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Abstract The problem of the mean-square optimal estimation of the linear functional Asξ =
s−1∑
l=0

Ml+Nl+1∑
j=Ml

a(j)ξ(j),

Ml =
l∑

k=0

(Nk +Kk), N0 = K0 = 0, which depends on the unknown values of a stochastic stationary sequence ξ(j),

j ∈ Z from observations of the sequence at points of time j ∈ Z\S, S =
s−1∪
l=0

{Ml,Ml + 1, . . . ,Ml +Nl+1} is considered.

Formulas for calculating the mean-square error and the spectral characteristic of the optimal linear estimate of the functional
are derived under the condition of spectral certainty, where the spectral density of the sequence ξ(j) is exactly known. The
minimax (robust) method of estimation is applied in the case where the spectral density is not known exactly, but sets of
admissible spectral densities are given. Formulas that determine the least favourable spectral densities and the minimax
spectral characteristics are derived for some special sets of admissible densities.
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spectral density, minimax spectral characteristic
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1. Introduction

The problem of estimation of the unknown values of stochastic processes is of constant interest in the theory
of stochastic processes. The formulation of the interpolation, extrapolation and filtering problems for stationary
stochastic sequences with known spectral densities and reducing them to the corresponding problems of the theory
of functions belongs to A. N. Kolmogorov [18]. Effective methods of solution of the estimation problems for
stationary stochastic sequences and processes were developed by N. Wiener [37] and A. M. Yaglom [38, 39].
Further results are presented in the books by Yu. A. Rozanov [34] and E. J. Hannan [13]. The crucial assumption
of most of the methods developed for estimating the unobserved values of stochastic processes is that the spectral
densities of the involved stochastic processes are exactly known. However, in practice complete information on the
spectral densities is impossible in most cases. In this situation one finds parametric or nonparametric estimate of
the unknown spectral density and then apply one of the traditional estimation methods provided that the selected
density is the true one. This procedure can result in significant increasing of the value of error as K. S. Vastola and
H. V. Poor [36] have demonstrated with the help of some examples. To avoid this effect one can search the estimates
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260 INTERPOLATION PROBLEM WITH MISSING OBSERVATIONS

which are optimal for all densities from a certain class of admissible spectral densities. These estimates are called
minimax since they minimize the maximum value of the error. The paper by Ulf Grenander [12] was the first one
where this approach to extrapolation problem for stationary processes was proposed. Several models of spectral
uncertainty and minimax-robust methods of data processing can be found in the survey paper by S. A. Kassam and
H. V. Poor [17]. J. Franke [8], J. Franke and H. V. Poor [9] investigated the minimax extrapolation and filtering
problems for stationary sequences with the help of convex optimization methods. This approach makes it possible
to find equations that determine the least favorable spectral densities for different classes of densities. In the papers
by M. P. Moklyachuk [26] - [29] the problems of extrapolation, interpolation and filtering for functionals which
depend on the unknown values of stationary processes and sequences are investigated. The estimation problems
for functionals which depend on the unknown values of multivariate stationary stochastic processes is the aim of
the book by M. Moklyachuk and O. Masytka [30]. I. I. Dubovets’ka, O.Yu. Masyutka and M.P. Moklyachuk[3],
I. I. Dubovets’ka and M. P. Moklyachuk [4] - [7], I. I. Golichenko and M. P. Moklyachuk [11] investigate the
interpolation, extrapolation and filtering problems for periodically correlated stochastic sequences. The paper by
M. M. Luz and M. P. Moklyachuk [20] - [24] deals with the estimation problems for functionals which depend
on the unknown values of stochastic sequences with stationary increments. Prediction of stationary processes with
missing observations is investigated in papers by P. Bondon [1, 2], Y. Kasahara, M. Pourahmadi and A. Inoue
[16, 31].

In this article we consider the problem of the mean-square optimal estimation of the linear functional

Asξ =
s−1∑
l=0

Ml+Nl+1∑
j=Ml

a(j)ξ(j), Ml =
l∑

k=0

(Nk +Kk), N0 = K0 = 0, which depends on the unknown values of a

stochastic stationary sequence ξ(j), j ∈ Z, from observations of the sequence at points of time j ∈ Z\S, where

S =
s−1∪
l=0

{Ml,Ml + 1, . . . ,Ml +Nl+1}. The problem is investigated in the case of spectral certainty, where the

spectral density is exactly known, and in the case of spectral uncertainty, where the spectral density is unknown,
but a class of admissible spectral densities is given.

2. The classical Hilbert space projection method of linear interpolation

Let ξ(j), j ∈ Z, be a (wide sense) stationary stochastic sequence. We will consider ξ(j) as elements of the
Hilbert space H = L2(Ω,F , P ) of complex valued random variables with zero first moment, Eξ = 0, finite second
moment, E|ξ|2 <∞, and the inner product (ξ, η) = Eξη. The correlation function R(k) = (ξ(j + k), ξ(j)) =
Eξ(j + k)ξ(j) of the stationary stochastic sequence ξ(j), j ∈ Z, admits the spectral decomposition [10]

R(k) =

π∫
−π

eikλF (dλ),

where F (dλ) is the spectral measure of the sequence. We will consider stationary stochastic sequences with
absolutely continuous spectral measures and the correlation functions of the form

R(k) =
1

2π

π∫
−π

eikλf(λ)dλ,

where f(λ) is the spectral density function of the sequence ξ(j) that satisfies the minimality condition
π∫

−π

f−1(λ)dλ <∞. (1)

This condition is necessary and sufficient in order that the error-free interpolation of unknown values of the
sequence is impossible [34].
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The stationary stochastic sequence ξ(j), j ∈ Z, admits the spectral decomposition [10, 15]

ξ(j) =

π∫
−π

eijλZ(dλ), (2)

where Z(∆) is the orthogonal stochastic measure of the sequence such that

EZ(∆1)Z(∆2) = F (∆1 ∩∆2) =
1

2π

∫
∆1∩∆2

f(λ)dλ.

