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ABSTRACT 

In this study, the emphasis is placed on a strategy for enhancing the drug/carrier interaction for improved 
drug solubility, drug-loading capacity, self-emulsification and stability.Preliminary solubility of L294 was 
determined in various oils, surfactants and cosurfactants. A ternary phase diagram was constructed to identify 
the self-emulsifying region for the selected systems, using series concentrations of Labrafac PG, Labrasol and 
Transcutol HP. Self-emulsifying properties, particle size, polydispersibility, and zeta potential were studied 
after dilution of formulations in water.The results demonstrated the development of a self-emulsifying 
formulation of L294 in liquid form, which upon contact with aqueous media spontaneously forms a clear 
nanoemulsion having a small droplet size (around 100 nm). The zeta potential of the selected SEDDS 
formulation was between −11.09 and −20.50 with a viscosity around 40-60 cP. The optimum formulation 
consisted of a mixture of Labrafac PG, Labrasol and Transcutol HP.The L294 showed extremely low water 
solubility (0,006 mg.mL-1), and when formulated in SEDDS, its solubility increased over than 33,000 fold.This 
study demonstrate that SEDDS can be considered as a very good candidate to optimize the peroral 
administration of L294. 
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INTRODUCTION 

LASSBio 294 is a novel cardioactive N-
acylhydrazone compound, 3,4-
methylenedioxybenzoyl-2-thienylhydrazone 
(L294).

[1; 2]
 This compound has been described as a 

potent cardiac inotropic agent with vasodilator 
properties.

[3; 4]
 L294 was found to improve 

intracellular Ca
2+

 regulation 
[2; 5; 6]

 and prevent 
myocardial infarction induced by cardiac 
dysfunction, which could potentially prevent heart 
failure.[7] In addition, L294 also promoted 
vasodilation in aortic rings, mediated by the 
guanylatecyclase/cyclic guanylate monophosphate 
pathway.[6; 8] 

The L294 drug is rapidly absorbed and 
eliminated after oral administration.[9]Following a 

single 10 mg oral dose administration, mean peak 
plasma levels of 550 ng/ml are attained in about 1 
h. Based on in silico data, L294 should be classified 
in the class II category under the 
biopharmaceutical classification system (BCS), i.e., 
it has good permeability through biological 
membranes, but exhibits low aqueous solubility. 
The rate of absorption of any drug is mainly 
controlled by its dissolution rate in gastrointestinal 
fluids, especially insoluble hydrophobic drugs. 
L294 alone have a very low bioavailability, due to 
its poor solubility in water combined with an 
insufficient dissolution rate.

[9]
 L294 is a weak acid 

(pKa predicted properties is 10.8) – it is practically 
insoluble in water 0.006 mg.g

-1
 (personal data). 

These parameters make L294 a perfect molecule 
for the development of SEDDS, aiming the 
improvement of its bioavailability. 

Poorly water-soluble drug candidates are often 
presented to formulators with considerable 
technical challenges. A significant number of drugs 
suffer from the problem of low oral absorption,

[10-

12]and thus poor oral efficiency. Different 
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strategies have been investigated to enhance the 
bioavailability of poorly absorbed drugs in order to 
increase their clinical efficacy when administered 
orally.[13] Innovative lipid-based formulations, such 
as self-emulsifying drug delivery systems (SEDDS), 
have been extensively described as effective 
delivery systems due to their proven ability to 
enhance bioavailability of lipophilic drugs.[12; 14-17] 

SEEDS are drug delivery systems based on a 
mixture of oils, surfactants, co-solvents and drugs, 
which results in entropy-favoured spontaneous 
emulsification on in situ exposure, and can 
sometimes emulsify under conditions of gentle 
agitation, similar to those that would be 
encountered in the gastrointestinal tract.[13; 18-21] 

