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Background: Peripheral nerve compression and entrapment can be debilitating. Using a validated animal model of
peripheral nerve compression, we examined the utility of 2 drugs approved for other uses in humans, 4-aminopyridine (4-
AP) and erythropoietin (EPO), as treatments for surgically induced ischemia and as adjuvants to surgical decompression.

Methods: Peripheral nerve compression was induced in wild-type mice by placing an inert silicone sleeve around the
sciatic nerve. Decompression surgery was performed at 6 weeks with mice receiving 4-AP, EPO, or saline solution either
during and after compression or only after decompression. A nerve conduction study and morphometric analyses were
performed to compare the extent of the injury and the efficacy of the therapies, and the findings were subjected to
statistical analysis.

Results: During peripheral nerve compression, there was a progressive decline in nerve conduction velocity compared
with that in sham-treatment animals, in which nerve conduction velocity remained normal (;55m/s). Mice treated with 4-
AP or EPO during the compression phase had significantly smaller declines in nerve conduction velocity and increased
plateau nerve conduction velocities compared with untreated controls (animals that received saline solution). Histo-
morphometric analyses of newly decompressed nerves (i.e., nerves that underwent decompression on the day that the
mouse was sacrificed) revealed that both treated groups had significantly greater proportions of large (>5-mm) axons than
the untreated controls. Following surgical decompression, all animals recovered to a normal baseline nerve conduction
velocity by day 15; however, treatment significantly accelerated improvement (in both the 4-AP and the EPO group), even
when it was only started after decompression. Histomorphometric analyses at 7 and 15 days following surgical
decompression revealed significantly increased myelin thickness and significantly greater proportions of large axons
among the treated animals.

Conclusions: Both the 4-AP and the EPO-treated group demonstrated improvements in tissue architectural and elec-
trodiagnostic measurements, both during and after peripheral nerve compression, compared with untreated mice.

Clinical Relevance: Peripheral nerve decompression is one of the most commonly performed procedures in orthopaedic
surgery. We believe that there is reason for some optimism about the translation of our findings to the clinical setting. Our
findings in this murine model suggest that 4-AP and EPO may lessen the effects of nerve entrapment and that the use of
these agents after decompression may speed and perhaps otherwise optimize recovery after surgery.

P
eripheral nerve compression, or compression neuropa-
thy, includes many types of peripheral nerves, such as
spinal nerves compressed as they exit their intervertebral

foramina and peripheral nerves in carpal, cubital, and tarsal
tunnel syndrome, among others1,2. These syndromes are ubiq-

uitous, with carpal tunnel syndrome alone accounting for an
estimated 450,000 surgical procedures at a cost of billions
annually3. There are no universally accepted pharmacological
adjuvant therapies for compression neuropathies that improve
objective histomorphometric and electrodiagnostic effects of
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compression. In this study, we propose 2 novel applications of
therapeutics—previously used for other purposes—for the
treatment of compression neuropathy both before and after
decompression.

The selection of 4-aminopyridine (4-AP) and erythro-
poietin (EPO) as trial agents was based on previous literature
suggesting their possible role in ameliorating the effects of
peripheral nerve compression4-9. The ability of 4-AP to restore
neurological function following chronic nervous system de-
generation has been studied since 1977, and it is thought that 4-
AP might promote remyelination after peripheral nerve injury
through a mechanism related to electrical stimulation4,10-20.
EPO, a hematopoietic factor used to treat anemia, also has
neuroprotective21-23 and neuromodulatory effects in the central
and peripheral nervous systems6,24-27. On the basis of our pre-
vious work and encouraging results with both EPO and 4-AP,
we hypothesized that these agents would (1) improve electrical
and histological parameters of compression during active com-
pression and (2) contribute to improved recovery after surgical
decompression in a standard model of compression neuropathy28.

Materials and Methods
Murine Model of Peripheral Nerve Compression

We obtained approval from our institutional animal care
and use committee for these experiments.
Six-week-old male C57BL/6 mice (n = 90, 20 to 25 g)

underwent peripheral nerve compression surgery in which a
compressive sleeve was placed on 1 hindlimb (n = 75) or
underwent sham surgery in which no compression was
performed (n = 15), as previously described28-30. Briefly, the
mice were anesthetized with ketamine (60 mg/kg) and xylazine
(4 mg/kg) and a dorsal gluteal-splitting approach allowed
mobilization of the sciatic nerve, which was then encircled
atraumatically with a 3-mm inert silicone tube distal to the
sciatic notch. Preoperatively, the tubes were prepared in 70%
ethanol for 12 hours in a sterile ventilation unit. The incision
was closed with 5-0 nylon sutures. The sham-operated mice
underwent a similar operation in which the sciatic nerve was
exposed and isolated but not encircled with a sleeve. All sur-
gery was unilateral. Buprenorphine (0.05 mg/kg) was given for
postoperative analgesia immediately following surgery and
every 12 hours thereafter for 3 days. No mouse exhibited signs
of pain after this period.

