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ON THE LAW OF EFFECT*

R. J. HERRNSTEIN

HARVARD UNIVERSITY

Experiments on sirigle, multiple, and concurrent schedules of reinforcement find various corre-
lations between the rate of responding and the rate or magnitude of reinforcement. For con-
current schedules (i.e., simultaneous choice procedures), there is matching between the relative
frequencies of responding and reinforcement; for multiple schedules (i.e., successive discrimi-
nation procedures), there are contrast effects between responding in each component and rein-
forcement in the others; and for single schedules, there are a host of increasing monotonic re-
lations between the rate of responding and the rate of reinforcement. All these results, plus
several others, can be accounted for by a coherent system of equations, the most general of
which states that the absolute rate of any response is proportional to its associated relative

reinforcement.

A review of the evidence for the law of
effect would quickly reveal that the simple no-
tion of “stamping-in” (Thorndike, 1911, e.g.,
p- 283) does not suffice. Animals do not just
repeat the first successful act; they are likely
to improve upon it until they find something
like the optimal performance. In Thorndike’s
puzzle box, in the maze, or in Skinner’s op-
erant conditioning chamber, animals tend
toward faster, easier, and more congenial
movements, unless the performances are virtu-
ally optimal to begin with. Although some
theorists find enough stereotypy to suggest a
quasi-mechanical process of stamping-in (e.g.,
Guthrie and Horton, 1946), others have re-
mained unconvinced (e.g., Tolman, 1948).
Something more than the static form of the
law of effect is needed for a really persuasive
theory. The temptation to fall back on com-
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mon sense and conclude that animals are
adaptive, i.e., doing what profits them most,
had best be resisted, for adaptation is at best a
question, not an answer. And it is not hard to
find evidence that violates both the Thorn-
dikian principle of stamping-in and common-
sense motions of adaptation, as the following
two examples show.

Ferster and Skinner (1957) reported that an
animal, when shifted from an interval to a
ratio schedule, typically showed a change in
its rate of responding. As regards stamping-in,
the rate should remain unchanged for ratio
schedules reinforce all rates of responding with
equal probability (Morse, 1966). Although the
deviation from the theory is large and re-
producible, its direction is somewhat unpre-
dictable. For example, in an experiment with
pigeons (Ferster and Skinner, 1957, pp. 399-
407), one subject’s rate of responding increased
while the other’s virtually ceased, when the
schedule changed from a variable interval to a
variable ratio matched for numbers of re-
sponses per reinforcement. While both of these
findings—both the increase and the decrease
in the rate of responding in the shift from
interval to ratio schedule—violate the Thorn-
dikian law of effect, only the increase is
plausibly seen as adaptive. By responding
faster on the ratio schedule, one animal in-
creased its reinforcements per unit time, but,
by the same token, the other one reduced its
rate of reinforcement by responding more
slowly. If the acceleration is adaptive, then the
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deceleration is not, and both findings are well
substantiated.

A related finding, also violating both the
Thorndikian law of effect and adaptiveness,
has been obtained with the conjunctive sched-
ule, schematically shown in Fig. 1. This graph
plots on the coordinates of a cumulative record
the region over which responses are unrein-
forced. For the conjunctive schedule, it is the
entire plane minus the shaded area within the
right angle. In other words, the conjunctive
schedule reinforces the first response after the
occurrence of a certain number of responses
(n on the figure) and the passage of a certain
period of time (t). The schedule is specified by
its component members: fixed interval and
fixed ratio in the present instance. The con-
junctive schedule in Fig. 1 would be called
a “conjunctive fixed-interval t, fixed-ratio
n + 1.” In the simple fixed-interval schedule,
rapid responding is implicitly penalized, for
faster responding increases the work per rein-
forcement. In contrast, ratio schedules exact
no such penalty for responding quickly, for
the amount of work per reinforcement is held
constant. In fact, ratio schedules may favor
rapid responding by arranging a direct propor-
tionality between the rate of responding and
the rate of reinforcement. The conjunctive
schedule concatenates these features of ratio
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Fig. 1. The shaded area shows the region of rein-
forced responding on a conjunctive schedule of rein-
forcement. The ordinate is cumulated responding; the
abscissa is elapsed time.
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and interval schedules, since the rate of rein-
forcement is directly proportional to the rate
of responding only for rates of responding no
larger than n/t, beyond which the rate of
responding covaries with the responses per
reinforcement.

The relevant finding was obtained in an ex-
periment (Herrnstein and Morse, 1958) that
held the interval component constant at 15
min, but varied the ratio component from
zero (which is a simple fixed-interval schedule)
to 240. Figure 2 shows the relation between
rate of responding and the number require-
ment imposed by the ratio component. Al-
though the pigeons were responding more
than an average 300 times per reinforcement
on the fixed-interval schedule, a number re-
quirement as small as 10 (for one of the
pigeons) or 40 (for either), caused a detectable
slowing down of responding. The range of
rates of responding within individual fixed
intervals is large enough so that number re-
quirements even this small are likely to make
contact with the behavior. Larger require-
ments caused progressively larger decrements
in responding. This falling rate of responding
reduced the rate of reinforcement, as Fig. 3
shows. Here for the two pigeons are the aver-
age interreinforcement times as the number
requirement was increased. For the fixed-
interval schedule, the interreinforcement time
was as small as the procedure permits, which
is to say, 15 min. Even the smaller require-
ments produced some reduction in the rate of
reinforcement. For one pigeon, the rate of re-
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Fig. 2. For two subjects, the rate of responding as a
function of the size of the number requirement in a
conjunctive schedule with a time requirement of 15
min throughout.
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Fig. 3. For two subjects, the interreinforcement time
as a function of the size of the number requirement in
a conjunctive schedule with a time requirement of
15 min throughout.

inforcement fell very sharply as the number
requirement was increased; for the other, the
decline was more gradual, but in either case,
the requirement took its toll throughout.

The conjunctive schedule lends itself poorly
to a Thorndikian analysis, for what could be
getting stamped-in when responding and re-
sponse requirement vary inversely? Moreover,
the conjunctive schedule makes poor sense as
regards the animal’s best interests, for the
animal may be emitting substantially more (in
Fig. 2, it was 30-fold more) behavior on the
fixed interval than the number requirement
demands, and yet the behavior is nevertheless
depressed.

These problem cases are troublesome only
within the confines of theory. In the broader
sphere of common sense, reinforcement is af-
fecting what might be termed the “strength”
of behavior, as reflected in its rate. For ex-
ample, consider the change from interval to
ratio schedules. If the first effect is a higher
rate of reinforcement, the rate of responding
might increase. But this would further in-
crease the rate of reinforcement, further
“strengthening” responding, causing it to rise
again, which again pushes the rate of rein-
forcement upwards, and so on. If, on the other
hand, the first effect is a lower rate of rein-
forcement, then the rate of responding should
fall. The rate of reinforcement would then
also fall, further weakening the responding,
and so on again. This dynamic process occurs
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with ratio, and not interval, schedules because
only the ratio schedule arranges a propor-
tionality between the rate of reinforcement
and the rate of responding. The proportional-
ity is the basis for an instability in ratio sched-
ules that should produce either maximal re-
sponding or none at all, an implication that is
confirmed by the tendency of ratio responding
to be “two-valued” (Ferster and Skinner, 1957,
chap. 4).

The conjunctive schedule similarly exempli-
fies the notion of strength. However slightly
the number requirement increases the inter-
reinforcement interval, it should reduce the
strength, and therefore the output, of respond-
ing. If the strength of responding is sufficiently
reduced so that the rate of responding is less
than n/t- (see Fig. 1), then the conjunctive
schedule becomes identical to a ratio schedule,
and responding may reasonably be expected
to vanish altogether, as it does with too-large
ratios. One of the pigeons in Fig. 2 had, in
fact, virtually stopped responding at the larg-
est ratio studied, even though the number re-
quirement was still less than the responses per
reinforcement freely emitted on the simple
fixed-interval schedule.

Those two examples, and others like them,
show that neither stamping-in, nor adaptation,
nor the two of them together, can account for
what is here being called the strength of be-
havior. This paper specifies more formally
than heretofore the shape of this intuitively
obvious concept, while staying within the gen-
eral outlines of the law of effect.

REINFORCEMENT AS
STRENGTHENING

Reinforcement as strengthening is not being
offered as a new idea, for ““to reinforce’”’ means
to strengthen, and only by metaphor, to
strengthen behavior. The earliest psychologi-
cal usage concerned Pavlovian conditioning,
where “reinforcement” of a reflex in a physio-
logical sense was already familiar in classical
work on facilitation and inhibition. The use
of “reinforcement” in the vocabulary of in-
strumental learning was promoted in the mid-
1930s, particularly by Skinner and primarily
as a substitute for the traditional term “re-
ward”, whose very age tainted it with the
suspicion of mentalism. Mentalism notwith-
standing, “reward” was more neutral than
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“reinforce”, for while reward simply names a
class of events that have some effect on the
organism, “reinforcement” implies what the
effect is, namely a strengthening. The extra
connotation was tolerable only so long as it
was not contrary to fact, which it was not. The
leading advocates of the law of effect—Thorn-
dike, Skinner, and others—had from the begin-
ning spoken in terms of a “strengthening” of
behavior.

What, though, does it mean to strengthen
behavior? Thorndike’s answer was the notion
of stamping-in, which may, in fact, be ade-
quate for the acquisition of new behavior. But
for behavior already learned, stamping-in
seems inappropriate. The response form as
such is then no longer changing, and yet, as
the examples in the previous section show,
reinforcement is still affecting what might be
considered the strength of the behavior. The
answers of others, like Skinner and Hull, ad-
dressed themselves sensibly if not successfully
to the underlying problem, which is one of
measurement. To say that behavior is
strengthened is to imply some dimension of
behavior along which it changes when its
strength changes.

