

 i

PROCEEDINGS

SEKE 2018

The 30th International Conference on

Software Engineering &

Knowledge Engineering

Sponsored by

KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

Technical Program

July 1 – 3, 2018

Hotel Pullman, Redwood City, San Francisco Bay, USA

Organized by

KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

 ii

Copyright ⓒ 2018 by KSI Research Inc. and Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher.

ISBN: 1-891706-44-6

ISSN: 2325-9000 (print)

2325-9086 (online)

DOI reference number: 10.18293/SEKE2018

Publisher Information:

KSI Research Inc. and Knowledge Systems Institute Graduate School

156 Park Square

Pittsburgh, PA 15238 USA

Tel: +1-412-606-5022

Fax: +1-847-679-3166

Email: seke@ksiresearch.org

Web: http://ksiresearchorg.ipage.com/seke/seke18.html

Proceedings preparation, editing and printing are sponsored by KSI Research Inc. and Knowledge Systems Institute
Graduate School, USA.

Printed by KSI Research Inc. and Knowledge Systems Institute Graduate School

 iii

FOREWORD

Welcome to the 30th International Conference on Software Engineering and Knowledge Engineering (SEKE), in Hotel Pullman,
Redwood City, USA. In last 30 years, SEKE has established itself as a major international forum to foster, among academia,
industry, and government agencies, discussion and exchange of ideas, research results and experience in software engineering and
knowledge engineering. The SEKE community has grown to become a very important and influential source of ideas and
innovations on the interplays between software engineering and knowledge engineering, and its impact on the knowledge
economy has been felt worldwide. On behalf of the Program Committee, it is my great pleasure to invite you to participate, not
only in the technical program of SEKE 2018 and its rich assortment of activities, but also in enjoying the beautiful San Francisco
Bay Area.

This year, we received 214 submissions from 32 countries. Through a rigorous review process where a majority (90 percent) of
the submitted papers received three reviews, and the rest with two reviews, we were able to select 75 full papers for the general
conference (35 percent), 72 short papers (34 percent), 35 posters (16 percent) and 32 (15 percent) reject. Out of that, 15 papers
have been accepted for the 3 special sessions (SESE 4 papers, DISA 7 papers and LATTICE 4 papers), and 132 papers are
scheduled for presentation in thirty five sessions during the conference. In addition, the technical program includes three excellent
keynote speeches, as well as the special sessions on Semantic Enabled Software Engineering (SESE), Data Intensive Service-
based Applications (DISA) and Conceptual Lattices for Software Systems Engineering (LATTICE).

The high quality of the SEKE 2018 technical program would not have been possible without the tireless effort and hard work of
many individuals. First of all, we would like to express our sincere appreciation to all the authors whose technical contributions
have made the final technical program possible. We are very grateful to all the Program Committee members whose expertise and
dedication made our responsibility that much easier. Our gratitude also goes to the keynote speakers who graciously agreed to
share their insight on important research issues, to the conference organizing committee members for their superb work, and to the
external reviewers for their contribution.

Personally, we owe a debt of gratitude to a number of people whose help and support with the technical program and the
conference organization are unfailing and indispensable. We are deeply indebted to Dr. S. K. Chang, Chair of the Steering
Committee, for his constant guidance and support that are essential to pull off SEKE 2018. Our heartfelt appreciation goes to Dr.
Xudong He, Florida International University, USA, the Conference Chair, for his help and experience, and to the Program
Committee Chair, Dr. Oscar Mortagua Pereira, University of Aveiro, Portugal, and Program Committee Co-Chair, Dr. Angelo
Perkusich, Federal, University of Campina Grande, Brazil, for their outstanding team work. In addition, we also like to express
our appreciation to Prof. Jing Sun, The University of Auckland, New Zealand, to Prof. Honghao Cao, Shangai University, China,
and to Prof. Iaakov Exman, The Jerusalem College of Engineering, Israel, for their excellent job in organizing the special sessions
SESE, DISA and LATTICE, respectively.

We would like also to express our great appreciation to all of the conference organization committee members, including the
Publicity Chair, Dr. Robert Heinrich, Karlsruhe Institute of Technology, Germany, Poster Session Chair, Dr. Shi-Kuo Chang,
University of Pittsburgh, USA. Moreover, we would like to appreciate and recognize our Conference Liaisons in different regions
for their important contributions. They are: Asia Liaison – Hironori Washizaki, Waseda University, Japan; Australasia Liaison –
Jing Sun, The University of Auckland, New Zealand; Europe Liaison - Raul Garcia Castro, Universidad Politecnica de Madrid,
Spain; India Liaison - Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl; and South America Liaison -
Jose Carlos Maldonado, ICMC-USP, Brazil.

We would like to express our great appreciation for the availability expressed by Dr. Bingyang Wei, Midwestern State University,
USA, Dr. Yong Wang, New Mexico Highlands University, USA, Dr. Angelo Perkusich, Federal University of Campina Grande,
Brazil, Dr. Xudong He, Florida International University, USA, and Dr. Oscar Mortagua Pereira, University of Aveiro, Portugal, to
dedicate an outstanding effort on the reviewing process of papers.

Last but certainly not the least, we must acknowledge the important contributions that the KSI staff members have made. Their
timely and dependable support and assistance throughout the entire process have been truly remarkable. Finally, we wish you
have productive discussion, great networking, effective presentation, and pleasant stay and travel in San Francisco to participate in
SEKE 2018.

Finally, to conclude, we are happy to announce that SEKE 2019 will take place in Lisbon, the stunning capital of Portugal and one
of the capitals of Western Europe with greater notoriety. Lisbon is a city with more than 800 years where historical heritage,
modernism, culture and nightlife combine in a perfect harmony. The excellence of the climate and the sympathy of the Portuguese
population associated with the diversity and quality of the opportunities offered leave visitors with a desire to return to Lisbon.

 iv

Lisbon and Portugal have recently won several international awards as destinations of excellence, such as those from the World
Travel Award.

Oscar Mortagua Pereira, University of Aveiro, Portugal, Program Committee Chair
Angelo Perkusich, Federal University of Campina Grande, Brazil, Program Committee Co-Chair

 v

SEKE 2018
The 30th International Conference on

Software Engineering &

Knowledge Engineering

July 1– 3, 2018

Hotel Pullman, Redwood City, San Francisco Bay, USA

Conference Organization

CONFERENCE CHAIR
Xudong He, Florida International University, USA

PROGRAM COMMITTEE CHAIR
Oscar Mortagua Pereira, University of Aveiro, Portugal

PROGRAM COMMITTEE CO-CHAIR
Angelo Perkusich, Federal University of Campina Grande, Brazil

STEERING COMMITTEE CHAIR
Shi-Kuo Chang, University of Pittsburgh, USA

STEERING COMMITTEE
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

ADVISORY COMMITTEE
Jerry Gao, San Jose State University, USA

Swapna Gokhale, University of Connecticut, USA
Natalia Juristo, Universidad Politecnica de Madrid, Spain

Taghi Khoshgoftaar, Florida Atlantic University, USA
Guenther Ruhe, University of Calgary, Canada

Masoud Sadjadi, Florida International University, USA
Du Zhang, California State University, USA

 vi

PROGRAM COMMITTEE

Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain
Shadi Alawneh, Oakland University, USA

Taisira Al-Belushi, Sultan Qaboos University, Oman
Mark Allison, University of Michigan - Flint, USA

John Anvik, Univ. of Lethbridge, Canada
Omar El Ariss, Penn State Univ at Harrisburg, USA

Doo-Hwan Bae, Korea Advanced Institute of Science and Technology, Korea
Hamid Bagheri, George Mason University and Massachusetts Institute of Technology, USA

Xiaoying Bai, Tsinghua University, China
Fevzi Belli, University of Paderborn, Germany

Ateet Bhalla, Consultant, India
Swapan Bhattacharya, NITK, Surathakl, India
Alessandro Bianchi, University of Bari, Italy

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain
Chih-Hung Chang, Hsiuping University of Science and Technology, Taiwan

Keith Chan, Hong Kong Polytechnic University, Hong Kong
Lily Chang, University of Wisconsin, Platteville, USA

Shu-Ching Chen, Florida International University, USA
Wen-Hui Chen, National Taipei University of Technology, Taiwan

William Chu, Tunghai University, Taiwan
Stelvio Cimato, University of Milan, Italy

Fabio M. Costa, Universidade Federal de Goias, Brazil
Jose Luis De La Vara, Carlos III University of Madrid, Spain

Scott Dick, University of Alberta, Canada
Junhua Ding, East Carolina University, USA

Zhijian Dong, Middle Tennessee State University, USA
Weichang Du, University of New Brunswick, Canada

Philippe Dugerdil, HEG - Univ. of Applied Sciences, Switzerland
Christof Ebert, Vector Consulting Services, Germany

Ali Ebnenasir, Michigan Technological University, USA
Magdalini Eirinaki, San Jose State University, USA
Ruby ElKharboutly, Quinnipiac University, Canada

Behrouz Far, University of Calgary, Canada
Liana Fong, IBM, USA

Ellen Francine Barbosa, University of Sao Paulo, Brazil
Jerry Gao, San Jose State University, USA

Kehan Gao, Eastern Connecticut State University, USA
Olivier Le Goaer, University of Pau, France

Swapna Gokhale, Univ. of Connecticut, USA
Wolfgang Golubski, Zwickau University of Applied Sciences, Germany

Anurag Goswami, North Dakota State Univ., USA
Desmond Greer, Queen's University Belfast, United Kingdom

Christiane Gresse Von Wangenheim, UFSC - Federal University of Santa Catarina, Brazil
Katarina Grolinger, University of Western Ontario, Canada

Hao Han, National Institute of Informatics, Japan
Xudong He, Florida International University, USA

Robert Heinrich, Karlsruhe Institute of Technology, Germany
Rubing Huang, Jiangsu University, China

Shihong Huang, Florida Atlantic University, USA
Bassey Isong, North-West University, South Africa

Clinton Jeffery, University of Idaho, USA
Jason Jung, Chung-Ang University, South Korea
Pankaj Kamthan, Concordia University, Canada

Ananya Kanjilal, B.P. Poddar Institute of Technology and Management, India

 vii

Taghi Khoshgoftaar, Florida Atlantic University, USA
Aneesh Krishna, Curtin University of Technology, Australia

Vinay Kulkarni, Tata Consultancy Services, India
Meira Levy, Shenkar College of Engineering and Design, Israel

Bixin Li, Southeast University, China
Yuan-Fang Li, Monash University, Australia
Zhi Li, Guangxi Normal University, China

Jianhua Lin, Eastern Connecticut State University, USA
Lan Lin, Ball State University, USA

Shih-hsi Liu, California State University, Fresno, USA
Ting Liu, Xian Jiaotong University, China

Xiaodong Liu, Edinburgh Napier University, United Kingdom
Luanna Lopes Lobato, Federal University of Goias, Brazil

Jian Lu, Nanjing University, China
Baojun Ma, Beijing University of Posts and Telecommunications, China

Ivan Machado, Federal University of Bahia, Brazil
Marcelo de Almeida Maia, Federal University of Uberlendia, Brazil

Beatriz Marin, Universidad Diego Portales, Chile
Riccardo Martoglia, University of Modena and Reggio Emilia, Italy

Santiago Matalonga, University of the West of Scotland, UK
Andre Menolli, Universidade Estadual do Norte do Parana (UENP), Brazil

Ali Mili, NJIT, USA
Alok Mishra, Atilim University, Turkey

Hiroyuki Nakagawa, Osaka University, Japan
Amjad Nusayr, University of Houston-Victoria, USA

Edson A. Oliveira Jr., State University of Maringa, Brazil
Oscar Mortagua Pereira, University of Aveiro, Portugal

Antonio Piccinno, University of Bari, Italy
Alfonso Pierantonio, University of L'Aquila, Italy
Rick Rabiser, Johannes Kepler University, Austria

Claudia Raibulet, University of Milan, Italy
Damith C. Rajapakse, National University of Singapore, Singapore

Rajeev Raje, IUPUI, USA
Henrique Rebelo, Universidade Federal de Pernambuco, Brazil

Marek Reformat, University of Alberta, Canada
Hassan Reza, University of North Dakota, USA

Ignacio Garcia Rodriguez De Guzman, University of Castilla-La Mancha, Spain
Daniel Rodriguez, Universidad de Alcala, Spain

Ivan Rodero, The State University of New Jersey, USA
Samira Sadaoui, University of Regina, Canada

Masoud Sadjadi, Florida International University, USA
Claudio Sant'Anna, Universidade Federal da Bahia, Brazil

Abdelhak-Djamel Seriai, University of Montpellier 2 for Sciences and Technology, France
Michael Shin, Texas Tech University, USA

Martin Solari, Universidad ORT Uruguay, Uruguay
George Spanoudakis, City University London, United Kingdom

Jing Sun, University of Auckland, New Zealand
Meng Sun, Peking University, China

Yanchun Sun, Peking University, China
Gerson Sunye, University of Nantes, France

Chuanqi Tao, Nanjing University of Science and Technology, China
Mark Trakhtenbrot, Holon Institute of Technology, Israel

Burak Turhan, Oulu University, Finland
Christelle Urtado, LGI2P Ecole des Mines d'Ales, France

Sylvain Vauttier, Ecole des mines d'Ales, France
Gennaro Vessio, University of Bari, Italy

Sergiy Vilkomir, East Carolina University, USA

 viii

Aaron Visaggio, University of Sannio, Italy
Arndt Von Staa, Pontifical Catholic University of Rio de Janeiro, Brazil

Huanjing Wang, Western Kentucky University, USA
Xiaoyin Wang, University of Texas at San Antonio, USA

Ye Wang, Zhejiang Gongshang University, China
Yong Wang, New Mexico Highlands University, USA
Zhongjie Wang, Harbin Institute of Technology, China

Ziyuan Wang, Nanjing University of Posts and Telecommunications, China
Hironori Washizaki, Waseda University, Japan

Bingyang Wei, Midwestern State University, USA
Guido Wirtz, Bamberg University, Germany

Franz Wotawa, TU Graz, Austria
Peng Wu, Institute of Software, Chinese Academy of Sciences, China

Dianxiang Xu, Boise State University, USA
Frank Weifeng Xu, Bowie State University, USA

Haiping Xu, University of Massachusetts Dartmouth, USA
Guowei Yang, Texas State University, USA

Hongji Yang, Leicester University, United Kingdom
Huiqun Yu, East China University of Science and Technology, China

Du Zhang, Macau University of Science and Technology, China
Pengcheng Zhang, Hohai University, China
Yong Zhang, Tsinghua University, China

Zhenyu Zhang, Institute of Software, Chinese Academy of Sciences, China
Zhigao Zheng, Central China Normal University, USA

Hong Zhu, Oxford Brookes University, UK
Huibiao Zhu, East China Normal University, China

Eugenio Zimeo, University of Sannio, Italy

PROGRAM SUB-COMMITTEE ON DISA

Rong N. Chang IBM T.J. Watson Research Center, USA
Abdelrahman Osman Elfaki, University of Tabuk, Saudi Arabia

Ajay Kattepur, Tata Consultancy Services, India
Alex Norta, Tallinn University of Technology, Estonia

Antonella Longo, Univ. of Salento,Italy
Guoray Cai, Pennsylvania State University, USA

Honghao Gao, Shanghai University, China
Joe Tekli, Lebanese American University

Klaus-Dieter Schewe, Information Science Research Centre, New Zealand
Kumiko Tadano, NEC, Japan

Lai Xu, Bournemouth University,UK
Li Kuang, Hangzhou Normal University, China

Nanjangud Narendra, MS Ramaiah University of Applied Sciences, India
Nianjun Zhou, IBM T. J. Watson Res. Center, USA

Qing Wu, Hangzhou Dianzi University, China
Stephan Reiff-Marganiec, University of Leicester, UK

YuYu Yin, Hangzhou Dianzi University, China

PUBLICITY CHAIR
Robert Heinrich, Karlsruhe Institute of Technology, Germany

ASIA LIAISON

 ix

Hironori Washizaki, Waseda University, Japan

AUSTRALASIA LIAISON
Jing Sun, The University of Auckland, New Zealand

EUROPE LIAISON
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

INDIA LIAISON
Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl, India

SOUTH AMERICA LIAISON
Jose Carlos Maldonado, ICMC-USP, Brazil

 x

Keynote

Quality Big Data Analytics and AI Modeling for Smart Cities

Professor Jerry Gao
Department of Computer Engineering

San Jose State University
Director, SJSU Silicon Valley Excellence Research Center
on Smart Technology, Computing, and Complex Systems

Abstract

In this talk, Dr. Gao will share their different smart city research projects for the city of San Jose to address the top
challenges in the city of San Jose, including illegal dumping, city street cleanliness, and graffiti. Dr. Gao will address
the related big data analytics, and AI modeling for these projects, share their experience, challenges, and needs. In
addition, Dr. Gao will review big data analytics and modeling for smart cities in terms of modeling, methods, and
processes. He also shares his vision and discusses the current research issues and directions in big data quality
collection, quality deep learning, and AI modeling for smart cities. Moreover, he will cover the research problems,
solutions, and tools for quality training and validation for both IOT and unstructured big data. Furthermore, he will
explore new challenges and issues in quality assurance for future AI systems in smart cities.

 About the Speaker

Jerry Zeyu Gao is a full professor at the Department of Computer Engineering at San Jose State University. Now, he is
the director of SJSU Silicon Valley Excellence Research Center on Smart Technology, Computing, and Complex
Systems. He had over 20 years of academic research and teaching experience and over 10 years of industry working
and management experience on software engineering and IT development applications. He has published three
technical books and over hundreds (200) publications in IEEE/ACM journals, magazines, International conferences
and workshops. His current research areas include smart cities, cloud computing, TaaS, software engineering, test
automation, and mobile cloud services. Since 2016, Dr. Gao and his team have worked closely with the city of San
Jose on different smart city projects to address complex challenges in building future smart cities using different grants
from NSF, CEC, and Cities, as well as collaborated local companies.

SEKE2018 Table of Contents

Table of Contents

Session Sun-I-1: Data Intensive Service-based Applications I

A New Satellite Constellation Networking Certification and Reliable Maintenance
Protocol (S). 1

Congyu Huang, Liehuang Zhu, Chunlei Li, Chuan Zhang, Yuxin Chen and Zijian Zhang

A Novel Hybrid Collaborative Filtering Approach to Recommendation Using
Reviews:The Product Attribute Perspective (S) . 7

Min Cao, Sijing Zhou, Honghao Gao and Youhuizi Li

Exploiting SDAE Model for Recommendations . 11

Qing Yang, Xianhe Yao, Jingwei Zhang and Zhongqin Bi

Towards business identification modeling:A Taobao Case Study (S) . 17

Rong Zhang, Yuyu Yin, Meng Xi and Hao Jiang

Session Sun-II-1: Semantic Enabled Software Engineering I

Ontology-based Software Architectural Pattern Recognition and Reasoning (S) 23

Nacha Chondamrongkul, Jing Sun and Ian Warren

Object-oriented Software Modeling with Ontologies Around - A Survey of Existing
Approaches . 29

Selena Sohaila Baset and Kilian Stoffel

Session Sun-III-1: Agile Software Development I

Methods for Estimating Agile Software Projects: A Systematic Review 34

Edna Dias Canedo, Dandara Pereira Aranha, Maxwell de Oliveira Cardoso, Ruyther
Parente Da Costa and Leticia Lopes Leite

Investigating gaps on Agile Improvement Solutions and their successful adoption in
industry projects - A systematic literature review . 40

Arthur Freire, André Meireles, Gleyser Guimarães, Mirko Perkusich, Raissa Da
Silva, Kyller Gorgônio, Angelo Perkusich and Hyggo Almeida

Session Sun-I-2: Data Intensive Service-based Applications II

Towards Cost Effective Privacy Provision for Typed Resources in IoT Environment (S) . . . 46

Yucong Duan, Zhengyang Song, Xiaoxian Yang, Quan Zou, Xiaobing Sun and Xinyue
Zhang

Finding Shilling Attack in Recommender System based on Dynamic Feature Selection 50

Gaofeng Cao, Huan Zhang, Yuyou Fan and Li Kuang

Service Language Model: New Ecology for Service Development . 56

Ying Li, Meng Xi, Hui Chen and Jianwei Yin

Session Sun-II-2: Semantic Enabled Software Engineering II

xi

SEKE2018 Table of Contents

A Knowledge Engineering Approach to UML Modeling (S) . 60

Bingyang Wei, Jing Sun and Yi Wang

An Ontology-based Modelling of Vietnamese Traditional Dances (S) . 64

Truong-Thanh Ma, Salem Benferhat, Zied Bouraoui, Karim Tabia, Thanh-Nghi Do
and Huu-Hoa Nguyen

Session Sun-III-2: Software Development I

Influence Factors in Software Productivity - A Tertiary Literature Review 68

Edson Oliveira, Tayana Conte, Marco Cristo and Natasha Valentim

Explanation Templates for Case-based Reasoning in Collaborative Risk Management 74

Nielsen Luiz Rechia Machado, Lisandra Manzoni Fontoura, Rafael Heitor Bordini
and Lúıs Alvaro de Lima Silva

Session Sun-I-3: Information Extraction I

Keywords Extraction based on Sentence-Ranking from Chinese Patents 80

Zhihong Wang, Yi Guo and Tianmei Qi

Deep Learning based Information Extraction Framework on Chinese Electronic Health
Records . 86

Bing Tian, Yong Zhang, Kaixin Liu and Chunxiao Xing

Hot Topic Mining based on the Heat of Micro-blog . 92

Wang Siyao

SocialGQ: Towards Semantically Approximated and User-aware Querying of
Social-Graph Data . 98

Riccardo Martoglia

Session Sun-II-3: Conceptual Lattices for Software Systems Engineering

A Model-based Approach for Build Avoidance . 104

Milena Neumann, Kiana Busch and Robert Heinrich

Conceptual Software: The Theory Behind Agile-Design-Rules (S) . 110

Iaakov Exman

Classutopia: A Serious Game for Conceptual Modeling Design. 116

Felipe Larenas, Beatriz Maŕın and Giovanni Giachetti

Automatic Audience Focusing by Event Interestingness (LATTICE) (P) 122

Iaakov Exman, Yakir Winograd and Avihu Harush

Session Sun-III-3: Information Extraction II

Improvement of User Review Classification Using Keyword Expansion (S) 125

Kazuyuki Higashi, Hiroyuki Nakagawa and Tatsuhiro Tsuchiya

A New Scheme for Citation Classification based on Convolutional Neural Networks 131

Khadidja Bakhti, Zhendong Niu and Ally Nyamawe

xii

SEKE2018 Table of Contents

Learning API Suggestion via Single LSTM Network with Deterministic Negative Sampling137

Jinpei Yan, Yong Qi, Qifan Rao and Hui He

Adaptive software search toward users’ customized requirements in GitHub 143

Jinze Liu, Zhixing Li, Tao Wang, Yue Yu and Gang Yin

Session Sun-I-4: Requirements Engineering I

A Non-Functional Requirements Recommendation System for Scrum-based Projects 149

Felipe Ramos, Antonio Alexandre Moura Costa, Mirko Perkusich, Hyggo Almeida and
Angelo Perkusich

Analysis of Security-Failure Tolerant Requirements . 155

Michael Shin, Don Pathirage and Dongsoo Jang

An Approach for System of Systems Requirements Management (S) . 161

Renata Martinuzzi De Lima and Lisandra Fontoura

Session Sun-II-4: Software Quality I

A Preliminary Investigation of Self-Admitted Refactorings in Open Source Software (S). . . 165

Zhang Di, Bing Li, Zengyang Li and Peng Liang

Formalization and Verification of the OpenFlow Bundle Mechanism Using CSP 169

Huiwen Wang, Huibiao Zhu, Yuan Fei and Lili Xiao

Helpful or Not? An investigation on the feasibility of identifier splitting via
CNN-BiLSTM-CRF. 175

Jiechu Li, Qingfeng Du, Kun Shi, Yu He, Xin Wang and Jincheng Xu

Session Sun-III-4: Open Source Software

How to Incorporate a Usability Technique in the Open Source Software Development
Process . 182

Lucrecia Llerena, Nancy Rodŕıguez, John W. Castro and Silvia T. Acuña

XPA: An Open Soruce IDE for XACML Policies (S). 188

Roshan Shrestha, Shuai Peng, Turner Lehmbecker and Dianxiang Xu

Automatic Detection of Public Development Projects in Large Open Source Ecosystems:
An Exploratory Study on GitHub . 193

Can Cheng, Bing Li, Zengyang Li and Peng Liang

Recovering Three-Level Architectures from the Code of Open-Source Java Spring
Projects (S) . 199

Alexandre Le Borgne, David Delahaye, Marianne Huchard, Christelle Urtado and
Sylvain Vauttier

Session Sun-I-5: Agents

An Agent-based Software Framework for Machine Learning Tuning . 203

Jefry Sastre, Marx Viana and Carlos Lucena

xiii

SEKE2018 Table of Contents

Accompanying Observation Modes and Software Architecture for Autonomous Robot
Software . 209

Zhe Liu, Xinjun Mao and Shuo Yang

An Architecture for the Development of Ambient Intelligence Systems Managed by
Embedded Agents . 215

Carlos Pantoja, Heder Dorneles Soares, José Viterbo and Amal El Fallah Seghrouchni

Understanding Normative BDI Agents Behavior . 221

Francisco Cunha, Marx Viana, Tassio Sirqueira, Marcio Rosemberg and Carlos Lucena

Session Sun-II-5: Software Architecture and Frameworks

Towards a Representation of Enterprise Architecture based on Zachman Framework
through OMG Standards (S) . 225

Miguel Ehécatl Morales Trujillo, Boris Escalante Ramı́rez, Maria Del Pilar Angeles,
Hanna Oktaba and Guadalupe Ibarguengoitia González

STEM: A Simulation-Based Testbed for Electromagnetic Big Data Management 230

Mengyuan Lyu, Peiquan Jin, Zhou Zhang, Shouhong Wan and Lihua Yue

Towards Reference Architecture for a Multi-layer Controlled Self-adaptive Microservice
System. 236

Peini Liu, Xinjun Mao, Shuai Zhang and Fu Hou

A Heterogeneous Architecture for Integrating Multi-Agent Systems in AmI Systems (S) . . 242

Carlos Pantoja, Vinicius Souza de Jesus, Fabian Manoel and José Viterbo

Session Mon-I-1: Vehicular and Transportation

BackPocketDriver - A Mobile App to Enhance Safe Driving for Youth (S) 246

Catherine Shanly, Michael Ieti, Ian Warren and Jing Sun

A Real-Time Ride-Sharing Matching Framework Using Simulated Annealing Genetic
Algorithm. 250

Jie Xu, Yong Zhang, Chunxiao Xing and Guigang Zhang

A Mutilple-Level Assessment System for Smart City Street Cleanliness 256

Wenrui Li, Bharat Bhushan and Jerry Gao

Session Mon-II-1: Security and Privacy I

Method and System for Detecting Anomalous User Behaviors: An Ensemble Approach . . . 263

Xi Xiangyu, Tong Zhang, Dongdong Du, Guoliang Zhao, Qing Gao, Wen Zhao and
Shikun Zhang

Modeling and Verification of IEEE 802.11i Security Protocol for Internet of Things 270

Yuteng Lu and Meng Sun

SeqBAC: A Sequence-Based Access Control Model (S). 276

Diogo Regateiro, Óscar Mortágua Pereira and Rui Aguiar

Session Mon-III-1: Software Evolution

xiv

SEKE2018 Table of Contents

A Self-Adaptation Framework of Microservice Systems (S). 282

Shuai Zhang, Xinjun Mao, Peini Liu and Fu Hou

A Framework to Support the Development of Self-adaptive Service-oriented Mobile
Applications . 286

William Passini and Frank Affonso

Session Mon-I-2: Software Modelling I

Modeling of Interlocking Systems based on Patterns . 292

Yan Wang, Wen Zhong, Xiao Hong Chen and De Hui Du

ComD2: Family of Techniques for Inspecting Defects in Models that Affect Team
Communication . 298

Adriana Lopes, Ursula Campos, Tayana Conte and Clarisse de Souza

Effects of Model Composition Techniques on Effort and Affective States: A Controlled
Experiment (S) . 304

Mateus Manica, Kleinner Farias, Lucian Gonçales, Vincius Bischoff, Bruno Carreiro
Da Silva and Everton Guimarães

Session Mon-II-2: Software Testing I

Testing Android Applications Using Multi-Objective Evolutionary Algorithms with a
Stopping Criteria . 308

Anshuman Rohella and Shingo Takada

An Empirical Study on the Impact of Android Code Smells on Resource Usage 314

Johnatan Oliveira, Markos Viggiato, Mateus Santos, Eduardo Figueiredo and
Humberto Marques-Neto

Mining Intentions to Improve Bug Report Summarization . 320

Beibei Huai, Wenbo Li, Qiansheng Wu and Meiling Wang

Session Mon-III-2: Software Modelling II

Evaluating the Effort of Integrating Feature Models: A Controlled Experiment (S). 326

Vinicius Bischoff, Kleinner Farias and Lucian Gonçales

Modeling of software process families with automated generation of variants (S) 330

Andrea Delgado, Daniel Calegari and Félix Garćıa

Tailored Quality Modeling and Analysis of Software-intensive Systems (S) 336

Robert Heinrich

Session Mon-I-3: Distributed Systems

Modeling and Verifying Leader Election Algorithm in CSP (S) . 342

Yucheng Fang, Huibiao Zhu and Huiwen Wang

A Formal Approach for Distributed Computing of Maximal Cliques in Dynamic Networks 348

Faten Fakhfakh, Mohamed Tounsi, Mohamed Mosbah and Ahmed Hadj Kacem

xv

SEKE2018 Table of Contents

DCCD: An Efficient and Scalable Distributed Code Clone Detection Technique for Big
Code. 354

Junaid Akram, Zhendong Shi, Majid Mumtaz and Ping Luo

A Hybrid System for Detection of Implied Scenarios in Distributed Software Systems (S) . 360

Anja Slama, Fatemeh Hendijani Fard and Behrouz Far

Session Mon-II-3: Software Development II

A structured stochastic model for software project estimation in Waterfall models (S) 364

Ildo Massitela, Joaquim Assunção, Alan Santos and Paulo Fernandes

Revisiting the Conclusion Instability Issue in Software Effort Estimation (S) 368

Michael Bosu, Solomon Mensah, Kwabena Bennin and Diab Abuaiadah

On the UML use in the Brazilian industry: A state of the practice survey (S) 372

Kleinner Farias, Lucian Gonçales, Vinicius Bischoff, Bruno Carreiro Da Silva,
Everton Guimarães and Jacob Nogle

Using IFML for user interface modeling: an empirical study (S) . 376

Randerson Queiroz, Anna Beatriz Marques and Tayana Conte

Session Mon-III-3: Formal Methods

Modeling mobility and communication in a unified way (S) . 381

Jianmin Jiang, Xiaofei Yu and Zhong Hong

Towards Formal Modeling and Verification of Probabilistic Connectors in Coq (S) 385

Xiyue Zhang and Meng Sun

Reo2PVS: Formal Specification and Verification of Component Connectors 391

M. Saqib Nawaz and Meng Sun

Modeling and Analyzing Hybrid Systems Using Hybrid Predicate Transition Nets (S) 397

Dewan Mohammad Moksedul Alam, Xudong He and William Chu

Session Mon-I-4: Visualization

Visualizing Interactions in AngularJS-based Single Page Web Applications 403

Gefei Zhang and Jianjun Zhao

Software Visualization Using Topic Models . 409

Sandeep Reddivari and William Hackney

Session Mon-II-4: Software Defect Management I

How Many Versions does a Bug Live in? An Empirical Study on Text Features for Bug
Lifecycle Prediction . 415

Chuanqi Wang, Yanhui Li and Baowen Xu

Bayesian Logistic Regression for software defect prediction (S) . 421

Jinu M Sunil, Lov Kumar and Lalita Bhanu Murthy Neti

xvi

SEKE2018 Table of Contents

Revisting the Impact of Regression Models for Predicting the Number of Defects 427

Wu Man, Ye Sizhe, Li Chunhua, Ma Ziyi and Fu Zhongwang

Session Mon-III-4: Sentimental Analysis and User Experience

A Gated Hierarchical LSTMs for Target-based Sentiment Analysis . 433

Xiaofang Zhang, Bin Liang, Qian Zhou, Hao Wang and Baowen Xu

Does Ad-Context Matter on the Effectiveness of Online Advertising? . 439

Caihong Sun, Meina Zhang and Meiyun Zuo

Analyzing The Impact Of Feedback In GitHub On The Software Developer’s Mood. 445

Mateus Santos, Josemar Caetano, Johnatan Oliveira and Humberto T. Marques-Neto

Do Scale Type Techniques Identify Problems that Affect User eXperience? User
Experience Evaluation of a Mobile Application (S) . 451

Leonardo Marques, Walter Nakamura, Natasha Valentim, Luis Rivero and Tayana
Conte

Session Mon-I-5: Software Development III

A Systematic Approach for Developing Cyber Physical Systems . 456

Xudong He, Zhijiang Dong and Yujian Fu

Investigating Technical Debt Folklore: A Replicated Survey . 462

Nicolli Rios, José Amâncio Santos, Manoel Mendonça and Rodrigo Spinola

Knowledge Management Governance in Software Development Process with GI-Tropos . . . 468

Vu Nguyen Huynh Anh, Manuel Kolp and Yves Wautelet

A Search-based Software Engineering Approach to Support Multiple Team Formation
for Scrum Projects . 474

Alexandre Costa, Felipe Ramos, Mirko Perkusich, Arthur Freire, Hyggo Almeida and
Angelo Perkusich

Session Mon-II-5: Software Defect Management II

Bug or Not Bug? Labeling Issue Reports via User Reviews for Mobile Apps (S) 480

Haoming Li, Tao Zhang and Ziyuan Wang

A Topic Modeling Approach for Code Clone Detection . 486

Sandeep Reddivari and Mohammed Salman Khan

XMILE - An Expert System for Maintenance Learning from Textual Reports (S) 492

Eduardo Máximo and Vladia Pinheiro

Session Tue-I-1: Agile Software Development II

Effort Estimation in Agile Software Development: an Updated Review. 496

Emanuel Dantas Filho, Mirko Perkusich, Ednaldo Dilorenzo, Danilo Santos, Hyggo
Almeida and Angelo Perkusich

xvii

SEKE2018 Table of Contents

SIDD – SCRUM Iteration Driven Development: An Agile Software Development and
Management Process Based on SCRUM (S) . 502

Tayse Virgulino Ribeiro, Cristina D’Ornelas Filipakis Souza and Heloise Acco Tives
Leão

Investigating the Effects of Agile Practices and Processes on Technical Debt - The
Viewpoint of the Brazilian Software Industry . 506

Vivyane Caires, Nicolli Rios, Johannes Holvitie, Ville Leppänen, Manoel Mendonça
and Rodrigo Spinola

Session Tue-II-1: Real-time Systems

Timing Analysis for Microkernel-based Real-Time Embedded System . 512

Rongfei Xu, Li Zhang, Ning Ge and Jing Jiang

Schedulability Analysis of Real-time Tasks with Precedence Constraints 518

Rongfei Xu, Li Zhang, Ning Ge and Xavier Blanc

Session Tue-III-1: Requirements Engineering II

Conflict Management in the Collaborative Description of a Domain Language (S). 524

Claudia Litvak, Gustavo Rossi and Leandro Antonelli

Belief Function Theory in Constraint Satisfaction Problems: a Unifying Approach 530

Aouatef Rouahi, Ben Salah Kais and Ghedira Khaled

Session Tue-I-2: Software Testing II

DevOps Enhancement with Continuous Test Optimization. 536

Dusica Marijan and Sagar Sen

Reducing the Cost of Android Mutation Testing . 542

Lin Deng and Jeff Offutt

A Test Case Generation Method Based on State Importance of EFSM for Web Application548

Junxia Guo, Weiwei Wang, Linjie Sun, Zheng Li and Ruilian Zhao

Session Tue-II-2: Software Quality II

Parallel Property Checking with Symbolic Execution . 554

Junye Wen and Guowei Yang

Software Process Improvement Programs: What happens after official appraisal? 560

Regina Albuquerque, Andreia Malucelli and Sheila Reinehr

Improving code summarization by combining deep learning and empirical knowledge (S) . . 566

Lingbin Zeng, Xunhui Zhang, Tao Wang, Xiao Li, Jie Yu and Huaimin Wang

Session Tue-III-2: Components and Memory Management

Reverse Engineering Encapsulated Components from Object-Oriented Legacy Code. 572

Rehman Arshad and Kung-Kiu Lau

xviii

SEKE2018 Table of Contents

Leveraging the Power of Component-based Development for Front-End Components:
Insights from a Study of React Applications (S) . 578

Chen Yang, Yan Liu, Jia Yu and Yiwei Lin

A Lightweight Approach to Detect Memory Leaks in JavaScript (S) . 582

Ju Qian, Long Wang and Xiaoyu Zhou

Session Tue-I-3: Software Quality III

Pseudo-Exhaustive Verification of Rule Based Systems . 586

Rick Kuhn, Dylan Yaga, Raghu Kacker, Jeff Lei and Vincent Hu

Metrics for Data Uniformity of User Scenarios through User Interaction Diagrams (S) 592

Douglas Hiura Longo and Patŕıcia Vilain

Feedback Topics in Modern Code Review: Automatic Identification and Impact on
Changes . 598

Janani Raghunathan, Lifei Liu and Huzefa Kagdi

Expediting Binary Fuzzing with Symbolic Analysis . 604

Luhang Xu, Wei Dong, Liangze Yin, Weixi Jia and Shenzhi Li

Session Tue-II-3: Computational Intelligence, Models and Algorithms

Topic Modeling for Noisy Short Texts with Multiple Relations . 610

Chiyu Liu, Zheng Liu, Tao Li and Bin Xia

Svega: Answering Natural Language Questions over Knowledge Base with Semantic
Matching . 616

Gaofeng Li, Pingpeng Yuan and Hai Jin

Software Process Selection based upon Abstract Machines for Slow Intelligence Systems . . 622

Shikuo Chang, JinPeng Zhou, Akhil Yendluri and Kadie Clancy

Evolutionary propositionalization of multi-relational data. 629

Valentin Kassarnig and Franz Wotawa

Session Tue-III-3: Software Testing III

On A Simpler and Faster Derivation of Single Use Reliability Mean and Variance for
Model-Based Statistical Testing (S) . 635

Yufeng Xue, Lan Lin, Xin Sun and Fengguang Song

A Document-based Parameter Correlation Metric for Test Design (S) . 641

Hiroyuki Nakagawa, Nobukazu Ishii and Tatsuhiro Tsuchiya

Improving Integration Testing of Web Service by Propagating Symbolic Constraint Test
Artifacts Spanning Multiple Software Projects (S) . 647

Andreas Fuchs and Vincent von Hof

Prioritizing Unit Testing Effort Using Software Metrics and Machine Learning
Classifiers (S) . 653

Fadel Toure and Mourad Badri

Session Tue-I-4: Security and Privacy II

xix

SEKE2018 Table of Contents

Security Analysis of the Access Control Solution of NDN Using BAN Logic (S) 659

Yuan Fei, Huibiao Zhu and Huiwen Wang

Re-checking App Behavior against App Description in the Context of Third-party
Libraries . 665

Chengpeng Zhang, Haoyu Wang, Ran Wang, Yao Guo and Guoai Xu

Whether Android Applications Broadcast Your Private information: A Naive
Bayesian-based Analysis Approach (S) . 671

Li Lin, Jian Ni, Xinya Mao and Jianbiao Zhang

Session Tue-II-4: Software Quality IV

Model Checking Method for SPA Page Transition Based on Component-based Framework 675

Naito Oshima and Tomoji Kishi

A Systematic Mapping Study on Software Comments Analysis . 681

Amanda Passos, Mário Farias, Crescencio Lima, Manoel Mendonça and Rodrigo
Spinola

Process metrics for system quality with specifications’ shifts from a bid phase to an
operation phase (S) . 687

Noriko Hanakawa and Masaki Obana

Session Tue-III-4: Recommendation

Exploratory Recommender Systems Based on Reinforcement Learning for Finding
Research Topic . 691

Li Yu and Zhuangzhuang Wang

Evaluating Multiple User Interactions for Ranking Personalization Using Ensemble
Methods . 697

Frederico Durao, Bruno Souza Cabral, Marcelo Manzato and Arthur Fortes Da Costa

Session Sun-III-5: Poster and Demo

Weighted Data Set Reduction for Automatic Bug Triaging (P) . 703

Miaomiao Wei, Shikai Guo and Rong Chen

Integrating Challenge Based Learning Into a Smart Learning Environment: Findings
From a Mobile Application Development Course (P) . 704

Rafael Chanin, Alan Santos, Nicolas Nascimento, Afonso Sales, Leandro
Pompermaier and Rafael Prikladnicki

A Personalized Metasearch Engine Based on Multi-agent System (P) . 707

Meijia Wang, Qingshan Li and Yishuai Lin

Interval-valued Data Clustering Based on Range Metrics (P) . 710

Sérgio Galdino, Welligton Santos and Ricardo Paranhos

A Revisit of Fault-Detecting Probability of Combinatorial Testing for
Boolean-Specifications (P) . 711

Min Yu, Ziyuan Wang, Feiyan She and Yuanchao Qi

xx

SEKE2018 Table of Contents

Big Data ETL Implementation Approaches: A Systematic Literature Review (P) 714

Joshua Nwokeji, Faisal Aqlan, Apoorva Anugu and Ayodele Olagunju

Research on Crowd-based mobile application testing platforms (P) . 716

Wenguang Xie and Kenian Wang

Mobile App Development Using Software Design Patterns (P) . 718

Nicole Barakat and Doan Nguyen

BoolMuTest: A Prototype Tool for Fault-Based Boolean-Specification Testing (P) 720

Ziyuan Wang

xxi

KSI
Typewritten Text
Note: (S) indicates a short paper (P) indicates a poster or demo description

A New Satellite Constellation Networking
Certification and Reliable Maintenance

Protocol(DISA)
1st Congyu Huang

School of Computer Science
Beijing Institute of Technology

Beijing, China
Email:2120171018@bit.edu.cn

2nd Liehuang Zhu
School of Computer Science

Beijing Institute of Technology
Beijing, China

Email:liehuangz@bit.edu.cn

3rd Chunlei Li
China TravelSky Holding Company

Beijing, China
Email: lcl@travelsky.com

4th Chuan Zhang
School of Computer Science

Beijing Institute of Technology
Beijing, China

Email:chuanz@bit.edu.cn

5th Yuxin Chen
School of Computer Science

Beijing Institute of Technology
Beijing, China

Email:realcyx@126.com

6thZijian Zhang
School of Computer Science

Beijing Institute of Technology
Beijing, China

Email:zhangzijian@bit.edu.cn

Abstract—With the rapid development of satellite technol-
ogy, the deployment of intensive service applications through
satellite has become a trend.In the process of establishing a
satellite communication system, there will be some security
threats such as counterfeiting, forgery, tampering.This must es-
tablish a secure satellite communication system. In this paper,
according to the characteristics of satellite communication sys-
tem, a protocol of satellite network authentication and trusted
maintenance is designed.The protocol can accomplish two-way
authentication between entities in the satellite network and the
credible maintenance of the communication link. The protocol
is based on the symmetric encryption system and can adapt
to the current satellite load is small, the computing power is
limited.This paper also analyses the security of the protocol
and can resist replay attacks and man-in-the-middle attacks.
Experiments show that the proposed network authentication
protocol is 28% faster than the symmetric encryption system.
The average time to keep the agreement credible is 254.64 ms.

Index Terms—Protocols, Security authentication, Reliable
maintenance,GEO/LEO satellite networks

I. Introduction

With the continuous progress of science and tech-
nology,satellite communication system such as the Irid-
ium system and the Globalstar system are becom-
ing more and more popular.In those systems,satellite
provide a wide range of significant services,including
Weather forecasting,TV signal transmitting,global po-
sitioning,communicating and Internet accessing,etc [1]–
[4].Nowadays,the satellite can provide more and more
services and the satellite network is more and more perfect.
It is an inevitable trend to deploy data intensive services

Foundation Items: The National Key Research and Development
Program of China(2016YFB0800301)

DOI reference number: 10.18293/SEKE2018-041

based application in satellite,so we need to build a robust
network.

Meanwhile,in satellite networks,one of the biggest chal-
lenges is how to work more securely over the network.The
satellite network has the characteristics of open channel,
large transmission delay, intermittent link connection and
so on [5]–[7].These characteristics determine that satellite
networks are more vulnerable to counterfeiting, tampering
and other security threats than traditional networks.How
to resist these security threats has become an important
research direction.A simplest way is to authenticate net-
work entities and users.

In order to build a robust and security network,many
scholars have proposed many solutions to improve the se-
curity and robustness of satellite networks.There are some
protocols guaranteed the security and some strategies
provide robustness in present satellite network.Reference
[8] propose a public key cryptosystem-based authenti-
cation technology.However,the authentication technology
is unidirectional and can not meet the current need
for bidirectional authentication.Reference [9] design and
implement a two-way authentication protocol between the
client and the satellite,but the authentication protocol has
high maintenance cost and high failure risk.Reference [10]
put forward a double-layered inclined orbit constellation
to improve the robustness of satellite communication
network.But they do not consider about security in the
network.

We believe that this paper makes the following contri-
butions:

(1)This paper proposes a satellite constellation net-
work authentication protocol for double-layered satellite
constellation.The network authentication protocol takes
into account the characteristics of the satellites,and the

1

satellite will be carried out one by one,and the satellites
will be gradually authenticated by the network.

(2)This paper presents a reliable maintenance proto-
col,which uses geostationary-earth-orbit(GEO) satellites
to control low-earth-orbit(LEO) satellite clusters, and
realizes operations such as key renewal and revocation for
LEO satellites under link connectivity. It ensures reliable
communication and reliability of low orbit satellites.

(3)In this paper,we have analysed the security of the
network authentication protocol and the security of the
reliable maintenance protocol.Afterwards,we realizes the
satellite network protocol and the trusted maintenance
protocol by experimental simulation.In the network au-
thentication protocol, we compare with the traditional
public key system and symmetric system, the efficiency of
the network authentication protocol in this paper account
for 28% which is faster than original symmetric system.

II. Related Work
A. Security Authentication Protocol for Satellite Network

Zhibo,X et al. [11] put forward an end-to-end authenti-
cation protocol for satellite networks based on the Internet
key exchange(IKE) protocol. The protocol is based on
the IKE protocol and IKE is based on the public key
encryption system. The calculation cost is high and the
number of key negotiation interactions is more frequently.

Chang et al. [12] propose an authentication and key
agreement protocol for satellite communications,this pro-
tocol is mainly about the authentication security between
users and satellite.The protocol is not suitable for the
direct use of authentication between satellites.

B. Satellite Network Reliable maintenance
X Jin et al. [13] propose a communication framework

between satellite and ground station in order to improve
the robustness of satellite network.Meanwhile,propose a
communication architecture of space ground integrated
information network which adopt simplified IP protocol,
and analyse the feasibility of the implementation is anal-
ysed from the view of business process.But this framework
does not consider about the communication security.

Kimura et al. [14] propose a double-layered inclined
orbit constellation for satellite communication network
connected by optical inter-satellite links.But this archi-
tecture is not secure because it does not take into account
that will be attacked during the link transfer process. The
security of information transmission in the link will be
threatened greatly.

III. Satellite Constellation Network Authentication and
Reliable Maintenance Protocol

Satellite network models include user terminals(UT),
ground control center(GCC) and GEO satellite constella-
tion networks, as well as LEO satellite constellation net-
works.Due to the need for network authentication between

GEO satellites, we need to design onboard network au-
thentication protocol to adapt the actual situation of GEO
satellites.since the existence of LEO satellite networks
in the system, many LEO satellites can not be directly
connected with GCC because of the characteristics of LEO
satellite networks. Therefore, it is necessary to study the
adaptive and trustworthy link of links in resource-limited
environments.In order to formally describe the model of
the program, the program first establishes the model as
follows.

The model of the satellite network is shown in Fig. 1.

Fig. 1. Satellite network models

• GEO satellite network.GSN indicates the GEO satel-
lite network, which consists of GEO satellites and
GEO satellite links. The GEO satellite network can
be represented by an undirected graph GSN =
(GV,GE), where GV represents a GEO satellite
node like vertex in graph and GE represents a GEO
satellite link like edge in graph.

• GEO satellite node.GV indicates the GEO satellite
in a GEO satellite network and it is denoted as
nGV , sGV , cGV >, where nGV Satellites node number,
uniquely identifies a GEO satellite; sGV is a security
attribute that indicates satellite-mounted authentica-
tion information and protocols. cGV indicates control
information used to control LEO satellites.

• LEO satellite node.LV is a LEO satellite, and it is
also possible to have a number, security attribute,
and control attribute, denoted as < nLV , sLV , cLV >.

The model is mainly used to achieve GEO satellite
network authentication and credible maintenance.In this
model, a high-orbit satellite, GV , is launched in turn.
Based on the satellite security attribute sGV on the
GV , mutual authentication of GEO satellites and GCC
can be achieved by selecting the satellite and ground
authentication mode. If the certification is successful, the
GEO satellite can access GCC and GCC can control the

2

GEO satellite and distribute the key. If the authentication
fails, GCC denies access and the GEO satellite refuses the
control.

After launching GV , the satellite security attribute
module sGV is used to select inter-satellite authentication.
If the satellite authentication is successful, then a secure
communication link is established between GV , whereas
the two satellites can not communicate with each other.
All GV satellite between the realization of the certifica-
tion, all high-orbiting satellites in mutual authentication,
the realization of GV networking completed GSN build.

In addition, for the LEO satellite network, due to
the relatively high-speed trajectory of LV , it is difficult
for GCC to control it directly.To achieve the credible
maintenance of the system, GV needs to support the
control of LV achieve credible maintenance.In order to
achieve the security of control, it should be authenticated
between GV and LV , and use the GV security attribute
sGV , and the type options are GV and LV . If the
authentication succeeds, the control channel will establish,
and GV can control LV through the secure channel,
otherwise, it can not be controlled.

A. Satellite Constellation Network Authentication

1) Satellite and GCC networking Authentication:
Based on the definition in the abstract model,
we know that the high-orbit satellite GV is <
nGV , gGV , sGV , cGV >.Before launching of the satellite
satellite numbering, in accordance with the launch of the
satellite numbering, may wish to set G1, G2, ..., GM .Need
to set security attributes satellites, security attributes
need to be defined cryptographic algorithms, keys and
authentication protocols.

GEO satellites carry all the symmetric keys with LEO
satellites, and the satellites use pairs of keys for authenti-
cation. Due to the limited computing power of satellites,
the authentication protocol is based on a symmetric key
design. The former satellite carries the symmetry KGi

for
itself and the control center, presets the symmetric key
KGij used for authentication between the satellites. The
original satellite sends the symmetric key to the satellite
already in orbit, afterwards the satellite uses the key KGij

for satellite authentication.
2) Authentication between GEO Satellites: Because the

satellites need to be launched one by one in the process of
satellite, that is, in the process of satellite networking, the
satellite needs to be gradually accessed to the network, so
in this process, the certification of satellites is different.
When launching the first satellite, space satellites have
not been networked yet. At this moment, the satellite
authentication is authenticated based on the key set in
advance. After the first one is authenticated, the satellite
of the second backbone network is deployed and controlled
KG1

for center certification, and KG12
and SQN sequences

for the first and second satellite certifications.

First of all, it is determined whether the inter-satellite
certification link can be constructed with the adjacent
satellites. If an inter-satellite certification link can be con-
structed, the first and second inter-satellite authentication
can be established by using the secure communication
channel between the network service center and the
previous satellite. The symmetric key KG12

and the SQN
sequence are sent to the first satellite so that both the first
satellite and the second satellite have the authentication
key KG12

and the SQN sequence. The specific process of
certification is shown in Fig. 2. The process behind the
satellite is similar. After all the satellites are launched,
a high-orbit satellite network is established between the
satellites, thus completing the satellite networking Au-
thentication process.

Fig. 2. Authentication between Satellites

(1)First,satellite A sends an authentication request
message to satellite B.Before the satellite A initiates
the authentication request, it needs to calculate the
authentication vector AV based on its own key KAB ,
where the authentication vector consists of the fol-
lowing three elements, namely the random number
RAND, the session key for encryption CK, authen-
tication token AUTH.Each vector AV generation pro-
cess is as follows. Generate sequence number SQN
and random number RAND, and calculate MAC =
f1KAB

(SQN ||RAND)�CK = f2KAB
(RAND)�AK =

f3KAB
(RAND)�AUTH = SQN ⊕ AK||MAC�AV =

RAND||AUTH.Satellite A then sends the vector AV to
satellite B.

3

(2)After satellite B receives the AV from satellite A,
satellite B calculates AK using KAB through RAND,
decrypts it with AK to obtain SQN and verifies whether
satellite A is valid by computing f1KAB

(SQN ||RAND)
Has a symmetric key KAB .After the verification is
passed, a new random number RAND is generated
and calculates MAC = f1KAB

(SQN ||RAND)�CK =
f2KAB

(RAND)�AK = f3KAB
(RAND)�AUTH =

SQN ⊕ AK||MAC�AV = RAND||AUTH.Then sent the
vector AV to satellite A.

(3)After satellite B’s AV is received by satellite A, AK
is computed by RAND using KAB and decrypted by AK
to obtain SQN, verifying whether satellite B is valid by
computing f1KAB

(SQN ||RAND) Have a symmetric key
KAB , verify the success, then the certification process is
completed.

In the algorithm, the function f1 used as a message
verification code generation function, and f2 and f3 are
key derivation functions [15].

B. Reliable Maintenance
The main needs of GEO satellites for reliable mainte-

nance of LEO satellites are divided into two steps. The
first step is to authenticate connection between the GEO
satellites and the LEO satellites. The second step is to
control the LEO satellites by using the control attributes
of the GEO satellites.

1) Authentication between GEO satellite and LEO
satellite: After GEO satellite network and LEO satellite
network set up to achieve double-layer satellite net-
working, access authentication is achieved through LEO
satellite network, and backup and trusted maintenance is
achieved through GEO satellite network.

In the current international environment, basically all
countries can not be deployed on a global scale.When
satellite authentication systems need to be updated, there
is no guarantee that all satellite satellites will be able to
travel through one country, which may result in a failure
to update all of them during the update. In this case, GEO
satellites are required to cover the LEO satellites.

After the completion of the construction of the double-
layer network, it is also necessary to consider the process
of completing the certification of the LEO satellites and
the LEO satellites during use. The certification process
between LEO and LEO satellites is similar to the process
of certification between GEO and GEO satellites, as
detailed in the earlier section on certification between
GEO satellites.

The reliable maintenance of the GEO satellite net-
work for the LEO satellite network is to update the
authentication module, such as the authentication key
in the system of the LEO satellite network.When a
satellite is out of work,the packets that were originally
forwarded through the failed satellite will no longer pass
the invalid satellite.At this time, we need to broadcast
the entire network to the failed satellites in the LEO

satellite network by the high orbit satellite, which will
make the related topological paths of the failed satellites
change to infinity,indicating that the other satellites which
satellite is failed, and will invalidate the failed satellite’s
authentication key.The process is shown in Fig. 3.

Fig. 3. Control the invalid LEO satellite

The following example illustrates the failure of a high-
orbiting satellite to describe the process of updating
keys and reestablishing a secure communication channel
between adjacent high-satellites after symmetric key dele-
tion. The process is shown in Fig. 4.

(1)For authentication between satellite and GCC, we
use 3GPP’s authentication protocol [15]. The satellite A
and GCC are authenticated and the session key CK1 and
the integrity key IK1 are obtained. The satellite B and
GCC are authenticated and the session key CK2 and the
integrity key IK2 are obtained. After completing the above
process, two satellites and GCC secure communication
channels are established.

(2)The GCC assigns the symmetric keys KAB and IDB

to the satellite A through the secure channel. At the same
time, the GCC secure channel allocates the symmetric
keys KAB and IDA to the satellite B.

(3)Satellite A and satellite B complete the certification.
For details on the authentication method, see Satellite
Constellation Network Authentication Section.

The completion of the above steps will enable the
implementation of satellite key update and reliable main-
tenance.

IV. Security Analysis and Performance Analysis
A. Security Analysis

In the satellite network authentication protocol, the
protocol can accomplish two or two-way satellite authen-
tication. The protocol used is based on the 3GPP protocol
and uses symmetric keys to ensure the privacy of the
protocol. The protocol uses message authentication codes
to ensure the integrity of information during transmission,
thus being able to resist attacks such as counterfeiting
and forgery. Due to the large transmission delay of the
satellite, the use of timestamps to resist replay attacks is
less controllable. We use the serial number SQN instead
of timestamps to protect against replay attacks. In the

4

Fig. 4. Control the invalid LEO satellite protocol

process of satellite communication, key transmission is
established in the secure channel, which can effectively
resist man-in-the-middle attacks.

In the reliable maintenance protocol, the control link
first passes two-way authentication and generates the
session key and the integrity key. This ensures the privacy
and completeness of the process of transmitting the
update key in the control link. During the process of re-
establishing the link, the protocol derives the symmetric
authentication key and integrity key using the symmetric
key derivation function to protect the underlying symmet-
ric key to ensure the privacy and integrity of the protocol.
Through the above two methods, it can resist attacks
such as counterfeiting and counterfeiting in the satellite
environment. The agreement also uses the serial number
SQN to resist replay attacks.

B. Performance Analysis
In order to test the performance of the protocol, the

protocol was simulated to analyze the performance under
an Intel (R) Core i7-7700HQ CPU@2.80GHz processor.
Respectively, the network authentication protocol and
trusted to keep the agreement has been tested. This exper-
iment uses openssl open source library security algorithm
for experiments.

In this paper, 100 tests of network authentication were
conducted and compared with the traditional symmetry
scheme, the test results shown in Fig.5. Due to the large
satellite delay, we removed the satellite communication
delay and compared the calculation times of the two
authentication schemes. The protocol calculation time is
shown in Fig. 6.

Fig. 5. Network authentication performance test results

Fig. 6. Protocol calculation time

In the experimental results, the maximum calculation
time of this scheme is 0.339 ms , the minimum time is
0.048 ms and the average calculation time is 0.074 ms.
The maximum calculation time of the the traditional sym-
metry authentication scheme is 0.289 ms ,the minimum
calculation time is 0.061 ms and the average calculation
time is 0.093 ms. The average efficiency of this scheme is
28% higher than that of public key encryption schemes.

This article also tests the trusted maintenance for 10
times, and the test results are shown in figure 7. As the
satellite failure increases, the test results are shown in
figure 8.

The experimental results, the maximum time of this
program for reliable maintenance is 272.14 ms, the min-
imum time is 238.20 ms, the average time is 254.64 ms.

Fig. 7. Reliable maintenance of test results

V. Conclusion
This paper designs a new GEO satellite network authen-

tication and credible maintenance protocol, verifies the
feasibility and efficiency of the protocol experimentally,

5

Fig. 8. Failure satellite increasing test results

and proves the security of the protocol through theoretical
analysis.

Future satellite computing power will be more and
more strong, the use of public key system on the satellite
will be the new direction. For credible maintenance of
LEO satellites, other safer and more efficient options may
emerge in the future.

References
[1] Amirshahi, Pouyan, and Steven Grippando. ”Radio frequency

interference monitoring system for weather satellite ground sta-
tions: Challenges and opportunities.” Dynamic Spectrum Access
Networks (DySPAN), 2017 IEEE International Symposium on.
IEEE, 2017.

[2] Berman, Elliot. ”Movable window support device for a satellite
TV dish.” U.S. Patent No. 6,731,250. 4 May 2004.

[3] De Sanctis, Mauro, et al. ”Satellite communications supporting
internet of remote things.” IEEE Internet of Things Journal 3.1
(2016): 113-123.

[4] Ashjaee, Javad, et al. ”Satellite differential positioning receiver
using multiple base-rover antennas.” U.S. Patent No. 9,035,826.
19 May 2015.

[5] LI F H , YIN L H , WU W ,et al. Research status and
development trends of security assurance for space-ground in-
tegration information network[J]. Journal on Communications,
2016,37(11): 156-168.

[6] Jiang, Chunxiao, et al. ”Security in space information networks.”
IEEE communications magazine 53.8 (2015): 82-88. Zheng, Gan,
Pantelis-Daniel Arapoglou, and Bjorn Ottersten.

[7] ”Physical layer security in multibeam satellite systems.” IEEE
Transactions on wireless communications 11.2 (2012): 852-863.

[8] Wullems C, Pozzobon O, Kubik K. Signal Authentication
and Integrity Schemes for Next Generation Global Navigation
Satellite Systems[C]// European Navigation Conference Gnss.
2005:1.

[9] Cruickshank H S. A security system for satellite networks.
Proceedings of the Fifth International Conference on Satellite
Systems for Mobile Communications and Navigation, London,
UK, 1996.

[10] Sasaki, Takao, and Tadayoshi Katoh. ”Dual layer satellite
communications system and geostationary satellite therefor.”
U.S. Patent No. 6,023,605. 8 Feb. 2000.

[11] Zhibo, X., Ma, H.: Design and simulation of security authentica-
tion protocol for satellite network. Comput. Eng. Appl. 43(17),
130–132 (2007)

[12] Chang, Chin‐Chen, Ting‐Fang Cheng, and Hsiao‐Ling Wu. ”An
authentication and key agreement protocol for satellite com-
munications.” International Journal of Communication Systems
27.10 (2014): 1994-2006.

