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1. Introduction

W.R. Bennett [5] in 1958 introduced cyclostationarity as a phenomenon describing signals in channels of
communication. Studying the statistical characteristics of information transmission, he calls the group of telegraph
signals a cyclostationary process, that is the process whose group of statistics changes periodically with time.
W.A. Gardner and L. E. Franks [17] highlighted the similarity of cyclostationary processes, which form a subclass
of nonstationary processes, with stationary processes. W.A. Gardner [18], W. A. Gardner, A. Napolitano and
L. Paura [19] presented bibliography of works in which properties and applications of cyclostationary processes
were studied. Recent developments and applications of cyclostationary signal analysis are reviewed in the papers by
A. Napolitano [77], [78]. Note that in different sources cyclostationary processes are called periodically stationary,
periodically nonstationary, periodically correlated. We will use the term periodically correlated processes.

E.G. Gladyshev [20] was the first who analysed the spectral properties and representations of periodically
correlated sequences based on its connection with the vector valued stationary sequences. He formulated the
necessary and sufficient conditions for determining the periodically correlated sequence in terms of the correlation
function. A. Makagon [50], [51] presented a detailed spectral analysis of periodically correlated sequences. The
main ideas of the research of periodically correlated sequences are outlined in the book by H. L. Hurd and
A. Miamee [24].
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The problem of estimation of unobserved values of random processes is one of the very important and topical
subsections of the theory of stochastic processes. Processes that are observed can be completely defined by
its characteristics (correlation function, spectral density, canonical decomposition) or their characteristics can
be defined only by the set of admissible values of characteristics. The linear extrapolation and interpolation
problems for stationary stochastic sequences under the condition that the spectral densities are exactly known
were first investigated by A. N. Kolmogorov [29]. Methods of solutions of the extrapolation and filtering
problems for stationary processes and sequences with rational spectral densities were developed by N. Wiener
[89] and A. M. Yaglom [91, 92]. Estimation problems for vector-valued stationary processes were investigated by
Yu. A. Rozanov [86] and E. J. Hannan [23].

The basic techniques of statistics of stochastic processes are summarized in the books by D. Z. Arov and
H. Dym [3], L. Aggoun and R. J. Elliott [2], I. V. Basawa and B. L. S. Prakasa Rao [4], S. Cohen and
R. J. Elliott [10], M. S. Grewal and A. P. Andrews [22], G. Kallianpur [26], Yu. A. Kutoyants [34], [35],
R. S. Liptser and A. N. Shiryaev [37, 38], B. L. S. Prakasa Rao [80, 81], B. L. Rozovsky and S. V. Lototsky [87],
M. B. Rajarshi [84], W. A. Woodward, H. L. Gray and A. C. Elliott [90]. The estimation problems occur in different
studies. We refer to D. V. Koroliouk [30], D. V. Koroliouk et al. [31], D. V. Koroliouk and V. S. Koroliuk [32], where
there is investigated the difference stochastic equation ∆αt+1 = −V0αt + σ0∆Wt+1, t ≥ 0, which determines a
sequence αt, t ≥ 0, for the stochastic component ∆Wt+1, t ≥ 0, and studied the problem of filtration of stationary
Gaussian statistical experiments considered for the solution αt, t ≥ 0, of the indicated equation.

Since processes often accompanied by undesirable noise it is naturally to assume that the exact value of spectral
density is unknown and the model of process is given by a set of restrictions on spectral density. K S. Vastola
and H V. Poor [88] showed for certain classes of spectral densities that the Wiener filter is very sensitive to
minor changes of spectral model unlike the robust Wiener filter. That is the filter is the least sensitive to the
worst case of uncertainty. Thus, it is reasonable to use the minimax (robust) estimation method, which allows
to define the optimal estimate for all densities from a certain given class of the admissible spectral densities
simultaneously. Ulf Grenander [21] was the first who proposed the minimax approach to the extrapolation problem
for stationary processes. A survey of results in minimax-robust methods of data processing can be found in the
paper by S. A. Kassam and H. V. Poor [28]. Formulation and investigation of the problems of extrapolation,
interpolation and filtering of linear functionals which depend on the unknown values of stationary sequences
and processes from observations with and without noise are presented by M. P. Moklyachuk in the papers [61]–
[64]. Similar problems of the optimal estimation for the vector-valued stationary sequences and processes were
examined by M. P. Moklyachuk [58]–[60] and by M. P. Moklyachuk and O. Yu. Masyutka [66]–[69]. In their
papers M. M. Luz and M. P. Moklyachuk [39]–[49] investigated the minimax estimation problems for linear
functionals which depends on unobserved values of stochastic sequences with stationary increments. P. S. Kozak
and M. P. Moklyachuk [33] study estimates of functionals constructed from random sequences with periodically
stationary increments. In their papers I. I. Golichenko(Dubovets’ka) and M. P. Moklyachuk [12]–[16], [65]
presented results of investigation of the interpolation, extrapolation and filtering problems for linear functionals
from periodically correlated stochastic sequences and processes.

The prediction problem for stationary sequences with missing observations is investigated in the papers by
P. Bondon [6, 7], R. Cheng, A. G. Miamee and M. Pourahmadi [8], R. Cheng and M. Pourahmadi [9], Y. Kasahara,
M. Pourahmadi and A. Inoue [27, 82]. The detailed analysis of the estimation problems with missing observations
are presented in the paper by B. Abraham[1], books by M. J. Daniels and J. W. Hogan [11], R. J. A. Little and
D. B. Rubin [36], P. E. McKnight et al [57], M. M. Pelagatti [79].

In the papers by M. P. Moklyachuk and M. I. Sidei [71]–[75] results of investigations of the interpolation,
extrapolation and filtering problems for stationary stochastic sequences and processes with missing observations
are proposed. The results of the study of the extrapolation, interpolation and filtering problems for linear functionals
constructed from unobserved values of multidimensional stochastic sequences and processes are presented in the
papers by O. Yu. Masyutka, M. P. Moklyachuk and M. I. Sidei [52]–[56], [76]. We also refer to the book by
M. P. Moklyachuk, O. Yu. Masyutka and I. I. Golichenko [70] where results of the investigation of the problem
of mean square optimal estimation (forecasting, interpolation, and filtering) of linear functionals constructed from
unobserved values of periodically correlated isotropic random fields are described.
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In this paper we deal with the problem of optimal linear estimation of the functional Asζ which depends on the
unobserved values of a periodically correlated stochastic sequence ζ(j). Estimates are based on observations of the
sequence ζ(j) + θ(j) at points j ∈ Z \ S, where S =

∪s−1
l=0 {Ml + 1, . . . ,Ml +Nl+1}. θ(j) is an uncorrelated with

ζ(j) periodically correlated stochastic sequence. Formulas for calculation the mean square errors and the spectral
characteristics of the optimal estimates of the functional Asζ are proposed in the case of spectral certainty where
the spectral densities are exactly known. Formulas that determine the least favorable spectral densities and minimax
spectral characteristics are proposed in the case of spectral uncertainty where the spectral densities are not exactly
known while some classes of admissible spectral densities are given.

The paper is organized as follows. The spectral properties of periodically correlated stochastic sequences and
their correlation functions are described in Section 2. Relations of periodically correlated stochastic sequences with
multidimensional stationary sequences are discussed in this section.

In section 3 we consider the problem of mean square optimal linear estimation of the the functional

Asξ⃗ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a⃗⊤(j)ξ⃗(j), Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

which depends on the unknown values of a T -dimensional stationary stochastic sequence ξ⃗(j), based on
observations of the sequence ξ⃗(j) + η⃗(j) at points j ∈ Z \ S, where S =

∪s−1
l=0 {Ml + 1, . . . ,Ml +Nl+1}.

Formulas for calculation the mean square error and the spectral characteristic of the optimal estimate of the
functional Asξ⃗ are proposed in the case where spectral density matrices of the sequences ξ⃗(j) and η⃗(j) are exactly
known.

In section 4 we consider the problem of mean square optimal linear estimation of the the functional

Asζ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a(j)ζ(j), Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

which depends on the unknown values of T-PC stochastic sequence ζ(j), based on observations of the sequence
ζ(j) + θ(j) at points j ∈ Z \ S, where S =

∪s−1
l=0 {Ml + 1, . . . ,Ml +Nl+1}.

In section 5 we consider the problem of optimal estimation for the linear functional

Asζ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a(j)ζ(j), Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

which depends on the unknown values of T -PC sequence ζ(j) from observations of the sequence ζ(j) + θ(j) at
points j ∈ Z \ S, where the number of missed observations at each of the intervals is a multiple of the period T . In
sections 4 and 5 the estimation problem is investigated in the case of spectral certainty, where the spectral densities
of observed sequences are exactly known.