The measurement problem is empirical, not
conceptual, which is not to deny the virtue of
clear and original thinking. It is, rather, to
point out that the only persuasive argument
for any measure of response strength is to
show orderly relations between the parameters
of reinforcement—its frequency, quantity,
quality, and so on—and the designated parame-
ter of behavior. The traditional measures of
response—probability, rate, amplitude (i.e.,
work or effort), latency, resistance to extinc-
tion—have all failed to gain unequivocal sup-
port simply because orderly data with quanti-
tative and general significance have not been
forthcoming. Although there is no doubt that
behavior is affected by its consequences, the
law of effect is still expressed qualitatively,
rather than as a relation between measurable
variables, which it clearly must be at some
level of analysis.

The notion of response probability comes
closest to being a generally accepted measure
of strength; cutting, as it does, across theories
as diverse as those of Tolman (1938) and Hull
(1943), Brunswik (1955) and Skinner (1953).
But the agreement is more apparent than real,
for the abstractness of “probability” masks the
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diversity of methods used for its extraction.
For example, in some experiments, particu-
larly those concerned with acquisition, the
changing probabilities of response are esti-
mated by the proportion of subjects doing
something at successive points in training. In
other experiments, single subjects are the basis
for estimation of the probability by integrat-
ing over successive trials. In still others, the
probability is estimated by the proportion of
trials, or proportion of subjects, showing the
choice of one response alternative out of a
known set of alternatives. Not even the use of
relative frequencies—the measure in modern
probability theory—is common to all theorists,
for according to Skinner, the rate of respond-
ing is the proper estimate of the organism’s
probability of responding. This is not an esti-
mator in the formal sense—a mathematical
probability is a dimensionless quantity be-
tween 0 and 1.0, and response rate is neither
dimensionless nor bounded in principle—but
rather an index of the animal’s disposition to
respond over some interval of time. Given the
present state of knowledge, this abundance of
measures is more likely to confuse than to
enrich.

To reduce the confusion, and hopefully to
advance the state of knowledge, the present
approach focuses initially on a single relative-
frequency measure as its index of strength. No
“probability” will be inferred simply because
to do so might suggest an equivalence with
other empirical measures for which there is no
evidence. The measure is exemplified by an
experiment in which pigeons had two keys to
peck (Herrnstein, 1961). The keys were avail-
able continuously during experimental ses-
sions and pecking was reinforced with two
variable-interval schedules, mutually indepen-
dent and running simultaneously. The rela-
tive frequency is obtained by dividing the
number of pecks on one key by the sum to
both. In the context of operant conditioning
this is a concurrent schedule, but it is clearly
a version of the familiar “choice” experiment.
It is, however, different in two significant
respects. First, it uses continuous exposure to
the alternatives instead of discrete trials.
Second, reinforcements come on interval, in-
stead of ratio, schedules. In the typical choice
experiment, as well as in gambling casinos,
the over-all probability of winning is constant
for a given play (or response alternative), so
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that the number of wins is proportional to
the number of plays. With interval schedules,
there is no such proportionality, as noted
earlier. Instead, the probability of winning on
any given play is inversely related to the rate
of play (response), and the number of wins is
virtually independent of the number of plays,
given a high enough rate of play.

The pigeons, then, had a pair of keys to
peck, and the experiment rewarded their ef-
forts with brief access to food at irregular
intervals. The schedules set a maximum rate
of reinforcement throughout the experiment
at 40 per hour, but the number allocated to
one key or the other was systematically varied,
to see how the distribution of responses was
affected. The question was whether, to use the
vocabulary of this paper, response strength as
relative frequency was some plausible func-
tion of reinforcement frequency. The answer
was both plausible and attractively simple, as
shown in Fig. 4. The ordinate is the propor-
tion of responses on the left key; the abscissa
is the proportion of reinforcements delivered
thereon. The points fall near the diagonal,
which is the locus of perfect matching be-
tween the distribution of responses and of re-
inforcements. A simple equation summarizes
the finding (P is number of pecks, R is number
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(1961).
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of reinforcements, and the subscripts denote
the two alternatives).
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Unless the number of pecks far exceeds the
number of reinforcements, the matching func-
tion (equation 1) is trivially true. For example,
if the variable-interval schedules were assign-
ing reinforcements to the two keys more
quickly than the pigeons pecked, then every
peck would be reinforced. The data point
would necessarily fall on the diagonal, but
the result would have little empirical content.
If reinforcements were being assigned at the
rate of one for every other response, or one
for every third response, the possible range of
variation for the points would still be nar-
rowly constrained around the diagonal, and
the findings would still be essentially vacuous.
In fact, the possible range of variation is ex-
actly fixed by the actual numbers of reinforce-
ments and responses. Since there are at least as
many responses on each key as there are rein-
forcements, the smallest relative frequency of
response for a given relative frequency of re-
inforcement Ry /(Ry, + Rg) is

Ry

P+ Py @

This fraction approaches Ry, /(Ry, + Rg) as the
total number of responses approaches the total
number of reinforcements. The largest rela-
tive frequency of response for a given relative
frequency of reinforcement is also dependent
upon the fact that there can be no fewer re-
sponses than reinforcements. Thus, the ratio
of responses for a given Ry /(Ry, + Rg) can go
no higher than 1.0 minus the minimum value
for the other key—Ry /Py, + Pg)—which may be
written as

PL+P3—R3

PL + Pn (3)

This fraction, too, will approach Ry, /(Ry, + Rg)
as the total number of responses approaches
the total number of reinforcements, which is
to say when the responses on the separate keys
each equal the reinforcements thereon. The
result, then, is that as the number of responses
approaches the number of reinforcements, the
possible range of variation for the ratio of re-
sponses converges on to the matching relation
in Fig. 4. In the case of the experiment sum-
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marized here, however, the ratio of responses
to reinforcements was approximately 100. At
0.5 on the abscissa, therefore, the possible
range of variation of responding was from
0.005 to 0.995. At other values of the abscissa,
the possible range was comparably broad. The
close agreement between the matching relation
and the distribution of responding says some-
thing, therefore, about the animal, not just
about the procedure itself. What this is, and
how it operates in a variety of situations, will
occupy the remainder of the paper.

RESPONSE STRENGTH AND
CHOICE

The experiment summarized in Fig. 4 had
an additional procedural wrinkle. Each time
the pigeon shifted from one key to the other,
there was a brief period of time during which
any reinforcement called for by the variable-
interval schedule was delayed. This “change-
over delay” (COD) lasted for 1.5 sec, and was
imposed in order to prevent the pigeons from
switching after virtually every response. It was
found, without the COD, that the distribution
of responses tended to stay around 50-50,
without regard to the distribution of rein-
forcements. If the matching relation were an
accident of the duration of the COD, it would
hardly be a principle of either response
strength or choice. The most direct test of the
COD is contained in an experiment in which
it was varied systematically to see whether the
matching relation was a peculiarity of only a
certain range of durations.

The experiment, by Shull and Pliskoff
(1967), varied a number of conditions besides
the duration of the COD. Instead of pigeons,
their experiment used albino rats. The rein-
forcer, instead of brief access to food for a
hungry animal, was the opportunity for the
rat to get electric current passed through its
brain in the region of the posterior hypothala-
mus. A reinforcement consisted of the lighting
of a small light in the presence of which the
rat could press the lever 20 times, each time
obtaining 125 milliseconds of a 100-Hz train
of sine waves of 150 to 300 microamps across
the electrodes implanted in its head. The
variable-interval schedule resumed at the end
of the last burst of current. The schedule itself
was a variation of the simple concurrent pro-
cedure, one that had been originally described
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by Findley (1958). Instead of a pair of response
alternatives associated with a pair of variable-
interval schedules, the Findley procedure had
the two variable intervals associated with a
pair of stimuli, but responses on only one of
the two levers could produce reinforcement.
At any one time, only one of the two stimuli
was present, and while it was present, rein-
forcements from only its associated variable
interval were forthcoming. The second lever
in the chamber switched from one stimulus to
the other, along with its associated variable-
interval schedule. Actually, the two variable-
interval programmers ran concurrently and
continuously, just as they do in a conventional
concurrent procedure. Shull and Pliskoff
varied the COD, which is here the minimum
possible interval between a response to the
switching lever and the first reinforced re-
sponse. Their finding was that matching oc-
curred as long as the COD was greater than a
certain minimal duration, as was found in the
earlier study, but that beyond that value,
matching was maintained whatever the dura-
tion of the COD in the range examined (0 to
20 sec). As the COD is made larger, however,
it begins to affect measurably the obtained
rates of reinforcement by interacting with the
schedules themselves, as might be expected.
Matching is always with respect to obtained,
rather than pre-specified, reinforcement rates.