The ability of SEDDS to improve oral 
bioavailability has been shown for curcumin,[22] 
mitotane,[23]mefenamic acid,[24] Valsartan,[25] to 
improve the oral absorption of carvediol,[11] 
inhibition of human efflux transporter ABCC2,[26] 
and transformation of the crystalline form of the 
drug to the amorphous form in the SEDDS.[16] 
SEDDS are among the methods used to improve 
the oral bioavailability of poorly soluble drugs by 
presenting and maintaining the drug in a dissolved 
state, in small droplets of oil, and all over its transit 
through the gastrointestinal tract.[16; 27; 28] SEDDS 
can improve oral bioavailability by minimising the 
effect of pH on drug absorption, increasing drug 
solubilisation, in which the water-insoluble drug is 
usually dissolved in the oil phase, therefore 
enhancing permeation across the intestinal 
membrane through a wide distribution in the 
gastrointestinal tract, due to its small droplet 
size.[29-31] The potential advantages of the SEDDS 
include 100% drug entrapment capacity, physically 
stable formulation,[13] with no dissolution step 
required, and also providing protection against 
gastric degradation.[13; 32] 

Soft gelatin capsules containing SEDDS readily 
disperse in the stomach to form a fine emulsion;[33] 
in this case, gastrointestinal motility can provide 
the agitating effect necessary for 
emulsification.[33]While the primary mechanism by 
which SEDDS formulations are thought to improve 
drug absorption is through elimination of the need 
for pre-absorptive drug solubilisation in the 
gastrointestinal tract, other mechanisms may 
include protection from chemical and enzymatic 
degradation localised in the aqueous environment 
of the gastrointestinal tract and promotion of 
lymphatic drug transport, bypassing the hepatic 
first pass effect.[13; 15; 19] 

In the process of developing SEDDS 
formulations, different compositions of oils, 

surfactants and cosurfactants have to be evaluated 
for identifying the best self-emulsifying region of 
the system.[34] Self-emulsified formulations are a 
clear dispersion, which should remain stable on 
dilution in order to make the hydrophobic drugs 
remain in solubilised form until absorption.

[34; 35]
 

 
Figure 1: Molecular structure of 3,4-
methylenodioxybenzoyl-2-thienylhydrazone 
(LASSBio 294). Adapted from Costa et al.[6] 

 

 

 

Figure 2: Solubility studies of L294 in selected 
vehicles 

 

 

Figure 3: Phase diagram of Labrafac PG, 
Labrasol and Transcutol HP in water at 25 °C. 
The area inside the line represents the self-
nanoemulsion region. 
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The present work aims on the design, 
development and characterisation of a SEDDS 
formulation loaded with L294. Moreover, this work 
describes the ability to form nanoemulsion 
characterisation of formulations on the 
nanoemulsifying area in the phase diagram. 

MATERIAL AND METHODS 

Chemicals 

Labrasol, Transcutol HP, Lauroglycol 90, 
Labrafac PG, Maisine 35-1, LabrafacLipophile WL 
1349, Capryol 90, Peceol, and Labrafil M1944CS 
were generously donated by Gattefossé (France). 
Cremophor EL and Cremophor RH40 were received 
from BASF (Germany). Castor oil, Tween 20 and 
Tween 80 were obtained as gift samples from 
Croda (Brazil). Other oils, surfactants and 
cosurfactants were of pharmaceutical grade. All 
other chemicals and solvents were of analytical 
grades. L294 was 3,4-methylenodioxybenzoyl-2-
thienylhydrazone and was used as the model drug. 
Its molecular structure and physicochemical 
properties are shown in Fig. 1 and Table 1, 
respectively. 