Surgical Decompression
The compression sleeves were left in place for a compression
phase of 6 weeks, after which decompression surgery was
performed to alleviate the compressive lesion30. Micro Adson
tissue forceps (Miltex) and 18-G thin-wall needles (BD) were
used for surgical removal of the compression sleeve.

Experiment Design
There were 2 phases in this experiment, compression and post-
decompression, and the mice were treated in 1 of 3 ways: (1)
untreated throughout both phases, (2) treated only after
decompression but not during the compression phase, or (3)

treated both during the compression phase and following
decompression. Treatment was with either 4-AP or EPO.

For treatment with 4-AP, active drug solubilized in sterile
saline solution was administered via intraperitoneal injection at
the dose equivalent (for mass) to currently approved human
dosing (0.5 mg/kg/day), as in previous murine studies of 4-AP
as a therapeutic agent4,31. Recombinant human EPO (PRO-
CRIT; Amgen) was administered systemically via intraperito-
neal injection at a 500-U/kg/day dosage, analogous to that used
in previous murine studies as well as selected human trials32-34.

Mice were randomized to 1 of the following groups: (1) the
saline/saline group received saline solution throughout the ex-
periment and served as the untreated control (n = 15); (2) the
saline/4-AP group received saline solution throughout the com-
pression phase followed by administration of 4-AP immediately
postoperatively and daily thereafter during the decompression
phase (n = 15); (3) the saline/EPO group received saline solution
throughout the compression phase followed by administration of
EPO immediately postoperatively and daily thereafter during the
decompression phase (n = 15); (4) the 4-AP/4-AP group received
4-AP throughout the duration of the experiment (n = 15); (5) the
EPO/EPO group received EPO throughout the duration of the
experiment (n = 15); and (6) a sham-operation group (n = 15).

For the histomorphometric analyses, 3 mice from each
group were randomly killed at day 0, day 7, and day 15 after
nerve decompression.

Electrodiagnostic Studies
Nerve conduction studies were employed as the primary out-
comemeasure because of their clinical utility in assessment and
diagnosis of peripheral nerve injuries35. It was not possible to
use electromyography for repeated measurements because it
would have required repeated injury to the small mouse
muscles (at least 10 times per mouse). The nerve conduction
study was performed preoperatively and every week during the
compression phase as well as immediately after the decompres-
sion surgery (every 2 days starting at day 3 post-decompression).
Nerve conduction velocity and distal/proximal latency were
measured at all time points. Compound muscle action potentials
(CMAPs) were measured at the aforementioned time points
except in animals receiving 4-AP, as 4-AP is an electrically active
drug and thus renders CMAP measurements useless imme-
diately following administration. However, animals random-
ized to receive 4-AP were tested before and after placement of the
compressive sleeve to ensure minimal damage to the nerve during
placement of the sleeve. Recordings for both hindlimbs were
obtained using a Viasys Viking Select Neurodiagnostic System
(CareFusion) in anesthetized mice. A referencing jig was used to
fix the distance between electrodes. The recording electrode was
placed into the tibial-nerve-innervated tibialis anterior muscle,
and the reference-recording electrode was inserted into the dorsal
aspect of the foot. The reference-stimulating lead was placed in
the ipsilateral paraspinal muscle. Two sites were stimulated to
assess the motor conduction of the sciatic/tibial nerve: the
proximal site at the sciatic notch and the distal site proximal
to the knee. Disposable stainless-steel electroencephalography
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(EEG) needle electrodes were used to measure proximal and
distal latency, CMAPs, and nerve conduction velocity.

Histomorphometric Analysis
Images of cross-sectioned sciatic nerves were obtained with
light microscopy and were processed by ImageJ software (U.S.

National Institutes of Health) to determine axon diameter,
fiber diameter, myelin thickness, G ratio (axon diameter/fiber
diameter on cross-section), and number of myelinated fibers.
Each parameter was measured using 40 randomly selected
axons in each image, all images were analyzed, and all myeli-
nated axons were counted in every image.