In section 6 we describe the minimax approach to the problem of estimation of the linear functionals. In this
case we find the estimate which minimizes the mean square error for all spectral densities from the given set of
admissible densities simultaneously.

In section 7 the least favorable spectral densities and the minimax (robust) spectral characteristics of the optimal
estimate of Asζ⃗ are found for the class D−

0 of admissible spectral densities.
In section 8 the least favorable spectral densities and the minimax (robust) spectral characteristics of the optimal

estimate of Asζ⃗ are found for the class D−
G of admissible spectral densities.

2. Periodically correlated and multidimensional stationary sequences

The term periodically correlated process was introduced by E. G. Gladyshev [20] while W. R. Bennett [5] called
random and periodic processes cyclostationary process.
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Periodically correlated sequences are stochastic sequences that have periodic structure (see the book by
H. L. Hurd and A. Miamee [24]).

Definition 1
A complex valued stochastic sequence ζ(n), n ∈ Z with zero mean, Eζ(n) = 0, and finite variance, E|ζ(n)|2 <
+∞, is called cyclostationary or periodically correlated (PC) with period T (T -PC) if for every n,m ∈ Z

Eζ(n+ T )ζ(m+ T ) = R(n+ T,m+ T ) = R(n,m) (1)

and there are no smaller values of T > 0 for which (1) holds true.

Definition 2
A complex valued T-variate stochastic sequence ξ⃗(n) = {ξν(n)}Tν=1 , n ∈ Z with zero mean, Eξν(n) = 0, ν =

1, . . . , T , and E||ξ⃗(n)||2 < ∞ is called stationary if for all n,m ∈ Z and ν, µ ∈ {1, . . . , T}

Eξν(n)ξµ(m) = Rνµ(n,m) = Rνµ(n−m).

If this is the case, we denote R(n) = {Rνµ(n)}Tν,µ=1 and call it the covariance matrix of T-variate stochastic
sequence ξ⃗(n).

Proposition 2.1. (E. G. Gladyshev [20]). A stochastic sequence ζ(n) is PC with period T if and only if there exists
a T -variate stationary sequence ξ⃗(n) = {ξν(n)}Tν=1 such that ζ(n) has the representation

ζ(n) =

T∑
ν=1

e2πinν/T ξν(n), n ∈ Z. (2)

The sequence ξ⃗(n) is called generating sequence of the sequence ζ(n).

Proposition 2.2. (E. G. Gladyshev [20]). A complex valued stochastic sequence ζ(n), n ∈ Z with zero mean and
finite variance is PC with period T if and only if the T -variate blocked sequence ζ⃗(n) of the form

[ζ⃗(n)]p = ζ(nT + p), n ∈ Z, p = 1, . . . , T (3)

is stationary.

We will denote by f ζ⃗(λ) =
{
f ζ⃗
νµ(λ)

}T

ν,µ=1
the matrix valued spectral density function of the T -variate stationary

sequence ζ⃗(n) = (ζ1(n), . . . , ζT (n))
⊤ arising from the T -blocking (3) of a univariate T-PC sequence ζ(n).

3. Hilbert space projection method of linear interpolation

Let ξ⃗(j) and η⃗(j) be uncorrelated T-variate stationary stochastic sequences with the spectral density matrices

f ξ⃗(λ) =
{
f ξ⃗
νµ(λ)

}T

ν,µ=1
and f η⃗(λ) =

{
f η⃗
νµ(λ)

}T
ν,µ=1

, respectively. Consider the problem of optimal linear

estimation of the functional

Asξ⃗ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a⃗⊤(j)ξ⃗(j), Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

that depends on the unknown values of the sequence ξ⃗(j), based on observations of the sequence ξ⃗(j) + η⃗(j) at
points j ∈ Z \ S, where S =

∪s−1
l=0 {Ml + 1, . . . ,Ml +Nl+1}.
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Let the spectral densities f ξ⃗(λ) and f η⃗(λ) satisfy the minimality condition∫ π

−π

Tr
[
(f ξ⃗(λ) + f η⃗(λ))−1

]
dλ < +∞. (4)

Condition (4) is necessary and sufficient in order that the error-free interpolation of the unknown values of the
sequence ξ⃗(j) + η⃗(j) is impossible [86].

Denote by L2(f) the Hilbert space of vector valued functions b⃗(λ) = {bν(λ)}Tν=1 that are square integrable with
respect to a measure with the density f(λ) = {fνµ(λ)}Tν,µ=1:

∫ π

−π

b⃗⊤(λ)f(λ)⃗b(λ)dλ =

∫ π

−π

T∑
ν,µ=1

bν(λ)fνµ(λ)bµ(λ)dλ < +∞.

Denote by Ls−
2 (f) the subspace in L2(f) generated by the functions eijλδν , δν = {δνµ}Tµ=1, ν = 1, . . . , T, j ∈

Z \ S, where δνν = 1, δνµ = 0 for ν ̸= µ.

Every linear estimate Âsξ⃗ of the functional Asξ⃗ from observations of the sequence ξ⃗(j) + η⃗(j) at points
j ∈ Z \ S has the form

Âsξ⃗ =

∫ π

−π

h⃗⊤(eiλ)(Z ξ⃗(dλ) + Z η⃗(dλ)) =

∫ π

−π

T∑
ν=1

hν(e
iλ)(Z ξ⃗

ν(dλ) + Z η⃗
ν (dλ)), (5)

where Z ξ⃗(∆) =
{
Z ξ⃗
ν(∆)

}T

ν=1
and Z η⃗(∆) =

{
Z η⃗
ν (∆)

}T
ν=1

are orthogonal random measures of the sequences ξ⃗(j)

and η⃗(j), and h⃗(eiλ) =
{
hν(e

iλ)
}T
ν=1

is the spectral characteristic of the estimate Âsξ⃗. The function h⃗(eiλ) ∈
Ls−
2 (f ξ⃗ + f η⃗).

The mean square error ∆(⃗h; f ξ⃗, f η⃗) of the estimate Âsξ⃗ is calculated by the formula

∆(⃗h; f ξ⃗, f η⃗) = E|Asξ⃗ − Âsξ⃗|2 =

=
1

2π

∫ π

−π

[
As(e

iλ)− h⃗(eiλ)
]⊤

f ξ⃗(λ)
[
As(eiλ)− h⃗(eiλ)

]
dλ+ (6)

+
1

2π

∫ π

−π

h⃗⊤(eiλ)f η⃗(λ)⃗h(eiλ)dλ,

As(e
iλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a⃗(j)eijλ.

The spectral characteristic h⃗(f ξ⃗, f η⃗) of the optimal linear estimate of Asξ⃗ minimizes the mean square error

∆(f ξ⃗, f η⃗) = ∆(⃗h(f ξ⃗, f η⃗); f ξ⃗, f η⃗) = min
h⃗∈Ls−

2 (f ξ⃗+f η⃗)
∆(⃗h; f ξ⃗, f η⃗) = min

Âsξ⃗

E|Asξ⃗ − Âsξ⃗|2. (7)

With the help of the Hilbert space projection method proposed by A. N. Kolmogorov [29] we can find a solution

of the optimization problem (7). The optimal linear estimate Âsξ⃗ is a projection of the functional Asξ⃗ on the
subspace H−[ξ⃗ + η⃗] = H−[ξν(j) + ην(j), j ∈ Z\S, ν = 1, . . . , T ] of the Hilbert space H = {ξ : Eξ = 0, E|ξ|2 <
∞}, generated by values ξν(j) + ην(j), j ∈ Z\S, ν = 1, . . . , T . The projection is characterized by the following
conditions
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1) Âsξ⃗ ∈ H−[ξ⃗ + η⃗],

2) Asξ⃗ − Âsξ⃗ ⊥ H−[ξ⃗ + η⃗].
Condition 2) gives us the possibility to derive the formula for the spectral characteristic of the optimal estimate

h⃗⊤(f ξ⃗, f η⃗) =
(
A⊤

s (e
iλ)f ξ⃗(λ)− C⊤

s (eiλ)
) [

f ξ⃗(λ) + f η⃗(λ)
]−1

=

= A⊤
s (e

iλ)−
(
A⊤

s (e
iλ)f η⃗(λ) + C⊤

s (eiλ)
) [

f ξ⃗(λ) + f η⃗(λ)
]−1

, (8)

where

Cs(e
iλ) =

s−1∑
l=0

Ml+Nl+1∑
kl=Ml+1

c⃗(kl)e
iklλ,

c⃗(kl) = (c1(kl), . . . , cT (kl))
⊤
,

l = 0, . . . , s− 1, kl = Ml + 1, . . . ,Ml +Nl+1.