Excipient screening 

L294’s solubility in oils (Table 2), surfactants 

(Table 3) and cosurfactants (Table 4) was 
individually determined in shake flasks. Briefly, an 
excess amount of L294 (0.5 g) was added to 50 mL 
Erlenmeyer flasks containing 25 mL of each tested 
vehicle. The flasks were homogenised in a vortex 
mixer (Vortex-2 Genie, Scientific Industries, USA) 

for 2 min, then, the flasks were kept under mild 
constant agitation for 48 h at 37°C in an orbital 
shaker (Dubnoff 304-D, Nova Etica, Brazil). After 
equilibrium was achieved, the samples were 
centrifuged at 3,500g for 15 min (Thermo Scientific 
Sorval Legend Mach 1.6R) for non-solubilised drug 
removal. The supernatant was collected, diluted in 
a proper solvent and analysed at 318 nm using an 
UV-VIS spectrophotometer (PharmaSpec UV-1700, 
Shimadzu, Japan) to access the amount of 
solubilised L294. Pure water was used as a control. 
The experiment was performed in triplicate, and 
the results were represented as a mean value 
(mg.g

−1
) ± standard deviation (S.D.). 

Construction of phase diagrams 

The selected oil (Labrafac PG), surfactant 
(Labrasol), and cosurfactant (Transcutol HP), based 
on preliminary screening studies, were used to 
develop phase diagrams. The ternary phase 
diagram was constructed in the presence of the 
drug to identify the self-emulsifying region and the 
ideal proportions of eachexcipient. To construct 
the phase diagram, different liquid SEDDS 
formulations (pre-concentrate) were prepared by 
solubilisation of L294 in the mixture of excipients, 
using mild magnetic stirring at room temperature 
for a maximum period of three hours to obtain a 
clear solution. The formulations were left standing 
for 24 h to achieve equilibrium and then stored at 
room temperature. The ternary phase diagram 
was plotted, with the composition of oil, 
surfactant and cosurfactantfixed as each vertices 
of the triangle. Different 
oil/surfactant/cosurfactant mixtures were 
prepared according to the proportion of each 
point of the triangle. 

The level of L294 was fixed at 0.2% w/w of the 
vehicle. Six different series of the SEDDS (Table 5) 
were prepared with varying concentrations of oil 

(5–30%), surfactant (40–80%) and cosurfactant (5–
30%). The volume ratio of diluent to pre-
concentrate SEDDS formulations was fixed in 
100:0.1, considering the volume (≅ 100 mL) of the 
gastric fluid. 

[36]
 

Table 1: L294 Physicochemical Properties 

Property Value 

Molecular Formula C13H10N2O3S 

Molecular Weight 274.3 g.mol-1 

Log P 2.52 

pKa 10.8 

Melting Range 205-210 ºC 

 

Table 2: Oils used in Solubility Tests 

General Class Compound HBL Trade Name 

Fixed Oils 
Castor Oil n.a. Super Refined Castor Oil  

Medium-chain triglycerides 2 Labrafac LipophileWL1349 
Propylene glycol esters Propylene glycol dicaprylocaprate 2 Labrafac PG 

Glycerides 
Glycerylmonolinoleate 4 Maisine 35-1 

Glycerylmonooleate (Type 40) 3 Peceol 

n.a.: non applied 



International Journal of Nanotechnology and Nanoscience, Vol. 4, 2016, 1-12 

4 

Characterisation and evaluation of L294-loaded 
SEDDS 

SEDDS formulations were examined for 
nanoemulsion formation after diluting with pure 
water. Each SEDDS formulation (0.1 mL) was 
introduced into 100 mL of pure water in a 
volumetric flask at 37°C. The contents were gently 
mixed and were kept for 2h at 37ºC. The 
spreadability tendency to spontaneously emulsify 
and progress the emulsion droplets were 
observed. The pre-concentrates that could self-

emulsify under gentle agitation and dilution were 
identified in the phase diagram. All formulations 
were characterised for droplet size, ζ-potential and 
visual observation after dilution in water. Viscosity 
measurements and visual observations were taken 
for the pre-concentrates. 