The experiment by Shull and Pliskoff ex-
tended the generality of the matching relation
more than merely by showing that the COD
is not the controlling variable. It extended the
finding to rats, to Findley’s procedure, and to
intracranial stimulation as the reinforcer.
Other studies have extended it further.
Reynolds (1963a) showed matching with three
response alternatives instead of two. Holz
(1968) found matching even when each of the
responses was punished with electric shock, in
addition to being reinforced by the usual
variable-interval schedules. Holz varied the in-
tensity of the punishment until it was so
severe that the pigeons stopped responding
altogether. However, as long as they were re-
sponding, and as long as the punishment for
the two responses was equally intense, the
distribution of responses matched the distribu-
tion of reinforcements. Catania (1963a) and
Neuringer (1967b) found matching with re-
spect to total amount of food when the two
reinforcers differed not in their rate of occur-
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rence, but in the grams of food per reinforce-
ment. In another study, Catania (1963b), using
the Findley procedure, found matching both
for the proportion of responses and for pro-
portion of time spent with each of the two
stimuli. Baum and Rachlin (1969) showed
matching (correcting for a position bias) when
the “responses” consisted of standing on one
side of a chamber or the other. The propor-
tion of time spent in each location was found
to be distributed as the associated proportion
of reinforcements. Along these lines, Brown-
stein and Pliskoff (1968) found that the
Findley procedure can be further modified so
that when the animal selects one stimulus con-
dition or the other, reinforcement comes along
independently of any response. The pigeons
here are simply choosing between one rate of
reinforcement or the other. Their finding, too,
is described by the matching relation, suitably
adapted. The proportion of time spent in each
stimulus condition is equal to the proportion
of reinforcement received therefrom. Nevin
(1969) noted that matching is found in human
psychophysical studies when the proportion of
“yes” responses is plotted against either the
proportion of trials containing a signal or the
relative size of payoff (i.e., the frequency or
magnitude of reinforcement). Shimp (1966),
and the present author in unpublished work,
have found matching in discrete-trial pro-
cedures of various sorts.

The list of confirmatory studies could be
extended, but without profit at this point. It
has been consistently found that responding
is distributed in proportion to the distribution
of reinforcement, as long as the responding
and the reinforcements across the alternatives
are not unequal qualitatively. Thus, the
matching relation would not be expected if
the reinforcer for one response were a pre-
ferred food and that for the other were a non-
preferred food, unless the scale values for the
reinforcers expressed the difference quantita-
tively. Nor would it be expected if the two
responses differed in some important way, e.g.,
that one involved considerably more work
than the other. In fact, the matching relation
may be used to construct equivalences be-
tween qualitatively different responses or rein-
forcers, although no such undertaking has
come to the author’s attention. It should, how-
ever, be possible to scale reinforcers against
each other or responses against each other by

249

assuming that the subject must be conforming
to the matching relation whenever it is in a
choice situation of the general type employed
in these experiments, and by adjusting the
measures of response or reinforcement accord-
ingly.

The main opposition to the matching rela-
tion is found in the literature on so-called
“probability learning”. If an experiment ar-
ranges a certain probability (excluding 1.0,
0.5, and 0) of reinforcement for each of a pair
of response alternatives, and if the subject dis-
tributes its responses in proportion to these
pre-assigned probabilities, then the matching
relation, as defined here, is violated. Imagine
that the two probabilities are 0.4 and 0.1. In a
sequence of 100 responses, probability learn-
ing requires 80 responses to the better alter-
native and 20 responses to the poorer one.
The number of reinforcements would be
80 x 0.4 = 32 for the one, and 20 X 0.1 =2 for
the other. With respect to the matching for-
mula, this is a violation, for

80 32

_32 4
B80+207 32+2 @

The literature does not, however, claim strict
conformity to probability learning. Instead,
responding is often confined exclusively to one
or the other of the two alternatives, typically
toward the alternative with the higher proba-
bility of reinforcement. But even when the
two reinforcement probabilities are equal,
responding tends to become exclusive for one
of the choices. These deviations from proba-
bility learning are said to be instances of
“optimizing” or “maximizing”, since exclusive
preference is the optimal strategy in the sense
that the subject will, on the average, maximize
its winning if it stays with the better bet. Even
when the two probabilities are equal, nothing
is lost by exclusive preference, and perhaps
something is gained, for the subject is thereby
spared the effort of switching from one alter-
native to the other.

Maximization in the probability type ex-
periment actually conforms to the present
matching function. Equation (1) is satisfied
when all or none of the responses and all or
none of the reinforcements occur for one of
the alternatives and is therefore consistent
with all of the experiments that deviate from
probability learning and find maximization
instead. Not all the experiments, however, find
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exclusive preference, and it is not yet clear
whether apparently minor procedural factors
are inadvertently affecting outcomes, as some
have suggested (Bush and Mosteller, 1955), or
whether there is, in addition, a phyletic factor.
Bitterman (1965) argued that the higher or-
ganisms tend to maximize, while the lower
ones, like fish and pigeons, tend to “probabil-
ity learn”. However, the experiments by
Bitterman and his associates often use pro-
cedural features, such as forced trials to the
alternatives, that complicate the calculation of
the obtained frequencies of reinforcement, if
not the psychological processes at work. In any
event, pigeons do not invariably show proba-
bility learning; Herrnstein (1958) showed
maximizing in pigeons given a choice between
differing probabilities of reinforcement.

It is, in other words, not clear how much of
the literature of probability learning actually
violates equation 1, since it is not clear how
much of this literature can be taken as firm
evidence for probability learning. Neverthe-
less, suppose for the sake of argument that
there is some valid evidence for probability
learning, which is to say, that the responses
are in the same ratio as the probabilities of
reinforcement. How does this differ from the
findings with rate of reinforcement, according
to which the responses are in the same ratio as
the numbers of reinforcement? The two find-
ings turn out to be closely related mathemati-
cally, as the following set of equations shows,
starting with the equation for probability
learning:

Ry
PL —- PL
P =R, (5a)
Pr
PRy = Pp’R,, (5b)
PLVRp =Pz VR, (50)
PLVR:+PLVR; = PaVR, +P,VR,  (5d)
P R,
L VR ©®

P, + Py VR, + VRz

Natapoff (in press) has shown that the match-
ing of response frequencies to reinforcement
frequencies (equation 1) is just one, and in
some sense the simplest, of a family of func-
tions that may relate these two variables under
the assumptions of symmetry of choice, which
is to assume that the factors that affect choice
operate invariantly across the alternatives.
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Another, and closely related, function, accord-
ing to Natapoff, would be equation 6 above,
according to which the match is between re-
sponse frequencies and the square root of rein-
forcement frequencies. This latter finding is,
as the mathematical argument demonstrates,
merely another version of probability learn-
ing. Although we do not know with certainty
if, and when, probability learning actually oc-
curs in simple choice procedures, it may even-
tually be useful to be able to relate the two
kinds of matching to each other mathemati-
cally.

The only other significant departure from
matching known to the present author is an
experiment with pigeons (Herrnstein, 1958) in
which reinforcement was dependent upon a
required number of responses on the two keys.
The sum of the two requirements was kept
constant at 40, but the two components varied:
2, 38; 5, 385; 10, 30; and 20, 20. No further
restrictions were imposed on the order or man-
ner in which the requirements were reached.
The pigeon could work in any sequence of
alternation between the two keys, and could
emit any number in excess of the requirement
on one of the keys, but, having met one re-
quirement, it was rewarded as soon as it met
the other. Figure 5 shows the proportion of
responses on the left key as a function of the
proportion of the total requirement on that
key. It also shows the proportion of rein-
forcements on that key. The procedure clearly
produced a kind of matching, but not to the
distribution of reinforcements, since the pro-
portion of reinforcements was so much more
variable than the proportion of responses.
Instead, the pigeons responded so as to mini-
mize the number of responses (and also proba-
bly the time) per reinforcement.

There are undoubtedly many other proce-
dures that would give comparable departures
from matching. For example, if reinforcement
were made conditional upon a pair of rates of
responding on the two keys (instead of upon a
pair of numbers of responses- thereon), there
probably would be some accommodation in
responding and matching in the present sense
would probably be violated. Such procedures
need not be particularly complicated, the two
examples so far notwithstanding. For example,
consider a procedure that simply reinforced
alternation of left and right responses, with
reinforcement occurring only for right re-
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Fig. 5. The filled circles and solid brackets show the
average and range of the relative frequency of respond-
ing to one alternative in a two-choice procedure. Rein-
forcement was for the occurrence of at least a minimum
number of responses to each of the two alternatives.
The abscissa shows what fraction of the total response
requirement was allocated to the alternatives being
plotted. The open circles and broken brackets are for
the relative frequency of reinforcement against the
same abscissa. The diagonal line shows matching be-
tween the abscissa and the ordinate. From Herrnstein
(1958).

sponses. The distribution of responses would
here approach 50-50, but the distribution of
reinforcements would be 0-100. This last ex-
ample is instructive, for it suggests why match-
ing neither occurs nor should be expected in
such cases. Reinforcement for alternation is
likely to give not two separate responses, but
rather a single, albeit biphasic, response—
respond-left-respond-right—that is reinforced
every time it occurs. In the more complex case
summarized in Fig. 5, there is a similar issue
of response definition, as there is in any pro-
cedure in which reinforcement is conditional
upon combinations cf responses across the al-
ternatives.

A procedure that reinforces multiphasic re-
sponses across the alternatives is thus not prop-
erly described by tallies of the individual re-
sponse frequencies. Instead of so many left
responses and so many right responses, there
should be so many left-rights or the like. The
point is worth noting for it is probably why
matching depends on the COD in some (but
not all) procedures. If the response alterna-
tives are situated near each other, the subject’s
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left-right or right-left sequences may be ad-
ventitiously reinforced. If so, the usual tally of
left and right responses cuts across the re-
sponse classes actually being maintained by
the reinforcement and matching in the ordi-
nary sense is no longer an appropriate expec-
tation. By interposing a delay between a re-
sponse to one alternative and reinforcement
for the other, the COD discourages these
adventitious response clusters.

