ...0 ¢
0 A4, ... 0 ¢
0 0 A, c,
Leg ef ¢y

where A4; corresponds to vertices in G;, i =0, ..., r.
If « is the algebraic connectivity of G then 4 — ol is singular and
(A—al)y=0.
Let

be the conformally partitioned vector of the valuation y; we have thus, I, ..., I,
being identity matrices of the corresponding size,

(4o — alp) Y@ =0,

(Al - xll)y(l) = 05

(4, —al) y = 0.

Let us distinguish two cases:

) Some of the components G;, say Go, contains both positively and negatively
valuated vertices. Thus y(® is neither nonnegative, nor nonpositive. By (1,7), it
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follows that A, — oy which has all off-diagonal entries nonpositive is not positive
semidefinite and thus has at least one negative eigenvalue. Consequently, as

[ Ao — oy, I
Ay —aly,

L Ar - d],__

is a principal submatrix of A — al, and thus has, by (1,2), at most one negative
eigenvalue, all matrices 4; — al;, i = 1, ..., r, are positive semidefinite and thus
belong to K,. Assume y© + 0 for an index j, 1 < j < r. Since 4; is irreducible,
y¥W is by (1,5) either positive or negative. At the same time, c; & 0 since A4 is ir-
reducible. But ¢; < 0 and thus (y?)" ¢; + 0. By Lemma (2,4) applied to the vector

s(A4 — al) =.=r s(4; — al;) + (1,1)

i

which means that 4 — al has at least two negative eigenvalues (the other from
Ao — aly), a contradiction. Thus y™ = 0, ..., y® = 0 as asserted. The proof of (ii)
is complete.

B) None of the components Gg, Gy, ..., G, contains both positively and negatively
valuated vertices. Let a component (and there is such since y + 0), say G, contain
a vertex with a non-zero valuation. Thus y® % 0 and either y® > 0, or ¥ < 0.
If some coordinate of y® were zero then by (1,5), 4, — al, would not belong to K,
and it would follow as in « that yV =0, ..., y = 0, a contradiction to Y y; = 0,
y # 0. Thus either y > 0, or y» < 0. The proof of (iii) is complete. "

To shorten the formulation of the following theorem, we shall say that a path
in a graph G is pure iff it is simple and does not contain more than two points of
articulation of each block of G.

(3,12) Theorem. Let G be a connected graph, y its characteristic valuation. Then
exactly one of the following two cases occurs:

630



Case A. There is a single block B, in G which contains both positively and
negatively valuated vertices. Each other block has either vertices with positive valua-
tion only, or vertices with negative valuation only, or vertices with zero valuation
only. Every pure path P starting in B, and containing just one vertex k in B,
has the property that the values at the points of articulation contained in P form
either an increasing, or decreasing, or a zero sequence along this path according
to whether y, > 0, y, < 0 or y, = 0; in the last case all vertices in P have value
zero.

Case B. No block of G contains both positively and negatively valuated vertices.
There exists a single vertex z which has value zero and has a neighbour with
a non-zero valuation. This vertex is a point of articulation. Each block contains
(with the exception of z) either vertices with positive valuation only, or vertices
with negative valuation only, or vertices with zero valuation only. Every pure path
P starting in z has the property that the values at its points of articulation either
increase, and then all values in vertices of P are (with the exception of z) positive,
or decrease, and then all values (up to that of z) are negative, or all values in
vertices of P are equal to zero. Every path containing both positively and negatively
valuated vertices passes through z.

Proof. The cases A and B clearly exclude each other. That both can occur, show
the examples of graphs with the matrix

B

and characteristic valuation (1, —1)" (case A) and with the matrix

1 -1 0
-1 2 -1
0 -1 1

and valuation (1, 0, —1)" (Case B).