Viscosity 

Viscosity can be used as a physical 
characterisation parameter. Thus, viscosity was 
measured using the Vibration method, placing 10 
mL of undiluted formulation SEDDS in the 
viscometer SV-10 (A&D Co., Japan). The measures 
were determined at room temperature by 

detecting the driving electric current necessary to 
resonate the two sensor plates at a constant 
frequency of 30Hz and amplitude of less than 1 
mm. 

Self-emulsification and precipitation assessment 

The SEDDS formulations were categorised 
based on appearance (transparency) and apparent 
stability of the resultant nanoemulsions. Visual 
assessment was performed by dropwise addition 
of the SEDDS into of purified water in a glass vial at 

room temperature. The contents were gently 
stirred, immediately kept standing against light, 
and were observed for assessment for self-
emulsification efficiency, transparency, phase 
separation and precipitation of L294. Precipitation 
was evaluated by visual inspection of the resultant 
nanoemulsion after 24 h. These formulations were 
categorised as clear (transparent or transparent 
with bluish tinge), not clear (turbid), stable (with 
precipitation) or unstable (without precipitation). 
SEDDS with clear or slightly bluish appearances 
were classified as nanoemulsions. 

 

Table 3: Surfactants used in Solubility Tests 

General Class Compound HBL Trade Name 

Polyoxyethylene castor oil 
Polyoxyl 35 castor oil 12-14 Cremophor EL 

Polyoxyl 40 Hydrogenerated castor oil 14-16 Cremophor RH40 

Polyoxyglycerides 
Oleoyl polyoxyl-6 glycerides 4 Labrafil M1944CS 

Caprylocaproylpolyoxyl-8 glycerides 14 Labrasol 
Propylene glycol esters Propylene glycol monocaprylate (Type II) 6 Capryol 90 
Propylene glycol esters Propylene glycol monolaurate (type II) 5 Lauroglycol 90 

Polysorbates 
Polyoxyethylene 20 sorbitanmonolaurate 17 Tween 20 
Polyoxyethylene 20 sorbitanmonooleate 15 Tween 80 

 

Table 5: Cosurfactants/co-solvents used in 
Solubility Tests 

General 
Class 

Compound Trade Name 

Alkane 
diols and 

triols 
1,2-propanediol 

Propylene 
glycol 

Glycol 
ether 

Diethylene glycol 
monoethyl ether 

Transcutol HP 

 

Table 6: Different Composition of Formulation 
Series. 

Group Oil Surfactant Cosurfactant 

A series 5% 65 – 80% 15 – 30% 
B series 10% 60 – 80% 10 – 30% 
C series 15% 55 – 80% 5 – 30% 
D series 20% 50 – 75% 5 – 30% 
E series 25% 45 – 70% 5 – 30% 
F series 30% 40 – 65% 5 – 30% 

 
Table 4: Physical Properties of Different L294 SEDDS Formulations 

Series Viscosity (cP) 
Droplet Size (nm) 

PI ZP (mV) Intensity Number 

A1 48.40 ± 0.10 149.77 ± 5.97 103.87 ± 3.84 0.095 ± 0.030 -11.09 ± 1.21 

A2 40.73 ± 0.06 153.60 ± 3.74 117.27 ± 1.15 0.056 ± 0. 020 -15.20 ± 0.84 

B1 58.27 ± 0.06 171.23 ± 5.31 102.10 ± 6.29 0.154 ± 0.008 -19.80 ± 0.52 

B2 42.67 ± 0.06 168.83 ± 5.13 118.67 ± 3.89 0.151 ± 0.028 -14.90 ± 1.08 

C1 62.57 ± 0.25 177.00 ± 4.76 110.60 ± 5.11 0.249 ± 0.040 -20.50 ± 0.85 

C2 49.23 ± 0.06 164.47 ± 2.63 111.70 ± 8.76 0.229 ± 0.007 -15.30 ± 1.15 

D1 55.60 ± 0.10 168.83 ± 11.01 111.20 ± 9.48 0.219 ± 0.006 -14.80 ± 0.38 

E1 45.83 ± 0.06 173.57 ± 2.07 87.72 ± 3.70 0.272 ± 0.034 -19.80 ± 0.40 

F1 42.53 ± 0.06 185.47 ± 2.07 91.19 ± 7.44 0.282 ± 0.034 -20.10 ± 0.40 

PI = polydispersity index. ZP = ζ-potentia 
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Droplet size analysis and ζ-potential 