[13] Jin, Xiaoning, Peiying Zhang, and Haipeng Yao. ”A communi-
cation framework between backbone satellites and ground sta-
tions.” Communications and Information Technologies (ISCIT),
2016 16th International Symposium on. IEEE, 2016.

[14] Kimura, Kazuhiro, Keizo Inagaki, and Yoshio Karasawa.
”Double-layered inclined orbit constellation for advanced satel-
lite communications network.” IEICE Transactions on Commu-
nications 80.1 (1997): 93-102.

[15] 3GPP, TS 33.102 v9.1.0. 3G Security; Security architecture
(Release 9), 2009.12

6

 A Novel Hybrid Collaborative Filtering Approach to

Recommendation Using Reviews:The Product

Attributes Perspective

Min Cao1, Sijing Zhou1, Honghao Gao1,2,3, * , Youhuizi Li4

1,School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

2, Computing Center, Shanghai University, Shanghai 200444, China

3,Shanghai Key Laboratory of Computer Software Testing&Evaluating, Shanghai 201112, China

4, College of Computer,, Hangzhou Dianzi University, Hangzhou 310018, China

mcao@staff.shu.edu.cn, zhousijing@shu.edu.cn, gaohonghao@shu.edu.cn, huizi@hdu.edu.cn

Abstract—The product recommendation research has been

focusing on modelling users’ reviews to construct the relation of

users and products. Thus, the recommended performance can be

improved by obtaining virtual ratings from corresponding

reviews. However, these perspectives on reviews do not take into

account the product field characteristic, which may impact the

recommendation performance. To this point, this paper proposes

a hybrid collaborative filtering approach to compute the

correlation value considering product attributes. First, Product

Attribute Weight and Product Attribute Score are introduced to

formalize the product attributes for user and product

respectively in a quantitative way. After that, the recommended

ranking formula for the new model is presented. Finally, we

carry out experimental analysis to show our method can

effectively improve the performance of recommendation under a

sparseness dataset.

Keywords — Product Recommendation, Reviews, Hybrid

Collaborative Filtering, Product Attributes

I. INTRODUCTION

The recommender system originated from information
retrieval has been served to provide users with personalized
online product recommendations to improve user experience
[1][2]. With the increasing information on line, the
performance of the recommendation using reviews becomes a
crucial problem to modern service industry. However, there are
some deficiencies in the existing product recommendation
approaches using product reviews.

First, the mainstream of recommendation methods using
reviews is usually using aspect preference, such as aspect need
and aspect importance [2-4]. The implicit condition in aspect
preference methods is reviews’ characteristic of centralized
features. But the features of product reviews are scattered and
not uniform because the reviews have multiple categories and
are numerous. Therefore, aspect preference methods bring
disunity problem of features and are not suitable for product
field.

Second, product attributes is proved that affects consumers'
desire for consumption [5-8]. The expression of product

attributes was once focused on the calculation of weight values
[2]. Until the introduction of matrix factorization theory, the
modeling methods based on the multi-irrelevant-models form
began to emerge [3][9-10]. However, the models were
generally only based on user. Lack of product perspective, user
preference simulation is not comprehensive, which affects
recommended performance negatively.

In response to above issues, this paper presents a hybrid
collaborative filtering approach based on product attributes –
PACF (Product Attributes Collaborative Filtering). To model
from two angles of user and product, PAM (Product Attributes
Model) based on the matrix factorization’s vectors
multiplication idea is discussed. After that, important elements
of Product Attribute Weight and Product Attribute Score for
the PAM are defined for users and products respectively. It
needs applicable formula to construct new model to integrate
these factors. Then, a new hybrid collaborative filtering

formula PAM is proposed to generate the recommended results
for the PAM.

The rest of this paper is organized as follows. Section II
reviews related work. Section III shows the formal definition.

Section IV introduces the model PAM and the formula PAM
for PACF. Section V discusses the experimental analysis, and
Section VI presents conclusions and provides future research
directions.

II. FORMAL DEFINITION

Integrating the valuable information embedded in reviews
not only promotes user experience in the recommender system
but also improves the recommended performance [2]. A virtual
rating can be generated through users’ implicit preference
information from reviews.

Aimed at characteristics of product reviews, product
attributes are fixed to facilitate feature consistency first. Then,
sentiment polarity is introduced to achieve accurate user
preferences. Product attributes can be defined including quality,
performance, appearance and other aspects. Positive polarity
and negative polarity are embodied in sentiment polarity. The

DOI Reference Number 10.18293 / SEKE2018-050

7

specific symbols are clearly defined in Table I. The product
attributes parameter is fixed through building the dictionary,
shown in Table II.

TABLE I. SYMBOL AND ITS MEANING

Symbol Meaning
R={r1, r2,…, r|R|} Reviews set

U={u1, u1,…, u|U|} Users set

P={p1, p2,…, p|p|} Products set

PA={pa1, pa2,…, p|pa|}
Product attributes set.
The specific definition is shown

in Table II.

 1 2, ,
k

k F
fF f f

Fk is a set of feature words fi of
the product attribute pak. The

specific definition shown in

Table II.

i{1,-1}

i is the sentiment polarity

corresponding to the product

attribute feature word fi.
Among the set, -1 is negative

sentiment, and 1 is non-negative
sentiment (including positive

and neutral).

TABLE II. PRODUCT ATTRIBUTES AND FEATURE WORDS

Symbol Meaning

PA PA={Quality, Service, Performance, Package}

FQuality FQuality={nature, product, greener, brand .etc}

FService FService={communication, efficient, responsive .etc}

FPerformance FPerformance={fresh, flavor, awful, tasted .etc}

FPackage FPackage={delivery, ship, on-time, speed .etc}

Accordingly, the research problem is to tackle the
following challenges. First, how to reliably model inference

user preferences from two-tuples (pak,i) ? Second, how to
effectively incorporate product attributes information to
generate recommendation results? Another problem is to
establish the relevance of users’ model and products’ model.

III. PRODUCT ATTRIBUTES COLLABORATIVE FILTERING

This section presents the recommended framework of
PACF shown in Fig 1. After data preprocessing, a collector of

two-tuples (pak,i) in reviews is obtained.

Fig. 1. The recommendation framework of PACF

Then, a novel recommendation method is used to generate
recommendations. We formalize PACF with the PAM model
based on reviews and a hybrid collaborative filtering formula

PAM. Product Attribute Weight proposed in PAM characterizes
the user's weight while Product Attribute Score describes the
product’s score. The specific modeling is detailed in Section A.
Learning the idea of a hybrid collaborative filtering approach,

Section B proposes a new formula PAM for the PAM. The
premise of the formula is to make Product Attribute Weight
relate to Product Attribute Score.

Finally, the recommendation results are generated through
the formula.

A. Product Attribute Model based on Reviews

Users and products are modeled separately through the
matrix factorization idea [9]. From the perspective of the user’s
weight and the product’s score, PAM is subdivided into
Product Attribute Weight and Product Attribute Score.

1) Product Attribute Weight Analysis
The first measure, Product Attribute Weight recorded as W,

is the degree of attention given to the attributes of the product.
Given a user ui and a product attribute pak, the formula Product
Attribute Weight is defined as follows.

 ,
ij

j i

ijkRik ik

i i ijR

p

i k

p

F
u a

F
W p

In formula (1), Ri is the set of ui 's reviews; pj Ri

represents the products which the user reviewed; |Fik|
represents the frequency that the feature word is mentioned by
the user with respect to product attribute pak; |Fi| represents the
number of times that all product attributes’ feature word is

mentioned by the user; indicates the sentiment polarity value.

|ijk| is the user's sentiment polarity set of product attribute pak
for product pj Ri. The number of user comments on product

attribute pak is |ik|. |ij| represents the user's sentiment polarity

set for pj Ri on all product attributes PA. |i| is the frequency

of all product attributes PA in the comments. When the value
of W is zero or unknown, Product Attribute Weight is 0.1.

2) Product Attribute Score Analysis
The second measure, Product Attribute Score, is similar to

the user rating the project. The user's views of product
attributes are scored and recorded as S. Given a product pj and
a product attribute pak, the measure Product Attribute Score
can be defined as follows.

, 1 , 1

,
ijk ii j i j

i

j

j

k
ijk ijkR r

ijk jkR

u u

j k

u

S pap

 (2)

Among the formula (2), Rj is the reviews set for the product

pj; ui is the user who has commented on it; and indicates the

sentiment polarity value. ijk is the user's sentiment polarity set

of product attribute pak.
, 1ijki j

iu jkr

 expresses the size of

8

the sentiment polarity set when ijk=1. When the value of S is
zero or unknown, Product Attribute Score is 0.1.

3) Product Attributes Model
Draw on the experience of the multiplication form of

matrix factorization, the PAM model is divided into different
models corresponding to users and products. With the two
formulas proposed above, PAM can be defined:

1 2 | |

1 2 | |

(, ,..) (,)
(,

(, ,..) (,)
,)

PA k i

i

k

PA k k

j

j

W W W W W u pa for users
PAM u PA

S S S S S p pa for products
p

B. Hybrid Collaborative Filtering Formula for PAM: PAM

The vectors corresponding to users and products separately
in the PAM are unrelated. In order to solve the problem, the

average Product Attribute Score of users recorded as S is

introduced based on the shopping history in reviews. The

average Product Attribute Weight of the product is calculated

similarly and denoted as W . The formula is shown as follows.

 1 2 | | 1 2 | |

1 2 | | 1 2 | |

(,
(, ,...) (, ,...)

,)
(, ,...) (, ,...)

reviews

PA PA

reviews

PA P

i j

A

W W W S S S for us
PAM u p

ers
PA

S S S W W W for products

Next, the generalization formula (5) we proposed is
extracted for calculating the hybrid collaborative filtering
[1][2][11-13]. A new hybrid collaborative filtering formula (6)
for the PAM is obtained by derivation the formula (4) through
combining the formula (5) and the cosine formula.

 ΓHCF UBCF IBCF

| | | |

| | | | | |

1 1

1

| |

1 1 1

(,)=

PA PA

j i j

PAM i j
PA P

i

A PA PA

ii j j

W W S S

S S

p

WW

u

For the current user, the cosine cosUBCF
 is obtained by the

vector
1 2 | |(, ,...)PAW W W and the average user weight value

1 2 | |(, ,...)PAW W W W . It is the same way to figure out the value

for cosIBCF
.

IV. EXPERIMENTS

To evaluate the performance of PACF, experiments are
carried out and compared by analyzing our method against
other algorithms through offline dataset.

A. Dataset

We used the Amazon fine-food reviews dataset from SNAP.
The dataset collected 568,454 reviews posted by 256,059 users
for 74,258 items of food [14]. The format contains the UserId,
the ProductId, the Text, and the Score attributes, which are

required for the experiment. The Score is an integer from 1 to 5.
In large shopping sites, the number of users and products
increases daily. Meanwhile, the dataset of actual purchases is
sparse, usually below 0.1%. The datasets are described in
Table III.

TABLE III. DESCRIPTIVE STATISTICS OF DATASETS

Datase

t

Descriptive Statistics

Num. of

users

Num. of

products

Num. of

ratings

and

reviews

Sparsity

Data1 1232 754 1250 0.1346%

Data2 2420 1193 2500 0.0866%

Data3 4719 1791 5000 0.0592%

Data4 9051 1765 10000 0.0626%

Data5 17139 3148 20000 0.0371%

B. Experimental Result and Evaluation

The rating data have a sparseness of less than 0.1% on
shopping sites. Furthermore, the product category is in billions
of units. Thus, using TOP-N sorting to evaluate accuracy is not
an appropriate method. Our experiment is to simulate the data
from actual shopping sites. The extremely low accuracy of this
site does not have a value.

In this case, coverage is more appropriate. The coverage is
used to measure the ability of the methods to discover products.
The PACF method contains the idea of collaborative filtering
and matrix factorization. Therefore, the following comparison
is considered: UBCF, IBCF and SVD [15]. UBCF and IBCF
are classical algorithms for collaborative filtering; SVD is a
representative algorithm for matrix factorization. Firstly, we
take the datasets in Table III as the experimental dataset. Then,
the evaluation metric coverage is calculated under N = 1, 5, 10
and 20. The experimental results are shown in Table IV. The
coverage unit is %.

TABLE IV. EXPERIMENTAL RESULTS OF COVERAGE

Datas

et

Coverage

Methods N=1 N=5 N=10 N=20

Data1

UBCF 0.1326 0.0119 0.0146 0.0291

IBCF 0.2652 0.0093 0.0172 0.0305

SVD 0.6631 0.0186 0.0358 0.0650

PACF 1.3263 0.0597 0.0941 0.1552

Data2

UBCF 0.0008 0.0042 0.0092 0.0176

IBCF 0.0017 0.0050 0.0101 0.0192

SVD 0.0117 0.0268 0.0360 0.0762

PACF 0.0142 0.0386 0.0695 0.1215

Data3

UBCF 0.0006 0.0036 0.0430 0.0122

IBCF 0.0017 0.0061 0.0089 0.0151

SVD 0.0168 0.0329 0.0061 0.0642

PACF 0.0101 0.0274 0.0519 0.0966

Data4

UBCF 0.0017 0.0045 0.0073 0.0130

IBCF 0.0017 0.0062 0.0102 0.0164

SVD 0.0221 0.0567 0.0771 0.1082

9

Datas

et

Coverage

Methods N=1 N=5 N=10 N=20

PACF 0.0096 0.0306 0.0515 0.0816

Data5

UBCF 0.0004 0.0016 0.0030 0.0048

IBCF 0.0006 0.0022 0.0042 0.0076

SVD 0.0072 0.0198 0.0358 0.0550

PACF 0.0056 0.0150 0.0260 0.0398

C. Discussion

The overall coverage of PACF is on the rise in Table IV.

PACF depends on the number of reviews. The larger the

reviews, the better the performance. PACF also applies to

scenarios where SVD is suitable. In Data1, Data2 and Data3

of Table IV, PACF performs better than SVD. In Data4 and

Data5 of Table IV, PACF’s coverage is lower than SVD’s. In

further analysis, PACF's formula is similarly affected by the

purchase record. With a sparsity of 0.05%, PACF sacrifices

coverage. Moreover, Table IV illustrates that when sparseness

is higher than 0.05% , the coverage performance of our

proposed PACF is good.

V. CONCLUSION AND FUTHRE WORK

Considering the characteristics of product reviews, this
paper uses constant product attributes and establish irrelevant
and multi-perspective models. The objective is to solve the
problem of complicated product reviews but also to refine
information on user preferences. Based on the above conditions,
a hybrid collaborative filtering method PACF is proposed. The
PAM model and the ΓPAM

 formula are constituted to make

PACF. PAM consists of Product Attribute Weight and Product
Attribute Score. The perspectives of users and products can
effectively simulate user preferences. The experiments have
showed that PACF achieved better recommended performance
in dealing with large and sparse reviews and predicted user
behavior well. The coverage is superior to other methods at a
sparsity higher than 0.05%.

In the future, we will study the current issue, PACF
sacrifices coverage when sparsity is less than 0.05%. Using
user relation and social information from other platforms can
further improve the performance of the recommendation on
sparse data. Moreover, the implementation and effective
response of large-scale electronic website platform is worthy of
further work. To this pint, cloud computing and cluster will be
considered to accelerate the reaction speed.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
valuable and constructive comments. This work is supported
by The National Key Research and Development Plan of China
under Grant No. 2017YFD0400101, and The National Natural
Science Foundation of China under Grant No. 61502294,
61572306.

REFERENCES

[1] Lu J.,Wu D. S., Mao M. S., Wang W. and Zhang G. Q., “Recommender
system application developments: A survey”, Decision Support Systems,
2015, 74 , pp.12-32.

[2] Chen L., Chen G. L. and Wang F., “Recommender systems based on
user reviews: the state of the art”, User Modeling And User-adapted
Interaction, 2015, 25(2), pp. 99-154.

[3] Ma Y., Chen G. Q. and Wei Q., “Finding users preferences from large-
scale online reviews for personalized recommendation”, Electronic
Commerce Research, 2017, 17(1),pp. 3-29.

[4] T. Sangeetha, N. Balaganesh and K. Muneeswaran, “Aspects based
opinion mining from online reviews for product recommendation”,
ICCIDS, 2017, DOI: 10.1109/ICCIDS.2017.8272657.

[5] M. Vamsee Krishna Kiran, RE Vinodhini, R. Archanaa and K.
Vimalkumar, “User specific product recommendation and rating system
by performing sentiment analysis on product reviews”, ICACCS, 2017,
DOI: 10.1109/ICACCS.2017.8014640.

[6] ZKA Baizal, A. Iskandar and E. Nasution, “Ontology-based
recommendation involving consumer product reviews”, ICoICT, 2016,
DOI: 10.1109/ICoICT.2016.7571890.

[7] Alton Y.K. and C.S. Banerjee, “Helpfulness of user-generated reviews
as a function of review sentiment, product type and information quality”,
Computers in Human Behavior, 2016, 54, pp.547-554.

[8] Su J.K., E. Maslowska and E. C. Malthouse, “Understanding the effects
of different review features on purchase probability”, International
Journal of Advertising, 2018, 37, Issue 1: Electronic Word-of-Mouth

[9] Zhao W. X., Wang J. P., He Y. L. and et al, “Mining Product Adopter
Information from Online Reviews for Improving Product
Recommendation”, ACM Transactions on Knowledge Discovery from
Data, 2016, 10(3), article num.29.

[10] Z.W. Yu, H. Xu, Z. Yang and B. Guo, “Personalized Travel Package
with Multi-Point-of-Interest Recommendation based on Crowdsourced
User Footprints”, IEEE Transactions on Human-Machine Systems, 2016,
46(1), pp.151-158.

[11] Koren Y., Bell R. and Volinsky C., “Matrix Factorization Techniques
for Recommender systems”, Computer, 2009, 42(8), pp. 30-37.

[12] Hammou B. A. and Lahcen A. A., “FRAIPA: A fast recommendation
approach with improved prediction accuracy”, Expert Systems with
Applications, 2017, 87,pp. 90-97.

[13] Kassak O., Kompan M. and Bielikova M., “Personalized hybrid
recommendation for group of users: Top-N multimedia recommender”,
Information Processing & Management, 2016, 52(3), pp. 459-477.

[14] [Online].Avliable:http://online.cambridgecoding.com/notebooks/eWRe
NYcAfB/implementing-your-own-recommender-systems-in-python-2

[15] [Online].Avliable:http://snap.stanford.edu/data/web-Amazon.htm

10

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=5EQxkX4ORHZipaW19nh&field=AU&value=Kassak,%20O&ut=42970340&pos=1&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=5EQxkX4ORHZipaW19nh&field=AU&value=Kompan,%20M&ut=1000073185&pos=2&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=5EQxkX4ORHZipaW19nh&field=AU&value=Bielikova,%20M&ut=9103305&pos=3&excludeEventConfig=ExcludeIfFromFullRecPage

Exploiting SDAE Model for Recommendations
Qing Yang, Xianhe Yao

Guangxi Key Laboratory of Automatic Detecting Technology and Instruments
Guilin University of Electronic Technology, Guilin, China

gtyqing@hotmail.com, 407953822@qq.com

Jingwei Zhang
Guangxi Key Laboratory of Trusted Software
Guilin University of Electronic Technology

Guilin, China
gtzjw@hotmail.com

Zhongqin Bi
College of Computer Science and Technology

Shanghai University of Electronic Power
Shanghai, China

zqbi@shiep.edu.cn

Abstract—The data for recommendations, usually a matrix
composed of users and items, include a large number of
missing data, noise data, etc, which have a negative effect
on the accuracy of recommendations. In order to improve
recommendation performance, this paper put forwards an
improved model named Stacked Denoising AutoEncoder
(SDAE), which improves the autoencoder by both indicators
and denoising parts to construct an effective stacked au-
toencoding network. The first layer of the encoding network
is responsible for dealing with missing data with the help
of indicators and to get a new encoding for features, and
then stacked denoising is applied to process noise data for
a further optimization. SDAE’s output can be accepted by
collaborative filtering methods to provide a more accurate
recommendation. Three data sets are used to verify the
proposed model, the experimental results show that the
proposed model presents an active ability on improving
recommendation performance and mitigates the negative
influence caused by missing data, noise data, etc.

Index Terms—recommendation, data preprocessing, s-
tacked encoding

I.. INTRODUCTION

Data play a key role for recommendations to match
users’ interests, such as smart tourism, online shopping.
But missing data, noise data etc are often included when
collecting data from applications. These inaccurate data
bring negative impact on the effectiveness of recommenda-
tions. For example, as a popular strategy for recommenda-
tion, collaborative filtering will be weakened on computing
the similarity between users or items when using data
containing both missing values and noise data.

In addition, it is also difficult to capture users’ charac-
teristics accurately when facing large amount of missing
values and noise data. For example, 0 is usually a default
value for those unobserved behaviors, but may also be a
score from a real user, the same value meaning different

Jingwei Zhang and Zhongqin Bi are corresponding authors.
DOI reference number: 10.18293/SEKE2018-094

actions for users will yield unsatisfied recommendations.
Obviously, it is also possible to output unexpected decision
on users’ similarity caused by noise data, which can even
result in a series of failures on recommendation for an
initializer. Aiming at the above challenges, this paper fo-
cuses on data preprocessing models to improve data quality
for recommendations. Depending on deep learning and
encoding technologies, this paper put forwards a stacked
denoising autoencoder to preprocess missing data and
noise data in recommendation data, which can then cooper-
ate with collaborative filtering to improve recommendation
accuracy. The major contributions are as followings,

• introducing indicators to deal with missing data and
to compute the hidden features for recommendations;

• constructing a stacked denoising autoencoder to pro-
cess noise data and to cooperate with collaborative
filtering for improving recommendation performance;

• conducting comprehensive experiments to verify the
effectiveness of the proposed model.

This paper is organized as following. Section II sum-
marized the related work on recommendation and data
preprocessing technologies. Section III presented the
primary objective of this paper and the problem statement.
Section IV detailed the proposed model, including the
network structures for encoding and parameter training.
Section V designed experiments to provide proof for
verifying and analyzing our model. Section VI concluded
the whole paper and discussed the future work.

II.. RELATED WORK

Data preprocessing is a key part to ensure the effective-
ness of recommendations. Considering the negative effect
on recommendations brought by missing values, these
current popular strategies are to fill missing values, dimen-
sionality reduction or clustering. [1] proposed a model-
based collaborative filtering method that used a specific

11

value to substitute those missing values and to compute
the similarity between items. [2] put forwards a two-stage
clustering method on sparse data, which combined graph
summarization with content-based similarity to provide
topic recommendation based on users’ interests.

Aiming at suppressing noise data, principal component
analysis(PCA) is a classical strategy on both denoising and
dimensionality reduction. On denoising applications, PCA
belongs to fixed effect model and uses a fixed structure
with low noise to generate data. [3] analyzed the difference
between PCA and regularized PCA and proved that the
regularized PCA performs better even facing high-noise
data. In addition, neural networks are becoming active for
processing noise data. [4] applied radial basis function
neural networks on denoising of ECG signal and improved
analysis performance on ECG data.

In 2006, both deep learning and the improvement on
model training broke the bottleneck of traditional BP
neural networks, Geoffrey Hinton elaborated systematical-
ly the strong learning ability on features contributed by
multi-layer neural networks and proved that those features
learned by deep learning model can express those initial
data better [5]. [6] applied local denoising to learn the
effective features in deep networks. Aiming at the local
minimum of gradient descent caused by stochastic weight
initialization of neural networks, [7] put forwards stacked
autoencoder on stacked RBM and trained neural networks
layer by layer in greedy mode to capture the deep features,
which can learn deep nonlinear network structures from
large-scale data. This paper made a comprehensive consid-
eration on both current data preprocessing for recommen-
dation applications and the popularity of deep learning, and
constructed an improved stacked denoising autoencoder
model to provide more effective and accurate input data
for further recommendations.

III.. PROBLEM STATEMENT

This paper focuses on more effective data preprocessing
and feature capturing method, which can cooperate with
those popular recommendation methods, such as collab-
orative filtering, top-N recommendations, etc, for better
recommendations. The specific problem can be stated as,

Given an initial dataset D, we need to design a function
df for improving their effectiveness on recommendations,
D

′
= df(D), which should satisfy ACC(rf(D

′
)) >

ACC(rf(D)) when given a specific recommendation
function rf and a concrete evaluation metric ACC.

Our basic strategy for the function df is to introduce
autoencoders and neural networks for dealing with two
kinds of abnormal data in the initial dataset, namely
missing data and noise data. The following parts will detail
our solutions.

IV.. SDAE MODEL

A Stacked Denoising AutoEncoder(SDAE) model is
proposed to optimize data for recommendations. SDAE
model introduces an autoencoder with indicators to deal
with the data sparsity and to construct their initial encod-
ing. Then, a Gaussian noise is applied on the output encod-
ing and the stacked denoising technology is combined with
autoencoding to suppress the noise. The proposed model
reduces the negative effect caused by both the sparsity and
noise data to improve recommendation quality.

A.. Sparsity Optimization by Introducing Autoencoding with
Indicators

Autoencoder adopts unsupervised learning model to
train on non-labeled dataset, which constructs a three-layer
network model to draw the compression characteristics of
the input data. The encoding network structure is illustrated
in Fig. 1. For encoding, the input x will be converted into
a hidden feature h, which is computed as Equation. 1. W1

is a weight matrix, b1 is a bias vector. σ(x) = 1
1+e−x is a

sigmoid function [8]. For decoding, the weight matrix W2

and the bias vector b2 are applied to restore the implied
feature y from the compressed hidden layer h, which is
showed in Equation. 2. We introduce stochastic gradient
descent strategy to optimize the weight matrix W1,W2

and the bias vector b1, b2, and use minimum average error
to measure the encoding performance. The average error
between the input x and the encoding output y is defined
as their L2 norm, which is presented in Equation. 3. The
value h outputted by the hidden layer is just the encoding
output of the initial data in the first phase. ∥ · ∥2 represents
the L2 norm of vectors or matrix.

Fig. 1. A three-layer autoencoder

h = σ(WT
1 x+ b1) (1)

y = σ(WT
2 h+ b2) (2)

ι(x, y) =∥ x− y ∥2 (3)

A large number of missing data are acting as negative
samples when recommendation algorithms work on them
[9]. It is difficult for a pure autoencoder to capture the

12

data feature accurately. The following will construct an
autoencoding network with indicators to filter out missing
data and to reduce their side effect on similarity compu-
tation. We define an indicator matrix as Formula. 4 to
identify those missing data in the input data, where i, j
represents the user ID and the ID of recommended objects.
The indicator matrix can help to remove those missing data
from the training process of autoencoders, whose structure
is illustrated in Figure. 2.

indicatori,j =

{
1 if datai,j ̸= 0
0 otherwise

(4)

x1 x2 x3 x4 x5 x6 +1

h1 h2 h3 h4

y1 y2 y3 y4 y5 y6

Input layer

Hidden layer

Output layer

+1

W1, b1

W2, b2

involving in coding not involving in coding

Fig. 2. A partial illustration of autoencoder with indicators

The specific process for training autoencoding network
is detailed in Algorithm. 1, which is composed of two
stages with the help of indicators, encoding and decoding.
Those related symbols are as following. X is the initial
input data, nv is the node number in the input/visual layer,
nh is the node number in the hidden layer. lr denotes
the learning rate, ϵ holds the threshold of the minimum
average error, which respectively serve for the network
constructing speed and the stopping condition. The weight
matrix are denoted as W and W

′
, their corresponding bias

vectors are b and b
′
. For functions, the encoding function

is denoted by get-hidden-units, the decoding function is
get-reconstruction-units, who correspond to the Formula.
1 and 2. The function for computing reconstruction error
is get-cost that is expressed in 3. get-gradient is used to
compute gradients, which cooperates with lr and applies
stochastic gradient descent [10] to update parameters and
to minimize the reconstructed errors. By the indicators,
the weights corresponding to the missing parts are ignored
at both input and output, and an activation function is
designed to compute both the hidden and the reconstructed
representations for the initial data.

B.. Improving Recommendations by Stacked Denoising Au-
toEncoder(SDAE)

Noise is another factor disturbing the accuracy of
recommendations. Based on the autoencoder model with
indicators, a denoising autoencoder model is proposed
to remove the disturbance caused by noise. In order to
improve the local minimizing problem of gradient descent,

Algorithm 1 Autoencoding with Indicators
Input: the initial data X ,

the indicator matrix indicator,
the node number in the input/visible layer nv,
the node number in the hidden layer nv ,
the learning rate lr,
the threshold for minimum average error ϵ,
the initial weight matrix W and W

′
,

the initial bias vectors b and b
′

Output: the encoding output Yout

1: X
′
= X ∗ indicator;

2: while cost > ϵ do
3: Y = get− hidden− units(X

′
,W, b, nv, nh);

4: Z = get − reconstruction −
units(Y,W

′
, b

′
, nh, nv);

5: Zout = Z ∗ indicator;
6: cost = get− cost(X

′
, Zout);

7: gradient=get− gradient(cost, param);
\\ param is (W,W

′
, b, b

′
)

8: param=param− lr ∗ gradient;
9: end while

10: return Yout = Z;

denoising autoencoders(DAE) are stacked together to form
a new stacked denoising autoencoder (SDAE), an iteration
computation is applied to capture the features of the initial
input. The bottom-up and layered training strategy is used
to decide the parameters of the whole network. In the phase
of data preprocessing, a group of noise are firstly merged
into the initial data to maintain the consistency between the
initial data and the features learned from the merged data.
This measure can help to improve the ability on resisting
noise for recommendations.

Considering that most of noise in real life conform
to Gaussian distribution [11], we use Gaussian noise to
simulate those possible noise in the initial collected data,
which are formalized as x

′ ∼ qD(x
′ |x). Here, x is the

initial collected data, x
′

is the data merged with noise
and is also the input of recommendation applications, D
represents the whole dataset. The structure of the denois-
ing autoencoder is presented in Fig. 3. The Denoising
AutoEncoder model (DAE) is responsible for minimizing
the reconstructed error between the input merged with
noise and its output, which is presented in Formula. 5.
Multiple DAE are stacked by submitting the output from
the previous DAE to the input of the next DAE to improve
recommendation performance.

ȷ(x, y) = (∥x
′
− y∥)2 (5)

Algorithm. 2 presents the detailed process to capture the
features of the original data. Compared with Algorithm. 1,
a specific value for the layers of neural networks, nl, is

13

Input layer

Hidden layer

Output layer

Raw input

x ~ qD(x |x)

min Ј (x ,y)

Fig. 3. The model for denoising autoencoder.

introduced to represent how many times for DAE model to
be stack. In addition, an array holding the node numbers
for each hidden layer, nH [nl], and the signal-noise ratio cr
are designated. get − input is a new function for mixing
Gaussian noise.

Algorithm 2 Stacked Denoising Autoencoding for Recom-
mendations
Input: the initial data X ,

the layers of neural networks nl,
the node number in the input/visible layer nv,
the node number in the hidden layer nh[nl],
the signal-noise ratio cr,
the learning rate lr,
the threshold for minimum average error ϵ,
the initial weight matrix W and W

′
,

the initial bias vectors b and b
′

Output: the encoding output Yout

1: for k from 1 to nl do
2: X

′
= get− input(X, cr)

3: while cost > ϵ do
4: Y = get − hidden −

units(X
′
,W [i], b[i], nv, nh[k]);

5: Z = get − reconstruction −
units(Y,W

′
[i], b

′
[i], nh[k], nv);

6: cost = get− cost(X
′
, Z);

7: gradient=get− gradient(cost, param);
\\param is (W [i],W

′
[i], b[i], b

′
[i])

8: param=param− lr ∗ gradient;
9: end while

10: end for
11: return Yout = Z;

V.. EXPERIMENTS AND EVALUATION

A.. Experimental Setup and Datasets

The proposed method is tested and analyzed in this
section. The concrete experimental configurations are com-
posed of MacOS Sierra and Matlab2015b run on Intel
core i7 with 2.2GHz and 16GB DDR3 memory. Three

types of datasets covering different scenarios are applied
to verify the effectiveness of the proposed method, which
are listed in Table. I. The dataset from GroupLens uses
0 to express all missing scorings, in which you can not
make a clear distinction between a real score and a default
value when meeting 0. Though 0 is still used as default
value, the EachMovie dataset accompanies all 0s with
a weight, which can help you to distinguish that this
value is from a real user or is a default one. The dataset
from Jester is about online joke recommendation, which
presents different characteristics from the above two, and
consists of less items for recommendations and a larger
range for user scoring, and the default values are also not
overlapped with the scoring range.

TABLE I
THE DETAILS OF DATA SETS

Name Num. of
users

Num. of
items

Scoring
range

Default
values

MovieLens-
100k

943 1682 [0, 5] 0

EachMovie 61265 1623 [0, 1] 0 (with
weight)

Jester
Dataset1

24983 100 [−10, 10] 99

Since collaborative filtering is the most popular method
for recommendations, we will execute collaborative fil-
tering [12] on the preprocessed data contributed by our
proposed method to verify its effectiveness. Top−N rec-
ommendation is used to evaluate the improvement on rec-
ommendations. Three evaluation metrics,Precision, Recall,
and F1-Score, are used to evaluate our proposed method,
which are computed as Formula. 6- 8. Here, true positive
is the number of items that should be recommended and
have also been in the top-N list, false positive represents
the number of items that should not be recommended but
have been in the top-N list, and false negative corresponds
to the number of items that should be recommended but
have not been in the top-N list.

Precision =
truepositive

truepositive+ falsepositive
(6)

recall =
truepositive

truepositive+ falsenegative
(7)

F1− Score =
2 ∗ precision ∗ recall
precision+ recall

(8)

In order to verify the improvement on the recom-
mendation accuracy brought by the different compression
dimensions in SDAE model, we introduce the user-based
collaborative filtering, autoencoding with indicators, as
well as a SAE model to compare with the SDAE model
on recommendation performance. The specific SAE model

14

has both the same parameters and the same structure
with the SDAE model, whose input dose not mix with
noise. The comparison between the SAE model and the
SDAE model can show the recommendation effectiveness
contributed by noise suppression.

B.. Experiments on MovieLens-100k

In this part, we test the effectiveness of our proposed
method on a traditional dataset, MovieLens-100k, which
consists of 100 thousands of scores on 1,682 movies
contributed by 943 users. Each score is between 0 and 5, a
hidden challenge is that you can not tell whether the value
is written by a real user or is just a default value when it
is 0. First, we designed a group of experiments to test the
recommendation performance under different proportions
of noise, the experimental results are presented in Fig. 4.
Different amount of noise present different effect on the
recommendation accuracy. In the following experiments,
13% noise will be introduced into the datasets since it
contributed the best performance on recommendations.

4 6 8 10 12 14 16
0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ac
cu

ra
cy

 (%
)

noise ratio (%)

 Accuracy

Fig. 4. Recommendation performance under different noise.

Second, we designed a group of experiments to observe
the top-N recommendation performance on MovieLens-
100k, here N is designated to be 10. Fig. 5 presents the
recommendation performance contributed by four method-
s, which are user-based collaborative filtering(User-based),
autoencoder with indicators(AE-indicator), stacked autoen-
coder(SAE) and stacked denoising autoencoder(SDAE).
Here, indicators are used to remove all values equal to
0 and do not consider whether this value is from a real
user or is just a default value. Compared to the user-based
collaborative filtering without data preprocessing, AE-
indicator, SAE, SDAE all contributed a better performance
on precision, which proved that both the indicators and the
stacked encoding technologies have made a difference on
the original dataset. Especially, SDAE presented the best
precision among the four models. Considering recall, user-
based collaborative filtering performed better than AE-
indicator, SAE and SDAE. The above situation can be
attributed to two factors, one is that the indicators removed
some values from real users, and the other is due to the
sparse data, the whole data sparsity is SMovieLens−100k =

100000
1682∗943 = 0.063, which caused the introduction of noise
to have a more obvious influence on a sparse dataset.

User-based AE-indicator SAE SDAE

0.4

0.6

0.8

1.0

%

Model

 Precision
 Recall
 F1-Score

Fig. 5. Top-N recommendation performance on MovieLens-100k.

C.. Experiments on EachMovie

EachMovie is a dataset collected by HP/Compaq, which
consists of 2,811,983 scores on 1,623 movies contributed
by 61,265 users. Except for more users than MovieLens-
100k, the scoring weights are introduced to distinguish
those default values from values contributed by real users.
Fig. 6 presents the effects of scoring weights on improving
recommendation accuracy, both user-based collaborative
filtering and AE-indicators have a little improvement on
accuracy when those real values with an appointed scor-
ing weight are applied. The following experiments will
associate indicators with scoring weights to reserve those
values contributed by real users.

User-based AE-indicator

0.46

0.48

0.50

Ac
cu

ra
cy

 (%
)

Model

 Not covering weights
 Covering weights

Fig. 6. The recommendation effectiveness test of scoring weight on
EachMovie.

In this group of experiments, we chose 30,000 users
and their scorings randomly to be the training data and
then used the remaining data to test their recommendation
performance, the experimental results are presented in
Fig. 7. SDAE still contributed the best precision, which
also declared that indicators, stacked technologies and
denoising worked well on preprocessing data. But all
the four models presented a lower recall than those on
MovieLens-100k since the dataset is a more sparse one,
whose sparsity is SEachMovie =

2811983
1623∗61265 = 0.028.

15

User-based AE-indicator SAE SDAE
0.40

0.45

0.50

0.55

0.60

0.65

%

Model

 Precision
 Recall
 F1-Score

Fig. 7. Top-N recommendation performance on EachMovie.

D.. Experiments on Jester

In this part, we introduced Jester datset to test the
effectiveness of the proposed method when facing a small
number of features since the node number of the hidden
layer are often less than those of the input layer or the
output layer in an autoencoder. Jester dataset includes
scores on 100 jokes contributed by 24,983 users, each score
is from -10 to 10 and all default values are expressed as
99. We only consider those values greater than 0 as the
positive examples. The experimental results are presented
in Fig. 8. Compared with the results on MovieLens-100k
and EachMovie, all the four models presented a good
accuracy though SDAE has a little advantage, which show
that the data sparsity is a key factor for recommenda-
tion performance. One obvious change is that the recall
contributed by SDAE covered the other three models, in
fact, the effects contributed by indicators can be ignored
since a default value is expressed as 99, the denoising and
stacked technologies played a major role on improving
recommendation performance for SDAE.

User-based AE-indicator SAE SDAE
0.60

0.62

0.64

0.66

0.68

0.70

0.72

%

Model

 Precision
 Recall
 F1-Score

Fig. 8. Top-N recommendation performance on Jester.

VI.. CONCLUSION

This paper provides an optimized data preprocessing
model, SDAE, to provide more robust data for improving
recommendation performance. SDAE synthesized the in-
dicators, stacked encoding and denoising technologies to
improve data quality. An autoencoder with indicators are
firstly introduced to remove default values and to reduce
the loss on recommendation accuracy brought by sparse
data. Then a stacked denoising autoencoder is designed

to relieve recommendation disturbance caused by noise
data, which provides an iterative computation on a three-
layer neural network. We verified the effectiveness of the
proposed model on different scenarios, including sparse
datasets and small number of recommendation objectives.
In future, we will apply neural networks to capture the
user interest migration and to provide a dynamic recom-
mendation model, the time cost on data preprocessing will
also be covered.

Acknowledgments: This work is supported by
the National Natural Science Foundation of China
(No.61462017, 61363005, 61662015, U1501252,
U1711263), Guangxi Natural Science Foundation
of China(No.2017GXNSFAA198035), and Guangxi
Cooperative Innovation Center of Cloud Computing and
Big Data.

REFERENCES

[1] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms,” in Proceedings
of the 10th International Conference on World Wide Web, ser.
WWW ’01. New York, NY, USA: ACM, 2001, pp. 285–295.

[2] K. Chen, P. Han, and J. Wu, “User clustering based soical network
recommendation,” Chineser Journal of Computers, vol. 36, no. 2,
pp. 349–359, 2013.

[3] M. Verbanck, J. Josse, and F. Husson, “Regularised pca to denoise
and visualise data,” Statistics and Computing, vol. 25, no. 2, pp.
471–486, Mar 2015.

[4] K. A., “Rbf neural networks for ecg beat classification and arrhyth-
mia detection,” International Journal of Artificial Intelligence and
Knowledge Discovery, vol. 3, no. 3, pp. 9–15, 2013.

[5] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
Jul. 2006.

[6] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, pp. 3371–3408, Dec. 2010.

[7] Y. Bengio, E. r. Thibodeau-Laufer, G. Alain, and J. Yosinski,
“Deep generative stochastic networks trainable by backprop,” in
Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32, ser. ICML’14.
JMLR.org, 2014, pp. II–226–II–234.

[8] G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems: a survey of the state-of-the-art and
possible extensions,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 6, pp. 734–749, June 2005.

[9] F. Zhang and H. Chang, “Employing bp neural networks to alleviate
the sparsity issue in collaborative filtering recommendation algo-
rithms,” Journal of Computer Research and Development, vol. 43,
no. 4, pp. 667–672, 2006.

[10] T. Amaral, L. M. Silva, L. A. Alexandre, C. Kandaswamy, J. M.
Santos, and J. M. de Sá, “Using different cost functions to train
stacked auto-encoders,” in Proceedings of the 2013 12th Mexican
International Conference on Artificial Intelligence, ser. MICAI ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 114–
120.

[11] S. Gong, H. Ye, and H. Tan, “Combining memory-based and model-
based collaborative filtering in recommender system,” in 2009
Pacific-Asia Conference on Circuits, Communications and Systems,
May 2009, pp. 690–693.

[12] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “The
adaptive web,” P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds. Berlin,
Heidelberg: Springer-Verlag, 2007, ch. Collaborative Filtering Rec-
ommender Systems, pp. 291–324.

16

Towards business identification modeling:
A Taobao Case Study

Rong Zhang1,2#, Yuyu Yin1,2*, Meng Xi3#, Hao Jiang1,2
lSchool of Computer, Hangzhou Dianzi University, Hangzhou, 310018, China

2Key Laboratory of Complex Systems Modeling and Simulation of Ministry of Education, Hangzhou, 310018, China
3College of Computer Science and Technology, Zhejiang University, Hangzhou, 310007, China

*corresponding author #co-first authors
1312898631@qq.com, yinyuyu@hdu.edu.cn, ximeng@zju.edu.cn, 344045838@qq.com

Abstract—With the appearance of new retail, e-commerce has
broken the traditional pattern, different categories of goods have
their own unique business attributes. Taking transaction business
as an example, the traditional physical goods business needs to
complete the transaction through the logistics, while the new
electronic voucher business achieves that by involving shop
verification and the transaction will be totally completed after the
consumption of the virtual goods such as the QQ coin.
Traditional integral modeling that describes all businesses
through a process has been hard to meet such a scenario. In
recent years, there have been a lot of studies on business process
modeling. These methods mainly focus on the process and data
level and do not support business modeling well. In this work, we
construct a Business Identification Model(BIM) based on four
business sources to handle unique complex business process. We
develop a platform based on BIM and verify our model in the
real processes of our cooperation company. In addition, BIM
supports assembling and reusing in business-level in our case.

Keywords- business model; business resourse; resue; new retail

I. INTRODUCTION
Due to the emergence of corresponding platforms, e-

commerce is developing rapidly. Indeed, with the rapid
development of globalization and intensification, these
platforms must consider reusing the original resources to speed
up the business development. E-commerce platforms must
adjust their current business model if they want to remain
competitive. However, in actual business development, random
expression leads to shortage of logical compactness in that
people with different business backgrounds may have different
understandings. A new requirement needs to complete multiple
docking processes, from demand to realization or vice versa.
Since original business resources are not effectively combined
and normalized, they cannot be reused. These problems result
in a low reactivity to adapt business developments to frequently
update requirements.

To solve these problems, the concept of “business
modeling” has been put forward in recent years, and plenty of
research results have been achieved. For example, Gomes J F
[1] applied business models as the basis for analyzing learning
environments and proposed three different business modeling
options that further expand the scalability and feasibility of the
business model. There is also a significant amount of research
on business processes. Then, Chiara Di Francescomarino [2]

modeled the process of sequence, conjunction and disjunction
logic relationships, but these processes are not suitable for
complex loop and nested process structures. Based on
analyzing the weak termination of business processes in detail,
Hee K M V [3] proposed a top-down method of business
process by using the Petri network. Yu H [4] proposed a new
modeling method that combines IDEF and UML together to
achieve a full life cycle of enterprise modeling goals. On the
basis of the model established by the Petri network, the process
was analyzed to complete the business modeling through the
reachable matrix using the Petri network [5].

To a certain extent, the emergence of the above business
modeling technology solves the problems of slow development
and inefficient interactions between new and old businesses
caused by business confusion. However, as most business
modeling techniques focus on the business design and
implementation level, the conceptual level is ignored. In
addition, e-commerce business is complex, and traditional
business modeling methods cannot match with the e-commerce
business; These models cannot express the business resources
needed in the operation process.

Therefore, this article draws on the excellent part of the
above business modeling methods, re-analyzes the e-commerce
business model and proposes a business modeling method—
Business Identification Model(BIM)for the e-commerce field.
The model takes the process as the core, models the business
resources of different granularity, abandons the traditional
model of business custom development and realizes the
development of business configuration.

The main contributions of this paper are as follows: (1)
propose the Business Identification Model(BIM). Based on
reusable models, new businesses can quickly find candidate
models that satisfy personalized business personalized
requirements. Personalized selection and configuration of
business can be realized based on candidate models; (2)
formally define business resources with different granularity.
By defining a set of unified description criteria for businesses,
the criteria are used to express the relationship between
business concepts and business resources, which can reduce
ambiguity and reduce communication costs between business
people and developers.

This paper is organized as follows. Section two is the
motivation case, which illustrates the current problems in

DOI reference number: 10.18293/SEKE2018-199

17

nowadays business development. The detailed introduction and
formalized definition of BIM are illustrated in section three.
Section four discusses a case study and section five contains
the comparison. Section six is related work and section seven is
the conclusion.

II. MOTIVATION CASE
Business patterns are increasingly diversified, such as B2B,

C2C, O2O and B2C. The types of goods sold on the platforms
are also more diversified, from single physical goods to service
goods and virtual goods. Taking the electronic voucher
business as an example, customers purchase goods on the e-
commerce platform, obtain the corresponding consumption
vouchers, and obtain the corresponding service or merchandise
in the physical store by vouchers. The business development
process is shown in Fig. 1 below.

Figure 1. Development process diagram of the electronic voucher

After investigation and interview the actual business
development in the Intermediate platform, we summarized the
following three phenomena:

Phenomenon 1: A business may involve multiple teams.
Taking the above electronic voucher business as an example,
the following seven business teams are involved: Merchant
Team, Commodity Team, Shopping Guide Team, Marketing
Team, Trading Team, After-Sales Team and Capital Team.
Due to the complexity of cooperation between business teams
and the lack of strong business models, the overlapping of
requirements of business teams can easily lead to logical
conflicts and vulnerabilities.

Phenomenon 2: The requirement is not planned, and there
is much concurrent and sudden requirement. As businesses
diversify, requirement changes more frequently. The traditional
custom development steps are as follows. First, the business
people discuss the requirements, and then the developers
develop the business. Without considering the reuse of the
original resources, it is impossible to achieve high efficient
development efficiency and achieve the vision of low cost trial
and error.

Phenomenon 3: A lot of businesses in different scenes may
be similar. The business of electronic voucher transaction
completes the transaction through the verification of vouchers,
while the business of physical transaction mainly relies on the
logistics to complete the transaction. These businesses are very

similar. For example, they all must experience investment,
product launches, shopping guide, marketing, trading, sales and
other sectors. The main difference is that the logistics link is
turned into a physical store.

The differences among these three phenomena result in
problems which exist ever in intermediate platforms. As the
business grows and changes, the problems become more
intractable and urgent in new business situations:

Problem1: The requirement response cycle is long. A
simple requirement may involve multiple business teams. High
communication costs and long waiting times seriously would
affect the efficiency of business development seriously.

Problem2: Reuse of business-level resources is difficult. In
an actual e-commerce system, the business logic and platform
logic are coupled together that causes difficulties in reuse. In
addition, there are many business resources in existing systems
with no uniform specifications, such as requirements, process,
which further causes difficulties in reuse.

III. BUSINESS IDENTIFICATION MODEL
The two problems have become increasingly severe in the

actual business development as the Taobao business has
evolved from a single-center simple process to a complex
multi-center process. Supporting consumer products effectively
through business modeling, realizing business reuse and
expanding more business possibilities have become important
issues in business development.

To solve these problems, this paper proposes a Business
Identification Model. The model consists of four-layer with
each layer defining a different granularity of business resources
from the following: business process, page template, business
service, and ability. The model manages these resources
hierarchically. The business process is used to manage the
activities in the business execution as well as the sequence and
logic of the activity execution. A page template provides visual
support for a business process that consists of multiple
components. A component is also referred to as a business
services. Business services encapsulate the business logic with
a single portability. Decomposing business services to obtain
the smallest logical unit is called ability. Ability does not
involve business logic, and is the smallest size functional
component. The UML class diagram of notions in SLM is
shown in Fig. 2.

Next, we will introduce the BIM systematically. Here we
provide our definitions of the nations in the BIM in a top-down
manner. Below is the definition of a business identification (see
Definition 1).

Definition 1. A business identification of the BIM is a
seven-tuple (ID, D, BPs, PMs, BSs, CAs, R), where ID is the
identifier of business, D is the description of the business, BPs
are a family of processes over ID, PMs are a family of Page
templates with respect to BPs and ID, BSs are a family of
business services with respect to PMs and ID, CAs are a family
of abilities services with

18

Figure 2. The UML class diagram of basic notions in BIM

respect to PMs and ID, R is the relationships between BPs,
PMs, BSs and CAs.

A. Business Process
A business process is an abstract expression of activities

and the logical sequence of execution in the process of business
execution. The business process is composed of activity and
gateway nodes and can facilitate the business staff to control
the execution of the business at the macro level, allocate
resources and reuse similar processes.

Definition 2. A business process is a five-tuple (PID, PD, a,
g, r), where PID is the identifier of the business process, PD is
the description of the business process, a are a family of
activities and g are a family of gateways and r are a family of
the sequence relations of all nodes in the process.

Definition 3. An activity instance of the business process is
a binary (a, Ca), where a is the identifier of activity and Ca is
the precondition of the activity.

Definition 4. A gateway instance is a binary (g, type),
where g is the identifier and type is either Exclusive / Inclusive
/ Complex / Parallel. The condition of the gateway is
decoupling onto the relation condition behind it.

Definition 5. A relation is a four-tuple (r, from, to, c),
where r is the identifier, from and to are the name of the
activity or gateway, respectively, and c is the condition on this
relation.

B. Page Template
A page template is a visual support for a business process,

and an active node or gateway node in a business process
corresponds to one or more page templates. A page template
consists of multiple components, and these components have a
single portability.

Definition 7. A page document object is a four-tuple (TID,
V, DOM, Text), where TID is the identifier of the page
document object, V is the attributes of the page document
object, DOM is the HTML labels of the page document object,
and Text is the text content of the page document object.

Definition 8. A document object attribute is a key value
pair (k, v), where k is the identifier of the attribute and v is the
value of the attribute.

C. Business Service
The components on the page template are called business

services. Business services encapsulate the logic of business
operation, which can save the cost of page building, improve
the efficiency of development, and realize the reuse of pages.

Definition 9. A business service is a four-tuple (BID, BD,
Cb, Dom), where BID is the identifier of the business service,
BD is the description of the business service, Cb is the
precondition of the business service configuration, and DOM is
the display UI of the business service.

D. Ability
Decomposing business services and obtaining the smallest

functional units are referred to as abilities. Ability does not
involve business logic, and it is convenient for developers to
focus on developing basic functional units.

Definition 10. An ability is a four-tuple (AID, FA, Ca, Cab),
where AID is the identifier of the ability, Ca is the
configuration item of the ability, FA is the data involved in the
ability, and Cab is the precondition of the ability.

Definition 11. A configuration item is a four-tuple (EID,
ED, K, Vs), where EID is the identifier of the configuration
item, ED is the description of the configuration item, K is the
data involved in the ability, and Vs is the range of values.

19

Definition 12. A precondition is a triple (PID, PD, Pv),
where PID is the identifier of the precondition, PD is the
description, Pv is the Boolean value that is true or false.

By establishing the BIM, the application systems and
business systems can manage the correspondence between the

business standard and the various modules. This model can
isolate business logic, distinguish business data, and realize the
reuse of business, which is of great application value.

Figure 3. A trading process of the electronic voucher

IV. CASE STUDY
To illustrate the BIM, we applied it to an example of

constructing a transaction business of electronic voucher. The
transaction business of electronic voucher is a new transaction
model in which users buy goods or services on an e-commerce
platform and write off electronic vouchers provided by the
platform in off-line stores. The development process of the
business is discussed in the motivation case (see Figure 1 in
section 2). We used the BIM to construct a simplified
transaction business to illustrate how it works.

Construct business process. When building a new business,
we must identify the activities involved in the business, define
the performing roles of each activity, and then configure the
gateway nodes according to the order of activities (see Fig. 3).

Example 1. In this example, a send code activity was used.
First, we determined that the activity following a send code
activity is a voucher verification activity. We then cleared the
logic conditions between activities when and only when the
voucher was not expired and the verification was not overdue.
Finally, we configured the roles of the following two activities
separately: the seller and the platform activities.

Construct Page Template. Each activity node or gateway
node corresponds to one or more page templates designed by
business personnel. The rationality and quantity of pages affect
user experience and the commodity conversion rate.

Example 2. In this example, we used the activity of placing
an order as an example to configure the page template
corresponding to the activity. The activity corresponds to a
detail page; The platform collects user information through the
page, and displays the specific information of the order for user
confirmation.

Construct Business Service. Business services are
components of page templates, and page templates were
obtained by configuring and reorganizing multiple business

services. The design of business services affects the efficiency
of page building.

Example 3. In this example, in order to configure the
detailed page of placing an order, we designed three business
services: user information, order information, and price
information. The business service of personal information is
presented in detail in Table I.

TABLE I. BUSINESS SERVICE EXAMPLE: USER INFORMATION

business service id confirmation_personal_information

business service description select personal information

pre_condition true

show_UI Dropdown box

Construct Ability. Ability refers to a functional unit with

minimal granularity, which can be configured through a
configuration item, and one or more abilities constitute a
business service.

Example 4. In this example, we assembled abilities in the
business service of order information and then configured each
of the abilities. The business services consist of the following
four abilities: display attributes, select goods, select preferential
methods, and select freight insurance. The ability of selecting
freight insurance is presented in detail in Table II.

TABLE II. ABILITY EXAMPLE: SELECT FRIGHT INSURANCE

ability_id select freight insurance

business service description can get indemnity if return goods

pre_condition true

configuration item amount of compensation: [9,12]

20

V. COMPARISON
In this section, we compare the BIM, BPMN2.0 and

Artifact BPM as shown in table III, to illustrate the advantages
of the BIM.

The e-TOM model has the following three large process
domains: product process domain, operating domain, enterprise
management domain. The three large process domains can be
further decomposed into 23 process groups and a certain

number of two-level, three-level, and four-level processes.
Graphical elements are used to represent the execution
behavior of a business in BPMN2.0. In Artifact BPM, the
process that is called lifecycle, are working around one
“artifact”. The BIM divides the entire link of the e-commerce
process into 11 sub-links, which not only regulates the e-
commerce business operation mechanism, but also supports
diversified business processes.

TABLE III. COMPARISON BETWEEN AND OTHER MODELING METHODS

business service description eTOM BPMN2.0 Artifact BPM BIM

Field Telecommunication All All e-commerce

process √ √ √ √

service Í Í √ √

page template Í Í Í √

ability
data operations Í √ √ √

data Í Í √ √

The business process cannot be perceived by the end users.
To describe the business operations process in a form that the
end user can understand, business personnel defines processes
by visual means. The traditional business modeling method
lacks of intuitive traits and has a low degree of visualization. In
the BIM, page template elements are added to support the show
of business on different clients.

In different business models, services also have different
meanings. The business service in the BIM is a combination of
many abilities and represents a logical component with a
special function. Business services are decoupled from each
other, and we replace any business service will not affect the
operation of entire system, greatly decreasing the system
coupling degree.

In a traditional model, functions, interfaces, and services
can all be called abilities. Abilities are often used in the
management and maintenance at the code level, and only the
program developers can understand the meaning of ability. In
the BIM, every ability represents the operation of a data. We
can get the data flow process in the whole life cycle of the
business. Both developers and business people have a clear
understanding of the use and applicable scenes of abilities,
which play a very good role in fast building business.

VI. RELATED EORK

A. BPM
Business modeling is a modeling approach to describe the

objects and elements involved in enterprise management and
business, as well as the attributes, behaviors and relationships
between them. In recent years, academic circles proposed many
modeling methods toward process, organization, and domain.
In 2004，White S A [6] formally proposed the concept of
BPMN (Business Process Modeling Notation), which is as a
symbolic standard for business process modeling. BPMN
describes a business process with a series of graphical elements,
for example, the rectangle represents activity, and the diamond

represents the condition so that the reader can simply identify
the basic types of the element to understand the graphics.
Based on BPMN, Rodríguez A [7] summarized the extension
for BPMN on how to modeling secure business process, and
apply the approach to a typical health-care business process.

P Wohed [8] developed an evaluation framework using the
Workflow Patterns, to examine the suitability of the Business
Process Modelling Notation (BPMN) for business process
modelling. To save the time of compliance checking, Awad A
[9] translated Compliance rules to temporal logic formulae as
input to checkers. Then, checkers can verify whether the
business process model meets the compliance rules. Aiming at
BPMN 2.0, Krzysztof Kluza [10] proposed rule-based pattern
perspective for process models, described how to perceive rules
in the business processes. However, the common BPMLS such
as EPC or BPMN2.0 provides a set of common process
modeling elements, but it does not allow modeling of domain
specific concepts. To solve the situation, K Kluza [11] made an
extension to different business process modeling languages
with domain specific concepts.

Business Process Execution Language (BPEL) is another
major standard. BPEL is a language that uses Web services to
define and execute business processes. The main function is to
combine existing services to define a new service [12], [13],
[14]. To define choreographies, G Decker [15] proposed
BPEL4Chor to extend BPEL. G Decker distinguished
extensions from the following three aspects: participant
behavior descriptions, the participant topology, participant
groundings.

B. Artifact-centric BPM
As we all know, Nigam A et al [16] firstly proposed the

concept of business artifact in 2003.Business Artifacts is used
to record information in chunk that indivisible, identifiable,
concrete, and self-describing. Then, Artifact-centric business
process models were proposed and analyzed [17][18]. To
deploy business artifacts, Joseph H R et al [19] proposed a

21

novel framework for integration of business artifacts. Estañol
M et al [20] proposed using UML diagrams to specify business
process that is artifact-centric to represent the dimensions of
the artifact-centric approach.

Due to the advantages of business artifacts, both industrial
and academic field are attracted by artifact-centric business
process models. Considering flexibility of the business process,
Truong T M et al [21] connected the behavior of business
processes with business artifacts that is described conceptually,
redefined process configuration and the context of process
redesign. Then, to reuse business process components, Kabir M
A [22] made an extension to BPMN and proposed a reusable
process pattern and verified the applicability of the pattern.
Besides, some further studies on improving reusability and
flexibility of data-centric web services have been proposed [23].

VII. CONCLUTION
In this paper, we propose Business Identification Model

based on a case study of the e-commerce industry. The
Business Identification Model is a four-layer hierarchical
model, which supports views of the following business
resources: business process, page template, business service
and ability. This model extends traditional process-centric or
data- centric process models and integrates four resources with
different granularity. The model can standardize resources
uniformly, make business visualizations, facilitate the reuse of
business resources, and realize the on-requirement
configuration and rapid development of new business
simultaneously. In the cooperative enterprise, we have applied
some practical data and resources to verify the feasibility and
effectiveness of the model.

In future work, we will further study the impact of rules on
business and improve the Business Identification Model. In the
future, we will have further cooperation with e-commerce
companies to verify the reliability of the model with more real
and complex e-commerce data and scenarios. In addition, we
will optimize the model and realize the economic efficiency
and the social efficiency goal through application of this model
to the actual project.

ACKNOWLEDGMENT
This work was supported by following projects: This paper

is supported by national key research and development
program of China under grant (No.2017YFB1400601),
Zhejiang Provincial Natural Science Foundation
(No.LY12F02003), and National Natural Science Foundation
of China (No.61100043).

REFERENCES
[1] Gomes J F, Ahokangas P, Moqaddamerad S. “Business Modeling

Options for Distributed Network Functions Virtualization: Operator
perspective,” in European Wireless conference, 2016, pp. 37-42.

[2] Chiara Di Francescomarino , Francesco Corcoglioniti , Mauro Dragoni ,
Piergiorgio Bertoli , Roberto Tiella , Chiara Ghidini , Michele Nori , and
Marco Pistore. “Semantic-Based Process Analysis,” in International
Semantic Web Conference, 2014, pp. 228-243.

[3] Hee K M V, Sidorova N, Werf J M V D. “Business Process Modeling
Using Petri Nets,” Transactions on Petri Nets & Other Models of
Concurrency VII, vol. 7480, no. 5, pp, 116-161, 2013.

[4] Yu H, Wu D. “Enterprise Modeling Based on IDEF and UML,” in
International Conference on Advanced Information Technology and
Sensor Application, 2016, pp. 59-62.

[5] Dong G, Qian-Sheng F U. “Study Simultaneous Happening Function of
E-commerce System on the Basis of Petri Net,” Policy-making
Reference, vol. 12, no. 3, pp, 1-4, 2004.

[6] Y. Li, Z. Luo, J. Yin, L. Xu, Y. Yin, and Z. Wu, “Enterprise pattern:
integrating the business process into a unified enterprise model of
modern service company,” Enterprise Information Systems, vol. 11, no.
1, pp. 37–57, 2015.