Consider the problem of the mean-square optimal estimation of the linear functional

Asξ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

a(j)ξ(j), Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

which depends on the unknown values of a stochastic stationary sequence ξ(j), j ∈ Z, from observations of the

sequence at points of time j ∈ Z\S, where S =
s−1∪
l=0

{Ml,Ml + 1, . . . ,Ml +Nl+1}.

It follows from the spectral decomposition (2) of the sequence ξ(j) that we can represent the functional Asξ in
the following form

Asξ =

π∫
−π

As(e
iλ)Z(dλ), (3)

where

As(e
iλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

a(j)eijλ.

Denote by Hs(ξ) the subspace of the Hilbert space H = L2(Ω,F , P ) generated by elements {ξ(j) : j ∈ Z\S}.
Let L2(f) be the Hilbert space of complex-valued functions that are square-integrable with respect to the measure
whose density is f(λ). Denote by Ls

2(f) the subspace of L2(f) generated by functions {eijλ, j ∈ Z\S}. The mean
square optimal linear estimate Âsξ of the functional Asξ from observations of the sequence ξ(j) at points of time
j ∈ Z\S is an element of the Hs(ξ). It can be represented in the form

Âsξ =

π∫
−π

h(eiλ)Z(dλ), (4)

where h(eiλ) ∈ Ls
2(f) is the spectral characteristic of the estimate Âsξ.

The mean square error ∆(h; f) of the estimate Âsξ is given by the formula

∆(h; f) = E
∣∣∣Asξ − Âsξ

∣∣∣2 =
1

2π

π∫
−π

∣∣As(e
iλ)− h(eiλ)

∣∣2 f(λ)dλ.
The Hilbert space projection method proposed by A. N. Kolmogorov [18] makes it possible to find the spectral

characteristic h(eiλ) and the mean square error ∆(h; f) of the optimal linear estimate of the functional Asξ in the
case where the spectral density f(λ) of the sequence is exactly known and the minimality condition (1) is satisfied.
The spectral characteristic can be found from the following conditions:

1)h(eiλ) ∈ Ls
2(f),

2)As(e
iλ)− h(eiλ)⊥Ls

2(f).
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262 INTERPOLATION PROBLEM WITH MISSING OBSERVATIONS

It follows from the second condition that for any η ∈ Hs(ξ) the following equations should be satisfied(
Asξ − Âsξ, η

)
= E(Asξ − Âsξ)η = 0

The last relation is equivalent to equations

E(Asξ − Âsξ)ξk = 0, k ∈ Z\S.

By using representations (3), (4) and definition of the inner product in H we get

E

 π∫
−π

(
As(e

iλ)− h(eiλ)
)
Z(dλ) ·

π∫
−π

e−ikλZ(dλ)

 =

=

π∫
−π

(
As(e

iλ)− h(eiλ)
)
f(λ)e−ikλdλ = 0, k ∈ Z\S.

It follows from this condition that the function (As(e
iλ)− h(eiλ))f(λ) is of the form

(As(e
iλ)− h(eiλ))f(λ) = Cs(e

iλ),

Cs(e
iλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

c(j)eijλ,

where c(j), j ∈ S are unknown coefficients that we have to find.
From the last relation we deduce that the spectral characteristic h(eiλ) of the optimal linear estimate of the

functional Asξ is of the form

h(eiλ) = As(e
iλ)− Cs(e

iλ)f−1(λ). (5)

To find equations for determination the unknown coefficients c(j), j ∈ S, we use the decomposition of the
function f−1(λ) into the Fourier series

f−1(λ) =

∞∑
m=−∞

rme
imλ, (6)

where rm are the Fourier coefficients of the function f−1(λ).
Inserting (6) into (5) we obtain the following representation of the spectral characteristic

h(eiλ) =

(
s−1∑
l=0

Ml+Nl+1∑
j=Ml

a(j)eijλ

)
−

(
s−1∑
l=0

Ml+Nl+1∑
j=Ml

c(j)eijλ

)( ∞∑
m=−∞

rme
imλ

)
. (7)

It follows from the first condition, h(eiλ) ∈ Ls
2(f), that the Fourier coefficients of the function h(eiλ) are equal

to zero for j ∈ S, namely
π∫

−π

h(eiλ)e−ijλdλ = 0, j ∈ S.
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Using the last relations and (7) we get the following system of equations that determine the unknown coefficients
c(j), j ∈ S,

a(Mk−1)−
s−1∑
l=0

Ml+Nl+1∑
j=Ml

c(j)rMk−1−j = 0;

a(Mk−1 + 1)−
s−1∑
l=0

Ml+Nl+1∑
j=Ml

c(j)rMk−1+1−j = 0;

. . .

a(Mk−1 +Nk)−
s−1∑
l=0

Ml+Nl+1∑
j=Ml

c(j)rMk−1+Nk−j = 0,

(8)

where k = 1, . . . , s.
Denote by a⃗s = (⃗a1, a⃗2, . . . , a⃗s), a⃗k = (a(Mk−1), . . . , a(Mk−1 +Nk)), k = 1, . . . , s, q = N1 +N2 + . . .+

Ns + s. Let Bs be a q × q matrix

Bs =


B11 B12 . . . B1s

B21 B22 . . . B2s

...
...

. . .
...

Bs1 Bs2 . . . Bss

 ,

where Bmn are (Nm + 1)× (Nn + 1) matrices with elements that are Fourier coefficients of the function f−1(λ) :

Bmn(k, j) =
1

2π

π∫
−π

f−1(λ)e−i(k−j)λdλ = rk−j ,

k =Mm−1, . . . , Mm−1 +Nm,

j =Mn−1, . . . , Mn−1 +Nn,

m, n = 1, . . . , s.

