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Czechoslovak Mathematical Journal, 23 (98) 1973, Praha 

ALGEBRAIC CONNECTIVITY OF GRAPHS*) 

MIROSLAV FIEDLER, Praha 
(Received April 14, 1972) 

1. INTRODUCTION 

Let G = (F, E) be a non-directed finite graph without loops and multiple edges. 
Having chosen a fixed ordering w ,̂ W2, ..., w„ of the set V, we can form a square 
n-rowed matrix A(G) whose off-diagonal entries are а̂ -̂  = aj,î = — 1 if (ŵ -, WJ^G E 
and üik = 0 otherwise and whose diagonal entries ац are equal to the valencies of 
the vertices W;. This matrix Ä(G), which is frequently used to enumerate the spanning 
trees of the graph G, is symmetric, singular (all the row sums are zero) and positive 
semidefinite {Ä{G) = UU^ where U is the (0, 1,-1) vertex-edge adjacency matrix 
of arbitrarily directed graph G). Let n ^2 and 0 = Я̂  ^ Я2 = ^(^) ^ >̂з ^ ••• 
... g /l„ be the eigenvalues of the matrix A(G). From the Perron-Frobenius theorem 
applied to the matrix (n - 1) / — Ä{G) it follows that a{G) is zero if and only if the 
graph G is not connected. We shall call the second smallest eigenvalue a(G) of the 
matrix Ä(G) algebraic connectivity of the graph G. It is the purpose of this paper to 
find its relation to the usual vertex and edge connectivities. 

We recall that many authors, e.g. A. J. HOFFMAN, M. DOOB, D . K. RAY-CHAUD-

HURi, J. J. SEIDEL have characterized graphs by means of the spectra of the (O, 1) 
and (0, 1, —1) adjacency matrices. 

2. NOTATION AND CONVENTIONS 

The notation introduced above is used throughout the present paper. All matrices 
and vectors are considered real. The transpose of a matrix M is denoted by M^, the 
identity matrix by /, the vector (1, 1,..., 1)^ by e, the universal matrix ее''' by J, the 
cardinality of a set 5 by |5|. 

For our purpose it is convenient to denote by W the set of all column vector^ x 
such that x'̂ x = 1, x^e = 0. Any square matrix M with all zero row sums has an 

*) Presented at the Graph Theory Meeting in Zlata Idka, May 1971. 
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eigenvalue О and a corresponding eigenvector is e. If M is positive semidefinite then 
the second smallest eigenvalue is equal to min x^Mx by the well known Courant's 
theorem. We use that principle tacitly. ^^^ 

Further, let us mention two common concepts. Edge connectivity of the graph G, 
i.e. the minimal number of edges whose removal would result in losing connectivity 
of the graph G, is denoted by e{G). Vertex connectivity which is defined analogously 
(vertices together with adjacent edges are removed) is denoted by v{G). It is convenient 
to put v(G) = n — 1 for the complete graph G. 

Let Gl = (Fl, £i) , G2 = (F2, E2). By Gi x G2 we denote the graph {V^ x F2, E) 
such that ((wj, U2), (I'l, 1̂ 2)) e £ if and only if either u^ = Vi and («2,1^2) ^ ^2 or 
(wi, î i) G Ej and и2 = V2' Let R = (r,y), S be matrices. Then by i^ x 5 the parti­
tioned matrix {rijS) is denoted. 

3. PROPERTIES OF a{G) 

3.1. / / Gl, G2 are edge-disjoint graphs with the same set of vertices then a(Gi) + 
+ a{G2) й a{G, u G2). 

Proof. We have A{G^ u G2) = ^(Gi) + A{G2). Thus a{Gi u G2) = 
= min (x"̂  ^(Gi) X 4- x"̂  ^(G2) x) ^ min x'^ A{Gi) x + min x^ ^(G2) x = Ö(GI) + 

xeW xeW xeW 

+ a(G2). 

3.2. Corollary. The function a{G) is non-decreasing for graphs with the same set 
of vertices, i.e. a(G^) ^ a(G2) if G^ Ç G2 {and Gj, G2 have the same set of vertices). 

3.3. Let G be a graph, let G^ arise from G by removing к vertices from G and 
all adjacent edges. Then 

(1) a(Gi) ^ a{G) - k. 

Proof. Let G have n vertices and let Gi arise from G by removing one vertex, 
say u„. Define a new graph G' by completing in G all missing edges from м„. Then 

4-)=(i?''^\-i',)-
Let V be an eigenvector of ^(Gi) corresponding to the eigenvalue Ö(GI) . Since 

4G')(o) = WGx)+l](o). 

a(Gi) + 1 is an eigenvalue of A(G') different from zero, i.e. 

ß(G') g a(Gi) + 1 . 
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By 3.2, a(G) ^ a(G') which implies (1) for Ä: = 1. The general case follows by 
induction. 