Condition 1) is satisfied when the system of equalities∫ π

−π

h⃗⊤(f ξ⃗, f η⃗)e−ijλdλ = 0, j ∈ S (9)

holds true.
Denote by Ds, Bs operators that are determined by Tρ× Tρ, ρ = N1 +N2 + · · ·+Ns, matrices

Ds =


D00 D01 . . . D0,s−1

D10 D11 . . . D1,s−1

. . . . . . . . . . . .
Ds−1,0 Ds−1,1 . . . Ds−1,s−1

 , Bs =


B00 B01 . . . B0,s−1

B10 B11 . . . B1,s−1

. . . . . . . . . . . .
Bs−1,0 Bs−1,1 . . . Bs−1,s−1

 ,

constructed from TNm+1 × TNn+1 block-matrices

Dmn = {Dmn(k, j)}Mm+Nm+1

k=Mm+1
Mn+Nn+1

j=Mn+1 ,

Bmn = {Bmn(k, j)}Mm+Nm+1

k=Mm+1
Mn+Nn+1

j=Mn+1 ,

m, n = 0, . . . , s− 1,

with elements which are the Fourier coefficients of the matrix functions
[
f ξ⃗(λ)(f ξ⃗(λ) + f η⃗(λ))−1

]⊤
and[

(f ξ⃗(λ) + f η⃗(λ))−1
]⊤

, correspondingly:

Dmn(k, j) =
1

2π

∫ π

−π

[
f ξ⃗(λ)(f ξ⃗(λ) + f η⃗(λ))−1

]⊤
ei(j−k)λdλ,

Bmn(k, j) =
1

2π

∫ π

−π

[
(f ξ⃗(λ) + f η⃗(λ))−1

]⊤
ei(j−k)λdλ,

k = Mm + 1, . . . ,Mm +Nm+1,

j = Mn + 1, . . . ,Mn +Nn+1.

Making use of the introduced operators, relation (9) can be written in the form of the equation

Dsa⃗s = Bsc⃗s,
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where

a⃗s =
(
a⃗⊤(1), . . . , a⃗⊤(N1), a⃗

⊤(M1 + 1) . . . , a⃗⊤(M1 +N2), . . . , a⃗
⊤(Ms−1 + 1), . . . , a⃗⊤(Ms−1 +Ns)

)⊤
,

c⃗s =
(
c⃗⊤(1), . . . , c⃗⊤(N1), c⃗

⊤(M1 + 1) . . . , c⃗⊤(M1 +N2), . . . , c⃗
⊤(Ms−1 + 1), . . . , c⃗⊤(Ms−1 +Ns)

)⊤
are column-vectors. The unknown coefficients c⃗(kl), l = 0, . . . , s− 1, kl = Ml + 1, . . . ,Ml +Nl+1 are deter-
mined from the equation

c⃗s = B−1
s Dsa⃗s, (10)

where the kl-th component of the vector c⃗s is calculated by the formula

c⃗(kl) =

s−1∑
m=0

Mm+Nm+1∑
q=Mm+1

Clm(kl, q)

s−1∑
n=0

Mn+Nn+1∑
j=Mn+1

Dmn(q, j)⃗a(j),

l = 0, . . . , s− 1, kl = Ml + 1, . . . ,Ml +Nl+1.

The operator B−1
s is determined by Tρ× Tρ matrix

B−1
s =


C00 C01 . . . C0,s−1

C10 C11 . . . C1,s−1

. . . . . . . . . . . .
Cs−1,0 Cs−1,1 . . . Cs−1,s−1


that is an inverse matrix for the block-matrix Bs. Elements of B−1

s are constructed by dividing B−1
s on TNm+1 ×

TNn+1 block-matrices Cmn and dividing each Cmn on T × T matrices Cmn(k, j), k = Mm + 1, . . . ,Mm +
Nm+1, j = Mn + 1, . . . ,Mn +Nn+1, m, n = 0, . . . , s− 1, in the such way that

Cmn = {Cmn(k, j)}Mm+Nm+1

k=Mm+1
Mn+Nn+1

j=Mn+1 .

The mean-square error of the optimal estimate Âξ⃗ is calculated by the formula (6) and is of the form

∆(f ξ⃗, f η⃗) = ⟨⃗as,Rsa⃗s⟩+ ⟨c⃗s,Bsc⃗s⟩, (11)

where ⟨a, b⟩ denotes the scalar product, Rs is the linear operator determined by Tρ× Tρ matrix composed with
TNm+1 × TNn+1 block-matrices

Rmn = {Rmn(k, j)}Mm+Nm+1

k=Mm+1
Mn+Nn+1

j=Mn+1 ,

m, n = 0, . . . , s− 1,

with elements

Rmn(k, j) =
1

2π

∫ π

−π

[
f ξ⃗(λ)(f ξ⃗(λ) + f η⃗(λ))−1f η⃗(λ)

]⊤
ei(j−k)λdλ,

k = Mm + 1, . . . ,Mm +Nm+1,

j = Mn + 1, . . . ,Mn +Nn+1.

See [66] for more details.

The following statement holds true.
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Theorem 1
Let ξ⃗(j) = {ξν(j)}Tν=1 and η⃗(j) = {ην(j)}Tν=1 be uncorrelated T-variate stationary stochastic sequences with

the spectral density matrices f ξ⃗(λ) =
{
f ξ⃗
νµ(λ)

}T

ν,µ=1
and f η⃗(λ) =

{
f η⃗
νµ(λ)

}T
ν,µ=1

, respectively. Assume that the

matrices f ξ⃗(λ) and f η⃗(λ) satisfy the minimality condition (4). The spectral characteristic h⃗(f ξ⃗, f η⃗) and the mean
square error ∆(f ξ⃗, f η⃗) of the optimal linear estimate of the functional Asξ⃗ based on observations of the sequence
ξ⃗(j) + η⃗(j) at points j ∈ Z \ S, are calculated by formulas (8) and (11).

In the case of observations without noise we have the following corollary.

Corollary 1
Let ξ⃗(j) = {ξν(j)}Tν=1 be a T-variate stationary stochastic sequence with the spectral density matrix f ξ⃗(λ) ={
f ξ⃗
νµ(λ)

}T

ν,µ=1
, which satisfies the minimality condition∫ π

−π

Tr
[
(f ξ⃗(λ))−1

]
dλ < +∞. (12)

The spectral characteristic h⃗(f ξ⃗) and the mean square error ∆(f ξ⃗) of the optimal linear estimate of the functional
Asξ⃗ based on observations of the sequence ξ⃗(j) at points j ∈ Z \ S, are calculated by formulas

h⃗⊤(f ξ⃗) = A⊤
s (e

iλ)− C⊤
s (eiλ)

[
f ξ⃗(λ)

]−1

, (13)

∆(f ξ⃗) = ⟨c⃗s, a⃗s⟩, (14)

where

a⃗s =
(
a⃗⊤(1), . . . , a⃗⊤(N1), a⃗

⊤(M1 + 1) . . . , a⃗⊤(M1 +N2), . . . , a⃗
⊤(Ms−1 + 1), . . . , a⃗⊤(Ms−1 +Ns)

)⊤
,

c⃗s =
(
c⃗⊤(1), . . . , c⃗⊤(N1), c⃗

⊤(M1 + 1) . . . , c⃗⊤(M1 +N2), . . . , c⃗
⊤(Ms−1 + 1), . . . , c⃗⊤(Ms−1 +Ns)

)⊤
are column-vectors and c⃗s = B−1

s a⃗s. Bs is a Tρ× Tρ matrix composed with TNm × TNn block-matrices Bmn =

{Bmn(k, j)}Mm−1+Nm

k=Mm−1+1
Mn−1+Nn

j=Mn−1+1:

Bmn(k, j) =
1

2π

∫ π

−π

[
(f ξ⃗(λ))−1

]⊤
ei(j−k)λdλ,

m, n = 0, . . . , s− 1,

k = Mm−1 + 1, . . . ,Mm−1 +Nm,

j = Mn−1 + 1, . . . ,Mn−1 +Nn.

The kl-th component of the vector c⃗s is calculated by the formula

c⃗(kl) =

s−1∑
m=0

Mm+Nm+1∑
q=Mm+1

Clm(kl, q)⃗a(q),

l = 0, . . . , s− 1, kl = Ml, . . . ,Ml +Nl+1.

The operator B−1
s is determined by Tρ× Tρ matrix that is the inverse matrix to the block-matrix Bs. Elements

of B−1
s are obtained by dividing B−1

s on TNm+1 × TNn+1 block-matrices Cmn and dividing each of Cmn on
T × T matrices Cmn(k, j), k = Mm + 1, . . . ,Mm +Nm+1, j = Mn + 1, . . . ,Mn +Nn+1, m, n = 0, . . . , s− 1,
in the such way that

Cmn = {Cmn(k, j)}Mm+Nm+1

k=Mm+1
Mn+Nn+1

j=Mn+1 .
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Remark 1
Let s = 1, N1 = N . Then

Asξ⃗ = AN ξ⃗ =

N∑
j=1

a⃗⊤(j)ξ⃗(j).