In virtually all of the published experiments
showing matching, the alternative responses
were reinforced by schedules that differed only
in the reinforcement parameter, whether fre-
quency or amount. This may not, however, be
necessary. For example, it remains to be shown
whether matching would be found if the con-
current procedure used a variable-interval
schedule pitted against a variable ratio. The
procedure is peculiar not only because of its
asymmetry, but also because it is intermediate
as regards the degree to which the subject’s
behavior governs the distribution of reinforce-
ment, and is therefore of some general interest.
With two variable-interval schedules, the dis-
tribution of reinforcements is not likely to be
affected by the distribution of responses, given
the usual rates of responding. On the other
hand, with two variable-ratio schedules, the
distribution is virtually entirely under the sub-
ject’s control. In the combination procedure,
the animal is in control of reinforcement fre-
quency for one alternative, but not for the
other, again assuming that response rate is
high enough. Finally, the experiment is pecu-
liar because matching, while well established
for interval schedules and their analogues, can-
not occur for ratio schedules except trivially.
For example, suppose ratios of 50 and 200 are
scheduled for two alternatives. Equation 1, the
matching function, can be satisfied only if the
animal ceases responding to one of the alterna-
tives, thereby obtaining all of its reinforce-
ments thereon. The ratio schedules assure that
the distribution of responses will follow the
relation:

P, 50R,
P, + P, — 50R, + 200R, Q)

The coefficients on the reinforcement frequen-
cies express the fact that a ratio schedule fixes
a proportionality between numbers of re-
sponses and numbers of reinforcements. In the
present example, equation 7 agrees with equa-
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tion 1 only when either Ry, or Ry goes to zero.
In general, agreement can be obtained only at
these limiting values, plus the 509, value
when the two ratios are equal to each other.
In contrast, the present experiment, combin-
ing interval and ratio schedules, permits
matching at all values, as follows:

Py R,
PL+Pr~ rRy+xRg

®

Here, r is the required proportionality for the
alternative with the ratio schedule. For the
other alternative, ‘reinforced on a variable-
interval schedule, there is no required propor-
tionality. By responding faster or slower, the
subject can here emit more or fewer responses
per reinforcement (x). In order to obtain
agreement between equation 8 and equation
1, the subject must adjust its rate of respond-
ing on the variable-interval schedule such that
r=x.

An experiment combining the two sched-
ules was performed with four pigeons. As in
the earlier study, there was a change-over de-
lay (2 sec) between the two alternatives. Re-
sponding to one alternative was reinforced on
variable-interval schedules that were changed
from time to time (in the range of 15 sec to
2 min). Responding to the other was rein-
forced on variable-ratio schedules, also varied
from time to time (in the range of 20 to 160).
Since the distribution of reinforcements is
here affected by the distribution of responses
at all rates of responding, the values of the
two schedules do not fix a particular distribu-
tion of reinforcement. The relative frequency
of reinforcement, the nominal independent
variable, was largely up to each subject. For
most of the pairs of values, the findings trivi-
ally confirmed matching, by giving responding
exclusively to one alternate or the other. This
has also been the outcome when both alterna-
tives were variable-ratio schedules (Herrnstein,
1958). However, for some pairs of values, the
responding was distributed between the two
responses with something between exclusive
preference and total abstinence. Figure 6
shows the proportion of responses to one of
the two alternatives (the variable-interval key)
as a function of the proportion of reinforce-
ments actually obtained from that key. The
data for four pigeons have been averaged here,
but the individual points were not systemati-
cally different. The finding is that even when
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the two alternatives reinforce according to dif-
ferent schedules, the distribution of respond-
ing still obeys the matching rule, or something
close to it. The bunching of the points on the
lower part of the function appears to be a
reliable outcome of the procedure. It says that
preferences for the variable-interval alterna-
tive (i.e., above 0.5 on the ordinate) are ex-
clusive, while for the variable-ratio alternative
(i-e., below 0.5 on the ordinate) they may be
exclusive or non-exclusive.
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Fig. 6. The relative frequency of responding to one
alternative in a two-choice procedure as a function of
the relative frequency of reinforcement thereon. For
one alternative, reinforcement was on a variable-
interval schedule, while, for the other, it was on a
variable-ratio schedule. The ordinate plots the variable-
interval alternative. The diagonal shows matching be-
tween ordinate and abscissa.

The matching in Fig. 6 is surprising not
only because of the peculiar procedure, but
also in light of the well-known effects of the
two kinds of schedules on responding in isola-
tion. Variable-ratio responding is typically a
good deal faster than variable-interval re-
sponding, at equal frequencies of reinforce-
ment (Herrnstein, 1964). In the present experi-
ment, the momentary rates of responding were
about twice as high for the ratio schedules as
for the interval schedules. Nevertheless, each
of the subjects maintained approximately the
required invariance of responses per reinforce-
ment across the ratio and interval schedules
(see equation 8) even while the parameter
values of both schedules were being changed.
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CHOICE AS BEHAVIOR AND
VICE VERSA

Intuitively, response strength should covary
in some reasonably orderly way with the pa-
rameters of reinforcement. The foregoing sec-
tion presents the case for replacing intuition
with the relative frequency of response. The
argument is simply that since relative respond-
ing is so directly controlled by relative rein-
forcement, the former is the proper measure
of the effects of the latter. The investigation
of strength need not, however, stop here. Sev-
eral theorists (Shimp, 1966; Neuringer, 1967a)
have argued that matching is not fundamen-
tal, but is to be explained as the outcome of
a more molecular interaction between behav-
ior and its consequences, somehow based on
“maximizing” in the probability-learning
sense. The developments along this line will
not be further examined here, for a persuasive
case one way or the other is yet to be made.
Suffice it to note that there is no logical assur-
ance that this sort of reductionism will ever
explain anything. The issue is empirical, and
it is possible that behavior is more (or more
simply) orderly at the level of the matching re-
lation than at the level of interresponse times
or sequences of choices, which is where the
molecular theories operate. In contrast, logic
demands that if the relative frequency of re-
sponse is governed by the frequency of rein-
forcement, it must also govern somehow the
absolute rate of responding. Since relative fre-
quencies in the free-operant procedure are
merely ratios of rates of responding, the one
could hardly be affected without the other be-
ing affected as well.

The link between sheer output of behavior
and what is usually called “choice” is pecu-
liarly apparent with the free-operant method.
In conventional choice experiments using dis-
crete trials, the total number of responses is a
trivial by-product of the procedure, depending
simply on the number of trials per unit time.
When the experimenter stipulates what the
sheer output of behavior is going to be, he is
unlikely to find it interesting. In the operant
paradigm, however, where the output is as
free to vary as anything else, if not more so,
it becomes an interesting, and inescapable, de-
pendent variable. Yet the matching relation
holds for both continuous-responding and dis-
crete-trial procedures. In the former, the
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question of sheer output cannot honestly be
disregarded; in the latter, the question is pre-
cluded by the procedure. Since it seems un-
likely that the two situations can be funda-
mentally different when they both produce
matching, “choice” in the discrete-trial proce-
dure should be explained the same way as the
output of behavior for the free-operant proce-
dure. It is hard to see choice as anything more
than a way of interrelating one’s observations
of behavior, and not a psychological process
or a special kind of behavior in its own right.
For continuous-responding procedures, the
correspondence between choice and behavior
is clear, for the measure of choice is just the
ratio of the simple outputs for the alternative
responses.

What, then, can be said about these simple
rates of responding? In the first concurrent
procedure considered above (see Fig. 4), the
two responses were freely occurring operants,
reinforced on variable-interval schedules, and
the matching relation was the ratio of their
rates of occurrence. Figure 7 shows the abso-
lute rates of responding of which the match-
ing relation was the ratio. For absolute rates
of responding there are twice as many degrees
of freedom as for relative rates, since the two
keys give values separately in the former in-
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Fig. 7. The rate of responding for each of two
alternatives in a two-choice procedure as a function
of the rate of reinforcement for each. Variable-interval
schedules were used for both. From Herrnstein (1961).
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stance, but complementarily in the latter.
Even though the functions in Fig. 7 are, there-
fore, not as firmly demonstrated as in Fig. 4,
the trend of the data is clear. (One point from
the original experiment for one subject has
been omitted since there are reasons to believe
that it was aberrant.) The absolute rate of
responding on each key is directly propor-
tional to the absolute rate of reinforcement.
This elegantly simple relation may be ex-
pressed in the equation:

P=kR ©)

Note that this relation is consistent with the
basic matching relation, as it would have to
be unless something were amiss. If each re-
sponse alternative were obeying this rule, then
any combination of responses with the same
proportionality to reinforcement (i.e., the
same k) should show matching, as simple al-
gebra proves:

Py, kR, Rp

= = (10)
P.+ P, KkR,+KkRz; R.+FRg

Equation 9 makes a plausible and impres-
sively simple fundamental law of response
strength. Its main trouble is that it has been
tried before and failed, for, in another form,
it merely restates Skinner’s first published
guess about response strength (1938, p. 130f),
when he asserted the constancy of what he
called the extinction ratio. From his early
work, he surmised that the number of re-
sponses per reinforcement with interval sched-
ules might be a constant, which is equation 9
solved for k. Thus, if the animal’s response is
reinforced once every 5 min it should respond
twice as fast as when the response is reinforced
every 10 min, and so on. Skinner’s own data
failed to support this simple principle, and
later (1940) he revised the general principle
of the “reflex reserve”, so that the constancy
of the extinction ratio was no longer of any
theoretical importance in his system. The mass
of data collected since shows no such relation
as equation 9 in single-response procedures, as
Catania and Reynolds (1968) demonstrated
most exhaustively.