3.4. We have a{Gi x G2) = min (a(Gi), «(Оз)). 

Proof. Let Gl = (Fl, £1), G2 = (Kj, £2)- Order the set V^ x V2 lexicographically. 
Then ^(Gi X G2) = ^(Gi) x /2 + /1 x ^(G2), Ij being the |Fy|-rowed identity 
matrix. By a well known result from the matrix theory [1] all eigenvalues of ^(Gi x 
X G2) are of the form ц + v where /x, v resp. are eigenvalues of ^(Gi), ^(G2) respec­
tively. Hence the second smallest eigenvalue of ^(Gi x G2) is either a(Gi) + 0 or 
0 + a(G2). 

3.5. Let G = (F, £), Vj be the valency of the j-th vertex. Then 

a{G) S [nl{n - 1)] min Vi g 2|£|/(n - 1) . 
i 

Proof. Since n min Vi g 2]̂ » = 1̂̂ 1? the second inequality is true. The first is an 
i i 

immediate consequence of the following lemma. 

Lemma. Let M = (шц^ be a symmetric positive semidefinite n by n matrix such 
that Me = 0. Then the second smallest eigenvalue À2 of M satisfies 

(2) ^2 S ["/('î "- 1)] niin тц . 
i 

Proof. Observe that 

(3) À2 — min x^Mx . 
xeW 

Let us show that the matrix 

M = M - À2{I - п-Ч) 
is also positive semidefinite. 

Let у be any vector in £„. Then у can be written in the form у = c^e -{• C2X where 
xeW. Since Йе = 0, it follows that 

уТ^Му = clx'^Mx = cl{x'^Mx ~ Д2) è 0 

by (3). Thus the minimum diagonal entry of Й is nonnegative: 

min тц — ^2(1 — и~^) ^ О 
i 

and (2) is proved. 
Remark. A matrix M = (m,/t) satisfying conditions of the preceding lemma l\as 

also the property that the numbers ^Jm^ fulfil the polygonal inequality, i.e. 

2maxmJ/^ й^т1Г 
i i 
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This follows easily from the well known fact that M can be considered as the Gram 
matrix of a system of n vectors u^, ...,u„ with sum zero: 

^ik = (Ui, Uk) = uJUk , X"i = ^ • 
i 

Then we have for the lengths 

l"ii ^ Zi"/c| for i = 1, . . . , n , 

or 
2 max |w,-| ^ ]^ |м |̂ 

i i 

and |wi| = (wf, u^^^' = m\l^ yields the result. 
If we apply (4) to the matrix M = M — ^2(1 — (l/n) J), we obtain 

2 max (m„ - [(n - l)/n] Я,)'/^ ^ Я ш , , - [(n - l)/n] Я,)»'^ . 
i i 

In terms of the graph G, we obtain 

2 max [m^, - (n - 1) a{G)Y^^ й E[nt;, - (n - 1) Û(<^)] '^ ' • 
i i 

For sake of completeness, we formulate the assertion 

3.6. For the complete graph K„ with n vertices a{K^ = n. 

In the following theorem, we denote by b(G), for a graph G with n vertices, the 
number 

b{G) = n - a{G) 

where G is the complementary graph to G. 

3.7. The function b{G) has following properties: 

1° b{G) is the maximum eigenvalue of Ä{G) or, equivalently 

(5) b{G) = max x^ A{G) x ; 
xeW 

we have thus 

(6) a{G)ub{G), 

with equality if and only if G is a complete graph or a void graph (i.e. without 
edges); 

T b{G) = max b{G,) 

if G j , . . . , Ĝ  are all components of G; 
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y b{G^) й b{G2) if Gl ç G2, i.e. V^ ç V2 and E^ ç £2 ^here G^ = (F^, E^), 
i= 1,2; 

4° b(Gi и G2) ub{Gi) + b(G2) - a(Gi n G2) 

where both graphs G^ and G2 are considered to have the same set of vertices; 

5° [nl{n - 1)] max v^G) й b{G) S 2 max v^G) 
i i 

where i'i(G) means valency of the i-th vertex in G. 

Proof. If G is the complementary graph to G (with n vertices so that G has also n 
vertices) then 

A{G) + A{G) = nl - J . 
Since 

a(G) = min x^ ^(G) x 
xeW 

and 
x^{nl — J) X = n for xeW, 

we have 
max x^ A(G) X = n — min x^ A(G) x = n — a(G) = b(G) . 
xeW xeW 

This implies (6). Let equality be attained in (6). Then x^ A{G) x is constant on Ж 
Taking first x = [n(n — i)]~i/2 (jie. — e) where e,- has all coordinates zero except 
the f-th equal to one, we obtain that all the diagonal entries in A{G) are equal. 
Choosing then x = 2"^^^^^ — I'^^^Cj, {i Ф k), we obtain that also all ofF-diagonal 
entries of A{G) are equal, thus all equal either to — 1, or to zero. This proves 1°, 

2° follows easily from 1° since A(G) is the direct sum of A{G^) if G is not connected 
and Gl are components of G. 