[7] A. Rodrguez, E. Fernndez-Medina, and M. Piattini, “A bpmn extension
for the modeling of security requirements in business processes,” Ieice
Transactions on Information & Systems, vol. E90D, no. 4, pp. pgs. 745–
752, 2007.  

[8] P. Wohed, W. M. P. V. D. Aalst, M. Dumas, A. H. M. T. Hofstede, and
N. Russell, “On the suitability of bpmn for business process modelling,”
Lecture Notes in Computer Science, vol. 4102, no. 3, pp. 161–176, 2006.

[9] Awad A, Decker G, Weske M. “Efficient Compliance Checking Using
BPMN-Q and Temporal Logic,” in International Conference on
Business Process Management, 2008, pp. 326-341.

[10] Kluza K, Nalepa G J. “Towards rule-based pattern perspective for
BPMN 2.0 business process models,” in Proceedings of the 2016
Federated Conference on Computer Science and Information Systems
Computer Science and Information Systems, 2016, pp. 1359–1364.

[11] Radloff M, Schultz M, Nüttgens M. “Extending different Business
Process Modeling Languages with Domain Specific Concepts: The Case
of Internal Controls in EPC and BPMN,” in International Workshop on
Enterprise Modelling and Information Systems Architectures, 2015, pp.
2432-2442.

[12] X. Fu, T. Bultan, and J. Su, “Analysis of interacting bpel web services,”
in International Conference on World Wide Web, 2004, pp. 621–630.

[13] C. Ouyang, E. Verbeek, W. M. P. V. D. Aalst, S. Breutel, M. Dumas,
 and A. H. M. T. Hofstede, “Formal semantics and analysis of control
flow in ws-bpel,” Science of Computer Programming, vol. 67, no. 2, pp.
162–198, 2005.  

[14] M. Mongiello and D. Castelluccia, “Modelling and verification of bpel
business processes,” in Model-Based Development of Computer-Based
Systems and Model-Based Methodologies for Pervasive and Embedded
Software, 2006. MBD/MOMPES 2006. Fourth and Third International
Workshop on. IEEE, 2006, pp. 5–pp.  

[15] G.Decker,O.Kopp,F.Leymann,andM.Weske,“Bpel4chor:Extending bpel
for modeling choreographies,” in IEEE International Conference on
Web Services, 2007, pp. 296–303.  

[16] A. Nigam and N. S. Caswell, “Business artifacts: An approach to
operational specification,” Ibm Systems Journal, vol. 42, no. 3, pp. 428–
445, 2003.

[17] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su, “Towards formal
analysis of artifact-centric business process models,” in International
Conference on Business Process Management, 2007, pp. 288–304.

[18] D. Cohn and R. Hull, “Business artifacts: A data-centric approach to
modeling business operations and processes,” in Enterprise Systems
Conference, 2009, pp. 3–9.

[19] Joseph H R, Badr Y. “Business Artifact Modeling: A Framework for
Business Artifacts in Traditional Database Systems,” in Enterprise
Systems Conference, 2015, pp. 13-18.

[20] M Estañol ， A Queralt ， MR Sancho ， E Teniente. “Artifact-Centric
Business Process Models in UML,” in Business Process Management
Workshops, 2012, pp. 292-303.

[21] Truong T M, Lê L S. “On Business Process Redesign and Configuration:
Leveraging Data Mining Classification & Outliers and Artifact-Centric
Process Modeling,” in International Conference on Advanced
Computing and Applications, 2017, pp. 59-66.

[22] Kabir M A, Xing Z, and Chandrasekaran P. “Process Patterns: Reusable
Design Artifacts for Business Process Models,” in Computer Software
and Applications Conference, 2017, pp. 714-721.

[23] R. Vaculn, T. Heath, and R. Hull, “Data-centric web services based on
business artifacts,” in IEEE International Conference on Web Services,
2012, pp. 42–49.

22

DOI Reference Number: 10.18293/SEKE2018-012

Ontology-based Software Architectural Pattern
Recognition and Reasoning

Nacha Chondamrongkul1, Jing Sun2 and Ian Warren3
Department of Computer Science, University of Auckland, New Zealand

1ncho604@aucklanduni.ac.nz, 2jing.sun@auckland.ac.nz, 3i.warren@auckland.ac.nz

Abstract— Designing software architecture is a knowledge-
intensive task that typically involves textual and diagrammatic
notation. Using these kinds of notation is often inconsistent,
misleading, and ambiguous. Ontology representation is, therefore,
a suitable approach, as it can semantically define architectural
design model that can be automatically verified through reasoning.
However, a large-scale software system is usually complex and
applies more than one architectural styles with various behavioral
patterns. Therefore, the scalability of automated verification for a
complex software architecture design is a challenge. We propose
an approach that helps to formally define complex architectural
design model and automate different verifications such as
consistency checking, architectural styles recognition, and
behavioral sequence inference. Ontology Web Language (OWL) is
used to semantically define basic architectural elements and
architectural styles, while a set of rules defined in Semantic Web
Rule Language (SWRL) helps to capture behavioral pattern
according to style. We evaluated the scalability of our approach.
The result shows that different levels of complexity in architectural
design model has a minor impact on the verification performance.

I. INTRODUCTION

Software architecture is typically a conceptual design that
decomposes a software system into a set of logical components.
At the early phase of software development process, software
architecture is designed to meet specific functional
requirements, non-functional requirements and business goals.
Software architecture, therefore, encapsulates set of early
design decisions tradeoffs and constraints, which provide a
guideline to implement software system throughout the
development lifecycle. Unfortunately, software architecture is
often abstract and informally presented by the combination of
textual and graphical notation that are often misleading,
ambiguous and inconsistent. Although, several standardized
architecture description languages (ADL) have been proposed,
such as ISO/IEC/42010 [1] and UML [2], they have little or no
formal semantic support. Without semantic constraints, the
verification of architecture design is, therefore, a daunting task.
Moreover, the large-scale software system is usually a complex
entity that applies predefined architectural styles, each style
characterizes specific type of component and their behavior.
Even though, a few ADLs, such as ACME [3], support
abstraction of architecture into reusable styles but they have no
semantic that enforces style constraints. ADLs has little
popularity among practitioners because they are lack of tools to
support, and yet require high learning curve [4]. The inadequate

mechanism of producing accurate software architecture model
catalyzes applying formal methods into this area.
 Formal methods have played an important role in software
engineering research for some time. A number of researchers
have applied ontology technique to software development
lifecycle [5], in order to resolve ambiguous, prevent errors and
minimize cost in different phases, from requirement gathering
[6] to software maintenance [7]. For software architecture, in
particular, architectural design model is formally specified, in
pursuance of automated verification [8]. However, the
performance of automated verification in large-scale software
is still an open issue for existing approach such as Alloy [9].
Although, Wong et al [10] proposed a solution that allows
model to be decomposed, in order to parallelize verification
process. However, dependencies between components still
require verification process to be executed in sequential
manner. The ontology has been proposed to apply in designing
software architecture because of its strength in effective large-
scale reasoning that can automate consistency checking and
hierarchy inference in the design model [11, 12, 13]. Pahl et al.
[14] integrated ontology into ACME, in order to verify
consistency of an architecture and its behaviors, but process
modeling notation is still a limitation. In pursuance of
consistency checking automation, style recognition, and
communication inference, Sun et al. [15] proposed to use
Ontology Web Language (OWL) [16] to formally specify
different entities and relationships in architectural design. The
communication flow can be captured by rules based on
Semantic Web Rule Language (SWRL) [17]. However, the
performance of automated verification was not evaluated, and
the range of provided architectural styles is limited.

The main challenge is how we can semantically define
complex architectural design based on multiple styles, and
evaluate how the proposed method impacts to the automated
verification performance. We propose an approach as shown in
Figure 1. The ontology library includes basic architectural
element, architectural styles, and behavioral rules. OWL is used
to define basic architectural elements, such as component and
connector. These basic architectural elements can be extended
to define various architectural styles, and a design instance that
represents the architectural design model of a specific software
system. As the ontology for architecture design is inevitable
complex, we use description logic (DL) based languages, in
order to take advantage of existing DL reasoning engine that is

23

effective in performing large-scale automated reasoning. The
consistency in architectural styles and design instance can be
automatically checked by the reasoning engine, based on the
ontology’s constraints defined in basic architectural elements.
In order to recognize architectural styles applied in the design,
reasoning engine classifies architectural elements into different
ontological classes specific to architectural style. After styles
are recognized, reasoning engine processes behavioral rules to
capture architectural configuration and generate behavioral
sequences, which manifest interactions between components.

Basic Architectural
Elements

Architectural Styles

Design
Instance

Ontology
Library

Behavioral
Rule

extend

create

reason

Reasoning
Enginerefer

Figure 1 Overview of architectural design approach

The rest of the paper is organized as follows. We present
ontology-based architectural styles in Section 2. Section 3
illustrates how a software architecture can be modeled and
verified against architectural styles. This paper concludes in
Section 4 with future research direction.

II. ONTOLOGY MODELING FOR ARCHITECTURE STYLES

The ontology library is based on Component & Connector
(C&C) [18] view, which aims to exhibit how the system works
at runtime. Software architects use C&C view for reasoning
about key system quality attributes such as performance,
security, and reliability [19]. In C&C, a component represents
a processing unit within the software system, while connectors
define interaction mechanism between components. The
component has a set of ports that serves communication to
another component, whereas connector has a number of roles,
each has specified set of actions it specifically performs. A
component can be associated with a connector by attaching its
port to a connector’s role. Based on C&C view’s concept, our
ontology library has consisted of ontological classes
representing fundamental architecture elements, namely
Component, Connector, Port, Role, and Action.
hasAttachement is defined as an object property to associate
component’s port with connector’s role. Action is assigned to
Role via hasAction property with minimum cardinality
restriction, in order to make sure that a role has at least one
assigned action. Below are ontology classes expressed in
description logic syntax.

ArchElement ⊑ Component ⊔ Connector⊔ Interface ⊔ Action
Interface ⊑ Port ⊔ Role
Component ⊓ Connector ⊓ Interface ⊓ Action ≡ ⏊
Port ⊓ Role ≡ ⏊
Component ≡ ArchElement ⊓ ∃ hasPort Port
Connector≡ ArchElement ⊓ ∃ hasRole Role
Port ≡ Interface ⊓ ∃ hasAttachment Role
Role ≡ Interface ⊓ ≥1 hasAction Action

C&C can be characterized by various architectural styles. Each
style specifies a particular set of component, connector, and

behavioral pattern. The following are some architectural styles
included in our ontology library.

A. Client-Server Style

The client and server are two key component types in this
style. Cns:Client and Cns:Server are defined as classes,
extended from Component. Request and Response are port type
attached to client and server respectively. The port attachment
is defined by hasPort property with existential restriction, as a
component can be classified as several component types.

CnS:Client ≡ Component ⊓ ∃ hasPort Request
CnS:Server ≡ Component ⊓∃ hasPort Response
Request ≡Port ⊓ ∃ hasAttachment Consumer
Response ≡Port ⊓ ∃ hasAttachment Provider

A corresponding connectivity is defined as a connector class to
incorporate two roles, Consumer, and Provider. Consumer
requests services on the server, while Provider performs actions
to process the request and return the result back to Consumer.
SendRequest, ReceiveResult, ServerInvoked and ReturnResult
are defined as subclasses of Action, in order to represent
different activities and events in client-server style.

CnSConnector≡ Connector ⊓ ∃ hasRole Consumer
 ⊓ ∃ hasRole Provider

CnS:Consumer≡Role ⊓ ∃ hasAction SendRequest
 ⊓∃ hasAction ReceiveResult
CnS:Provider≡Role⊓∃ hasAction ServerInvoked
 ⊓∃ hasAction ReturnResult
SendRequest ⊑Action
ReceiveResult ⊑Action

ServerInvoked ⊑Action
ReturnResult ⊑Action

The behavioral rules are defined to associate relevant actions as
a sequence according to the style’s behavioral pattern. In order
to generate a behavioral sequence, the hasNextAction property
is used to define what action comes next in the sequence. Below
is a rule defined in SWRL, it captures behavioral pattern as
follows. At first, when the client sends a request, the server will
be invoked. This rule hence implies ServerInvoked as the next
action to SendRequest. After the server finishes processing and
returns the result, the client will receive the result. This rule,
therefore, implies ReceiveResult as the next action of
ServerReturn.

CnSConnector(?cns) ⊓ hasRole(?cns, ?cr) ⊓ CnS:Server(?server) ⊓
isPortOf(?p, ?server), SendRequest(?sreq) ⊓ hasAction(?cr, ?sreq) ⊓
Provider(?pr), isAttachmentOf(?pr, ?p) ⊓, Consumer(?cr) ⊓
ReceiveResult(?rres) ⊓ hasRole(?cns, ?pr) ⊓ hasAction(?pr, ?invs) ⊓
ServerInvoked(?invs), ServerReturn(?sret), hasAction(?pr, ?sret) ⊓
hasAction(?cr, ?rres)
→ hasNextAction(?sreq, ?invs) ⊓ hasNextAction(?sret, ?rres)

Below is another rule that captures an occurrence when the
server is invoked to process the request. After that, the result
will be returned to the client. This rule hence implies
ServerReturn as the next action of ServerInvoked

Response(?p) ⊓ isPortOf(?p, ?server) ⊓ hasAction(?p, ?iser) ⊓
 Provider(?pr) ⊓ isAttachmentOf(?pr, ?p) ⊓ CnSConnector(?cns) ⊓
CnS:Server(?s) ⊓ Consumer(?cr) ⊓ hasRole(?cns, ?pr) ⊓
Request(?r) ⊓ hasAction(?p, ?sret) ⊓ ServerInvoked(?iser) ⊓

24

ServerReturn(?sret), isAttachmentOf(?cr, ?r) ⊓ hasRole(?cns, ?cr)
→ hasNextAction(?iser, ?sret)

B. N-Tier Style

A number of clients and servers can form a multi-level
hierarchy, a tier has consisted of clients that invoke servers on
the upper tier. Each tier runs on the separate physical
environment so it can be maintained independently of other
tiers, however, interaction between tiers rely on each other. For
example, the business application typically has 3 tiers namely
client, business logic, and data management. A request to
service on business logic consequently triggers a request to data
management tier. To semantically define this, connector’s
reliance is defined by hasLink property, so a class for tier can
be formally expressed as follows:

NTier:Tier≡ Component ⊓ ∃ hasPort
 (Port ⊓ ∃ hasAttachment
 (Role ⊓ ∃ isRoleOf
 (Connector⊓ ∃ hasLink Connector)))

Below is a rule defined to capture behavioral pattern between
tiers. When a server on a tier is requested and invoked, it may
make a request to the upper tier. When the result is received, it
is forwarded to the lower tier. The actions between tiers are
related by hasDivertNextAction property.

CnSConnector(?cns) ⊓ hasRole(?cns, ?pr) ⊓ hasRole(?cns, ?cr) ⊓
Provider(?pr) ⊓ Consumer(?cr) ⊓ hasAction(?pr, ?invs1) ⊓
hasAction(?pr, ?sret1) ⊓ ServerInvoked(?invs1) ⊓
ServerReturn(?sret1) ⊓ hasLink(?cns, ?cns2) ⊓
CnSConnector(?cns2) ⊓ hasRole(?cns2, ?pr2) ⊓ hasRole(?cns2,
?cr2) ⊓ Provider(?pr2) ⊓ Consumer(?cr2) ⊓ hasAction(?cr2, ?rret2)
⊓ hasAction(?cr2, ?sreq2) ⊓ ReceiveResult(?rret2) ⊓
SendRequest(?sreq2)
→ hasDivertNextAction(?invs1, ?sreq2) ⊓
 hasDivertNextAction(?rret2, ?sret1)

C. Publish-Subscribe Style

This style has components interacting to each other through
events. Pns:Publisher is a subclass of Component for publisher,
a component type that announces events to subscribed
component, while Pns:Subscriber is a subclass for subscriber,
a component type that listens to the events. Announce and
Register are ports for publisher and subscriber respectively. The
defined classes for component types and its ports type can be
formally expressed as follows:

PnS:Pulisher≡ Component ⊓ ∃ hasPort Announce
PnS:Subscriber≡ Component ⊓ ∃ hasPort Register
Announce≡ Port ⊓ ∃ hasAttachment Publisher
Register≡ Port ⊓ ∃ hasAttachment Subscriber

Publisher and Subscriber are defined as role class in this style.
The connector is an event bus that coordinates these two roles.

PnSConnector≡ Connector ⊓ ∃ hasRole Publisher
 ⊓ ∃ hasRole Subscriber
Publisher ≡ Role ⊓ ∃ hasAction SubscribeToEvent
 ⊓∃ hasAction EventAnnouced
 ⊓∃ hasAction DeliverEvent
Subscriber ≡ Role ⊓ ∃ hasAction ReceiveEvent
 ⊓∃ hasAction RequestSubscription

RequestSubscription ⊑ Action
SubscribeToEvent ⊑ Action

EventAnnounced ⊑ Action
DeliverEvent⊑ Action
ReceiveEvent ⊑ Action

The behavioral rule for publish-subscribe style is shown below.
This rule captures two occurrences in this style: 1) Subscription:
If a subscription is requested by a component, the publisher will
acknowledge and subscribe requesting component to an event.
Therefore, this rule implies SubscribeToEvent to be the next
action of RequestSubscription. 2) Event Publishing: When a
publisher announces an event, the event will be delivered to all
subscriber. This rule below infers the sequence of actions as
EventAnnounced, DeliverEvent and ReceiveEvent respectively.
This sequence is sorted through last two hasNextAction
property assertions in the rule’s implication.

PnSConnector(?cns) ⊓ Publisher(?p) ⊓ Subscriber(?s) ⊓
hasAction(?p, ?feven) ⊓ hasAction(?p, ?seven) ⊓ hasAction(?p,
?neven) ⊓ FireEvent(?feven) ⊓ NewEventOccur(?neven) ⊓
SubscribeToEvent(?seven) ⊓ hasAction(?s, ?reqs) ⊓ hasAction(?s,
?reven) ⊓ RequestSubscription(?reqs) ⊓ ReceiveEvent(?reven)
→ hasNextAction(?reqs, ?seven) ⊓
 hasNextAction(?neven, ?feven) ⊓ hasNextAction(?feven, ?reven)

D. Repository Style

The repository style organizes how data is accessed and
stored in software system through centralized repositories. Data
repository and data accessor are two major component types in
this style. Data repository (RP:DataRepository) persists data,
manages concurrent access, and supports access control. Data
accessor (RP:DataAccessor) reads and writes data at one or more
repositories.

RP:DataRepository≡ Component ⊓ ∃ hasPort
 (Port ∃ hasAttachment Store)
RP:DataAccessor≡ Component ⊓ ∃ hasPort
 (Port ∀ hasAttachment (Reader ∪Writer))

We create two connector classes corresponding to writing and
reading function in this style. Both connectors associate Store
role to address where the data persists. Writer role identifies the
component that requests to write data on the repository, whereas
Reader role identifies the component that requests to read data
on the repository.

DataReadConnector≡ Connector ⊓ ∃ hasRole Store
 ⊓ ∃ hasRole Reader
DataWriteConnector≡ Connector ⊓ ∃ hasRole Store
 ⊓ ∃ hasRole Writer
Store≡ Role ⊓∀ hasAction (ReadData ∪WriteData)
Writer≡ Role ⊓∃ hasAction RequestWrite
Reader≡ Role ⊓∃ hasAction RequestRead
ReadData⊑Action
WriteData⊑Action

RequestRead ⊑Action
RequestWrite⊑Action

The behavioral sequence is captured by two rules below. The
first rule support reading function so it implies RequestRead as
precedence action to ReadData, likewise, the second rule
implies RequestWrite as precedence action to WriteData action.

DataReadConnector(?con)) ⊓ RequestRead(?reqr)) ⊓
hasAction(?store, ?read)) ⊓ ReadData(?read)) ⊓

25

hasAction(?reader, ?reqr)) ⊓ hasRole(?con, ?reader)) ⊓
hasRole(?con, ?store)) ⊓ Store(?Store)) ⊓ Reader(?reader)
 → hasNextAction(?reqr, ?read)

DataWriteConnector(?con) ⊓ Writer(?writer) ⊓
RequestWrite(?reqw) ⊓ hasAction(?writer, ?reqw) ⊓ hasRole(?con,
?store) ⊓ Store(?store) ⊓ WriteData(?write), hasRole(?con,
?writer) ⊓ hasAction(?store, ?write)
→ hasNextAction(?reqw, ?write)

III. CASE STUDY & EVALUATION

The online shopping application system is used as a case
study to demonstrate our approach. This case study is a sample
of complex software system that applies multiple architectural
styles. Figure 2 shows its software architecture design that has
consisted of four components namely, TransactionLog,
PaymentGateway, Shopping Mobile App and ShopService. The
ports are depicted as small box attached to the components such
as LoggingRequest, and PayResponse. Shopping mobile app
has user interfaces that allow the user to purchase the products
and make a payment through payment gateway. When a
payment is submitted to the payment gateway, a transaction will
be recorded by transaction logger. If the user subscribes to price
alert service, the notification will be sent when price is updated.

Shopping
Mobile App

Payment Gateway

Pay
Request

Pay
Response

Transaction
Logger

LoggingResponse

LoggingRequest

ShopService

PriceAlertRequest

PriceAlertServe

Figure 2 Software architecture design for shopping application

We create ontology instance representing an architectural
design model for our case study. The design elements namely
actions, roles, port, connectors, and components, are created as
individuals that are instances of classes defined in the ontology
library. The object properties are used to relate these individuals
together, in order to establish a structure in the design model.
Due to page limit, we can not show all individuals definition in
this paper. The compelete definition for this case study can be
found at https://goo.gl/4ugkLB

The individuals are created for actions with one or more
types specified, and they can be formally expressed in OWL
abstract syntax as follows:

Individual(ex: ActRequestToPay type(ex: SendRequest))
Individual(ex: ActRequestToLog type(ex: SendRequest)

 type(ex: RequestWrite))
Individual(ex: ActLogTransaction type(ex: ServerInvoked)

 type(ex: WriteData))
 The roles are defined as individuals with hasAction property
to the action individuals defined previously. Below are some
individuals defined for roles.
Individual(ex:PaymentProvider

value(ex: hasAction ex:ActProcessPayment)
value(ex: hasAction ex:ActReturnPayResult))

Individual(ex: PaymentRequester
value(ex: hasAction ex: ActRequestToPay)
value(ex: hasAction ex: ActReceivePayResult))

The following are sample individual defined for port. These
individuals have one or more relationship to the role individuals
through hasAttachment property.

Individual(ex: PayRequest
value(ex: hasAttahment ex: PaymentRequester))

Individual(ex: PayResponse
value(ex: hasAttahment ex: PaymentProvider))

A number of individuals are created corresponding to
communication lines shown in Figure 2. The roles individual
are assigned to each connector through hasRole property.

Individual(ex: PaymentService
value(ex: hasRole ex: PaymentProvider)
value(ex: hasRole ex: PaymentRequester)
value(ex: hasLink ex: LoggingService))

Individual(ex: LoggingService
value(ex: hasRole ex: LoggingProvider)
isolate value(ex: hasRole ex: LoggingRequester))

Individual(ex: NotificationService
value(ex: hasRole ex: NotificationPublisher)
value(ex: hasRole ex: NotificationSubscriber))

Each of the components has the corresponding individual
created, each component individual is attached with one or
more port individuals through hasPort properties.

Individual(ex: PaymentGateway
value(ex: hasPort ex: PayResponse)

 value(ex: hasPort ex: LoggingRequest))
Individual(ex: ShoppingMobileApp

value(ex: hasPort ex: PayRequest)
value(ex: hasPort ex: PriceAlertRequest))

Individual(ex: ShopService
value(ex: hasPort ex: NotificationPublisher))

Individual(ex: TransactionLogger
value(ex: hasPort ex: LoggingProvider))

As mention previously, the architectural design is defined
based on OWL/SWRL, in order to take advantage of
classification performed by reasoning engine. The classification
results in automating architectural consitency checking,
architectural style recognition, and behavioral sequence
generation.

A. Architectural Consistency Checking

The architectural consistency checking relies on the
ontology classification process that verifies consistency in the
ontology model and computes hierarchies of defined classes.
Figure 3 (a) shows inferred hierarchy of the ontology library
when it is consistent. If the classes are consistent, they will be
classified into subclasses of basic architectural elements such as
component, connector, port, and interface. The inconsistency
may be caused by a number of reasons. For example,
incompatible classes are associated with domain or range of an
object property, or a class has two parents that are disjoint
classes. Figure 3 (b) shows a scenario when the ontology
library is inconsistent. In this scenario, a class definition for tier

26

(NTier:Tier) contains an axiom ∃ hasLink Component, which
violates hasLink property’s constraints that requires Connector
class as a range. NTier:Tier class is, therefore, inconsistent, and
it is denoted as a subclass of owl:Nothing.

(a) Consistent ontology (b) Inconsistent ontology

Figure 3 Inferred Hierarchy

When a set of individuals are defined for an architectural
design model, careful reader may notice that action is the only
design element defined as individual with explicit types. If the
archtectural design model is consitent, the type of individuals,
representing role, port, component and connector, is
transitively inferred based solely on their relationships. The
architectural styles can be recognized along with inferred types.
For example, Cns:Consumer in client-server style is a role that
has actions namely ReceiveResult and SendRequest.
PaymentRequester is thus inferred as an instance of
Cns:Consumer role, because it has relations to two action
individuals namely ActReceiveResult and ActRequestToPay,
which are instances of ReceiveResult and SendRequest
respectively. According to ports class definition, Request is a
port with some attachment to consumer role. PayRequest is thus
inferred as an instance of Request port, because PayRequest is
attached to PaymentRequester as shown in Figure 4. As defined
in Cns:Client class, a component is client, if it has some Request
port. Therefore, ShoppingMobileApp is inferred as an instance
of Cns:Client due to its relation to PayRequest port, as shown
in Figure 5.

Figure 4 PayRequest Port

B. Composite Architectural Style Recognition

When more than one architectural styles are applied to the
design model, the classification can also identify a composite
architectural styled component. The composite architectural
styled component is a component that is an instance of several
classes from not only the same style but also different styles. As
shown in Figure 5, ShoppingMobileApp is not only a client but
also a tier (NTier:Tier) in the multi-tier style. Because

ShoppingMobileApp transitively relates to PaymentService
connector, which has a link to LoggingService connector.
According to NTier:Tier class definition, a tier is a component
that transitively relates to a connector, which has a link to
another connector. For the same reason, PaymentGateway and
TransactionLogger are also denoted as instances of NTier:Tier.
Also, ShoppingMobileApp has a Subscribe port namely
PriceAlertRequest, it is hence a subscriber in publish-subscribe
styles too.

Figure 5 ShoppingMobileApp Component

C. Behavioral Sequence Generation

After the reasoning engine identifies the type of individuals
and the architectural styles are recognized, the reasoning engine
will automatically capture the sequence of behavioral activities
based on the behavioral rules specific to style. Figure 6 depicts
the payment sequence in the online shopping application
system. The behavioral rules logically imply hasNextAction and
hasDivertNextAction properties to the action individuals, in
order to connect series of action individuals as a sequence. The
behavioral rule of client-server style implies
ActProcessPayment as the next action of ActRequestToPay. As
ActProcessPayment is also involved in N-tier style, it has thus
value of hasDivertNextAction property as ActRequestToLog,
implied by the behavioral rule of N-Tier style. According to the
behavioral pattern of N-Tier style, when a payment is requested
to PaymentGateway, PaymentGateway will process the request
and call TransactionLogger in the upper tier to log a transaction.
The behavioral rule of client-server style also implies
ActReturnPayResult as the next action of ActProcessPayment,
in case the payment result is returned without logging
transaction (for example, when an error occurs during
processing a payment). Other behavioral sequence, such as
price alert, can also be generated in the same way using the
behavioral rule for publish-subscribe style.

Shopping
Mobile App

Payment
Gateway

Transaction
Logger

ActProcessPayment

ActRequestToLog

ActLogTransaction

ActReceiveLogResult

ActReceivePayResult

ActReturnLogResult

ActReturnPayResult

ActReturnPayResult

ActRequestToPay

Figure 6 Part of payment process

27

D. Performance Evaluation

We evaluated performance of reasoning process. This
evaluation focuses on measuring two parameters that impact the
performance of automated verification: 1) number of
architectural style applied to software design, and 2) software
size that can be reflected by the number of axioms. The more
axioms the ontology has, the larger scale a software is. We ran
regression testing 50 times on four ontologies that have
different parameter values as follows, A contains 0 styles with
144 axioms, B contains 2 styles with 216 axioms, C contains 3
styles with 246 axioms, and D contains 4 styles with 276
axioms.

Figure 7 Result of performance testing

This evaluation was carried out using an Intel Core i7-7500U
CPU @ 2.7GHz with 8.00 GB Ram computer, and we used
HermiT as the reasoning engine. The time taken to reason
ontologies are shown as a graph in Figure 7. The horizontal axis
represents the number of time we run reasoning process.
According to the test result, average time spending on reasoning
is between 20-60 milliseconds and shows insignificant variation
between test ontologies. Therefore, we can conclude that our
approach supports scalability for complex software
architectural design, as the number of applied styles and
software size has minor impact on the reasoning performance.

IV. CONCLUSION

An architectural design model for a complex software system
can be formally specified and verified with our approach. The
ontology library includes extensible architectural elements that
are defined semantically by OWL, whereas SWRL rules are
used to capture dynamic behavior within the design. We
demonstrate our approach by creating an ontology instance for
an architectural design model. The reasoning engine performs
classification that automates verification as follows: 1)
architectural consistency is checked against constraints in the
ontology, 2) architectural elements and styles are recognized, 3)
behavioral sequences are automatically generated according to
rules specific to architectural style. We found that complexity
level in architectural design has minor impact on the automated
verification performance. With automated verification, the user
can concentrate on determining whether the design meets
requirements, which are the most significant aspect of the
software architecture design.

This paper only takes a small step toward our ultimate goal,
which we aim to prevent architectural design erosion and lower

maintenance cost. We plan to achieve this by extending
proposed approach in this paper and integrate it to the software
evolution cycle.

REFERENCES

[1] R. Hilliard, "ISO/IEC/IEEE 42010," [Online]. Available:

http://www.iso-architecture.org/42010/.

[2] J. Rumbaugh, I. Jacobson and G. Booch, Unified Modeling Language
Reference Manual, The (2nd Edition), Pearson Higher Education, 2004.

[3] D. Garlan, R. T. Monroe and D. Wile, "Acme: Architectural
Description of Component-Based Systems," in Foundations of
Component-Based Systems, Cambridge University Press, 2000, pp. 47-
68.

[4] M. Ozkaya, "Do the informal & formal software modeling notations
satisfy practitioners for software architecture modeling?," Information
and Software Technology, vol. 95, pp. 15-33, 2018.

[5] L. Kaur and AshutoshMishra, "Software component and the semantic
Web: An in-depth content analysis and integration history," Journal of
Systems and Software, no. 125, pp. 152-169, 2017.

[6] H. Kaiya and M. Saeki, "Using Domain Ontology as Domain
Knowledge for Requirements Elicitation," in 14th IEEE International
Requirements Engineering Conference (RE'06), 2006.

[7] H.-H. Song and Z.-X. Zhang, "Study on Approach of Software
Maintenance Based on Ontology Evolution," in International
Conference on Computer Science and Software Engineering, 2008.

[8] R. Allen and D. Garlan, "A Formal Basis for Architectural Connection,"
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 6, no. 3, pp. 213-249 , 1997.

[9] J. S. Kim and D. Garlan, "Analyzing Architectural Styles with Alloy,"
in Workshop on the Role of Software Architecture for Testing and
Analysis 2006 (ROSATEA06), Portland, 2006.

[10] S. Wong, J. Sun, I. Warren and J. Sun, "A Scalable Approach to Multi-
style Architectural Modeling and Verification," in 13th IEEE
International Conference on Engineering of Complex Computer
Systems (iceccs), 2008.

[11] S. Schröder and M. Riebisch, "Architecture Conformance checking
with Description Logic," in The 11th European Conference on Software
Architecture, 2017.

[12] J. Simmonds and M. C. Bastarrica, "Description Logics for Consistency
Checking of Architectural Features in UML 2.0 Models," 2004.

[13] E. Yuan, "Towards Ontology-Based Software Architecture
Representations," in IEEE/ACM 1st International Workshop on
Establishing the Community-Wide Infrastructure for Architecture-
Based Software Engineering (ECASE), 2017.

[14] C. Pahl, S. Giesecke and W. Hasselbring, "Ontology-based modelling
of architectural styles," Information and Software Technology, vol. 51,
no. 12, pp. 1739-1749, 2009.

[15] J. Sun, H. H. Wang and T. Hu, "Design Software Architecture Models
using Ontology," in International Conference on Software Engineering
and Knowledge Engineering (SEKE), 2011.

[16] I. Horrocks, P. F.Patel-Schneider and F. Harmelen, "From SHIQ and
RDF to OWL: the making of a Web Ontology Language," Web
Semantics: Science, Services and Agents on the World Wide Web, vol.
1, no. 1, pp. 7-26, 2003.

[17] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and
M. Dean, "SWRL: A Semantic Web Rule Language," 2004. [Online].
Available: https://www.w3.org/Submission/SWRL/.

[18] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord and J. Stafford, Documenting Software Architectures:
Views and Beyond (2nd Edition), Pearson Education, 2011.

[19] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice
(2nd Edition), Addison-Wesley, 2003.

0

50

100

150

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

T
im

e(
m

s)

Ontology A Ontology B

Ontology C Ontology D

Test No.

28

Object-oriented Software Modeling with Ontologies
Around

A Survey of Existing Approaches (SESE)1

Sohaila Baset
Information Management Institute

University of Neuchatel
Neuchatel, Switzerland
sohaila.baset@unine.ch

Kilian Stoffel
Information Management Institute

University of Neuchatel
Neuchatel, Switzerland
kilian.stoffel@unine.ch

Abstract—Despite the many integration tools proposed for

mapping between OWL ontologies and the object-oriented

paradigm, developers are still reluctant to incorporate ontologies

into their code repositories. In this paper we survey existing

approaches for OWL to OOP mapping trying to identify reasons

for this shy adoption of ontologies among conventional software

developers. We present a classification of the surveyed approaches

and tools based on the characteristics of their resulting artifacts.

We finally provide our own reflection for other potential reasons

beyond those addressed in the literature.

Keywords- Knowledge representation, Object Oriented

Programming, Software modeling, Ontologies; OWL; Language

transformation.

I. MOTIVATION
In software development, like in other engineering

disciplines, model sharing is always an encouraged practice. It
explains the industry’s constant pursuit of open standards for
modeling languages that allow for seamless incorporation of
models pertaining to a certain modeling school into another.
Ontological modeling is no exception. After a few predecessors,
Ontolingua [1] [2] and DAML+OIL [3], the Web Ontology
Language OWL [4] [5] is now the standard language for
developing and sharing ontologies in the semantic web as well
as many other fields such as the biomedical domain. In the
literature, there exist many attempts at integrating ontologies
into mainstream development. These attempts vary from loose
integration, i.e. accessing ontologies from a programming
language, to a more solid transformation from OWL ontologies
into software models.

The synergies between ontologies and software models
might seem so evident that in many cases an effortless mapping
between the two paradigms is taken for granted. This assumption
is further supported by a considerable number of proposed
development frameworks such as the Ontology Driven Software

1 DOI reference number: 10.18293/SEKE2018-198

Development ODSD [6] or the Ontology Oriented Programming
[7]. However, shifting a bit from the research state-of-the-art
into the circles of conventional software development, we
observe a different image than the one painted in research
papers. Despite the many integration tools proposed, developers
are still reluctant to incorporate ontologies into their code
repositories.

 In this paper, we try to examine the different reasons behind
the modest adoption of ontologies in software modeling. We
survey existing integration approaches and we deduce some of
their common characteristics with the goal of providing a
classification framework that researchers interested in the topic
can refer to. We then discuss some of the common challenges
reported in the literature before concluding with our own
reflection on the current state of OWL to OOP integration.

II. METHOD AND SCOPE
Given the qualitative nature of literature and the particular

topic in question, it is difficult to establish a procedure for
automatic classification of existing approaches. When selecting
papers to review, we started with three of the earliest papers as
seeds for collecting other related papers: OntoJava 2002 [8],
Kalynapur 2004 [9] and Knublauch 2004 [6]. Using Google
scholar, we harvested all papers that cited at least one of the
seed papers. This resulted in around 309 papers. We first
grouped similar papers in sets (e.g. papers originating from the
same author and/or proposing the same tool) and we chose a
representative paper of each group. We then used Google
citations metrics as an indicative measure of the impact of a
paper (especially for early published papers) to pivot our
manual inspection of papers. We dropped irrelevant papers such
as papers accentuating the application domain rather than the
integration approach. At the end of this process we retained 24
papers that we are surveying in this article. While by no means
an exclusive list of all papers in the field, the retained 24 papers
give a good indicator on the current state of research.

When reviewing papers, we focused on certain aspects like
the extent of integration and the challenges the authors faced

29

rather than focusing on the motivation behind each contribution
which was, more or less, common behind most of the reviewed
papers.

III. ONTOLOGY MAPPING
Ontologies, by design, are not intended as standalone

software units [10]. They need to be considered in the context
of an application that is responsible for accessing and
manipulating the concepts they represent. For that reason, it is
essential to provide some mapping between the content of an
ontology and the application environment in which it resides.
Scanning the literature, we can find different terms and
expressions denoting this sort of mapping. In this paper, we will
be using the term OWL to OOP mapping as an umbrella term
for integrating OWL ontologies to the object-oriented paradigm
in general. This includes both OOP modeling and programming
languages.

 We can differentiate between two main approaches for
OWL to OOP mapping. In the following sections we define
these two approaches, their main characteristics as well as their
sub-categories.

A. Passive OWL to OOP mapping

Passive OWL to OOP mapping depicts a generic and a rather
loose mapping between the content of an ontology and its
programming environment. Nevertheless, this approach is more
dominant for most applications on the semantic web. In this
approach, ontologies are integrated into the mainstream OOP
language simply by loading them into memory. Loading is
achieved by an ontology loader that transforms the ontology
from its syntactic form, e.g. RDF/XML, into an in-memory
representation. This in-memory representation can be an

Abstract Syntax Tree (AST) like in the case of OWL API loader
[11] [12], or an RDF triple-based structure like the one used in
Jena [13]. In either case, the loaded ontology is treated as data
and will reside in the data segment of the program allocated
memory, hence the name passive approach. This approach is
also less challenging as there are no constrains imposed by the
target programming language on the kind of data structures
used to encapsulate the concepts of the source ontology.

B. Active OWL to OOP mapping

In contrast to passive ontology mapping, the active mapping
approach will transform an ontology from its serializable format
into code statements in the target programming language. The
resulting ontology is then executable and belong to the code
segment of the allocated memory. This approach is more
challenging as it requires finding a native equivalent in the
target programming language for each axiom in the source
ontology; a requirement that happens to be problematic in many
cases as we will demonstrate in the following sections.

Active OWL to OOP mapping can itself be further classified
into static or dynamic [14]. In static mapping, the translation,
i.e. code generation from owl axioms (concepts, properties and
individuals) is done in one shot as a separated prior step. In this
case and depending on the target language support for dynamic
typing, type checking is mostly limited to compile time. Under
this category, we can classify the work done by Kalynapur [9]
and Zimmerman [15] to translate OWL ontologies into Java or
the .Net ontology compiler by Goldman [7].

Dynamic mapping, on the other hand, will also consider
reasoning possibilities about the executable ontology. By
dynamically translating OWL axioms at runtime, active OWL
to OOP mapping permits certain inference tasks like for
example entailing the class of an individual and assigning its
type at runtime. Under this approach we can find many tools
proposed in the literature and they all provide different degrees
of reasoning support. Here again we differentiate between:

 1) Tools that have a dynamic language as output and will
rely on its dynamic typing features. As examples we can name
SWCLOS [16], an OWL processor built on top of Common
Lisp Object System (CLOS) and Owlready [14], a python
module that beside relying on python interpreter for dynamic
typing, can also make use of an external reasoning component
(HermiT reasoner [17]) for further reasoning tasks. Under this
category as well, we classify the approach proposed by Babik
and Hluchy [18], an approach that uses python metaclasses to
represent OWL concepts and perform type checking
dynamically.

2) Tools that have a strongly-typed language as output but
can still offer some degree of flexibility for type changes at
runtime. Examples are the Sapphire tool [19] that relies on the
concept of cascade wrapping, or un-wrapping, of proxy objects
to handle type changes at runtime and the C# OntoJIT parsing
component [20] that exploits a mix of metaprogramming
techniques, namely C# reflection, with the dynamic
compilation support of CLR, the common language runtime of
.Net languages.

3) And finally, some of the proposed tools for dynamic
OWL to OOP mapping have gone to the extent of proposing a

Figure 1. A taxonomy of existing OWL to OOP mapping

30

Table 1- List of main tools and approaches for OWL to OOP mapping

Year Tool/Approach
Source
language

Target
language

Mode
Reasoning
support

2002 OntoJava [23] RDF(s) Java Active/Static None

2003 Goldman [7] OWl C# Active/Static None

2003 OWL API [11] OWL Java passive External

2004 Knublauch [6] OWL Java ___ ___

2004 HarmonIA [9] OWL Java Active/Static None

2004 Jena [13] OWL Java Passive External

2005 SWCLOS [16] OWL CommonLisp Active/Dynamic Limited

2005
RDFReactor
[24] RDF/RDF(S) Java Active/Static None

2006
Atkinson et al.
[25] OWL UML ___ ___

2006 Babik [18] OWL Python Active/Dynamic Limited

2006 Clark et al. [21] OWL Go! Active/Dynamic Supported

2007 ActiveRDF [26] RDF(s) Ruby on
Rails Active/Static None

2007
Athanasiadis
[27] RDF / OWL JavaBeans Active/Static ___

2007 Owlet [28] OWL Java passive Supported

2008
Puleston et al.
[29] OWL Hybrid

OWL/Java ___ ___

2009 OWL2Java [15] OWL Java Active/Static None

2011 Sapphire [19] OWL Java Active/Dynamic Limited

2014 LITEQ [30] RDF(s) F# Active/Static Limited

2016 OntoJIT [20] OWL C# Active/Dynamic Limited

2017 Owlready [14] OWL Python Active/Dynamic Indirect

2017
Leinberger et al.
[22] OWL DL Active/Dynamic Supported

dedicated programming language for that purpose such as Go!
[21] or the more recent language DL [22]. Figure 1. provides
a treelike representation of existing OWL to OOP mapping
approaches while table 1. provides a somewhat extended list of
main tools and approaches.

IV. SEMANTIC GAP
The most prominent challenge that is present in active OWL

to OOP mapping approaches is the semantic gap between the
ontological and object-oriented paradigms. The semantic
richness of ontological languages makes it very difficult to find
an OOP counterpart to express OWL semantic constructs. One
of the most obvious examples is perhaps the different
interpretation of class inheritance. OWL, or Description Logics
DL in general, has a looser interpretation of a class being the
subclass of another. In OWL, the term “rdfs:subclassOf” is the
manifestation of the subsumption operator of DL. An OWL
class is allowed to have many parent classes (named or
anonymous) as long as it is subsumed by all these parents. On
the other hand, pure OOP languages like Java or C# have a
stricter definition of class inheritance, OOP classes are disjoint

by design and that is why a class cannot be a subclass of two
different parent classes and multiple inheritance is, generally

speaking, not supported. Multiple inheritance is not the only
example of the missing semantic equivalence. A similar
argument goes for OWL axioms such as “owl:equivalentClass”,
“owl:sameAs” or “owl:disjointWith”.

Many of the approaches we surveyed did not attempt at
bridging this gap and have instead limited the mapping scope to
what is expressible in the target programming languages. On
the other hand, some of the active approaches proposed
interesting solutions ranging from a “Keep it simple, stupid”

approach of adding a meta-layer of code as a substitute for the
missing semantics in formal programming languages [20] to a
more sophisticated approach of stretching the expressiveness of
modeling in Java to that of OWL DL by enforcing some
constraints and design patterns [9]: Interfaces with shadow
classes for multiple inheritance, special listeners on property
accessors, type checking for domain and range properties, etc.

V. DISCUSSION
One of the main motivations behind most of the work

surveyed in this paper is the difficulty of manipulating
ontologies in mainstream software development and the
scarcity of options for an ontology programming interface.
Nevertheless, as we can see from earlier sections, a
retrospective scan on work done in this area revealed a different
story. In fact, there exist many options both for accessing or
integrating ontologies in an OOP paradigm, yet we still did not
witness ontologies spanning new development territories.

Below we try to list some of the potential reasons for this shy
adoption of ontologies beyond what has been proposed in the
literature:

1) Too many options: The real problem developers may
have with integrating ontologies is not necessarily the lack of
ontology programming interfaces – there exist well many – but
rather the lack of consensus on a standardized option. Unlike
the case of ontological modeling where OWL is “the language”
and Stanford protégé is “the editor”; when it comes to
integrating ontologies as software models, there exist many
options but none of them has reached a good level of maturity
to gain community consensus. As a result, the developer has to
go through the hassle of sorting them out before being able to
judge on the pertinence of any of these options; a task that is not
affordable in most of today’s agile software projects.

2) Paradigm shift: Although largely addressed in the
literature, the paradigm shift the developer has to go through
when integrating ontologies is still present. Providing tool
support is one thing, but it takes much more to overcome the
conceptual switch behind ontological modeling. Translating
ontologies into a program does not change the fact that
ontological modeling is explicit and most of the time based on
an Open World Assumption OWA in contrast to implicit
closed-world modeling in UML and OOP languages.

3) Legacy projects: From a pure practical point of view,
introducing ontologies to mainstream software projects is
especially challenging when there is some legacy code to
maintain and respect; which is the case of the majority of
software projects in large scale organizations.

31

4) Resistance to change: For most “right-wing” software

engineers, adopting ontological approaches, or generally
speacking linked data approaches from the semantic web,
means, in a way or another, shifting towards a more volatile
domain model. A move that may not be perceived as a positive
step in the circles of software engineering with strong
preferences for tidy and well-engineered domain models. It
provokes a lot of philosophical discussions similar to the
dynamic vs. static-style of coding in languages that permits the
two possibilities. Eventually, such a change may very well be
welcome, but just when the right time comes.

VI. CONCLUSION
In this paper, we surveyed the literature for existing approaches
for mapping between OWL ontologies and object-oriented
programming paradigms. We presented a classification of the
surveyed mapping tools based on the characteristics of their
resulting artifacts. We highlighted some of the common
challenges encountered in the literature before finally providing
our own reflection on why software engineers are still reluctant
to incorporate ontologies into their code repositories.
Unfortunately, as we mentioned before, most of the tools and
prototypes, especially the early ones, did not yield a concrete
body of use cases in software industry. It would be interesting
therefore to see how the more recent propositions will evolve
given the re-awaken interest of the semantic web in the last few
years.

VII. REFERENCES

[1] T. R. Gruber, "A translation approach to portable ontology

specifications," Knowledge acquisition, vol. 5, pp. 199-220,
1993.

[2] A. Farquhar, R. Fikes and J. Rice, "The ontolingua server: A tool
for collaborative ontology construction," International journal

of human-computer studies, vol. 46, no. 6, pp. 707-727, 1997.
[3] I. Horrocks and others, "DAML+OIL: A Description Logic for

the Semantic Web," IEEE Data Eng. Bull., vol. 25, pp. 4-9,
2002.

[4] I. Horrocks, P. F. Patel-Schneider and F. Van Harmelen, "From
SHIQ and RDF to OWL: The making of a web ontology
language," Web semantics: science, services and agents on the

World Wide Web, vol. 1, pp. 7-26, 2003.
[5] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz

and others, "Owl 2 web ontology language: Profiles," W3C

recommendation, vol. 27, p. 61, 2009.
[6] H. Knublauch, "Ontology-driven software development in the

context of the semantic web: An example scenario with
Protege/OWL," in 1st International Workshop on the Model-

Driven Semantic Web (MDSW2004), 2004.
[7] N. M. Goldman, "Ontology-oriented programming: static typing

for the inconsistent programmer," in International Semantic

Web Conference, Florida, 2003.
[8] A. Eberhart, "OntoJava--Applying Mainstream Technology to

the Semantic Web," in Workshop on Semantic Web-based E-

Commerce and Rules Markup Languages at the ICEC, Vienna
(Austria), 2001.

[9] A. Kalyanpur, D. J. Pastor, S. Battle and J. A. Padget,
"Automatic Mapping of OWL Ontologies into Java.," in SEKE,
2004.

[10] Wache, Holger and Voegele, Thomas and Visser, Ubbo and
Stuckenschmidt, Heiner and Schuster, Gerhard and Neumann
and Holger and Hübner, Sebastian, "Ontology-based integration
of information-a survey of existing approaches," in IJCAI-01

workshop: ontologies and information sharing, Seattle, USA,
2001.

[11] S. Bechhofer, R. Volz and P. Lord, "Cooking the Semantic Web
with the OWL API," in International Semantic Web Conference,
2003.

[12] S. K. Bechhofer and J. J. Carroll, "Parsing owl dl: trees or
triples?," in Proceedings of the 13th international conference on

World Wide Web, 2004.
[13] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne

and K. Wilkinson, "Jena: implementing the semantic web
recommendations," in Proceedings of the 13th international

World Wide Web conference on Alternate track papers \&

posters, 2004.
[14] J.-B. Lamy, "Owlready: Ontology-oriented programming in

Python with automatic classification and high level constructs
for biomedical ontologies," Artificial intelligence in medicine,

vol. 80, no. 2017, pp. 11-28, 2017.
[15] M. Zimmermann, "OWL2Java: a Java Code Generator for

OWL, website," -, -, 2009.
[16] Koide, Seiji and Takeda and Hideaki, "OWL-Full reasoning

from an object oriented perspective," in Asian Semantic Web

Conference, Beijing, 2006.
[17] Shearer, Rob and Motik, Boris and Horrocks and Ian, "HermiT:

A Highly-Efficient OWL Reasoner.," in OWLED, Washington,
DC, 2008.

[18] M. Babik and L. Hluchy, "Deep integration of python with web
ontology language," in In Proceedings of the 2nd Workshop on

Scripting for the Semantic Web, 2006.
[19] Stevenson, Graeme and Dobson and Simon, "Sapphire:

Generating Java runtime artefacts from OWL ontologies," in
International Conference on Advanced Information Systems

Engineering, Gdańsk, Poland, 2011.
[20] S. Baset and K. Stoffel, "OntoJIT: Parsing Native OWL DL into

Executable Ontologies in an Object Oriented Paradigm," in
International Experiences and Directions Workshop on OWL,
2016.

[21] Clark, Keith L and McCabe and Frank G, "Ontology oriented
programming in Go!," Applied Intelligence, vol. 24, no. 3, pp.
189--204, 2006.

[22] M. Leinberger, R. Lämmel and S. Staab, "The essence of
functional programming on semantic data," in European

Symposium on Programming, Uppsala, Sweden, 2017.
[23] A. Eberhart, "Automatic generation of java/sql based inference

engines from rdf schema and ruleml," in International Semantic

Web Conference, Sardinia,Italy, 2002.
[24] M. Völkel and Y. Sure, "RDFReactor-from ontologies to

programmatic data access," in Poster Proceedings of the Fourth

International Semantic Web Conference, Galway,Irland, 2005.
[25] C. Atkinson, M. Gutheil and K. Kiko, "On the Relationship of

Ontologies and Models.," WoMM, vol. 96, pp. 47-60, 2006.
[26] E. Oren, R. Delbru, S. Gerke, A. Haller and S. Decker,

"ActiveRDF: object-oriented semantic web programming," in

32

Proceedings of the 16th international conference on World Wide

Web, 2007.
[27] I. N. Athanasiadis, F. Villa and A.-E. Rizzoli, "Ontologies,

JavaBeans and Relational Databases for enabling semantic
programming," in Computer Software and Applications

Conference, 2007. COMPSAC 2007. 31st Annual International,
2007.

[28] A. Poggi, "OWLET: an object-oriented environment for OWL
ontology," in Proceedings of the 11th WSEAS International

Conference on Computers, Agios Nikolaos, Crete Island,
Greece, 2007.

[29] C. Puleston, B. Parsia, J. Cunningham and A. Rector,
"Integrating object-oriented and ontological representations: a

case study in Java and OWL," in International Semantic Web

Conference, 2008.
[30] M. Leinberger, S. Scheglmann, R. Lämmel, S. Staab, M.

Thimm and E. Viegas, "Semantic web application development
with LITEQ," in International Semantic Web Conference, Riva
del Garda, Italy, 2014.

[31] C. Atkinson and T. Kuhne, "Model-driven development: a
metamodeling foundation," IEEE software, vol. 20, pp. 36-41,
2003.

33

Methods for Estimating Agile Software Projects: Systematic Literature Review

Edna Dias Canedo Dandara Pereira Aranha Maxwell de Oliveira Cardoso
Ruyther Parente da Costa Leticia Lopes Leite

University of Brası́lia (UnB), P.O. Box 4466 – Brası́lia-DF, CEP 70910-900, Brazil
ednacanedo,llleite@unb.br,dandaraaranha,maxwell.oliveira2@gmail.com, ruyther@me.com

1

Abstract

In recent years, agile methods of software development
have gained a lot of attention in the field of software engi-
neering. Several estimation techniques have been proposed
by several authors and developers in recent years. This
paper performs a Systematic Literature Review aiming to
identify the most used metrics e/or methods in the develop-
ment of agile software and the most used size metrics re-
garding effort estimates, deadlines and costs in a planning
of agile software project. The results suggest that Planning
Poker is the most popular technique for agile teams in the
planning phase, Story Point and Point of Function are the
most used metrics in agile projects for estimating size, time,
effort, productivity and cost.

Keywords: Agile Software Development; Software
Estimates; Software Metrics; Story Point; Planning Poker.

1. Introduction
The concept of agile development was proposed in 2001

by the Agile Team, and then several software development
teams and companies recognized and accepted the concept,
so its use gradually increased in software projects [1].

The methods for agile software development are a set of
practices that have been created by experienced profession-
als. These methods can be seen as a reaction to the tradi-
tional method of development, which emphasizes a ratio-
nalized, engineering-based approach stating that problems
are fully specifiable, and that, optimal and predictable solu-
tions exist for any kind of problem [2].

Software metrics are often used to understand, control
and improve what is done and how it is done in a software
development process. Some of the motivations for using
metrics are: project planning and estimation, project man-
agement and follow-up, quality understanding and business
objectives, communication, processes, and improved tools
for software development [3]. Thus, the measurement is
applied in the process of software development or attributes
of a product with the objective of improving it continuously.
This technique used throughout the software development

1DOI reference number: 10.18293/SEKE2018-031

project assists in estimating, quality control, productivity
assessment and project control [4].

When estimating effort, duration, and cost of software
development projects, software size is a prerequisite. The
functional size of the software to be delivered is a solid basis
for estimating a software development project, and one of
the most common ways of obtaining the functional size of
software is through Function Point Analysis (FPA).

Combining the size of a system, in function points for ex-
ample, with other metrics, allows the accomplishment of es-
timates for the development project and definition of a plan
of actions focused on meeting the goals [5]. The success
of agile software development and estimates still continue
to challenge current projects and organizations. Despite the
importance of metrics and estimates for software develop-
ment projects, research related to the theme in the context
of agile projects still remains scarce, making estimates and
planning inefficient and/or imprecise [6].

The main contribution of this paper is to identify which
methods and metrics are considered more adequate for esti-
mating agile software development.

2. Planning and Estimating Software Projects
The basis for software metrics was established in the

1970s. The first article on the subject was published in
1968 [7]. From these works, more work and interesting re-
sults emerged.

Measurements were mainly created to ensure that indica-
tives could be obtained for optimization of production costs,
since in the 1990s billions of dollars were spent on software
that did not meet the needs of companies at the time [4].

When calculating metrics, you can refine one of the most
important tasks of Project Management, which is planning.
According to [4], software measurement makes possible a
better understanding of the software engineering process
and the product (which it produces) to managers and pro-
fessionals. Using direct and indirect measures, productiv-
ity and quality metrics can be defined. It is also possible
to identify the estimated effort, cost and time for a project
project.

Estimation is one of the main activities of software plan-
ning. They provide data that allows you to predict the time
required and the costs of the project. It is not possible to
prepare a schedule and budget without the use of estimates.

34

Estimates are performed based on metrics. With the ap-
plication of estimates it is possible to collect metrics that
allow to predict the amount of people needed, the time re-
quired and the costs for the development of the project.
”Thus, it becomes important to invest in the implementation
of an estimation process” [8]. Size, duration, productivity,
and effort metrics are the most commonly used [9].

2.1 Planning and Estimating Agile Software Projects

Agile methodologies propose a large set of techniques
for estimating and planning projects, especially in terms of
non-algorithm-based models [10], [11]. Most agile esti-
mation techniques focus on the use of User Stories (US).
User Stories were first introduced by eXtreme Program-
ming (XP) [12] and then popularized by [10].

There are several techniques for estimating agile soft-
ware projects, however the ones that will be discussed here
are: Planning Poker [10], and Ideal Day [13].

2.1.1 Planning Poker

Estimates are limited to specific numbers (each number is
written in a card). Each member is holding a deck of Plan-
ning Poker cards with values like 0, 1, 2, 3, 5, 8, 13, 20,
40 and 100, which is the sequence that are more popu-
lar [14], [15]. However, it is not a standard. Each value
represents the number of story points [16] which the team
estimates. Story points are the most common unit of mea-
sure used for estimating the effort involved in completing a
user story or resolving an issue.

Story points refer to customer requirements and describe
specific functionalities. When the feature has been fully dis-
cussed, each estimator privately selects one card to repre-
sent his or her estimate. If they are all the same, the func-
tionality receives the estimate; If not, members proposing
the highest and lowest estimates explain their points of view
and new rounds are played until a consensus is reached. So
the team predicts the speed (the number of points they can
deliver in an iteration, through historical data, a test iteration
or an educated guess) and down the length of the iteration.
The number of iterations is obtained by dividing the total
number of points by velocity. Likewise, the project dura-
tion is calculated by multiplying the number of iterations
by size.

2.1.2 Ideal Day

Widely used in Agile Software Projects, Ideal Day corre-
sponds to the amount of work that a professional in the area
can complete in a day of work [13], [17].

The speed is calculated from the number of hours the
team spends to implement a work equivalent to an Ideal
Day [18]. If the item goes through a day of work, it is sug-
gested to decompose this item into smaller items that can be
implemented in just one day. According to [18], calculate

the estimated days use the following formula:

DE =
IED

1− IEDREAL

At where: DE: represents the estimated number of days
to complete the task; IED: represents the time needed to
implement the item. This deadline is defined by the team;
IEDREAL: represents the percentage that indicates the es-
timate of how much time of day the developer will be dedi-
cated to the implementation of the item.

3 Systematic Literature Review
The objective of the systematic review [19] was to iden-

tify scientific works that present methodologies and metrics
solutions for agile software development methodologies to
identify: Common project measurement and control prac-
tices; Size metrics used; Research trends in agile develop-
ment; and Open questions and research topics related to im-
proving the estimates of agile development projects. The
research was performed in four steps:

• Step 1: Perform automatic search and manual in or-
der to identify a preliminary list of studies. Duplicate
studies were discarded. The StArt tool was used as
support for the documentation, extraction and structur-
ing of the primary studies.

• Step 2: Identification of potentially relevant studies,
based on title and abstract analysis, discarding studies
that are clearly irrelevant to the research. If there was
any doubt about a study regarding its inclusion or ex-
clusion, the next step was to check whether the study
was relevant or not.

• Step 3: Selected studies in previous steps were re-
viewed by reading the introduction, methodology sec-
tion and conclusion and applying the inclusion and ex-
clusion criteria. If reading the above items was not
enough to make a firm decision, the study was read in
its entirety.

• Step 4: thus, a list of primary studies was obtained
and subsequently subjected to critical examination us-
ing the criteria established.

In order to characterize the methods for estimating agile
software projects, two different questions were formulated:

• RQ.1. What are the metrics and methods used to make
effort estimates, deadlines, and costs for agile software
project planning?

• RQ.2. Function point metrics can be used to make esti-
mates of effort, deadlines, and costs for agile software
planning? If so, is it the most appropriate estimate?

35

http://lapes.dc.ufscar.br/tools/start_tool

The search string definition was based on the population,
intervention, comparison and the result [20]. Population:
The population is the agile software development. To search
the population, the keyword ”Agile Software Development”
were used. Intervention: The intervention is to estimate
effort, cost, time and to identify how the Function Points
Analysis is performed in agile software projects. Therefore,
the terms: metric, prediction, estimation and function points
were considered. Comparison: The focus of the study was
not limited to comparative studies. Therefore, the compar-
ison was not considered in the research strategy. Result:
The main focus is for the research for estimation metrics
and methods that are used in scientific studies and/or indus-
try, as reported by researchers. Thus, the research contained
words like empirical, validation, evaluation, etc.

3.1 Study Selection Criteria

The following selection criteria were defined for the se-
lection of primary studies:

1. The year of publication of the studies should be be-
tween 2007 and 2018. However, classical sources with
definitions (books with classical concepts or pioneer-
ing articles) were also considered.