The droplet size and polydispersity index (PDI) 
of the SEDDS formulation were determined using 
the dynamic light scattering (DLS) technique – DLS 
at 90° fixed angle using a Zetasizer Nano ZS 
(Malvern Instruments, UK). Each formulation was 
diluted with purified water before analysis. This 
equipment was also used for ζ-potential 
measurement and operated at a 25°C, 23 Vcm-1 
electric field intensity. All studies were repeated 
three times and the values of the diameters and 
intensity were used.  

The droplet size was measured as the mean 
diameter using the Stokes-Einstein equation. It 
was also described in terms of intensity and 
number distributions. The intensity distribution is 
proportional to the sixth power diameter (Iαd6) 
and amplifies the signal by showing all diameters 
in the sample. Number distribution is proportional 
to the first power diameter (Nαd) and shows the 
predominant diameters. The polydispersity (PDI) 
reflects the dispersion of the particle diameters. 
The zeta potential values were calculated 
according to the Smoluchowski equation. 

RESULTS 

Excipient selection 

The selection of oil, surfactant or cosurfactant 
was governed by previous studies of excipient 
screening (personal data). The comparative 
solubility studies of L294 in the oil, surfactant and 
cosurfactant selected are reported Fig. 2. The 
aqueous solubility of L294 was about 0.006 mg.g-1, 
indicating that it was poorly water-soluble. L294 
has low miscibility in the assayed oils 
(approximately 1 mg.g

-1
). Solubility of L294 in the 

surfactants Cremophor EL (HLB 12–14), Labrasol 
(HLB 14), Cremophor RH40 (HLB 14–16), Tween 80 
(HLB 15), and Tween 20 (HLB 17) was between 8 
and 20 mg.g

-1
. However, the solubility in Labrafil 

M1944CS (HLB 4), Capryol 90 (HLB 6), and 
Lauroglycol 90 (HLB 5) was less than 2.5 mg.g

-1
. 

Solubility of L294 in the cosurfactantTranscutol HP 
showed good solubilising capacity (18.5 mg.g

-1
), 

and poor solubility in propylene glycol (less than 
3.5 mg.g-1). Amongst the various solvents 
investigated for equilibrium solubility studies, 
Labrafac PG, Labrasol and Transcutol HP were 
selected for construction of ternary phase 
diagrams.  

The lipid is a more important ingredient of the 
SEDDS formulation

[15]
,among the used oils, 

Maisine 35-1 and Labrafac PG showed maximum 
and minimum solubility for L294. Maisine (HLB = 4) 
had more strength to solve L294 than did 

Labrafac(HLB = 2). However, Labrafac PG exhibited 
good emulsification properties with all surfactants 
tested (personal data). Therefore, lipids can not 
only solubilise large amount of lipophilic drugs or 
facilitate self-emulsification but also enhance the 
fraction of lipophilic drugs transported via the 
intestinal lymphatic system, thereby increasing its 
absorption from the GI tract.[15; 37; 38] 

A surfactant is to provide the essential 
emulsifying characteristics to SEDDS,

[15]
 making it 

possible for large amounts of drug compounds to 
get dissolved into the system.