Thus let G be a connected graph, y its characteristic valuation. Let first G contain
a block B, with positively as well as negatively valuated vertices. If G has the only
block B,, we are finished. If not, let B; be a block different from B,. Then there
exists a point of articulation k which is contained in B, and separates B, from B,.
Let Gy, Gy, ..., G, be all components of the graph obtained from G by removing the
vertex k and the edges adjacent to k, G, containing the remaining vertices from By, G,
the remaining vertices from By. If y, > 0, it follows from (i) of Theorem (3,11)
that all vertices in G, (and thus in B,) have positive values. If y, = 0, it follows from
(i) of the same theorem that all vertices in G,, and thus B;, have value zero. If
yi < 0, the valuation —y is also a characteristic valuation and we may apply (i)
of (3,11) to this case and complete the proof of the first part of Case A.
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Let now P be a pure path, let k be the only vertex of P in By and k, ki, k,, ..., k,
be all points of articulation in P ordered along the path P. Let first y, > 0. By
Theorem (3,11), Y&, > Vi If we apply the same Theorem to the point of articula-
tion k; where j satisfies 1 < j < s, we obtain from (i) that y, +1 > Vi, This proves
that the sequence yy, Vi,> Vk,» - - +» Vi, increases. If y, < 0, this last result applied to —y
yields that this sequence decreases. If y, = 0, it follows from (ii) of Thm. (3,11)
that even all vertices of P have value zero. The case A4 is settled.

Let now no block contain both positively and negatively valuated vertices. Let us
prove first:

Proposition. Let a path P contain a vertex with positive value as well as a vertex
with negative value. Then P contains a vertex with zero value such that one its
neighbour has a non-zero value.

Proof. Follows immediately from the fact that in this case there is no edge in G
one vertex of which has a positive value and the other a negative value.

Since y # 0 and Y, y; = 0, there is such path P in G, and thus such a vertex z
ieN

with y, = 0 and a neighbour with a non-zero valuation. By (9), z must have neigh-
bours with positive as well as negative valuation. Since these cannot belong to the
same block, z is a point of articulation of G. It follows then from the properties in (ii)
of Thm. (3,11) that the case (iii) in this theorem occurs. Consequently, no other vertex
can have value zero and neighbours with a non-zero value. This, together with the
Proposition, proves the last assertion. Let now P be a pure path starting in z. It
follows from (iii) in Thm. (3,11) that if this path contains a vertex with a positive
(alternatively, negative) value then all vertices in P, except z, have positive (a]terna-
tively, negative) values. Since —y is also a characteristic valuation, we can restrict
ourselves to the first case only. Let z, k, k,, ..., k; denote all points of articulation
in P in the ordering induced by P. Let j satisfy 1 < j < s. Since y,, > 0, we can apply
(i) of Thm. (3,11) to obtain that y, ,, > y,,. The case B is thus also settled.

(3,13) Corollary. In Case B of Theorem (3,12), the subgraph G, of G induced
by G on the set of vertices with value zero is connected.

We shall turn now to the case that G is a tree. In this case. the blocks are identical
with edges, every path is pure and Theorem (3,12) together with Corollary (3,13)
yield immediately the following:’

(3,14) Theorem. Let T be a tree, y = (y;) its characteristic valuation. Then two
cases can occur:

Case A. All values y; are different from zero. Then T contains exactly one edge
(p, q) such that y, > 0 and y, < 0. The values in vertices along any path in T which
starts in P and does not contain q increase, the values in vertices along any path
starting in q and not containing p decrease.
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Case B. The set Ny = {ieN | y; = 0} is non-void. Then the graph T, induced
by T on N, is connected and there is exactly one vertex z € N, having at least one
neighbour not belonging to Ny. The values along any path in T starting in z are
increasing, or decreasing, or zero.

Remark. Using more subtle properties of special matrices, proved in [4] one can
prove the following theorem which shows that for valuated trees the characteristic
valuation does not have other properties independent on the valuation of edges:

Let T be a tree (without valuation of edges) with the set of vertices N. Let o be
a positive number, let y,, ..., y, be real numbers not all equal to zero such that
Y. y; = 0 and satisfying the following two conditions: (i) If all numbers y; are
ieN .
different from zero then there is exactly one edge (p, q) in T such that y, > 0,
Vq < O; for the vertices p and q, the values on any path starting in p and not con-
taining q increase, the values on any path starting in q and not containing p
decrease.

(ii) If the set N, of vertices with value zero is non-void then the graph T, induced
by T on N, is connected and there is a single vertex z € N, which has some neighbour
not belonging to N,. The values on any path starting in z either increase, or
decrease, or are all zero.

Then there exists a positive valuation of edges of T such that « is the algebraic
connectivity of T and y is a characteristic valuation of T determined (up to a non-
zero factor) uniquely.
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