To prove 3° and 4°, we shall use (6). This impHes 3° immediately while 4° follows 
from 

4 G I U G2) = A{G,) + ^(G2) - A{G^ n G2). 

The right inequality in 5° follows from 1° and the well known fact that the maxi­
mum modulus of the eigenvalues is less than or equal to any norm. The maximum 
norm (i.e. with respect to the vector norm ||jc|| = max \xi\) of A[G) (known to be 

i 
max ^ \aik\) is 2 max Vi(G) which yields this result. To prove the left inequality in 5°, 

i к i _ 

let us apply 3.5 to the complementary graph G. We obtain 

a{G) S [пЦп - 1)] min Vi{G) . 
i 

which can be written as 

n - b{G) S [пЦп - 1)] [w - 1 - max vlG)] . . 
i 

This implies the inequahty and the proof is complete. 
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3.8. We have 
a(G) ^ 2 min Vi{G) - n + 2 . 

Proof. Follows immediately from the right inequahty in 5° of 3.7 used for the 
complementary graph G. 

3.9. Let G with n vertices contain an independent set of m vertices (i.e. no two of 
them joined by an edge of G). Then 

a[G) ^ n — m . 

Proof. If G contains an independent set of m vertices then G contains a complete 
subgraph K^, Since b{K^) = m, we have by 3° of 3.7 that 

b{G) ^ m 

so that a{G) = n - b{G) ^ n - m. 

3.10. / / G /5 a graph with n vertices which is not complete then a(G) ^ n — 2.. 

Proof follows immediately from 3.9. 

3.11. / / Kp q denotes the complete bipartite graph the parts of which contain p 
and q vertices then a[Kpq) = min (p, q). 

Proof. Follows from 2° of 3.7 applied to the complement of Kp^. 

3.12. Let G = (F, £), let V = V^ ̂  V2 be a decomposition of V, let Gi (i = 1, 2) 
be the subgraph of G generated on F .̂ Then 

a{G) ^ min {a{G,) + iF^j, a{G2) + \V,\). 

Proof. This is just a symmetric formulation of 3.3. 

4. RELATIONS BETWEEN a{G), e{G) AND v{G) 

4.1. Let G be a non-complete graph. Then a{G) ^ ^{G). 

Proof. Let G = (F, É) and let V^ be a vertex cut such that F2 = F - Fj ф 0. 
Since the subgraph G2 generated by G on V2 is not connected, we have by 3.12 

<G)u\Vr\. 
This implies the assertion. 
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4.2. We have v{G) ^ e{G). 

Proof. This well known inequality is an easy consequence of the following theorem 
[3]: 

Let w, w' be a pair of vertices of G. Then there exist v(G) paths between w, w' in G, 
no two of them having any vertices in common (except w, w'). 

4.3. Let СI = 2[cos (тг/п) — cos (2л;/п)], C2 = 2 cos (я/и) (1 — cos {njn)) and let 
q(G) be the maximum vertex valency of the graph G. Then 

a{G) ^ 2 e{G) (1 - cos (тг/п)) , 

fl(G) ^ Ci e(G) - C2 q{G) , 

t/ie second bound being better if and only if 2 e{G) > q{G), 

Proof. Consider the eigenvalues (Ji ^ <Т2 ^ ... ^ c^ of the matrix S = (sij) = 
= / — q^^iG) Ä{G). This matrix is symmetric and stochastic (i.e. its row sums are 1 
and the entries are nonnegative so that a^ = 1). Denote by ^ the "measure of irreduc-
ibility" of S, the number min ^ s^^, where iV = {1, 2, ..., n}. Then according 

1 — 0-2 à 2(1 — COS (л;/п)) 1л , 

1 - СГ2 ^ 1 - 2(1 - ^) COS (тг/п) - {2fi - 1) cos (27г/п) . 

We have (72 = 1 - a(G)/^(G), /x = e(G)/^(G), thus 

«(G)/^(G) ^ 2(1 - cos (тг/п)) e(G)/g(G) , 

a{G)lq{G) ^ 1 - 2(1 - e{G)lq{G)) cos (тс/п) - (2e(G)/g(G) - 1) cos (27г/п) , 

which implies the required inequalities. 

The last assertion is easy to verify. 

4.4. We have the following values for some types of graphs. 

graph 
path 
circuit 
star . 
complete g. 
cube 
(m-dimensional) 

2(1-
2 ( 1 -

a(G) 
— cos (n/n)) 
- COS (2n/n)) 

1 
n 

2 

e(G) 
1 
2 
1 

w - 1 

m 

v(G) 
1 

• 2 

1 
n- 1 

m 

bound of 4.3 
2(1 - cos (n/n)) 
4 sin^ (n/n) 
2(1 - cos (n/n)) 
2(n - 1) sin^ (n/n) 

2m sin^ (n/2m) 
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Remark. After having finished this paper the author was informed that W. N. 
ANDERSON, Jr. and T. D. MORLEY had obtained some of these results in the paper 
Eigenvalues of the Laplacian of a graph, University of Maryland Technical Report 
TR-71-45, October 6, 1971. 
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