Statistical Analyses
The sample size of mice needed for the study was based on a
standard pre-hoc power analysis. The primary outcome mea-
sure during experimental planning was the electrodiagnostic
measurement of nerve conduction velocity because of the wide
use of this measure in the clinical setting. With an a level of
0.05 and a b level of 0.8, we found that 12 animals per treat-
ment group would provide sufficient power to perform para-
metric statistical tests (analysis of variance [ANOVA] for
multiple comparisons and the Student t test for paired com-
parisons) while accounting for attrition and scheduled sacri-
fice. Each group was therefore slated to include 15 animals to
ensure that this experiment would have sufficient power should
there be a need for early sacrifice.

For the axon morphometry, 1-way ANOVA was used to
compare axon diameter, fiber diameter, myelin thickness, and G
ratio between the different treatment groups. Z tests were used
to compare axonal diameter distribution between the treatment
groups. Axon diameter was binned into small (<3-mm),medium

Fig. 1

Comparisonof nerve conduction velocity (NCV) among thesham-operation,

untreated (control), EPO/EPO, and 4-AP/4-AP groups during 6 weeks of

sciatic nerve compression. The values are given as themean and SEM. *A

significant difference (p < 0.05) when compared with the untreated (con-

trol) group. See Appendix for specific significant p values.

Fig. 2

Comparison of axon diameter (Fig. 2-A), fiber diameter (Fig. 2-B), G ratio (Fig. 2-C), myelin thickness (Fig. 2-D), number of myelinated fibers (Fig. 2-E), and

axon diameter histogram (Fig. 2-F) among the sham-operation, untreated (control), EPO/EPO, and 4-AP/4-AP groups after the 6-week compression phase.

The values are given as themean andSEM. *A significant difference (p < 0.05) when comparedwith the untreated (control) group. See Appendix for specific

significant p values.

525

THE JOURNAL OF BONE & JOINT SURGERY d J B J S .ORG

VOLUME 101-A d NUMBER 6 d MARCH 20, 2019
PHARMACOLOGICAL ATTENUATION OF ELECTR ICAL EFFECTS IN A

MODEL OF COMPRESS ION NEUROPATHY



(3 to 5-mm), and large (>5-mm) size groups, and significant
differences between distributions of axon diameter were cal-
culated, as was done in a previous study30. Because there is no
specific literature on the compression neuropathy model in
terms of the expected size of axons during and after compression,

the sizing of these bins was based on our data and data that we
found in the literature on those of healthy and diseased axons
in other models30. We then used these bin sizes as hard criteria
for measurement of changes attributable to compression neu-
ropathy and treatment.

Results
Electrodiagnostic Measures of Nerves During Peripheral
Nerve Compression with and without 4-AP and EPO
Treatment

Treatment with 4-AP lessened the decline in nerve con-
duction velocity during the 6-week compression phase as

compared with the untreated (control) animals—i.e., the nerve
conduction velocity measurements for the 4-AP-treated mice
were significantly higher than those for the untreated mice
from week 1 through the end of the compression phase (Fig. 1;
see Appendix Table E-1 for statistical comparisons). The nerve
conduction velocity in the 4-AP-treated mice reached a plateau
of 48.39 ± 0.89 m/s (mean and standard error of the mean
[SEM]) during peripheral nerve compression compared with
35.77 ± 0.38 m/s in the untreated mice

The EPO-treated mice also had significantly smaller
declines in nerve conduction velocity during the peripheral
nerve compression phase compared with the untreatedmice—i.e.,
the nerve conduction velocities of the EPO-treated mice were

Fig. 3

Comparisonof nerve conduction velocity (NCV) among thesham-operation,

untreated (control), saline/EPO, EPO/EPO, saline/4-AP, and 4-AP/4-AP

groups following surgical decompression of the sciatic nerve. The values

are given as the mean and SEM. *A significant difference (p < 0.05) when

compared with the untreated (control) group. See Appendix for specific

significant p values.

Fig. 4

Comparison of axon diameter (Fig. 4-A), fiber diameter (Fig. 4-B), G ratio (Fig. 4-C), myelin thickness (Fig. 4-D), number of myelinated fibers (Fig. 4-E), and

axon diameter histogram (Fig. 4-F) among the sham-operation, untreated (control), saline/EPO, EPO/EPO, saline/4-AP, and 4-AP/4-AP groups at 7 days

after surgical decompression. The values are given as the mean and SEM. *A significant difference (p < 0.05) when compared with the untreated (control)

group. See Appendix for specific significant p values.
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significantly higher than those of the untreated mice fromweek
1 through the end the compression phase (Fig. 1). The nerve
conduction velocity in the EPO-treated mice reached a plateau
of 45.77 ± 1.12 m/s during peripheral nerve compression
compared with 35.77 ± 0.38 m/s for the untreated mice.