In the experiment summarized in Fig. 7,
the over-all frequency of reinforcement was
held constant at 40 per hour while the propor-
tion allocated to one alternative or the other
was varied. As long as the total number of
reinforcements (Ry, + Rg) is constant, there is
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no way to distinguish in a single experiment
between the prediction of equation 9 and the
following:

kR,

PSR TRy an

When the sum Ry + Ry is itself a constant,
equation 11 is equivalent to equation 9, the
only difference being the value of k, which
is an arbitrary constant in either case. As re-
gards Fig. 7, then, equation 11 is as good as
equation 9. The two equations make divergent
predictions only when Ry, + Ry is not a con-
stant, which is actually more typical in con-
current procedures. The difference is that
equation 11 predicts a “‘contrast” effect, which
is to say a reciprocal relation between the
reinforcements for one alternative and the
responses to the other, whereas equation 9
predicts independence of responding to one
alternative and reinforcements for the other.
The data unequivocally support equation 11,
for contrast effects are reliably found in con-
current procedures (Catania, 1966).

Although equation 11 conforms at least
qualitatively to the literature on concurrent
procedures, it, like equation 9, seems to run
into trouble with single-response situations,
for when there is only one response alterna-
tive being reinforced the equation degenerates
into the following constancy:

P=k (12)

Responding in single-response situations is no-
toriously insensitive to variations in the pa-
rameters of reinforcement, but it is not totally
insensitive. Equation 12, however, is the result
of a gratuitous assumption, albeit one that is
easily overlooked. It assumes that because the
experimenter has provided just one response
alternative, there is, in fact, just one. A more
defensible assumption is that at every moment
of possible action, a set of alternatives con-
fronts the animal, so that each action may be
said to be the outcome of a choice. Even in a
simple environment like a. single-response
operant-conditioning chamber, the occurrence
of the response is interwoven with other, albeit
unknown, responses, the relative frequencies
of which must conform to the same general
laws that are at work whenever there are mul-
tiple alternatives. In fact, it seems safe to as-
sume that all environments continually de-
mand choices in this sense, even though in



ON THE LAW OF EFFECT

many cases the problem of identifying and
measuring the alternatives may be insoluble.
That problem is, however, the experimenter’s,
not the subject’s. No matter how impoverished
the environment, the subject will always have
distractions available, other things to engage
its activity and attention, even if these are no
more than its own body, with its itches, irrita-
tions, and other calls for service.

The notion that started this section, that
choice is not a psychological mechanism so
much as a certain measure extracted from ob-
servations of behavior, has a complement. For
while choice is nothing but behavior set into
the context of other behavior, there is no way
to avoid some such a context for any response.
An absolute rate of responding is occurring in
such a context, whether or not the experimen-
ter happens to know what the other alterna-
tives and their reinforcers are. With this in
mind, equation 11 may be rewritten for a
nominal single-response situation, but recog-
nizing the possibility of other sources of rein-
forcement, as follows,

kR

P=RFR, (13)

in which R, is the unknown, aggregate rein-
forcement for other alternatives.? In practical
terms, R, is a second free parameter to be ex-
tracted from the data, but it is one that has a
definite empirical interpretation. The ques-
tion is whether equation 13 fits the data.
Figure 8 is a test of equation 13 with data
obtained by Catania and Reynolds (1968).
The six pigeons in the experiment were sub-
mitted to variable-interval schedules with rates
of reinforcement ranging from about 10 to
about 300 per hour. The effects on perform-
ance were varied, as the points in Fig. 8 show.
However, with few exceptions, the points fall
on or near the smooth curves, which are plots
of equation 13. The parameter values for the
individual subjects are shown in each panel,
k first and R, second, with k in responses per

*This same equation for absolute rate of responding
in single-response situations can be found in Norman
(1966), except that Norman offers the equation as an
approximation, rather than as an exact relationship
between the variables. Norman’s analysis does not ap-
pear to be applicable to multiple-response situations
and his interpretation of the parameters is entirely
different from the present one. The two accounts are,
therefore, readily distinguishable, notwithstanding the
convergence at this point.
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Fig. 8. The rate of responding as a function of the
rate of reinforcement for each of six subjects on
variable-interval schedules. The first number in each
panel is k in responses per minute and the second is
R, in reinforcements per hour for the various smooth
curves. From Catania and Reynolds (1968).

minute and R, in reinforcements per hour.
The fit of points to function for each animal
shows that the mathematcial form of equation
13 is suitable for the single-response situation,
notwithstanding its origin within the context
of choice experiments. The variety of param-
eter values further shows that inter-subject
variability is also amenable to description in
these formal terms. There appears to be no
other comparably simple mathematical expres-
sion for the relation between absolute input
and output for simple, repetitive responding,
let alone one that also predicts the distribution
of choices over multiple alternatives.

Figure 9 is another test for equation 13,
showing the results of an unusual procedure
for varying reinforcement frequency. The pa-
rameter values are again for k in responses
per minute and R, in reinforcements per
hour, in that order. Chung (1966) reinforced
his pigeons’ responses after a given duration
had elapsed since the first response after the
last reinforcement—in the terminology of re-
inforcement schedules, a tandem fixed ratio 1,
fixed interval of various durations. From time
to time, the duration was changed, giving a
new determination of rate of responding. The
actual rate of reinforcement was substantially
controlled by the subjects, for the sooner after
reinforcement the animals responded, the
sooner the required time interval would be-
gin. Chung’s experiment is worth noting here
not only because the procedure is unusual,
but because it achieved reinforcement rates
of about 2000 per hour, seven times Catania
and Reynolds’ (1968) maximum. Nevertheless,
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Fig. 9. The rate of responding as a function of the
rate of reinforcement for subjects on a tandem fixed-
ratio, fixed-interval schedule. The first number is k in
responses per minute and the second is R, in rein-
forcements per hour for the smooth curve. From Chung
(1966).

Chung’s results are well described by equa-
tion 13, although the parameter value for R,
(180) is substantially higher here than for five
of Catania’s and Reynolds’ six subjects.

Equation 13 is readily expanded into a gen-
eral principle of response output, whether the
response is presumably in isolation or not.
The matching relation can be derived by tak-
ing into account the reinforcement from both
alternatives:

KRy,
Py, R.+ Rx T R,
P.+ P kR, kRy
R.+R:+R, ' R+ Rz TR,
= R (14)
R.+R;

This assumes that k and R, are the same for
the responses under observation, a reasonable
supposition as long as the responses are equiv-
alent in form and effort. If choice were, how-
ever, asymmetric—for example, if one response
was to depress a lever while the other was to
pull a chain—the equivalence of neither k nor
perhaps R, could be assumed. Matching would
not be predicted, but the present formulation
would apply in principle nevertheless.

In recent experiments on choice, the sym-
metry assumption has been supportable, which
is to say, the matching relation has been
found. The next question is whether the ab-
solute rates of responding also conform to the
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present formalization. Equation 14 contains
the expressions for the absolute rates of re-
sponding, restated here for convenience (for
the left key):

kR,

P =R, TR, TR,

15)
For the first study of matching (Herrnstein,
1961), the agreement between fact and theory
is clear, since that is where the discussion be-
gan (see Fig. 7). When the total reinforce-
ment is held constant, as was the case in that
experiment, the absolute rate of responding
should be directly proportional to the abso-
lute rate of reinforcement. When the over-all
rates of reinforcement are not constant, there
should be “contrast” effects, with the rate of
responding on each alternative varying di-
rectly with the associated rate of reinforce-
ment, but inversely with the rates of rein-
forcement elsewhere.

Catania’s work (1963b) provides a quanti-
tative evaluation of equation 15. Catania used
pigeons on the Findley procedure. The two
alternatives were the usual variable-interval
schedules, each one signalled by a particular
color on the response key. The variable inter-
vals ran concurrently, but, in accordance with
the Findley procedure, there was only one
color (and, therefore, but one variable inter-
val) making direct contact with the subject at
any one time. A peck on the second key
changed the color and brought the second
variable interval into contact with the subject.
The difference between this sort of concurrent
schedule and the more familiar type is in the
“switching” response: for the Findley proce-
dure it is the pecking of a key, for the other,
it is actually moving back and forth between
the keys. Figure 10 shows that the difference
does not affect the matching relation. Both
the proportion of responses and the propor-
tion of time equal the proportion of reinforce-
ment for each alternative.