Making use the introduced notations we can write formulas (8) in the form of equation

a⃗s = Bsc⃗s, (9)

where c⃗s = (c⃗1, c⃗2, . . . , c⃗s), c⃗k = (c(Mk−1), . . . , c(Mk−1 +Nk)), k = 1, . . . , s, is a vector constructed from the
unknown coefficients c(j), j ∈ S. Since the matrix Bs is reversible [31], we get the formula

c⃗s = B−1
s a⃗s. (10)

Hence, the unknown coefficients c(j), j ∈ S, are calculated by the formula

c(j) =
(
B−1

s a⃗s
)
j
,

where
(
B−1

s a⃗s
)
j

is the j component of the vectorB−1
s a⃗s, and the formula for calculating the spectral characteristic

of the estimate Âsξ is of the form

h(eiλ) =

(
s−1∑
l=0

Ml+Nl+1∑
j=Ml

a(j)eijλ

)
−

(
s−1∑
l=0

Ml+Nl+1∑
j=Ml

(
B−1

s a⃗s
)
j
eijλ

)( ∞∑
m=−∞

rme
imλ

)
. (11)
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The mean square error of the estimate of the function can be calculated by the formula

∆(h; f) =
1

2π

π∫
−π

∣∣Cs(e
iλ)
∣∣2 f−1(λ)dλ =

=

π∫
−π

(
s−1∑
l=0

Ml+Nl+1∑
k=Ml

c(k)eikλ

)(
s−1∑
l=0

Ml+Nl+1∑
j=Ml

c(j)e−ijλ

)( ∞∑
m=−∞

rme
imλ

)
dλ =

= ⟨⃗cs, c⃗sBs⟩ =
⟨
B−1

s a⃗s, a⃗s
⟩
,

(12)

where ⟨·, ·⟩ is the inner product in Cq.
Let us summarize our results and present them in the form of a theorem.

Theorem 2.1
Let ξ(j) be a stationary stochastic sequence with the spectral density f(λ) that satisfies the minimality condition
(1). The mean square error ∆(h, f) and the spectral characteristic h(eiλ) of the optimal linear estimate Âsξ of the

functional Asξ from observations of the sequence ξ(j) at points of time j ∈ Z\S, where S =
s−1∪
l=0

{Ml, . . . ,Ml +

Nl+1}, can be calculated by formulas (12), (11).

Example 1. Consider the problem of linear interpolation of the functional A2ξ = a(0)ξ(0) + a(1)ξ(1) + a(5)ξ(5)
which depends on the unknown values ξ(0), ξ(1), ξ(5) of the stochastic sequence ξ(j) from observations at points
j ∈ Z\S, where S = {0, 1} ∪ {5}. In this case the spectral characteristic (7) of the estimate Â2ξ can be calculated
by the formula

h(eiλ) = (a(0) + a(1)eiλ + a(5)e5iλ)− (c(0) + c(1)eiλ + c(5)e5iλ) · f−1(λ), (13)

where f(λ) is a known spectral density, the function f−1(λ) admits the decomposition f−1(λ) =
∞∑

m=−∞
rme

iλm,

and coefficients c(0), c(1), c(5) are determined by the system of equations

a(0) = c(0)r0 + c(1)r−1 + c(5)r−5,

a(1) = c(0)r1 + c(1)r0 + c(5)r−4,

a(5) = c(0)r5 + c(1)r4 + c(5)r0.

The matrix B2 is of the form

B2 =

(
B11 B12

B21 B22

)
,

B11 =

(
r0 r−1

r1 r0

)
, B12 =

(
r−5

r−4

)
, B21 =

(
r5 r4

)
, B22 =

(
r0
)
.

Let a⃗2 = (⃗a1, a⃗2), where a⃗1 = (a(0), a(1)), a⃗2 = (a(5)), and let c⃗2 = (c⃗1, c⃗2), where c⃗1 = (c(0), c(1)), c⃗2 =
(c(5)). In this case equations (9) and (10) can be rewritten as

a⃗2 = B2c⃗2,

c⃗2 = B−1
2 a⃗2.

Denote by
D = det(B2) = r30 − r0r−4r4 − r1r−1r0 + r1r−5r4 + r5r−1r−4 − r5r−5r0.

We get the following formulas for calculating the coefficients c(0), c(1), c(5)

c(0) =
[
(r20 − r−4r4)a(0)− (r−1r0 − r−5r4)a(1) + (r−1r4 − r−5r0)a(5)

]
·D−1,
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c(1) =
[
(−r1r0 + r−4r5)a(0) + (r20 − r5r−5)a(1)− (r0r−4 − r−5r1)a(5)

]
·D−1,

c(5) =
[
(r1r4 − r0r5)a(0)− (r0r4 − r5r−1)a(1) + (r20 − r−1r1)a(5)

]
·D−1.

Thus, the unknown coefficients c(0), c(1), c(5) in (13) are determined.
The mean square error of the estimate is calculated by the formula

∆(f) =< B−1
2 a⃗2, a⃗2 >= D−1

[
(a(0))2r20 − (a(0))2r−4r4 − a(0)a(1)r−1r0 + a(0)a(1)r−5r4

+a(0)a(5)r−1r−4 − a(0)a(5)r−5r0 − a(0)a(1)r0r1 + a(0)a(1)r−4r5 + (a(1))2r20

−(a(1))2r5r−5 − a(1)a(5)r0r−4 + a(1)a(5)r−5r1 + a(0)a(5)r1r4 − a(0)a(5)r0r5

−a(1)a(5)r0r4 + a(1)a(5)r−1r5 + (a(5))2r20 − (a(5))2r1r−1

]
.