Histomorphometric Measures of Nerves During Peripheral
Nerve Compression with and without 4-AP and EPO
Treatment
The 4-AP-treated mice had a significantly lower G ratio and a
significantly thicker myelin sheath than the control mice (Figs.
2-C and 2-D). The EPO-treated mice had significantly more
myelinated fibers than the untreated mice (Fig. 2-E). Addition-
ally, both treated groups had a significantly higher proportion of
large axons compared with the untreated mice (Fig. 2-F).

Electrodiagnostic Measures of Nerves After Decompression
with and without 4-AP and EPO Treatment
Following decompression, the 4-AP and EPO-treated mice had
faster recovery to baseline nerve conduction velocity (;55 m/s)
than the control mice (Fig. 3; see Appendix Table E-3 for sta-
tistical comparisons). The 4-AP/4-AP-treated mice (4-AP treat-
ment during both the compression and the decompression
phase) recovered normal nerve conduction velocity at day 5
after decompression, and the EPO/EPO-treated mice (i.e., those

receiving EPO during both phases) recovered at day 7 after
decompression. The saline/4-AP and saline/EPO-treated mice
both had a return to baseline nerve conduction velocity at day 9
after decompression. The control mice did not achieve this
recovery until day 15 after decompression (Fig. 3). The saline/
4-AP-treated mice had significantly higher nerve conduction
velocity than the control mice from day 3 until day 9 after de-
compression, at which time measurements were stopped for
the saline/4-AP-treated group. Similarly, the saline/EPO-treated
mice had a significantly higher nerve conduction velocity than
the control mice from day 5 until day 11 after decompression.

Histomorphometric Measures of Nerves After Decompression
with and without 4-AP and EPO Treatment
Figure 4 (see Appendix Table E-4 for statistical comparisons)
demonstrates the protective/regenerative impact of 4-AP and
EPO treatment at 7 days following surgical decompression.
One week post-decompression, all 4 treated groups (saline/4-
AP, 4-AP/4-AP, saline/EPO, and EPO/EPO) had a significantly
greater axon diameter (Fig. 4-A), fiber diameter (Fig. 4-B), and
myelin thickness (Fig. 4-D) compared with the control group.
However, only the 4-AP-treated animals (saline/4-AP and 4-
AP/4-AP groups) had significantly lower G ratios than the
control mice (Fig. 4-C). Additionally, all treatment groups
(saline/4-AP, 4-AP/4-AP, saline/EPO, and EPO/EPO) displayed

Fig. 5

Comparison of axon diameter (Fig. 5-A), fiber diameter (Fig. 5-B), G ratio (Fig. 5-C), myelin thickness (Fig. 5-D), number of myelinated fibers (Fig. 5-E), and

axon diameter histogram (Fig. 5-F) among the sham-operation, untreated (control), saline/EPO, EPO/EPO, saline/4-AP, and 4-AP/4-AP groups at 15 days

after surgical decompression. The values are given as the mean and SEM. *A significant difference (p < 0.05) when compared with the untreated (control)

group. See Appendix for specific significant p values.
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significantly higher proportions of large axons compared with
the control mice (Fig. 4-F).

Fifteen days following decompression, both of the 4-AP
treatment groups (saline/4-AP and 4-AP/4-AP) and the EPO/
EPO-treated mice maintained significantly thicker myelin than
the untreated controls (Fig. 5-D; see Appendix Table E-5 for
statistical comparisons). Only the 4-AP-treated mice (saline/4-
AP and 4-AP/4-AP) had significantly lower G ratios than the
control mice (Fig. 5-C). The saline/4-AP, 4-AP/4-AP, and EPO/
EPO-treated groups also had a significantly higher proportion
of large axons than the control mice (Fig. 5-F).

Representative tissue sections from each group are shown
in Figure 6.

Discussion

In both neurotrauma and compression neuropathy, a key
element of dysfunction occurs secondary to the loss of my-

elin, and yet there is no treatment other than surgery to target
demyelination. Our previous work has specifically shown that
both EPO and 4-AP foster myeloprotection and promote re-
myelination after traumatic crush injury4-6. This previous work
turned our attention to a clinical condition in which the pri-
mary dysfunction involves myelin. Within the scope of our
clinical practice, patients with dysfunction from compression
neuropathy often require surgical intervention36-38.