2. Works that propose methods or metrics to realize esti-
mations and agile software projects planning.

3. The work has reference to software metrics and func-
tion points in agile development.

As criterion of exclusion of the studies was considered
the non-fulfillment of some of the inclusion criteria, as well
as:

1. Works that do not propose methods and metrics to re-
alize agile software projects estimations.

2. Duplicated works or published as Short Paper.

3.2 Results

The Systematic Literature Review (SLR) is a form of
secondary study that aims to identify and analyze the rel-
evant research for a given research question [21]. As a re-
sult, a total of 291 papers were found. After applying the
inclusion criteria, 27 primary studies were classified.

In summary, in the first stage, where the search string
was inserted in the digital libraries, a total of 291 articles
were obtained. In the second stage, the results were filtered
by reading their title, abstract, and keywords, and a total
of 189 articles were selected. In the fourth stage, another
filter was applied, through the complete reading of the ar-
ticle, with the object of finding the answers to the research
questions. After this stage, 22 articles had been chosen to
answer the research questions.

In addition to the 22 studies selected in the automatic
search, 5 other studies were selected through manual search.
After finishing the 3 analysis stages, 27 articles had been
selected for data extraction. Table 1 shows all the selected
papers.

The results of the SLR according to each defined re-
search question were: RQ.1: The most appropriate estima-
tion model for agile projects is Story Point [36]. Thereby,
it has been realized that Planning Poker is one of the most
popular techniques for agile teams in planning and estimat-
ing effort before starting each iteration.

The size estimation techniques are grouped together with
the effort estimation techniques, because within the context
of agile development, effort estimation is often derived from
Velocity estimates and calculations [36] and [35]. The Ex-
pert Judgment and Use Case Points technique are also fre-
quently used estimation techniques in the context of agile
software development. The techniques of estimating effort
in the agile context and its occurrence in the selected works:
Expert Opinion - 8; Estimate based on model (COCOMO,
etc.) - 5; Planning Poker - 11. Use-Case Points - 3; Custom
Templates - 2; Number of Lines of Code - 4; Fuzzy based
Framework for Estimation - 1.

Through the number of Story Points and Velocity of the
development team you can calculate the term of develop-
ment of a certain functionality [36]. For example, if the
total number of Story Points for the desired functionalities
is 200 and the Velocity of the team is 20, then it can be con-
cluded that the team will need 20 iterations to complete the
development of the respective functionalities. However, the
User Story Point (USP) is not objective and can not define a
standard practice for estimating the size and complexity of
the software [25].

Innovative work has been identified in the area of agile
project estimates. The paper [27] for example, proposes a
structure that depends on the use of fuzzy logic and aims
to help in the production of accurate estimates. In the pa-
per presented by [23] it is proposed to modify the Use-
Case-Points (UCP) method to make it suitable for agile soft-
ware development by naming this new version for interac-
tive UCP version (iUCP).

The work proposed by [38] presents a proposed model
of effort prediction caused by changes in software require-
ments. The model integrates the analysis of the impacts of
the changes with the COCOMO effort estimation model to
improve the precision of the effort estimates from changes
in agile software development projects.

The Bayesian Network model was proposed to help agile
project managers estimate project effort. It is a graphical
model that describes the probabilistic relations between the
related variables [47].

According to the works analyzed, Story Points is the
most used size metric to carry out the estimations of agile

36

Table 1: Selected Papers for Data Extraction

Number Tittle Author
1 Measuring and predicting software productivity: A systematic map and review [22]
2 iUCP: Estimating Interactive-Software Project Size with Enhanced Use-Case Points [23]
3 Enhancing Quality in Scrum Software Projects [24]
4 On the Current Measurement Practices in Agile Software Development [25]
5 Survey on agile metrics and their inter-relationship with other traditional development metrics [26]
6 Towards a Fuzzy based Framework for Effort Estimation in Agile Software Development [27]
7 Function Points, Use Case Points, Story Points: Observations From a Case Study. [28]
8 Estimating, planning and managing Agile Web projects under a value-based perspective [29]
9 Effort, duration and cost estimation in agile software development [30]
10 Cost and effort estimation in agile software development [31]
11 How is effort estimated in agile software development projects? [32]
12 Identification of inaccurate effort estimates in agile software development [33]
13 Effort estimation in Agile software development: A survey on the state of the practice [34]
14 Effort estimation in Agile Software Development: A systematic literature review [35]
15 Model-based dynamic cost estimation and tracking method for agile software development [36]
16 NORPLAN: Non-functional requirements planning for agile processes [37]
17 Predicting effort for requirement changes during software development [38]
18 Method for personal capability assessment in agile teams using personal points [39]
19 Understanding and improving effort estimation in agile software development [40]
20 Agile metrics for a university software engineering course [41]
21 Applying Software Metrics with Scrum [42]
22 On using planning poker for estimating user stories [15]
23 Efficiency factor and risk factor based user case point test effort estimation model [43]
24 Empirical validation of three software metrics suites to predict fault-proneness of object-oriented

classes developed using highly Iterative or agile software development processes
[44]

25 Does the use of Fibonacci numbers in planning poker affect effort estimates? [45]
26 Improving the user story Agile technique using the INVEST criteria [46]
27 Bayesian network model for task effort estimation in agile software development [47]

37

projects, however it can also be verified that Function Points
are still widely used, often being combined with other met-
rics.

RQ.2: Function point metrics can be used to make esti-
mates. A dynamic cost estimating model for agile software
projects can be used, namely, it has the ability to adapt dur-
ing the development process and with changes in require-
ments [36]. This model adopts function points such as esti-
mation metric and a tracking algorithm, the project time es-
timating the size of the functionalities using function points
and calculating the cost to derive the duration of the project.

To derive the project plan, three procedures are per-
formed. 1. The project team calculates the function points
of the desired functionalities; 2. The estimation model,
which is composed of the remaining function points, is gen-
erated; 3. The project team develops a plan for the release,
iteration, and delivery using estimated cost metrics, such as:
people per month and number of lines of code.

Although some papers suggest adaptations of tradi-
tional models for estimating and measuring agile software
projects, one of the weaknesses of agile communities may
still be the failure to estimate and measure projects using
standard metrics such as function points that are largely
known and used within the industry, but which cover only
the functional requirements (Jones 1998), different from
Story Points, for example, that do not correspond to a soft-
ware size and not even the actual effort, but to estimates
(not measurement), and that cover the functional and non-
functional requirements.

Some selected studies also state that Point of Function is
not suitable for estimating agile projects because of their
granularity and insufficient support for feedback and re-
quirements change. Therefore, they firmly support the idea
that companies that work in a traditional or agile way col-
lect traditional measures of size (such as Function Points)
for portfolio management, project management and bench-
marking; and that companies working according to an agile
method also do this, in addition to collecting size measures
in an agile-size metric (such as Story Points) for estimation
purposes.

4. Conclusions and Future Work
Through the execution of this work, it was possible to

perceive the relevance of size, effort, cost and time esti-
mates in the context of agile software development, and
therefore, methods and estimation metrics have been in-
creasingly discussed in scholarly works that seek the best
and most precise metrics used in a given agile context.

Through the Systematic Review of Literature (SLR) it
was possible to identify the methods and the main size met-
rics used in estimations in the context of agile software de-
velopment. Among the most used techniques are: Planning
Poker, Expert Opinion and Function Point Analysis. The
most used metrics for estimates are Story Points and Func-

tion Points.
The primary studies identified in the SLR showed that

the methods and the metrics for estimates are mostly applied
to a given context of agile development with adaptations in
order to fit the project in question. Thus, it can also be con-
cluded that the estimation metrics must always be adapted
to fit the project context, since each project will have its own
characteristics which influence the result of the estimates.

The case study showed that the estimates using the Func-
tion Points metric had deviation percentages of the actual
values from the estimated values lower than the estimates
made using the Story Points metric. This is due to the fact
that the team has a lot of experience with the use of esti-
mates with the Function Points metric, so the initial values
of the productivity estimates and the hour value of 1 FP
were much closer to the actual value, which consequently
made the rest of the estimates more precise.

However, it is necessary to perform other experiments
using real projects of different characteristics to be able to
affirm with certainty that the Function Points metric is more
accurate than the Story Points metric in agile development
projects.

References
[1] J. Li, “Agile software development,” 2010.

[2] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and software technology,
vol. 50, no. 9-10, pp. 833–859, 2008.

[3] K. Pulford, A. Kuntzmann-Combelles, and S. Shirlaw, A quantitative
approach to software management: the AMI handbook. Addison-
Wesley Longman Publishing Co., Inc., 1995.

[4] R. S. Pressman, Software engineering: a practitioner’s approach.
Palgrave Macmillan, 2005.

[5] R. Dias, “Análise por pontos de função: uma técnica para dimension-
amento de sistemas de informação,” Revista Eletrônica de Sistemas
de Informação ISSN 1677-3071, volume=2, number=2, year=2003.

[6] B. Kitchenham, “Whats up with software metrics?–a preliminary
mapping study,” Journal of systems and software, vol. 83, no. 1, pp.
37–51, 2010.

[7] R. J. Rubey and R. D. Hartwick, “Quantitative measurement of pro-
gram quality,” in Proceedings of the 1968 23rd ACM national con-
ference. ACM, 1968, pp. 671–677.

[8] C. Hazan, “Análise de pontos de função: Uma aplicação nas estima-
tivas de tamanho de projetos de software,” Engenharia de Software
Magazine, Edição, vol. 2, pp. 25–31, 2008.

[9] P. Bourque, R. E. Fairley et al., Guide to the software engineering
body of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer
Society Press, 2014.

[10] M. Cohn, Agile estimating and planning. Pearson Education, 2005.

[11] J. Highsmith, Agile project management: creating innovative prod-
ucts. Pearson Education, 2009.

[12] K. Beck, Extreme programming explained: embrace change.
addison-wesley professional, 2000.

38

[13] F. Alves and M. Fonseca, “Ideal day e priorizao: Mtodos geis no
planejamento,” 2008.

[14] N. C. Haugen, “An empirical study of using planning poker for user
story estimation,” in Agile Conference, 2006. IEEE, 2006, pp. 9–pp.

[15] V. Mahnič and T. Hovelja, “On using planning poker for estimating
user stories,” Journal of Systems and Software, vol. 85, no. 9, pp.
2086–2095, 2012.

[16] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose,
and T. Menzies, “A deep learning model for estimating story points,”
IEEE Transactions on Software Engineering, 2018.

[17] M. Usman, “Improving expert estimation of software development
effort in agile contexts,” Ph.D. dissertation, Blekinge Tekniska
Högskola, 2018.

[18] J. C. C. Martins, “Tcnicas para gerenciamento de projetos de soft-
ware,” 2001.

[19] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[20] B. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” ech. rep. EBSE 2007-
001, 2007.

[21] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–
a systematic literature review,” Information and software technology,
vol. 51, no. 1, pp. 7–15, 2009.

[22] K. Petersen, “Measuring and predicting software productivity: A
systematic map and review,” Information and Software Technology,
vol. 53, no. 4, pp. 317–343, 2011.

[23] N. Nunes, L. Constantine, and R. Kazman, “Iucp: Estimating
interactive-software project size with enhanced use-case points,”
IEEE software, vol. 28, no. 4, pp. 64–73, 2011.

[24] A. R. Mukker, A. K. Mishra, and L. Singh, “Enhancing quality in
scrum software projects,” International Journal of Science and Re-
search (IJSR), vol. 3, no. 4, pp. 682–688, 2014.

[25] T. Javdani, H. Zulzalil, A. A. A. Ghani, A. B. M. Sultan, and R. M.
Parizi, “On the current measurement practices in agile software de-
velopment,” arXiv preprint arXiv:1301.5964, 2013.

[26] S. Misra and M. Omorodion, “Survey on agile metrics and their inter-
relationship with other traditional development metrics,” ACM SIG-
SOFT Software Engineering Notes, vol. 36, no. 6, pp. 1–3, 2011.

[27] A. T. Raslan, N. R. Darwish, and H. A. Hefny, “Towards a fuzzy
based framework for effort estimation in agile software develop-
ment,” International Journal of Computer Science and Information
Security, vol. 13, no. 1, p. 37, 2015.

[28] J. Schofield, A. Armentrout, and R. Trujillo, “Function points, use
case points, story points: Observations from a case study,” CrossTalk,
vol. 26, no. 3, pp. 23–27, 2013.

[29] C. Torrecilla-Salinas, J. Sedeño, M. Escalona, and M. Mejı́as, “Esti-
mating, planning and managing agile web development projects un-
der a value-based perspective,” Information and Software Technol-
ogy, vol. 61, pp. 124–144, 2015.

[30] M. Owais and R. Ramakishore, “Effort, duration and cost estimation
in agile software development,” in Contemporary Computing (IC3),
2016 Ninth International Conference on. IEEE, 2016, pp. 1–5.

[31] R. Popli and N. Chauhan, “Cost and effort estimation in agile soft-
ware development,” in Optimization, Reliabilty, and Information
Technology (ICROIT). IEEE, 2014, pp. 57–61.

[32] T. Schweighofer, A. Kline, L. Pavlic, and M. Hericko, “How is ef-
fort estimated in agile software development projects?” in SQAMIA,
2016, pp. 73–80.

[33] F. Raith, I. Richter, R. Lindermeier, and G. Klinker, “Identifica-
tion of inaccurate effort estimates in agile software development,” in
Software Engineering Conference (APSEC), 2013 20th Asia-Pacific,
vol. 2. IEEE, 2013, pp. 67–72.

[34] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in agile
software development: a survey on the state of the practice,” in Pro-
ceedings of the 19th International Conference on Evaluation and As-
sessment in Software Engineering. ACM, 2015, p. 12.

[35] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in
agile software development: a systematic literature review,” in Pro-
ceedings of the 10th International Conference on Predictive Models
in Software Engineering. ACM, 2014, pp. 82–91.

[36] S. Kang, O. Choi, and J. Baik, “Model-based dynamic cost estima-
tion and tracking method for agile software development,” in Com-
puter and Information Science (ICIS), 2010 IEEE/ACIS 9th Interna-
tional Conference on. IEEE, 2010, pp. 743–748.

[37] W. M. Farid and F. J. Mitropoulos, “Norplan: Non-functional re-
quirements planning for agile processes,” in Southeastcon, 2013 Pro-
ceedings of IEEE. IEEE, 2013, pp. 1–8.

[38] S. Basri, N. Kama, F. Haneem, and S. A. Ismail, “Predicting effort
for requirement changes during software development,” in Proceed-
ings of the Seventh Symposium on Information and Communication
Technology. ACM, 2016, pp. 380–387.

[39] S. Čelar, M. Turić, and L. Vicković, “Method for personal capability
assessment in agile teams using personal points,” in Telecommunica-
tions Forum Telfor (TELFOR). IEEE, 2014.

[40] B. Tanveer, L. Guzmán, and U. M. Engel, “Understanding and im-
proving effort estimation in agile software developmentan indus-
trial case study,” in Software and System Processes (ICSSP), 2016
IEEE/ACM International Conference on. IEEE, 2016, pp. 41–50.

[41] C. Matthies, T. Kowark, M. Uflacker, and H. Plattner, “Agile metrics
for a university software engineering course,” in Frontiers in Educa-
tion Conference (FIE), 2016 IEEE. IEEE, 2016, pp. 1–5.

[42] M. L. Gamba and A. C. G. Barbosa, “Engenharia de software-
aplicação de métricas de software com scrum,” Anais SULCOMP,
vol. 5, 2010.

[43] A. W. M. M. Parvez, “Efficiency factor and risk factor based user case
point test effort estimation model compatible with agile software de-
velopment,” in Information Technology and Electrical Engineering
(ICITEE), 2013 International Conference on. IEEE, 2013.

[44] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, “Em-
pirical validation of three software metrics suites to predict fault-
proneness of object-oriented classes developed using highly itera-
tive or agile software development processes,” IEEE Transactions on
software Engineering, vol. 33, no. 6, pp. 402–419, 2007.

[45] R. Tamrakar and M. Jørgensen, “Does the use of fibonacci numbers
in planning poker affect effort estimates?” 2012.

[46] L. Buglione and A. Abran, “Improving the user story agile technique
using the invest criteria,” in Software Measurement and the 2013
Eighth International Conference on Software Process and Prod-
uct Measurement (IWSM-MENSURA), 2013 Joint Conference of the
23rd International Workshop on. IEEE, 2013, pp. 49–53.

[47] S. Dragicevic, S. Celar, and M. Turic, “Bayesian network model for
task effort estimation in agile software development,” Journal of Sys-
tems and Software, vol. 127, pp. 109–119, 2017.

39

Investigating gaps on Agile Improvement Solutions
and their successful adoption in industry projects -

A systematic literature review
Arthur Freire∗, André Meireles†, Gleyser Guimarães‡, Mirko Perkusich§,

Raissa da Silva∗, Kyller Gorgônio∗, Angelo Perkusich∗ and Hyggo Almeida∗
∗ Intelligent Software Engineering (ISE) Group, Federal University of Campina Grande

Emails: {arthurfreire, raissasilva}@copin.ufcg.edu.br,
{kyller, hyggo}@dsc.ufcg.edu.br, and perkusic@dee.ufcg.edu.br
† Federal University of Ceará — Email: andre@crateus.ufc.br

‡ Federal University of Campina Grande — Email: gleyser@copin.ufcg.edu.br
§ Federal Institute of Paraiba — Email: mirko.perkusich@ifpb.edu.br

DOI reference number: 10.18293/SEKE2018-185

Abstract—
Background: The focus of Agile software development (ASD) is
different than plan-driven development, requiring new software
process improvement (SPI) paradigms.

Objective: To identify and synthesize the possible gaps of Agile
improvement solutions (AIS) given their focus on people factors,
report of successful adoption in industry projects and availability
of tool support.

Method: We applied a Systematic Literature Review of studies
published up to (and including) 2017 through backward and
forward snowballing given a start set.

Results: In total, we evaluated 55 papers, of which 44 included
AIS and the main findings are: 1) 26 consider teamwork factors;
2) 21 were applied on industry; 3) 10 out of these 21 presented
evidence of increase in company performance; and 4) 19 of the
solutions are for the purpose of adoption, 18 for assessment and
8 are maturity models.

Conclusion: The main implication for this research is a
need for more and better empirical studies documenting and
evaluating AIS. For the industry, the review provides a map of
current AIS approaches and can be used as a starting point to
adopt agile SPI.

Index Terms—Agile, Systematic Literature Review, Maturity
Model, Assessment, Adoption, Tailoring

I. INTRODUCTION

Agile software development (ASD) methods have gained
much attention throughout the last years due to the need of
adaptability and flexibility in software projects [1]. ASD is
considered an alternative approach to plan-driven development
because it promises some benefits if compared to these ap-
proaches such as delivery of business value in short iterations.
Moreover, it focuses more on people and their interactions
instead of processes and tools.

According to Salo & Abrahamsson [2], since the focus of
agile methods is different than plan-driven development pro-
cesses, there is a need of new software process improvement
(SPI) (i.e., initiatives that can be used in software organizations
to mature their operations [3]).

One possibility to use ASD methods is by tailoring a
particular method to fit a given context. In some contexts,
ASD is implemented along with SPI initiatives based on
the ISO/IEC 33001 international standard or the Capability
Maturity Model Integration for Development (CMMI-DEV)
[4], [5], [6], [7], [8], [9], [10]. However, these models require
that processes be formally defined and controlled, which is not
usual practice in ASD [11].

Fontana et al. [11] hypothesize that, given the current
definition of maturity defined by CMMI-DEV, agile teams
could never achieve maturity without shifting their focus from
process to people. Given this, they proposed a definition
for ASD maturity that includes not only the definition and
improvement of processes, but also people factors such as
collaboration, communication, commitment, care, sharing and
self-organization.

We defined a terminology for some terms that we use
throughout the paper to ease the reading:

• Maturity: related to maturity itself, agility or improve-
ment;

• Maturity Model: according to Kohlegger et al. [12],
maturity models are instruments used to rate capabilities,
and based on this rating, initiatives can be implemented to
improve the maturity of an element - a person, an object
or a social system. In this paper, maturity model is a SPI
solution or model that describes a set of levels or steps
to allow maturing in a given software process;

• Adoption: Related to ASD adoption itself, tailoring, cus-
tomization, adaptation, transition, etc.;

• Agile Improvement Solution (AIS): describes a solution
(i.e., model, process, approach, framework, method, etc.)
that is focused (i) on the definition of agile maturity
levels or a maturity model itself; (ii) on the maturity
assessment of a given company, team, etc.; (iii) on the
adoption of ASD by a company, team, etc. For a solution
to be considered an AIS, it must not be combined with
traditional approaches.

40

Following the definition of ASD maturity stated by Fontana
et al. [11], researchers have proposed maturity models and
agile maturity assessment solutions. According to Buglione
[13], to be suitable for agile environments, agile maturity
models should be inexpensive, fast and easy to understand,
should produce short management reports, and should provide
relevant drivers and best practices for a road map to maturity.

The goal of this study is to report the state of the art of AIS.
We focus on the following questions: (i) do they consider agile
teamwork factors?; (ii) were they applied to industry projects?;
(iii) were they evaluated in terms of benefits of adoption such
as increase on productivity, value delivered or cost reduction?;
and (iv), do they provide tool support?

For this purpose, we performed a systematic literature
reviewed following the guidelines proposed by Kitchenham
and Charters [14] and Wohlin [15]. In this paper, we detail
our study and also point the gaps and future directions for
research in AIS.

The remaining of the paper is structured as follows: in
Section II, we discuss previous literature reviews that are
related to this study; in Section III, we describe the protocol
of our review process; in Section IV, we present our findings;
in Section V, we discuss the results; the threats to validity are
presented in Section VI; and in Section VII, we present our
conclusions and future works

II. RELATED REVIEWS

Some literature reviews were conducted on topics related to
this review. We summarize them as follows.

Henriques & Tanner [16], performed a systematic review of
agile and maturity model research. The authors identified 39
relevant papers to their research, which aimed to identify the
trends in research concerned with agile methods in the context
of agile maturity models. They concluded that agile and CMMI
can coexist when agile is introduced into already highly mature
environments or when the primary goal is focused solely on
the delivery. However, they concluded that if higher levels of
CMMI maturity is the goal, agile cannot be used without being
supplemented with other non-agile practices.

Silva et al. [17] evaluated, synthesized, and presented results
on the use of ASD with CMMI. From 81 included studies, they
concluded that agile methodologies can be used by companies
to reduce efforts in getting to levels 2 and 3 of CMMI, there
even being reports of applying agile practices that led to
achieving level 5. However, as Henriques & Tanner [16], they
concluded that agile practices alone could not achieve level 5,
being necessary to resort to additional practices.

Martinez et al. [18] identified the problems related to agile
adoption in a systematic review, and stated that the findings
of this review would be the basis to propose a framework
to support the agile adoption. 27 papers were selected on
their research after being filtered by the selection criteria.
The authors categorized the problems in four groups: people,
process, project, and company. Considering their findings, the
literature reports more problems related to people.

Dikert et al. [19] conducted a systematic literature review
of industrial large-scale agile transformations, and analyzed
52 papers describing 42 organizations. Part of the results of
this review indicated that large-scale agile seems to be harder
to implement than people expect, as companies complain
about not finding enough guidance in the literature. The most
challenge topics are integrating non-development functions,
resistance to change, and requirements engineering.

Unlike the previously mentioned works, which cover the
coexistence of agile and CMMI and problems related to
agile adoption, we focus on the fidelity of AIS to the Agile
Manifesto [20] in regards to teamwork factors (six out of the
twelve principles are related to the individuals involved in
the product development), their validity in real projects, as
well as if they provide tool support to facilitate their usage by
practitioners.

III. METHODOLOGY

In this research, we performed a Systematic Literature
Review (SLR) following the guidelines presented in [14].

A. Research Questions

As previously mentioned, the main goal of this research is
to evaluate the fidelity of AIS to the Agile Manifesto [20] in
regards to teamwork factors, their validity in real projects, as
well as if they provide tool support to facilitate their usage by
practitioners. Therefore, we formulated the following research
questions (RQ):

RQ1: What is the percentage of AIS that take teamwork
factors in consideration?
RQ2: What is the percentage of AIS that were validated
in real projects?
RQ3: Within the AIS validated in real projects, what is
the percentage of them that present traces of increased
efficiency/performance/productivity, or even cost reduc-
tion?
RQ4: What is the percentage of AIS that provide tool
support?

B. Identifying Primary Studies

In order to identify the relevant primary studies for our re-
search questions, we decided to use the snowballing guidelines
defined in [15]. The start set of primary studies necessary
for the snowballing was defined based on relevant studies
identified in [16], and previously known studies by the authors.
With these two sources, we had 53 studies - 39 from [16] and
14 previously know - to analyze according to the selection
criteria we defined. From these 53 studies, we identified 22
relevant studies that composed the start set of the snowballing.

After having the start set defined, we started performing the
snowballing iterations by executing the backward and forward
snowballing steps, and applying the inclusion and exclusion
criteria, as well as checking for duplicates until the moment
that no relevant studies were found.

A paper is considered irrelevant in case it is (i) not re-
lated to ASD only, which means that we are not interested

41

in studies that propose the usage of agile and traditional
software development approaches (e.g., coexistence of agile
and CMMI); (ii) not written in english; (iii) published in non
peer reviewed publication channel such as books, thesis or
dissertations, tutorials, keynotes, etc.; (iv) secondary study;
and (v) duplicated. On the other hand, a relevant paper must
present a solution that fits the description of AIS and is focused
on ASD only.

Every paper identified in this review was evaluated based
on the sequence of the four steps described below:

1) Initial Evaluation: Each paper found in the backward
and forward snowballing steps were initially evaluated
based on their titles, abstracts, and keywords. The goal
of this step is to exclude every paper that does not fit
this review context, and to not discard possible relevant
papers;

2) Check of Duplicates: The goal of this step is to avoid
rework. If a given paper is possibly relevant according
to the Initial Evaluation, the reviewer needs to check
in the database if that paper was already evaluated. The
paper only goes to the next step of evaluation if it was
not already in the database;

3) Superficial Evaluation: In this step, the reviewer needs
to superficially check the paper in order to identify a
solution that fits the review context. In case the paper
presents no solution, the paper should be discarded.
However, if it is not clear to the reviewer that the
paper is relevant, it should not be discarded. Each paper
is evaluated by two random reviewers in this step by
following the procedure presented by Ali et al. [21];

4) Data Extraction: The goal of this step is to minutely
evaluate the paper and extract the relevant information to
answer the research questions. It is also possible to find
irrelevant papers in this step because a deeper analysis
is made if compared to the one made in the previous
step. Two random reviewers are necessary to execute
this step. The first reviewer is called data extractor and
the second reviewer is called data checker. The role of
the data extractor is to extract the relevant data from the
paper if it is considered relevant. The data checker needs
to check if every piece of data that was extracted from
the paper is correct, and even if the paper is relevant or
not depending on the data extractor’s judgment. In case
they do not reach a common sense, a third reviewer is
invited to help them.

According to Ali et al. [21], there are six categories of
agreement or disagreement between the reviewers, as shown
in Figure 1. These categories were introduced on the third and
fourth steps.

Categories A or B mean that at least one reviewer evaluated
the paper as relevant and it is included. Category B occurs
when one reviewer is uncertain about the relevance of the
paper. To minimize the risk of discarding a significant study,
the paper is included in the pool for the next step. Afterwards,
in the next step all doubts about the paper’s relevance are

Fig. 1. Categories of agreement or disagreement.

clarified with a further evaluation. Category C means that no
concrete decision was made by any of the two reviewers and
further investigation is needed. In this case, a third reviewer
needs to evaluate the paper. If the third reviewer evaluates the
paper as irrelevant, it is discarded; otherwise, it is included in
the pool for the next step

Categories D and E are results from disagreement and the
reviewers are asked to discuss what reasons led them to their
respective decisions. After that, a consensus is expected and a
new category (A, C or F) classification must be done. Papers
in category F are excluded, as both reviewers agreed on their
irrelevance.

C. Extracted Data

We used a spreadsheet editor to record information. For
each paper, we extracted general information such as year of
publication, and type of article, as well as data related to the
RQ. The following data were extracted from the papers:

(i) year of publication;
(ii) type of article (i.e., journal, conference, or workshop);
(iii) validation context (i.e., none, academic, industrial, or
both academic and industrial);
(iv) agile method domain;
(v) tool support;
(vi) considers teamwork factors
(vii) category (i.e., assessment, maturity model, adop-
tion);
(viii) traces of increased efficiency/performance.

Some AIS are approached in more than one paper. For
example: an AIS was introduced in a paper, and its validation
is described in another paper. For this reason, the extraction
of the data regarding the RQ, which is related to the AIS
themselves and not just papers, was made by taking in
consideration the set of papers that is related to a given AIS.
Moreover, if an author uses an existing AIS as basis for another
AIS by performing small modifications, it is considered a new
AIS.

IV. RESULTS

In this section, we present the results for the SLR process
and for the RQ.

From the 22 papers that composed the start set, we identified
16 relevant papers by executing the snowballing steps. We used
these 16 papers as the seed set for a new snowballing iteration
and identified 11 papers. For the next iteration, we found
5 papers. During the last iteration, we found an additional

42

Fig. 2. Number of papers per year.

Fig. 3. Percentage of papers per type of publication channel.

Fig. 4. Percentage of agile methods approached in the AIS.

paper. In total, we selected 55 papers. Due to space limitations,
we present data extracted from 18 papers in Table I related
to the RQ. The complete list of papers with more detailed
information is available at https://goo.gl/FYoZYg.

In Figure 2 we present the amount of papers per year.
In Figure 3 we show the percentage of papers per type of
publication channel.

We identified 45 AIS by analyzing the papers and authors.
In Figure 4, we present the distribution of the agile methods
domain approached by the AIS. In Figure 5, we present the
distribution of the AIS categories.

The percentage of AIS that consider teamwork factors in
their approach is 60%, which corresponds to 27 of the 45

Fig. 5. Distribution of the AIS categories.

identified AIS. 21 solutions were validated in industry envi-
ronments, which corresponds to 46.7% of the total. From these
21 AIS validated in industrial environments, only 10 presented
benefits of their adoption such as increase on productivity,
value delivered or cost reduction, which corresponds to 45.5%.
Finally, in regards to RQ4, only 28.9% of the identified AIS
provide tool support, which corresponds to 13 AIS. These
percentages, which are related to the RQ, are also presented
in Table II.

V. DISCUSSION

In this section, we discuss the results regarding the four
research questions (see Section III-A).

The first paper identified was published in 2001, but we
also identified two papers published in 2017. The period with
the highest rate of publications was between 2006 and 2013.
However, over the last five years, there was a significant num-
ber of papers published. We believe that these new solutions
are being proposed because there is no consolidated basis to
provide a strong theoretical foundation for the AIS, or most
researchers do not want to build their solutions on top of such
basis.

In regards to RQ1, 40% of the solutions identified in this
research do not take teamwork factors in consideration. We
consider this percentage very high given that the focus of this
research is AIS. It is contradictory the fact that some solutions
state they are focused on ASD, but do not approach important
and valuable principles stated in the Agile Manifesto [20].
The lack of AIS that take teamwork factors in consideration
is often identified in solutions that focuses on agile practices
and objectives.

RQ2 is answered according to validation of the AIS on
industry environments. The rate of solutions that were not
validated in real projects is higher than 50%. This percentage
shows that there is a big gap between what the AIS identified
promise and their application in real environments. Moreover,
as discussed before, it is possible to argue that the lack of val-
idation of these solutions may be a crucial factor contributing
to the absence of a consolidated basis. The reason to believe in
such a statement is very clear: if there is no data regarding the
approval of these solutions in the industry, how would these

43

TABLE I
EXTRACTED DATA RELATED TO RQ FROM 18 PAPERS.

Title Teamwork Factors Validated in Industry Evidence of Benefits Tool Support
Progressive outcomes: A framework for maturing in
agile software X X X

Scrum Maturity Model
Agile maturity model (AMM): A software process
improvement framework for agile software development
practices

X X

Agile Compass: A Tool for Identifying Maturity in Agile
Software Development Teams X X

Light maturity models (LMM): an Agile application
An evaluation of the degree of agility in six agile methods
and its applicability for method engineering X X

Rebalancing Your Organization’s Agility and Discipline X X
A framework for adapting agile development methodologies X
Adopting agile in distributed development X X X
Project agility assessment: An integrated decision analysis
approach X X

An Approach for Assessing Suitability of Agile Solutions:
A Case Study X

A disciplined approach to adopting agile practices: The
agile adoption framework X

An iterative improvement process for agile software
development X

Adapting the Lean Enterprise Self-Assessment Tool for
the Software Development Domain X X X

Tailoring for agile methodologies: a framework for
sustaining quality and productivity X X

Agile Transition Model Based on Human Factors X
A Mapping Model for Transforming Traditional Software
Development Methords to Agile Methodology X

AM-QuICk: A Measurement-Based Framework for Agile
Methods Customisation X X

TABLE II
RQ RELATED RESULTS.

Research Question Percentage Quantity
Teamwork Factors 60% 27

Validated in Industry 46.7% 21
Evidence of Benefits 45.5% 10

Tool Support 28.9% 13

solutions evolve and serve as basis for future researches that
pursue to solve similar problems?

48.9% of the solutions that were validated, but 2.2%, which
correspond to 1 within the 45 identified AIS, were validated
in Academic context. The percentage of validated AIS corre-
spond to 21 within the 45 identified AIS. From these 21 AIS,
45.5% percentage of them do not present traces of increased
efficiency/performance/productivity or cost reduction. In other
words, almost half of them do not prove that there is a gain
when applying such a solution in an industry environment.
This percentage is an important indicator to explicit the
lack of contributions these solutions provide to the industry
environment. Some researchers may argue that they received
positive feedback from the subjects involved on the validation
of their AIS. However, these feedback could not provide sub-
stantial conclusion as a numeric evidence (e.g., based on the
comparison between the effort to implement and use an AIS in
a specific context, and the gains it provides). These discussion

regarding RQ3 explicit the need for a better collaboration and
proximity between the academic and industrial environments.
This proximity could be crucial to obtain a more consolidated
concept of agile maturity.

The percentage of AIS related to RQ4 indicates that only
23.8% of the included AIS provide tool support. This small
percentage is another indicator of the existing gap between
the industry and the academic community. Nowadays, there
is a problem when trying to implement solutions proposed
by the academic community into the industry. We believe
it occurs because, usually, researches do not try to address
their solutions to a more practical utility instead of solving a
small problem with an approach that requires too much effort.
Industry practitioners want tools, solutions, and instruments,
that can make their work easier without requiring them to put
more effort than they actually do.

VI. THREATS TO VALIDITY

As well as in all SLR studies, a common threat to validity
regards to the covering of all relevant studies. Therefore, to
mitigate this problem, we executed the snowballing technique,
as described in [15], until no more relevant papers were found.

Another threat is related to the researchers’ opinions and
judgments in regards to the extraction of the data, which can
influence the results of the study. To mitigate this problem,
each paper was evaluated by two reviewer. Also, depending
on the disagreement between two reviewers, a third random

44

reviewer was invited to the process, as explained in Section
III-B.

VII. CONCLUSION

In this paper, we conducted a SLR to investigate if AIS
take in consideration important agile teamwork key fac-
tors; if they were applied in real projects; if, after ap-
plying them, it was possible to identify increases on effi-
ciency/performance/productivity, or even cost reduction (i.e.,
something that proves that applying a given AIS brings real
earnings besides positive feedback of subjects); and whether
they provide tool support for applying them in real projects or
not.

To reach this goal, we executed the snowballing procedure
[15] on a start set containing 22 papers. From these 22 papers,
we were able to identify other 33 relevant papers, resulting in
a total of 55 included papers. From these 55 relevant papers,
we identified 45 different AIS.

The results of this SLR indicate some of the possible reasons
behind the lack of usage of academic proposed solutions in
the industry environment. Most of the AIS investigated in this
research were not validated in real projects, and do not provide
tool support to facilitate their adoption. Moreover, almost half
of the investigated that were validated do not present any trace
of increased efficiency/performance/productivity, or even cost
reduction.

Another issue identified in regards to the investigated AIS
is that a high percentage of them do not present fidelity to the
Agile Manifesto [20] because they do not take in consideration
agile teamwork factors.

For future works, we intend to perform a more detailed
analysis of the papers to understand the structure (e.g., levels,
steps, stages, components, etc.) of the AIS, and perform a
detailed comparison between them by category (i.e., maturity
model, assessment, adoption). We also intend to complement
the database by executing the forward snowballing on the
relevant papers identified so far.

ACKNOWLEDGMENT

The authors would like to thank CAPES for supporting this
research.

REFERENCES

[1] W. Alsaqaf, M. Daneva, and R. Wieringa, “Quality requirements in large-
scale distributed agile projects – a systematic literature review,” in Re-
quirements Engineering: Foundation for Software Quality, P. Grünbacher
and A. Perini, Eds. Cham: Springer International Publishing, 2017, pp.
219–234.

[2] O. Salo and P. Abrahamsson, “An iterative improvement process
for agile software development,” Software Process: Improvement and
Practice, vol. 12, no. 1, pp. 81–100, 2007. [Online]. Available:
http://dx.doi.org/10.1002/spip.305

[3] I. Aaen, J. Arent, L. Mathiassen, and O. Ngwenyama, “A conceptual
map of software process improvement,” Scandinavian Journal of
Information Systems, vol. 13, pp. 123–146, Jun. 2001. [Online].
Available: http://dl.acm.org/citation.cfm?id=565431.565437

[4] K. Lukasiewicz and J. Miler, “Improving agility and discipline of
software development with the scrum and cmmi,” IET Software, vol. 6,
no. 5, pp. 416–422, October 2012.

[5] S. W. Baker, “Formalizing agility, part 2: how an agile organization
embraced the cmmi,” in AGILE 2006 (AGILE’06), July 2006, pp. 8
pp.–154.

[6] C. R. Jakobsen and K. A. Johnson, “Mature agile with a twist of cmmi,”
in Proceedings of the Agile 2008, ser. AGILE ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 212–217. [Online]. Available:
https://doi.org/10.1109/Agile.2008.10

[7] J. Sutherland, C. R. Jakobsen, and K. Johnson, “Scrum and cmmi level
5: The magic potion for code warriors,” in Agile 2007 (AGILE 2007),
Aug 2007, pp. 272–278.

[8] S. Cohan and H. Glazer, “An agile development team’s quest for cmmi
maturity level 5,” in 2009 Agile Conference, Aug 2009, pp. 201–206.

[9] D. J. Anderson, “Stretching agile to fit cmmi level 3 - the story of cre-
ating msf for cmmi reg; process improvement at microsoft corporation,”
in Agile Development Conference (ADC’05), July 2005, pp. 193–201.

[10] M. C. Paulk, “Extreme programming from a cmm perspective,” IEEE
Software, vol. 18, no. 6, pp. 19–26, Nov 2001.

[11] R. M. Fontana, I. M. Fontana, P. A. da Rosa Garbuio, S. Reinehr,
and A. Malucelli, “Processes versus people: How should agile software
development maturity be defined?” Journal of Systems and Software,
vol. 97, pp. 140 – 155, 2014.

[12] M. Kohlegger, R. Maier, and S. Thalmann, “Understanding maturity
models results of a structured content analysis,” in Proceedings of I-
KNOW ’09 and I-SEMANTICS ’09, September 2009, pp. 193–201.

[13] L. Buglione, “Light maturity models (lmm): An agile application,” in
Proceedings of the 12th International Conference on Product Focused
Software Development and Process Improvement, ser. Profes ’11.
New York, NY, USA: ACM, 2011, pp. 57–61. [Online]. Available:
http://doi.acm.org/10.1145/2181101.2181115

[14] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering,” Keele University and
Durham University Joint Report, Tech. Rep. EBSE 2007-001, 2007.

[15] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE ’14. New York, NY, USA: ACM, 2014, pp.
38:1–38:10. [Online]. Available: http://doi.acm.org/10.1145/2601248.
2601268

[16] M. T. Vaughan Henriques, “A systematic literature review of
agile and maturity model research,” Interdisciplinary Journal
of Information, Knowledge, and Management, vol. 12, pp.
53–73, 2017. [Online]. Available: http://www.ijikm.org/Volume12/
IJIKMv12p053-073Henriques3025.pdf

[17] F. S. Silva, F. S. F. Soares, A. L. Peres, I. M. de Azevedo,
A. P. L. Vasconcelos, F. K. Kamei, and S. R. de Lemos Meira,
“Using cmmi together with agile software development: A systematic
review,” Information and Software Technology, vol. 58, pp. 20 – 43,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950584914002110

[18] J. López-Martı́nez, R. Juárez-Ramı́rez, C. Huertas, S. Jiménez, and
C. Guerra-Garcı́a, “Problems in the adoption of agile-scrum method-
ologies: A systematic literature review,” in 2016 4th International Con-
ference in Software Engineering Research and Innovation (CONISOFT),
April 2016, pp. 141–148.

[19] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success
factors for large-scale agile transformations: A systematic literature
review,” Journal of Systems and Software, vol. 119, pp. 87 – 108,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0164121216300826

[20] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “Manifesto for agile software development,” http://www.
agilemanifesto.org/, 2001.

[21] N. B. Ali, K. Petersen, and C. Wohlin, “A systematic literature review
on the industrial use of software process simulation,” Journal of
Systems and Software, vol. 97, pp. 65 – 85, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121214001502

45

DOI reference number: 10.18293/SEKE2018-115

Towards Cost Effective Privacy Provision for
Typed Resources in IoT Environment
Yucong Duan*1,2, Zhengyang Song1,2, Xiaoxian Yang3, Quan Zou4, Xiaobing Sun5, Xinyue Zhang1,2

1,2State Key Laboratory of Marine Resource Utilization in the South China Sea,College of Information Science and Technology,
Hainan University, 570228 Haikou, China

3School of Computer and Information Engineering, Shanghai Polytechnic University, 201209 Shanghai, P.R. China
4College of Computer Science, Tianjin University, China

5School of Information Engineering, Yangzhou University, China
Email: duanyucong@hotmail.com, 1464626602@qq.com, xxyang@sspu.edu.cn, zouquan@tju.edu.com,

sundomore@163.com , yuexinaai@163.com

Abstract—We present privacy resources in IoT as data,
information, and knowledge. We construct a privacy
protection architecture on our previously proposed DIKW
graphs: Data Graph, Information Graph, and Knowledge
Graph. On this architecture, we search privacy protection
target resources both as they appear explicitly in their original
types and as they appear implicitly which means that they are
expressed not in their original types. For a single privacy
protection target, it may have various concrete compositions in
various layers of DIKW Graph. It becomes more complex since
the implementation of a privacy target might also be
intertwined with the implementation of other privacy targets.
We propose to protect target resources according to their types
by either isolating the elements comprising an implementation,
or weakening relationships among elements comprising an
implement.To optimize among several choices of implementing
a protection in a business environment, we introduced the
tradeoff between customers’ expectations/investment and
privacy providers’ expectation. Thereafter we proposed to
prioritize implementation according to their ratio of
cost/benefit.

Keywords—Internet of Things; typed resources; privacy
provision; Knowledge Graph

I. INTRODUCTION
We classify privacy resources into data privacy,

information privacy, and knowledge privacy. Chaim [1]
illustrated the concepts of defining data, information and
knowledge. Duan et al. [3] clarified the architecture of
Knowledge Graph in terms of data, information, knowledge
and wisdom. In [4], the authors proposed to designate the
form of Knowledge Graph as four basic forms including
Data Graph, Information Graph, Knowledge Graph and
Wisdom Graph. We have identified there are enormous
potentials of security protection according to the difference
of resource types in an investment driven manner [2]. We
propose to protect privacy resources in a three-tier
architecture consisting of Data Graph, Information Graph
and Knowledge Graph. For a single privacy protection target,
it may have various concrete compositions in various layers
of DIKW Graph. For example, a piece of data might exist as
a piece of data or a set of data in Data Graph explicitly, or it
might take the implicit form of being expressed as a series of
relationships in Information Graph. It becomes more
complex since the implementation of a privacy target might
also be intertwined with the implementation of other privacy
targets.

In [5], the authors proposed a cost effective approach to
satisfy performance requirements while minimizing dynamic
power consumption. In [6], cost-effective data sharing with

forward security improved efficiency is provided through
reducing the computation and communication cost. In [7],
the authors proposed to provide the I/O resources for specific
workloads, while minimizing the total operating cost. We
elaborate towards cost effective [8] information privacy
provision approach on the basis of Data Graph, Information
Graph, and Knowledge Graph.

The rest of this paper is organized as follows. Section II
defines typed resources and presents a privacy protection
architecture. Section III shows a running example. Section
IV presents implementation procedures. Section V shows a
simulation. We conclude in Section VI.

II. PRIVACY PROTECTION ARCHITECTURE

A. Definitions of Typed Resources
We have reconstructed a DIKW system for modeling

and implementation of resource identification and
management[2], [3]. Data is not specified for a specific
stakeholder or a machine. Data represents directly observed
objects as isolation which only contains the shared common
meaning of their necessary identifications. Information
represents data or information which are observed or
interacted directly or indirectly by human. Knowledge
represents the abstracted data, information and knowledge
which are taken in a limited or unlimited complete manner
as a whole. Knowledge here can be roughly mapped to
cover what Kant called Categories[9]. Knowledge is
exploited to reason and predict unknown resources or not
observed but happened relationships in terms of Data,
Information and Knowledge. We are actually building
“schemas”[9] for DIKW resources for privacy modeling and
provision subsequently.
Definition 1. Typed resources. We define typed resources
as a triad:

TRDIK: = < DDIK, IDIK, KDIK >

D represents Data, I represents Information and K represents
Knowledge for convenient description. DDIK is transformed
to IDIK through taking roles in real or imaginary scenarios by
connecting to other DDIK or IDIK in term of time [9] or order.
The associated DDIK corresponds to IDIK.

Definition 2. DIKWGraph. We specify the usually used
concept of Knowledge Graph in three layers of Data Graph
(DGDIK), Information Graph(IGDIK), and Knowledge
Graph(KGDIK) [3].

46

DIKWGraph: = < (DGDIK), (IGDIK), (KGDIK)>.

Definition 3. DGDIK.

DGDIK: = collection {array, list, stack, queue, tree, graph}.

DGDIK is a collection of discrete elements expressed in the
form of various data structures including arrays, lists, stacks,
trees, graphs, and so on. DGDIK can record basic structures
of entities. Also, DGDIK can record spacial and topological
relationships with frequencies.

Definition 4. IGDIK.

IGDIK: = compositiontime { DDIK}.

IGDIK comprises of temporal relationships based on DDIK

with specific senarios. IGDIK expresses the interaction and
transformation of IDIK between entities in the form of a
directed graph. IGDIK can record the interactions between
entities including direct interaction and indirect interaction.

Definition 5. KGDIK.

KGDIK: = collectionconsistent{RulesStatistic OR Logical}category.

KGDIK consistently accommodates either empirical
statistical experiences expressed in terms of categories
which represent the underlying elements as a whole or
completely.

B. Schemas for using DIKW Graphs
To utilize the graphs in DIKW Graphs, we need to

mediate the bidirectional feasible transformations of
resources among different types of Data, Information and
Knowledge. By restricting the transformation with feasible,
we mean that not all bidirectional transformations are
deemed to be meaningful and practical.

Schemas[9] are proposed by Kant to cognitively
mediate the cognitive objects/experiences mostly through
logical reason and concretization in time dimension. We
borrowed this term here for specifying the transformation
among resources with a focus on the type level
implementation.

Schema “Data-Resource(Data, Information)”: Data
are observed by observers from outside world or from inside
categorization on a set of resources, structured or not, which
are given the conceptual unity as an entity, or on abstraction
of information expressions which are exposed as temporal
association among elements. Since resource elements can be
abstracted upward or decomposed downward, the
expressions of specific DGDIK and IGDIK are therefore
intertwined based on the overlapping of the elements and
their relationships. We propose to justify and predict the
semantic meaning and semantic associations
corresponding to resource element expressions based on
the reasoning and calculation in a bottom up manner
from composing elements of DGDIK and IGDIK.

Schema “Knowledge-Resource(Data, Information,
knowledge)”: Knowledge here is either based on the
probabilistic experience or based on reason on categories
abstracted from directly observed resources or indirectly
reasoned resources. A shared characteristic of both forms of
knowledge is that they both demand a semantic
identification of completeness regardless of whether the
actual target resources which are the basis of

conceptualization of related categories are limited or
unlimited. The schema to enact knowledge on resources is
either through temporally decomposing the content of the
comprising categories in the knowledge expression as
elements shared or can be related to elements in target
resources, or through logical or probability reasoning first
and decomposing and relating subsequently.

For construction of “Wisdom” related schemas,
we adopt the intuition from Schopenhauer[10] to take
wisdom as the balancing between reasoning and will for
optimizing human long run goals. We omit the discussion
on the schema of wisdom here.

C. Privacy Protection Architecture
IDIK expresses interaction and collaboration between

entities. Through classifying and abstracting interactive
records or behavior records related to the dynamic behavior
of entities, we obtain KDIK in the form of statistical rules.
We infer KDIK from known resources and collect necessary
IDIK in the process of inference through appropriate
techniques such as experiments, surveys, and so on.
Transformation from IDIK to DDIK takes place either as a
conceptualization process from relationships to an entity or
as an abstraction which selectively maps the involved
elements comprising the IDIK to elements in a structure of a
target elements of DDIK. We obtain DDIK through observing
an object at a certain time in a static state. KDIK elements are
either associated with underlying fine grained instances
within their categories such as sub-attributes or sub-
operations, or connected through pure logical reason or
mathematical computation. The top-down influence from
KDIK to IDIK and DDIK is realized through creatively
decomposing of the content of KDIK to IDIK and DDIK
temporally.

Algorithm 1. Process of Privacy Protection Architecture
Input: Target Privacy Resources
Output: Final Elements
SWITCH (all target privacy resources)
CASE 1: Data resources

IF (they are explicit)
Isolate or transform them;

ELSE IF (they are implicit)
Find out them on DIKW Graphs;
Isolate or transform them;

CASE2: Information resources
IF (they are explicit)

Isolate or transform them;
ELSE IF (they are implicit)

Find out them on DIKW Graphs;
Isolate or transform them;

Return final elements;
Our process of privacy protection architecture is shown as

Algorithm 1. When we protect target Data privacy resources,
we search for them on the three-layer graphs firstly. There
are two senarios. One is that these resources are explicit, we
can succeed in searching them directly. The other is that we
fail to search, then we analyze associated relationships
between target Data privacy resources and other relative
typed resources on DGDIK, IGDIK, and KGDIK. We infer them
through three associated relationships as associated Data
resources infer target Data resources, associated Information
resources infer target Data resources and associated Data
and Information resources infer target Data resources.

When we protect target Information privacy resources,

47

we find them on the three-layer graphs firstly. There are also
two senarios the same as finding Data privacy resources. If
these Information resources are explicit, we isolate them or
transform them directly. If they are not, we find out them on
DIKW Graphs. At last, we isolate these resources, or
transform them into other typed resources and store these
final elements into a security space, in which the elements
will not be used, tampered with, lost and destroyed in
unauthorized situations.

III. RUNNING EXAMPLE

We design a campus monitoring system shown in
Figure 1, which consists of geographic location acquisition
module, credit card consumption tracking module, video
acquisition module, and resource analysis and processing
module.

Figure 1. Campus monitoring system

We collected resources and construct DGDIK, IGDIK,
and KGDIK. When target privacy resources are implicit, there
is a way that we find out these resources by analyzing
associated resources in forms of specific IDIK, such as linked
and aggregative structure IDIK. LSI denotes linked structure
IDIK. ASI denotes aggregative structure IDIK.

Given an IGDIK denoted as a directed graph G= (V, E),
where V is a set of nodes, E is a set of edges connecting
those nodes. VoN denotes the value of a node which has two
attributes of the number and direction of edge connected to
this node. We use t (f1 (direction (N))*f2 (number (N)) to
evaluate VoN.

A. Protection strategies of LSI
1) Protection of linked IDIK without branched structure

in LSI (IUP). We present two strategies to protect IUP
privacy which are illustrated as follows.

Binary Damage Method: We search the middle node
of each IUP. Second, we continue to search two middle
nodes of two IUP parts divided by previous middle node,
respectively. And so on, we find out m nodes need
protection.

Middle Centralized Damage Method: We search
nodes of the middle location in IUP. In sequence, we find
out m nodes need protection.

After searching, we isolate or transform these m nodes
and store them into security space.

2) Protection of linked IDIK with branched structure in
LSI(IBP). We rank nodes of this link according to VoN. We
find out n nodes in sequence. Then we isolate or transform
those n nodes and store them into a security space.

B. Protection strategies of ASI
1) Protection of aggregative nodes with equal value

(VEG). We find out h nodes according to depth-first
algorithm or breadth-first algorithm, after isolating or
transforming these IDIK nodes, we store them in a security
space.

2) Protection of aggregation nodes with unequal node
value (VUG). Similar to protection of IBP, we determine the
order of target privacy resources according to the rank of
VoN. For example, in Figure 1, after analyzing, we know
that a student uses his credit card in No.6 canteen frequently.
But he rarely uses his credit card in No.4 canteen which is
popular to students. Therefore we infer this student lives
near No.6 canteen. Since No.6 canteen is near postgraduate
dorms, we can infer this student is a postgraduate. Our
proposed mechanism isolates or transforms these collected
resources of No.6 dormitory according to the rank of VoN
and store them into a given secure space.

IV. FRAMEWORK OF VALUE DRIVEN PRIVACY PROVISION
To optimize among several choices of implementing a

protection in a business environment, we introduced the
tradeoff between customers’ expectations/investment and
privacy providers’ expectation.
Definition 9. We denote target privacy resource collection
as TPR. TRPC represents associated privacy resources
which is the target resource processing collection. We
define TRPC as a tuple:

TRPC: = < LSIC, ASIC >

LSIC is the set of LSI privacy resources and ASIC is the set
of ASI privacy resources. LSIC= {IUPC, IBPC}, where
IUPC is the set of IUP privacy resources, and IBPC is the
set of IBP privacy resources. ASIC= {VEGC, VUGC},
where VEGC is the set of VEG privacy resources, and
VUGC is the set of VUG privacy resources.

Definition 10. Security Space. We define security space
denoted with SS as a tuple:

SS: = < SST, SSS >

SST is the type set of graph resources denoted with a triad <
sstD, sstI, sstK >. SSS is the scale of different kinds of graph
resources represented by a triad < sssD, sssI, sssK >. Each sss
denotes the scale of resource in the form of sst.

A. Calculation of User Investment
1) Cost of damaging nodes:We assign that 1C is atomic

cost of damaging each node in TRPC. In fact, it is necessary
to analyze importance of relationship between nodes. But at
present we only consider the number of nodes when
computing cost. Cost of damaging nodes can be illustrated
as

DeCost = (m + n + h +k)* 1C (1)

2) Cost of transforming TRPC into SS : SS is a security
space. We convert resource types to optimize storage and
computation, which makes it hard for unauthorized users to
access protected resources. As shown in Table I, PUnitCost
represents atomic cost of transforming unit resource into SS.

48

Cost of transforming resources is illustrated as

TrCost = i {D, I, K} SUnitCosti * sssi + sssi’ (2)
TABLE I. ATOMIC COST OF CONVERTING UNIT RESOURCE IN SS

DDIK IDIK KDIK

DDIK SUnitCostD-D SUnitCostD-I SUnitCostI-K

IDIK SUnitCostI-D SUnitCostI-I SUnitCostI-K

KDIK SUnitCostK-D SUnitCostK-I SUnitCostK-K

3) User investment computaion
Costs of providing protection services for private

resources consist of two parts as damaging nodes and
transforming nodes and store them into SS. We calculate
total cost of protecting target privacy, which is illustrated as

TotalCost = DeCost + TrCost (3)

 denotes the unit investment of TotalCost that obtained
through data training. Corresponding user investment can be
illustrated as

UserCost = * TotalCost (4)

B. Privacy Level Computation
Privacy level reflects the ability of protection service. The

smaller privacy level is, the better protection ability the
service has. We denote the privacy level as PL. Mm

represents the total number of nodes in mth link. Privacy
level of IUP IDIK denoted with LPLUP is illustrated as:

LPLUP = m /Mm (5)

Nn represents the total number of nodes in nth link.
represents an adjusted parameter that is obtained through
data mining. Vi represents node Vi that belongs to nth link.
Privacy level of IBP IDIK denoted with LPLBP is illustrated
as:

LPLBP = (i n * VoN (Vi)) / Nn (6)

Hh denotes the total number of nodes in hth aggregation.
Privacy level of VEG IDIK denoted with APLEG is illustrated
as:

APLEG = h / Hh (7)

Kk denotes the total number of nodes in kth aggregation.
 represents an adjusted parameter that is obtained through
data mining. Vi represents node Vi that belongs to kth link.
Privacy level of VUG IDIK denoted with APLUG is illustrated
as

APLUG = (i k * VoN (Vi)) / Kk (8)

Algorithm 2 describes a procedure of calculating PL
according to user investments.

Algorithm 2. Calculating PL
Input: TRPC, SS, UserCost0, PL0
Output: The maximum PL0
FOR all TRPC DO
Calculate DeCost; Calculate TrCost;
Calculate PL; Calculate UserCost;
IF (UserCost < UserCost0 & PL > PL0)
PL0 = PL;

ELSE IF (m Mm OR n Nn OR k Kk)
Next step;

Return PL0;

V. SIMULATION

Following the scenario in sectionⅢ, we set target privacy
collection (TPR) and constructed DGDIK, IGDIK, and KGDIK
according to collected resources. We considered a
constructed IGDIK denoted with a directed graph G = (V, E).
We assigned that expectant investment is 50 units and
expectant privacy level is 0.6. For convenience, we assumed
that there are same resource collections in all considered 18
nodes, which is {I, D, I}. Meanwhile, we assigned that ssti =
{D, I, K}, sssi = {4, 2, 1}, = 0.4, 1C = 2 units. Figure 2
shows that the greater the number of nodes which need
protection is, the better PL of each IDIK structure performs.

Figure 2. PL values of LSI and ASI.

VI. CONCLUSION
According to the types of various resources, we provide

protection solutions based their state of being explicitly or
implicitly expressed. During the implementation, we take
into consideration of the tradeoff between the value
expectation of customers and the value expectation of
privacy providers to prioritize privacy targets and
corresponding levels of protection.

ACKNOWLEDGMENT

We acknowledge Hainan Project No.ZDYF2017128, NSFC
under Grant (No.61662021 and No. 61502294). *refers to
corresponding author.

REFERENCES
[1] C. Zins, “Conceptual approaches for defining data, information, and

knowledge,” JASIST, vol. 58, no. 4, pp. 479–493, 2007.
[2] L. Shao, Y. Duan, L. Cui, Q. Zou, and X. Sun, “A pay as you use resource

security provision approach based on data graph, information graph and
knowledge graph,” IDEAL 2017, pp. 444–451.

[3] Y. Duan, L. Shao, G. Hu, Z. Zhou, Q. Zou, and Z. Lin, “Specifying
architecture of knowledge graph with data graph, information graph,
knowledge graph and wisdom graph,” SERA 2017, pp. 327–332.

[4] L. Shao, Y. Duan, X. Sun, Q. Zou, R. Jing, and J. Lin, “Bidirectional value
driven design between economical planning and technical implementation
based on data graph, information graph and knowledge graph”, SERA
2017, pp. 339–344.

[5] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and R. Rangaswami,
“Cost effective storage using extent based dynamic tiering,” 9th USENIX
Conference on File and Storage Technologies, 2011, pp. 273–286.

[6] X. Huang, J. K. Liu, S. Tang, Y. Xiang, K. Liang, L. Xu, and J. Zhou,
“Cost-effective authentic and anonymous data sharing with forward
security,” IEEE Trans. Computers, vol. 64, no. 4, pp. 971–983, 2015.

[7] N. Zhang, J. Tatemura, J. M. Patel, and H. Hacig¨um¨us, “Towards cost-
effective storage provisioning for dbmss,” CoRR, vol. abs/1201.0226,
2012.

[8] M. A. Jabbar, G. S. Bopche, B. L. Deekshatulu, and B. M. Mehtre,
“Diversity-aware, cost-effective network security hardening using attack
graph,” SSCC 2017, pp. 1–15.

[9] Kant I. Critique of pure reason[M]. Cambridge University Press, 1998.
[10] Schopenhauer, The World as Will and Representation, Vol. I, Appendix,

"Criticism of the Kantian Philosophy," p. 449 f.

49

DOI reference number: 10.18293/SEKE2018-134

Finding Shilling Attack in Recommender System
based on Dynamic Feature Selection

Gaofeng Cao, Huan Zhang, Yuyou Fan, Li Kuang*
School of software

Central South University
Changsha, China

{caogaofeng, 3901140112, hatsune, kuangli} @csu.edu.cn

Abstract—Recommender system is widely used as an important

tool in various fields for effectively dealing with information

overload, and collaborative filtering algorithm plays a vital role

in the system. However, such system is highly vulnerable to

malicious attacks, especially shilling attack because of data

openness and independence. Therefore, detecting shilling attack

has become an important issue to ensure the security of

recommender system. Most of existing methods for detecting

shilling attack are based on rating classification features and

their limitation is that they are easily to be interfered by

obfuscation techniques. Moreover, traditional detection

algorithms can not handle multiple types of shilling attack

flexibly. In order to solve these problems, in this paper, we

propose an outlier degree shilling attack detection algorithm

based on dynamic feature selection. By considering the

differences of user choosing items and taking user popularity as a

detection metric, as well as using information entropy to select

detection metrics dynamically, a variety of shilling attack models

can be dealt with flexibly. Experiments show that the algorithm

has stronger detection performance and interference immunity in

shilling attack detection.