[18]
 Surfactants, being 

amphiphilic compounds, invariably dissolve larger 
amounts of the hydrophobic drug. The two issues 
that govern the selection of a surfactant involve 
the hydrophilic–lipophilic balance (HLB) and 
safety.[15] The hydrophobically assembled micelles 
usually consist of amphiphilic compounds that 
have distinct hydrophobic and hydrophilic 
domains.[39] Upon exposure to an aqueous 
medium, the amphiphilic molecules spontaneously 
self-assemble into supramolecular core/shell 
structures, and water-insoluble drugs can be 
loaded into the hydrophobic cores.[40] 

The HLB of a surfactant provides important 
information on its potential and utility in the 
formulation of SEDDS.[15] For attaining high 
emulsifying performance, the emulsifier involved 
in the formulation of SEDDS should have high HLB 
and high hydrophilicity for immediate formation of 
o/w droplets and rapid spreading of formulation in 
aqueous media.[15] Non-ionic surfactants are 
generally considered for pharmaceutical 
applications and nanoemulsion formulation since 
these are less toxic[41] than ionic surfactants, and 
they are accepted for oral ingestion.[20; 42; 43]As 
required for SEDDS development, surfactants of 
high HLB value have a high self-emulsifying 
capability in the aqueous phase.[44] HLB values in 
the range of 12–16 favour the nanoemulsion 
formation.[45] Lipophilic surfactants with an HLB of 
less than 10 are capable of promoting some 
emulsification of the oil, but the resulting 
emulsions are normally too crude (in terms of size) 
to be useful.

[45]
 Hydrophilic surfactants with an 

HLB of more than 10 are far superior at these, 
providing fines and uniform emulsion droplets that 
are more likely to empty rapidly from the 
stomach.

[46; 47]
 Thus, for the present study, 

Labrasol was used as surfactant having, an HLB 
value equal to 14. Labrasol, a surfactant of 
medium length alkyl chain, showed higher drug 
solubility, and is a macrogol glyceride that is able 
to form microemulsions in GI fluids.[48] Moreover, 
Labrasol was reported to enhance the intestinal 
absorption of drugs,

[49; 50]
 and several studies 
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describesLabrasolas an enhancer of oral 
bioavailability of various drugs, such as 
insulin,[51]vancomycin,[49]ezetimibe,[14]ganciclovir,[5
2]buparvaquone,[53]flurbiprofen,[54]nimodipine,[55] 
and fizetin.[56] Surfactants form a layer around the 
emulsion droplets and hence reduce the interfacial 
energy, as well as provide a mechanical barrier to 
coalescence.[47] 

The addition of a cosurfactant in the 
formulation containing surfactant was reported to 
improve dispersibility and drug absorption from 
the formulation, in addition to reducing interfacial 
tension and the formation of mechanical barriers 
to coalescence.

[20; 44]
Cosurfactants increase 

surfactant emulsification by penetrating the 
interfacial surfactant monolayer and their 
structure and chain length affect their 
performance.[57; 58]Therefore, it seems that 
increasing surfactant having a high HLB 
concentration, the drug’s solubility increased. 
Transcutol has been used as an effective 
solubilizing agent and a permeability enhancer in 
emulsifying systems. The blending of Transcutol 
with the Labrasol mainly helps in improving the 
emulsification ability of Labrasol, and Kim et al[59] 
has already used this approach. Furthermore, 
Labrafac, Labrasol and Transcutol are known 
bioavailability enhancers.[54; 60; 61] 

Ternary phase diagrams 

The phase diagram plays an important role in 
studying the phase behaviour of prepared 
nanoemulsions.[44]Phase diagrams are normally 
constructed with the oil phase, surfactant or 
mixture of surfactant and cosurfactant, and the 
aqueous phase, which will reveal the regions of 
liquid crystal, nano/microemulsion and coarse 
emulsion.[33; 42] In SEDDS, the primary means of 
assessment of self-emulsification is visual 
evaluation, and the self-emulsification efficiency 
can be estimated by determining the droplet size 
(number diameter and intensity). The visual test is 
a measure of an apparent spontaneity of emulsion 
formation. In the dilution study, visually there 
were no significant differences found in the self-
emulsifying performance among series diluted in 
the same dissolution medium (water). 