Consider this problem for the spectral density

f(λ) =
1

|1− αe−iλ|2
, |α| < 1.

In this case we have
f−1(λ) =

∣∣1− αe−iλ
∣∣2 =

(
1 + |α|2 − ᾱeiλ − αe−iλ

)
and the Fourier coefficients of the function f−1(λ) are as follows

r0 =
(
1 + |α|2

)
, r1 = −ᾱ, r−1 = −α.

The spectral characteristic is calculated by the formula

h(eiλ) =
(
a(0) + a(1)eiλ + a(5)e5iλ

)
−
(
c(0) + c(1)eiλ + c(5)e5iλ

)
×(

1 + |α|2 − ᾱeiλ − αe−iλ
)
,

where the coefficients c(0), c(1), c(5) are calculated by the formulas

c(0) =
[
(1 + |α|2)2a(0) + (α(1 + |α|2))a(1)

]
·D−1,

c(1) =
[
(ᾱ(1 + |α|2))a(0) + (1 + |α|2)2a(1)

]
·D−1,

c(5) =
[
((1 + |α|2)2 − |α|2)a(5)

]
·D−1,

with D =
(
1 + |α|2

)(
1 + |α|2 + |α|4

)
.

Inserting values of c(0), c(1), c(5) into the formula for calculating the spectral characteristic we obtain that

h(eiλ) =

[(
a(0)α

(
1 + |α|2

)2
+ a(1)α2

(
1 + |α|2

))
e−iλ+

+

(
a(0) (ᾱ)

2
(
1 + |α|2

)
+ a(1)ᾱ

(
1 + |α|2

)2)
e2iλ+

+a(5)α
(
1 + |α|2 + |α|4

)
e4iλ + a(5)ᾱ

(
1 + |α|2 + |α|4

)
e6iλ

]
×((

1 + |α|2
)(

1 + |α|2 + |α|4
))−1

.
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266 INTERPOLATION PROBLEM WITH MISSING OBSERVATIONS

The mean square error is of the form

∆(f) = D−1
[
(a(0))2(1 + |α|2)2 + a(0)a(1)α(1 + |α|2) + a(0)a(1)(1 + |α|2)ᾱ

+(a(1))2(1 + |α|2)2 + (a(5))2(1 + |α|2)2 − (a(5))2 |α|2
]
.

a) Let a(0) = 1, a(1) = 0, a(5) = 1. We get the following formula for calculating the spectral characteristic

h(eiλ) = (1 + e5iλ)− (c(0) + c(1)eiλ + c(5)e5iλ)
(
1 + |α|2 − ᾱeiλ − αe−iλ

)
,

and formulas for calculating coefficients c(0), c(1), c(5)

c(0) =
(
1 + |α|2

)
/
(
1 + |α|2 + |α|4

)
,

c(1) = ᾱ/
(
1 + |α|2 + |α|4

)
,

c(5) = 1/
(
1 + |α|2

)
.

Thus, the spectral characteristic of the estimate Â2 is of the form

h(eiλ) =

[
α
(
1 + |α|2

)2
e−iλ + (ᾱ)

2
(
1 + |α|2

)
e2iλ+

+α
(
1 + |α|2 + |α|4

)
e4iλ + ᾱ

(
1 + |α|2 + |α|4

)
e6iλ

]
×((

1 + |α|2
)(

1 + |α|2 + |α|4
))−1

.

The mean square error of the estimate Â2 is calculated by the formula

∆1 = ∆(f) =
(
2(1 + |α|2)2 − |α|2

)
/
(
1 + |α|2

)(
1 + |α|2 + |α|4

)
.

b) Let a(0) = 1, a(1) = 0, a(5) = 0. We get that

h(eiλ) = 1 + (c(0) + c(1)eiλ)
(
1 + |α|2 − ᾱeiλ − αe−iλ

)
,

where coefficients c(0), c(1) are calculated by the formulas

c(0) =
(
1 + |α|2

)
/
(
1 + |α|2 + |α|4

)
,

c(1) = ᾱ/
(
1 + |α|2 + |α|4

)
,

and c(5) = 0.
The spectral characteristic of the estimate Â2ξ is of the form

h(eiλ) =

(
α
(
1 + |α|2

)2
e−iλ + (ᾱ)

2
(
1 + |α|2

)
e2iλ

)(
1 + |α|2 + |α|4

)−1

.

The mean square error is calculated by the formula

∆2 = ∆(f) =
(
1 + |α|2

)
/
(
1 + |α|2 + |α|4

)
.

It is obvious that ∆1 > ∆2.
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Example 2. Consider the problem of linear interpolation of the functional A3ξ = a(−n)ξ(−n) + a(0)ξ(0) +
a(m)ξ(m) which depends on the unknown values ξ(−n), ξ(0), ξ(m) of the stochastic sequence ξ(j) from
observations of the sequence at points j ∈ Z\S, where S = {−n} ∪ {0} ∪ {m} .

The spectral characteristic of the estimate Â3ξ is of the form

h(eiλ) = (a(−n)e−niλ + a(0) + a(m)emiλ)− (c(−n)e−niλ + c(0) + c(m)emiλ) · f−1(λ),

where f−1(λ) =
∞∑

m=−∞
rme

iλm, and coefficients c(−n), c(0), c(m) are calculated by the formulas

a(−n) = c(−n)r0 + c(0)r−n + c(m)r−n−m,

a(0) = c(−n)rn + c(0)r0 + c(m)r−m,

a(m) = c(−n)rn+m + c(0)rm + c(m)r0.

The matrix B3 is of the form

B3 =

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 ,

B11 =
(
r0
)
, B12 =

(
r−n

)
, B13 =

(
r−n−m

)
,

B21 =
(
rn
)
, B22 =

(
r0
)
, B23 =

(
r−m

)
,

B31 =
(
rn+m

)
, B32 =

(
rm

)
, B33 =

(
r0
)
.