Keyword-Recommender System; Malicious Attacks; Detection

Algorithm; User Selection; Detection Metrics

I. INTRODUCTION
As an information filtering technology, recommender

system plays a role with importance increasing and has
become an effective way to deal with information overload.
Typical recommendation approaches, including content-based
recommendation [1], collaborative filtering recommendation
[2], knowledge-based recommendation [3], hybrid
recommendation [4], have been widely used in large e-
commerce websites such as Taobao, Amazon, Google News,
etc. A good recommender system can provide users with
relevant interesting items and thus bring more economic
benefits to merchants. Not only has now research on
recommender system become a popular research field in
academia, but also many companies, such as Netflix and
Alibaba, have set up their own research teams in order to
improve the accuracy of their own recommender system.

At present, recommender system is faced with many
problems such as data sparse [7-8], poor scalability, cold-start
[9], security [10], etc., and the security will be the focus of this
paper. The openness can reflect user’s preference through

rating, which provides data foundation for recommendation.
However, because of the openness some junk information
could be inserted into the system by malicious users and thus
influence system’s behaviors, like, in recent years, popular
network part-time jobs “brush credit” and “brush praise”. This
phenomenon is called aggression behavior of malicious user
[11], profile injection attack [12] or shilling attack [13].
Facing with shilling attack, traditional collaborative filtering
recommender system shows their vulnerability that is attackers
can change the predictions of some target items when the
system has no protection. The inserted junk information
causes a decline in accuracy and reliability of the system.

Detecting shilling attack can be regarded as a binary
classification problem between normal users and attackers.
When it comes to classifying attackers, most current
classification features are relative to user ratings, and the
corresponding classification features, which can differentiate
normal users and fake users, could be found by detecting how
they rate certain items. However, there are some problems in
classification features based on ratings: (1) Misjudging a user
as an attacker easily; (2) When attacker’s ratings are
camouflaged and not the same as the normal shilling attack
models, it will result in low detection accuracy, and the current
detection metrics are useless for various changes of shilling
attack models.

In order to solve above problem, this paper starts from
dealing with the user’s selection of rating items. Since normal
user has certain needs to choose items -- item popularity is
generally follow long tail effects, thus we can use the user’s
popularity [21] as a metric to detect the shilling attack. And by
using information entropy effective detection metrics can be
selected dynamically; the most effective metric helps to
calculate user’s outlier degree [22] and then we can detect
attackers. Taking detection mistakes into account, we
propose a new method which can get the intent and target
items of shilling attack through analyzing suspected users, and
remove abnormal users, users always give good reviews or
bad reviews, based on the information we get.

The main contributions of this paper are as follows: (1)
Combining user’s popularity with conventional classification
features based on ratings as detection metrics to improve the
accuracy of shilling attack detection. (2) Using information
entropy to dynamically select metrics to adapt a flexibility in

50

coping with various attack models. (3) Using metrics selected
dynamically to calculate user's outlier degree and detect
attacker.

The rest of this paper is structured as follows: In Section 2
we introduce the research background. In Section 3 we
propose an outlier degree shilling attack algorithm based on
dynamic feature selection, and then we introduce the
experiment and analyze experimental results in Section 4.
Finally we conclude with a summary and future work in
Section 5.

II. BACKGROUND
Due to that the accuracy of collaborative filtering

recommendation depend on a large amount of user data and
the open nature of recommender system, so that attackers can
inject fake profiles into the system with a little cost and
maximize their interests by affecting the prediction results
with the attack profiles, . Shilling attack contains two intents:
(1) increase the recommendation frequency of target items,
namely push attack; (2) reduce the recommendation frequency
of target items, namely nuke attack.

The research on shilling attack mainly includes attack
detection and robust recommendation algorithm of defense.
This paper is to analyze algorithms of shilling attack detection,
and there are two main categories: based on supervised
learning and unsupervised learning.

Research on shilling attack detection has been fully
developed. Chirita et al. [14] proposed using statistical
metrics, such as the degree of similarity with top neighbors,
rating deviation from mean agreement (RDMA), to distinguish
genuine profiles and attack profiles. This method performs
very well in the detection on the attack profiles of high density
filling but not great in low density filling. Mehta et al. [15-16]
believe that the information in recommender system mainly
depends on genuine profiles and they used principal
component analysis technology to filter attack profiles. Then,
they proposed a PCA-Var Select detection that can effectively
detect multiple attack types. Li Cong et al. [17] constructed a
corresponding object function for genetic optimization through
qualifying the group effect of attack profiles and combined it
with Bayesian inference in the process of genetic optimization,
which is an new unsupervised algorithm for detecting shilling
attack — IBIGDA. To some extent, IBIGDA reduces the
dependence on prior knowledge, but it still assumes that the
number of attack profiles is less than genuine profiles and
obtain higher precision with sacrificing recall. Chung et al.
[18] proposed a detection algorithm based on Beta distribution,
namely Beta-Protection, to detect attack profiles. Beta-
Protection has better detection performance when it meets
certain conditions: the number of ratings is extremely small,
the rating value is extremely small or extremely large.

According to the existing researches, the existing
unsupervised algorithms for detecting shilling attack only rely
on one solid feature and take it as a detection metric of attack
profiles. This kind of single detection metric is difficult to
ensure the accuracy under different attack scenarios and its
inflexibility causes problems when nre attack strategies
appear. .

In order to improve accuracy and interference immunity of
the detection algorithm, first we use rating metrics and
popularity-based metrics in the literature [19,23] as a feature
candidate set of detecting shilling attack; the second step uses
information entropy to dynamically select five features; the
third step is to use selected features to calculate user’s outlier
degree and find out suspected user; the fourth step is to judge
the user regarded as a attacker by mistake, analyze suspected
users and get the intent and target items of shilling attack.
After these steps, we can remove users who do not meet the
intent and target items from suspected users so as to determine
real attacker. we will illustrate the feasibility and superiority of
this algorithm through experimental results.

III. AN OUTLIER DEGREE SHILLING ATTACK DETECTION
ALGORITHM BASED ON DYNAMIC FEATURE SELECTION

A. Definition

Item popularity: the rating frequency of item in the

recommender system. 𝑑
𝑖
 refers to the item popularity of item i.

User popularity vector: a vector of the item popularity
and the item has been rated by user.

𝑉
𝑢

= (𝑑
1
，𝑑

2
， ··· ，𝑑

𝑘
) (1)

Each element in user popularity vector is a user’s item
popularity, and k refers to item k rated by user.

Mean of user popularity degree(MUPD): the mean of
elements in user popularity vector. The specific formula as

follow：

𝑀𝑈𝑃𝐷
𝑢

=
1

𝑛
∑ 𝑑

𝑖

𝑛

𝑖=1
 (2)

 𝑑
𝑖
 refers to the popularity of item i in user popularity

vector.
Range of user popularity degree(RUPD): the difference

between the maximum and minumum of item popularity in

user popularity vector. The specific formula as follow：
𝑅𝑈𝑃𝐷

𝑢
= 𝑑

𝑚𝑎𝑥
− 𝑑

𝑚𝑖𝑛
 (3)

 𝑑
𝑚𝑎𝑥

 and 𝑑
𝑚𝑖𝑛

 refer to the maximum of item popularity

and the minimum of item popularity in user popularity vector.
Attack Profiles: In general, each attacker’s rating vector

consists of four parts: a set of selected items 𝐼
𝑆
(𝐼

𝑆
⊂ 𝐼), a set

of filler items 𝐼
𝐹

(𝐼
𝐹

⊂ 𝐼), a set of target items 𝐼
𝑇

({𝐼
𝑇

} ⊂ 𝐼)

and a set of unrated items 𝐼
𝜙

(𝐼
𝜙

= 𝐼 − (𝐼
𝑆

∪ 𝐼
𝐹

∪ {𝐼
𝑇

})).

Figure 1. Attack profile vector structure

Attack size: the ratio of the number of attack profiles

51

injected into the system to the total number of user profiles.
Filler size: the ratio of the number of items reted by users

to the total items in the system.
Attack model: 𝑀 = (𝜒，𝛿，𝜎，𝛾), 𝜒 refers to selection

function,

𝜒 (𝐼，𝑈，Φ，𝐼
𝑇

) =< 𝐼
𝑆
，𝐼

𝐹
，𝐼

𝜙
，𝐼

𝑇
>

The function has four parameters: item set(𝐼), user set(𝑈),

target item set(𝐼
𝑇
), and a set of other parameters(Φ).

Random attacks: rate a subset of items randomly around
the overall mean vote.

Average attacks: rate a subset of items randomly around
the mean vote of every item.

Bandwagon attacks: rate a subset of items randomly
around the overall mean vote, and some highly popular items
are rated with the maximum vote.

Segment attacks: rate target items highest (or lowest)
score, the most relevant items with the target items highest (or
lowest) score, and items filled lowest (or highest) score.

B. Construction of Detection Features of shilling Attacks

Based on the user popularity indicators introduced above,
this paper cites the 10 user rating indicators defined in the
literature [19,23], including RDMA(Rating Deviation from
Mean Agreement)、WDA(Weighted Degree of Agreement)、
WDMA(Weighted Deviation from Mean Agreement) 、
ADegSim(Average Degree of Similarity with Top Neighbors)、
LengthVar(Length Variance) 、 FMTD(Filler Mean Target
Difference) 、 FMV(FillerMeanVariance) 、
MeanVar(MeanVariance) 、 TMF(Target Model Focus) 、
SDUR (Standard Deviation in User ’s Ratings)、DAOU
(Degree of Agreement the Other Users).

The essence of the attack detection problem is a two-class
problem, namely classifying normal users and attackers in the
user dataset. However, the classifier with the machine learning
method have poor flexibility, and they can only work on a
particular attack type. And if all the feature attributes are
selected to implement the training machine learning model,
the classifier will be too complex, which will seriously affect
the efficiency of the classifier.

Therefore, in order to improve the flexibility of classifier,
especially in the case of dealing with unknown types of attack,
this paper proposes a method to dynamically select a set of
feature subsets according to the training set, and then perform
the attack detection based on this set of feature subsets.

The main idea of the dynamic feature selection method
based on information gain is: First, calculate the index values
of each feature of each user. Then, calculate the information
gain of each feature by dividing the normal user and the attack
user in the training set. Finally select the feature with the
greatest information gain.

The feature construction algorithm is as follows:

Input: Training Set 𝐷𝑡，
Output: Best classification feature subset F‘
1：Calculate the popular features of each user u in the

training set 𝐷𝑡：
𝐹1 = {𝑀𝑈𝑃𝐷, 𝑅𝑈𝑃𝐷， 𝑄𝑈𝑃𝐷}

2: Calculate the 10 indicators proposed in the

literature[19,23] of each user u in the training set 𝐷𝑡:
𝐹1 = {𝑓1, 𝑓2，…，𝑓10}

3：Calculate the proportion of attacker feature values

p𝑖,𝑠，𝑆 is attack user set, 𝑈 is all user set：

𝑝𝑖,𝑠 =
∑ 𝜑𝑓𝑖

(𝑃𝑘)|𝑆|
𝑘=1

∑ 𝜑𝑓𝑖
(𝑃𝑗)

|𝑈|
𝑗=1

Here, 𝑃𝑢 denotes the user profile of user u, and 𝜑𝑓𝑖
(∗)

denotes calculate the feature value of 𝑓𝑖.
4: Calculate the proportion of normal user feature

values p𝑖,𝑟：
𝑝𝑖,𝑟 = 1 − p𝑖,𝑠

5: Calculate the information entropy 𝐻𝑖 of the feature

index 𝑓𝑖:
𝐻𝑖 = −𝑝𝑖,𝑟 ∗ 𝑙𝑜𝑔(𝑝𝑖,𝑟) − 𝑝𝑖,𝑠 ∗ log (𝑝𝑖,𝑠)

6: Compute empirical entropy of Training Set 𝐷𝑡:

𝐻(𝐷𝑡) = −
|𝑆|

|𝐷𝑡|
𝑙𝑜𝑔

|S|

|𝐷𝑡|
−

|N|

|𝐷𝑡|
𝑙𝑜𝑔

|N|

|𝐷𝑡|

Here, N denotes normal user set
7: calculate empirical gain 𝐻(𝐷𝑡 , 𝑓𝑖) :

𝐻(𝐷𝑡 , 𝑓𝑖) = 𝐻(𝐷𝑡) − 𝐻𝑖
8: sort the features 𝑓𝑖 in descending based on the

values of information gain and select top-k features：
𝐹2 = {𝑓1

′，…，𝑓𝑘
′}:

9: Build a feature subset:
F‘ = 𝐹1 + 𝐹2

C. An Outlier Degree shilling Attack User Detection

Algorithm Base on Feature Vector

we get a subset of features through dynamic feature
selection algorithm based on information entropy. In order to
detect the attack user, this paper proposes an outlier degree
detection algorithm based on feature vectors. According to the
subset of features, we can get the feature vector of each user.
Moreover, the features in the feature vectors are the attributes
that have high classification ability for the attackers in the
dataset. There is a difference between the feature profiles of
normal users and attackers.Therefore, we can use user’s
feature vectors to determine whether he is an attacker.In this
paper we use the Euclidean distance to measure the outlier

degrees of the user's feature vectors，then mark user with

outlier degree as a suspected user.

When it comes to the detection of attacker, we can find out
attacker who deviates from the normal user’s profile by his
outlier degree. The specific formula of calculating outlier
degree is as follow :

d(u) = ∑ ||𝑉
𝑎

− 𝑉
𝑏
||

𝑣∈𝑈,𝑣≠𝑢

52

 = ∑ (∑ (V
𝑎,𝑖

− V
𝑏,𝑖

)2
𝑛

𝑖=1
)

1

2

𝑏∈𝑈,𝑏≠𝑎

 (4)

 𝑉
𝑎
 refers to the feature vector of user a, and 𝑉

𝑏
 refers to

the feature vector of user b. a user whose outlier degree
exceeds a certain threshold can be marked as a suspected user.

Input: The dataset of user ratings
Output: The set of attackers
For 𝑎 in all U do:

Cconstruct user’s feature vector.
V𝑎 = (V𝑎,1，V𝑎,2，…，V𝑎,n)

end for
For a in all U do:
 Calculate user’s outlier degree:

outlierD𝑎 = ∑ (∑ (V𝑎,𝑖 − V𝑏,𝑖)
2

𝑛

𝑖=1
)

1

2

𝑏∈𝑈,𝑏≠𝑎

End for
List users in descending order by their outlier degree;
Select 20% users with the highest outlier degree to

form suspected user set 𝑆
ℎ
;

IV. EXPERIMENT
In this section, we introduce the dataset, the setup and

objectives of the experiments, and analyze the experimental
results.

A. Data description

We use the MovieLens 100K dataset in experiments,
which is a popular dataset used by researchers and developers
in the field of recommendation. The dataset contains ratings
from 943 users on 1,682 movies. Furthermore, we write spider
program to get the required data about the introduction
information of movies (for item similarity) and the
communication messages between users (for trust relationship).
The dataset contains 19194 communication messages between
4932 users. The rating records are integers from 1 to 5.

In order to verify the accuracy of the recommendation
algorithm, we use 5-fold cross validation. The attacking users
in the experimental data set are generated through simulation
experiments. According to the principle of the attacking attack
model, artificially generated attacking user data is generated in
the original data set.

B. Evaluation Metric

In our experiments, we first use the following evaluation
indicators to determine the parameters of our methods, and
then we use the indicators to analyze and compare our
proposed methods with other two in literature.

In the experiment, two types of user profiles will be
included, one is the real user profile and the other is the profile
of attack user. Detect shilling attack users can be seen as a
two-class problem. Therefore, the test results can be

represented by the confusion matrix shown in Table 1.
Negative represents the real user profile, and Positive
represents the profile of the attacked user.

TABLE I. CONFUSION MATRIX TABLE OF CLASSIFICATION RESULTS OF
SUPPORT ATTACK DETECTION

The actual

situation

The Predicted situation

Real user Attack user

Real user True Negative(TN) False Positive(FP)
Attack user False Negative(FN) True Positive(TP)

This paper, we use the accuracy to evaluate the
performance of shilling attack detection algorithm and
accuracy formula is defined as following:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁

C. Feasibility analysis based on item popularity

characteristics

1) Analysis MUPD
MUPD can effectively partition the type of attack that

there is no select item in the user attack profile vector,
including the random attack model and the average attack
model. Because the filled item is selected randomly in these
two types of attacks, the probability of each item selected
come to be equal, and the distribution of popularity of the item
belongs to the long tail distribution. Therefore, the mean of
user popularity vector will be very low in the general
appearance of the attack users generated by the random attack
model and the average attack model. As shown in Figure 2.

Figure 2. Distinguish the attack Model of Non-select items by MUPD

2) Analysis RUPD

RUPD can effectively distinguish the popular attack model.
According to the principle of popular attack model, there exist
one most popular items in the attack profile. Therefore, the
popularity of the attack user profile will have a great range. In

53

this case, MUPD can distinguish the popular attack model
Invalid, as shown in Figure 3 and Figure 4:

Figure 3. Identification of popular attack users using MUPD

Figure 4. Identify popular attacking users using RUPD

D. Experimental parameter settings

TABLE II. PARAMETER SETTINGS

𝑺𝒉 𝑰𝒉 Filler size Attack size 𝐅 ‘ size

20% 3 5%,10%,15% 3%,5%,10% 6

As shown in the table 2, the suspect attack user set is set to
top 20%. Because of taking the cost of attack into account , the
attack size won’t exceed 20%. The suspect item set is set to 3,
that is, the three items with the highest rating deviation are
selected as the suspected attacked item set. Filler size is set to
5% or 10% or 15% respectively and Attack size is set to 3% or

5% or 10% respectively. size of Feature subset F‘ is 6, because
according to the existing shilling attack detection algorithm,
selecting three appropriate rating-based metrics can provide
good detection results, so here we choose three rating-based
metrics that have best detect ability, and then combine three
popularity-based metrics as the result of feature subset.

E. Verification the Performance of shilling Attack Detection

Algorithm Based on Dynamic Feature Selection and

Outlier

In order to verify the performance of our method,
experiment compares with the classical feature-based select
method PCA-VarSelect algorithm proposed by Mehta et al. In
order to distinguish this algorithm from the comparison
algorithm, our method named outlier-based method, and the
detection algorithm proposed by Mehta is named pca-based
method.

TABLE III. ACCURACY OF RANDOM ATTACKS DETECTION RESULTS

Filler size

Attack size

Random attacks

5% 10% 15%
3% outlier-Based 0.9802 0.9723 0.9910

pca-Based 0.9246 0.9302 0.9372
5% outlier-Based 0.9846 0.9819 0.9921

pca-Based 0.9060 0.9390 0.9783
10% outlier-Based 0.9967 0.9882 0.9977

pca-Based 0.9811 0.9607 0.9513

TABLE IV. ACCURACY OF AVERAGE ATTACKS DETECTION RESULTS

Filler size

Attack size

Average attacks

5% 10% 15%
3% outlier-Based 0.9853 0.9936 0.9834

pca-Based 0.9353 0.9464 0.9177
5% outlier-Based 0.9909 0.9845 0.9857

pca-Based 0.9372 0.9628 0.9699
10% outlier-Based 0.9874 0.9748 0.9850

pca-Based 0.9528 0.9659 0.9408

As shown in Table 2 and Table 3, the outlier-based method
and the pca-based method have high accuracy in the detection
results of the random attacks and the average attacks. And
even if the filler size and attack size is small, both methods
can identify the attack user and the accuracy rate is more than
90%.However, the accuracy of outlier-based method proposed
in this paper has a slightly higher than the pca-based method.
Considering the combination of any attack size and filler size,
the average accuracy of pac-based method is 0.9456, while
outlier-based method is 0.9864.Though there are a
improvement in 5%, but when the filler size is fixed, outlier-
based method become relatively stable as attack size
increasing, while a accuracy increased in pac-based method.
What causes this phenomenon is that pac-based method, when
attacker size increases, can do better in identifying the feature
between attackers and normal users, but outlier-based can
identify the feature very well even if attacker size is small.

TABLE V. ACCURACY OF BANDWAGON ATTACKS DETECTION
RESULTS

Filler size（selected size

5%）

Attack size

Bandwagon attacks

5% 10% 15%

3% outlier-Based 0.9937 0.9781 0.9970
pca-Based 0.7033 0.7226 0.7759

5% outlier-Based 0.9887 0.9758 0.9869
pca-Based 0.8517 0.7639 0.8876

10% outlier-Based 0.99546 0.9658 0.9841
pca-Based 0.8446 0.8677 0.8701

As shown in Table 4, the pca-Based method has a lower

accuracy when the attack size and filler size is smaller.
Because the amount of positive and negative sample data in
the data set, the effect of the pca-based method only using the
user rating index is not good. For small-scale attack, outlier-
based methods can be well identified. Moreover, outlier-based
methods are significantly more efficient than pca-based
methods for Bandwagon attack model and segmentation attack

54

models, which proves that the proposed attack detection
method has a good efficiency. For combination of any attack
size and filler size, the average accuracy of pac-based method
is 0.9837 and outlier-based method is 0.8905, which there has
a improvement in 22%. We conclude that when user
popularity is added, outlier-based method can identify a more
complex attack model, while pac-based method has no such
good performance.

V. CONCLUSION AND FUTURE WORK
This paper combines traditional score-based attack

detection indicators with user popularity-based attack
detection indicators to build vectors based on user popularity
and average indicators with utilizing feature subsets selected
by PCA based on user’s average indicators; Vectors are used
to calculate the degree of user’s outliers, and the degree helps
us mark the outlier users as suspects. Considering odd-looking
users in system, we can find out the real attacker by analyzing
the score of suspects, judging the intent of attacker and
removing the users who dissatisfy the intent.

 Through comparing experiment results, we can see the
outlier-based attack detection algorithm based on dynamic
feature selection has high accuracy and can be adapted to the
different attack models flexibly in the system.

In the future work we will: (1) Finding the attack detection
features from other perspectives, (2) Integrating existing
feature indicators more effectively to find out more feature
indicators, (3) building the attack defense from two levels by
combining the attack detection method and attack defense
robustness algorithm

ACKNOWLEDGMENT
The research is supported by “National Natural Science
Foundation of China” (No. 61772560) and the scientific
research “Innovation Project for Graduate Students in Central
South University” (No. 1053320170318).

REFERENCES
[1] Cerqueira, Thaciana, L. Marinho, and F. Ramalho. "A Content-Based

Approach for Recommending UML Sequence Diagrams." SEKE 2016.
[2] J. Ben Schafer, Dan Frankowski, Jon Herlocker, et al. Collaborative

Filtering Recommender Systems[J]. Acm Transactions on Information
Systems, 2007, 22(1):5-53.

[3] Felfernig A, Gula B, Leitner G, et al. Persuasion in Knowledge-Based
Recommendation[C]// International Conference on Persuasive
Technology. Springer-Verlag, 2008:71-82.

[4] Zhang, Chi, G. Chen, and H. M. Wang. "Recommendation Model Based
on Blending Recommendation Technology." Computer
Engineering36.22(2010):248-250.

[5] Bartolini I, Zhang Z, Papadias D. Collaborative filtering with
personalized skylines[J]. Knowledge and Data Engineering, IEEE
Transactions on, 2011, 23(2): 190-203.

[6] Barragáns-Martínez B, Costa-Montenegro E, Juncal-Martínez J.
Developing a recommender system in a consumer electronic device[J].
Expert Systems with Applications, 2015, 42(9):4216-4228.

[7] Yan, W. U., et al. "Algorithm for Sparse Problem in Collaborative
Filtering." Application Research of Computers 24.6(2007):94-97.

[8] CHEN Zong-yan,Yan jun. “Collaborative Filtering Ｒecommendation
Algorithm Based on Sparse Data Pre－ processing”. The computer
technology and development, 2016, 26(7):59-64.

[9] Yang, Yu, et al. "Cold-Start Developer Recommendation in Software
Crowdsourcing: A Topic Sampling Approach." The, International
Conference on Software Engineering and Knowledge
Engineering2017:376-381.

[10] Zhang, Fu Guo, and X. U. Sheng-Hua. "Review of key security threats
and countermeasures in recommender systems." Application Research of
Computers 25.3(2008):656-659.

[11] Xiang, X. U. "Analysis of shilling attacks on SVD-based collaborative
filtering algorithm." Computer Engineering &
Applications 45.20(2009):92-95.

[12] Huang, Sheng, M. Shang, and S. Cai. "A Hybrid Decision Approach to
Detect Profile Injection Attacks in Collaborative Recommender
Systems." International Symposium on Methodologies for Intelligent
SystemsSpringer, Berlin, Heidelberg, 2012:377-386.

[13] Zhi-Ang, W. U., et al. "Shilling Attack Detection Based on Feature
Selection for Recommendation Systems." Acta Electronica
Sinica40.8(2012):1687-1693.

[14] Chirita P A, Nejdl W, Zamfir C. Preventing Shilling Attacks in
Online Recommender Systems[C]//Proceedings of the 7th Annual
ACM International Workshop on Web Information and Data
Management. New York: ACM, 2005: 67-74.

[15] Mehta B. Unsupervised Shilling Detection for Collaborative
Filtering[C]//Proceedings of the 22nd National Conference on Artificial
intelligence. Menlo Park, London: AAAI, 2007: 1402.

[16] Mehta B, Hofmann T, Fankhauser P. Lies and Propaganda: Detecting
Spam Users in Collaborative Filtering[C]//Proceedings of the 12th
International Conference on Intelligent User Interfaces. New York:
ACM, 2007: 14-21.

[17] Li, Cong, Z. G. Luo, and J. L. Shi. "An Unsupervised Algorithm for
Detecting Shilling Attacks on Recommender Systems." Acta Automatica
Sinica 37.2(2011):160-167.

[18] Chung C Y, Hsu P Y, Huang S H. βP: A Novel Approach to Filter out
Malicious Rating Profiles from Recommender Systems[J]. Decision
Support Systems, 2013, 55(1): 314-325.

[19] Burke R, Mobasher B, Williams C, et al. Classification features for
attack detection in collaborative recommender systems[C]// ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2006:542-547.

[20] Wang J K, JIANG Y C, Sun J S, SUN C H.” Item-based Collaborative
Filtering Algorithm Integrating User Activity and Item
Popularity”. Computer science. Vol. 43. No.12.pp. 158-162.

[21] Li, W. T., et al. "An shilling attack detection algorithm based on
popularity degree features." Zidonghua Xuebao/acta Automatica
Sinica41.9(2011):1563-1576.

[22] Chengshu, L. "SHILLING ATTACK DETECTION BASED ON
FEATURE SELECTION AND SVM." Computer Applications &
Software (2015).

[23] Williams C A, Research Advisor, Mobasher B. Thesis: Profile Injection
Attack Detection for Securing Collaborative Recommender Systems[J].
Service Oriented Computing & Applications, 2012, 1(3):157-170.

55

Service Language Model:
New Ecology for Service Development

Ying Li
College of Computer Science and

Technology
Zhejiang University
Hangzhou, China

cnliying@zju.edu.cn

Meng Xi
College of Computer Science and

Technology
Zhejiang University
Hangzhou, China

ximeng@zju.edu.cn

Hui Chen
College of Computer Science and

Technology
Zhejiang University
Hangzhou, China

chchenhui@zju.edu.cn

*Jianwei Yin
College of Computer Science and

Technology
Zhejiang University
Hangzhou, China

zjuyjw@zju.edu.cn

Abstract—With rapid development of the Internet, all walks
of life are engaged in the tide of Internet. In the era of
"Internet+", traditional industries are widely developed and
expand plenty of emerging business, such as online transactions,
Internet finance and so on. However, various problems arise at
the same time in this revolution. On one hand, business processes
become increasingly intricate, and different fields may have
difficulty in communication. On the other hand, developers are
hard to understand the real demands from users and the rate of
code reuse is not high. In order to solve these problems, we
propose a middle-end and project manager (PM) oriented service
language model, which could help decouple software
development and user requirements, improve work efficiency
and reduce development costs.

Keywords-service language model, ontology, business process

I. INTRODUCTION
Nowadays, modern service industry has grown up rapidly

and play an important role in our daily life. As service
scenarios become increasingly complicated and user demands
change quickly, traditional business process modeling methods
can hardly meet the current business requirements.

The problem could be serious in the field of E-commerce.
Different from offline sales, business processes in E-commerce
develop rapidly. To cope with this situation, enterprises need to
invest a lot of resources to improve their original business
processes. Therefore, it is necessary to design a process
modeling method that can quickly and accurately respond to
requirements. And in recent years, data-centric Artifact model
has emerged. Different from traditional activity-centric
modeling approaches, the construction of Artifact model
begins with data, and then business processes are built around
the data entities. By using data-centric approach, the business
process could be flexible and adaptable. However, the data-
centric life cycle could be difficult to reuse and easily lead to
code redundancy. On the other hand, the existing demand
analysis method is usually activity-centered, which makes it
difficult to put Artifact modeling into practice.

In this paper, we design a service language model (SLM).
SLM consists of Service Concept Model (SCM) that can
describe the requirements of services and Service Design
Model (SDM) that can construct and manage service processes.
Within SDM, there is an entity feature model for data, an

ability feature model for functions and interfaces and a refined
life cycle model for business processes.

The main contributions of SLM are as follows. First, a
concept model of service is designed to conceptualize
requirements and describe them in a formal way. Secondly, a
method was provided to manage and deploy data and data
entities in services. Thirdly, Business abilities can be reused
and their range can be cleared easily by using SLM. Finally, a
process model which could help stratify the business and
clarify the business structure was proposed.

The rest of this article is organized as follows. Section
Two is the motivation case. Section Three introduces SLM
systematically. Section Four illustrates an application instance
where the model is verified. Finally, the related works and
conclusions are given.

II. MOTIVATION CASE
In order to have more in-depth research and better

understanding of the problem, we have worked with Alibaba
company. Here, we take buying basketball shoes and virtual
coupons as an example. One is physical goods trading which is
one of the earliest services of Alibaba, and the other is virtual
goods trading which is emerging these years. The former one
involves goods delivery, while the latter only needs to send
some verification codes. Since the physical properties of these
two commodities are different, their service processes should
be differentiated. Moreover, when modeling, we may
encounter the following questions.

Problem 1. Business logic is coupled with platform logic,
and process activity code is difficult to strip and reuse. This
makes the platform code difficult to analyze and organize.
With the business becoming more complex, platform codes
may have redundancy;

Problem 2. Long implementation cycle. A simple need
also requires steps such as program evaluation, requirement
analysis, process design, process development, and regression
testing;

Problem 3. Internal business units lack knowledge of
business uniformity, communication between departments can
cost a lot of time.

*: corresponding author
DOI reference number: 10.18293/SEKE2018-214

56

III. SERVICE LANGUAGE MODEL
In this chapter, we will introduce our service language

model systematically. The main concepts in service concept
model include entity rules and routing rules, and the main
concepts in service design model include entity, ability,
essence process, and service process. For a better
understanding of the definitions below, we expect the existence
of the following pairwise disjoint countably infinite sets: Tp of
primitive types, C of (artifact) classes (names), A of attributes
(names), S of artifact states, and IDC of (artifact) identifiers for
each class C. A type is an element in the union T = Tp ∪ C.

A. Service Concept Model
As we all know, requirement analysis has always been

extremely important in software engineering, as its quality
directly affects the effectiveness of the later system design. In
order to make requirement analysis more concise and efficient,
we build the concept of service model.

Definition 1. An service concept model instance is a triple (sc,
Rk, Rr), where sc is the identifier, Rk is the entity concept
model involved and Rr is the routing concept model.

The entity concept model is mainly used to specify the
terms involved in the service. It can express the domain
terminology, attributes of each term, and links among different
terms. In addition, the entity concept model can generate the
entity feature model by semi-automatic methods.

Definition 2. An entity concept class is a four-tuple (rkc, k, d,
re), where rkc is the identifier, k is the set of term names, d is
the set of term descriptions and re is the set of relationships
among terms.

Definition 3. An instance of an entity concept is a 3-tuple (rk,
kd, krk) where rk is an identifier, kd is a partial mapping from
k to d, and krk is a set of relations mapping between terms by
means of "k-re-k".

Example 1. In the motivation case, business side needs to
provide the requirement of data that may be used in their
service, like receiving information which consists of name,
phone and address. They could describe this requirement in the
format of service language model as shown in Table I.

TABLE I. ENTITY CONCEPT EXAMPLE: RECEIVING INFORMATION
ENTITY CONCEPT

ID Entity & Description Relation
721019 receiving information: data

set
name: string, length<10
phone: number, length=11
address: string

basic(receiving
information, name)
basic(receiving
information, phone)
basic(receiving
information, address)

On the other hand, routing rules are mainly used to
express the system through a simple logic involved in the
activities of the process. The conceptual model of routing
mainly guides the construction of the refinement process
model, and gives guidance on the construction of the life cycle
model.

Definition 4. A routing concept class is a four-tuple (rrc, S, c,
E), where rrc is the identifier, S is the state in the route, C is
the set of judgement conditions, and E is the set of posterior
effects.

Definition 5. A routing concept instance is a pair (rr, sce),
where rr is the identifier, and sce indicates that the entity e
satisfies the condition c under state s.

Example 2. In the motivation case, there are requirements
about process itself like how to place an order. The business
side needs to arrange the process and describe it in the format
of routing concept like Table II.

TABLE II. ROUTING CONCEPT EXAMPLE: PLACE AN ORDER ROUTING
CONCEPT

ID sce

217210 (no_order, place an order success, state=to_pay)
(to_pay, payoff, balance reduce & state=to_deliver)
...

B. Entity Feature Model
The entity feature model is mainly used to model the data

entities in the service. A feature model is composed of a set of
characteristics and their relationships, and it also has certain
constraints.

Definition 6. An entity feature class is a 7-tuple (Cε, AT, τ, Q,
s, F, Opt), where Cε is the identifier, AT is the attribute in the
entity or the characteristic in the entity, τ is the type of the
attribute or the constraint relation of the class or feature, Q is
the set of states of the entity, s is the initial state of the entity, F
is the end state, and Opt is the optionality of the state.

Definition 7. An entity feature instance is a triple (e, µ, q)
where e is the identifier, µ is partial mapping that assigns each
AT in T (mentioned at the begging of section three), q is
current state when e is an full entity or Opt when e is a feature
of an entity.

Example 3. In the motivation case, order is an important
entity. The process of a transaction is the lifecycle of an order
which is from generation to extinction. Its instance is presented
in Table III.

TABLE III. ENTITY CONCEPT EXAMPLE: RECEIVING INFORMATION
ENTITY CONCEPT

ID µ state

171701 receiving information: data
set
name: string, length<10
phone: number, length=11
address: string

basic(receiving
information, name)
basic(receiving
information, phone)
basic(receiving
information, address)

When analyzing the transaction process, we find that there
are entities involve in a process with no state, which are called
participants.

Definition 8. A participant class is a triplet (Cp, RE, τ) where
Cp is the identifier, RE is the resource of the participant, and τ
is the main type of the resource.

57

Definition 9. A participant instance is a binary (p, µ), P is the
identifier, µ is the partial mapping that assigns each RE in T.

C. Ability Feature Model
The modeling method of ability feature model is the same

as that of the entity model, which is used to describe the
configurable services and functions of Artifact.

Through the construction of the ability model, we can use
functional units in the system as configurable atomic services.
Through the call to the service, data in entities can be
processed and their state may transfer as well.

Definition 10. The instance of the ability is a six-tuple (ab, D,
VEr, VEw, VPr, VPw), ab is the identifier, d is description of
this ability, VEr is variable of entity to read, VEw is variable of
entity to write, VPr is variable of participant to read, VPw is
variable of participant to write.

Example 4. In the motivation case, we need an ability of
creating an order. This ability need to generate an order and
transfer the customer's money to third party platform. We need
the order's id and whether the transfer succeed. The ability is
presented in Table IV.

TABLE IV. ABILITY EXAMPLE: ABILITY OF CREATING AN ORDER

order_create
id
description

entity
participant
entity read

entity write
participant read

participant write

344323
create an order and transfer the customer’s
money
order
customer
order.merchandise, order.destination,
order.message, order.seller
order.id
customer.user_id, customer.cash,
customer.method
customer.payment_result

D. Refined Lifecycle Model
The refined lifecycle model is mainly used to represent

the changes in state and the activities used during the execution
of the service. Refinement lifecycle model can stratify the
processes in the lifecycle process, decouple the processes in
different areas and reduce the complexity of each process while
improving the process complexity.

Condition is essentially a discriminant expression, and
finally return Boolean values, which could complete some
simple calculations and judgments.

Definition 11. A condition is a Boolean expression, which
could be connected and calculated by logical operators.

L1 process describes the core functions of the business
and is used for service classification and location.

Definition 12. An L1 process is a triple (m, d, RP2), m is the
identifier, d is the model description and RP2 is the L2 process
inherited from this L1.

L2 inherits from the L1 process and represents all the
states that an entity will experience in a life cycle.

Definition 13. An L2 and a process is a five-tuple (tr, d, q, r,
RP3), tr is identifier of transition, d is description, q is states
and r is relation between states.

The L3 process inherits from L2 and adds activities and
gateway nodes on the basis of L2, which can represent all the
activities and states that an entity experiences in a process. At
the same time in the L3 process we will complete the ability to
assemble. We specify each activity to assemble an ability.

Definition 14. An L3 process is a six-tuple (re, d, q, a, g, r), re
is identifier, d is description, q is the states, a is activities, g is
gateways and r is relations connecting q, a and g.

Definition 15. Activity instance is a four-tuple (a, ab, P, E), a
is identifier, ab is identifier of ability, P is pre-condition
(atom), and E is effect.

Definition 16. Gateway instance is pair (g, type), g is identifier
of gateway and type could be one of the four: Exclusive,
Inclusive, Complex and Parallel.

Definition 17. relation is a four-tuple (r, from, to, c), r is
identifier of relation, from / to is state / activity / gateway, and
c is a condition.

Then we can add the activities of the preconditions and
configuration items to generate L4 process on the basic of L3
process. And a runnable process is complete.

IV. APPLICATION INSTANCE
Here we take the physical transaction service as an

example to explain how to use the service model to construct
it. Due to the space limitation, we only make a brief
explanation.

A. Constructing service concept model
The physical transaction process is mainly around the

order, which has a clear state in each stage of the process. The
data in the entity can be described as "entity data name +
relationship + limit value". For instance, if the entity "order"
contains "delivery method", its value should be one of "general
delivery", "free shipping", "cash on delivery" and "self-
pickup". All the requirements for the entities in the process can
be described by the entity concept model.

The process may involve other participating entities as
well, like goods and members. In this process, the participating
entities do not own state, but the data involved in the
implementation of the process. Then we could describe the
business process and routing rules through a set of combination
of state, condition and effect, such as "unpaid, payment
executed, state change to unshipped".

B. Constructing service design model
The service design model is a system implementation of

the service concept model. From the service concept model to
the service design model there is a mapping relationship, and
these two models can manually transform into each other semi-
automatically.

By reorganizing and rearranging entity concept models,
we can construct entity feature models. That is, modeling the

58

entity through feature modeling. We modeled three entities in
the physical transaction process respectively including "Order",
"Goods" and "Customer".

Then, we encapsulate functions and interfaces that may be
used in the process and list the abilities. According to the
classification criteria of the e-commerce domain
characteristics, the classification of abilities could be
performed. An ability feature model is similar to entity feature
model. In this way, we can quickly query the ability to operate
on the entity data involved in the process and assemble it.

The refined process model is used finally. Firstly, we need
to determine which trading domain the business belongs to,
and that is L1 process. Then we further determine the states of
the order, which could be "unpaid", "unshipped", "assessed"
and etc. L2 process is constructed by these states and their
transition relationship. L3 need to add activities and gateways
which may cause the transition of states. For instance, the
transition from "unpaid" to "unshipped" needs to go through
activity "payment". The L4 level process is the configuration of
the preconditions, transition conditions between activities and
other configuration items. Through these operations, a physical
transaction business is completed.

V. RELATED WORK
The service language model is based on previous research.

We mainly refer to research results of ontology, domain-
specific language (DSL), variability modeling and business
process modeling (BPM).

The concept of ontology originated from the field of
philosophy and later has been given a new definition with the
development of computer science. Ontology web language
(OWL) is a representative application of ontology in computer
science. Different from traditional knowledge-based methods
that are represented by formal normative language, OWL is
more suitable for regulating demands and domain knowledge
[1]. In addition, it has the ability of automatic verification and
consistency checks [2]. Nevertheless, OWL only stays in the
concept level, which means it is unable to implement a system.

DSL has been recognized as a normative executable
language that is highly expressive in specific areas, where
domain contents are abstracted [3]. Domain experts can easily
design models with the help of DSL. Thus, it is applied to a
number of fields. For example, Matlab [4] in the mathematical
field can help people deal with vector, matrix and other
mathematical operations conveniently. On the other hand, the
IBM Sharable Code project also uses DSL to prepare services
[5]. However, DSL is only applicable to certain areas, which
means it has difficulty in solving cross-domain problems.

Variability modeling is the key technology for variability
management in software product lines. In our project, we
mainly refer to the feature-based variability modeling method
to construct our entity feature model. This method was first
introduced in 1990 by Kang KC et al. [6]. In recent years, since
feature modeling technique can greatly improve the flexibility
and reusability of system, it has been widely used to describe
relevant characteristics of software product lines and to
manage reusable assets in systems.

There are many business process modeling methods.
Business process modeling notation (BPMN) is a basic and
practical standard in web service field[7] since it can intuitively
express business processes. It defines a variety of elements that
may be used in business process modeling, including activities,
gateways, events and so on. Business process execution
language (BPEL) is an abstract high-level language that can
clearly describe functions and services provided by each web,
as well as protocols among different activities [8]. However,
these methods cannot eliminate the redundancy of large
complex systems, since they always focus on business process
implementation level.

VI. CONCLUSION
On the basis of artifact centric process modeling, this

research improves the modeling method of data entities to
make it more adaptable to the operating environment of large
and complex systems. We construct a hierarchical lifecycle
model that can help organize and manage the process. Ability
feature model is proposed to manage and reuse the code
resources more effectively and efficiently. We also modeled
requirements into SCM which could help build a domain
knowledge and describe requirements in a formal way. At
present, we have been able to realize semi-automatic
conversion between requirements and design under artificial
operation. As for future work, we will introduce natural
language processing and machine learning methods to achieve
automatic conversion from requirements to code.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China under Grant No.61772459, the National
Key Research and Development Program of China under Grant
No.2017YFB1401202 and the Key Research and Development
Program of Zhejiang Province under Grant No.2017C01013.

REFERENCES
[1] Wouters B, Deridder D, Van Paesschen E. The use of ontologies as a

backbone for use case management[C]//European Conference on
Object-Oriented Programming (ECOOP 2000), Workshop: Objects and
Classifications, a natural convergence. 2000, 182.

[2] Happel H J, Seedorf S. Applications of ontologies in software
engineering[C]//Proc. of Workshop on Sematic Web Enabled Software
Engineering"(SWESE) on the ISWC. 2006: 5-9.

[3] Van Deursen A, Klint P, Visser J. Domain-specific languages: An
annotated bibliography[J]. ACM Sigplan Notices, 2000, 35(6): 26-36.

[4] Hanselman D, Littlefield B. Mastering MATLAB 6: a comprehensive
tutorial and reference[M]. Pearson, 2001.

[5] Maximilien E M, Ranabahu A, Gomadam K. An online platform for
web apis and service mashups[J]. IEEE Internet Computing, 2008,
12(5).

[6] Kang K C, Cohen S G, Hess J A, et al. Feature-oriented domain analysis
(FODA) feasibility study[R]. Carnegie-Mellon Univ Pittsburgh Pa
Software Engineering Inst, 1990.

[7] White S A. Introduction to BPMN[J]. IBM Cooperation, 2004, 2(0): 0.
[8] Fu X, Bultan T, Su J. Analysis of interacting BPEL web

services[C]//Proceedings of the 13th international conference on World
Wide Web. ACM, 2004: 621-630.

59

A Knowledge Engineering Approach to UML
Modeling

Bingyang Wei
Department of Computer Science

Texas Christian University
Fort Worth, Texas 76129

b.wei@tcu.edu

Jing Sun
Department of Computer Science

The University of Auckland
Auckland 1142, New Zealand

j.sun@cs.auckland.ac.nz

Yi Wang
Department of Electrical

and Computer Engineering
Manhattan College
Bronx, NY, 10471

yi.wang@manhattan.edu

Abstract—Multiple-viewed requirements modeling allows re-
quirement engineers to acquire the requirements of a system
from different perspectives. Requirements are then specified in
various UML models. Maintaining the requirements knowledge
encoded in UML notations is tedious and error-prone, since most
UML CASE tools provide poor support for reasoning and query.
Ontology is a formal notation for describing concepts and their
relations in a domain. Since requirement is a kind of knowledge,
we propose to use knowledge engineering approach for managing
the consistency and completeness of UML models. In this paper,
an ontology for UML diagrams is coded in a semantic web
language, OWL (Web Ontology Language). The transformation
of UML Class Diagram, Sequence Diagram and State Diagram to
OWL knowledge base is presented. In the end, a semantic query
language, SPARQL, is used to query the knowledge base. We
demonstrate the feasibility of this approach through an example
software system.

I. INTRODUCTION

Requirements engineers usually views the system under de-
velopment from different perspectives. The structure, behavior
and interaction aspects of the system are among the most
commonly considered perspectives. UML (Unified Modeling
Language) makes this multiple-viewed modeling possible by
providing different types of models, e.g., class, state machine
and interaction models. As a result, each UML model holds
partial requirements from a particular view in the form of
UML diagrams, and all the models together constitute the
overall description of the system. Since software requirement
about a domain is indeed a kind of knowledge, the Require-
ments Engineering process is in fact a kind of Knowledge
Engineering process. An important concern of requirements
engineers during multiple-viewed modeling is the management
of requirements knowledge: consistency among different mod-
els, model query, acquisition of enough useful requirements
to make a model more complete. However, it is difficult for a
requirements engineer to know whether a model is consistent
or complete and what requirements are missing in the current
model [4][5].

The application of ontology in Requirements Engineering
to support elicitation, analysis, specification, validation and
management of requirements is one of the solutions to im-
prove the quality of requirements [2]. To be more specific,

knowledge representations based on formal logic is considered
as an effective way to represent and manage requirements
knowledge [3] [7] [10]. In this paper, we are combining the
popularity of the semi-formal UML notations and the Descrip-
tion Logic based OWL (Web Ontology Language), so that
UML diagrams’ semantics can be represented in OWL. Our
main objective is to add a semantic layer on top of different
types of UML diagrams. Different UML diagrams, although
contain different kinds of requirements, can be queried and
reasoned together for different purposes.

The remainder of the paper is organized as follows. In
Section II, UML metaclasses are organized in a taxonomy
and encoded in OWL. Section III to V present the way
we transform an example system’s UML models to OWL
individuals and relations based on the UML Ontology. With
the UML diagrams represented in OWL, query and analysis
are conducted in Section VI. Section VII discusses the related
work and current limitations, and Section VIII concludes the
paper.

II. THE UML ONTOLOGY

The Object Management Group published the latest UML
Specification, OMG® Unified Modeling Language® version
2.5.1 [6] in December, 2017. We extracted the taxonomy
of UML model elements according to Chapter 7 Common
Structure, Chapter 8 Values, Chapter 9 Classification, Chap-
ter 10 Simple Classifiers, Chapter 11 Structured Classifiers,
Chapter 13 Common Behavior, Chapter 14 StateMachines,
Chapter 15 Activities, Chapter 16 Actions and Chapter 17
Interactions. 127 metaclasses and their inheritance relation-
ships are organized in the class hierarchy in Protégé [8].
The complete ontology in RDF/XML syntax is available at
github.com/Washingtonwei/uml-ontology.

III. UML CLASS DIAGRAM IN OWL

In order to demonstrate the idea of transforming UML
models to OWL notations, we choose an example software
system, the University Information System (UnivSys). In this
example, UML models for a university seminar enrollment
service system are created: Seminars can be created, sched-
uled, opened, enrolled, and closed; students can enroll in orDOI reference number: 10.18293/SEKE2018-114

60

https://github.com/Washingtonwei/uml-ontology

drop a seminar if a certain requirement is met. All three UML
diagrams come from Ambler’s book [1] with modifications.

1

1instructs

0..*4..*
enrolled in

Student

-name
-studentNumber
-GPA

enrollASeminar

Professor

-name
-emailAddress

Seminar

-name
-capacity
-fees

addStudent

e1 e2

e3

e4

Fig. 1. Class diagram of UnivSys.

A UML model consists of a number of model elements,
each of which may be used to make statements about different
kinds of individual things within the system being modeled
[6]. In Protégé, individuals are created and linked together
to represent the semantics of a UML model. Since all the
metaclasses of model elements belonging to UML class model
are considered in the UML Ontology defined in the previous
section, the UnivSys class diagram in Figure 1 can be easily
represented as OWL individuals of various UML metaclass
types. Those OWL individuals are then connected through
predefined relations to form the meaning of the class diagram.
Table I and II list the OWL individuals and object properties
(relations between two OWL classes) extracted from the
UnivSys class diagram. Here is a brief summary: each Class
individual owns Property individuals as attributes and
Operation individuals as operations. An Association
individual owns two Property individuals as member ends.
Each of them has a Type individual.

TABLE I
INDIVIDUALS CREATED FOR UML CLASS DIAGRAM

Individual(s) UML Metaclass
StudentClass, SeminarClass, ProfessorClass Class
studentName, studentNumber, GPA, seminarName,
capacity, fees, professorName, emailAddress, asso-
ciationEnd1, ..., associationEnd4

Property

enrolledInAssociation, instructsAssociation Association
enrollASeminarOperation, addStudent Operation

TABLE II
RELATIONS FOR UML CLASS DIAGRAM

Relation Domains Ranges
ownedAttribute Class Property
ownedOperation Class Operation

memberEnd Association Property
type TypedElement Type

IV. UML SEQUENCE DIAGRAM IN OWL

In this section, we focus on transforming UML Sequence
Diagram (Figure 2) to OWL.

OWL individuals identified in the UnivSys sequence dia-
gram, their corresponding UML metaclasses, and predefined
relations are listed in Table III and Table IV, respectively. Each
Lifeline individual represents a ConnectableElement

studentFees:StudentFees

schedule: StudentSchedule

theStudent:Studentseminar: SeminarenrollInSeminar:EnrollInSeminar

schedule

calculateFees(seminar, theStudent)

determineFit(seminar)

getSchedule()

qualifications()

isEligibleToEnroll(theStudent)
o1 o2

o3 o4

o5o6o7o8

o9 o10

o11o12

o13 o14

o15o16

o17 o18

o19o20

Fig. 2. A snippet of sequence diagram of UnivSys.

TABLE III
INDIVIDUALS CREATED FOR UML SEQUENCE DIAGRAM

Individual(s) UML Metaclass
enrollInSeminarLifeline,
seminarLifeline, theStu-
dentLifeline, scheduleLifeline,
studentFeesLifeline

Lifeline

connectableElement1, con-
nectableElement2, connectableEle-
ment3, connectableElement4,
connectableElement5

ConnectableElement

EnrollInSeminar, Seminar,
Student, StudentSchedule,
StudentFees

Type

o1, o2, o3, o4, ..., o19, o20 Message-
OccurrenceSpecification

isEligibleToEnrollMessage, qual-
ificationsMessage, qualification-
sReply, isEligibleToEnrollReply,
getScheduleMessage, getSched-
uleReply,determineFitMessage,
determineFitReply, calculate-
FeesMessage, calculateFeesReply

Message

theStudentInstanceValue, seminar-
InstanceValue

InstanceValue

isEligibleToEnrollOperation,
qualificationOperation,
getScheduleOperation,
determineFitOperation,
calculateFeesOperation

Operation

theStudentInstance, seminarIn-
stance

InstanceSpecification

individual whose Type individual is specified by re-
lation type. Each Lifeline individual owns a num-
ber of MessageOccurenceSpecification individuals
through relation events. Those occurrences represent the
send or receive event occurrences, which are then linked to
Message individuals. A Message individual specifies the
content through signature and argument. The signature can be
either Operation or Signal. Both of them may include
ValueSpecification individuals as arguments. In this
particular sequence diagram, each ValueSpecification
individual is related to a InstanceSpecification, for
example, theStudentInstance individual and seminarInstance
individual. Besides the relations between OWL individuals,
two data properties for Message individuals are considered:
messageKind (“complete” , “found”, “lost”, “unknown”) and
messageSort(“asynchCall”, “asynchSignal”, “createMessage”,
“deleteMessage”, “reply”, “synchCall”).

61

TABLE IV
RELATIONS FOR UML SEQUENCE DIAGRAM

Relation Domains Ranges
events Lifeline Occurrence-

Specification
represents Lifeline ConnectableElement
signature Message NamedElement
argument Message ValueSpecification
sendEvent Message MessageEnd

receiveEvent Message MessageEnd
type TypedElement Type

instance InstanceValue Instance-
Specification

classifier Instance-
Specification

Classifier

V. UML STATE DIAGRAM IN OWL

Figure 3 illustrates the behavior of a seminar during its
lifetime. Based on the UML Specification, the semantics
of the state diagram is represented in Protégé in the form
of individuals (Table V) and their relations (Table VI).
Transaction plays an important role in capturing the
meaning of a state machine diagram. Each Transaction
individual connects to two State individuals by sourceVertex
and targetVertex. A transaction owns a Trigger individual
that is related to an Event individual, a Constraint
individual as guard and a Behavior individual as effect.
Every constraint is related to a ValueSpecification
individual by constrainedElement relation, and has a specifica-
tion that evaluates to a Boolean value. Each State individual
may own behaviors as its entry, exit and doActivity. Besides
the relations between OWL individuals, one data property
for PseudoState instances is considered: pseudostateKind
(“choice”, “deepHistory”, “entryPoint”, “exitPoint”, “fork”,
“initial”, “join”, “junction”, “shallowHistory”, “terminate”);
another data property for Transition instances is consid-
ered: transitionKind(“external”, “internal”, “local”).

when(seatAvailability = available)

student enrolled
[seatAvailability = available]

/ addStudent()

cancelled

scheduled

cancelled

student dropped
[seatAvailability = unavailable]

student dropped
[seatAvailability = available]

/ enrollFromWaitingList()

student enrolled
[seatAvailability = unavailable]

/ addToWaitingList()

closed

cancelled

cancelled

closed
open

Closed to Enrollment

entry / notifyInstructor()

Full

student enrolled / addToWaitingList();
considerSplit()

Open For Enrollment

entry / logSize()ScheduledProposed

t0

t1

t2

t3

t4

t5

t6 t7 t8t9

t10 t11

t12

t13

t14

Fig. 3. State diagram of a seminar.

VI. QUERYING UML MODELS USING SPARQL

Section III to V convert University Information System’s
three UML models to OWL individuals. This process results
in 127 distinct OWL individuals. Interested readers can find

TABLE V
INDIVIDUALS CREATED FOR UML STATE DIAGRAM

Individual(s) UML Metaclass
InitialState, ProposedState,
ScheduledState, OpenForEn-
rollmentState, FullState,
ClosedToEnrollmentState,
FinalState

State

transition0, transition1, transition2,
..., transition13, transition14

Transition

completionTrigger, sched-
uledTrigger, openTrigger,
studentEnrolledTrigger,
studentDroppedTrigger,
closedTrigger, cancelledTrigger,
whenSeatAvailableTrigger

Trigger

completionEvent, scheduledEvent,
openEvent, studentEnrolledEvent,
studentDroppedEvent,
closedEvent, cancelledEvent,
whenSeatAvailableEvent

CallEvent

seatAvailableConstraint,
seatUnavailableConstraint

Constraint

seatAvailableExpression,
seatUnavailableExpression

OpaqueExpression

addStudent, logSize, addToWait-
ingList, notifyInstructor, enroll-
FromWaitingList, considerSplit

OpaqueBehavior

addStudentOperation, logSizeOp-
eration, addToWaitingListOper-
ation, notifyInstructorOperation,
enrollFromWaitingListOperation,
considerSplitOperation

Operation

seatAvailability Element

TABLE VI
RELATIONS FOR UML STATE DIAGRAM

Relation Domains Ranges
sourceVertex Transition Vertex
targetVertex Transition Vertex

trigger Transition Trigger
guard Transition Constraint
effect Transition Behavior
entry State Behavior
exit State Behavior

doActivity State Behavior
event Trigger Event

changeExpression ChangeEvent ValueSpecification
specification Constraint ValueSpecification

constrainedElement Constraint ValueSpecification
method BehavioralFeature Behavior

those individuals at github.com/Washingtonwei/uml-ontology.
With the three UML diagrams properly represented in OWL,
query can be conducted using SPARQL. SPARQL (SPARQL
Protocol and RDF Query Language) is a semantic query
language. It is an effective way to retrieve and manipulate data
stored in RDF format. The underlying structure of an OWL
knowledge base is a collection of triples, each consisting of a
subject, a predicate and an object. For example, the description
of “a class A owns a property B as an attribute” is stored in
OWL as a triple: A ownedAttribute B. In a SPARQL query,
there are several important parts: a SPARQL variable starts
with a question mark and can match any individual in the
OWL knowledge base. In the WHERE clause, triple patterns

62

https://github.com/Washingtonwei/uml-ontology

are defined in which any parts can be replaced with a SPARQL
variable. The SELECT result clause returns a table of variables
and values that satisfy the query. Protégé has built-in support
for SPARQL. One sample query is presented here.

• “What are the associated classes of SeminarClass?”

PREFIX
:<http://www.semanticweb.org/uml-ontology#>
SELECT ?associatedClass

WHERE {
?end1 :type :SeminarClass .
?association :memberEnd ?end1 .
?association :memberEnd ?end2 .
?end2 :type ?associatedClass .
FILTER(?associatedClass!=:SeminarClass)

}

Explanation: Select any individual such that it is the type
of an end (:end2), which is a member end (:memberEnd)
of an association (?association), whose the other end
has type SeminarClass (:SeminarClass). The FILTER
makes sure that we are looking for a class other than
SeminarClass.
Answers from Protégé:

– http://www.semanticweb.org/uml-
ontology#StudentClass

– http://www.semanticweb.org/uml-
ontology#ProfessorClass

VII. RELATED WORK AND DISCUSSION

Since UML Class Diagram can also be used to represent on-
tology of a domain, most work related to UML and OWL em-
phasizes the transformation between UML Class Diagram and
OWL ontology [3][14]. Furthermore, OMG’s ODM(Ontology
Definition Metamodel) includes UML profiles for RDF and
OWL, which provide a standard graphical notation for RDF
vocabulary and OWL ontology development using UML tools.
Our work is inspired by the work of Van Der Straeten [9]
and Wei [12][13][11]. Van Der Straeten and colleagues used
Description Logic to check the inconsistency between differ-
ent versions of UML models. Wei and colleagues specified
overlaps of heterogeneous UML models in Conceptual Graphs
and used the overlap for identifying missing requirements.
However, few work aims at providing a comprehensive and
complete UML Ontology that covers all UML Specification
diagrams. Furthermore, our work takes advantage of SPARQL
to query and check consistency of different UML models.

One important contribution of this work is the construction
of a comprehensive UML ontology in the RDF/XML syntax
which can be queried and reasoned in Protégé and other
Semantic Web tools like Apache Jena. By organizing the
latest UML Specification metaclasses in OWL, we invite
the community to contribute to its further refinement. For
research purposes, we restrict ourselves to a subset of the
UML metamodel. The current UML ontology includes 127
most commonly used UML metaclasses and 25 metarelations,
which can support defining the semantics of UML Class,
Sequence and State Diagrams in OWL notation. Future work

will include all the metaclasses and metarelations defined in
the UML Specification, so that more UML diagrams can be
converted to OWL for analysis. Another current limitation is
the manual conversion from a given UML diagram to OWL.
Future work will focus on automation of transforming UML
models to OWL and direct invocation of the OWL API from
within a UML CASE tool. Another future work would be
designing a user friendly querying interface based on natural
language query, so that users don’t need to master SPARQL
language.

VIII. CONCLUSION

In this paper, an approach to manage UML model knowl-
edge is proposed and validated through a simple illustrative
example software system. The formalism used is W3C stan-
dardized OWL, which is a Description Logic based formalism.
Three types of UML diagrams have been converted to OWL
knowledge base. Queries and reasoning can be conducted to-
wards the resulting knowledge base. Future work will include
more OWL reasoning in terms of consistency, knowledge
acquisition and inference on the UML knowledge base. The
results can help requirements engineers better understand their
models and provide possible inconsistencies suggestions.

REFERENCES

[1] S. W. Ambler. The object primer: Agile model-driven development with
UML 2.0. Cambridge University Press, 2004.

[2] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani, P. Brito, and
A. Silva. Applications of ontologies in requirements engineering: a sys-
tematic review of the literature. Requirements Engineering, 21(4):405–
437, 2016.

[3] D. Djurić, D. Gašević, and V. Devedžić. Ontology modeling and mda.
Journal of Object technology, 4(1):109–128.

[4] D. Firesmith. Are your requirements complete? Journal of Object
Technology, 4(1):27–44, 2005.

[5] F. J. Lucas, F. Molina, and A. Toval. A systematic review of uml
model consistency management. Information and Software Technology,
51(12):1631–1645, 2009.

[6] O. M. G. (OMG). Unified modeling language, version 2.5.1. OMG
Document Number formal/17-12-05 (https://www.omg.org/spec/UML/2.
5.1), 2017.

[7] L.-j. SHAN and H. ZHU. A formal descriptive semantics of uml.
Computer Engineering & Science, 3:026, 2010.

[8] S. U. Stanford Center for Biomedical Informatics Research (BMIR).
Protégé, a free, open-source ontology editor and framework for building
intelligent systems. https://protege.stanford.edu/, 2018.