Equation 15, however, calls for absolute
rates of responding, not proportions, and
these are plotted in Fig. 11. There were two
series of reinforcement rates in the experi-
ment. In one, the sum of the reinforcement
rates for the two alternatives was always 40
per hour, just as in Fig. 7 (Herrnstein, 1961).
In the other, the sum varied, but was held at
20 per hour for one of the two schedules.
Equation 15 predicts a direct proportionality
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Fig. 10. The relative number of responses emitted
(filled circles) and the relative amount of time spent
(open circles) on one alternative in a two-choice pro-
cedure as a function of the relative frequency of rein-
forcement thereon. The diagonal shows matching be-
tween ordinate and abscissa. From Catania (1963b).

for the first condition and a curvilinear rela-
tion for the second. The left portion of Fig. 11
shows responding as a function of reinforce-
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Fig. 11. The rate of responding as a function of the
rate of reinforcement for each alternative in a two-
choice procedure. For the left panel, the overall fre-
quency of reinforcement was held constant at 40
reinforcements per hour, while varying complementarily
for the two alternatives. Each point is here plotted
above the reinforcement rate at which it was obtained.
For the right panel, the frequency of reinforcement
for Key 2 was held constant at 20 reinforcements per
hour, while varying between 0 and 40 for Key 1. The
points here are plotted above the reinforcement rate
on Key 1 at the time it was obtained. The values of k
and R, were used for the smooth curves in both panels.
From Catania (1963b).
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ment when the total reinforcement rate was
held constant at 40 per hour. For each alter-
native, the points approximate a straight line
passing through the origin, as theory predicts.
The selected line has the parameters k = 75
(responses per minute) and R, =9 (reinforce-
ments per hour). Note that these values are
easily within the range obtained in Fig. 8 for
a single-response situation involving variable-
interval schedules. The right-hand panel
shows responding as a function of reinforce-
ment rate on Key 13 for the second series,
when the reinforcement for one key (Key 2)
was held constant at 20 per hour while Key 1
reinforcements ranged from 0 to 40 per hour.
The contrast effect is the decreasing rate on
Key 2 as reinforcement for Key 1 increases.
The smooth curves again plot equation 15,
with the parameters again at k=75 and
R, =9. The crosses on the right panel show
the results of a second procedure with the
same three pigeons. Responding to Key 2 was
still reinforced 20 times per hour, while that
to Key 1 was again varied from 0 to 40 per
hour. The change was that the pigeons
switched to Key 1 only when a light sig-
nalled that reinforcement was due there, so
that the number of responses to Key 1 was
virtually equal to the number of reinforce-
ments. Otherwise, the procedure was un-
changed. As the decreasing rate of Key 2 re-
sponding shows, and as equation 15 implies,
contrast depends upon the reinforcement for
the other alternative, not on the responding
there. The crosses may actually deviate slightly
from the filled circles, for reasons that will be
considered in the next section, but aside from
this, Catania’s data provide substantial con-
firmation for Equation 15 and the system from
which it emerges.

Catania accounted for his results with a
power function between absolute responding
and the relative number of reinforcements,
as follows:

kR,

PR TRy

(16)
Like equation 15, this one, too, predicts
matching when k and the denominators can
be cancelled out, which is to say, when choice

*With the Findley procedure, the designations, “Key
1” and “Key 2”, do not identify two separate response
keys. Rather, they represent the two possible states of
the key to which responses were reinforced.
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is between otherwise equivalent alternatives.
Given the variability in the data, it would be
hard to choose between equation 16 and the
present formulation as contained in equation
15. The most easily testable difference between
Catania’s hypothesis and the present one is in
regard to responding in single-response situa-
tions, for which equation 16 implies a power
function with an exponent of 1/6, while equa-
tion 15 implies equation 13. The data, the
best of which we owe to Catania and Reynolds
(1968), distinctly favor the latter alternative,
since no power function handles the data from
individual pigeons in single-response proce-
dures while equation 13 makes a plausible fit,
as shown in Fig. 8 and 9.

Equation 13 is for single-response proce-
dures; equation 15, for two-response pro-
cedures. The general case, for a situation con-
taining n alternative sources of reinforcement,
is:

P=—" an

This mathematical form is not used through-
out because it hides R,, the parameter in the
denominator. It does, however, reveal the most
general implications of the theory. Matching
will take place over any set of alternative re-
sponses for which k and IR are fixed, the
typical choice procedures, for example. In-
versely, when matching is not obtained, the
alternatives either have different asymptotic
rates (k) or are operating within different con-
texts of reinforcement (3R), or both. It is not
hard to conceive of situations that exhibit
either or both of these asymmetries, even
though they are somewhat unfamiliar in ex-
periments on choice. The next section sum-
marizes research in a field that shows the
latter asymmetry, the absence of a fixed con-
text of reinforcement.

The idea of a “context” of reinforcement
is fundamental to the present analysis, for
that is what the denominator is best called.
Equation 17 says that the absolute rate of re-
sponding is a function of its reinforcement,
but only in the context of the total reinforce-
ments occurring in the given situation. When
the total is not much more than the reinforce-
ment for the response being studied, then re-
sponding will be relatively insensitive, for the
ratio R, /3R, will tend toward 1.0. This ex-
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plains, at least partly, why for over three dec-
ades, interesting functional relations between
reinforcement and responding have been so
scarce. Experimeters have naturally tried to
make the behavior they were observing impor-
tant to the subject, and they have probably
succeeded. If the response was to be reinforced
with food or water, then the state of depriva-
tion, the size of the reinforcer, and the experi-
mental isolation of the subject have probably
guaranteed that 3R will be only negligibly
larger than R,. To do otherwise, which is
to make IR substantially larger than R,, is
to risk unexplained variability, for then P,
will be at the mercy of fluctuations in the
other (usually unknown) reinforcers in the sit-
uation. Investigators have made a tacit deci-
sion in favor of stability, but at the cost of
sensitivity to the independent variable.

Equation 17 explains the unique advantage
of concurrent procedures. Because 3R and k
are eliminated when comparable responses are
being measured as relative frequencies, the
stability-sensitivity dilemma is avoided. The
peculiar discrepancy between single and mul-
tiple response situations has been noted, with
the one stubbornly insensitive and the other
gratifyingly orderly and interesting (Catania,
1963a; Chung and Herrnstein, 1967). For mag-
nitude, frequency, and delay of reinforcement,
it has been shown that matching in multiple-
response procedures and virtual insensitivity
in single-response procedures are the rule.
The discrepancy is a corollary of equation 17,
which implies that responses at comparable
levels of strength, as in symmetric choice ex-
periments, will not only be sensitive to shifts
in reinforcement between them, but equally
affected by uncontrolled changes in extraneous
reinforcers and therefore relatively orderly
with respect to each other.

INTERACTION AT A DISTANCE

Equation 17 says that the frequency of re-
sponding is proportional to its relative rein-
forcement. The interval over which these re-
sponses and reinforcements are counted has
so far been taken for granted. In simple choice,
the interval is the experimental session itself,
which is usually homogeneous with respect to
rates of reinforcement and responding. The
literature of operant conditioning contains,
however, many experiments in which neither
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behavior nor its consequences are evenly dis-
tributed over sessions, and many of these ex-
periments show interactions between succes-
sive (as well as simultaneous) conditions of
reinforcement. An early and clear instance was
Reynolds’ (1961a) experiment, in which the
rate of responding by pigeons on a variable-
interval schedule increased when the schedule
alternated with a period of non-reinforcement.
The procedure started with 3-min alternation
between red and green light on the response
key, but responding was reinforced on the
variable-interval schedule throughout. As ex-
pected, the rate of responding was approxi-
mately steady. When reinforcement was dis-
continued during, let us say, the red periods,
responding during the green periods rose by
about 509, even though the rate of reinforce-
ment was unchanged therein. In another part
of the experiment, a variableratio schedule
was used instead of a variable-interval sched-
ule, with comparable results.

This “contrast” effect, as Reynolds termed
it, has been widely confirmed, under many cir-
cumstances. For present purposes, the question
is whether or not such changes in rate of re-
sponding belong with the present account of
response strength. To anticipate the answer,
the conclusion will be affirmative: the contrast
effect is largely, if not entirely, derivable from
an adaptation of equation 17.

If Reynolds had used a concurrent proce-
dure, instead of a multiple schedule, a con-
trast effect would have been in order. With a
variable interval of 3 min (VI 3-min) for re-
sponding on each key, the rate of responding
is governed by the equation (measuring in
reinforcements per hour),

k20

P=30+R, (18

With extinction on the other key, the rate
on this key should rise, since it would now
be governed by,

k20

P=30+R, 19

If R,, the unscheduled, extraneous reinforce-
ment, is assumed to be vanishingly small, the
contrast effect is a doubling, i.e., 1009,. The
larger is R,, the smaller is the contrast effect.
In Reynolds’ experiment, the contrast effect
was only about 509, which implies R, =20
reinforcements per hour, assuming, for the
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moment, that equations 18 and 19 are appro-
priate. Although R, may have been this large
in his experiments, the more typical range for
pigeons in the standard chamber is 1 to 10,
with only infrequent instances falling outside.
This, and other considerations, suggest that
the multiple schedule, in which the alterna-
tives succeed each other, differs in some way
from simultaneous choice as regards the analy-
sis of response strength.

For simultaneous choice, each source of re-
inforcement is assumed to exert a full effect on
every response alternative. However plausible
this assumption is for concurrent procedures,
it is less so for multiple schedules, in which
the various sources of reinforcement are not
simultaneously operative. As the components
of a multiple schedule become more separate,
the interaction across components is likely to
diminish; in the limiting case, diminish to no
interaction at all. Thus, if the components
alternate slowly and are denoted by distinctive
stimuli, the interaction might be smaller than
if the alternation is rapid and the stimuli
marginal.

There are many ways to translate this con-
tinuum of interactions into a formal expres-
sion, but one of the simplest is to assume that
the reinforcement in one component affects
the responding in the other by some constant
fraction of its full effect. For the two-compo-
nent multiple schedule, then, the rate of re-
sponding in one component would be given
by:4

kR,

k=R F¥mR, R,

(20)

This is identical to the equation for one of
the alternatives in a two-choice procedure

‘Note that the time base for calculating the rate of
responding in multiple schedules is the duration of the
component during which the responding may occur.
For concurrent schedules, the time base is the entire
experimental session (excluding feeding cycles, timeouts,
etc). In general, the time base for calculating a rate of
responding should be the time during which respond-
ing may occur, which differs as indicated in multiple
and concurrent procedures. Also, note that the quantity
R, in equation 20 represents a composite of the
extraneous reinforcement during one component (com-
ponent #1 in the example in the text) plus the
extraneous reinforcement in the other component, with
the latter suitably decremented by the multiplicative
factor m. In a fuller account, R, should be written out
as R,; + mR,,. Such detail is clearly premature at this

point.
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(equation 15), except for the additional pa-
rameter, m, which should vary between 0 and
1.0, depending upon the degree of interaction
across components. Equation 15 may, in fact,
be considered a special case of equation 20,
where m = 1.