Let a⃗3 = (⃗a1, a⃗2, a⃗3), where a⃗1 = (a(−n)), a⃗2 = (a(0)), a⃗3 = (a(m)), and let c⃗3 = (c⃗1, c⃗2, c⃗3), wherec⃗1 =
(c(−n)), c⃗2 = (c(0)), c⃗3 = (c(m)).

In this case equations (9) and (10) can be written as

a⃗3 = B3c⃗3,

c⃗3 = B−1
3 a⃗3.

Denote by

D = det(B3) = r30 − r0r−mrm − rnr−nr0 + rnr−n−mrm + rn+mr−nr−m − rn+mr−n−mr0.

Then

c(−n) =
[
(r20 − r−mrm)a(−n)− (r−nr0 − r−n−mrm)a(0) + (r−nrm − r−n−mr0)a(m)

]
/D,

c(0) =
[
(−rnr0 + r−mrn+m)a(−n) + (r20 − rn+mr−n−m)a(0)− (r0r−m − r−n−mrn)a(m)

]
/D,

c(m) =
[
(rnrm − r0rn+m)a(−n)− (r0rm − rn+mr−n)a(0) + (r20 − r−nrn)a(m)

]
/D.

The mean square error is calculated by the formula

∆(f) =< B−1
3 a⃗3, a⃗3 >= D−1

[
(a(−n))2r20 − (a(−n))2r−mrm − a(−n)a(0)r−nr0

+a(−n)a(0)r−n−mrm + a(−n)a(m)r−nr−m − a(−n)a(m)r−n−mr0 − a(−n)a(0)r0rn
+a(−n)a(0)r−mrn+m + (a(0))2r20 − (a(0))2rn+mr−n−m − a(0)a(m)r0r−m

+a(0)a(m)r−n−mrn + a(−n)a(m)rnrm − a(−n)a(m)r0rn+m − a(0)a(m)r0rm

+a(0)a(m)r−nrn+m + (a(m))2r20 − (a(m))2rnr−n

]
.
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Consider the problem of estimation of the functional A3(ξ) = ξ(−n) + ξ(0) + ξ(m) in the case where the
spectral density of the stochastic sequence is of the form

f(λ) =
1

|1− αe−iλ|2
, |α| < 1.

In this case f−1(λ) =
(
1 + |α|2 − ᾱeiλ − αe−iλ

)
and all Fourier coefficients of the function f−1(λ), except

r0, r1, r−1, are equal to zero 0.
Consider the following four cases: 1)n ̸= 1, m ̸= 1; 2)n ̸= 1, m = 1; 3)n = 1, m ̸= 1; 4)n = 1, m = 1.
The spectral characteristic and the mean square error of the estimate Â3ξ of the functional A3(ξ) are calculated

by the following formulas.
In the first case

h(eiλ) =
(
αe(−n−1)iλ + ᾱe(−n+1)iλ + αe−iλ + ᾱeiλ + αe(m−1)iλ+

ᾱe(m+1)iλ
)
(1 + |α|2)−2,

∆(f) =3/(1 + |α|2);

In the second case

h(eiλ) =
[(
α
(
1 + |α|2

)
+ α2

)(
1 + |α|2

)
e−iλ+(

(ᾱ)
2
+ ᾱ

(
1 + |α|2

))(
1 + |α|2

)
e2iλ+

ᾱ
(
1 + |α|2 + |α|4

)
e(−n+1)iλ + α

(
1 + |α|2 + |α|4

)
e(−n−1)iλ

]
×((

1 + |α|2
)(

1 + |α|2 + |α|4
))−1

,

∆(f) =
(
3(1 + |α|2)− |α|2 + (1 + |α|2)(α+ ᾱ)

)
·((

1 + |α|2
)(

1 + |α|2 + |α|4
))−1

;

In the third case

h(eiλ) =
[(

(ᾱ)2 + ᾱ
(
1 + |α|2

))(
1 + |α|2

)
eiλ+(

α2 + α
(
1 + |α|2

))(
1 + |α|2

)
e−2iλ+

ᾱ
(
1 + |α|2 + |α|4

)
e(m+1)iλ + α

(
1 + |α|2 + |α|4

)
e(m−1)iλ

]
×((

1 + |α|2
)(

1 + |α|2 + |α|4
))−1

,

∆(f) =
(
3(1 + |α|2)− |α|2 + (1 + |α|2)(α+ ᾱ)

)
·((

1 + |α|2
)(

1 + |α|2 + |α|4
))−1

;
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In the fourth case

h(eiλ) =
[(

(ᾱ)2 + ᾱ
(
1 + |α|2

)
+
(
1 + |α|2 + |α|4

))
ᾱe2iλ+((

1 + |α|2 + |α|4
)
+ α

(
1 + |α|2

)
+ |α|2

)
αe−2iλ

]
×(

1 + |α|2 + |α|4 + |α|6
)−1

,

∆(f) =
(
3(1 + |α|2)− |α|2 + (1 + |α|2)(α+ ᾱ) + (α2 + ᾱ2)

)
·((

1 + |α|2
)(

1 + |α|2 + |α|4
))−1

.

3. Minimax-robust method of interpolation

The traditional methods of estimation of the functional Asξ which depends on unknown values of a stationary
stochastic sequence ξ(j) can be applied in the case where the spectral density f(λ) of the considered stochastic
sequence ξ(j) is exactly known. In practise, however, we do not have complete information on spectral density of
the sequence. For this reason we apply the minimax(robust) method of estimation of the functional Asξ, that is we
find an estimate that minimizes the maximum of the mean square errors for all spectral densities from the given
class of admissible spectral densities D.