[9] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using
description logic to maintain consistency between uml models. In
«UML» 2003-The Unified Modeling Language. Modeling Languages
and Applications, pages 326–340. Springer, 2003.

[10] B. Wei. A comparison of two frameworks for multiple-viewed software
requirements acquisition. PhD thesis, Ph. D. thesis, University of
Alabama in Huntsville, 2015.

[11] B. Wei and H. S. Delugach. A framework for requirements knowledge
acquisition using uml and conceptual graphs. In Software Engineering
Research, Management and Applications, pages 49–63. Springer, 2016.

[12] B. Wei and H. S. Delugach. Transforming uml models to and from
conceptual graphs to identify missing requirements. In International
Conference on Conceptual Structures, pages 72–79. Springer, 2016.

[13] B. Wei, H. S. Delugach, E. Colmenares, and C. Stringfellow. A con-
ceptual graphs framework for teaching uml model-based requirements
acquisition. In 2016 IEEE 29th International Conference on Software
Engineering Education and Training (CSEET), pages 71–75. IEEE,
2016.

[14] J. Zedlitz, J. Jörke, and N. Luttenberger. From uml to owl 2. In
Knowledge Technology, pages 154–163. Springer, 2012.

63

https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://protege.stanford.edu/

An Ontology-Based Modelling of
Vietnamese Traditional Dances

Truong-Thanh Ma1, Salem Benferhat2, Zied Bouraoui2, Karim Tabia2, Thanh-Nghi Do1, Huu-Hoa Nguyen1

1 CICT, Can Tho University, Vietnam 2 CRIL, Artois University
Email: truongthanh1511@gmail.com CRIL CNRS & Univ Artois, France

{dtnghi, nhhoa}@cit.ctu.edu.vn Email:{benferhat, bouraoui, tabia}@cril.fr

Abstract—Ontology is an essential resource to enhance the
performance of information processing system as well as is
an intelligent storage area served for management of large-
scale heterogeneous digital contents resulting. In this paper,
we propose the initial steps for reconstructing a significant
schema of Vietnamese traditional dances. Most of the typical
dances of Vietnamese community are recorded in multimedia
format, in raw videos. Accordingly, we concentrated on analyzing
and collecting knowledge of the dance experts at art schools
in Vietnam to classify and to determine the primary features
that would be stored in the ontology. We propose an ontology-
based modelling for the cultural heritage domain of Vietnamese
traditional dance.

Keywords: Vietnamese Traditional Dance, Ontology,
Knowledge Representation, Modelling.

I. INTRODUCTION

Southeast Asia is one of the most assertive growing regions
in the world with natural and cultural resources. Specially, the
cultural foundation regarding dance domain plays an important
role in community life, it always brings the historical and
cultural knowledge to the adjacent generation [1] [11]. The
intangible culture heritages (ICHs) of the ethnic group dance
are quite difficult to identify the exact values and great
significance. This paper focuses on Vietnamese traditional
dances (VTDs) which are truthfully assertive and original.

VTDs principally concentrate on four primary aspects:
[4][?]: firstly, depicting straightforward the scene of animated
daily activities as well as redrawing a picture about tradi-
tional careers, particular symbols and outstanding stories in
history through truthful dance movements; Secondly, utilizing
conventional and ordinary props combined with gentle music.
The selected props for performing depend on the song lyric
contents in order to express characteristic emotions. The third
point is the dance must approach so-called "the true, the
good and the beautiful". Vietnamese typical stories and scenes
always reflect comprehensively and evidently the daily life of
each ethnic group through distinctive dances. The final aspect
is the dance message. Most of the VTDs are not only creating
aestheticism on the stage as well as serve the entertainment but
also transhipping many meaningful messages to audiences.

One of the main contribution of this paper is to propose an
ontology-based modelling of VTD. Our ontology is modeled
using from the books [1] [4] [10] [11] [2] and also from

the dance experts at the art schools in Vietnam. Ontology
is a principle of any system to represent knowledge for a
given domain [12]. It represents information from multiple
heterogeneous sources in concepts and semantic relations
of the concepts. Ontology plays an important role in the
representation of information processing system and also is
one of the formalism of describing entities, the properties and
relationship. It also offers to managing and sharing informa-
tion. Especially, it brings a mission of transhipping information
from multimedia data (such as raw video/images) to computer.
Correspondingly, utilizing ontology for preserving ICH is a
completely appropriate selection because the traditional dances
is recorded in raw videos which are complicated and enigmatic
for storing heterogeneous information blocks. The combination
between artificial intelligence and expert knowledge regarding
dance domain for preserving ICH is definitely expected.

Maintaining the intangible cultural properties as well as
the traditional dance is extremely difficult. Indeed, the dance
documents in Vietnam is extremely limited. Most of the
minority ethnic group dances are not written in any book or
any document. They retransmitted through "word of mount"
form, particularly, the VTDs of minority ethnic groups.

Our VTD approach is decomposed in three primary stages:
the first aspect is panorama overview of dances (1); the
second angle is region-zone of dances (2), considering this
aspect because most of the VTDs depart from distinguishable
ethnic groups living region-zone in Vietnam territory; the last
approach is the fundamental movements of ethnic groups (3).
In this paper, we concentrate on presenting the first stage to
build VTD ontology. Our primary challenge is to determine
primary concepts combined with essential properties based on
expert knowledge and restructuring the ambiguity in VTDs.

The remainder of this paper is structured as follows. In the
next section we give an overview and related works. In section
3, we present expert knowledge to develop ontology for VTDs.
In section 4, we discuss and illustrate building an ontology.
Finally, section 5 concludes the paper.

II. OVERVIEW AND RELATED WORKS

A. Vietnamese Traditional Dance Overview

Vietnam has a rich cultural heritage, where music and dance
has been interwoven with the social fabric. Vietnamese classi-

DOI reference number: 10.18293/SEKE2018-129
64

cal music and dance portray human emotions, love and devo-
tion, narrate stories from life activities, history and religious
and are the integral parts of the festivals and celebrations.
List of ICHs compiled by UNESCO includes many dances,
instruments, theater and music forms, namely "Đờn ca tài tử"
of the Vietnam’s South, "Nhã nhạc cung đình" of Huế, "Ca
trù" of the Vietnam’s North, "Cồng chiên Tây Nguyên" of
Western Highlands of Vietnam and so on. Although the VTDs
of ethnic groups have not been written into the UNESCO list
yet, nevertheless it brings many local traditional cultural values
in each particular dance and acknowledged the ICHs in the
heart of Vietnamese community.

There are three basic characteristics that the choreographer
as well as performer must be paid special attention to: (1)
ethnicity, (2) transhipping meaningful message, and (3) "chân-
thiện-mỹ" (the true, the good and the beautiful). The explicit
explanation as follows: firstly, regarding the ethnicity, most
dances of the minority ethnic groups is to predominantly
concentrate on the ethnicity, in spite of performing with
simple movements, they always bring private ethnic features
for each performance, it can be local particular props or ethnic
costumes. Secondly, considering dance messages, the VTDs
is kept in a significant mission to be transhipped at least
one message to receivers who is not only spectator but also
anything and even be the god. Hence, the VTDs is a steady
bridge in educating about human dignity, morality and even
historical knowledge. Instead of learning the historical lesson
in regular classes as well as participating in the training course
for life skills, the dances has become the digital channel for
efficient educating personality, knowledge and even ethnicity
to the generations. Thirdly, the explanation as follows "chân
(the true)" means the performer must express their emotions
truthfully inside each movements and face’s expression; "thiện
(the good)" means the dances approach the best of the activ-
ities in life, it brings an aspiration for the bright future of
their ethnic group; "mỹ (the beautiful)" means the dances and
dancers must be interested in aestheticism.

In addition, Vietnam is a multi-ethnic country bringing
many different cultures [11], fifty-four-ethnic groups are living
in a territory with many typical multiform dances. The most
remarkable feature to easily distinguish the dances of each
ethnic group is the ethnic props as well as ethnic traditional
costumes. Normally, the ethnic people would wear the private
costumes and typical props of their ethnic group for per-
forming in the particular festivals or traditional celebrations.
Props as bamboo, hat, towel, soft silk and even daily tools
for working as shovel, "lưỡi hái" and baskets are utilized in
VTD. Besides we are also seen some ethnic props as "Đàn
tính", "khèn" (music instrument), or "Khăn piêu" (handker-
chief of Thai people). Almost all ethnic groups possess the
private specific costumes of their ethnic group, the selection
of the traditional costumes is always the first precedence.
Additionally, we are also effortless to catch sight of pastoral
pictures through common props as banana tree, bamboo tree,
stack of straw for Vietnamese countryside. Generally, most
of the VTDs concentrates on rural area than urban region,

therefore the scenes and props are utilized to intimately related
to countryside or village.

B. Related Works

The author in [6] illustrates preserving and promoting of
intangible cultural through Benesh notation to define the
movements, after that using OWL (Ontology web language)
and the semantics of Benesh Movement notation (BMN) to
build Ontology for video movement. In [5], dances were
described and stored taking advantage of expressivity of
description logics. Dance choreographies was built in OWL
to represent and archive. Besides using SPARQL queries for
searching within the ontology based on steps and movements
of dances. Another approach for automatic annotation and
retrieval of video content, which is based on ontologies, has
been presented by Ballan et al [9]. They build an ontology
schema based on abstract concepts and relations, after that
they described a web video search engine that based on
ontologies. In [7], the author group presented a method to
encode and structure metadata of folk song collections. This
method uses and extends the CIDOC (Conceptual Reference
Model) CRM, the research result is to determine the roles and
classes provided by CIDOC CRM have been useful in dealing
with the particularities of Basque folk song collections.

III. VTD EXPERT KNOWLEDGE

A. Expert Knowledge Congregation

VTD is the art form reflecting the human life through its
formal form, most of the gestures and movements intimately
related to processing manual labor as well as the life activities
in ethnic community. Each dance performance session lasts
from 4 minutes to 10 minutes, including average about 5-10
dancers (normally) [11]. In VTD, it splits two types: "múa
dân gian" (folk dance or community dance) and "múa cung
đình" (court dance or dance in theatre). They are known as
"Múa dân tộc", we could call traditional dance in English. In
this section, we concentrate primarily to explicitly model the
knowledge on VTD, which could be split in five categories:
non-story dances (dư-hứng), bare-handed traditional dances of
Vietnam, historical dances, dances about traditional manual
labor of ethnic groups, dances in festival and daily life.

The following details each of these categories:
1) Non-story dances - (dư-hứng): In Vietnam, non-story

dance is one of the most prevalent dance forms that the ethnic
group utilizes to perform in life as well as in the significant
events. "Dư Hứng dance" is the common name of this dance
form which is called by experts of the dance domain. These
dances are the performances without story. The remarkable
feature of these dances is the ethnicity and community, because
the dance performance brings a private ethnic color in each
particular movement. The performers could play creatively
in anywhere and any kind of music. Non-story dances are
divided in two main kinds as in sub-schema of Figure 1 do
that: utilizing props for performing and dances without props
(bare-handed dance).

65

In this subsection, we concentrate on analyzing the dances
utilizing props without plot. Normally, the props intimately
related to life activities and typical ethnic group symbols.
Considering about props of life, there are four main props:
(1) flowers, (2) manual labor tools, (3) instruments and (4)
symbols. Firstly, most of the flowers would be one of the first
selection in VTDs, there are many kinds of flower for perform-
ing as lotus dance, sunflower dance, rose dance and so on.
In which, lotus and sunflower is performed the most because
they had been acknowledged as national flower by Vietnamese
community. Secondly, the manual labor tools is also performed
in dances, it is the tools of the life activities, for example: "pick
tea leaves" dance of Thai ethnic group with familiar prop "gùi
- similar with papoose" or "Lên nương dance" with hoe tool
and leaf-hat. Thirdly, the ethnic instruments are also the dance
name and they would be primary props to perform in those
dances, namely "Đàn tính" dance (a kind of instrument of Thái
ethnic group), "Trống Cơm" dance (a kind of drum), "gong"
dance (percussion instrument) and so on. Finally, the local and
national symbols also performed in the major festival of ethnic
groups, including lotus dance, "trống đồng" dance.

Figure 1. Sub-schema of non-story dances

2) Bare-handed dances: This is the dances that performers
just utilize the hands and body language without any prop in
each dance performance. Creating the distinct hand gestures
combine the fundamental movements is one of the private
features of these dances. Normally, the dance performances
are organized from two to eight people for a dance formation,
sometimes even there are the large number of dancers partic-
ipated in this dance group. There are five main subjects in
these dances: (1) symbol dances without props, (2) traditional
custom dances, (3) dances for life activities , (4) festival
dances, (5) dances for praying. The following details each
of the five subjects in bare-handed dances: Firstly, this is
dance that performer using body-language to depict ethnic
symbols. Instead of utilizing props for performing, these dance
performances would be imaginableness through postures and
movements, evidence as lotus dance, peafowl dance (note that
do not must forms of shadow dance). Secondly, the dances
about traditional custom is performed in remarkable events
of ethnic groups or anniversaries, such as "Xòe-thương-nhau"

dance, HMông dance. Thirdly, the dances for life activities is
performed at parties (wedding, birthday) in ethnic community
(note that it is not as formal as traditional custom dances),
example as Lăm-leo dance, dù-kê dance of Khmer ethnic
group. Fourthly, the remarkable feature of festival dances is
heightened the ethnicity in each dance performances. Nor-
mally, the circle formation in festival with simple movements
to create funny atmosphere is always selected to perform, such
as rom-vong dance, saravan dance and so on. Finally, let us
consider [10] an example regarding "Tắc-xình" dance of "Sán-
Chay" ethnic group is an evidence for praying in dances. This
dance is in "cầu mùa" (pray for harvest) festival, it is not only
bringing wishes of the good harvest but also an aspiration for
connecting the communities together.

3) Historical dances: The historical dance performance
depicted the scenes of the outstanding events of Vietnamese
history as well as the legends. We could split historical dances
on three primary aspects: Firstly, the scene of remarkable
war events (1), such as "The great victory on the spring in
1975", "The Dien Bien Phu victory"; Secondly, the scene
of an illustrious national hero (2) had batted unyieldingly in
antitrespassing wars as well as the prominent background of
national hero, such as sister "Võ Thị Sáu", Uncle Ho, Vương
king; and the third aspect (3) is the legends of Vietnam, as
"Lac Long Quan" king an AuCo Queen, "Thánh gióng".

Generally, most of the dance performances primarily con-
centrates on the historical message transhipping, the noticeable
point is the selected props for performance to be inherent in
the historical figure, example: dragon boat and magic sword
associate with “Lê Lợi” King; Rằn handkerchief and Áo-bà-ba
(Skirt) associate with “Võ Thị Sáu”. The remarkable feature
of these dances is the personality description as well as tran-
shipping the content of story. The choreographers must select
the cardinal features of story to build dance lesson, through
the meaningful stories will be worth lessons to recommend
and to educate the present generation regarding moral person,
history and ethnicity.

4) Dances regarding traditional manual labor: The dance
performances regarding traditional labor is necessary with
supporting of props and bringing a plot. The dances depict
truthfully the scenes of traditional manual works. It could be
the steps as well as the stages on the process of traditional man-
ual labor in their ethnic group. Normally, the choreographer
extracts the scene from the traditional works to build the dance
performance, they would retrace step-by-step of the scenes in
their traditional career to aim at honoring the labor values. For
examples: the salt village dance - they would perform their
traditional work with four segments (getting water from sea,
containing water, drying-water, crystallizing).

5) Dances in festival and daily life: In Vietnam, the dances
regarding daily life is split in two main kinds: the dances
in rural (1) and the dances in urban (2). Dances for rural
region depicts the scene of countryside, works on the fields
and even the scenes from daily life activities with pasturing
buffaloes, fishing and cultivation. In contract, considering

66

Figure 2. The sub-schema of festival dances and daily life dances

dances for urban areas is the scenes of the modern life to
reflect the bad activities from the young generation. It extracts
the dark background in the city to admonish their children (the
adjacent generations). More importantly, almost all the dances
regarding life of urban area is belonged to Kinh ethnic group.

On the other hand, considering the dances in festival, it
splitted on four particular aspects as in Figure 2 the first
aspect is animal dance (1). The second one is competition
dances between human and animal (2). Thirdly is the dances
in significant event (3); and last aspect is the dances for
praying (4). All dances in this section always bring a plot in
each dance performance. Firstly, considering animal dances,
normally, this animal is treasured in the ethnic community,
such as: "tortoise dance" of Dao ethnic group. These animal
dances would like to receive lucky, happiness and prosperity
from sacred animal. Secondly, regarding competition dance,
this is the dance performance relevant to competition between
animals together or between animal and human. Generally,
these dances focus on taming the bad character to return with
good lifestyle. Thirdly, the dances in event, it is the special
traditional dances to welcome visitor in significant events.
These events could be the annual events, the new outstanding
events and ethnic community events without bringing the
historical elements. In last aspect, regarding praying in dance
[10], these dances praying about harvesting the good crops
in the whole year or praying for sufficient money, food and
happiness or praying a good health for all members in their
family and village.

B. Structure of Vietnamese Traditional Dances

This subsection provides a brief overview schema for VTD.
We recall that this schema is based on [1] [4] [10] [11] but also
benefits from the dance experts (consist of dance choreogra-
phers, dancers and their teacher) at art school in Vietnam, we
have selected the significant features to reconstruct the schema
for VTD regarding case of the panorama overview as Figure
3. There are three main features that the dance experts have
suggested to be interested in researching: Firstly, ethnicity in
dances to answer for question about "ethnic groups" because
most of the traditional dances depart from the customs of
ethnic groups, interested in props and costumes. Secondly,

Figure 3. The overview schema for VTD

transhipping the meaningful messages to spectator, interested
in plot. Thirdly, festivals or events of ethnic groups.

IV. CONCLUSION AND FUTURE WORKS

The preservation and promotion of ICH is one of the
most interest and worried problems in Vietnamese community,
particularly, in case of traditional dances. For preservative
purpose, we collected significant features needed to build an
ontology for VTD. The work presented in this paper is the first
stage regarding preserving and promotion of VTDs based upon
the background of artificial intelligent. Our next plans include
enhancement and extension of the VTD ontology following
different aspects and concentrate on developing applications
automatically based on ontology.

V. ACKNOWLEDGEMENTS

This work has received support from the European Project
H2020 Marie Sklodowska-Curie Actions (MSCA), Research
and Innovation Staff Exchange (RISE): Aniage project (High
Dimensional Heterogeneous Data based Animation Techniques
for Southeast Asian ICH Digital Content), No: 691215.

REFERENCES
[1] L.T.Loc, "Mua dan gian cac dan toc Viet Nam", in Thoi-dai Publishing

house, 1994.
[2] T.V. Son, Đ. T. Hoàn, N. T. M. Hương, "Mua dan gian mot so dan toc

vung Tay Bac", in Culture and Nation Publishing House, 2003.
[3] J. Davies, A. Duke, Y. Sure, "OntoShare - An Ontology-based Knowledge

Sharing System for virtual Communities of Practice", in proceedings of
the 28th International Florida Artificial Intelligence Research Society
Conference (FLAIRS), 2005.

[4] L.N. Canh, “Nghệ thuật múa Hà Nội truyền thống và hiện đại”, in Hà
Nội Publishing House, 2011.

[5] E.R. Katerina, I. Yannis, “A labanotation based ontology for representing
dance movement”, in Proceedings of the 9th Int Gesture Workshop, 2011.

[6] S. Sawsan, D.B. Dominique, M. Said, M.Pierre, “An ontology for video
human movement representation based on Benesh notation”, in Proceed-
ings of Multimedia Computing and Systems (ICMCS), 2012.

[7] S. Debastian. "Ontologies for representation of folk song metadata", in
Technical report, EHKZAARE201201, 2012.

[8] S.Renzo and A. Hernan, "Ontology and semantic wiki for an ICH
inventory", in Proceedings of Computing Conference (CLEI), 2013.

[9] L. Ballan, A. Del Bimbo and G. Serra, “Learning Ontology Rules for
Semantic Video Annotation”, in Proceedings of the 2nd ACM workshop
on Multi semantics, 2008

[10] L.N.Canh. "Múa tín ngưỡng dân gian Việt Nam", in Social Science
Publishing house, 1998.

[11] L.N.Canh. "Đại cương nghệ thuật múa", in Culture and information
publishing house, 2003.

67

Influence Factors in Software Productivity
A Tertiary Literature Review

Edson Oliveira, Tayana Conte, Marco Cristo
Institute of Computing

Federal University of Amazonas, UFAM
Manaus, Brazil

{edson.cesar,tayana,marco.cristo}@icomp.ufam.edu.br

Natasha Malveira Costa Valentim
Department of Informatics

Federal University of Paraná, UFPR
Curitiba, Brazil

natasha@inf.ufpr.br

Abstract — Software organizations need to increase their
productivity to stay competitive. Although there is a lot of
research on productivity in software development, software
organizations still do not know what are the most significant
productivity factors in which they should invest. This paper
presents a Tertiary Literature Review (TLR) that aimed to
identify and analyze Systematic Literature Reviews (SLR) on the
influence factors of software productivity reported in the
scientific literature. We extracted and classified the influence
factors into organizational factors (organizational dependent
factors) and human factors (people dependent factors). Using this
information, software organizations can improve the productivity
of their projects by evaluating the influence factors that best fit
their context.

Keywords – Tertiary Literature Review; Productivity Influence
Factors; Software Productivity.

I. INTRODUCTION
The competitive environment in software market today

requires organizations to increase their quality level and reduce
their production costs. The best way to reduce costs in software
development is by increasing productivity [1]. According to
Aquino and Meira [1], to reduce production costs by improving
productivity, the organization needs to select and implement
effective practices towards better productivity. These practices,
in turn, should be based on the most relevant productivity
factors for improving the organization's productivity [2].

Organizations’ managers are more aware of the importance
of factors that influence the productivity of the team involved
in software projects [3]. The problem is that software
productivity is influenced by many factors and organizations
often do not know what these factors are and neither where to
start [4]. Moreover, the impact of these factors on software
productivity may be different according to the context and
characteristics of the team, the developer, the project and the
entire organization [4].

According to Hernández-López et al. [5], many of the
factors that influence software productivity are known and used
in estimation models. However, it is not clear whether the
importance of the identified factors has changed over time,
given that the processes and tools have evolved considerably
since the initial studies [5]. Another problem is that there are

many factors that influence productivity so that taking all of
them into consideration in an analysis would not be
economically viable [4]. Therefore, it is best to focus on a
limited number of factors that have a greater impact on the
productivity of organizations.

This has motivated us to review the factors identified in the
literature. As there is already extensive research in the area,
with the existence of some Systematic Reviews on the subject,
we decided to conduct a Tertiary Literature Review (TLR) to
identify and classify the influence factors of software
productivity reported in the scientific literature. TLRs are
Systematic Literature Reviews (SLR) of secondary studies,
which are also SLRs [6]. This paper describes the tertiary
review we carried out, presenting the results obtained,
classifying the factors of influence found in human and
organizational factors.

Section 2 reports our background. Section 3 reports the
planning and execution of our TLR. In Section 4, we present
the data extracted from each SLR and answer our research
questions. We report some discussions of our TLR in Section 5
and our conclusions and future work in Section 6.

II. BACKGROUND
The first scientific researches involving the concept of

productivity in Software Engineering were published around
the beginning of the 80's [7, 8]. The subjects of these studies
involved the measurement of productivity and the search for
factors that influence productivity in software projects. During
the 90’s, there was a significant increase in the amount of
research on software productivity. Research on productivity
measurement continued, as well as the study of several factors
influencing productivity. These studies include, for instance,
factors influencing the productivity of software maintenance
[9] and the influence of software reuse on productivity [10].

From the year 2000, research involving productivity
explored more influence factors on productivity, such as factors
related to new methods, programming in pairs [11], and
software development techniques and refactoring in agile teams
[12]. Other research investigated productivity factors in
different contexts, such as in Enterprise Resource Planning
(ERP) [13], in open-source project development, and with
teams working continuously in different time zones [14].

DOI reference number: 10.18293/SEKE2018-149

68

In the literature, there are some secondary studies on the
factors studied here [4][15][16]. However, we did not identify
TLRs that add knowledge of secondary studies. This scenario
motivated us to carry out a tertiary study in order to capture the
current results of SLRs in software productivity.

III. TERTIARY LITERATURE REVIEW
In this section we describe in detail the protocol used to

conduct this tertiary literature review.

A. Goal and research questions
The Evidence-Based Software Engineering aims to apply

an evidence-based approach to both research and practice in
Software Engineering [17]. Evidence means the synthesis of
scientific studies related to a research theme or question. The
most reliable evidence comes from aggregating all empirical
studies on a particular topic [6]. The recommended method for
aggregating evidence is the Systematic Literature Review
(SLR), which is characterized as a secondary study. SLR aims
to establish a formal process for conducting a literature review,
avoiding the introduction of eventual biases. SLRs allow the
identification, evaluation, and interpretation of all available and
relevant research regarding a research question [18].

In order to evaluate the current state of the research based
on software productivity evidence, we conducted a tertiary
study. This study is a systematic review of secondary studies
and uses the same methodology of a SLR [18].

The main research question of this TLR is "What are the
productivity factors found by existing secondary studies on
productivity factors in software development?" This main
question serves as the basis for the following sub-questions:

SQ1 – What was the classification used to organize the
influence factors we have found?

SQ2 – What were the influence factors found by the
secondary studies?

The SQ1 sub-question aims to identify the classification
employed in the secondary studies to organize the factors
influencing productivity. The influence factors on productivity
are the focus of sub-question SQ2.

B. Search strategy
The search strategy of this TLR included the items listed

below.

Search sources: the digital libraries ACM Digital Library,
Engineering Village, IEEE Xplore Digital Library, Scopus and
Web of Science. These libraries were chosen due to the
experience reported by Dybå et al. [19].

Document type: for this tertiary review, we considered
only literature reviews published in scientific venues, such as
conference proceedings and journals, since these publications
have their content reviewed by other independent researchers
(peer review).

Search language: only papers in English, due to its
adoption by most of international Software Engineering
conferences and journals.

C. Search string
The search string was based on terms selected from a

reference list composed by four secondary studies on
productivity factors identified in an earlier exploratory
literature review [4][20][15][16] and also on terms used in a
tertiary review carried out by Kitchenham et al. [6]. We
classified these terms into three groups: (i) terms associated
with software development, (ii) terms associated with
productivity factors of software development, and (iii) terms
associated with secondary studies. The first group relates to the
context of this tertiary review, based on the words described in
the title and abstract of the reference list used. The second
bases on the search strings used by the studies of the reference
list. Finally, the third relates to the search for secondary studies
from the tertiary review by Kitchenham et al. [6]. The search
string was defined as shown in TABLE 1.

TABLE 1. SEARCH STRING

Group Search String
Software

Development
(“software development” OR “software engineering”)

AND

Productivity
Factors

(“factor” OR “indicator” OR “driver”) AND

(“productivity” OR “development efficiency” OR
“development effectiveness” OR “development

performance”) AND

Secondary
Studies

(“review” OR “overview” OR “literature” OR “meta-
analysis” OR “past studies” OR “in-depth survey” OR
“subject matter expert” OR “analysis of research” OR

“empirical body of knowledge” OR “overview of
existing research” OR “body of published research”)

We carried out the analysis of the data extracted in this
tertiary review by using the content analysis technique, which
is used to categorize and determine the frequency of these
categories, facilitating the analysis of the evidence [21].

D. Criteria for studies selection
The inclusion criterion (IC) for the 1st filter is: "the

publication describes a literature review on productivity factors
in software development". The exclusion criterion (EC) is a
negation of the inclusion criteria. We used the criteria of the 1st
filter to select the publications by reading the title and the
abstract. The criteria adopted in the 2nd filter are presented in
TABLE 2.

TABLE 2. INCLUSION (IC) AND EXCLUSION (EC) CRITERIA FOR THE 2ND
FILTER

Criteria Description

IC.1
The publication is a literature systematic review, with a
defined search process on productivity factors in software
development.

EC.1 The publication is not a secondary study or does not have a
defined search process.

EC.2 The publication is not a secondary study on productivity
factors in software development.

EC.3 The publication does not have a list of extracted productivity
factors.

EC.4

The publication is not a scientific paper, e.g., it is a chapter of
a book. Thus, we are not sure that it was reviewed by another
researcher (peer review).

EC.5 The publication is not in English or is not available.

69

In the 2nd filter, we applied the inclusion and exclusion
criteria based on the complete reading of the selected
publications after the 1st filter. As an example, criterion EC.1
excludes publications that did not present the description of a
defined search process, as they are not characterized as a
systematic literature review, following the same criterion also
adopted by Kitchenham et al. [6].

E. Data extraction strategy
We extracted the data from the selected publications for

analysis and interpretation in order to answer each of the
research sub-questions. We classified the data extracted in this
tertiary review as productivity factor classification data and
productivity factor specific data.

Productivity factor classification data, which includes the
category names and descriptions in the taxonomy used to
classify the factors, is important to answer the SQ1 sub-
question. This data may indicate if there is a common
classification adopted by the researchers. The productivity
factors specific data, their names and descriptions, are
important in order to respond the SQ2 sub-question.

F. Studies selected after performing the tertiary review
The first two authors of this work carried out the search and

selection strategies defined in this tertiary review, while the
others reviewed all the work. We found 353 publications after
searching in the selected digital libraries. After removing
duplicates, 240 publications were selected for filtering. Among
them, 221 were excluded because they did not meet the
inclusion criteria for the first filter. We read the remaining 19
publications thoroughly and, at the end of the selection, only 4
publications met the criteria of the second filter (TABLE 3).

To assess the reliability of applying the defined criteria
[27], the two researchers applied the selection criteria
independently in a random sample of 30 publications using the
Kappa statistical test [22] to assess agreement. The result of
this agreement evaluation, using data from the first filter, was
significant (kappa = 0.783), according to the suggestion
proposed by Landis and Koch [23] for interpreting this value.

At the end of the process, we selected 4 publications
describing secondary studies on factors influencing
productivity, containing a total of 139 different factors. Each
publication presented a classification of factors found in
different groups. The period of these publications is recent
(2008 to 2015) and reflects the increasing interest of
researchers in factors influencing productivity. In this paper,
we will refer to the reviews carried out by Wagner and Ruhe
[16], Trendowicz and Münch [4], Paiva et al. [15] and Dutra et
al. [20] as R1, R2, R3, and R4, respectively.

IV. RESULTS
In this section, we present the results obtained for the two

research questions proposed for this study. For the first
question, we present and analyze the classification adopted by
each secondary study selected. For the second research
question, we present and classify the factors extracted from
each of the secondary studies selected.

A. SQ1. What was the classification used to organize the
factors we have found?
To facilitate analysis, we grouped together the factors,

extracted from primary studies, with similar meaning. In two
reviews, the resulting category groups were grouped again,
yielding a hierarchical classification of influence factors. Only
the review by Paiva et al. [15] (R3) did not adopt any
productivity factor classification. Among the adopted
classifications, the R1 review defined and used its own
classification, while the other two (R2 and R4) based their
classification on other studies. As can be seen in TABLE 3, no
common classification of factors of productivity influence can
be found.

Wagner and Ruhe [16] classified the factors found in two
major groups: (i) technical factors, which are factors related to
the product, the process, and the development environment;
and (ii) non-technical factors, i.e., factors present intangibly in
the development team and in the work environment. The
authors also considered these non-technical factors as human
factors.

TABLE 3. CLASSIFICATIONS OF FACTORS IN THE LITERATURE REVIEWS

Review Classification

R1

Wagner and
Ruhe [16]

Technical Factors:
§ Product Factors
§ Process Factors
§ Development Environment Factors

Non-technical Factors:
§ Project Factors
§ Organizational Culture Factors
§ Team Culture Factors
§ Capability and Experience Factors
§ Work Environment Factors

R2
Trendowicz and

Münch [4]

Influence Factors:
§ Product Factors
§ Process Factors
§ Project Factors
§ Personnel Factors

Context Factors
R3

Paiva et al. [15] No classification defined

R4
Dutra et al. [20]

Team Emergent States Factors
Individual Characteristics Factors
Support Tasks Factors

Trendowicz and Münch [4] (R2 review) first divided the
extracted factors into context and influence factors. According
to the authors, given a productivity model, the factors
considered by the model are the influence factors; while the
factors absent from the model are the context factors, i.e., the
ones present in the context and considered constant for the
defined model. The authors further subdivided the influence
factors into four groups: product, personnel, project and
process factors. This classification was based on the ones by
Fenton and Pfleeger [24], Jones [25] and Ruhe et al. [26].

Dutra et al. [20] (R4 review) categorized the extracted
factors according to the unit of analysis indicated in the
primary study. That resulted in three groups: (i) team emergent
states factors, (ii) individual characteristics factors and (iii)
support tasks factors. This classification was based on the work

70

by Marks et al. [27], which studied the factors that influence
software development in high-performance teams.

Finally, we answer SQ1 research question by noting that
there is no single common classification, but there are
similarities among the adopted taxonomies. Factors related to
the product, the process, the project and the people (team) were
common categories found in the classifications.

B. SQ2. What are the influence factors on productivity found
by the secondary studies?
The description of the factors in primary studies is often

incomplete and limited only to the name of the factor,
according to Trendowicz and Münch [4] (revision R2). Thus,
for an analysis of the factors found in literature, the authors of
the selected publications used integration strategies to group
factors with the same meaning or names. After that, the factors
were grouped according to the hierarchical classification
adopted in each systematic review.

Wagner and Ruhe [16] extracted 51 factors, integrating
them through the use of similar terms. Trendowicz and Münch
[4] extracted 246 factors, integrating them according to the
name and description used by the primary studies. Paiva et al.
[15] performed the extraction of 32 factors, but without
explaining the process used. Dutra et al. [20] obtained 15
factors and integrated them according to their semantic
similarity. As in the selected reviews, it was also necessary to
integrate the factors extracted from these secondary studies.
The strategy used was to integrate factors with a similar name
and/or description. Then, factors not integrated with any other
were grouped under the generic name "other characteristics".
The results obtained after this process are presented in
TABLE 4 and TABLE 5.

TABLE 4. HUMAN FACTORS EXTRACTED FROM THE SLRS

Factor Extracted Factor

Capability and
Experience

Experience (R3), Programming language experience
(R2), Teamwork capabilities (R2), Project manager
experience & skills (R2), Application Experience &
Familiarity (R2), Overall personnel experience (R2),
Tool experience (R2), Applications Experience (R1),
Language and Tool Experience (R1), Manager
Application Experience (R1), Platform Experience
(R1), Analyst Capability (R1), Manager Capability
(R1), Programmer Capability (R1)

Knowledge Knowledge (R4), Domain of the Application (R3),
Task-specific expertise (R2)

Clear Goal Clear Goals (R1), Goal Setting (R4)

Diversity Diversity (R4), Developer Temperaments (R1)
Motivation Motivation (R3), Motivation (R4)

Cohesion and
Team

Communication

Communication (R4), Cohesion (R4), Communication
(R3), Interpersonal Relationship (R3), Team
Cohesion/communication (R2), Communication (R1),
Team Cohesion (R1)

Other
Individual

Characteristics

Attitudes (R4), Intelligence (R4), Learning ability
(R4), Personality (R4), Emotional Intelligence (R4),
Empathy (R4), Leadership Style (R4), Work
satisfaction (R4), Commitment (R3)

Other Team
Characteristics

Mutual respect (R4), Self-efficacy (R4), Trust (R4),
Autonomy (R4), Sense of Eliteness (R1), Team
Identity (R1), Fairness (R1)

TABLE 5. ORGANIZATIONAL FACTORS EXTRACTED FROM THE SLRS

Factor Extracted Factor

Architecture Architecture (R3), Architecture Complexity (R2),
Architecture Risk Resolution (R1)

Complexity
Code complexity (R2), Complexity of interface to
other systems (R2), Product Complexity (R1), User
Interface (R1), Required Software Reliability (R1)

Consistent
Requirements

Consistent Requirements (R3), Requirements
Management (R2), Requirements Stability (R1)

Complexity and
Database Size

Database Size & Complexity (R2), Database Size
(R1)

Decentralized
Development

Decentralized development (R2), Physical Separation
(R1)

Development
Constraints

Development Flexibility (R1), Execution Time
Constraints (R1), Main Storage Constraint (R1)

Development Tools Development Tool (R3), CASE tools (R2), Testing
tools (R2), Use of Software Tools (R1)

Development Type
Agile Methodology (R3), Type of Project (R3),
Methodology (R3), Development Type (R2), Life
cycle model (R2), Domain (R2)

Documentation Documentation (R3), Documentation match to life-
cycle needs (R1)

Knowledge
Management

Shared Information (R4), Knowledge Management
(R3)

Modernity Modernity (R3), Technological Gap (R3), Use of
Modern Development Practices (R3)

Process Maturity

Maturity Level (R4), Process maturity & stability
(R2), Process Maturity (R1)

Programming
Language

Programming Language (R3), Programming
Language (R2), Programming Language (R1)

Project
Management

Managerial Involvement (R4), Project Management
(R3)

Project Size Project Size (R3), Project Duration (R1), Software
Size (R1)

Prototyping Prototyping (R3), Early Prototyping (R1)

Code Reuse

Code Reuse (R3), Quality of reused assets (R2),
Reuse level (R2), Developed for Reusability (R1),
Reuse (R1)

Schedule Pressure Schedule pressure (R2), Schedule (R1)

Team Size Team Size (R4), Team Size (R3), Team Size (R2),
Average Team Size (R1)

Telecommunication
Facilities

Home Office (R3), Telecommunication Facilities
(R1)

Testing Test (R3), Testing (R2), Effective and Efficient V&V
(R1)

Time
Fragmentation E-Factor (R1), Time Fragmentation (R1)

Training Training (R3), Training level (R2)
Staff Turnover Turnover (R4), Staff turnover (R2), Turnover (R1)

Work Environment Work Environment (R4), Workstation (R4), Proper
Workplace (R1), Camaraderie (R1)

Other Project
Factors

Guard Activities (R4), Work breakdown (R4), Target
platform (R2), Reviews & inspections (R2), Team
structure (R2), Precedentedness (R1), Completeness
of Design (R1), Platform Volatility (R1), Hardware
Concurrent Development (R1), Product Quality (R1)

Other Factors of
the Organization

Organizational Commitment (R4), Benefits (R3),
Internet Access (R3), Physical Location (R3), Salary
(R3), Credibility (R1), Respect (R1), Support for
Innovation (R1)

As we did not find a common classification (SQ1), we
adopted one based on factor similarities, organizing them into
human factors (TABLE 4) and organizational factors (TABLE
5). The former is directly controlled by the software

71

organization (product, process, project, work environment, and
development environment). The latter depends on the people
involved in the organization's projects (culture, capabilities,
and experience).

We now answer the sub-question SQ2 by stating that there
are at least 35 influence factors in software productivity,
extracted from four secondary studies existing in the scientific
literature.

V. DISCUSSION
In this study, we identified 35 influence factors on

productivity from four secondary studies on the same subject in
recent years. These factors possibly represent the most
significant to be considered by software organizations. We did
not find any common classification. However, we found some
similarities between the categories. We used these similarities
to create the classification we adopted in this work: human and
organizational factors.

Wagner and Ruhe [16] (R1) reinforced the importance of
the existence of a list of productivity factors to assist software
organizations, in which we agree. Having a list of factors, it
helps software organizations where to begin their control and
analysis of productivity factors in their context. In this way,
they find out what factors have the most significant impact on
their software projects, what work and what do not work.
Trendowicz and Münch [4] (R2) concluded that their biggest
result is to observe that the success of the software project still
depends on the people involved. Paiva et al. [15] (R3) observed
that only experience and consistent requirements were
considered as important by both researchers and developers.
Dutra et al. [20] (R4) observed that team communication and
individual motivation were the most researched factors within
the context of high-performance teams.

It is clear, from the conclusions of these secondary studies,
the importance of human factors for software development. An
evidence of the importance of people in software development
is noted in the number of factors related to the capability and
experience of individuals in the various roles existing in
software projects. Nevertheless, this TLR clearly indicates the
large interest in studying organizational factors. There are far
more studies on organizational factors than on human factors.
This contradiction has already been noted by Meyer et al. [28]
and explored by Lenberg et al. [29] in their work advocating
for Behavioral Software Engineering (BSE).

For software organizations to improve the productivity of
their software projects, they need to intervene in factors that
can actually influence productivity in their projects. The
classification adopted in this TLR indicates the point at which
the intervention should occur: in people or in the organization
itself. Intervening in the organization itself, through methods,
processes, and tools, is much simpler than intervening with
people [30]. This may explain a large number of organizational
factors researched. However, it is the people who perform the
software development process and, therefore, ignore the human
factors may explain the dissatisfaction with some development
methodologies: they do not consider real organizations [30].
Therefore, it is important for organizations to balance their
productivity improvement actions by considering a

combination of human and organizational factors that are
compatible with their organizational context.

VI. CONCLUSIONS AND FUTURE WORK
This Tertiary Literature Review aimed to identify factors

influencing productivity. We identified and extracted 35 factors
from four systematic reviews on factors influencing
productivity. We did not observe any common classification
adopted in these studies. This is due to the fact that the
classifications adopted depend a lot on the focus that one
wishes to investigate. In this study, we classified the extracted
factors in organizational and human factors. We also note that
organizational factors were more investigated than human
factors.

Every study has threats that may affect the validity of its
results [31]. The main threat to the validity of the conclusion of
this tertiary review is how general are the observed results,
since the search strategy may not have collected some relevant
papers. To mitigate this threat, we used five different digital
libraries, based on the experience reported by Dybå et al. [19].
Other threat to validity is the classification adopted for the
factors we have found. This threat was mitigated by the
participation of other researchers who also have reviewed our
classification. Another threat to validity is the extra layer of
abstraction added to integrate factors. This threat was mitigated
by adopting similar integration strategies of the selected
studies, reducing the side effects caused by this extra layer.
Finally, another threat to the validity of the results is the
possibility that the author of this study has introduced his bias
during the execution of the review protocol. To mitigate this
threat, another more experienced researcher reviewed the
process of implementing this systematic review.

The next step of this research is to investigate in vivo, in
software organizations, what are the influence factors observed
in their developers. Comparing the results of this TLR with in
vivo observations may clarify the importance of influencing
factors within the context of productivity within organizations.

ACKNOWLEDGMENT
We would like to thank the financial support granted

by SEFAZ, UFAM, CNPq through processes numbers
423149/2016-4 and 311494/2017-0, and CAPES through
process number 175956/2013. Finally, we also thank the
researchers of USES group for their support during this study.

REFERENCES
[1] G. S. Aquino Junior, and S. R. L. Meira, 2009. Towards effective

productivity measurement in software projects. In Proceedings of the 4th
International Conference on Software Engineering Advances (ICSEA
2009) (Porto, Portugal, 2009). Proc. 4th Int. Conf. Softw. Eng. Adv.
(ICSEA 2009). IEEE. 241–249. DOI=
http://dx.doi.org/10.1109/ICSEA.2009.44.

[2] S. C. de B. Sampaio, E. A. Barros, G. S. de Aquino Junior, M. J. C.
Silva, and S. R. de L. Meira, 2010. A Review of Productivity Factors
and Strategies on Software Development. In Proceedings of the 5th
International Conference on Software Engineering Advances (ICSEA
2010) (Nice, França, 2010). Proc. 5th Int. Conf. Softw. Eng. Adv.
(ICSEA 2010). IEEE. 196–204. DOI=
http://dx.doi.org/10.1109/ICSEA.2010.37.

72

[3] C. Melo, D. S. Cruzes, F. Kon, and R. Conradi, 2011. Agile Team
Perceptions of Productivity Factors. In Proceedings of the 2011 Agile
Conference (Salt Lake City, UT, Aug. 2011). Proc. 2011 Agil. Conf.
IEEE. 57–66. DOI= http://dx.doi.org/10.1109/AGILE.2011.35.

[4] A. Trendowicz, and J. Münch, 2009. Factors Influencing Software
Development Productivity – State- of- the- Art and Industrial
Experiences. Advances in Computers. 77, (2009), 185–241. DOI=
http://dx.doi.org/10.1016/S0065-2458(09)01206-6.

[5] A. Hernández-López, R. Colomo-Palacios, and A. García-Crespo, 2013.
Software Engineering Job Productivity – A Systematic Review.
International Journal of Software Engineering and Knowledge
Engineering. 23, 3 (Apr. 2013), 387–406. DOI=
http://dx.doi.org/10.1142/S0218194013500125.

[6] B. Kitchenham, R. Pretorius, D. Budgen, O. Pearl Brereton, M. Turner,
M. Niazi, and S. Linkman, 2010. Systematic literature reviews in
software engineering – A tertiary study. Information and Software
Technology. 52, 8 (Aug. 2010), 792–805. DOI=
http://dx.doi.org/10.1016/j.infsof.2010.03.006.

[7] A. J. Albrecht, 1979. Measuring application development productivity.
In Proceedings of the Joint SHARE, GUIDE, and IBM application
development symposium (Monterey, California, 1979). Proc. Jt. SHARE,
Guid. IBM Appl. Dev. Symp. IBM Corporation. 83–92.

[8] E. Chrysler, 1978. Some basic determinants of computer programming
productivity. Communications of the ACM. 21, 6 (Jun. 1978), 472–483.
DOI= http://dx.doi.org/10.1145/359511.359523.

[9] G. K. Gill, and C. F. Kemerer, 1991. Cyclomatic complexity density and
software maintenance productivity. IEEE Transactions on Software
Engineering. 17, 12 (1991), 1284–1288. DOI=
http://dx.doi.org/10.1109/32.106988.

[10] C. Deng-Jyi, and P. J. Lee, 1993. On the study of software reuse using
reusable C++ components. Journal of Systems and Software. 20, 1
(1993), 19–36. DOI= http://dx.doi.org/10.1016/0164-1212(93)90046-Z.

[11] K. M. Lui, and K. C. C. Chan, 2006. Pair programming productivity:
Novice–novice vs. expert–expert. International Journal of Human-
Computer Studies. 64, 9 (Sep. 2006), 915–925. DOI=
http://dx.doi.org/10.1016/j.ijhcs.2006.04.010.

[12] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, 2008.
A case study on the impact of refactoring on quality and productivity in
an agile team. Lecture Notes in Computer Science. 5082, (2008), 252–
266.

[13] E. Stensrud, and I. Myrtveit, 2003. Identifying high performance ERP
projects. IEEE Transactions on Software Engineering. 29, 5 (May 2003),
398–416. DOI= http://dx.doi.org/10.1109/TSE.2003.1199070.

[14] J. A. Colazo, 2008. Following the sun: Exploring productivity in
temporally dispersed teams. 14th Americas Conference on Information
Systems, AMCIS 2008. 3, (2008), 1833–1839.

[15] E. Paiva, D. Barbosa, R. Lima, and A. Albuquerque, 2010. Factors that
Influence the Productivity of Software Developers in a Developer View.
In Innovations in Computing Sciences and Software Engineering, T.
Sobh and K. Elleithy, eds. Springer Netherlands. 99–104. DOI=
http://dx.doi.org/10.1007/978-90-481-9112-3_17.

[16] S. Wagner, and M. Ruhe, 2008. A Systematic Review of Productivity
Factors in Software Development. In Proceedings of the 2nd
International Software Productivity Analysis and Cost Estimation
(SPACE 2008) (Beijing, China, 2008). Proc. 2nd Int. Softw. Product.
Anal. Cost Estim. (sp. 2008).

[17] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, 2009. Systematic literature reviews in software engineering
– A systematic literature review. Information and Software Technology.
51, 1 (Jan. 2009), 7–15. DOI=
http://dx.doi.org/10.1016/j.infsof.2008.09.009.

[18] B. Kitchenham, and S. Charters, 2007. Guidelines for performing
Systematic Literature Reviews in Software Engineering.

[19] T. Dybå, T. Dingsøyr, and G. K. Hanssen, 2007. Applying systematic
reviews to diverse study types: An experience report. Proceedings - 1st
International Symposium on Empirical Software Engineering and
Measurement, ESEM 2007. 7465 (2007), 225–234. DOI=
http://dx.doi.org/10.1109/ESEM.2007.21.

[20] A. C. S. Dutra, R. Prikladnicki, and C. Franca, 2015. What Do We
Know about High Performance Teams in Software Engineering? Results
from a Systematic Literature Review. In 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications (Aug.
2015). 2015 41st Euromicro Conf. Softw. Eng. Adv. Appl. IEEE. 183–
190. DOI= http://dx.doi.org/10.1109/SEAA.2015.24.

[21] M. Dixon-Woods, S. Agarwal, D. Jones, B. Young, and A. Sutton, 2005.
Synthesising qualitative and quantitative evidence: a review of possible
methods. Journal of Health Services Research and Policy. 10, 1 (Jan.
2005), 45–53. DOI= http://dx.doi.org/10.1258/1355819052801804.

[22] J. Cohen, 1960. A coefficient of agreement of nominal scales.
Educational and Psychological Measurement. 20, 1 (1960), 37–46.
DOI= http://dx.doi.org/10.1177/001316446002000104.

[23] J. R. Landis, and G. G. Koch, 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics. 33, 1 (Mar. 1977), 159.
DOI= http://dx.doi.org/10.2307/2529310.

[24] N. E. Fenton, and S. L. Pfleeger, 1998. Software Metrics: A Rigorous
and Practical Approach. PWS Publishing Co., Boston, MA, USA.

[25] C. Jones, 2005. Software Cost Estimating Methods for Large Projects.
CrossTalk, The Journal of Defense Software Engineering. 18, 4 (2005),
8–12.

[26] M. Ruhe, R. Jeffery, and I. Wieczorek, 2003. Cost estimation for web
applications. 25th International Conference on Software Engineering,
2003. Proceedings. 6, (2003), 285–294. DOI=
http://dx.doi.org/10.1109/ICSE.2003.1201208.

[27] M. A. Marks, J. E. Mathieu, and S. J. Zaccaro, 2001. A temporally based
framework and taxonomy of team processes. Academy of management
review. 26, 3 (2001), 356–376.

[28] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, 2014.
Software developers’ perceptions of productivity. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (New York, New York, USA, 2014). Proc. 22nd
ACM SIGSOFT Int. Symp. Found. Softw. Eng. ACM Press. 19–29.
DOI= http://dx.doi.org/10.1145/2635868.2635892.

[29] P. Lenberg, R. Feldt, and L. G. G. Wallgren, 2015. Behavioral software
engineering: A definition and systematic literature review. Journal of
Systems and Software. 107, (Sep. 2015), 15–37. DOI=
http://dx.doi.org/10.1016/j.jss.2015.04.084.

[30] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, 1999. Action
research. Communications of the ACM. 42, 1 (1999), 94–97. DOI=
http://dx.doi.org/10.1145/291469.291479.

[31] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, 2012. Experimentation in Software Engineering. Springer
Berlin Heidelberg, Berlin, Heidelberg.

73

Explanation Templates for Case-based Reasoning in
Collaborative Risk Management

Nielsen L. R. Machado1, Lisandra M. Fontoura2, Rafael H. Bordini1, Luis A. L. Silva2
1 Programa de Pós-Graduação em Ciência da Computação, PUCRS. Porto Alegre, RS, Brazil

nielsen.machado@acad.pucrs.br, rafael.bordini@pucrs.br
2 Programa de Pós-Graduação em Ciência da Computação, UFSM. Santa Maria, RS, Brazil

{lisandramf, silva.luisalvaro}@gmail.com

Abstract - We have put forward an approach to online
collaborative discussion of software development problems based
on Argumentation theory. Having records of past discussions can
significantly help solve problems in new projects, and CBR
techniques are used to retrieve the most similar cases. However,
long discussions on past projects still contain too much
information to provide support in new discussions. To address
this problem, in this paper we introduce the idea of explanation
templates that are able to summarize past experiences,
particularly for risk management discussions. We formalize this
notion of template, introduce the main templates we have
developed to support explanation of past experience with risk
management, and report the results of a case study on a real-
world software project to assess the usefulness of those templates.

Keywords – Explanation, Argumentation, Case-Based
Reasoning, Risk Management

I. INTRODUCTION1
Explanation and argumentation are intertwined activities in

case scenarios of problem-solving. In many applications,
argumentation-based dialogues [1, 2] contain rich information
in the locutions exchanged by users, which in turn allow
explanations to be more thorough. In this context, this work
investigates a dialogue-based explanation approach [1] to select
and display prominent argumentation characteristics recorded
in cases for Case-Based Reasoning (CBR) systems [3]. In our
project, we are particularly interested in risk management
discussions conducted by stakeholders of software projects,
where facts and arguments presented in discussion cases
capture these risk management experiences [4-6]. As a result of
queries posed by users in such CBR systems, these cases are
retrieved from risk management case bases allowing such facts
and arguments recorded in the most similar cases to be reused
in the analysis of new problems.

To assess the content of cases in order to constructed well-
grounded experience-based solutions for new problems,
different explanation techniques have been discussed in the
CBR literature [7-11]. By themselves, argumentation trees
recording user arguments in the structure of cases can be
assessed by users as concrete narrative explanations of
problem-solving situations. In a scenario in which CBR
becomes a form of explanation-based reasoning, we show that
explanation templates can be explored to draw users’ attention
to the most relevant aspects of the cases of interest, such as

1 DOI reference number: 10.18293/SEKE2018-098

“highly discussed and questioned arguments”, and “the balance
of pro and con arguments”, for instance. In our project, these
argumentation characteristics are directed to the analysis of
debate tasks for the identification, analysis, and response
planning of risks in software projects [12, 13], in a scenario in
which CBR supports the development of experience-based
collaborative risk management tasks [4-6]. In effect, the
proposed templates allow users to focus on meaningful
combinations of project stakeholder moves of argumentation,
as for instance, the identification of pros and cons of successful
risk proposals, while other user arguments posed in these
debates are temporarily omitted when cases retrieved from case
bases are inspected. As a way of promoting the reuse of
problem-solving information recorded in cases, these templates
capture customized forms of selecting and displaying locutions
defined in a dialogue protocol [5, 14] which is used in the
collection and organization of risk management debates. As
implemented in the RD System v3.0 [4], the usefulness of the
templates was evaluated in two different test scenarios: a case
study and a set of experiments involving different participants.
The overall results show positive evidence for the usefulness of
the templates proposed in the analysis and reuse of
argumentation information recorded in the solution of risk
management problem situations.

The paper is organized as follows. Section 2 reviews basic
concepts of CBR, Argumentation, and explanation in AI.
Section 3 then formalizes and informally explains what
templates are and how they are used to filter the most relevant
information for the users. The proposed templates along with
experimental results are discussed in sections 4 and 5,
respectively. Finally, final remarks are presented.

II. BACKGROUND TO THIS WORK
The most common form of explanation in CBR systems is

related to the fact that users using these systems are able to find
out the most similar cases to a current problem situation. Due
to these similarity computations, as reviewed in [7], the case
retrieved can offer a concrete explanation about how to make a
decision on a new problem. In effect, as a past case was
decided in such a way, the current problem also should be
decided in this way. That is because those case situations have
relevant similarities between them. In practice, past cases
reflect real problem-solving situations, often providing
convincing support to the conclusions that CBR systems
achieve. Precedent-based explanations are also crucial in legal
applications [15]. As analyzed in [8], these kinds of

74

L

C

explanations are frequently attractive to users. Among other
reasons, explanations grounded in past experiences are likely to
be more convincing for users than explanations based on
standardized explanation rules. In CBR, such explanation
capabilities can be achieved when filtering and ranking
methods are explored. In recommendation problems [10], for
instance, besides retrieving a customized list of items, some
systems also show reasons to support such recommendations.

Decision-making is subject to discussion in many CBR
applications. To reach decisions, case problems can be
analyzed through different user arguments. As described in [5,
14], customized dialogue protocols (or sets of locutions along
with their interaction rules) can mediate risk management
discussions. As organized in cases for CBR, large numbers of
user arguments can be recorded in argumentation trees in the
body of cases. There, the tree nodes capture the textual content
of the user arguments (e.g. Fig. 1), which are indexed through
the use of general kinds of locutions such as ask, inform,
argument_pro, argument_con, withdraw, summarize, etc. Risk
management tasks also involve discussions which are
particularly directed to the identification, analysis and response
planning of project risks [12, 13]. Due to this fact, a dialogue
protocol to organize the development of collaborative risk
management tasks can also be defined by domain-specific
locutions, such as: propose_risk for supporting users to pose
risk statements in risk identification tasks; propose_probability,
propose_impact to deal with risk analysis tasks; prioritize_risk
for the identification of the most important risks; and
propose_plan for the statement of risk treatment plans to deal
with the prioritized risks.

III. FORMALIZATION OF TEMPLATES
Explanation templates support project stakeholders by

constructing summaries of risk management discussions. Such
discussions are most commonly retrieved by users when
different kinds of queries are posed in CBR systems (see
examples of queries in [4]). Based on standard filtering and
tree-traverse techniques applied to the examination of
argumentation trees, where the nodes of these trees represent
user arguments advanced according to a dialogue protocol for
risk management, template-based explanations can be
computed. So, templates are detailed in terms of locutions used
in the organization of the discussions. When templates are
applied on argumentation trees represented in retrieved cases,
selected parts of those discussions are separately displayed,
whereas other arguments recorded are temporarily hidden.
Note the importance of this combined approach for users:
besides using CBR to retrieve and rank the most similar cases,
users can then use templates to further examine the retrieval
results so that only the most relevant arguments need to be
read. We now formalize the idea of templates.

Let L be the set of all locutions [5] used in the
argumentation-based risk management discussions stored in
cases. On top of this, we describe simple expressions (very
similar to regular expressions) to define a constraint over the
stored arguments. We later use these constraints to formalize
templates and after that we explain the semantics of each type
of expression. Syntactically, the set of all constraints C is
inductively defined as follows:

1. if l ∈ L, then l ∈ C; also _ ∈ C, where _ is a special symbol
used to refer to any l ∈ L.

2. if c1, c2 ∈ C, then (c1 · c2) ∈ C; this is similar to the usual
concatenation operation;

3. if c ∈ C, then (c)? ∈ C; this is the option operation, as usual
(i.e., it denotes 0 or 1 occurrence of expression c);

4. if c ∈ C, then (c)* ∈ C; this is the repetition operation, as
usual (it denotes 0 or more occurrences of expression c);

5. if l ∈ L, then (l, n) ∈ C, where n ∈ ℕ; this is called the
threshold operation (we only display arguments within
retrieved cases with at least n occurrences of a locution
satisfying c);

6. if l1, l2 ∈ L, then (l1, l2) ∈ C; we call this the balance
operation (the locution of interest is more frequent than its
complement);

7. nothing else is in C.

Then, formally, a template t is a tuple (i, S, D) where:

• i is the template ID (a unique name used to refer to that
template in the template base);

• S is a set of selection constraints for selecting arguments
within retrieved cases; a particular argument is only
selected for display if it satisfies all constraints s ∈ S;

• D is a set of display constraints: arguments within retrieved
cases satisfying the constraints in S are selected to be show
to the user, but only the dialogue portions satisfying all
constraints d ∈ D are displayed.

The semantics of each kind of expression is as follows. A
concatenation, such as l1 · l2 with l1, l2 ∈ L, is used to refer to a
dialogue excerpt where a locution l2 is used within a dialogue
context started with locution l1. The option and repetition
expressions are exactly as in regular expressions. Note that
using the _ operator, concatenation, and repetition we can
easily define a constraint saying a particular locution may
appear arbitrarily nested after another (e.g., l1 · _* · l2). These
expressions allow for arbitrarily long but finite concatenations
of any locutions, although in practice some combinations of
locutions are not allowed (see [5]). However, such details are
not particularly relevant to our formalization here.

The threshold operation (l, n) is used to constrain the
selection of arguments to those which have at least n
occurrences of locution l. In practice, n is implicitly set to be
the average number of occurrences of that locution in the
retrieved cases. This allows, for example, expressing that only
the proposal arguments with most asked questions should be
selected (where by “most” we mean above average). Finally, a
balance operation (l1, l2) ∈ S works as follows. We require that
either l1 ∈ D or l2 ∈ D, but not both. If l1 ∈ D, a particular
proposal argument is only selected for display if the number of
occurrences of l1 is greater than that of l2 (and similarly if l2 ∈
D instead). This is useful for opposing locutions such as, for
example, accepting or rejecting an argument. As an example,
consider a template to select only the most questioned risk
proposals, those which had the most occurrences of ask

75

locutions, assuming the average number of questions typically
asked is n. For the sake of explaining the formalization, assume
we want to examine debates where the ask locution is above
average but we only want the user to see the ask questions.
Such a simple template could be formalized as simply <id1,
{propose_risk · * · (ask, n)}, {propose_risk · _* · (ask, n)}> .

IV. EXPLANATION TEMPLATES IN CBR SYSTEMS
Having explained how templates work and formalized

them, we now proceed to present (informally only, due to
space) various examples of the templates we have developed to
support collaborative argumentation-based debate of ongoing
risk management situations. In that context, three general types
of templates can be identified, as discussed below.

The argumentation-based explanation templates select
and display general purpose argumentation characteristics in
argumentation trees. The template goal is detailed in terms of
different arguments that appear when these dialogue protocols
are used by users. To capture how and why decisions were
taken, the template view of an argumentation tree is focused on
properties such as highly discussed and questioned arguments
and the balance of pro and con arguments. In dialogue
protocols [14], for example, ask, inform, argument_pro and
argument_con are standard locutions used in the identification
of such argumentation characteristics.

The domain-specific explanation templates select and
display domain argumentation characteristics in argumentation
trees where these moves of dialogue are directly linked to the
development of problem-solving tasks in certain application
domains. In risk management, prominent debate tasks are the
identification, analysis and response planning of risks [12, 13].
In our dialogue protocol for risk management [5], these tasks
are mainly identified when project stakeholders use
propose_risk propose_impact, propose_probability and
propose_plan locutions, which are used in the identification of
domain argumentation characteristics.