The spectral characteristic h⃗(f ξ⃗, f η⃗) and the mean square error ∆(f ξ⃗, f η⃗) of the optimal linear estimate of the
functional AN ξ⃗ based on observations of the sequence ξ⃗(j) at points j ∈ Z \ {1, . . . , N} with the noise η⃗(j) are
calculated by formulas

h⊤(f ξ⃗, f η⃗) =
(
A⊤

N (eiλ)f ξ⃗(λ)− C⊤
N (eiλ)

) [
f ξ⃗(λ) + f η⃗(λ)

]−1

=

= A⊤
N (eiλ)−

(
A⊤

N (eiλ)f η⃗(λ) + C⊤
N (eiλ)

) [
f ξ⃗(λ) + f η⃗(λ)

]−1

,

∆(f ξ⃗, f η⃗) = ⟨⃗aN , RN a⃗N ⟩+ ⟨c⃗N , BN c⃗N ⟩.

The spectral characteristic h⃗(f ξ⃗) and the mean square error ∆(f ξ⃗) of the optimal linear estimate of the functional
AN ξ⃗ based on observations of the sequence ξ⃗(j) at points j ∈ Z \ {1, . . . , N} without noise η⃗(j) are calculated by
formulas

h⊤(f ξ⃗) = A⊤
N (eiλ)− C⊤

N (eiλ)
[
f ξ⃗(λ)

]−1

,

∆(f ξ⃗) = ⟨c⃗N , a⃗N ⟩.
For more details see [12], [65].

Example 1

Let ξ⃗(n) =
(
ξ1(n)
ξ2(n)

)
be a 2-variate stationary stochastic sequence. Let ξ1(n) = θ(n) be a univariate stationary

sequence with the spectral density function f(λ) = 1
|1−ae−iλ|2 , |a| < 1, and ξ2(n) = θ(n) + γ(n), where γ(n) is an

uncorrelated with θ(n) univariate stationary sequence with the spectral density function g(λ) = 1
|1−be−iλ|2 , |b| < 1.

Consider the problem of estimation of the functional

A2ξ⃗ = ξ⃗(1)− ξ⃗(3) = (1, 1)

(
ξ1(1)
ξ2(1)

)
+ (−1,−1)

(
ξ1(3)
ξ2(3)

)
based on observations of ξ⃗(n), n ∈ Z \ {1, 3}. Here a⃗(1) = (1, 1), a⃗(3) = (−1,−1).

In this case the spectral density matrix of ξ⃗(n) is

f ξ⃗(λ) =

(
f(λ) f(λ)
f(λ) f(λ) + g(λ)

)
and [f ξ⃗(λ)]

−1
satisfies the minimality condition (12). The matrix B2 and its inverse B−1

2 , the vector of unknown
coefficients c⃗2 are of the form

B2 =


2 + a2 + b2 −1− b2 0 0
−1− b2 1 + b2 0 0

0 0 2 + a2 + b2 −1− b2

0 0 −1− b2 1 + b2

 ,

B−1
2 =


1

1+a2
1

1+a2 0 0
1

1+a2
2+a2+b2

(1+b2)(1+a2) 0 0

0 0 1
1+a2

1
1+a2

0 0 1
1+a2

2+a2+b2

(1+b2)(1+a2)

 ,
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c⃗2 =

(
2

1 + a2
,

3 + a2 + 2b2

(1 + b2)(1 + a2)
,− 2

1 + a2
,− 3 + a2 + 2b2

(1 + b2)(1 + a2)

)⊤

.

The spectral characteristic can be calculated by (13)

h⃗⊤(f ξ⃗) =

((
2a

1 + a2
− b

1 + b2

)
+

(
b

1 + b2

)
e4iλ,

b

1 + b2
− b

1 + b2
e4iλ

)
.

Then the optimal linear estimate of A2ξ⃗ determined by (5) is of the form

Â2ξ⃗ =

(
2a

1 + a2
− b

1 + b2

)
ξ1(0) +

b

1 + b2
ξ1(4) +

b

1 + b2
ξ2(0)−

b

1 + b2
ξ2(4)).

The mean square error of Â2ξ⃗ determined by (14) is

∆(f ξ⃗) =
8

1 + a2
+

2

1 + b2
.

4. Interpolation of T-PC stochastic sequences

Let ζ(j) and θ(j) be uncorrelated T-PC stochastic sequences. Consider the problem of optimal linear estimation of
the functional

Asζ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a(j)ζ(j),

Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

that depends on the unobserved values of T-PC stochastic sequence ζ(j), based on observations of the sequence
ζ(j) + θ(j) at points j ∈ Z \ S, where S =

∪s−1
l=0 {Ml + 1, . . . ,Ml +Nl+1}.

Using the Gladyshev relation (2) of PC and multivariate stationary sequences the problem of estimation of the
functional Asζ may be reduced to the problem of estimation of the functional Asξ⃗ since

Asζ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a(j)ζ(j) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a(j)

T∑
ν=1

e2πijν/T ξν(j) =

=

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

T∑
ν=1

a(j)e2πijν/T ξν(j) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a⃗⊤(j)ξ⃗(j) = Asξ⃗,

where
a⃗⊤(j) = (a1(j), . . . , aT (j)) , aν(j) = a(j)e2πijν/T , ν = 1, . . . , T,

ξ⃗(j) = {ξν(j)}Tν=1 is a T-variate stationary stochastic sequence that generates the PC sequence ζ(j).
For the interpolation problem for PC sequences the following results hold true.

Theorem 2
Let ζ(j) and θ(j) be uncorrelated T-PC stochastic sequences. Then the optimal linear estimate of the functional
Asζ based on observations of the sequence ζ(j) + θ(j) at points j ∈ Z \ S, is given by the formula
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Âsζ =

∫ π

−π

h⃗⊤(f ξ⃗, f η⃗)(Zξ(dλ) + Zη(dλ)) =

∫ π

−π

T∑
ν=1

hν(f
ξ⃗, f η⃗)(Zξ

ν(dλ) + Zη
ν (dλ)), (15)

where ξ⃗(j) and η⃗(j) are generating sequences of the sequences ζ(j) and θ(j), correspondingly. The spectral
characteristic h⃗(f ξ⃗, f η⃗) and the mean square error ∆(f ξ⃗, f η⃗) of Âsζ are calculated by formulas (8) and (11),
where a⃗(j) = (a1(j), . . . , aT (j))

⊤, aν(j) = a(j)e2πijν/T , ν = 1, . . . , T .

Corollary 2
The optimal linear estimate ζ̂(1) of the unknown value ζ(1), based on observations of the sequence ζ(j) + θ(j)

at points j ∈ Z \ S is defined by the formula (15). The spectral characteristic h⃗(f ξ⃗, f η⃗) and the mean square
error ∆(f ξ⃗, f η⃗) of the optimal linear estimate ζ̂(1) are calculated by formulas (8) and (11), where the unknown
coefficients c⃗(kl), l = 0, . . . , s− 1, kl = Ml + 1, . . . ,Ml +Nl+1 are defined by formulas

c⃗(kl) =

s−1∑
m=0

Mm+Nm+1∑
q=Mm+1

Clm(kl, q)D00(q, 1)⃗a(1),

where elements Clm(kl, q), l,m = 0, . . . , s− 1, kl = Ml + 1, . . . ,Ml +Nl+1, q = Mm + 1, . . . ,Mm +Nm+1 are
determined by the same way as in Theorem 1.

In the case of observations without noise we have the following corollary.

Corollary 3
Let ζ(j) be a T-PC stochastic sequence. Then the optimal linear estimate of the functional Asζ based on
observations of the sequence ζ(j) at points j ∈ Z \ S, is given by

Âsζ =

∫ π

−π

h⃗⊤(f ξ⃗)Zξ(dλ) =

∫ π

−π

T∑
ν=1

hν(f
ξ⃗)Zξ

ν(dλ), (16)

where ξ⃗(j) is generating sequence of ζ(j). The spectral characteristic h⃗(f ξ⃗) and the mean square error ∆(f ξ⃗)

of Âsζ are calculated by formulas (13) and (14), where a⃗(j) = (a1(j), . . . , aT (j))
⊤, aν(j) = a(j)e2πijν/T , ν =

1, . . . , T .

Corollary 4
The optimal linear estimate ζ̂(1) of the unknown value ζ(1), based on observations of the sequence ζ(j) at points
j ∈ Z \ S is defined by the formula (16). The spectral characteristic h⃗(f ξ⃗) and the mean square error ∆(f ξ⃗)

of the optimal linear estimate ζ̂(1) are calculated by formulas (13) and (14), where the unknown coefficients
c⃗(kl), l = 0, . . . , s− 1, kl = Ml + 1, . . . ,Ml +Nl+1 are defined by formulas

c⃗(kl) = C00(kl, 1)⃗a(1),

where elements C00(kl, 1), l = 0, . . . , s− 1, kl = Ml + 1, . . . ,Ml +Nl+1 are determined by the same way as in
Corollary 1.