Oil, surfactant and cosurfactant were selected 
based on their drug solubility capacity, hydrophilic-
lipophilic balance (HLB) values and ability of 
emulsion formation and biopharmaceutical 
properties. These ternary phase diagrams were 
constructed in the presence of L294 to identify the 
self-emulsifying regions and optimise the 
concentration of oil, surfactant and cosurfactant in 
the SEDDS formulation. The effect of the aqueous 

phase was overlooked for simplicity’s sake, and 
only oil, surfactant and cosurfactant components 
concentration were used to identify the self-
emulsifying region, as described in similar 
studies.[36; 47; 62]Fig. 3 describes the phase diagrams 
of the self-emulsifying systems loaded with L294 
andcomposed byLabrafac PG oil, Labrasol 
surfactant and Transcutol HP cosurfactant. The 
shaded area, corresponding to oil (between 5–
30%), surfactant (between 40–80%) and 
cosurfactant (between 5 and 30%), represents the 
efficient spontaneous emulsion region after 
dilution. It was observed that emulsification 
efficiency was good when Labrafac concentrations 
were higher than 5% and less than 30% of the 
SEDDS formulation. However, increasing 
Labrasolconcentration up to approximately 
80%,increased the self-emulsification process 
spontaneity. Furthermore, increasing the 
cosurfactantconcentration decreases the self-
emulsification process spontaneity. As 
cosurfactants have very little effect on reducing 
the interfacial tension, they help the surfactants to 
reduce the interfacial tension.[47; 63] 

Dispersions resulting from water dilution 
showed to be clear without precipitation and/or 
phase separation, nor showed signs of cloudiness 
and were bluish-transparent. All of the liquid 
SEDDS formulations form clear and slight bluish 
nanoemulsions in less than 1 min when diluted 
with the distilled water medium. A desired ratio of 
components was further determined by 
investigating the droplet size distributions. 

Physicochemical properties of liquid SEDDS 

The liquid SEDDS series (A–F, Table 5) 
showedviscosity values 16 and 63 cP, while the 
droplet size of the resultant formulations after 
dilution was found to be between 82 and 493 nm 
(number). PI was less than 0.35, indicating that the 
studied self-emulsifying systems had a narrow size 
distribution.[64] The results of ZP ranged from -5.00 
to -21.70 mV. The resultant charge was negative 
probably due to both surfactants used in the 
formulation. Based on these results, formulations 
some (Table 6) have been selected as the most 
promising nanoemulsion. 

The physicochemical properties of the selected 
formulations were examined as a pre-concentrate, 
showed viscosity results less than 65 cP, which 
indicated formulations with good operability.

[63]
 

The viscosity of the formulations increases when 
the concentration of surfactant is above 65%; 
however, there is no statistical correlation 
between viscosity and droplet size. It was expected 
that the increasing cosurfactant concentrations 
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resulted in smaller droplets formation, since the 
cosurfactant acts on the reduction of the curvature 
angle of droplet formation,[65] but in this case, low 
concentrations of cosurfactant (5–15%) result in a 
droplet size of around 100 nm. 

The PI increases with increases in the oil 
concentration. Most formulations (76%) have a DS 
in the range of 100–200 nm, while a smaller 
proportion of formulations (18%) had a DS of less 
than 100 nm, and only 6% of formulations 
exhibited a DS above 200 nm. When one increases 
the surfactant concentration, the result is a 
decrease on the mean droplet size. This could be 
explained by the oil droplet stabilisation since the 
surfactant molecules would be present at the oil–
water interface.[25; 34; 45] 

SEDDS selected series, examined as a pre-
concentrate, showed viscosity results less than 65 
cP, which indicated formulations with good 
operability.[63] The viscosity of the formulations 
increases when the concentration of surfactant is 
above 65%; however, there is no statistical 
correlation between viscosity and droplet size. It 
was expected that increasing concentrations of 
cosurfactant would also result in the formation of 
smaller droplets because it reduces the angle of 
the curvature during droplet formation,[65] but in 
this case, low concentrations of cosurfactant (5–
15%) result in a droplet size of around 100 nm. 