The domain and argumentation-based explanation
templates select and display both domain-specific and general-
purpose argumentation characteristics in argumentation trees.
In risk management, the use of such templates allows users to
understand why decisions were made based on arguments. For
example, debate participants can start discussions by advancing
risk proposals for targeted projects. In the argumentation sub-
tree which is rooted on such propose_risk locutions,
participants can advance arguments not only to ask further
information about the proposals posed originally, but also to
advance pro and con arguments regarding the relevance of the
risks. Having such debates retrieved from CBR queries, a
template to select and display identified risks can be combined
with a template to highlight proposals that were discussed by a
large number of user arguments. So, the resulting template
focus on propose_risk that have the largest number of ask,
inform, argument_pro and argument_con locutions.

A. Argumentation-based explanation templates
Explanatory argumentation characteristics have an

important role in the analysis of debates. Prominent
characteristics are the balance of pros and cons for debate
proposals, the fact that certain proposals may be subjected to

more lengthy discussions and more heavily questioned than
others, etc. Based on such properties, argumentation-based
templates are proposed:

(A1) The template for the most discussed proposals
selects and displays proposals because they are characterized as
the most discussed in available cases. To do so, this template
analyzes argumentation sub-trees rooted on propose
arguments, and it checks which ones contain the highest
number of user’ arguments. To show the list of propose
arguments to users, the decision on whether such proposals are
considered as highly discussed is detailed by a threshold value
in the template specification. Such decision is taken in the
argumentation context of the case retrieved from a given query,
since numerical criteria for deciding whether proposals are the
most discussed may be different among cases.

(A2) The template for proposals with the highest
number of questions asked selects and displays proposals
because they are highly questioned by users. To do so,
argumentation sub-trees rooted on propose arguments are
identified, and the number of ask arguments in these sub-trees
is considered. Then, a decision whether proposals are
considered as highly questioned is determined by using a
threshold value. Using an argumentation tree as input, the
template displays to users only the most questioned proposals
in the context of a retrieved case, where this argumentation
characteristic is then displayed to users.

(A3) The template for pros and cons of proposals selects
and displays proposals because their analysis is subject to
argument_pro and argument_con arguments. Similarly, (A3.1)
the template for proposals with the highest number of pro
arguments and (A3.2) the template for proposals with the
highest number of con arguments selects and displays
proposals because they can be characterized as having the
highest number of either pros or cons posed by users. These
templates identify more arguable proposals in which users have
mostly either agreed with them through the explicit use of pro
arguments or disagreed with them through con arguments. To
compute the outcome of such templates, argumentation sub-
trees rooted on propose arguments are identified, and the
analysis of user arguments is focused on argument_pro and
argument_con locutions only. Moreover, a threshold value is
used to assess whether proposals are considered as having high
numbers of pros and cons. In the end, these templates display
the content of proposals along with their pros and cons.

B. Domain-specific explanation templates
Explanation templates can be related to alternative needs of

explanation in targeted application domains. In risk
management, these needs are directed to the identification,
analysis and response planning of risks. To promote the reuse
of risk information stored in cases, domain-specific explanation
templates are proposed, such as the ones below.

(B1) The template for identified risk proposals selects
and displays propose_risk arguments in argumentation trees
because the identification of such risks is a key task for risk
management activities. To do so, the content of propose_risk
locutions is displayed to users. When the template is used, it
hides other risk management kinds of arguments that may have

76

been posed by users when dealing with risk analysis and risk
response planning tasks as recorded in cases.

(B2) The template for analyzed risk proposals selects
and displays propose_risk arguments along with their impact
and probability analysis. To do so, it considers the
propose_probability and propose_impact locutions within
argumentation sub-trees with a propose_risk root. That is
because probability and impact are commonly analyzed when
determining whether a risk is prioritized in a project or not.
Instead of displaying only the prioritized risks, this template
selects and displays the full set of risks proposed and analyzed
in debates. To target this prioritization aspect, (B2.1) the
template for prioritized risk proposals selects and displays
propose_risk arguments along with their impact and
probability analysis provided these risks are prioritized in the
project. To risk proposals in which a prioritize_risk locution is
used by users, (B2.1) selects and displays such most important
risks, temporally hiding other non-prioritized risks.

(B3) The template for risk response plan proposals
selects and displays propose_risk arguments that have been
prioritized along with their propose_plan arguments, where the
specification of such kinds of (mitigation, transfer, etc.)
response plans are fundamental in risk management. To do so,
the template displays the content of propose_plan locutions for
prioritized risks as recorded in cases.

(B4) The template for key risk management tasks selects
and displays propose_risk arguments that have been prioritized
as a result of debates. Moreover, it selects and displays
propose_probability and propose_impact arguments recorded
for those prioritized proposals. It also displays propose_plan
arguments available in the argumentation sub-trees. In effect, a
debate summary is presented to users when this template is
used, displaying the main arguments posed by users while
identifying, analyzing and planning how to respond to risks.

C. Domain and argumentation-based explanation templates
To allow project stakeholders to identify risk arguments

that led to more critical discussions, we created templates for
selecting and displaying the most discussed, the most
questioned, and the pros and cons advanced in debates
regarding prioritized risks and their response plan proposals.

(C1) The template for the most discussed prioritized risk
proposals selects and displays prioritized risks along with the
impact and probability analysis developed by users to decide
on such prioritization. It shows propose_impact and
propose_probability arguments, where they are recorded in
argumentation sub-trees rooted on risk proposals. To measure
the length of prioritized risk discussions, the number of ask,
inform, argument_pro and argument_con kinds of arguments
advanced by users is determined. The identification of the most
discussed prioritized risks relies on those numerical estimates
and defined threshold values. (C1.1) The goal of the template
for the most discussed risk response plan proposals is
similar to the template (C1), but (C1.1) is focused on risks
along with their treatment plan proposals. To compute the
length of risk response plan debates, the template determines
the number of ask, inform, argument_pro and argument_con
kinds of arguments advanced by users in the debate of

propose_plan arguments. The determination of the most
discussed plans is computed from argumentation sub-trees that
are rooted on each propose_plan. In the end, arguments
directly related to risk and plan proposals are the only ones
displayed when these templates are used.

(C2) The template for prioritized risk proposals with the
highest number of questions asked selects and displays
prioritized risk proposals along with question-like arguments
presented by users in the analysis of these proposals. To
identify the prioritized risks with the highest number of
questions, the number of ask arguments advanced by users is
considered. As multiple risks can be prioritized in risk
management discussions, this numerical estimate is developed
in the context of argumentation sub-trees directly rooted on
each propose_risk argument recorded in a case. (C2.1) The
template for risk response plan proposals with the highest
number of questions asked selects and displays prioritized
risk proposals along with their risk response plan proposals. In
argumentation sub-trees rooted on each propose_plan, this
template counts the number of ask arguments, while this
numerical estimate is considered in each one of the
propose_plan locutions advanced in the debates. Considering
the most questioned debates, the template selects and displays
the prioritized risk proposal arguments along with their risk
response plan arguments. In the end, templates focusing on
questions asked only display to users the content of these
proposals along with questions advanced in their discussions.

(C3) The template for pro and con arguments for
prioritized risk proposals selects and displays the
argument_pro and argument_con arguments regarding
prioritized risk proposals. When examining argumentation sub-
trees rooted on propose_risk, this template focuses on pros and
cons arguments only. Although these pros and cons can be
advanced in the debate of different risk management issues,
such as in the analysis of probability and impact proposals, for
example, this template only selects and displays the pros and
cons that are directly related to propose_risk. Similar to (C3),
(C3.1) the template for pro and con arguments for risk
response plan proposals selects and displays argument_pro
and argument_con arguments regarding plan proposals. These
risk treatment plan arguments are captured by propose_plan
locutions recorded in argumentation sub-trees of prioritized
risk proposals. Other templates aiming to select and display
pros and cons of risk and plan proposals are: (C3.2) the
template for prioritized risk proposals with the highest
number of pro arguments, (C3.3) the template for risk
response plan proposals with the highest number of pro
arguments, (3.4) the templates for prioritized risk proposals
with the highest number of con arguments and (3.5) the
template for risk response plan proposals with the highest
number of con arguments. In them, similar counting
procedures as before are used, except now they are used to
determine whether the balance between pros and cons is in
favor of either pros or cons. To do so, argument_pro and
argument_con arguments recorded on argumentation sub-trees
rooted on propose_risk and propose_plan arguments are
analyzed, respectively. As a result, only the risk and plan
proposals with the highest number of pro or con arguments are
displayed to users.

77

Figure 1 – A print screen of the CBR and explanation templates resources of the RD System

V. A CASE FOR EXPLANATION TEMPLATES IN EXPERIENCE-
BASED COLLABORATIVE RISK MANAGEMENT

The usefulness of the templates proposed was assessed in a
case study executed in a R&D project aiming to build a
simulation system for the Brazilian Army (e.g. [16]), where
key project participants involved were a small group of
researchers who were concerned with the management of risks
in this project. Based on these participants’ point-of-view and
experience, the study goal was to examine the usefulness of the
explanation-based technique detailed in this paper. Using
results of queries posed by the participants in the RD System,
templates were used in the analysis of the argumentation
content of cases retrieved from a risk management case base.

The evaluation hypothesis (H) and (P) procedures were
detailed in this study, where H1 - is the use of queries along
with templates helpful in the examination of risk information in
past risk management case discussions?; and P1 – to execute
different queries and, for each query either use or not templates
in the analysis of risk information recorded in the retrieved
cases. The procedures were developed in the execution phase
of this study having as a result the discussion shown in Fig. 1
(A). To H1, CBR queries based on factual information and
pairs (locution, keywords) of current project were executed as
in Fig. 1 (B) (see query details in [4]). Then, most of the
templates were used in the filtering of the debate details
recorded in the retrieved cases. First, the participants explored
templates more focused on direct risk information, such as the
content of prioritized risk proposals. Later, they explored
templates more focused on information collected as a result of
longer debates, such as the content of questions and answers
(Fig. 1 (C)) and the analysis of pros and cons (Fig. 1 (D)).
After that, participants analyzed the risk information that the

templates were selecting and displaying in order to understand
why some risks were more heavily discussed than others, for
example, using the template for the most discussed prioritized
risk proposals. In this scenario, some participants listed one
prioritized risk from a past case retrieved, stating that such risk
would be relevant in the current project. Then, they reused this
risk adapting it to the current discussion (Fig. 1 (A) - argument
1863). As far as reuse of past risk information was concerned,
most of the time the participants just reused the content of risk
proposals. However, they also reused pro arguments to argue in
the current risk management situation in favor of the
occurrence of past risks examined. For that, the participants
used the template for pro and con arguments for prioritized
risk proposals. In this case, another risk, similar to a possible
current situation was listed. Besides that, such risk contained
more pro than con arguments on the past discussion. In this
sense, the risk and some argument_pro were adapted on the
current discussion. Finally, the participants stated that the reuse
of arguments to propose and justify current risk proposals is
relevant to help them to overcome debate difficulties they had,
bringing more fluency to their risk management analyzes. In
the evaluation phase in this case study, for these participants
the use of templates allowed them to filter the kind of
arguments that they wanted to examine. For them, the use of
templates helped to form a quicker understanding of the
debates retrieved. So, the summarization of the debates
retrieved also had a positive impact on the reuse of past
arguments. Finally, the participants stated that the information
reviewed and examined via templates allowed them to make
more informed decisions in the current problem.

To further evaluate the usefulness of the techniques
proposed, 41 CS students developed risk management tasks

78

using the RD System. In these experiments, a software project
was presented to the participants (divided in 9 debate groups).
To assess the project risks, they formulated and executed CBR
queries in the RD System. As requested, each query was
repeated multiple times, allowing them to examine the content
of the retrieved cases with and without the use of templates.
Among a larger set of questions, they were asked to present
their opinion about the following statements: (S1) The way (in
particular, without using any kind of template) that past
problem-solving experiences are retrieved supports (helps) the
tasks of reusing such past information in the solution of the
current problem. (S2) The way (in particular, now using the
templates available in the system) that past problem-solving
experiences are retrieved supports (helps) the tasks of reusing
such past information in the solution of the current problem.

Figure 2 – Participant answers in the proposed questionnaire

According to the questionnaire results (Fig. 2), the use of
templates did have a major impact on the participants’ opinion
with respect to the analysis and reuse of argumentation
information recorded in past risk management experiences. In
fact, none of the participants stated that the templates were not
helpful in the reuse of past risk information recorded in the
retrieved cases, even considering that they had issues when
they were asked to analyze the full content of argumentation
trees (see the various kinds of answers for S1).

VI. CONCLUDING REMARKS
Remembering and explaining past risk management

experiences is fundamental to the critical analysis of risks in
software projects. As a way of avoiding the repetition of past
risk management problems, the proposed templates allow users
to examine why and how past problems were approached
helping the construction of solutions for new risk management
problems. In this paper we introduced a new set of explanation
templates for CBR systems. We also explore the templates in
the analysis and reuse of argumentation information that is
recorded in cases that are not just formed by a list of facts as in
standard CBR applications. Furthermore, we show the
usefulness of the templates in the scenario of experience-based
collaborative risk management applications. Future work
involves the development of new kinds of experiments to
further assess the usefulness of the explanation techniques

proposed and to seek further connections with formal
approaches to Argumentation in AI.

ACKNOWLEDGMENT

We gratefully acknowledge financial support from CAPES-
Brazil, and the Brazilian Army through the SIS-ASTROS Project
(813782/2014), developed in the context of the PEE-ASTROS 2020.

REFERENCES
[1] B. Moulin et al., “Explanation and Argumentation Capabilities:

Towards the Creation of More Persuasive Agents,” Artificial
Intelligence Review, vol. 17, no. 3, pp. 169-222, 2002.

[2] T. J. Bench-Capon, and P. E. Dunne, “Argumentation in
artificial intelligence,” Artificial intelligence, vol. 171, no. 10,
pp. 619-641, 2007.

[3] R. Lopez De Mantaras et al., “Retrieval, reuse, revision and
retention in case-based reasoning,” The Knowledge Engineering
Review, vol. 20, no. 03, pp. 215-240, 2005.

[4] N. L. R. Machado et al., “Case-based Reasoning for Experience-
based Collaborative Risk Management,” in The 26th Int. Conf.
on Software Eng. and Knowledge Eng. (SEKE 2014),
Vancouver, Canada, 2014, pp. 262-267.

[5] F. S. Severo, L. M. Fontoura, and L. A. L. Silva, “A Dialogue
Game Approach to Collaborative Risk Management,” in The
25th Int. Conf. on Software Eng. & Knowledge Eng. (SEKE
2013), Boston, USA, 2013, pp. 548-551.

[6] D. L. Siqueira et al., “Argumentation Schemes for Collaborative
Debate of Requirement Risks in Software Projects,” Int. Journal
of Software Eng. and Knowledge Eng. (IJSEKE), vol. 27, no. 9-
10, pp. 1613-1635, 2017.

[7] F. Sørmo, J. Cassens, and A. Aamodt, “Explanation in case-
based reasoning–perspectives and goals,” Artificial Intelligence
Review, vol. 24, no. 2, pp. 109-143, 2005.

[8] P. Cunningham, D. Doyle, and J. Loughrey, “An Evaluation of
the Usefulness of Case-Based Explanation,” in The 5th Int.
Conf. on Case-Based Reasoning (ICCBR 2003), Trondheim,
Norway, 2003, pp. 122-130.

[9] T. R. Roth-Berghofer, “Explanations and Case-Based
Reasoning: Foundational Issues,” in The 7th European Conf. on
Case-Based Reasoning (ECCBR 2004), Madrid, Spain, 2004,
pp. 389-403.

[10] D. McSherry, “Explanation in Recommender Systems,”
Artificial Intelligence Review, vol. 24, no. 2, pp. 179-197, 2005.

[11] R. C. Schank, Explanation Patterns: Understanding
Mechanically and Creatively, Mahwah, NJ, USA: Lawrence
Erlbaum Associates, Inc., 1986.

[12] A. Guide, "PROJECT MANAGEMENT BODY OF
KNOWLEDGE (PMBOK® GUIDE)."

[13] B. Bohem, “Software Risk Management: Principles and
Pratices,” Software, IEEE, 1991.

[14] P. McBurney, and S. Parsons, "Dialogue Games for Agent
Argumentation," Argumentation in Artificial Intelligence, I.
Rahwan and G. R. Simari, eds., 2009.

[15] K. D. Ashley, and E. L. Rissland, “Law, Learning and
Representation,” Artificial Intelligence, vol. 150, no. 1-2, pp. 17-
58, 2003.

[16] J. R. Brondani, E. P. Freitas, and L. A. L. Silva, “A task-oriented
and parameterized (semi) autonomous navigation framework for
the development of simulation systems,” in The 28st Int. Conf.
on Knowledge Based and Intelligent Information and
Engineering Systems (KES 2017), Marseille, France, 2017, pp.
534–543.

4

27

15
13

9

1

10

0

3

0
0

5

10

15

20

25

30

S1 S2

Pa
rt
ic
ip
an

t	a
ns
w
er
s

Questionnaire	statements

Completely	Agree
Agree
Neither	agree	nor	disagree
Disagree
Completely	disagree

79

Keywords Extraction based on Sentence-Ranking
from Chinese Patents

Zhihong Wang∗, Yi Guo∗†‡, Tianmei Qi∗
∗Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China

†School of Information Science and Technology, Shihezi University, Xinjiang, China

Abstract—Patent, an important scientific literature, records a
large amount of innovative and practical research. The patent
keywords also provide a high-level topic description of a patent
document and hold an important position in classic NLP tasks,
such as patent classification or clustering. However, there are
few research works on keywords extraction covering the Chinese
patents in current stage. In this paper, we propose a novel
algorithm to extract keywords from Chinese patents. A sentence-
ranking model, based on a sentence embedding graph and
heuristic rules, is constructed to select the top-KS percent of
the sentences. At the same time, the semantic-ranking weights of
sentences are also transmitted to keywords extraction. The exper-
imental results on our Chinese patents datasets testifies that the
sentence-ranking based keywords extraction algorithm improves
the performance by 6% to 13% in F-score. In summary, the
new idea of selecting key sentences from original documents can
effectively filter out noisy sentences and leverage the performance
of keywords extraction.

Index Terms—Chinese patents, key sentences, sentence-
ranking, keywords extraction

I. INTRODUCTION

Chinese patent documents has reached 40,673,532 till Octo-
ber 2017 according to the latest statistics of State Intellectual
Property Office (SIPO), near a third of global patent docu-
ments. Meanwhile, it keeps high growth rates every year, such
as the growth rate reached 9% in 2017. Patent is a kind of
important scientific literature, which records a large amount
of innovative and practical research productions in industry
and academia. And we can also speculate on the direction of
new technologies and even develop new application areas by
analyzing patent bibliographic, changes in patent legal status
or citation relations [1]. All in all, it is of great importance
to analyze and mine valuable information from mass Chinese
patent documents.

Patent keywords provide a high-level topic description of
a patent document and play an important role in many ap-
plications or tasks of patents. For example, Fujii [2] stated
that keywords play a key factors’ role in patent translation.
Thus, patent keywords get more and more attentions and
are widely applied. However, all Chinese patent documents
have no author-assigned keywords, which make manually
assigning keywords for each patent document very laborious
jobs. Therefore, it is highly desirable to extract keywords
automatically.

‡Corresponding author: guoyi@ecust.edu.cn
DOI reference number: 10.18293/SEKE2018-034

In this paper, we address the task of automatic keywords
extraction from Chinese patents and propose an automatic
keywords extraction system for this end and our contributions
are as following:
• Construct a sentence-ranking model based on a sentence

embedding graph and heuristic rules.
• Optimize the state-of-the-art keywords extraction system

(TF-IDF) for Chinese patents based on the sentence-
ranking model. The keywords extraction system is named
SR based TF-IDF, short for Sentence-Ranking based
Term Frequency and Inverse Document Frequency.

The rest of this paper is organized as follows: Section
II describes the closely related work; Section III details the
architecture of our keywords extraction system; Section IV
evaluate our models with dedicated experiments and Section
V concludes this paper.

II. RELATED WORK

Quite a few research works have published about keywords
extraction. In general, keywords extraction of Chinese text usu-
ally proceeds in four steps: pre-processing, candidate selection,
keywords extraction, and post-processing.

In the first pre-processing step, the title and text will be
extracted based on specified heuristics rules or extraction
algorithms of content main body. At the same time, long texts
should be segmented into several paragraphs with paragraph
marks (carriage return character, line feeds etc.), and para-
graphs sometimes need to be segmented into several sentences
with punctuation [3]. In addition, Chinese does not have a
clear demarcation between words like English. Some basic
operations therefore are needed in the pre-processing step,
such as word segmentation, part of speech tagging, new word
detection [4] and so on.

The second phase is to determine the keywords candi-
date collection. So that the remaining steps of keywords
extraction is no longer necessary to consider the features of
non-candidate words, which will improve the efficiency of
keywords extraction. In practice, there are some efficient op-
timization for candidate extraction. In the KEA algorithm, the
candidate keywords are obtained by several basic rules such as
the length of keywords, proper nouns and the characteristics
of keywords. Csomai et al. [5] experimented with stop-word-
filtered n-grams and named entities as potential keywords.
However, candidate keywords are still with a wide range and

80

contain many non-grammatical phrases after selecting with the
above rules. So that W. You and D. Fontaine et al. [6] proposed
a method to reduce the range or noise of the candidate words.
In this method, the top-k words with highest frequencies are
defined as the core words, and then the associated words are
added into the candidates by word co-occurrence with core
words.

The third step - keywords extraction - is quite complicated,
because it is not obvious to choose which extraction algo-
rithms (ranking or classification). The most known keywords
extraction algorithms are graph-ranking-based algorithms [7]
which are derived from PageRank, such as TextRank. Based
on the traditional TextRank algorithm, Nan et al. [8] proposed
an eccentricity and degree centrality based complex network
for keywords extraction, and Li et al. [9] used K-proximity
coupled graph to transfer patents into complex graph model
and a patent comprehensive correlation calculation method for
quantitative analysis of keyword importance is proposed. [10]
pointed out that the external knowledge base can be used to
enrich the information to assist in keywords extraction for
essay texts in TextRank algorithm.

Besides, the classification algorithms are also efficient in
keywords extraction even better have better performance in
some fields. In a study by Hasan and Ng [11], TF-IDF was
shown to be a surprisingly robust candidate and beaten other
more complex ranking strategies. Other important features
for keywords classification include TF-IDF, first occurrence
position of the word, word diameter, word length and is-in-
title etc.

The final important step in keywords extraction is post-
filtering, such as filtering short words, limiting the number
of two Chinese words [12]. And adjacent words are also
sometimes collapsed into phrases, for a more readable output.

Now, the research works on patents mainly focus on patent
translation, patent retrieval and patent classification etc. And
some other studies primarily concentrate on the research of
technological competitiveness about enterprises, industries or
regions [13]. By studying the patent through macro, middle
or micro aspects, a multi-tridimensional comprehensive eval-
uation system of technological competitiveness is formed to
compare the technological competitiveness among enterprises
or other institutions. With the protection of intellectual prop-
erty rights getting more and more attentions in China, domestic
researchers have begun to study the Chinese patent documents.
In a study of Liu [14], a semi-automatic patented-technical
phrase extraction method was proposed, which achieved good
results on Chinese patents and effectively reduced labor cost.
In order to improve the patent retrieval speed, [15] linked all
the patents by keywords, which were extracted based on an
improved TF-IDF algorithms. Moreover, patents are also used
to as a background knowledge base, which is helpful to design
or realize a better keywords automatic extraction algorithm in
other fields [16].

In summary, keywords extraction has made great achieve-
ments. However, we are aware that there are only few previ-
ous studies about keywords extraction algorithm for Chinese

patents. Therefore, we introduce an novel keywords extraction
framework for Chinese patents, and obtain the higher precious,
recall and F-measure than the state-of-the-art algorithms or the
latest keywords extraction algorithms.

III. AUTOMATIC KEYWORDS EXTRACTION FROM CHINESE
PATENTS

A. Overview of the Framework

The framework of keywords extraction from Chinese patents
is shown in Fig. 1, which consists of a domain dictionary
construction module and a keywords extraction module, and
will be detailed next.

Fig. 1: The framework of keywords extraction from Chinese
patents.

B. Domain Dictionary Cunstruction

Current keywords extraction algorithms for Chinese texts
rely on word segmentation. The higher the quality of word
segmentation is, the better results of keywords extraction we
shall have. Thus, some new techniques based on external
dictionaries [16] or new word detection [17] have been proven
to improve the accuracy of Chinese word segmentation and
contribute in keywords extraction. Chinese patents obviously
contain a large number of professional terms. In order to ele-
vate keywords extraction, a domain dictionary is constructed
through merging multi-source heterogeneous external lexicons.
861 lexicons under the “Engineering Application” of Sogou
cell lexicon and all vocabulary entries under the scientific
classification from Baidu baike are collected, and we get 130
million words (or phrases) in total. After analyzing the initial
lexicons, there are several problems emerging in the dictionary,
such as plenty of duplicate vocabulary entries with the same
meaning caused by English case or Chinese simplified and
traditional, or a large number for combined-words.

Several means are used to tackle these above issues in this
paper to achieve a higher quality domain dictionary. Firstly, all
words in the dictionary are converted into normalized form,
that is English in uppercase form and Chinese in simplified
form, and delete the repeated entries. Then we analyze the
distribution of word length of all words in the dictionary, and
keep the words with length from 2 to 7, which is accounted for

81

0.906. Finally, a word segmentation tool, such as LTP, is used
to segment into the most granular words and tag POS for the
dictionary words. According to the Chinese word combination
rules [18], phrases generally do not contain conjunction (such
as “和” (and)), preposition (such as “在” (in)), auxiliary (such
as “是” (is)), adverb (such as “很” (very)), and punctuation
(such as “.”). Thus, the vocabulary entries, which contain
these ban-words, will be deleted. Eventually 284,328 words
are obtained after the above process.

C. Sentence-Ranking based Keywords Extraction Model

A Chinese patent keywords extraction model is proposed
based on sentence-ranking model, which integrates the seman-
tic graph and heuristic rules between sentences. The hidden
idea is that the keywords is in the key sentences. That
is to say, the bigger number of important words (such as
keywords) a sentence has, the more important the sentence
is. Correspondingly, the more frequently a word appears in an
important sentence, the higher the importance of the word is,
which is more likely to be the keyword of the document.

Generally, a sentence graph will be built to sort these
sentences by the graph sorting algorithm, such as PageRank.
In this paper, we introduce a sentence embedding model
to better describe the semantic similarity between sentences,
and several heuristic rules are also applied to sort sentences.
Finally, the top-KW keywords are extracted by improved
the TF-IDF algorithm from the top-KS percent candidate
sentences with highest scores.

1) Sentence Embedding: Language models are a very im-
portant part of natural language processing, including the
classic N-Gram model and the recently widely discussed deep
learning model. Word2vec, a word embedding based on deep
learning model, takes a large corpus of texts as its input and
produces a vector space, typically of several hundred dimen-
sions, with each unique word in the corpus being assigned a
corresponding vector in the space. To our knowledge, there
is no good sentence embedding model until now. In order to
vectorize a sentence, this paper attempts to propose a sentence
embedding model on the basis of combining word embeddings
produced by word2vec with sentence structural feature with
primarily considering the factors, including sentence is a
collection of words, words with different POS have different
contributions to the sentences and words in different sentence
composition have different contributions to the sentences.

For a sentence S, SW=(sw1, sw2, ..., swm), where swi(i=1,
2, ..., m) is the i-th word in sentence S. The corresponding
POS of SW is denoted as SN=(sn1, sn2, ..., snm), where
sni(i=1, 2, ..., m) represents the POS of the corresponding
word swi(i=1, 2, ..., m). The word swi(i=1, 2, ..., m) in SW
can be represented by a k*1 vector based on word2vec, name
Vswi=[vi1, vi2, ..., vik]

T , where vij ∈ R, j=1, 2, ..., k. Thus,
the sentence embedding model of this paper is defined as:

VS =

m∑
i=1

(wpos + wsc) ∗ Vswi (1)

where VS is the sentence embedding of sentence S and m
is the total number of words in sentence S. swi represents
the i-th word in sentence S and Vswi

is its word embedding
produced by word2vec. wpos is the weight of word with
different POS, and

wpos =

0.8, if sni is noun.
0.5, if sni is verb.
0.4, if sni is adj.
0, if sni is others.

wsc is the weight of word in different composition, and

wsc =

0.5, if swi is subject.
0.2, if swi is predicate.
0.3, if swi is object.
0, if swi is others.

2) Multi-feature Fusion based Sentence-Ranking Model:
This paper firstly gives the symbolic definitions of some vari-
ables and formally describes the problems of sentence-ranking
in Chinese patents scenario. Suppose that for a Chinese patent
document P , the title is T . The abstract sentences in P is
S, and |S| = n. The goal of sentence-ranking model is
to compute an n-dimensional vector SR=[SR1, SR2, . . . ,
SRn]T , where SRi is the weight of the i-th sentence. So
that top-KS percent sentences with the highest score can be
obtained from SR.
(1) Heuristic Rules
Patents, a kind of scientific literature, have strict and standard-
ized templates and writing criterions. The patent name presents
the subject and type of the patent in a brief and accurate
manner. While, the patent abstract clearly states the technical
field to which the patent belongs, the technical issues to be
solved by the patent, and the primary technical characteristics
and uses of the patent. According to the analysis of patent,
the following heuristics rules are considered:
• The more similarity with title a sentence is, the more

important the sentence is.
• The sentence in different position is with different im-

portance. Generally, the first and last sentence are more
important than others.

Suppose that Si is the i-th sentence in the set S of patent
abstract sentences, and that SWi = (swi1, swi2, . . . , swim)
represents all words in the sentence Si, where swij (j=1, 2 ,
. . . , n) is the j-th word in the sentence Si. All words in patent
title T are represented by TW = (tw1, tw2, . . . , twt), where
twi (i=1, 2, . . . , t) is the i-th word in title T .

Thus, the similarity between the patent title T and the
sentences in patent abstract S is shown in formula 2.

WTitleOverlap(S, T) = [to1, to2, · · · , ton]T (2)

where toi is the similarity between the i-th sentence in patent
abstract with the patent title T , which is calculated by Jaccard
similarity,

Meanwhile, the weight of different position of patent ab-
stract sentences is defined in formula 3.

Wlocation(S) = [loc1, loc2, · · · , locn]T (3)

82

where loci is the location weight of the i-th abstract sentence
in S. According to the sampling statistics of P.E.Baxendale,
85% of the sentences, which reflect the theme of the document,
appears at the beginning of the paragraph, and 7% is in the
end. Therefore, the location weight loci of sentence Si are
defined as follows.

when n > 2, define loci by

loci =

0.85, if Si is the first sentence.
0.07, if Si is the last sentence.

0.08
n−2 , if Si isthe other sentences.

(4)
When n = 2, there are only two sentences in the patent

abstract, the first sentence and the last sentence, and define
loci by

loci =

{
0.89, if Si is the first sentence.
0.11, if Si is the last sentence.

(5)

When n = 1, there is only one sentence in the patent abstract
and define loci by

loci = 1 (6)

According to formula 2 and 3, the weight of patent abstract
sentences based on heuristic rules proposed in this paper is
defined as 7.

loci = α ∗WTitleOverlap(S, T)+ (1−α) ∗Wlocation(S) (7)

where, α is one of the weight parameter of the heuristic rules,
the other is 1-α. While WTitleOverlap(S, T) is calculated by
formula 2 and Wlocation(S) is calculated by 3.
(2) A Sentence Semantic Graph

By considering the potential semantic information between
sentences, a sentence semantic graph named G is built based
on sentence embeddings, which takes the sentences in patent
abstract as the vertex and the similar relation between the
sentences as the edges. And PageRank is selected as the
graph sorting algorithm in this paper. The adjacency ma-
trix of semantic similarity between sentences is defined as
Psim(S) = [Sij]n∗n, where Sij is the weight of (Si, Sj),
which is defined by the semantic similarity between the i-th
and the j-th sentence in patent abstract sentences S.

And the cosine similarity based on sentence embedding 8
is used to calculate the weight of edges in this paper.

sij = cos(VSi , VSj) =
VSi
• VSj

‖VSi
‖‖VSj

‖
(8)

where Si is the i-th sentence. VSi
is the i-th sentence embed-

ding, which is calculated by formula 1.
The iterative formula based on the idea of PageRank, which

is used to achieve the sentence weight on the sentence semantic
graph G, is as follows:

wPR(Si) = (1− d) + d ∗
∑
sij 6=1

[(
sij∑
k sik

)wPR(Sj)] (9)

where, d is the damping factor. And wPR(Si), which can be
any non-negative values at initialization, is given by the last
iteration in the subsequent iterations.

Like the random walk model, the above iterative process
can be converted into matrix operations. Suppose that W i

PR

is the weight vector of patent abstract sentences in the i-th
iteration, then the formula 9 can be re-expressed as:

W i
PR = PW i−1

PR (10)

The above matrix expression gives a more concise iterative
process of sentence weight calculation based on a sentence
semantic graph. That is, the vector is first initialized with ran-
dom values and then iteratively updated according to formula
10 until convergence.

In summary, the sentence-ranking model for Chinese patents
in this paper is defined as the linear combination of heuristic
rules and sentence sematic graph, is as follows:

SR(S) = β ∗Wrule(S) + (1− β) ∗WPR(S) (11)

where, β is the weight parameter of the heuristic rules. While
Wrule(S) is calculated by formula 7 and WPR(S) is calculated
by 10.

3) Sentence-Ranking based Keywords Extraction Algo-
rithm: If a sentence contains important information, it and its
semantically similar sentences will get higher scores after us-
ing the sentence-ranking model. In this way, with the elimina-
tion of noise sentences, the effect of keywords extraction from
Chinese patents will be greatly improved. However, the sen-
tences of documents are treated equally without considering
the semantic importance of different sentences in traditional
keywords extraction algorithms. Thus, this paper introduces
the semantic weight parameters of sentences produced by
sentence-ranking model into the state-of-the-art algorithm TF,
so that the semantic importance of sentences can be transferred
to the words. TF is defined as follows in this paper.

TF (wi) =

KS∗n∑
j=1

SRj ∗ TFj(wi) (12)

where, wi is the i-th word in patent abstract. n is the total
number of sentences in patent abstract. KS*n is the number
of sentences with the highest weight. SRj is the semantic
weight of the j-th sentence. TFj(wi) is the term frequency of
word wi in the j-th sentence.

There are totally six parameters in our algorithm, called SR
based TF-IDF. The damping factor d is generally taken as 0.85
according to PageRank algorithm. The remaining parameters
will be discussed next.

IV. PERFORMANCE EVALUATION

A. Datasets and Metrics

Dataset 1. A large amount of original Chinese patent
dataset. The original Chinses patents are collected from SIPO
during the period from 2016.11.01 to 2016.11.30. We fi-
nally accumulated about 1.21 million well-structured Chinese
patents, which will be used to, (1) Train a word2vec model
for Chinese patents. (2) Generate a IDF dictionary for Chinese
patents. (3) As the source of manually annotated Chinese
patent corpus.

83

Dataset 2. A manually annotated patent dataset, which
is consist of 557 Chinese patents. This dataset is manually
annotated by three masters major in computer science, which
has the following requirements: (1) Assign 3-6 keywords to
each Chinses patent. (2) Keywords with 2-7 Chinese characters
in length. (3) Try to select the word whose POS is noun, verb
or adjective.

Finally, we adopt the union of pairwise intersections be-
tween the annotations as the human-annotated gold standard
dataset for Chinese patents [19].

It can be found from the result of manual annotation that
the manually annotated keywords are generally long phrases
with specific meanings. In this paper, we primarily focus on
the keywords that make up these key phrases. In order to better
evaluate the performance of keywords, we consider two forms
of agreement:
• Exact-Match: when two phrases match exactly.
• Relaxed-Match: when two phrases either match exactly,

or can be made identical by adding a single word to the
beginning or end of the shorter phrase.

Micro-averaged precision, recall and F-score under these
two settings are calculated by the same formula as [19].

B. Parameters Selection

There are totally six parameters in SR based TF-IDF
algorithm. Beside the damping factor d which is generally
taken as 0.85 according to PageRank algorithm. There are
five parameters left, including ε, α, β, KS and KW Where
ε determines the convergence rate of SR based TF-IDF.
Eventhough ε = 10−7, the number of iterations still within
20, so ε is taken as 10−7 in this paper. α is used to adjust
the weights between different heuristic rules, and this paper
treats them equally. So that α is taken as 0.5 for the two rules
each. The remaining four parameters, β, KS and KW , will be
discussed one by one in what follows.

In order to discuss the remaining parameter values of β, KS

and KW , SR based TF-IDF are used to extract keywords from
Chinese patents, and we respectively calculate the F-score of
Extact-Match and Relaxed-Match, as shown in Table 1 and 2.

The relation between KW and the optimal F-score is
counted as following Table 3 from Table 1 and 2. It is
obviously that whatever β and KS is, the F-score will obtain
more optimal values when KW is 4 (underlined-bold numbers
in Table 1 and 2). Therefore, KW in this paper will be taken
as 4 for keywords extraction from Chinese patents.

With the fixed value KW = 4 and the random value KS ,
F-score of Relaxed-Match can get most optimal values only
when β = 3 (boxed-underlined-bold numbers in Table 1).
However, no matter what the value of β is (3, 4 or 5), they all
can get the best F-score of Exact-Match, and F-score gets
the most optimal value when β = 5. Thus, to ensure the
maximum coverage rate and the minimum average error of
optimal F-score in Relaxed-Match and Exact-Match (Table 4),
the final value of parameter β is 0.3. Similarly, when KS =
0.85, F-score of Relaxed-Match and Exact-Match can obtain
the global optimal value. On one hand, less noise data can

Table 1: F-score of Relaxed-Match.

KS KW
β

0.1 0.2 0.3 0.4 0.5 0.6

0.75

Top3 0.533 0.558 0.568 0.560 0.562 0.561
Top4 0.561 0.573 0.588 0.577 0.575 0.570
Top5 0.567 0.575 0.572 0.568 0.562 0.556
Top6 0.551 0.56 0.558 0.552 0.544 0.535

0.8

Top3 0.528 0.558 0.568 0.558 0.564 0.561
Top4 0.556 0.577 0.587 0.578 0.576 0.573
Top5 0.562 0.576 0.571 0.566 0.561 0.556
Top6 0.551 0.560 0.558 0.552 0.543 0.534

0.85

Top3 0.532 0.553 0.567 0.559 0.564 0.561
Top4 0.55 0.577 0.589 0.583 0.576 0.573
Top5 0.559 0.576 0.572 0.565 0.561 0.556
Top6 0.547 0.557 0.558 0.550 0.543 0.536

0.9

Top3 0.533 0.554 0.566 0.559 0.564 0.561
Top4 0.548 0.575 0.587 0.583 0.576 0.573
Top5 0.560 0.574 0.576 0.565 0.559 0.555
Top6 0.549 0.556 0.559 0.551 0.546 0.537

Table 2: F-score of Exact-Match.

KS KW
β

0.1 0.2 0.3 0.4 0.5 0.6

0.75

Top3 0.172 0.203 0.208 0.210 0.210 0.215
Top4 0.186 0.207 0.211 0.212 0.213 0.211
Top5 0.198 0.202 0.203 0.201 0.199 0.197
Top6 0.195 0.197 0.197 0.193 0.191 0.186

0.8

Top3 0.171 0.200 0.207 0.208 0.210 0.215
Top4 0.185 0.207 0.210 0.211 0.213 0.211
Top5 0.196 0.200 0.201 0.201 0.199 0.197
Top6 0.195 0.195 0.196 0.193 0.191 0.186

0.85

Top3 0.173 0.197 0.207 0.208 0.212 0.216
Top4 0.182 0.206 0.212 0.213 0.213 0.211
Top5 0.195 0.199 0.200 0.201 0.200 0.197
Top6 0.195 0.197 0.194 0.191 0.190 0.186

0.9

Top3 0.172 0.197 0.207 0.208 0.212 0.216
Top4 0.178 0.203 0.211 0.213 0.213 0.211
Top5 0.194 0.198 0.198 0.199 0.198 0.197
Top6 0.195 0.196 0.193 0.191 0.190 0.185

be removed because of the normative and refined contents of
Chinese patents, which is consistent with the facts. On the
other hand, we can still get better keywords through reducing
less noise in Chinese patents. So that the final value of KS

in this paper is 0.85 for keywords extraction from Chinese
patents.

C. Keywords Extraction Results and Discussion

According to section 4.2, the parameters of SR based TF-
IDF algorithm have the following values: d = 0.85, ε = 10−7,
α = 0.5, β = 0.3, KS = 0.85 and KW = 4. In this paper, we
compared SR based TF-IDF with a variety of other keywords
extraction algorithms, such as TF-IDF, TextRank and the latest
word2vec weighted TextRank [20] based on precision, recall
and F-score under Exact-Match and Relaxed-Match.

As can be seen from Table 5, the result of the state-of-the-art
TF-IDF algorithm and TextRank algorithm is almost the same.
The TF-IDF algorithm is simple and effective, and the result
is more in line with the actual. However, as the abstracts of
Chinese patents are concise, there will be a lot of noise words

84

Table 3: The relation between KW and the optimal F-score.

KW 3 4 5 6
the number of optimal F-score 11 64 11 1

the proportion of optimal F-score (%) 0.131 0.762 0.131 0.012

Table 4: The relation between β and the optimal F-score.

KW 0.3 0.4 0.5
the coverage rate of optimal F-score 0.643 0.143 0.357

the average error of optimal F-score (%) 0.0022 0.0053 0.0089

Table 5: The performance of keywords extraction algorithm
from Chinese patents.

Method Exact-Match Relaxed-Match
P R F P R F

SR based TF-IDF 0.223 0.207 0.212 0.623 0.571 0.589
TF-IDF 0.087 0.084 0.085 0.515 0.473 0.487

TextRank 0.105 0.125 0.113 0.466 0.533 0.491
word2vec weighted

TextRank (2016) 0.121 0.268 0.165 0.49 0.549 0.518

with same and low frequency, which cannot be distinguished
from the keywords in the state-of-the-art TF-IDF algorithm.

In TextRank, a network topology graph is constructed by the
co-occurrence relations between words to get the keywords.
However, the low co-occurrence of words in abstracts of
Chinese patents leads to a sparse words graph, which cannot
make good use of the connectivity of network to transfer
the weights between words. In order to improve the sparsity
of the words graph, a word2vec weighted TextRank [20] is
proposed to enrich the semantic relations between words. And
the performance is obviously improved from Table 5.

In a word, it is indeed useful for keywords extraction to
reduce the noise words and enrich the semantic relationship
between words. Then the SR based TF-IDF algorithm pro-
posed in this paper uses a sentence-ranking model to sort
the candidate sentences and transfers the semantic weights
of sentences into candidate words. Not only consider the
semantic relations between words and sentences, the noise of
sentences is also reduced. So that the F-score of Exact-Match
and Relaxed-Match based on SR based TF-IDF algorithm all
achieve the highest score.

V. CONCLUSIONS

Keywords extraction from Chinese patents is largely an open
problem, with potentially important benefits given the growing
number of Chinese patents that we have to handle.

In this paper, we build a sentence-ranking model based on
a semantic sentence embedding graph and heuristic rules, and
use the model to reduce the noise in Chinese patents. Then the
semantic weights of sentences based on the sentence-ranking
model are used to calculate the weights of keywords, which
make sure that the importance of sentences is transmitted to
words. Finally, the experimental results on Chinese patents
show that SR based TF-IDF algorithm proposed in this paper
improves the performance of keywords by 6% to 13% in
F-score, which demonstrated the new idea of selecting key
sentences from original documents can effectively filter out

noisy sentences and leverage the performance of keywords
extraction.

However, the manually annotated patent keywords are al-
ways special significate key-phrases. The experiments in this
paper concern the keywords that make up those key-phrases,
which may cause certain limitations of results. In the future,
we will consider the mergence of keywords to get more proper
key-phrases to improve the effectiveness of SR based TF-IDF.

ACKNOWLEDGMENT

This research is financially supported by National Natural
Science Foundation of China (grant number 61462073) and
Science and Technology Committee of Shanghai Municipality
(STCSM) (grant number 17DZ1101003).

REFERENCES

[1] Lai, Chaoan, and X. U. Cuilu. ”The Application of Patent Mining in the
Forecast of Smart Home Industry.” Lancet 381.9876(2016):1458-9.

[2] Fujii, A., et al. ”Overview of the patent translation task at the NTCIR-8
workshop.” Proc. NTCIR-8 (2010):293-302.

[3] Zhang hongying. ”Chinese Key Words Extraction Algorithm.” Computer
Systems & Applications (2009).

[4] Scientific, Join Faculty Of Computer, et al. ”Keyword Extraction Based
on New Word Detection.” Microcomputer Information (2010).

[5] Csomai, Andras, and R. Mihalcea. ”Investigations in Unsupervised
Back-of-the-Book Indexing.” FLAIRS Conference, 2007:231-42.

[6] You, Wei, D. Fontaine, and J. P. Barthes. ”Automatic Keyphrase
Extraction with a Refined Candidate Set.” Ieee/wic/acm International
Conference on Web Intelligence and Intelligent Agent Technology IEEE
Computer Society, 2009:576-579.

[7] Beliga, Slobodan, A. Meštrović, and S. Martinčić-Ipšić. ”An Overview
of Graph-Based Keyword Extraction Methods and Approaches.” Journal
of Information & Organizational Sciences 39.1(2015):1-20.

[8] Nan, Jiangxia, et al. ”Keywords extraction from Chinese document based
on complex network theory.” ISCID, Vol. 2. IEEE, 2014.

[9] Li, Junfeng, X. Lv, and S. Zhou. ”Patent Keyword Indexing Based
on Weighted Complex Graph Model.” New Technology of Library &
Information Service (2015).

[10] Li, Wengen, and J. Zhao. ”TextRank Algorithm by Exploiting Wikipedia
for Short Text Keywords Extraction.” International Conference on In-
formation Science and Control Engineering IEEE, 2016:683-686.

[11] Hasan, Kazi Saidul, and V. Ng. ”Conundrums in unsupervised keyphrase
extraction: making sense of the state-of-the-art.” International Confer-
ence on Computational Linguistics: Posters Association for Computa-
tional Linguistics, 2010:365-373.

[12] Zhang, Qingguo, et al. ”Automatic Keyword Extraction Based on KNN
for Implicit Subject Extraction.” Journal of the China Society for
Scientific & Technical Information 28.2(2009):163-168.

[13] Cao, Ming, et al. ”Comparative research on technology competitiveness
based on patent analysis.” Studies in Science of Science (2016).

[14] Liu, Dacheng, et al. ”Technology Effect Phrase Extraction in Chi-
nese Patent Abstracts.” Asia-Pacific Web Conference Springer, Cham,
2014:141-152.

[15] Ding, Wei, Y. Liu, and J. Zhang. ”Chinese-keyword fuzzy search and
extraction over encrypted patent documents.” International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineering and Knowledge
Management IEEE, 2015:168-176.

[16] Chen, Yiqun, et al. ”Mining Patent Knowledge for Automatic Keyword
Extraction.” Journal of Computer Research & Development (2016).

[17] Liu, Duan Yang, and L. F. Wang. ”Keywords extraction algorithm based
on semantic dictionary and lexical chain.” Journal of Zhejiang University
of Technology (2013).

[18] Juan, Y. U., and Y. Z. Dang. ”Chinese term extraction based on POS
analysis & string frequency.” Systems Engineering-Theory & Practice
(2010): 016.

[19] Lahiri, S, R. Mihalcea, and P. H. Lai. ”Keyword extraction from
emails*.” Natural Language Engineering 23.2(2016):295-317.

[20] Wen, Yujun, H. Yuan, and P. Zhang. ”Research on keyword extraction
based on Word2Vec weighted TextRank.” IEEE International Conference
on Computer and Communications IEEE, 2017:2109-2113.

85

Deep Learning based Information Extraction Framework on Chinese
Electronic Health Records

Bing Tian I Yong Zhang I Kaixin Liu I Chunxiao Xing I

I RIIT, Beijing National Research Center for Information Science and Technology,
Department of Computer Science and Technology, Institute

of Internet Industry, Tsinghua University, Beijing, China

Abstract

Electronic Health Records (EHRs) store a large
amount of clinical data associated with each patient.
Information extraction on unstructured clinical notes
in EHRs is important which could contribute to huge
improvement in patient health management. Previous
studies mainly focused on English corpus. However, at
the same time there are very limited research work on
Chinese EHRs. Due to the challenges brought by the
characteristics of Chinese, it is difficult to apply exist-
ing techniques for English on Chinese corpus. In this
paper, we propose a deep learning based framework for
information extraction from clinical notes in Chinese
EHRs. Our framework consists of three components:
data preprocessing, feature generation and entity and
relation extractor. For clinical entity recognition, we
propose a novel Conditional Random Field (CRF) based
model and introduce effective features by leveraging
the characteristics of Chinese language. For relation
extraction, we utilize Convolutional Neural Network
（CNN）to obtain high quality entity-relation facts. To

the best of our knowledge, this is the first framework
to apply deep learning to information extraction from
clinical notes in Chinese EHRs. We conduct extensive
sets of experiments on real-world datasets from hos-
pital. The experimental results show the effectiveness
of our framework, indicating its practical application
value.
Key words: Electronic Health Records; Deep learning;
Information extraction; Entity recognition; Chinese

1 Introduction
Electronic Health Records (EHRs) store a large

amount of clinical data associated with each patient
encounter, including demographic information, cur-
rent and past diagnoses, prescriptions etc [1]. Infor-
mation extraction from unstructured clinical notes in
EHRs, which serves as the first step towards construct-
ing medical-domain specific knowledge graph, can be
beneficial for many fields such as disease inference,
clinical decision support systems and risk prediction
etc [2, 3, 4]. As such, recently years have seen lots

of studies concentrated on information extraction from
English clinical notes.

However, when it comes to Chinese domain, very
limited work has been done especially for relation ex-
traction due to the challenges brought by the Chinese
clinical notes. On one hand, the different character-
istics of Chinese language determine that the meth-
ods on English corpus can not be directly applied on
Chinese documents. For example, there is no blank
space representing word boundaries between Chinese
words, and words have no morphological changes in
different situations. Besides, some Chinese function
words which are important for semantic understand-
ing, such as ”的”, ”了”are often omitted. On the
other hand, since there are a large number of profes-
sional terms, abbreviations and medical-domain based
knowledge contained in clinical notes. It is difficult to
adopt existing Chinese-based work focusing on other
domains, such as Chinese social media [5, 6], to our
problem.

To address these challenges, we propose a deep
learning based information extraction framework on
clinical notes in Chinese EHRs. Our framework con-
tains three major components: data preprocessing, fea-
ture generation and entity and relation extractor. For
data preprocessing, we clean the raw corpus and in-
vite medical experts to make necessary annotations.
For feature generation, we then select high quality fea-
tures from multiple aspects according to the character-
istics of clinical notes and Chinese language. Finally,
we adopt such features in a novel CRF-based model
to identify boundaries and type of clinical entities in
clinical notes. Next we consider the superior perfor-
mance obtained by deep learning based methods in in-
formation extraction these years and creatively utilize
the convolutional neural network (CNN) model in our
task. CNN has been used in many fields [7]. Com-
pared with state-of-the-art methods on English docu-
ments which heavily depend on manual feature engi-
neering [8, 9], our CNN-based model can achieve bet-
ter performance while avoiding intensive human labor.
We conduct extensive experiments on a real world EHR
dataset from a famous medical institute. And the ex-

DOI reference number: 10.18293/SEKE2018-040
86

perimental results demonstrate the effectiveness of our
proposed framework.

The rest of paper is organized as follows. Section 2
provides an overview of the existing information ex-
traction approaches. Section 3 introduces our deep
learning based information extraction framework. Sec-
tion 4 and Section 5 respectively describe our clinical
entity recognition and relation extraction methods in
detail. Section 6 reports the experiments and discusses
the results. Finally, we draw our conclusions in Sec-
tion 7.

2 Related Work
In this section, we first review the related work

about information extraction on English clinical notes
and then introduce the information extraction meth-
ods on Chinese and their applications in health-related
domain.

Recently, a large amount of work has focused on in-
formation extraction on English clinical notes. Due to
the unstructured nature, most work utilize the statis-
tical machine learning methods. For example, Seol et
al. [10] proposed a clinical Problem-Action relation ex-
traction framework based on CRF and Support Vector
Machine(SVM). Skeppstedt et al. [11] studied the use-
fulness of features extracted from unsupervised meth-
ods and applied them in clinical named entity recog-
nition problem. It is noteworthy that these methods
have depended on manually engineered features which
have seen limited adoption. As such, some recent stud-
ies have proposed several methods using deep learning.
Jagannatha et al. [12] regarded clinical named entity
recognition as a sequence labeling problem and utilized
Recurrent Neural Network(RNN) based model. Sahu
et al. [13] focused on extracting relations from clinical
discharge summaries and exploited the power of CNN
to learn features automatically.

Despite the great challenges of information extrac-
tion on Chinese documents, there has been a lot of work
focused on it recently. For example, in Chinese social
media domain, Peng et al. [5] jointly trained word
segmentation with an LSTM-CRF model for named
entity recognition problem. He et al. [6] further im-
proved the performance for named entity recognition
on the same datasets by proposing a unified model
combining cross-domain learning and semi-supervised
learning. In health-related domain, Yao et al. [14] fo-
cused on the text classification on traditional Chinese
medicine(TCM) clinical records and proposed a novel
method combining deep learning text representation
with TCM domain knowledge. He et al. [15] studied
the corpus construction of Chinese clinical texts.

EHRs from

hospital

Entities and

relations

Entities and relations annotation;

Sentence splitting

Generating features;

Formatting

CRF extractor and

CNN extractor

Data

Preprocessing

Feature

generation

Entity and

Relation Extractor

Figure 1: Framework Architecture

\o \o \o \o \o \o \o \o \o \ B-symptom \I-

symptom \o \o \B- Treatment \I- Treatment \I- Treatment

\I- Treatment \o \o \o \o

Figure 2: BIO Format of Entity Annotation

3 Framework Architecture
The key idea of our framework is extracting clin-

ical entities and relations between them. As shown
in Figure 1, there are three main components in our
framework: data preprocessing, feature generation and
entity and relation extractor. The data preprocessing
component processes the raw clinical notes from hos-
pital. Firstly, to generate a high quality corpus for
training and testing, we have invited professionals from
hospital to help annotate the corpus. And to apply
CRF based algorithms to the entity recognition prob-
lem, annotated entities should be typically converted
into a BIO format. Specifically, it assigns each word
into a class as follows: B means the beginning of an
entity, I means inside an entity, and O means outside
of an entity. For the sentence “患者无明显诱因出现胸
痛，服用硝酸甘油可缓解 ”(No obvious cause of chest
pain, taking nitroglycerin can relieve symptoms), the
BIO format of annotation is shown in Figure 2. An-
notated relations are expressed in a triple format [h,
r, t], the triple means there exists a relation named r
between the entities named h and t. Secondly, consid-
ering most relations are existed within one sentence,
the preprocessing component splits the clinical notes
into sentences using natural language processing tools.

Feature generation component is mainly designed to
generate features needed in entity and relation extrac-
tor component and normalizes the format of training
data so that it can meet the requirements of extractor
component. Generally speaking, the data should con-
sist of multiple tokens, and a token consists of multiple
columns representing the features.

The entity and relation extractor component learns
two extractors: CRF-based clinical entity recognition
and CNN-based relation extraction. The two extrac-
tor enable extracting clinical entities and relations from
clinical notes automatically. Clinical entities and rela-
tionships are actually the knowledge contained in clin-

87

ical notes in health domain so that can be further used
in the construction and application of medical-domain
specific knowledge graph.

4 Clinical Entity Recognition
In this section, we apply the CRF-based model to

Chinese Entity recognition problem. First we introduce
the features we choose and then we propose our CRF-
based model based on these features.

4.1 Features
According to the characteristics of clinical notes and

Chinese language, we select the bag-of-characters fea-
ture, Part of Speech(POS) tag feature, and dictionary
feature etc. as our feature sets for clinical entity recog-
nition problem.

Bag-of-characters feature As the basic units of
Chinese, both characters and phrases can express basic
information of Chinese documents. For clinical entity
problem, the operations on phrases to generate bag-of-
words tend to be more synonymous to complex model
than to better performance. So in this paper, we se-
lect the bag-of-characters as our feature rather than
bag-of-words.

POS tag feature Besides bag-of-characters feature,
the POS tag information can help improve the ef-
ficiency and precision of clinical entity recognition.
Through the analysis of clinical notes, we find that
different kinds of clinical entities show different char-
acteristics in the POS tag composition. In addition,
usually there will be a verb in front of the entity “test”
and “treatment” etc. POS tag features can be gener-
ated through the existing natural language processing
tools.

Dictionary feature Clinical notes are highly spe-
cialized medical relevant texts which contain a large
number of medical terminology. Therefore, the intro-
duction of medical entity dictionaries can effectively
improve the accuracy of clinical entity recognition. But
there are no such dictionaries available in Chinese do-
main yet. Considering this situation, we construct a
Chinese-based medical dictionary as our feature by co-
operating with the professionals from hospital. we first
extract numerous clinical entities by referring to large
amounts of books and literatures as our basic dictio-
nary and then expand it by crawling and filtering data
from Internet. The details of the dictionary are shown
in Table 1.

4.2 CRF-based Model
In natural language processing domain, CRF is

mainly used to solve sequence annotation problems.

Table 1: Medical Entity dictionary
Entity Example Number
Disease 胸椎键盘突出 (Thoracic

keyboard protrusion)
31450

Medicine 接 骨 续 筋 片 (Fracture
tablets)

38726

Treatment 齿槽再造术 (Guttural re-
construction surgery)

8493

Test CT 造影增强扫描 (CT) 3473
Organ 胸口 (Chest) 6089
Physical
indicator

血清触珠蛋白 (Serum
haptoglobin)

3314

x1 x2 xn-1x3 xn

y1 y2 y3 yn-1 yn

Observation sequence

Labelling sequence

Figure 3: Chain Structure of CRF
Not only can it capture a large amount of human ob-
servational experience but also enable capture Markov-
chain dependencies between different tags. What’s
more, by adding customized features according to spe-
cific task, CRF has achieved good results on many en-
tity recognition problems.

In this paper, we regard the clinical entity recog-
nition as a sequence labelling problem. Under this
situation, we believe that the CRF dependency graph
is a chain structure. And what we attempt to do is
modelling the conditional probability of multiple vari-
ables by giving their observation values. Specifically,
as shown in Figure 3, assuming that the observation
sequence is X⃗ = (x1, x2, ... , xn). Y⃗ = (y1, y2, ...
, yn) is the corresponding labelling sequence, and yi
means the label of the ith instance of sequence X. Our
goal is to construct the conditional probability model
P (Y⃗ | X⃗). Here, X⃗ is the entire Chinese character
sequence of a sentence in the clinical notes. Y⃗ is the
sequence of entity labels corresponding to each word in
the sequence X⃗. And we define our feature function as
fa,i(yi−1, yi, X⃗, i). In this function, a ∈ A represents
the type of feature, xi is the word that we are going
to label. λa are the corresponding parameters we need
to train. For observation sequence X⃗ and labelling se-
quence Y⃗ , the conditional probability is as follows:

p(Y⃗ |X⃗;λ) =
1

Z(X⃗, λ)
exp(

∑
a∈A,y1,y2∈Y⃗

λa,y1,y2

n∑
i=1

fa,i,y1,y2(yi−1, yi, X⃗, i)

(1)

Z(X⃗, λ) is the regularization term. And the final la-
belling sequence we get based on this model is as fol-
lows:

Y⃗ ∗ def
= argmaxy⃗∈Y⃗ np(y⃗|x⃗;λ) (2)

88

Table 2: The relations and their occurrence frequencies

Relation Type Number
Treatment
and disease

治疗施加于疾病 (TrAD) 1460
治疗改善疾病 (TrID) 260

Treatment
and
symptom

治疗改善症状 (TrIS) 910
治疗导致症状 (TrCS) 70
治疗施加于症状 (TrAS) 2760
因症状未治疗 (TrNAS) 10

Test and
disease

检查证实疾病 (TeRD) 440
为证实疾病而检查 (TeCD) 90

Test and
symptom

检查证实症状 (TeRS) 3340
因症状而检查 (TeAS) 3010

Disease and
symptom

疾病导致症状 (DCS) 1930
症状表明疾病 (SID) 300

5 Relation Extraction
Relation extraction is the process of identifying how

the given clinical entities are related within the clinical
note where they exist. And these relationships con-
tain a lot of clinical semantic knowledge. And these
knowledge can then be applied in many fields [16, 17].
For this task, we creatively design a CNN-based model
and achieve exciting results. First of all, we identify 12
common relation types. Their names and occurrence
frequencies are shown in Table 2.
5.1 CNN-based Model Architecture

As shown in Figure 4, in the training process, the
outermost layer of the model is initial input. It is the
sentence in clinical notes. The last layer refers the out-
put which is a vector and each value of the vector cor-
responds the possibility of a relation. Besides these,
there are 5 more layers in the model including feature
layer, embedding layer, convolution layer, pooling layer
and fully connected layer.