5. Interpolation of T-PC stochastic sequences with special sets of missed observations

Consider the problem of optimal estimation for the linear functional

Asζ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a(j)ζ(j), Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

Stat., Optim. Inf. Comput. Vol. 8, June 2020



642 INTERPOLATION PROBLEM FOR PC SEQUENCES WITH MISSING OBSERVATIONS

which depends on the unobserved values of T -PC sequence ζ(j) from observations of the sequence ζ(j) + θ(j) at
points j ∈ Z \ S, where the number of missed observations at each of the intervals is a multiple of the period T ,
what means that

K1 = T ·KT
1 ,K2 = T ·KT

2 , . . . ,Ks−1 = T ·KT
s−1,

and the number of observations at each of the intervals is a multiple of T

N1 = T ·NT
1 , N2 = T ·NT

2 , . . . , Ns = T ·NT
s ,

and coefficients a(j), j ∈ S are of the form

a(j) = a

((
j −

[
j

T

]
T

)
+

[
j

T

]
T

)
= a(ν + j̃T ) = a(j̃)e2πij̃ν/T , (17)

ν = 1, . . . , T, j̃ ∈ S̃,

S̃ =

s−1∪
l=0

{
MT

l , . . . ,MT
l +NT

l+1 − 1
}
,

where ν = T and j̃ = λ− 1, if j = T · λ, λ ∈ Z, or

a(j) = a(T · λ) = a(T + (λ− 1)T ) = a(λ− 1)e2πi(λ−1)T/T ,

and Ml = T ·MT
l , l = 0, . . . , s− 1.

Using Proposition 2.2, the linear functional Asζ can be written as follows

Asζ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a(j)ζ(j) =

=

s−1∑
l=0

MT
l +NT

l+1−1∑
j̃=MT

l

T∑
ν=1

a(ν + j̃T )ζ(ν + j̃T ) =

s−1∑
l=0

MT
l +NT

l+1−1∑
j̃=MT

l

T∑
ν=1

aν(j̃)ζν(j̃) =

=

s−1∑
l=0

MT
l +NT

l+1−1∑
j̃=MT

l

a⃗⊤(j̃)ζ⃗(j̃) = Asζ⃗, (18)

where
a⃗(j̃) = (a1(j̃), . . . , aT (j̃))

⊤, aν(j̃) = a(ν + j̃T ) = a(j̃)e2πij̃ν/T ,

ζ⃗(j̃) = (ζ1(j̃), . . . , ζT (j̃))
⊤, ζν(j̃) = ζ(ν + j̃T ),

ν = 1, . . . , T, j̃ ∈ S̃

and ζ⃗(j̃), j̃ ∈ S̃ is T -variate stationary sequence, obtained by the T -blocking (3) of univariate T -PC sequence
ζ(j), j ∈ S.

Let f ζ⃗(λ) and f θ⃗(λ) be the spectral density matrices of T-variate stationary sequences ζ⃗(j) and θ⃗(j), obtained
from the T -blocking (3) of univariate T -PC sequences ζ(j) and θ(j), respectively.

Taking into account the definition of the functional Asζ⃗ and Theorem 1 we can verify that the following
statements hold true.
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Theorem 3
Let ζ(j) and θ(j) be uncorrelated T-PC stochastic sequences with the spectral density matrices f ζ⃗(λ) and f θ⃗(λ)

of T-variate stationary sequences ζ⃗(j) and θ⃗(j), respectively. Assume that f ζ⃗(λ) and f θ⃗(λ) satisfy the minimality
condition (4). Then the optimal linear estimate of Asζ⃗ based on observations of ζ⃗(j) + θ⃗(j) at points j ∈ Z \ S̃, is
given by

Âsζ⃗ =

∫ π

−π

h⃗⊤(f ζ⃗ , f θ⃗)(Z ζ⃗(dλ) + Z θ⃗(dλ)) =

∫ π

−π

T∑
ν=1

hν(f
ζ⃗ , f θ⃗)(Z ζ⃗

ν (dλ) + Z θ⃗
ν (dλ)),

where Z ζ⃗(∆) =
{
Z ζ⃗
ν (∆)

}T

ν=1
and Z θ⃗(∆) =

{
Z θ⃗
ν (∆)

}T

ν=1
are orthogonal random measures of the sequences ζ⃗(j̃)

and θ⃗(j̃). The spectral characteristic h⃗(f ζ⃗ , f θ⃗) and the mean square error ∆(f ζ⃗ , f θ⃗) of Âsζ⃗ are calculated by
formulas

h⃗⊤(f ζ⃗ , f θ⃗) =
(
Ã⊤

s (e
iλ)f ζ⃗(λ)− C̃⊤

s (eiλ)
) [

f ζ⃗(λ) + f θ⃗(λ)
]−1

= Ã⊤
s (e

iλ)−
(
Ã⊤

s (e
iλ)f θ⃗(λ) + C̃⊤

s (eiλ)
) [

f ζ⃗(λ) + f θ⃗(λ)
]−1

, (19)

∆(f ζ⃗ , f θ⃗) = ⟨⃗aζs,R
ζ
s a⃗

ζ
s⟩+ ⟨c⃗ζs,B

ζ
s c⃗

ζ
s⟩, (20)

where
a⃗ζs =

(
a⃗⊤(0), . . . , a⃗⊤(NT

1 − 1), . . . , a⃗⊤(MT
s−1), . . . , a⃗

⊤(MT
s−1 +NT

s − 1)
)⊤

,

c⃗ζs =
(
c⃗⊤(0), . . . , c⃗⊤(NT

1 − 1), . . . , c⃗⊤(MT
s−1), . . . , c⃗

⊤(MT
s−1 +NT

s − 1)
)⊤

,

Ãs(e
iλ) =

∑
j̃∈S̃ a⃗(j̃)eij̃λ, C̃s(e

iλ) =
∑

j̃∈S̃ c⃗(j̃)eij̃λ, the unknown coefficients c⃗(j̃), j̃ ∈ S̃ are determined from
the relation

c⃗ζs = (Bζ
s)

−1Dζ
s a⃗

ζ
s,

operators Bζ
s,D

ζ
s,R

ζ
s are determined by ρ× ρ matrices, constructed from T ·NT

m+1 × T ·NT
n+1 block-matrices

Bζ
mn =

{
Bζ

mn(k, j)
}MT

m+NT
m+1−1

k=MT
m

MT
n +NT

n+1−1

j=MT
n

,

Dζ
mn =

{
Dζ

mn(k, j)
}MT

m+NT
m+1−1

k=MT
m

MT
n +NT

n+1−1

j=MT
n

,

Rζ
mn =

{
Rζ

mn(k, j)
}MT

m+NT
m+1−1

k=MT
m

MT
n +NT

n+1−1

j=MT
n

, m, n = 0, . . . , s− 1

with elements:

Bζ
mn(k, j) =

1

2π

∫ π

−π

[
(f ζ⃗(λ) + f θ⃗(λ))−1

]⊤
ei(j−k)λdλ,

Dζ
mn(k, j) =

1

2π

∫ π

−π

[
f ζ⃗(λ)(f ζ⃗(λ) + f θ⃗(λ))−1

]⊤
ei(j−k)λdλ,

Rζ
mn(k, j) =

1

2π

∫ π

−π

[
f ζ⃗(λ)(f ζ⃗(λ) + f θ⃗(λ))−1f θ⃗(λ)

]⊤
ei(j−k)λdλ,

m, n = 0, . . . , s− 1,

k = MT
m, . . . ,MT

m +NT
m+1 − 1,

j = MT
n , . . . ,MT

n +NT
n+1 − 1.

In the case of observations without noise we have the following corollary.
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Corollary 5
Let ζ(j) be a T-PC stochastic sequence with the spectral density matrix f ζ⃗(λ) of T-variate stationary sequence
ζ⃗(j). Assume that f ζ⃗(λ) satisfies the minimality condition (12). Then the optimal linear estimate of Asζ⃗ based on
observations of ζ⃗(j) at points j ∈ Z \ S̃, is given by

Âsζ⃗ =

∫ π

−π

h⃗⊤(f ζ⃗)Z ζ⃗(dλ) =

∫ π

−π

T∑
ν=1

hν(f
ζ⃗)Z ζ⃗

ν (dλ).