Viscosity assessmentis necessary on SEDDS 
formulation for its physical characterisation and 
also to understand the control of its stability. It is 
also crucial in determining its ability to be filled in 
hard or soft gelatin capsules.[30] If the system has 
very low viscosity, there is an enhanced probability 
of leakage from the capsule and the system with 
very high viscosity may have problems with 
operability.[30; 66] 

The droplet size of SEDDS is a critical factor in 
self-emulsification performance because it 
determines the rate and extent of drug release, as 
well as absorption,[67] providing enhancing drug 
bioavailability.[35] Droplet size under 100 nm is 
considered desirable.[45; 64]Microemulsions with 
droplets size under 200 nm were considered 
acceptable according to Jain et al

[68]
. A smaller 

droplet size would bring forth a larger interfacial 
surface area for drug absorption;

[69]
 therefore, a 

faster release rate could be achieved.
[25; 34; 37; 70]

 

PI value is a measure of the width of size 
distribution and ranges from 0 to 1.[64] The values 
near zero indicate a monodispersed particle 
population, whereas values >0.5 signify a very 
broad size distribution.[64] PI <0.1 indicates a 

homogenous population, while a PI >0.3 indicates 
a higher heterogeneous dispersion.[71]The PI for all 
the stable SEDDS formulations was within the 
acceptable limits.[10]The polydispersity value is 
inversely proportional to the uniformity of droplet 
size in the formulation.[25; 72] 

The charge of the SEDDS droplets should be 
assessed,[73; 74]along with polarity of droplets is 
also a quite important factor at the 
characterisation of emulsification efficiency.

[44; 75]
 

Zeta-potential indicates the degree of repulsion 
between adjacent particles with the same surface 
charge in dispersion, and its value can relate to the 
stability of nanoemulsion in SEDDS. In this 
particular case, the SEDDS emulsion stability would 
be granted by a higher zeta potential, either 
positive or negative. If the potential is low enough, 
the attraction between droplets would exceed 
repulsion and the emulsion would break and/or 
flocculate.[44]Therefore, nanoemulsions from 
SEEDS with high zeta potential are electrically 
stabilised.[37; 44] 

CONCLUSION 

In this study, the emphasis was placed on a 
strategy for enhancing the drug/carrier interaction 
for improved L294 solubility, L294-loading 
capacity, self-emulsification and stability of 
formulation. SEDDS components were selected 
based on biopharmaceutical properties and L294 
solubility. A L294 SEDDS formulation composed by 
Labrafac PG (oil) and Labrasol (surfactant) with 
Transcutol HP (cosurfactant) was effectively 
developed. A small optimisation was performed 
based on droplets size, polydispersity, viscosity, 
and solubility. After extensive optimisation and 
evaluation, the developed L294-SEDDS were 
characterised for various qualitative and 
quantitative attributes. L294-SEDDS was shown to 
be monodispersed droplets with a size of 100 ± 10 
nm, exhibiting negative ζ potential. The optimised 
L294 SEDDS needed a surfactant content of more 
than 65% and yielded nanoemulsion of a mean 
globule size of around 100 nm. This work reported 
the L294 self-emulsifying systems development in 
liquid form, in which in contact with water or 
aqueous media forms a nanoemsulsion without 
the need for external energy. The L294 showed 
extremely low water solubility (0.006 mg.mL-1), 
and when formulated in SEDDS, its solubility 
increased over than 33,000 fold. Further studies 
should be performed on the evaluation of L294 
loaded in SEDDS in vivo bioavailability. 
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