Definition 3.1. For a given class of spectral densities D a spectral density f0(λ) ∈ D is called the least favourable
in D for the optimal linear estimation of the functional Asξ if the following relation holds true

∆(f0) = ∆ (h (f0) ; f0) = max
f∈D

∆(h (f) ; f) .

Definition 3.2. For a given class of spectral densities D the spectral characteristic h0(eiλ) of the optimal linear
estimate of the functional Asξ is called minimax-robust if

h0(eiλ) ∈ HD =
∩
f∈D

Ls
2(f),

min
h∈HD

max
f∈D

∆(h; f) = sup
f∈D

∆
(
h0; f

)
.

It follows from the introduced definitions and the obtained formulas that the following statement holds true.

Lemma 3.1
The spectral density f0(λ) ∈ D is the least favourable in the class of admissible spectral densitiesD for the optimal
linear estimate of the functional Asξ if the Fourier coefficients of the function f−1

0 (λ) define a matrix B0
s that is a

solution to the optimization problem

max
f∈D

⟨
B−1

s a⃗s, a⃗s
⟩
=
⟨
(B0

s )
−1a⃗s, a⃗s

⟩
. (14)

The minimax spectral characteristic h0 = h(f0) can be calculated by the formula (11) if h(f0) ∈ HD.

The least favourable spectral density f0 and the minimax spectral characteristic h0 form a saddle point of the
function ∆(h; f) on the set HD ×D. The saddle point inequalities

∆(h; f0) ≥ ∆
(
h0; f0

)
≥ ∆

(
h0; f

)
∀f ∈ D, ∀h ∈ HD

hold true if h0 = h(f0) and h(f0) ∈ HD, where f0 is a solution to the constrained optimization problem

∆̃(f) = −∆
(
h0; f

)
= − 1

2π

π∫
−π

∣∣C0
s (e

iλ)
∣∣2

f20 (λ)
f(λ)dλ→ inf, f(λ) ∈ D, (15)
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where

C0
s (e

iλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

(
(B0

s )
−1a⃗s

)
j
eijλ.

The constrained optimization problem (15) is equivalent to the unconstrained optimization problem

∆D(f) = ∆̃(f) + δ(f |D ) → inf,

where δ(f |D ) is the indicator function of the set D. Solution f0 to this problem is characterized by the condition
0 ∈ ∂∆D(f0), where ∂∆D(f0) is the subdifferential of the convex functional ∆D(f) at point f0 . This condition
makes it possible to find the least favourable spectral densities in some special classes of spectral densities D [14],
[32], [33].

Note, that the form of the functional ∆
(
h0; f

)
is convenient for application the Lagrange method of indefinite

multipliers for finding solution to the problem (15). Making use the method of Lagrange multipliers and the form
of subdifferentials of the indicator functions we describe relations that determine least favourable spectral densities
in some special classes of spectral densities (see books [11, 29, 30] for additional details).

4. Least favourable spectral densities in the class D−
0

Consider the problem of the optimal estimation of the functional Asξ which depends on the unknown values of a
stationary stochastic sequence ξ(j) in the case where the spectral density is from the class

D−
0 =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

f−1(λ)dλ ≥ P


Let the sequence a(k), k ∈ S, that determines the functional Asξ, be strictly positive. To find solutions to the
constrained optimization problem (15) we use the Lagrange multipliers method. With the help of this method we
get the equation

1

2π

π∫
−π

[∣∣C0
s (e

iλ)
∣∣2

f20 (λ)
− p20

1

f20 (λ)

]
ρ(f(λ))dλ = 0,

where p20 is a constant (the Lagrange multiplier), ρ(f(λ)) is a variation of the function f(λ). From a generalization
of the Lagrange lemma we get that the Fourier coefficients of the function f−1

0 satisfy the equation∣∣∣∣∣
s−1∑
l=0

Ml+Nl+1∑
k=Ml

c(k)eikλ

∣∣∣∣∣
2

= p20, (16)

where c(k), k ∈ S, are components of the vector c⃗s that satisfies the equation B0
s c⃗s = a⃗s, the matrix B0

s consists
from matrices B0

mn(k, j), each of which is determined by the Fourier coefficients of the function f−1
0 (λ)

B0
mn(k, j) =

1

2π

π∫
−π

f−1
0 (λ)e−i(k−j)λdλ = r0k−j ,

k =Mm−1, . . . , Mm−1 +Nm,

j =Mn−1, . . . , Mn−1 +Nn,

m, n = 1, . . . , s.
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The Fourier coefficients rk = r−k, k ∈ S, satisfy both equation (16) and equation B0
s c⃗s = a⃗s. These coefficients

can be found from the equation B0
s p⃗

0
s = a⃗s, where p⃗0

s = (p0, 0, . . . , 0). The last relation can be presented in the
form of the system of equations

rkp0 = a(k), k ∈ S.

From the first equation of the system (for k = 0) we find the unknown value p0 = a(0)(r0)
−1. It follows from the

extremum condition (14) and the restriction on the spectral densities from the class D−
0 that the Fourier coefficient

r0 = 1
2π

π∫
−π

f−1
0 (λ)dλ = P . Thus,

rk = Pa(k)a−1(0).

Let

rk = r−k =

{
Pa(k)a−1(0) if k ∈ S;
0 if k ∈ {0, . . . ,Ms−1 +Ns} \S.

We can represent the function f−1
0 (λ) in the form

f−1
0 (λ) =

Ms−1+Ns∑
k=−(Ms−1+Ns)

rke
ikλ.