The spectral characteristic h⃗(f ζ⃗) and the mean square error ∆(f ζ⃗) of Âsζ⃗ are calculated by formulas

h⃗⊤(f ζ⃗) = Ã⊤
s (e

iλ)− C̃⊤
s (eiλ)

[
f ζ⃗(λ)

]−1

, (21)

∆(f ζ⃗) = ⟨c⃗ζs, a⃗ζs⟩, (22)

unknown coefficients c⃗(j̃), j̃ ∈ S̃ are determined from the relation

c⃗ζs = (Bζ
s)

−1a⃗s,

operator Bζ
s is a matrix composed with ρ× ρ matrix, constructed from T ·NT

m+1 × T ·NT
n+1 block-matrices

Bζ
mn =

{
Bζ

mn(k, j)
}MT

m+NT
m+1−1

k=MT
m

Mn+Nn+1−1
j=Mn

with elements:

Bζ
mn(j, k) =

1

2π

∫ π

−π

[
(f ζ⃗(λ))−1

]⊤
ei(k−j)λdλ,

m, n = 0, . . . , s− 1,

k = MT
m, . . . ,MT

m +NT
m+1 − 1,

j = MT
n , . . . ,MT

n +NT
n+1 − 1.

Example 2
Let ζ(n), n ∈ Z be a 2-PC stochastic sequence such that ζ(2n+ 1) = η(n) is a univariate stationary Ornstein-
Uhlenbeck sequence with the spectral density f(λ) = 1

|2+eiλ|2 and ζ(2n) = γ(n) is an uncorrelated with η(n)

univariate stationary Ornstein-Uhlenbeck sequence with the spectral density g(λ) = 1
|3−eiλ|2 .

Consider the problem of estimation of the functional

A1ζ = ζ(1) + ζ(2)− ζ(3) + ζ(4).

Here S = {1, 2, 3, 4} and N1 = 4 is a multiple of T = 2. Rewrite A1ζ in the form (18)

A1ζ = e2πi1·0/2ζ(1 + 0 · 2) + e2πi2·0/2ζ(2 + 0 · 2) + e2πi1·1/2ζ(1 + 1 · 2) + e2πi2·2/2ζ(2 + 1 · 2) =

= a⃗⊤(0)ζ⃗(0) + a⃗⊤(1)ζ⃗(1) = A1ζ⃗,

where a⃗(j̃) = (a(j̃)e2πi1·j̃/2, a(j̃)e2πi2·j̃/2)⊤, a(0) = 1, a(1) = 1, ζ⃗(j̃) = (ζ(1 + j̃ · 2), ζ(2 + j̃ · 2))⊤, j̃ ∈ S̃ =

{0, 1}. In this case the spectral density matrix of ζ⃗(n) is of the form

f ζ⃗(λ) =

(
f(λ) 0
0 g(λ)

)
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and [f ζ⃗(λ)]
−1

satisfies the minimality condition (12). The matrix B1 and its inverse (Bζ
1)

−1, the vector of unknown
coefficients c⃗2 are of the form

Bζ
1 =


5 0 2 0
0 10 0 −3
2 0 5 0
0 −3 0 10

 , (Bζ
1)

−1 =
1

273


65 0 −26 0
0 30 0 9

−26 0 65 0
0 9 0 30

 ,

c⃗ζ1 =
1

273
(91, 39,−91, 39)

⊤
.

The spectral characteristic of the optimal estimate of A1ζ is of the form

h⃗⊤(f ζ⃗) =

(
−2

3
e−iλ +

10

3
e2iλ,

3

7
e−iλ +

3

7
e2iλ

)
,

and the optimal linear estimate of A1ζ⃗ is of the form

Â1ζ⃗ = −2

3
ζ1(−1) +

10

3
ζ1(2) +

3

7
ζ2(−1) +

3

7
ζ2(2) =

= −2

3
ζ(−1) +

10

3
ζ(5) +

3

7
ζ(0) +

3

7
ζ(6).

The mean square error of this estimate

∆(f ζ⃗) =
20

21
.

6. Minimax (robust) method of linear interpolation

Let f(λ) and g(λ) be the spectral density matrices of T -variate stationary sequences ζ⃗(j) and θ⃗(j), obtained by
T -blocking (3) of T -PC sequences ζ(j) and θ(j), respectively.

Formulas (19)–(22) may be applied for finding the spectral characteristic and the mean square error of the
optimal linear estimate of the functional Asζ⃗ only under the condition that the spectral density matrices f(λ) and
g(λ) are exactly known. If the density matrices are not known exactly while a set D = Df ×Dg of possible spectral
densities is given, the minimax (robust) approach to estimation of functionals from unknown values of stationary
sequences is reasonable. In this case we find the estimate which minimizes the mean square error for all spectral
densities from the given set simultaneously.

Definition 3
For a given class of pairs of spectral densities D = Df ×Dg the spectral density matrices f0(λ) ∈ Df , g0(λ) ∈ Dg

are called the least favorable in D for the optimal linear estimation of the functional Asζ⃗ if

∆(f0, g0) = ∆(⃗h(f0, g0); f0, g0) = max
(f,g)∈D

∆(⃗h(f, g); f, g).

Definition 4
For a given class of pairs of spectral densities D = Df ×Dg the spectral characteristic h⃗0(λ) of the optimal linear
estimate of the functional Asζ⃗ is called minimax (robust) if

h⃗0(λ) ∈ HD =
∩

(f,g)∈D

Ls−
2 (f + g),

min
h⃗∈HD

max
(f,g)∈D

∆(⃗h; f, g) = max
(f,g)∈D

∆(⃗h0; f, g).
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Taking into consideration these definitions and the obtained relations we can verify that the following lemmas
hold true.

Lemma 1
The spectral density matrices f0(λ) ∈ Df , g0(λ) ∈ Dg, that satisfy condition (4), are the least favorable in D for
the optimal linear estimation of Asζ⃗, if the Fourier coefficients of the matrix functions

(f0(λ) + g0(λ))−1, f0(λ)(f0(λ) + g0(λ))−1,

f0(λ)(f0(λ) + g0(λ))−1g0(λ)

define matrices Bζ
s
0,Dζ

s
0,Rζ

s
0, that determine a solution of the constrained optimization problem

max
(f,g)∈D

(⟨⃗aζs,R
ζ
s a⃗

ζ
s⟩+ ⟨(Bζ

s)
−1Dζ

s a⃗
ζ
s,D

ζ
s a⃗

ζ
s⟩) = ⟨⃗aζs,R

ζ
s
0a⃗ζs⟩+ ⟨(Bζ

s
0)−1Dζ

s
0a⃗ζs,D

ζ
s
0a⃗ζs⟩.

The minimax spectral characteristic h⃗0 = h⃗(f0, g0) is given by (8), if h⃗(f0, g0) ∈ HD.

Lemma 2
The spectral density matrix f0(λ) ∈ Df , that satisfies condition (12), is the least favorable in Df for the optimal
linear estimation of Asζ⃗ based on observations of the sequence ζ⃗(j) at points j ∈ Z \ S̃, if the Fourier coefficients
of the matrix function (f0(λ))−1 define the matrix Bζ

s
0, that determine a solution of the constrained optimization

problem
max
f∈Df

⟨(Bζ
s)

−1a⃗ζs, a⃗
ζ
s⟩ = ⟨(Bζ

s
0)−1a⃗ζs, a⃗

ζ
s⟩.

The minimax spectral characteristic h⃗0 = h⃗(f0) is given by (13), if h⃗(f0) ∈ HD.

The least favorable spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg and the minimax spectral characteristic h⃗0 =

h⃗(f0, g0) form a saddle point of the function ∆(⃗h; f, g) on the set HD ×D. The saddle point inequalities

∆(⃗h0; f, g) ≤ ∆(⃗h0; f0, g0) ≤ ∆(⃗h; f0, g0), ∀h⃗ ∈ HD, ∀f ∈ Df , ∀g ∈ Dg

hold when h⃗0 = h⃗(f0, g0), h⃗(f0, g0) ∈ HD and (f0, g0) is a solution of the constrained optimization problem

sup
(f,g)∈Df×Dg

∆
(
h⃗(f0, g0); f, g

)
= ∆

(
h⃗(f0, g0); f0, g0

)
. (23)

The linear functional ∆(⃗h(f0, g0); f, g) is calculated by the formula

∆(⃗h(f0, g0); f, g) =
1

2π

∫ π

−π

(
Ãs(e

iλ)g0(λ) + C̃0
s (e

iλ)
)⊤

(f0(λ) + g0(λ))−1f(λ)(f0(λ) + g0(λ))−1×

(
Ãs(eiλ)g0(λ) + C̃0

s (e
iλ)
)
dλ+

1

2π

∫ π

−π

(
Ãs(e

iλ)f0(λ)− C̃0
s (e

iλ)
)⊤

(f0(λ) + g0(λ))−1g(λ)×

(f0(λ) + g0(λ))−1
(
Ãs(eiλ)f0(λ)− C̃0

s (e
iλ)
)
dλ.