The pathophysiology of neuronal injury due to compression
is still a matter of inquiry. The pathology is initially localized to the
myelin sheath, with axonal involvement occurring much later in
the disease course39. Studies have suggested that the pathogenesis
of compression is likely secondary to ischemia and mechanical
forces that induce a stress response in Schwann cells40-44. The initial
degenerative change observed is the loss of Schwann cells via
apoptosis45, followed by focal segmental demyelination of axons46.
This begins a prolonged cycle of demyelination-remyelination

Fig. 6

Representative light microscopy images (toluidine blue; 100·) of the sham-operation, untreated (control), saline/4-AP, 4-AP/4-AP, saline/EPO, and EPO/

EPO groups at the end of 6 weeks of compression (here termed “day 0” relative to decompression surgery) and at day 7 and day 15 post-decompression.
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and Schwann cell turnover. Electrodiagnostic studies remain
the clinical mainstay for both diagnosis and staging of com-
pression and entrapment neuropathies47. The cellular and
molecular effects of compression are believed to manifest as
a slowing of nerve conduction velocity as measured across a
population of thousands of myelinated fibers.

We chose an established murine model of nerve com-
pression for experiments to test our hypotheses regarding 4-AP
and EPO28-30, with the belief that electrodiagnostic parameters
may serve as a correlate for important histological measures of
nerve function that are difficult to measure (axon diameter,
myelin thickness, internodal length, etc.). We found that EPO
and 4-AP had significant effects on axon diameter and myelin
thickness and believe that this may underlie improvements in
nerve conduction velocity. Untreated (control) animals dem-
onstrated a progressive decline in nerve conduction velocity
characteristic of compression injury, which continued during
the compression period until reaching a plateau before week 6.
As clinical sensory symptoms cannot be recreated in an animal
model, the outcome measure most often used to establish the
diagnosis of compression neuropathy in mice is nerve conduction
velocity, a key correlate to the clinical situation, where patients are
currently routinely examined with the same modality48.

Our results support the idea that 4-AP and EPO have a
potential neuroprotective effect on the electrodiagnostic pa-
rameters of compressed nerves, an idea that is based on our
previous work demonstrating effects of both of these agents on
myelination4-6,49. Our results show that 4-AP and EPO attenuate
electrophysiologic impairment caused by compression, with
the untreated mice demonstrating significantly greater losses in
nerve conduction velocity than the 4-AP and EPO-treated
mice. Furthermore, our results demonstrate a possible role for
both of these agents as an adjuvant to surgical decompression.
Both 4-AP and EPO treatment accelerated recovery of nerve
conduction velocity following decompression, and both agents
promoted remyelination in this scenario as well. We believe
that there is reason for some optimism about the clinical
translation of these findings given that both of these agents are
currently approved for other uses in humans by the U.S. Food
and Drug Administration.

In order to gain a preliminary glimpse into the method
by which these agents may be acting, we assayed nerves after
treatment with either 4-AP or EPO. Durable and statistically
significant improvements in the number of myelinated fibers as
well as other measures, such as the G ratio (demonstrating in-
creased remyelination after decompression), suggest that phar-
macological agents may mitigate the effects of nerve entrapment.
The additional benefit of pharmacological treatment after de-
compression supports the use of these agents as therapeutics to
speed and perhaps otherwise optimize recovery after surgery.

There are limitations to our work. First, we have offered no
information about the potential improvements in sensory func-
tion afforded by these treatments. Although sensory function has
been studied in different rodent models50,51, this function has
not been translated to the setting of compression neuropathy in
humans and requires further study. Moreover, the limitations

of this study mirror the limitations of this model, which
include the fact that animals seem to retain their gait param-
eters no matter how long the compression is left in place. We
know that chronic compression in humans leads to irreversible
motor dysfunction. We cannot predict, on the basis of this work,
what would happen in the treatment of patients with nerve
dysfunction who demonstrated motor impairment. Although
we know that treatment seems to affect the histomorphometric
appearance of the nerve tissue, we cannot know if improvements
in measures such as the size of axons (binned into size cate-
gories), G ratio, or even axon diameters will translate into clear
functional improvements in these animals. A measure that is
more sensitive than standard sciatic function indices may reveal
such a deficit in the future. Finally, we are proposing the use of
pharmacological agents for conditions well served by surgery
today. Given the side-effect profiles of these drugs, we must
wait for clinical trials to see if future patients are better served
by traditional approaches. It may prove that the side effects of
this type of pharmaco-adjuvant therapy are a poor trade-off for
the benefits in actual patients.

Appendix
A description of the tissue harvest for the histological
analysis as well as tables showing significant p values for

the data presented in the figures are available with the online
version of this article as a data supplement at jbjs.org (http://
links.lww.com/JBJS/F109). n
NOTE: The authors thank Karen Bentley and the URMC Electron Microscope Shared Resource
Laboratory for their role in preparing and imaging the samples.
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