The remainder of this section is a consider-
ation of multiple schedules along the lines
implied by equation 20. It should be noted
at the outset that this equation is just one way
to extend the present formulation to situations
in which interactions are sub-maximal. As the
following discussion shows, the data are not
quite adequate either to confirm equation 20
or to demand an alternative. For present pur-
poses, however, it suffices to demonstrate that
many of the effects of multiple and concurrent
procedures follow from a single conception of
response strength.

Equation 20 assumes not only a simple
mechanism to govern the degree of inter-
action, but it tacitly describes the most sym-
metrical sort of multiple schedule, as shown
by the absence of subscripts on the parame-
ters, k, m, and R, This is tantamount to
assuming that the response alternatives have
equal asymptotic rates (k), that the interaction
one way is the same as the interaction the
other (m), and that the unscheduled reinforce-
ment is the same during the two components
(R,). This is for a multiple schedule, in other
words, with the same response-form in both
components (k), with the same rule for the
alternation from one component to the other
as for the alternation back (m), and with the
extra-experimental factors held constant (R,).
It is possible to violate any of these conditions,
but that should only complicate the analysis,
not change it. Reynolds’ experiment appears
to satisfy these restrictions, and his results
would follow from equation 20 if m was be-
tween 0.55 and 0.75, assuming R, between 1
and 10 reinforcements per hour.

Equation 20 says that the contrast effect de-
pends upon the reinforcement in the other
component. Reynolds addressed himself to
this issue at an early stage (1961b). He showed
contrast when a “timeout” period was substi-
tuted for extinction. During a timeout, pi-
geons do not peck the key, and, in Reynolds’
experiment, they received no reinforcement.
Timeout and extinction should have the same
effects on responding in the other component
if they both reduce reinforcement in the inter-
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acting component to zero, and if equation 20
is correct. Reynolds then went on to show that
as long as reinforcement in the interacting
component is sustained, with or without re-
sponding, contrast is prevented. In one
procedure, reinforcement was for 50 sec of
non-responding, a technique that suppresses
responding, but does not eliminate reinforce-
ment. Contrast was not observed. As Reynolds
concluded, and as equation 20 implies, “The
frequency of reinforcement in the presence of
a given stimulus, relative to the frequency
during all of the stimuli that successively con-
trol an organism’s behavior, in part deter-
mines the rate of responding that the given
stimulus controls.” (p. 70, his italics)

The importance of reinforcement rate is
clearly shown in Bloomfield’s study of two
multiple schedules (1967a). One multiple
schedule consisted of 2-min alternations of VI
I-min with a DRL, the latter a procedure in
which the response is reinforced only after
speciked periods (varied from 5 to 15 sec) of
non-responding. In the other schedule, VI 1-
min alternated with a fixed-ratio schedule
(varied from 10 to 500). The two halves of the
experiment shared a standard variable-interval
schedule alternating with a schedule that
yielded various different rates of reinforce-
ment. Moreover, for both fixed-ratio and DRL
schedules, the rate of reinforcement is a con-
tinuous joint function of the emitted rate of
responding and the experimental parameter.
However, the difference is that the functions
are opposite, for on a fixed-ratio schedule, the
rate of reinforcement is proportional to the
rate of responding, while on the DRL, the rate
of reinforcement is inversely related to the
rate of responding given the levels of respond-
ing obtained by Bloomfield. Nevertheless,
both of Bloomfield’s multiple schedules sup-
port the implication of equation 20, that rein-
forcement rate determines contrast. The rate
of responding during the variable-interval
component was an inverse function of the rate
of reinforcement in the other component, with-
out regard to whether the other schedule was
a fixed ratio or a DRL. Neither the direction
nor the magnitude of the contrast effect was
apparently affected by the rate of responding
or the schedule per se in the interacting com-
ponent.

The question now is whether the depen-
dence of contrast on reinforcement is in quan-
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titative, as well as qualitative, agreement with
equation 20. Reynolds (1961c), using multiple
VI FR schedules, concluded not only that the
relative rate of responding was a function of
the relative rate of reinforcement, but that the
function was linear, with a positive intercept
and slope less than 1.0. This was to be distin-
guished from concurrent procedures, where
the matching relation holds (slope = 1.0; in-
tercept = 0).

Reynolds’ linear relation is at variance with
equation 20. The predicted relation between
the relative frequency of responding and the
relative frequency of reinforcement is consid-
erably more complex than linear, as follows:5

kR,
P, _ R, + mR, + R,
P, + P, kR, kR,
R, +mR,+ R, ' R,+ mR, +R,
1
R,(R, + mR, F K,) @1

1+ R(R, ¥ mR, ¥ R,)

As a function of the relative frequency of re-
inforcement, R,;/(R;+ Rp), this expression
plots as a family of reverse-S-shaped functions,
the curvature of which is dependent upon the
relative magnitudes of R, 5, R,, and m. Com-
plex as this is, it would be even worse without
the assumptions of symmetry that qualify
equation 20. The more general formulation
will not, however, be explicated here, since
there appear to be virtually no data to test it.
Figure 12 shows a representative sampling
from the family expressed in equation 21. The
ordinate is the relative rate of responding in
one component of a multiple schedule and
the abscissa is the relative rate of reinforce-
ment therein. When the interaction between
components is absent, which is to say, when
there is no contrast effect, then the parameter
m = 0. When interaction is maximal, as in
concurrent procedures, m = 1.0. The shape of
the function depends jointly on the degree of
interaction (m) and on R,, which is the rein-
forcement from sources other than the mul-
tiple schedule itself. If both this quantity and
the interaction term, m, go to zero, then the
relative rate of responding during a compo-
nent will be insensitive to changes in the rela-

SThis assumes that the quantities P, and R; are
either absolute numbers taken over equal periods of
time or are themselves rates.
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Fig. 12. Hypothetical curves relating the relative
frequency of responding and the relative frequency
of reinforcement in a two-component multiple sched-
ule. The rate of reinforcement summed across the two
components is assumed to be held constant at 12 rein-
forcements per unit time, while the other parameters
vary as indicated on the figure. See text for discussion
of equation 21.

tive rate of reinforcement. For any given value
of m, the function is made steeper by larger
values of R,. As long as m is less than 1.0, the
function approaches the matching line (7)
asymptotically as R, increases. On the other
hand, with m = 1.0, the matching line is ob-
tained, notwithstanding the value of R,. The
effect of R, at m < 1.0 depends upon the rela-
tive magnitudes of R, and the over-all sched-
uled rates of reinforcement, which is 12 rein-
forcements per unit time for Fig. 12. When
R, is relatively small, it exerts a smaller effect
than when it is relatively large.

Points on the functions in Fig. 12 may easily
be taken for linear, particularly if they fall
in the middle of the range, as Reynolds’
(1961¢) did. The most complete set of data
to test equation 21 is Reynolds’ experiment
(1963b) on multiple VI VI. Three pigeons
were each run through three sequences of
values. In the first, one of the schedules was
held constant at VI 3-min while the other
varied; in the second, both varied; in the last,
one was again held constant, but at VI 1.58-
min. Figure 13 shows for each pigeon how
well equation 21 handles the data for all three
series. The smooth curves plot equation 21,
with different parameters for the three pi-
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Fig. 13. The relative frequency of responding as a
function of the relative frequency of reinforcement in
one component of a multiple variable-interval, vari-
able-interval schedule, for each of three subjects. The
smooth curves plot the theoretical functions, with
R,=0 and m set at the values indicated. From
Reynolds (1963b).
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geons. For 37, m =0.2; for 52, m =0.3; and
for 53, m = 0.1. R, was arbitrarily set at 0 for
all pigeons for convenience in calculation and
presentation. If non-zero values of R, had
been used, then no single predicted curve
could have been drawn for each pigeon, since
the over-all frequency of reinforcement was
not held constant, and the effect of R, depends
upon the over-all frequency of reinforcement.
In any case, the typical value of R, can exert
only negligible effects on the relative rate of
responding, at these rates of reinforcement.
The fit of the points to the data justifies both
the omission of R, and the general formula-
tion underlying equation 21.

Although the fit in Fig. 13 supports the
present account, reverse-S curves are not nec-
essarily evidence for contrast. Figure 12 shows
that curves of this general shape may be ob-
tained even when m =0, which is to say,
when the reinforcement in each. component
affects the responding in that component only.
To show contrast effects directly, absolute, not
relative, rates of responding are in order. Al-
though Reynolds’ absolute rate data contain
evidence for contrast, they were too variable,
both within and between subjects, to permit
a useful test of the present formulation. The
most comprehensive data for this purpose ap-
pear to be in an unpublished experiment by
J. A. Nevin.

Nevin used pigeons on a three-component
multiple schedule, of which two were conven-
tional VI I-min and VI 3-min, signalled by
the color of the illumination on the response
key. Each lasted for 1 min, after which the
chamber was darkened for 30 sec. The inde-
pendent variable was the rate of reinforcement
during the timeout, which was set at five nomi-
nal values, from zero to one every 10 sec. The
absolute rate of responding during a compo-
nent should follow from equation 20, modified
to take into account the presence of three, in-
stead of two, components. For the component
with VI 1-min (60 reinforcements per hour),
the equation is, to a first approximation,

k 60
P60 +m/20+x\ R,
(%)
for the VI 3-min (20 reinforcements per hour)
component, it is

(22)

_ k20
P2—2o+m(60+x) IR,
2

(23)
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The quantity, x, is the independent variable,
which is to say, the reinforcement rate during
timeout. The interaction term, m( ), is the
average rate of reinforcement during the two
components that might cause contrast. This
formulation disregards at least two factors that
are likely to have some effect. First of all, it
tacitly assumes equivalent interactions be-
tween responding in a given component and
reinforcement in either of the two other com-
ponents. A more realistic assumption would be
that the component closer in time exerts a
greater effect, as, in fact, some work has indi-
cated (Boneau and Axelrod, 1962; Pliskoff,
1963). Secondly, it tacitly assumes that the
durations of the components (I min as op-
posed to 30 sec for the timeout) are immaterial
as regards contrast, whereas a component’s ef-
fect probably increases with its duration. Plac-
ing values on these two complicating factors
would be totally arbitrary at present, as well
as somewhat unnecessary, since they may at
least be presumed to operate in opposite di-
rections, the nearer component being the
briefer.