The constrained optimization problem (23) is equivalent to the unconstrained optimization problem [83]:

∆D(f, g) = −∆(⃗h(f0, g0); f, g) + δ((f, g) |Df ×Dg ) → inf, (24)

where δ((f, g)|Df ×Dg) is the indicator function of the set D = Df ×Dg. A solution of the problem (24) is
characterized by the condition 0 ∈ ∂∆D(f0, g0), where ∂∆D(f0, g0) is the subdifferential of the convex functional
∆D(f, g) at point (f0, g0) [85].

The form of the functional ∆(⃗h(f0, g0); f, g) admits finding the derivatives and differentials of the functional in
the space L1 × L1. Therefore the complexity of the optimization problem (24) is determined by the complexity of
calculating of subdifferentials of the indicator functions δ((f, g)|Df ×Dg) of the sets Df ×Dg [25].

Taking into consideration the introduced definitions and the derived relations we can verify that the following
lemma holds true.
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Lemma 3
Let (f0, g0) be a solution to the optimization problem (24). The spectral densities f0(λ), g0(λ) are the least
favorable in the class D = Df ×Dg and the spectral characteristic h⃗0 = h⃗(f0, g0) is the minimax of the optimal
linear estimate of the functional Asζ⃗ if h⃗(f0, g0) ∈ HD.

In the case of estimation of the functional based on observations without noise we have the following statement.

Lemma 4
Let f0(λ) satisfies the condition (12) and be a solution of the constrained optimization problem

∆(⃗h(f0); f) → sup, f(λ) ∈ Df , (25)

∆(⃗h(f0); f) =
1

2π

∫ π

−π

(
C̃0

s (e
iλ)
)⊤

(f0(λ))−1f(λ)(f0(λ))−1
(
C̃0

s (e
iλ)
)
dλ.

Then f0(λ) is the least favorable spectral density matrix for the optimal linear estimation of Asζ⃗ based on
observations of the sequence ζ⃗(j) at points j ∈ Z \ S̃. The minimax spectral characteristic h⃗0 = h⃗(f0) is given
by (13), if h⃗(f0) ∈ HD.

7. The least favorable spectral densities in D−
0

Let ζ(j), j ∈ Z be T -PC sequence and let ζ⃗(j) be T -variate stationary sequence, obtained by T -blocking (3) of
T -PC sequence ζ(j). Assume that the number of missed observations of the functional Asζ⃗ at each of the intervals
is a multiple of the period T

K1 = T ·KT
1 ,K2 = T ·KT

2 , . . . ,Ks−1 = T ·KT
s−1

and the number of observations at each of the intervals is a multiple of T

N1 = T ·NT
1 , N2 = T ·NT

2 , . . . , Ns = T ·NT
s ,

and coefficients a(j), j ∈ S are of the form (17).
Consider the problem of minimax estimation of the functional Asζ⃗ from observations of the sequence ζ⃗(j) at

points j ∈ Z \ S̃ without noise, under the condition that the spectral density matrix f(λ) of T -variate stationary
sequence ζ⃗(j) belongs to the set

D−
0 =

{
f(λ)| 1

2π

∫ π

−π

f−1(λ)dλ = P

}
,

where P = {pνµ}Tν,µ=1 is a given positive definite matrix and detP ̸= 0. With the help of Lemma 4 and the method
of Lagrange multipliers we can find that a solution f0(λ) of the constrained optimization problem (25) satisfy the
following relation: [

(f0(λ))−1
]⊤

C̃0
s (e

iλ) =
[
(f0(λ))−1

]⊤
α⃗, (26)

where α⃗ = (α1, . . . , αT )
⊤ is a vector of Lagrange multipliers,

C̃0
s (e

iλ) =

s−1∑
l=0

MT
l +NT

l+1−1∑
j̃=MT

l

c⃗0(j̃)eij̃λ,

c⃗ζs
0 =

(
(c⃗0(0))⊤, . . . , (c⃗0

(
NT

1 − 1
)
)⊤, . . . , (c⃗0(MT

s−1))
⊤, . . . , (c⃗0

(
MT

s−1 +NT
s − 1

)
)⊤
)⊤

,
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unknown coefficients c⃗0(j̃), j̃ ∈ S̃ are determined from relation c⃗ζs
0 = (B0

s)
−1a⃗ζs, the matrix B0

s is constructed from
the Fourier coefficients

B0
s (k, j) = R⊤(j − k) =

1

2π

∫ π

−π

[
(f0(λ))−1

]⊤
ei(j−k)λdλ, k, j ∈ S̃

of the matrix function
[
(f0(λ))−1

]⊤
.

The Fourier coefficients R(k) = R∗(−k), k ∈ S̃, found from the equation

B0
sα⃗s = a⃗ζs,

for α⃗s = (α⃗, 0⃗, . . . , 0⃗)⊤, satisfy relation (26) and B0
s c⃗

ζ
s
0 = a⃗s. From equations above we obtain that

R(k) =

{
P (⃗a(0))−1a⃗⊤(k), k ∈ S̃,

0, k ∈ {0, . . . ,MT
s−1 +NT

s − 1}\S̃,

where
[
(⃗a(0))−1

]⊤ · a⃗(0) = 1. The equality R(0) = P follows as a consequence of the restriction on the spectral
densities from the class D−

0 .
Let the vector-valued sequence a⃗(k), k ∈ S̃, be such that the matrix function

(f0(λ))−1 =

MT
s−1+NT

s −1∑
k=−(MT

s−1+NT
s −1)

R(k)eikλ

is positive definite and has nonzero determinant. Then (f0(λ))−1 can be represented in the form [23]

(f0(λ))−1 =

MT
s−1+NT

s −1∑
k=0

Q(k)e−ikλ

 ·

MT
s−1+NT

s −1∑
k=0

Q(k)e−ikλ

∗

,

where Q(k) = 0T×T , k ∈ {0, . . . ,MT
s−1 +NT

s − 1} \ S̃. Thus f0(λ) is the spectral density of the vector
autoregression stochastic sequence of order MT

s−1 +NT
s − 1 generated by the equation

MT
s−1+NT

s −1∑
k=0

Q(k)ζ⃗(n− k) = ε⃗(n), (27)

where ε⃗(n) is a vector ”white noise” sequence. The minimax spectral characteristic h⃗(f0) is given by

h⃗(f0) = −
MT

s−1+NT
s −1∑

k=1

R(k)(PT )−1a⃗(0)e−ikλ. (28)

Hence the following theorem holds true.

Theorem 4
Let the sequence a⃗(k) = (a1(k), a2(k), . . . , aT (k))

T , aν(k) = a(k)e2πiνk/T , ν = 1, . . . , T , which determine the
linear functional Asζ⃗ from observations of sequence ζ⃗(j) at points j ∈ Z \ S̃, be such that the matrix function

MT
s−1+NT

s −1∑
k=−(MT

s−1+NT
s −1)

R(k)eikλ,
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where

R(k) = R∗(−k) =

{
P (⃗a(0))−1a⃗⊤(k), k ∈ S̃,

0T×T , k ∈ {0, . . . ,MT
s−1 +NT

s − 1}\S̃,

is positive definite and has nonzero determinant. Then the least favorable in the class D−
0 spectral density for the

optimal linear estimate of Asζ⃗ is given by the formula

f0(λ) =

 MT
s−1+NT

s −1∑
k=−(MT

s−1+NT
s −1)

R(k)eikλ


−1

. (29)

The minimax spectral characteristic h⃗(f0) is given by (28).The greatest value of the mean square error of Âsζ⃗ is
calculated by the formula

∆(f0) =< c⃗ζs
0, a⃗ζs > . (30)

Example 3
Let ζ(n) be a 2-PC stochastic sequence. Consider the problem of minimax estimation of the functional

A2ζ = 5ζ(1) + 5ζ(2) + 2ζ(5) + 2ζ(6)

from observation of the sequence ζ(j) at points j ∈ Z \ {1, 2, 5, 6} on the set D−
0 with P =

(
23 22
22 23

)
.

Rewrite A2ζ in the form (18)

A2ζ = 5ζ(1) + 5ζ(2) + 2ζ(5) + 2ζ(6) =

= a⃗⊤(0)ζ⃗(0) + a⃗⊤(2)ζ⃗(2) = A2ζ⃗,

where a⃗(0) = (5, 5)⊤, a⃗(2) = (2, 2)⊤. The matrix function∑
k=−2,0,2

R(k)eikλ

and the representation ∑
k=0,2

Q(k)e−ikλ

 ·

∑
k=0,2

Q(k)e−ikλ

∗

are of the form (
9e−2iλ + 23 + 9e2iλ 9e−2iλ + 22 + 9e2iλ

9e−2iλ + 22 + 9e2iλ 9e−2iλ + 23 + 9e2iλ

)
=

=

(
2 + 3e−2iλ 1 + 3e−2iλ

1 + 3e−2iλ 2 + 3e−2iλ

)
·
(
2 + 3e2iλ 1 + 3e2iλ

1 + 3e2iλ 2 + 3e2iλ

)
.