Since the sequence a(k), k ∈ S, is strictly positive, the sequence rk, k = 0, 1, . . . ,Ms−1 +Ns, is also strictly
positive and the function f−1

0 (λ) is positive, so it can be represented in the form [19]

f−1
0 (λ) =

∣∣∣∣∣
Ms−1+Ns∑

k=0

γke
−ikλ

∣∣∣∣∣
2

, λ ∈ [−π, π] ,

where γk = 0, k ∈ {0, . . . ,Ms−1 +Ns} \S. Hence, f0(λ) is the spectral density of the autoregressive stochastic
sequence of order Ms−1 +Ns generated by the equation

Ms−1+Ns∑
k=0

γkξ(n− k) =

s−1∑
l=0

Ml+Nl+1∑
k=Ml

γkξ(n− k) = ϵn, (17)

where ϵn is a “white noise” sequence.
The minimax spectral characteristic h(f0) of the optimal linear estimate of the functional Asξ can be calculated

by the formula (5), where

CN (eiλ) =

s−1∑
l=0

Ml+Nl+1∑
k=Ml

c(k)eikλ = p0 = P−1a(0),

namely

h(f0) =

s−1∑
l=0

Ml+Nl+1∑
k=Ml

a(k)eikλ − P−1a(0)

Ms−1+Ns∑
k=−(Ms−1+Ns)

rke
ikλ

=

N1∑
k=1

a(k)e−ikλ +

s−1∑
l=1

Ml+Nl+1∑
k=Ml

a(k)e−ikλ.

(18)

Summing up our reasoning we come to conclusion that the following theorem holds true.

Theorem 4.1
The least favourable in the class D−

0 spectral density for the optimal linear estimation of the functional Asξ
determined by strictly positive sequence a(k), k ∈ S, is the spectral density of the autoregressive sequence (17)
whose Fourier coefficients are rk = r−k = Pa(k)a−1(0), k ∈ S. The minimax spectral characteristics h(f0) is
given by formula (18).
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Example 3. Consider the problem of the optimal linear estimation of the functional A2ξ = 2ξ(0) + ξ(2) which
depends on the unknown values ξ(0), ξ(2) of the stationary stochastic sequence {ξ(j) : j ∈ Z} from observations
of the sequence at points of time Z\ {0, 2} . The system of equations that determine the Fourier coefficients of the
least favourable spectral density in the class D−

0 is of the form

r0p0 = 2;

r2p0 = 1.

We have r0 = P, r2 = r−2 = 1
2P. The least favourable spectral density is of the form

f0 = 1/
∣∣x+ ye2iλ

∣∣ ,
where x = ±

√
P
2 , y = ±

√
P
2 . The minimax spectral characteristic can by calculated by the formula

h(f0) = −
√
P

2
e−2iλ.

5. Least favourable spectral densities in the class DW

Consider the problem of the optimal estimation of the functional Asξ which depends on the unknown values of a
stationary stochastic sequence ξ(j) in the case where the spectral density of the sequence is from the set of spectral
densities with restrictions on the moments of the function f−1(λ). Let

DW =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

f−1(λ) cos(wλ)dλ = rw , w = 0, 1, . . . ,W

 ,

where rw, w = 0, 1, . . . ,W is a strictly positive sequence. There is an infinite number of functions in the class DW

[19] and the function

f−1(λ) =

W∑
w=−W

r|w|e
iwλ > 0, λ ∈ [−π, π] .

To find solutions to the constrained optimization problem (15) for the set DW of admissible spectral densities we
use the Lagrange multipliers method and the equation∣∣∣∣∣

s−1∑
l=0

Ml+Nl+1∑
k=Ml

c(k)eikλ

∣∣∣∣∣
2

=

W∑
w=0

αw cos(wλ) =

∣∣∣∣∣
W∑

w=0

p(w)eiwλ

∣∣∣∣∣
2

, (19)

where αw, w = 0, 1, . . . ,W are the Lagrange multipliers and c(k), k = 0, . . . ,W are solutions to the equation
B0

s c⃗s = a⃗s.
Consider two cases: W ≥Ms−1 +Ns and W < Ms−1 +Ns. Let W ≥Ms−1 +Ns. In this case the given

Fourier coefficients rw define the matrix B0
s and the optimization problem (14) is degenerate. Let p(Ms−1 +

Ns + 1) = . . . = p(W ) = 0 and p(j) = 0, j /∈ S. Components p(j), j ∈ S, of the vector p⃗s can be found from the
equation B0

s p⃗s = a⃗s. Hence, the relation (19) holds true. Thus the least favorable is every density f(λ) ∈ DW and
the density of the autoregression stochastic sequence

f0(λ) = 1/

W∑
w=−W

r|w|e
iwλ = 1/

∣∣∣∣∣
W∑
k=0

γke
ikλ

∣∣∣∣∣ (20)

is least favorable, too.
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Let W < Ms−1 +Ns. Then the matrix Bs is determined by the known rw, w ∈ S ∩ {0, . . . ,W}, and the
unknown rw, w ∈ S\ {0, . . . ,W}, Fourier coefficients of the function f−1(λ). The unknown coefficients p(k),
k ∈ S ∩ {0, . . . ,W}, and rw, w ∈ S\ {0, . . . ,W}, can be found from the equation Bsp⃗

0
s = a⃗s, with p⃗0

s =
(p(0), . . . , p(W1), 0, . . . , 0), where W1 is determined from the relation {0, . . . ,W1} = {0, . . . ,W} ∩ S.

The last equation can be presented as the system of equations

r0p0 + r1p1 + . . .+ r−W1pW1 = a(0);

r1p0 + r0p0 + . . .+ r−W1+1pW1 = a(1);

. . .

rW1p0 + rW1−1p0 + . . .+ r0pW1 = a(W1);

. . .

rMs−1+Nsp0 + r1p1 + . . .+ r0pW1 = a(Ms−1 +Ns).

From the first W1 equations we can find the unknown coefficients p(k) and from the next equations we find the
Fourier coefficients rw, w ∈ S\ {0, . . . ,W}.