Figure 14 shows the absolute rate of re-
sponding during the two variable-interval
components, averaged over the four subjects.
The two curves are plots of equations 22 and
23. Narrow bands, rather than lines, are drawn
for the predicted values because of variation
in the obtained rates of reinforcement on the

eVvVIl
oVvI3

PREDICTION FOR VI1

RESPONSES / MINUTE
8 & & & 8

1 i 1
250 300 350 400 450

0 1 ! L 1
o 50 100 150 200

REINFORCEMENTS / HOUR

Fig. 14. The rate of responding in one component
as a function of the rate of reinforcement summed
across the other two components in a three-component
multiple schedule. The filled circles and the upper
curve are for the component held constant at a
variable interval of 3 min. Both curves drawn with
lower curve are for the component held constant at a
variable-interval of 83 min. Both curves drawn with
the parameters as indicated in the box. From Nevin
(unpublished).
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nominal VI I-min and VI 8-min. The abscissa
is the rate of reinforcement summed across two
of the three components, omitting the compo-
nent from which responding is plotted (i.e.,
two times the term in parenthesis in equations
22 and 23). The numbers alongside the points
identify the two values from each of the five
multiple schedules studied. Generally, the
point on the lower curve is shifted 40 rein-
forcements per hour to the right of the upper
point, which is the difference between the VI
I-min and the VI 3-min. These decreasing
functions are pure contrast, since the rates of
reinforcement were close to constant in each
of the variable-interval components (except
for the last point on the lower curve). Equa-
tions 22 and 23, with parameters set at R, =3
reinforcements per hour, m = 0.50, and k = 80
responses per minute, appear to be satisfactory
except for the first point for VI 3-min.

Contrast is generally (e.g., Reynolds, 1963b)
more pronounced with lower constant rates of
reinforcement. Thus, the upper function in
Fig. 14 is shallower than the lower. In fact, as
the reinforcement rate during the timeout in-
creases, the proportion between the rates of
responding in the two components should, ac-
cording to equations 22 and 23, approach
asymptotically the ratio between the rates of
reinforcement, in this instance 3:1. The ratios
of responding are, moving to the right along
the abscissa, 1.19:1, 1.6:1; 2.24:1, 2.54:1; 2.69:1.
The greater susceptibility to contrast of less
frequently reinforced behavior has been noted
by Bernheim and Williams (1967), as well as
in various experiments on pigeons in multiple
schedules. Their finding, based as it was
on rats in running wheels, serves particu-
larly to extend the applicability of the pres-
ent analysis.

Although it is premature to argue for the
exact function by which the interaction be-
tween components is diminished, the simple
multiplicative factor of equation 20 does well
with most of the published literature. Parame-
ters have been calculated for three other mul-
tiple schedules in which reinforcement varied
over a range large enough to allow some as-
sessment. The fit of the data to theory was no
worse than in Fig. 14, with no deviation
greater than six responses per minute, and 15
(out of 18 independent data points) less than
three responses per minute. Table 1 shows the
parameter values for the three experiments,
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all of which used pigeons as subjects. Lander
and Irwin’s (1968) was a conventional two-
component multiple schedule. Nevin’s (1968)
had as its independent variable the duration
of reinforced non-responding in one of its two
components. The shorter the duration, the
higher the rate of reinforcement. The param-
eters predict the rate of responding in the
other component, which was a conventional
variable interval. Rachlin and Baum’s (1969)
experiment used two keys, of which one always
provided reinforcement on VI 3-min. The re-
inforcer was 4-sec access to food. The light on
the other key was extinguished except when
a second VI 3-min programmer completed an
interval, at which time it was lit until the next
response collected the reinforcement.® The
amount of these reinforcements was varied
16-fold during the course of the experiment.
Responding on the other key varied inversely
with magnitude of reinforcement, as if amount
and frequency of reinforcement could be
traded off against each other in equation 20.
Equation 20 appears to run into trouble
mainly in regard to transitory effects. For ex-
ample, Terrace (1966a, —b) found a transient
contrast effect going from a simple variable-
interval schedule to the same variable interval
alternating with extinction. Equation 20 does
not predict any change in rate here, since the
interaction term is zero before and after the
change. Terrace’s procedure differs from Rey-
nolds’, which goes from a multiple schedule

°Catania’s findings (1963b) with just this procedure
are plotted as x’s on Fig. 11. It was noted before (see
p- 257) that the x’s are slightly above the predicted line,
which is where they should be if m <1.0; in fact,
m < 1.0 (m=0.45 in the Rachlin-Baum study) because
the alternating conditions of reinforcement and stimu-
lation make this more properly a multiple schedule
than a concurrent, notwithstanding the use of two
response keys.
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consisting of a pair of matched variable inter-
vals to one consisting of the variable interval
alternating with extinction and for which
equation 20 predicts contrast. Terrace’s con-
trast effect vanishes with mere exposure to
the conditions or with repeated alternations
between the variable interval in isolation and
the multiple schedule consisting of the varia-
ble interval and extinction. On the other
hand, Bloomfield (1967b), using Reynolds’
paradigm and addressing himself specifically
to the persistence of contrast, found the effect
undiminished even with several alternations
back and forth between mult VI VI and mult
VI EXT. Equation 20, then, is apparently con-
sistent with the long-term effects, but not with
the temporary contrast in the Terrace para-
digm.

Terrace (1966b) concluded that the tempo-
rary contrast effect is emotional, based on the
aversiveness of extinction. He noted the one-
to-one correspondence between contrast and
peak shift in discrimination learning, and also
that the peak shift is often taken as evidence
for an inhibitory or aversive effect of non-
reinforcement. Any procedure that produces
a peak shift also produces contrast; any pro-
cedure that prevents or diminishes the peak
shift, prevents or diminishes contrast, accord-
ing to Terrace. Aversiveness as negative rein-
forcement solves the problem, for adding a
negative quantity to the denominator of kR, /
(R, + R,) increases the value of the expres-

'sion, given that it remains positive. And there

is other evidence that extinction is temporarily
aversive as, for example, summarized by Ter-
race in his defense of the view. There is also
evidence for representing aversiveness as a
negative quantity. Brethower and Reynolds
(1962) used a mult VI VI with equal reinforce-
ment schedules in the two components, and
added punishment with electric shock to one

Table 1
k R,
(Responses (Reinforcements
per Minute) m per Hour) Procedure

Lander and Irwin i 0.2 4 VI 3-min VI x-min

(1968)
Nevin (1968) 85 0.35 2 VI 3-min DRO x
Rachlin and Baum 70 0.45 10 VI 3-min CRF

(1969) (varying amount of

reinf)
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of the components. They found a contrast ef-
fect in which magnitude was an increasing
function of the shock intensity.

A corrollary of the foregoing is that equa-
tion 20 predicts a difference between the rate
on a simple variable-interval schedule and the
rate on a multiple schedule in which each
component uses this same variable interval,
as follows:

kR, kR,
Ri+R, R+ mR,+R,

24)

Only if m =0 will the two expressions be
equal; otherwise the variable interval in iso-
lation will produce the higher rate. This sur-
prising prediction appears, in fact, to be
correct. In Bloomfield’s experiment (1967b),
responding on a variable interval alone was
faster than responding on a multiple compris-
ing two components of the same variable in-
terval, although the experiment was not spe-
cifically designed for this comparison. A direct
test of the inequality above (24) is in an un-
published study by Terrace. Four pigeons
were trained initially with a simple VI 1-min
in the presence of a given stimulus. Then,
when responding was judged to be stable, this
stimulus alternated every 1.5 min with a dif-
ferent stimulus, but reinforcement was con-
tinued on VI I-min. For each pigeon, and for
at least several weeks of daily sessions, the
rate of responding dropped during the stim-
ulus common to the first and second proce-
dures. The average decrement was about 309,
which for these reinforcement rates implies
0.31 <m < 0.36 (setting R,=0-10). At this
point, however, the discussion begins to go
beyond the boundaries set by well established
data.

ENVOI

Temporary changes in responding clearly
require further study, as the foregoing section
shows. There are other, even more short-term,
changes in responding (e.g., Williams, 1965;
Nevin and Shettleworth, 1966; Bernheim and
Williams, 1967) in multiple schedules that
must for now also remain on the boundary
of the present formulation. Another boundary,
touched on earlier, is the definition of re-
sponse classes (see p. 251). The key pecking of
pigeons, for example, is relatively unambigu-
ous, but even its properties, as some experi-
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ments show (Herrnstein, 1958), can get en-
tangled with the measurement of response
strength. Nevertheless, within these bounda-
ries, the present formulation is a quantitative
law of effect that cuts across traditional dis-
tinctions between choice and sheer output of
behavior, as well as between simultaneous and
successive conditions of work. The territory
circumscribed is sizeable, expandable, and sus-
ceptible to precise measurement.
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