The least favorable spectral density in the class D−
0 for the optimal linear estimate of A2ζ⃗ by (29) is of the form

f0(λ) =
1

45− 18e−2iλ − 18e2iλ

(
9e−2iλ + 23 + 9e2iλ −9e−2iλ − 22− 9e2iλ

−9e−2iλ − 22− 9e2iλ 9e−2iλ + 23 + 9e2iλ

)
.

The minimax spectral characteristic, calculated by (28), is given by the formula

h⃗(f0) = −
(
2
2

)
e−2iλ.

The greatest value of the mean square error of Â2ζ⃗ takes value

∆(f0) =
10

9
.
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8. The least favorable spectral densities in D−
G

Let ζ(j), j ∈ Z be T -PC sequence and ζ⃗(j) be T -variate stationary sequence, obtained by T -blocking (3) of T -PC
sequence ζ(j). Assume that the number of missed observations of the functional Asζ⃗ at each of the intervals is a
multiple of the period T

K1 = T ·KT
1 ,K2 = T ·KT

2 , . . . ,Ks−1 = T ·KT
s−1

and the number of observations at each of the intervals is a multiple of T

N1 = T ·NT
1 , N2 = T ·NT

2 , . . . , Ns = T ·NT
s ,

and coefficients a(j), j ∈ S are of the form (17).
Consider the problem of minimax estimation of the functional Asζ⃗ from observations ζ⃗(j) at points j ∈ Z \ S̃

without noise, under the condition that the spectral density matrix f(λ) of the vector stationary sequence ζ⃗(j)
belongs to the set

D−
G =

{
f(λ)| 1

2π

∫ π

−π

f−1(λ) cos(gλ)dλ = P (g), g = 0, 1, . . . , G

}
,

where the sequence of matrices P (g) = {pνµ(g)}Tν,µ=1 , P (g) = P ∗(g), g = 0, 1, . . . , G, is such that the matrix

function
∑G

g=−G P (g)eigλ is positive definite and has the determinant that does not equal zero. With the help of
Lemma 4 and the method of Lagrange multipliers we can find that solution f0(λ) of the constrained optimization
problem (25) satisfy the following relation:

[(
f0(λ)

)−1
]⊤

C̃0
s (e

iλ) =
[(
f0(λ)

)−1
]⊤( G∑

g=0

α⃗ge
igλ

)
, (31)

where α⃗g, g = 0, 1, . . . , G are Lagrange multipliers. Relation (31) holds true if

∑
j̃∈S̃

c⃗0(j̃)eij̃λ =

G∑
g=0

α⃗ge
igλ.

Consider two cases: G ≥ MT
s−1 +NT

s − 1 and G < MT
s−1 +NT

s − 1.
Let G ≥ MT

s−1 +NT
s − 1. Then the Fourier coefficients of the function

(
f0(λ)−1

)⊤ determine the matrix B0
s

and extremum problem (25) is degenerate. Let

α⃗MT
s−1+NT

s
= · · · = α⃗G = 0⃗ and α⃗g = 0, g /∈ S̃,

and α⃗0, . . . , α⃗MT
s−1+NT

s −1 find from the equation

B0
sα⃗

0
s = a⃗ζ⃗s,

where α⃗0
s =

(
α⃗0, . . . , α⃗MT

s−1+NT
s −1

)⊤
. Then the least favorable is every density f(λ) ∈ D−

G and the density

f0(λ) =

(
G∑

g=−G

P (g)eigλ

)−1

= (32)

=

((
G∑

g=0

Q(g)e−igλ

)(
G∑

g=0

Q(g)e−igλ

)∗)−1
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of the vector stochastic autoregression sequence of the order G

G∑
g=0

Q(g)ζ⃗(l − g) = ε⃗l. (33)

Let G < MT
s−1 +NT

s − 1. Then the matrix Bs is defined by the Fourier coefficients of the function
(
f(λ)−1

)⊤
.

Among them P (g), g ∈ {0, . . . , G} ∩ S̃, are known and P (g), g ∈ S̃ \ {0, . . . , G}, are unknown. The unknown
α⃗g, g ∈ {0, . . . , G} ∩ S and P (g), g ∈ S̃ \ {0, . . . , G} we find from the equation

Bsα⃗
0
G = a⃗ζ⃗s, (34)

where α̃0
G = (α⃗0, . . . , α⃗G′ , 0⃗, . . . , 0⃗)⊤, G′ is defined from the relation {0, . . . , G} ∩ S̃ = {0, . . . , G′}. The equation

(34) can be represented as a system of the following equations∑
g∈{0,...,G}∩S̃

Bs(0, g)α⃗(g) = a⃗(0),

...∑
g∈{0,...,G}∩S̃

Bs(G
′, g)α⃗(g) = a⃗(G′),

...∑
g∈{0,...,G}∩S̃

Bs

(
MT

s−1 +NT
s − 1, g

)
α⃗(g) = a⃗

(
MT

s−1 +NT
s − 1

)
.

From the first G′ equations we can find coefficients α⃗0, . . . , α⃗G′ and from the next equations we can find matrices
P (g), g ∈ S̃ \ {0, . . . , G}.

If the sequence of matrices P (g), g ∈ S̃, is such that P (g) = P ∗(g), g ∈ S̃, the matrix function

MT
s−1+NT

s −1∑
g=−(MT

s−1+NT
s −1)

P (g)eigλ

is positive-definite and has the determinant which does not equal zero identically, then the least favorable spectral
density f0(λ) is defined by the formula

f0(λ) =

 MT
s−1+NT

s −1∑
g=−(MT

s−1+NT
s −1)

P (g)eigλ


−1

= (35)

=

MT
s−1+NT

s −1∑
g=0

Q(g)e−igλ

MT
s−1+NT

s −1∑
g=0

Q(g)e−igλ

∗−1

and is the density of the vector stochastic autoregression sequence of order MT
s−1 +NT

s − 1

MT
s−1+NT

s −1∑
g=0

Q(g)ζ⃗(l − g) = ε⃗l. (36)

Thus, the following theorem holds true.
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Theorem 5
The spectral density (32) of the vector stochastic autoregression sequence (33) of order G, that is determined by
matrices P (g), g ∈ {0, 1, . . . , G}, is the least favorable in the class D−

G for the optimal estimation of the functional
Asζ⃗ in the case where G ≥ MT

s−1 +NT
s − 1. If G < MT

s−1 +NT
s − 1 and solutions P (g), g ∈ S̃ ∩ {0, 1, . . . , G},

of the equation Bsα⃗
0
G = a⃗ζ⃗s with coefficients P (g), g ∈ S̃\{0, 1, . . . , G}, form a positive-definite matrix function∑MT

s−1+NT
s −1

g=−(MT
s−1+NT

s −1)
P (g)eigλ, with the determinant which does not equal zero identically, then the spectral density

(35) of the vector stochastic autoregression sequence (36) of order MT
s−1 +NT

s − 1 is the least favorable in the class
D−

G . The minimax spectral characteristic h(f0) is calculated by the formula (13).

9. Conclusion

We propose formulas for calculating the mean square error and the spectral characteristic of the optimal linear
estimate of the functional

Asζ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml+1

a(j)ζ(j), Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

which depends on the unobserved values of a periodically correlated stochastic sequence ζ(j). Estimates are based
on observations of the sequence ζ(j) + θ(j) at points j ∈ Z \ S, where S =

∪s−1
l=0 {Ml + 1, . . . ,Ml +Nl+1}. The

sequence θ(j) is an uncorrelated with ζ(j) periodically correlated stochastic sequence. This problem is investigated
in two cases. In the first case the spectral density matrices f(λ) and g(λ) of the T -variate stationary sequences
ζ⃗(n) and θ⃗(n), obtained by T -blocking of T -PC sequences ζ(j) and θ(j), respectively, are suppose to be known
exactly. In this case we derived formulas for calculating the spectral characteristic and the mean-square error of
the optimal estimate of the functional. In the second case where the spectral density matrices are not exactly
known while a class D = Df ×Dg of admissible spectral densities is given. Formulas that determine the least
favorable spectral densities and the minimax spectral characteristic of the optimal estimate of the functional Asζ
are proposed. The problem is investigated in details for two special classes of admissible spectral densities. Some
examples of application of the obtained results for finding optimal estimates of linear functionals and determining
the least favorable spectral densities of the optimal estimates are presented.
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