If the sequence rw, w ∈ S, that is constructed from the strictly positive sequence rw, w ∈ S ∩ {0, . . . ,W} and
the calculated coefficients rw, w ∈ S\ {0, . . . ,W}, is also strictly positive, then the least favourable spectral density
f0(λ) is determined by the Fourier coefficients rw, w ∈ S of the function f−1

0 (λ)

f0(λ) = 1/

Ms−1+Ns∑
k=0

(rke
ikλ + r−ke

−ikλ) = 1/

∣∣∣∣∣
Ms−1+Ns∑

k=0

γke
ikλ

∣∣∣∣∣
2

. (21)

Let us summarize our results and present them in the form of a theorem.

Theorem 5.1
The least favourable spectral density in the class DW for the optimal linear estimate of the functional Asξ
in the case where W ≥Ms−1 +Ns is the spectral density (20) of the autoregression stochastic sequence of
order W determined by coefficients rw, w = 0, 1, . . . ,W. In the case where W < Ms−1 +Ns and solutions
rw, w ∈ S\ {0, . . . ,W}, to equation Bsp⃗

0
s = a⃗s together with coefficients rw, w ∈ S ∩ {0, . . . ,W}, form a strictly

positive sequence, the least favourable spectral density in DW is the density (21) of the autoregression stochastic
sequence of the order Ms−1 +Ns. The minimax characteristic of the estimate is calculated by formula (11).

6. Least favourable spectral densities in the class Du
v

Consider the problem of the optimal estimation of the functional Asξ which depends on the unknown values of a
stationary stochastic sequence ξ(j) in the case where the spectral density of the sequence is from the set of spectral
densities

Dv
u =

f(λ)
∣∣∣∣∣∣0 ≤ v(λ) ≤ f(λ) ≤ u(λ),

1

2π

π∫
−π

f−1(λ)dλ = P

 ,

where v(λ), u(λ) are given bounded spectral densities. Let the sequence a(j), j ∈ S, that determines the functional
Asξ be strictly positive. To find solutions to the constrained optimization problem (15) for the set Dv

u of admissible
spectral densities we use the condition 0 ∈ ∂∆D(f0). It follows from the condition 0 ∈ ∂∆D(f0) for D = Dv

u that
the Fourier coefficients of the function f−1

0 satisfy both equation B0
s c⃗s = a⃗s and the equation∣∣∣∣∣

s−1∑
l=0

Ml+Nl+1∑
k=Ml

((
B0

s

)−1
a⃗s

)
k
eikλ

∣∣∣∣∣
2

= ψ1(λ) + ψ2(λ) + p−2
0 ,
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where ψ1(λ) ≥ 0 and ψ1(λ) = 0 if f0(λ) ≥ v(λ); ψ2(λ) ≤ 0 and ψ2(λ) = 0 if f0(λ) ≤ u(λ). Therefore, in the case
where v(λ) ≤ f0(λ) ≤ u(λ), the function f−1

0 (λ) is of the form

f−1
0 (λ) =

Ms−1+Ns∑
k=0

(rke
ikλ + r−ke

−ikλ) =

∣∣∣∣∣
Ms−1+Ns∑

k=0

γke
ikλ

∣∣∣∣∣
2

,

where rk = r−k = Pa(k)a−1(0). The least favourable in the classDv
u is the density of the autoregression stochastic

sequence of the order Ms−1 +Ns if the following inequality holds true

v−1(λ) ≥
Ms−1+Ns∑

k=0

(rke
ikλ + r−ke

−ikλ) =

∣∣∣∣∣
Ms−1+Ns∑

k=0

γke
ikλ

∣∣∣∣∣
2

≥ u−1(λ), λ ∈ [−π, π] . (22)

In general case the least favourable density is of the form

f0(λ) = max

v(λ),min

u(λ),
∣∣∣∣∣p0

s−1∑
l=0

Ml+Nl+1∑
k=Ml

((
B0

s

)−1
a⃗s

)
k
eikλ

∣∣∣∣∣
2

 . (23)

The following theorem holds true.

Theorem 6.1
If the sequence a(j), j ∈ S, is strictly positive and coefficients rk = r−k = Pa(k)a−1(0), k ∈ S, satisfy the
inequality (22), then the least favourable in the class Du

v spectral density for the optimal linear estimate of
the functional Asξ is density (17) of the autoregression stochastic sequence of order Ms−1 +Ns. The minimax
characteristic h(f0) of the estimate can be calculated by the formula (18). If the inequality (22) is not satisfied, then
the least favourable spectral density in Du

v is determined by relation (23) and the extremum condition (14). The
minimax characteristic of the estimate is calculated by formula (11).

7. Conclusions

In this article we describe methods of solution of the problem of the mean-square optimal linear estimation of

the functional Asξ =
s−1∑
l=0

Ml+Nl+1∑
j=Ml

a(j)ξ(j), Ml =
l∑

k=0

(Nk +Kk), N0 = K0 = 0, which depends on the unknown

values of the stationary stochastic sequence ξ(j). Estimates are based on observations of the sequence ξ(j) at points

j ∈ Z\S, where S =
s−1∪
l=0

{Ml,Ml + 1, . . . ,Ml +Nl+1}. We provide formulas for calculating the values of the mean

square error and the spectral characteristic of the optimal linear estimate of the functional in the case where the
spectral density of the sequence ξ(j) is exactly known. In the case where the spectral density is unknown, but a
set of admissible spectral densities is given, the minimax approach is applied. We obtain formulas that determine
the least favourable spectral densities and the minimax spectral characteristics of the optimal linear estimates of
the functional Asξ for concrete classes of admissible spectral densities. It is shown that spectral densities the
autoregressive stochastic sequences are the least favourable in some classes of spectral densities.
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