W D1 D2 POS T

V1 -5 -8 n O

-4 -7 n O

-3 -6 a O

-2 -5 n O

0 -3 ng
B-

Prob

-1 -4 v O

3 1 v O

1 1 v O

0 -2
I-

Prob

2 0 n
B-

Test

Sentence in

EHRs
Feature Layer

Embedding

Layer
Convolution

Layer

Pooling

Layer

Fully

Connected

Layer

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

dg

Figure 4: CNN-based Model Architecture
Feature Layer In the feature layer, we introduce five
features to represent each word which are word itself
(W), distance to clinical entity one (D1) and entity two
(D2), POS tag (POS) and entity type of the word (T).

• W : the specific words in the sentence

• D1: the distance between the current word and
clinical entity one. Here the clinical entity one
and two represent two entities on which we are
going to classify relation. And the distance refers
to the number of words between the current word
and the entity.

• D2: similar to D1, D2 refers to the distance be-
tween the current word and clinical entity two.

• POS: POS tag of the current word.
• T : the entity type of the current word. And the

type is typically converted into a BIO format.
After obtaining these features, we construct a feature
dictionary and all the features are ultimately repre-
sented by a numerical matrix.

Embedding Layer In the embedding layer, each
feature corresponds to a vector of the embedding fea-
ture matrix. Supposing M i ∈ Rn∗N , i ∈ {1, 2...5} is
the embedding feature matrix of the ith feature(here n
represents the dimension of the feature vector, N rep-
resents the number of possible values of the feature or
the size of the feature dictionary), then each column in
the matrix M i is the representation of the value of ith
feature. Assuming that one hot representation of the
jth value of the ith feature is aij , then when the value
of the ith feature is j, its vector representation f i

j is
expressed as follows:

f i
j = M iaij (3)

For word embedding, we used word2vec tool 1 to train
the word vectors on 55000 clinical notes from a famous
medical institute and Q & A data from Chinese medical
platform 39 Health 2.

Convolution Layer In convolution layer, we obtain
the local features of the sentence by convolution op-
erations. Supposing x1x2x3...xm is a feature vector
sequence of a sentence with length m, where xi is the
feature vector of the ith word and the length of the
filter is c, then the output sequence of the convolution
layer is computed as given below:

hi = f(w · xi:i+c−1 + b) (4)

f(x) is the ReLU function: f(x) = max(0, x). w and
b are the parameters we need to train.

Pooling Layer In the pooling layer, we choose the
max-pooling to obtain the global feature of each sen-
tence. Not only does this reduce the dimensions of the
output, but it still retains the most salient features.

1https://code.google.com/archive/p/word2vec/
2http://www.39.net/

89

Table 3: Clinical entities and their frequencies

Entity Type Number Entity Type Number
disease 3110 disease type 220
symptom 24730 test result 3900
test 3230 treatment 4910

Fully connected Layer In the fully connected layer,
we use the forward propagation to determine the pre-
dicted output. Supposing the output of the pooling
layer is a vector z⃗ whose values come from different
filters, then the output o of connecting layer computed
as given below:

o = W · z⃗ + b, (W ∈ R[r]×l, b ∈ R[r]) (5)

[r] indicates the number of relationship types.

6 Evaluation
We conducted extensive experiments to evaluate the

performance of our model for recognizing clinical enti-
ties and extracting relations. In this section, we first
introduce our experimental settings. And then report
the experimental study results.
6.1 Experimental Settings

All the experiments are done on the real-world clin-
ical notes collected from Beijing Anzhen Hospital. To
obtain well-labeled corpus, we first implemented a tool
for annotating entities and relations conveniently. And
then we invited two medical experts to help annotate
the corpus. Specifically, the corpus contains 2200 clin-
ical notes and more than 2039000 words. For clinical
entities recognition, we identify 6 clinical entities in-
cluding “ 疾病 ”(disease), “ 疾病诊断分类 ”(disease
type), “ 自诉症状 ”(symptom), “ 异常检查结果 ”(test
result), “ 检查 ”(test) and “ 治疗 ”(treatment). Ta-
ble 3 shows the clinical entities and their occurrence
frequencies.

We used the cross validation and chose three met-
rics: precision (P), recall (R) and F1-score to evaluate
all the results. For clinical entity recognition, we com-
bined different features as inputs to evaluate the effect
of each one. For relation extraction, we compared the
performance of our CNN-based model with two state-
of-the-art SVM-based models.
6.2 Experimental Results on Clinical Entity

Recognition
For a CRF based model, feature selection is the

key to whether the model can achieve good results.
To compare the contributions of each feature, we con-
ducted a series of experiments with different features.
We started with the model which only use the bag-of-
characters feature(W) as our baseline. Table 4 shows
the different templates designed with bag-of-characters

Table 4: Templates of bag-of-characters feature

Templates T1 T2 T3 T4
Window size 4 4 5 5
Feature bigram trigram bigram trigram
Templates T5 T6 T7 T8
Window size 6 6 7 7
Feature bigram trigram bigram trigram

feature. And Figure 5 shows the performance of differ-
ent templates.

It can be observed that for bag-of-characters fea-
ture, the templates with bigram features obtained a
better performance than templates with trigram fea-
tures. And the templates with the context window
size of 5 achieved the best performance.

0.88367

0.88121

0.88372

0.87993

0.88218

0.87932

0.88272

0.87837

0.874

0.876

0.878

0.88

0.882

0.884

0.886

T T T T T T T T

F
1

 s
c
o

re

Figure 5: Performance of different templates
Figure 6 describes the performance of the model

when POS tag feature(P) and dictionary feature(D)
been used. Template 1(T1) is the baseline with only
bag-of-characters feature been used. Template 2(T2)
to Template 5(T5) respectively added POS tag feature
and dictionary feature and used window sizes of 3 to
6. As we can see from the figure 6, with the different
size of context window, the templates with the POS
tag feature and the templates with the dictionary fea-
ture showed the same changing trend and the better
performance was generated when the window size is 3.
At the same time, the best performance , F1 score of
88.825% was achieved when bag-of-characters feature,
POS tag feature and dictionary feature were combined
in template 6(T6).
6.3 Experimental Results on Relation extrac-

tion
Implementation While implementing our model,
we set the word embedding dimension to be 50 and
the other 4 feature dimensions to be 5. In other words,
the dimension of each word is 70. In convolution layer,
we use the combination of filter lengths 3, 4 and 5 to-
gether empirically. And we set the number of filters as
100 for every length. Moreover, we use dropout with a
probability of 0.50 to prevent overfitting.

90

0.88587

0.88498

0.88401

0.88584

0.88729

0.88607

0.88408

0.88686

0.88372

0.88825

0.881

0.882

0.883

0.884

0.885

0.886

0.887

0.888

0.889

T1 T2 T3 T4 T5 T6

F
1

 s
c
o

r
e

P+W D+W W D+P+W

Figure 6: Performance of different feature templates
Table 5: Comparative performance of CNN based
model and SVM based models

Model P R F1 score
CNN 87.7% 76.8% 81.4%
Multi-Class SVM 80.3% 62.8% 70.5%
Single SVM 72.0% 75.3% 73.7%

Comparison with featured based models As de-
scribed before, existing studies for relation extraction
problem are mainly based on statistical machine learn-
ing methods which heavily depend on manual feature
engineering. Here, we compare the performance of
our CNN-based model with two state-of-the-art SVM-
based models. And we build the SVM classifiers using
features defined, respectively, in [8] and [9]. Table 5
shows the comparison of best results obtained by SVM-
based models and our CNN-based model.

From the results, we can see that the single SVM
model has the lowest precision. But it achieves higher
recall than multi-class SVM model since it introduces
some new features. And our CNN based model all sig-
nificantly outperform the two baseline methods, which
indicates the effectiveness of our approach.

7 Conclusion
We worked on information extraction on unstruc-

tured clinical notes in Chinese EHRs from hospital.
Our framework consists of three components: data pre-
processing, feature generation and entity and relation
extractor. For clinical entity recognition, we propose
a novel CRF based model and introduce effective fea-
tures by leveraging the characteristics of clinical notes
and Chinese language. For relation extraction, we uti-
lize CNN to obtain high quality entity-relation facts.
A series of experimental results showed that our meth-
ods are significantly effective comparing with existing
state-of-the-art models.

Acknowledgement
Our work is supported by NSFC(91646202),

the National High-tech R&D Program of China
(SS2015AA020102), Research/Project 2017YB142

supported by Ministry of Education of The People’s
Republic of China, the 1000-Talent program, Tsinghua
University Initiative Scientific Research Program.
References
[1] G. S. Birkhead, M. Klompas, and N. R. Shah, “Uses of

electronic health records for public health surveillance to ad-
vance public health,” Annual review of public health, vol. 36,
pp. 345–359, 2015.

[2] P. C. Austin, J. V. Tu, J. E. Ho, D. Levy, and D. S. Lee,
“Using methods from the data-mining and machine-learning
literature for disease classification and prediction: a case
study examining classification of heart failure subtypes,”
Journal of clinical epidemiology, pp. 398–407, 2013.

[3] M. A. Musen, B. Middleton, and R. A. Greenes, Clinical
Decision-Support Systems, 2014.

[4] Y. Cheng, F. Wang, P. Zhang, and J. Hu, “Risk prediction
with electronic health records: A deep learning approach,”
in SDM. SIAM, 2016, pp. 432–440.

[5] N. Peng and M. Dredze, “Improving named entity recogni-
tion for chinese social media with word segmentation repre-
sentation learning,” in ACL, 2016, pp. 149–155.

[6] H. He and X. Sun, “A unified model for cross-domain and
semi-supervised named entity recognition in chinese social
media.” in AAAI, 2017, pp. 3216–3222.

[7] J. Wang, Z. Wang, D. Zhang, and J. Yan, “Combining
knowledge with deep convolutional neural networks for
short text classification,” in IJCAI, 2017, pp. 2915–2921.

[8] A.-L. Minard, A.-L. Ligozat, and B. Grau, “Multi-class
svm for relation extraction from clinical reports.” in Ranlp,
vol. 59, 2011, pp. 604–609.

[9] B. Rink, S. Harabagiu, and K. Roberts, “Automatic extrac-
tion of relations between medical concepts in clinical texts,”
Journal of the American Medical Informatics Association,
vol. 18, no. 5, pp. 594–600, 2011.

[10] J.-W. Seol, W. Yi, J. Choi, and K. S. Lee, “Causal-
ity patterns and machine learning for the extraction of
problem-action relations in discharge summaries,” Interna-
tional journal of medical informatics, pp. 1–12, 2017.

[11] M. Skeppstedt, “Enhancing medical named entity recogni-
tion with features derived from unsupervised methods.” in
EACL, 2014, pp. 21–30.

[12] A. N. Jagannatha and H. Yu, “Bidirectional rnn for medical
event detection in electronic health records,” in NAACL,
vol. 2016, 2016, p. 473.

[13] S. K. Sahu, A. Anand, K. Oruganty, and M. Gattu,
“Relation extraction from clinical texts using domain
invariant convolutional neural network,” arXiv preprint
arXiv:1606.09370, 2016.

[14] L. Yao, Y. Zhang, B. Wei, Z. Li, and X. Huang, “Tra-
ditional chinese medicine clinical records classification us-
ing knowledge-powered document embedding,” in BIBM.
IEEE, 2016, pp. 1926–1928.

[15] B. He, B. Dong, Y. Guan, J. Yang, Z. Jiang, Q. Yu,
J. Cheng, and C. Qu, “Building a comprehensive syntac-
tic and semantic corpus of chinese clinical texts,” Journal
of Biomedical Informatics, vol. 69, pp. 203–217, 2017.

[16] K. Zhao, Y. Zhang, Z. Wang, H. Yin, X. Zhou, J. Wang, and
C. Xing, “Modeling patient visit using electronic medical
records for cost profile estimation,” in DASFAA, 2018.

[17] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan,
“An efficient framework for exact set similarity search using
tree structure indexes,” in ICDE, 2017, pp. 759–770.

91

Hot Topic Mining based on the Heat of Micro-blog
Wang Siyao

627188726@qq.com

Abstract—With the popularity of social networks, users
interact with each other and comment on current events through
online social network more and more frequently,how to extract
the hot topic has become the focus of natural language processing
research.In this paper, we propose a hot topic extraction method
based on micro-blog popularity. Combining the heat of micro-
blog and word2vec model to assign weight for each word, and we
use bidirectional LSTM to conduct document semantic coding
and single-pass method for topic mining.The experiment results
show that the proposed method performs better and has stronger
robustness than the traditional topic detection method.

Keywords—OSN，topic mining, word2vec, Neural Network

I. INTRODUCTION
Online Social Networks(OSN) have gradually become

popular in daily life and become one of the most important
media for users to interact with each other, comment on
current events and keep track of topics,like Facebook ,Twitter
as well as Weibo. By 2016 there are more than 2.2 billion
registered users in Facebook. In the second quarter of 2017,
there are more than 2 billion active users in Facebook. How to
effectively extract the topic of the user's published content has
become the focus of the current natural language processing
research.

Social media text data contain many new words,
abbreviations and emoticons and the length of text is relatively
short]2,1[.This type of text data contains more noise,so the text
matrix yield by topic model is extremely sparse and difficult
to analysis and calculate.Commonly used probability topic
model LDA and its variants]3[can display the semantic
information of the texts through taking topic as the expression
of the middle layer features.However, this model treats each
word as an entity without considering the contextual
relationships between words and the temporal
dependencies.The machine-learning based approach is mainly
used to process ordinary texts, using words as a basic attribute,
represent texts as sets of words, and apply machine learning
methods for matrix decomposition (LSI,NMF)]23[,topic
clustering(like k-means, incremental clustering, hierarchical
clustering, single-pass clustering, etc.)]26-24[In addition,the
development of deep learning provides a new research
direction and technical method for the topic mining . Recently,
word embedding and recurrent neural network (RNN) have
become a research focus of deep learning in natural language
processing.The word embedding method is to express the

vocabulary as a dense real number vector on a low-
dimensional space,in this way, the expression of lexical
semantic features and the construction of language model can
be realized.

However, the current study of hot topics mining in the
OSN media mainly focus on the level of text, ignoring the
interactivity of online social network:every text published by
users hide a lot of social information.For example,the more the
text was commented and forwarded ,the more probability that
text contain the hot topic.Therefore, based on the above ideas,
we propose a heat-based topic mining method.In this paper,the
main works are as followed:

Given that the word2vec model can not distinguish the
importance of words in the text,we give each word a value
based on the tweets popularity and reconstruct word
embedding model.

Using LSTM to encode documents and characterize the
dependencies between words, and we apply single-pass
clustering method to mine the topic model.

.

II. RELATED WORK

In this section, we review the prior study on the issue of
hot topic mining. Social media text expression is not
standardized, and there is a large number of short text

messages, to solve such problems, Danushka and Liu
]12,11[

et.al proposed the use of search engines and hownet to expand
the original text with the aim of weakening the low-frequency
feature words on the clustering results.However, the methods
are implemented by introducing a large number of external
features,as a result the excessive time consumption is not
suitable for large-scale expected research.

In terms of the expression of words, word embedding has
become a very popular tool in recent years and is widely used
in every aspects of natural language processing.Collobert &
Weston et al.]27[proposed a multi-layer neural network model
structure based on recurrent neural network for processing
variable length word sequence input. In 2012, Eric H. Huang
improved the method of C&W and proposed a word
embedding training model based on cyclic neural network
considering the local and global contexts]28[. In 2013,
Google's Mikolov team proposed the word2vec word

embedding model
]7,6[
, expressing the vocabularies as a dense

real number vector on a low-dimensional space, in order to
achieve a lexical semantic feature expression. In 2014, Jeffrey
and Socher fused the idea of local context information and

DOI reference number: 10.18293/SEKE 2018-049

92

global word co-occurrence matrix decomposition to further
explore a global linear regression model Glove]29[. Other
methods to consider the global context include adding text
vectors such as PV-DM and PV-DBOW]30[models and
introducing external knowledge base, but due to the
particularity of words in natural language processing in terms
of semantic expression and multi-word synonymy and so on,
how to obtain high-quality representation of word features has
always been an important topic in natural language processing

and text mining. Sundermeyer et. al
]8[
explained how to build

language models using LSTM neural networks. Kim
]9[
used

CNN to complete the task of sentence classification with the

pre-process of word vector.In 2015, Tang et.al
]10[
used the

neural network model consisting of CNN and LSTM to
conduct text topic mining.After experimental verification,
neural networks composed of CNN and LSTM have achieved
good results in topic mining.

With the deep application of deep neural network in the
field of natural language processing, Encoder-Decoder

framework
]16[
has been the mainstream method of text

sequence modeling in recent years, It also has far-reaching

effects on reading comprehension
]17[
, text abstract

]18[
,

machine translation
]19[
, automatic question answering

]20[
.

Wang et al. Proposed an end-to-end deep learning framework
for fusion question matching to model reading comprehension

questions
]21[
.The framework includes match-LSTM, a match

expression model for questions and sentences, and a web-
oriented Point Net for answer constraints that effectively
enable reading comprehension on large datasets. The
popularity of the Encoder-Decoder framework has led to many

enhancements to codecs, and attention models
]22[
are the

most powerful and most powerful enhancements available
today.The attention model decodes the Decoder output to give
a different weight to each input to the Encoder so that the
weight of the input that is more important to the current output
becomes larger.

III. PROPOSED METHOD

A. Definition of Micro-Blog Heat
Our thinking about the way of calculating blog heat

comes from the description of self-information in information
theory:a small probability event contains a large amount of
information, at the same time a large probability event
contains a small amount of information.So the valve of the
information in event A is defined as formula(1) :

)1()(log)(APAI

Learning from the idea of calculating the valve of
information, assuming that the number of comments on a
micro-blog m is r, the forwarding number is s, the definition of
the micro-blog heat is shown in formula(2)

)2(
1

1log)(

sr

mHeat

The heat of micro-blog is equal to the sum of the heat of
the term in the micro-blog. Therefore, when there are N words
in the micro-blog, the heat calculation formula of a single
word is described as formula(3):

)3()()(
N
mHeatwHeat

B. Word2Vec model
Word embedding is a good way to express lexical features,

and the vocabularies are expressed as dense real number
vectors in low-dimensional space.Word2Vec is the most
widely used word embedding technology,including two kinds
of models:CBOW and Skip-Gram.The CBOW model uses the
remaining words in the context to predict the probability of
generating the target word,and Skip-Gram uses the target
vocabulary to predict the probability of other terms in the
context.Compared with the CBOW model, Skip_gram has
higher semantic accuracy at the expense of higher
computational complexity.This paper is based on the Skip-
Gram model to improve the training of word vectors, so the
prediction of contextual probability is defined as (4):

)4()|()|)((
)(

wcontextw

wwpwwcontextp

Word2vec applies a layered softmax function to improve
computational efficiency,combined with the layered softmax
function, equation (4) can be expanded to formula(5):

)5()|)((wwcontextp

jwy

jw
T
w

wcontextw

wl

j

jwy

jw
T
w xvxv ,1

1,
)(2

,
1,)](1[)]([

Where w denotes the target vocabulary, w indicates the
context of the target vocabulary, wl denotes the the path length

of the context in the output layer hierarchy tree, wv denotes

the input word vector of target vocabulary. jwx , represents the

output word vector at the corresponding level under a certain
contextual vocabulary. jwy , is logistic output variable.

)(),|(1,1,, jw
T
wjwmjw xvxvyp 0, jwy

)(1),|(1,1,, jw
T
wjwmjw xvxvyp 1, jwy

Where)(represents sigmod function.
When training the model of word embedding, the

robustness of the model is often enhanced by introducing
some words that are not found in the corpus as negative
samples,these negative samples can be pre-generated by

93

negative sampling
]13[
.The objective function of Skip-Gram

model trained with negative sample is shown in formula(6):

 wNwuCw wcontextw

L
}{)(

)6()]}(1log[)1()](log[{ u
T
wwuu

T
wwu xvyxvy

Where wN is a negative sampling set under the

vocabulary w , wuy is logistic output variable, wv is the sum

of word embedding of context, ux denotes the parameter of the
model.

C. Word2Vec based on micro-blog heat
Given training corpus dictionary }...1|{ Nitvocab i

and document ji wwwd ,..., 21 where N is the word vector
dimension.We use Word2vec model to train the corpus to get t
he word vector,accumulate the word vectors in the text id to g

et the vector representation of the text id shown in formula(7)

)7()(2)(
t ii dtwheretvecworddR

Next, we introduce the heat model to calculate the word
weight in Word2vec model according to the heat of words,and
the the weighted word vectors are accumulated to obtain a
new vector representation of document id shown in formula
(8)

)8()()(2)(_
t ti wHeattvecworddRweight

D. Document Semantic Coding Based on LSTM
Automatic coding machine is a artificial neural

network,using self-supervised learning to encode input
samples ,in order to achieve the purpose of reducing the data
sample dimension.It is mainly divided into two parts:Encoder
and Decoder.The encoder mainly compresses the original data
into the output code:

ZX ：

The decoder will restore the output code closely to the
original data:

': XZ

In order for the automatic coder to retain the primary
information in the original sample, the optimization goal is set
as formula(9):

)9(||))((||minarg 2XX

，

，

LSTM coding framework is divided into five layers,taking
the word embedding expression of all the keywords in the
document as input and the overall semantic embedding of the
document as output. The details of these five levels are as
follows:

Word embedding presentation layer:This layer is the input
layer. Because some documents tend to have more lexicons
and some unimportant words that have no direct effect on the
expression of the document's theme,in this paper we only
select the word embedding with larger heat valve as input,and
the word embedding for all words is obtained from word2vec
model above.

Bidirectional LSTM hidden layer:Contains two LSTM
hidden layers, forward and backward layer,at the same time,
each word embedding is connected to both the forward and
backward LSTM hidden layer unit,these two hidden layers are
connected to the same output.The input word at the moment t
is embedded as tE ,the output to the forward LSTM hidden

layer cell is f
th 1 ,output to the backward LSTM hidden layer

cell is b
th 1 for the last moment.The output of the forward and

backward layers at the current moment are shown in
formula(10,11):

)10(),,,(111 tt
f
tt

f
t bchEHh

)11(),,,(111 tt
b
tt

b
t bchEHh

Where)(H denotes the function of LSTM hidden
layer, 1tc indicates the status value of the Cell unit at the last

moment, 1tb denotes the offset at the last moment.

Bidirectional LSTM output layer ： Each output cell is
connected to both the forward and backward LSTM hidden
layer cells at same moment.

)12()(1 g
b
t

b
hg

f
t

f
hg bhWhWg

Where f
hgW and h

hgW are respectively the connection
weights between the forward, backward hidden layer and the
bidirectional LSTM output layer, gb denotes the offset.

Average pooling layer:We use average pooling to process
the original eigenvalues and construct new features,as well as
realizing the dimension reduction, enhancement and noise
filtering of the original valid features.Through averaging all
cell values over a certain range,local information can be taken
into account,calculation is shown in formula(12):

94

)12()(
1

T

t

t

T
ggpool

Where T is the length of the input word embedding
sequence.

Semantic encoding output layer:The result of the average
pooling layer can be calculated by activating the function to
get the final semantic coding vector of the entire document

The dimension of the semantic code vector is consistent
with the dimension of the input word embedding in order to
facilitate similar calculation.

E. Hot topic clustering
After applying LSTM to semantic encoding, each

document exists in the form of a vector in the hidden subject
space,and its dimension is much lower than that of the feature
space in vector space model.Therefore, we use Single-Pass
clustering algorithm to conduct document clustering. After
that we get the number of clusters K (that is, the number of
topics), and the results of the division of each document on the
K topics in the document set.

IV. RESULT EVALUATION

Data set: We used crawlers to crawl over 10,000 micro-
blogs in 15 hot topics in 2016 in Sina Weibo, and selected 200
micro-blogs from each topic,recording the number of each
comments and forwarding on each micro-blog.As a result we
take a total of 3000 micro-blogs as the experimental data set.

The data set need to be pre-processed before model
training,including stop words, high and low frequency words,
illegal characters.The word with the frequency of less than 5
in the corpus is considered as the low frequency word, and the
word with the frequency more than 20% of the total number of
words is considered as high frequency word.

Evaluation Measurement

For the results of the hot topic mining, we use the purity
and the normalized information (UMI) as the evaluation
measurement, and these two evaluation methods are
applicable to the text data with label.

Purity:Purity is used to measure the proportion of correctly
clustered documents in the total document. The greater the
purity is, the better effect the topic clustering yields.The purity
value is calculated as formula(13):

)13(||max1
1

k

i
jij
cp

D
purity

Where D is the total number of micro-blogs, k is the
number of topic clusters, ip represents the set of words

contained in the i-th cluster, jc denotes the j-th micro-blog in
the corpus.

normalized mutual information (UMI):The NMI value is
calculated as formula(14):

)14(
),(log
),(
),(

log

1 1

K

t ijK ji

ji

ji

wwP
wwP
wwP

NMI

Where K represents the number of topics, N is the first N
words under the topic.),(ji wwP denotes the co-occurrence

probability of word ji ww , .)(wP is the probability of the
word w under the topic k.

Point-wise Mutual Information,PMI is the most commonly

used semantic coherence evaluation measurement
]15,14[
.The

results of PMI evaluation are often highly consistent with
manual evaluation. The higher PMI scores, the stronger
semantic coherence topic have.The PMI value is calculated as
formula(15):

)15(
)()(
),(

log
)1(

2)(
1

Vji ji

ji
k wpwP

wwp
VV

PMI

Where)(iwp is the probability of appearance of

vocabulary iw in the test document set.),(ji wwp represents

the joint probability of vocabulary iw and jw in the test
document set,V is the dimension of the vocabulary list.
Therefore, in this paper, for each subject word distribution, we
only select the first 10 words with the highest probability
value to calculate PMI.

Result analysis and comparison
We also implement the classic statistical-based TF*IDF,

NTM and LDA algorithm to exact key words from micro-
blog.We conducted several sets of comparative experiments.In
the experiment, we set the number of topics as 6, 20, 40, 80
respectively for the experiment of purity, and we set the
number of topics as 20, 40, 60, 80, 100 respectively for
experiment of NMI.The dimension of word vector size is 300,
the experimental results are shown in Fig.1 and Fig.2

Fig.1 NMI valve

95

Fig.2 Purity valve
From the above two figures we can see,under the Sina

Weibo corpus, the proposed HTMH(Hot Topic Ming Based on
the Heat of Micro-blog) model has some improvement over
other models in terms of purity and normalized mutual
information,the purity reaches the maximum when the number
of topics is 40,and the normalized mutual information (NMI)
gets the highest accuracy when the number of topics is 20,This
is also consistent with other models, HTMH has increased by
3% compared with TF * IDF, and increased by 5% compared
with LDA.This is because word embedding technique is
introduced as a semantic supplement.This makes the semantic
relationship between words and subject strengthened.And in
the follow-up training process, word embedding and topic
model training promote each other, so we can identify the
topic more accurately.

We can see from Fig.3, the HTMH model proposed in this
paper has a generally higher PMI valve.It shows that the
extracted hot topic has a strong semantic coherence and as the
number of subjects increases, the PMI value basically remains
unchanged.The traditional LDA model has the lowest PMI
because it does not consider the semantic reinforcement of
documents and words,NTM is a neural network reconstruction
of the LDA model, but it does not take into account the
reinforcement of vocabulary and semantics.So it performs
relatively poorly.

Fig.3 PMI valve

V. CONCLUSION

In this paper, we proposed a hot topic mining method
based on micro-blog heat,based on the word2vec, we
combined the idea of information theory and gave weight to
each word. After using bidirectional lstm for semantic
encoding, we applied single-pass clustering algorithm to
conduct hot topic mining.

We then compared MTMH(Hot Topic Ming Based on the
Heat of Micro-blog) model with TF * IDF, LDA and NTM
algorithms,and introduced measurement of the topic mining
quality,such as purity, NMI and PMI.Through the weibo
corpus we proved that the HTMH model performs better on
topic mining.

Future research focuses on the impact of sequence on the
distribution of topics,in addition,collaborative training of
feature expression of topic detection, emotion analysis and
word embedding is also the trend of large-scale social media
data analysis.

REFERENCES
[1] Losada D E. The challenge of understanding the flow of sentiments in

social media documents[C]// International Workshop on Search and
Mining User-Generated Contents. ACM, 2011:1-2.

[2] Liu H. Mining social media: issues and challenges[C]// ACM Sigmm
International Workshop on Social Media. ACM, 2011:1-2.

[3] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of
Machine Learning Research, 2003, 3:993-1022.

[4] Bengio Y, Vincent P, Janvin C. A neural probabilistic language model[J].
Journal of Machine Learning Research, 2006, 3(6):1137-1155.

[5] Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with
Neural Networks[J]. 2014, 4:3104-3112.

[6] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word
Representations in Vector Space[J]. Computer Science, 2013.

[7] Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of
Words and Phrases and their Compositionality[J]. Advances in Neural
Information Processing Systems, 2013, 26:3111-3119.

[8] Sundermeyer M, Schlüter R, Ney H. LSTM Neural Networks for
Language Modeling[C]// Interspeech. 2012:601-608.

[9] Kim Y. Convolutional Neural Networks for Sentence Classification[J].
Eprint Arxiv, 2014

[10] Tang D, Qin B, Liu T. Document Modeling with Gated Recurrent
Neural Network for Sentiment Classification[C]// Conference on
Empirical Methods in Natural Language Processing. 2015:1422-1432

[11] Bollegala D, Ishizuka M, Matsuo Y. Measuring semantic similarity
between words using web search engines[J]. Computer Science,
2015:757-766.

[12] Liu Z, Yu W, Chen W, et al. Short Text Feature Selection for Micro-
Blog Mining[C]// International Conference on Computational
Intelligence and Software Engineering. IEEE, 2010:1-4.

[13] Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of
Words and Phrases and their Compositionality[J]. Advances in Neural
Information Processing Systems, 2013, 26:3111-3119.

[14] Newman D, Lau J H, Grieser K, et al. Automatic evaluation of topic
coherence[C]// Human Language Technologies: Conference of the North
American Chapter of the Association of Computational Linguistics,
Proceedings, June 2-4, 2010, Los Angeles, California, USA. DBLP,
2010:100-108.

[15] Jey Han Lau,David Newman,Timothy Baldwin.Machine reading tea
leaves:Automatically evaluating topic coherence and topic model
quality.In EACL’14,pp.530-539,2014

[16] Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with
Neural Networks[J]. 2014, 4:3104-3112.

[17] Seo M, Kembhavi A, Farhadi A, et al. Bidirectional Attention Flow for
Machine Comprehension[J]. 2016.

96

[18] Lopyrev K. Generating News Headlines with Recurrent Neural
Networks[J]. Computer Science, 2015.

[19] Cho K, Merrienboer B V, Bahdanau D, et al. On the Properties of
Neural Machine Translation: Encoder-Decoder Approaches[J].
Computer Science, 2014.

[20] Pengcheng Yin, Zhengdong Lu, Hang Li, et al. Neural Enquirer:
Learning to Query Tables with Natural Language[J]. Computer Science,
2016.

[21] Wang S, Jiang J. Machine Comprehension Using Match-LSTM and
Answer Pointer[J]. 2016.

[22] Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly
Learning to Align and Translate[J]. Computer Science, 2014.

[23] Wang Q, Xu J, Li H, et al. Regularized latent semantic indexing[C]//
International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 2011:685-694.

[24] Yamron J P, Knecht S, Mulbregt P V. Dragon's Tracking and Detection
Systems for the TDT2000 Evaluation[J]. Proceedings of the Broadcast
News Transcription & Understanding Workshop, 2000:75--79.

[25] Charikar M, Chekuri C, Motwani R. Incremental clustering and
dynamic information retrieval[C]// Twenty-Ninth ACM Symposium on
the Theory of Computing, El Paso, Texas, Usa, May. DBLP, 1997:626-
635.

[26] Corpet F. Multiple sequence alignment with hierarchical clustering.[J].
1988.

[27] Collobert R, Weston J, Karlen M, et al. Natural Language Processing
(Almost) from Scratch[J]. Journal of Machine Learning Research, 2011,
12(1):2493-2537.

[28] Huang E H, Socher R, Manning C D, et al. Improving word
representations via global context and multiple word prototypes[C]//
Meeting of the Association for Computational Linguistics: Long Papers.
Association for Computational Linguistics, 2012:873-882.

[29] Pennington J, Socher R, Manning C. Glove: Global Vectors for Word
Representation[C]// Conference on Empirical Methods in Natural
Language Processing. 2014:1532-1543.

[30] Le Q V, Mikolov T. Distributed Representations of Sentences and
Documents[J]. 2014, 4:II-1188.

97

SocialGQ: Towards Semantically Approximated and
User-aware Querying of Social-Graph Data

Riccardo Martoglia

FIM Department, University of Modena and Reggio Emilia, I-41125 Modena, Italy,
E-mail: riccardo.martoglia@unimore.it

Abstract – The proliferation of social and collaborative sites
makes users increasingly active in the generation of social-
graph data; however, such sea of data often hinders them
from finding the information they need. In this paper, we
present SocialGQ (“Social-Graph Querying”), a novel ap-
proach for the effective and efficient querying of social-
graph data overcoming the limitations of typical search ap-
proaches proposed in the literature. SocialGQ allows users
to compose complex queries in a simple way, and is able to
retrieve useful knowledge (top-k answers) by jointly exploit-
ing: (a) the structure of the graph, semantically approx-
imating the user’s requests with meaningful answers; (b)
the unstructured textual resources of the graph; (c) its so-
cial and user-aware dimension. An experimental evaluation
comparing SocialGQ to leading approaches shows strong
gains on a real social-graph data scenario.

Keywords – social-graph, knowledge management, approx-
imate querying, user-aware techniques, semantic retrieval.

1. Introduction

In recent years, the web has evolved from a static web, where
users consume information, to a “social web” where they are
also able to produce them. The proliferation of social networks
(e.g., Facebook, LinkedIn, ...), social bookmarking and collab-
orative tagging sites (e.g., BibSonomy, CiteULike and Deli-
cious), social question-answering sites (e.g., Stack Overflow),
microblogging sites (e.g., Twitter) and social components on
“traditional” websites makes users increasingly active in the
generation of content. This ever increasing amount of “social-
graph” data is quite peculiar in its composition. First of all, it is
typically characterized by a dual nature, both graph-structured
(users/resources as nodes and relations, such as friendships, as
arcs), and unstructured (the large amount of textual resources,
e.g., documents and comments). Moreover, the social/user-
aware component is obviously quite prominent, where the
available nodes and resources are possibly created/modified by
different users. Consider, for instance, the small excerpt from
the BibSonomy graph data [9] depicted in Fig. 1, showing two
content resources (nodes) with their associated annotations. In

(DOI reference number: 10.18293/SEKE2018-052)

particular, the BibTeX instance “C19837” (node n131) has been
annotated with the “semantics” tag by user “U150” (n4), while
Bookmark instance “C45829” (n14) has been tagged as “se-
mantic web” by user “U881” (n12). The social nature of the
data is highlighted in figure by small symbols (circle, triangle)
depicting the nodes modified by the two users. Note that entity
nodes (including instances) are depicted with rounded corners,
differently from simple value nodes, representing textual con-
tent (e.g., abstracts, descriptions) and other attributes (e.g., pub-
lication years). Finally, consider the strong semantic character-
ization of such data, given by type hierarchies (both BibTeXs
and Bookmarks are defined as Contents) and also user-specified
tag hierarchies (for instance, user “U881” defined the “semantic
web” tag as a specialization of the “semantics” tag).

In this context, a crucial problem is to extract useful knowl-
edge from this wealth of information. Users should be able to
compose complex queries (beyond the classic keyword model)
in a simple way, allowing them to quickly find all the relevant
information with respect to the their needs. Consider for in-
stance the following three examples of information need:

Q1. Find (not already known by me) content having a summary
about “semantic” and “text”;
Q2. Find BibTeX entries semantically related to BibTeX titled
“Versatile...”;
Q3. Find documents that have been tagged as “semantics” (also
considering sub-tags defined by me).

Such requests go well beyond what typical websites and stan-
dard search tools allow: they are very difficult or even impos-
sible to express with simple keywords; they require semantic
approximation in order to be effectively solved on the graph
data, both in terms of labels (e.g., terms like “summary” and
“document” are not defined in the data) and structure (e.g., Q1
asking for “content” should retrieve all its subclasses, i.e., both
BibTeX and Bookmark entries; Q2 asks for BibTeXs generi-
cally related to the named one; Q3 also asks for content tagged
with sub-topics); they also require unstructured content full-text
search capabilities going beyond exact search (e.g., Q1), as well

1For clarity’s sake, nodes are univocally identified by the node ids i shown
on the left upper corner and will be referenced as ni; moreover, some type
relationships (e.g., users, blank nodes) are omitted from the figure.

98

Tag

BibTeX

T2345
type

subClassOf
U150

150

C19837

type

userID content

A1453annotates

“Versatile Structural
Disambiguation for Semantic-

aware Applications”

19837

2005

contentID

year
title

“semantics”

labeltag

Content

C45829

“Document describing
the web 2.0 (semantic
web) text content…”

http://
www.web20.net

description url

U881

881

userID

annotates

Bookmark

subClassOf

type

A3438

supertag

subtag

T3567

“semantic
web”

label annotates

A3421content

tag

“Semantic text
disambiguation…”

abstract

*
*

̗

̗

̗

̗

○

○

○

○

○

○

2

1

3

4
5 6 7

8

9 10 11
12

13

21

14 15

16

17

18

19 20 22 23

 , user(s)○ ̗

 entity node
entity node (instance)

 full-text value
value node

*

type

Figure 1. An excerpt from the BibSonomy graph data

as user-awareness (e.g., Q1, Q3); finally, they require an effec-
tive ranking in order to provide first the most relevant results.

Generally speaking, currently available search tools do not
support all the above-mentioned requirements, typically mak-
ing such complex requests impossible to be solved automati-
cally, i.e., without requiring a lot of manual effort from the user.
Typical social sites search capabilities are keyword-only, lim-
ited to exact search in specific fields, syntactic-only (absence
of semantics) and typically disregard the social nature of the
data (i.e., who created what). Similarly, looking at the current
research state of the art, there are several (approximate) graph
querying [4, 8, 14], user-aware textual search [12, 15] and so-
cial search [6, 7] proposals; however, no one combines all the
required features in a single solution applicable to the context
of the social-graphs.

In this paper, building on the acquired know-how on graph
data management [11], we focus on defining the foundations of
SocialGQ (“Social-Graph Querying”), a novel approach for the
effective and efficient querying of social-graph data. SocialGQ
is aimed to overcome the limitations of current approaches, by
jointly exploiting: (a) the structure of the graph, by means of
approximation techniques capable of semantically approximat-
ing the user’s request with meaningful answers; (b) the unstruc-
tured textual resources present in the contents of the graph; (c)
the social and user-aware dimension. The capacity for semantic
approximation also responds to the need for simplicity in the
composition of the query itself, intelligently adapting the re-
quest to the graph. The final aim is to retrieve the most useful
(top-k) answers in an efficient and automated way.

Fig. 2 provides an overview of the SocialGQ architecture:
the Data Manager module (described in Sect. 3) organizes the
social-graph data into ad-hoc data structures efficiently support-
ing the semantic approximation, full-text and user-aware re-
quirements. The Query Processing and Ranking modules (Sect.
4) actually provide the top-k answers to the user query in in-
put, avoiding to build useless solutions. The modules are based

on specific data, query and ranking models (briefly sketched in
Sect. 2). An experimental evaluation comparing SocialGQ to
existing approaches shows strong gains on a real social-graph
data scenario (Sect. 5). Finally, Sect. 6 concludes the paper
also by briefly analyzing related works.

2. Social-graph data, queries and answers
The aim of the SocialGQ data model is to have a flexible

social-graph model (a) capturing key social-graphs’ features
and (b) not bound to specific graph standards (e.g., RDF), even
if easily supporting them. Data is generically represented as
a connected multigraph (i.e., a graph with parallel edges) with
node and edge labels. A social-graph essentially represents a
portion of the real world through entities (concepts and their
instances), values, and relationships between them. Consid-
ering our reference example (Fig. 1), scientific publications
and annotations are described by concepts such as BiBTeX,
Bookmark, Tag; n1, n11, n13 and n14 are some instances. In-
stances are characterized by a type and a userlist; the latter is
represented in figure with small symbols in the upper right part
and denotes users that created/modified them.

As to queries, in order to support complex requests such as
those discussed in Sect. 1, we go beyond the keyword-based
approach. A SocialGQ query is expressed as a labeled multi-
graph connecting entity nodes and conditions on values. Fig.
3 shows Q1, Q2 and Q3 expressed in our model. Note that
users can annotate any node or edge with the wildcard “any la-
bel”, ‘#’. For instance, n2, n3 and edge n2-n3 in Q2 denote the
user’s absence of knowledge about the specific nodes and edges
connecting them. Conditions c can be defined on query nodes,
specific cases characterizing a social-graph query are:

• the full-text condition (e.g., see n3 in Q1), supporting full
text search in value nodes and returning a normalized TF-
IDF score [13] cs. This allows SocialGQ to exploit the
unstructured part of the social-graph;

99

Structural labels

B+ metric

Semantic path
lists

triple
idx

Social-graph Base

IR B+ B+ B+

(values) (node ids) (users)

MODULES

DATA STRUCTURES

Query Processing
Module

Ranking
Module

Input
Query

Ranked
Top-k

Answers
Data Manager

Module
Social-graph

Data

lidyear “year” E
lidtype “type” E
lidBibTeX “BibTeX” N
lidBookmark “Bookmark” N

...

(#i, lidtype, lidBibTeX) L1def
(#i, liddescription, #v) L2def
(#i, lidlabel, #v) L3def
(#i, lidrelated, #i) L4def

...

Figure 2. An overview of Social-GQ architecture

• the user-aware condition on query nodes (represented as
+/- in figure), allowing users to restrict data matches to
nodes not modified/known by them (-, as in Q1 for n2), or
the opposite (+, as in Q3 for n6, requesting tags related to
“semantics” and defined by who submitted the query).

SocialGQ answers are portions of the data graph that semanti-
cally approximate the query. Two kinds of approximations are
tackled: node/edge label and structural mismatch. To this re-
gard, note that none of the sample queries finds an exact match
on the reference graph. For instance, in Q1 (Fig. 3) the edge la-
bel summary is used instead of abstract, moreover no data
edges are directly typed as Content (however, there are pos-
sible BibTeX and Bookmark matches, which are subclasses
of Content). In SocialGQ, the degree of mismatch between
labels is quantified by means of a user-definable semantic dis-
tance function dL that, for any pair of labels, returns a value
ranging from exact match (0) to total mismatch (1). As to struc-
tural mismatches, a purely topological approach which relaxes
adjacency constraints by allowing arbitrary node/edge inser-
tions in the data graph would not be able to produce meaningful
answers. Instead, we consider meaningful sequences of con-
secutive edges (i.e., paths), named semantic paths, that match
query edges with an approximation cost ac. For instance, the
path n2-n1 in Q1 (Fig. 3) could be approximated with the se-
mantic path n13-n9-n6 (Fig. 1), which has the same “meaning”.

The goodness of each answer a to a query Q is quantified
through a scoring function S:
S(a) = αn · (1− avg

n∈Q
(dL(n, n)))+

+ αe · (1− avg
e∈Q

(dL(e, e) + ac(e))) + αc · avg
c∈Q

(cs(c)), (1)

where αn, αe and αc, αn+αe+αc=1, are customizable coeffi-
cients (default=1/3) combining the average of: (a) label approx-
imations (dL) occurring with each query node n and edge e (n
and e denote matching data nodes/edges); (b) structural approx-
imation costs (ac) on each edge e; (c) cs scores of each full-text
query condition c (note that user-aware conditions prune out in-
compatible answers and do not affect ranking). The higher the
returned score S(a), in [0, 1], the better the answer a.

#

Document

type
content

#

#

tag
label

“semantics”

Tagtype

+

#

Content

type

+/-: user conditions

summary

about “semantic”
and “text”

#

BibTeX

#

type type

#

“Versatile Structural
Disambiguation for Semantic-

aware Applications”

title

1

2

3

1

1

2

2

3

3

4 5
6

4

-

Q1) Q2)

Q3)

Figure 3. Three sample queries

More details on the data structures supporting SocialGQ
query processing and how query processing itself is managed
are presented in Sects. 3 and 4, respectively.

3 Data Manager
SocialGQ data manager organizes data in a “core” social-

graph base (lower right part of Fig. 2), which is managed via
the graph management system Neo4j [1], and in a series of ad-
ditional ad-hoc auxiliary structures, which are the focus of this
section. These provide advanced indexing and support for the
innovative query features, ultimately helping the query proces-
sor in building the best answers as soon as possible.

First of all, the “Structural labels” table (lower left part of
Fig. 2) stores structural (i.e., edges’ and entity nodes’) labels,
associating the label to a short identifier (lid) and a kind (“E”
for edges and “N” for nodes). Label data are indexed by means
of B+ trees (allowing for exact search) and metric indexes (al-
lowing for approximate search). As we will see, in query pro-

100

cessing this allows to quickly check if the structure of the given
query is solvable on the social-graph data.

Besides dealing with labels, one of the most expensive oper-
ations for solving a query is to find the paths in the social-graph
data which match the given query edges. To this end, the idea
behind SocialGQ “semantic path lists” (lower central part of
Fig. 2) is to organize repetitive data paths by means of identi-
fying triples summarizing their structural role, ignoring specific
instance and value information. Let us start the discussion by
considering single edges. A single edge e connecting two nodes
n and n′ is straightforwardly identified by the involved label
ids (i.e., (lidn,lide,lidn′)). Value and instance nodes labels are
generically represented with “#v” and “#i”, respectively. For
instance, the label edges n1-n7 and n11-n15 (Fig. 1), con-
necting tag instances to their label value, are both associated
to the triple (#i,lidlabel,#v). Triples are indexed and used in
query processing to match with query edges (as we will see in
next section). Associated to each triple, is a definition Ldef
of a list pointing to the actual involved portions of the graph
base (for instance, in our example, list L3def points to the two
above mentioned edges, among others). One interesting feature
of SocialGQ is that such lists, which can be potentially quite
large, do not need to be pre-computed or materialized. Being
the core graph base managed in Neo4j, list definitions are (sets
of) Cypher [1] scripts that can be easily customized by the data
administrator. This flexibility is indeed particularly useful since
such lists are not limited to identify relevant data edges, but also
semantic paths. In this way, custom semantic rules capturing
the specific meaning of the social-graph can be easily coded
into the definitions so to allow meaningful structural approxi-
mations to be easily identified in the query processing phase.

Let us consider for instance the above discussed case of
(#i,lidlabel,#v) paths: L3def can be defined to match single
edges by means of the following Cypher MATCH clause:

(t:Tag)-[l:label]->(v:Value)
but can also include a first level of approximation matching
paths involving subtags (i.e., specializations of a tag label):
(t:Tag)<-[s:subtag]-n -[s:supertag]->

(t2:Tag)-[l:label]->(v:Value)
In this way, for instance, Q3 edge n3-n6 (Fig. 3) will match
with data edge n1-n7 (“semantics” label) but also with path
n11-n3-n1-n7 (“semantic web” label, a specialization).

Approximation levels (i.e., scripts) in list definitions are
stored in order of increasing approximation cost ac; the cost
is automatically defined on the basis of the path length (in case,
that can be freely customized). Other useful rules that could
be easily incorporated in our social-graph example are for man-
aging type paths (i.e., subclasses) or even for enriching the
graph with useful relations not explicitly present in the data:
for instance, a related relation between contents can be de-
fined for contents sharing a common tag. This will match, for
instance, with Q2 edge n2-n3 (Fig. 3).

A number of indices on the graph base (lower right of Fig.
2) complete SocialGQ graph structures. These allow for ef-
ficient filtering of the semantic path lists on: (a) node values

(both B+trees for exact search and inverted indices for full-text
search); (b) node ids (useful for joining edges in query process-
ing); (c) users (for user-aware filtering). Such indices are di-
rectly managed in Neo4j, while inverted indices are externally
coded in order to provide full TF-IDF score support.

4 Query processing and ranking
The goal of the query processor and ranking modules is to

exploit the data structures made available by the data manager
to generate the top-k answers approximating the query. Since
social-graph are typically large and repetitive in their structure,
a large number of approximate answers are typically available
in the graph. Instead of generating the whole answer space and
then applying the ranking formula (Eq.1), SocialGQ generates
the top-k answers in an order that is already correlated with
the ranking measure, avoiding to generate many useless results.
The algorithm builds on the foundations of the Threshold Algo-
rithm (TA) [3] and follows the steps summarized below:

1. search for (approximate) structural query node label
matches in the “structural labels” tables, possibly pruning
out unanswerable queries;

2. for each query edge, search associated triple in “seman-
tic path lists” and associate the relevant list definition(s)
Ldef ;

3. perform sorted access in parallel to each of the lists. For
each access: (i) build answers involving the extracted data
path, computing the score S(a) of each answer a, and re-
membering it if one of the k highest; (ii) update uBound,
the score of the set of the next data items under sorted ac-
cess to the lists;

4. stop whenever at least k answers have been built whose
grade is higher than uBound.

Please note that, as described in Sect. 3, each list Ldef returns
data paths which are already sorted by approximation cost; this
allows the algorithm to: (a) be aware of the goodness of upcom-
ing answers by means of uBound; (b) avoid unnecessary relax-
ations to the query (and, therefore, optimize data accesses).

To get a very simplified intuition of its working, consider Q1
in Fig. 3 submitted by user “U881”. Since the specified struc-
tural labels (i.e., Content, type, summary) are available
in the graph base (summary is approximated by abstract
and description), list definitions are retrieved for the two
edges’ triples, (#i,lidtype,lidContent) and (#i,lidsummary,#v).
Lists access is restricted to values matching the full-text condi-
tion (e.g., node n20) and instances not modified by user “U881”
(e.g., node n14). The semantic paths extracted from the two
lists are then accessed and joined to build such final answers as
(n13-n20)-(n13-n9-n6).

5. Experimental Evaluation
We will now present the preliminary results we obtained

from an exploratory evaluation on a real social-graph data sce-
nario by means of a first prototype of SocialGQ. This paper is

101

Query #n #e #any Description
Struct
relax

(#
edge)

(mult
types)

Label
appr

Full
text

User
aware

#exp
ans

Q1 6 5 3 Users who tagged a BibTeX entry having author "Klaus Reuter" 1
Q2 7 7 4 Tags of BibTeX entries (-) having same year as BibTeX titled "Features of Similarity" ✓ 48
Q3 6 5 3 Users who tagged a Content (-) having description about "Writing techniques" ✓ ✓ ✓ ✓ 2
Q4 5 4 3 Bookmarks (-) tagged "apple" (+) ✓ ✓ 18
Q5 4 4 3 Users (-) connected (# edge) to bookmark with URL "http://moodle.org/" ✓ ✓ ✓ 1
Q6 5 4 3 BibTeX (-) connected (# edge) to BibTeX titled "Conceptual Knowledge Processing" ✓ ✓ ✓ 17
Q7 6 5 3 Documents (-) tagged by profile with id 12 ✓ ✓ ✓ ✓ 147
Q8 3 2 1 Content (-) having summary about "programming" and "database" ✓ ✓ ✓ ✓ ✓ 23

Table 1. Features of the reference queries

focused on evaluating effectiveness, also in comparison to lead-
ing literature approaches. This requires a graph not particularly
big in size but with a sufficiently complex structure, including
different annotations and relation types. To this end, we con-
sider as our reference collection a portion of the Bibsonomy
graph dump [9], containing information about 139551 tag an-
notations, 28611 bookmarks, 11378 BibTeX entries, 8127 tags,
9566 tag specializations and 347 users. Moreover, a small hint
regarding efficiency will be presented at the end of the section;
in this case, we will also consider a larger graph involving over
1 million documents and 4 million annotations. The prototype
incorporates the described advanced data indexes (including
full-text ones) and query processing techniques, written ad-hoc
in Python. It also exploits Neo4j graph management system,
benefiting from node type management optimizations allowed
by its built-in type management. User information is stored in
Neo4j using node array properties. The chosen label distance
dL is a WordNet-based one we already used for disambiguation
purposes [10]. All parameters are kept at their default values.

We consider a set of significant queries, named Q1-Q8, rep-
resentative of a full-range of possible user information needs.
Tab. 1 shows their features, including number of nodes, edges,
“any label” wildcards, textual description, required features and
number of expected answers. Q1 and Q2 are examples of
exact queries which, even if not requiring special approxima-
tions, would be quite difficult to express using simple keywords.
Queries Q3-Q8, instead, require several kinds of approxima-
tions; all queries except Q1 also require user-aware process-
ing. For instance, Q4 asks for bookmarks not already modi-
fied/known by the user tagged as “apple”: this should include,
if available, documents tagged with subtags by the same user
(e.g., “mac”). Structural relaxation is required to manage node
subclasses (as for “content” in Q3 including types “BibTeX”
and “bookmark”). Q5 and Q6 contain generic connection edges
(‘#’). Q7 and Q8 require label approximations (e.g., “docu-
ment”, “profile”, “summary” used instead of “content”, “user”,
“description”/“abstract”, respectively). Finally, Q3 and Q8 also
contain full-text conditions.

Tab. 2 shows the results of the effectiveness evaluation per-
formed on Q1-Q8 in terms of: precision P (i.e. percentage of
relevant retrieved answers w.r.t. the retrieved ones) and recall
(i.e. percentage of relevant retrieved answers w.r.t. existing
relevant ones). The results achieved by SocialGQ are also com-

Web
Query P recall P recall #q P recall P recall P recall
Q1 1 1 1 1 5 0.0001 1 1 1 1 1
Q2 1 1 1 1 57 0.0000 1 1 1 1 1
Q3 1 1 n/a n/a n/a 0.0000 1 n/a n/a n/a n/a
Q4 1 1 n/a n/a 1 0.0000 1 1 1 0.07 1
Q5 1 1 n/a n/a n/a 0.0000 1 0 1 1 1
Q6 1 1 n/a n/a n/a 0.0000 1 0 1 0 1
Q7 1 1 n/a n/a n/a 0.0000 1 n/a n/a 1 1
Q8 1 1 n/a n/a n/a 0.0000 1 n/a n/a n/a n/a

SocialGQ Exact Non-semantic NAGA TALE

Table 2. Effectiveness results and comparison

pared with the ones achievable through alternative approaches.
Let us start with SocialGQ (left part of table): our approach is
able to retrieve all results (recall is 1) for all queries, and all
the retrieved results are relevant. This is achieved thanks to
its combined semantic approximation, full-text and user-aware
features. In particular, the high repetitiveness of the structure
of a social-graph makes the employed structural and label ap-
proximations very effective and precise; label matches are also
favored by, most notably, the relatively low number of differ-
ent structural labels w.r.t. other scenarios and kinds of graph
data (e.g., knowledge graphs). Moreover, the semantic path
approach makes it easy to answer queries such as Q5 and Q6
without producing a large number of non-relevant results.

Other approaches, instead, typically struggle in supporting
all the required features. For instance, an exact approach (“Ex-
act” column) is only able to solve the first two queries. On
the other hand, standard website search pages require a typi-
cally very high number of submitted queries (“Web” column)
to solve a complex request. In our case, queries Q1, Q2 and
Q4 can be partially answered through the Bibsonomy built-
in search but: (a) this requires sending up to 57 simpler re-
quests (Q2) and combining the results; (b) ranking and user-
aware filtering are not supported anyway. We also see that the
large number of nodes with same structural labels present in
a social-graph makes it particularly infeasible to use syntactic-
only approaches. A naı̈ve approach (“Non-semantic” column)
that computes node matches and connects them in all possible
ways (e.g. a title to all available BibTeX nodes, disregarding
semantic path information), achieves a near-null precision. Fi-
nally, we consider two flexible and well-known graph matching
approaches presented in the literature. NAGA [8] is able to cor-
rectly deal with subclass approximations (e.g., Q4), however: it

102

manages ‘#’ edges in a syntactic way (very low precision n Q5
and Q6); it does not manage label approximation (Q7 and Q8
are not supported). TALE [14], instead, manages all structural
approximations by defining a syntactic length threshold in the
matching paths which proves not always effective: while Q5 is
ok, in Q4 it retrieves results involving generalizations of “ap-
ple”, e.g., non-relevant “technology” documents. Please also
note that neither NAGA or TALE natively support full-text and
user-aware conditions.

As a final note regarding efficiency, for all the above queries
the initial SocialGQ prototype was able to retrieve the top-5
results in under 0.04 secs (0.12 secs in the large collection) on
a standard single-node configuration.

6. Concluding remarks
Successfully querying social-graphs requires to jointly ex-

ploit the complex nature of such kind of data: graph structure,
semantic meaning, unstructured textual resources, user-aware
dimension. As we have seen, this typically goes beyond the ca-
pabilities offered by the social sites’ search functions. In the
literature, several works provide interesting, even if separate,
results in each of the involved fields. In the area of (approx-
imate) graph matching, many proposals [4, 8, 14] recognize
the need to overcome the keyword-based paradigm and support
early forms of approximation that, however, do not take into
account semantics. [11] proposes a framework to support the
semantic approximation of a complex query on a graph. None
of these works, however, considers the specifics of social data
and/or the contained unstructured contents. On the other hand,
in the field of social data, a recent survey [2] analyses several
search tool proposals, including [6, 7], all however limited to
keyword-based search. Furthermore, it underlines the current
sharp distinction between social search approaches (working
only on the graph) and social web search ones (working only on
unstructured content), noting the lack of approaches exploiting
both components. Finally, a number of works [12, 15] high-
light the effectiveness of identifying user-aware techniques that
allow to customize the search results based on the user profile,
but always in the context of unstructured data.

In this paper we laid the foundations of SocialGQ, a new
proposal aimed to overcome the above mentioned limitations.
Taking into account our past experiences in different scenar-
ios (e.g., generic structured graph [11] and full-text enterprise
search [12]), we sketched a framework combining for the first
time all the features that are deemed essential for effective
and efficient social-graph querying. The underlying techniques
leverage on the strengths of approximate graph matching, se-
mantic approximation, textual and user-aware retrieval to re-
trieve the most relevant answers first. Preliminary effective-
ness results on a real data scenario are encouraging. Moreover,
strong efficiency foundations have also been laid, being the pro-
posed architecture based on extensions to widespread and reli-
able big data graph management technologies (i.e., Neo4j).

Making full use of the huge potential given by the ever-

increasing amount of social-graph data is indeed a very ambi-
tious goal for the research community. Powerful social-graph
search techniques can have a large impact and become the ba-
sis of a wide range of services integrated into leisure and busi-
ness social networks: complex and personalized search tools
to find products and information; intelligent help desk services
to answer customer questions; tools to acquire a deep real-time
knowledge on what is happening within the organization [5].
This work represents only one of the first steps toward this vi-
sion. In the future, we plan to: (a) work more deeply on effi-
ciency evaluation; (b) perform detailed tests on additional and
larger social-graph scenarios; (c) consider new techniques for
automatic semantic path rules identification and refining.

This work is partially supported by UniMoRe within the
FAR 2016 Department Project “SocialGQ”.

References

[1] Neo4j Graph Platform and Cypher language. http://neo4j.com.
[2] M. R. Bouadjenek, H. Hacid, and M. Bouzeghoub. Social Net-

works and Information Retrieval, How Are They Converging? A
Survey, a Taxonomy and an Analysis of Social Information Re-
trieval Approaches and Platforms. Inf. Syst., 56(C):1–18, 2016.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algo-
rithms for Middleware. In PODS, pages 102–113, 2001.

[4] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding Regular
Expressions to Graph Reachability and Pattern Queries. In Proc.
of ICDE, pages 39–50, 2011.

[5] J. Hagel and S. K. Ellis. Four Ways Social Data Can Gen-
erate Business Value. http://sloanreview.mit.edu/article/four-
ways-social-data-can-generate- business-value/.

[6] X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama. Predicting
the popularity of web 2.0 items based on user comments. In
Proc. of SIGIR, SIGIR ’14, pages 233–242, 2014.

[7] D. Horowitz and S. D. Kamvar. The anatomy of a large-scale
social search engine. In Proc. of WWW, pages 431–440, 2010.

[8] G. Kasneci, F. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: Searching and Ranking Knowledge. In
Proc. of ICDE, pages 953–962, 2007.

[9] KDE Group, University of Kassel. Benchmark Folk-
sonomy Data from BibSonomy, 2017-07-01 dump.
https://www.kde.cs.uni-kassel.de/bibsonomy/dumps/.

[10] F. Mandreoli and R. Martoglia. Knowledge-based sense disam-
biguation (almost) for all structures. Information Systems (Infor-
mation), 36(2):406–430, 2011.

[11] F. Mandreoli, R. Martoglia, and W. Penzo. Approximating ex-
pressive queries on graph-modeled data: The GeX approach.
Journal of Systems and Software, 109:106–123, 2015.

[12] R. Martoglia. AMBIT: semantic engine foundations for knowl-
edge management in context-dependent applications. In Proc. of
SEKE, pages 146–151, 2015.

[13] G. Salton and C. Buckley. Term-Weighting Approaches in Au-
tomatic Text Retrieval. Inf. Process. Manage., 24(5):513–523,
1988.

[14] Y. Tian and J. Patel. TALE: A Tool for Approximate Large Graph
Matching. In Proc. of ICDE, pages 962–973, 2008.

[15] T. Vu, A. Willis, U. Kruschwitz, and D. Song. Personalised
query suggestion for intranet search with temporal user profil-
ing. In Proceedings of CHIIR ’17, pages 265–268. ACM, 2017.

103

A Model-based Approach for Build Avoidance
Milena Neumann

PTV Group
Karlsruhe, Germany

milena.neumann@ptvgroup.com

Kiana Busch
Karlsruhe Institute of Technology

Karlsruhe, Germany
kiana.busch@kit.edu

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Abstract—In large software systems, we frequently encounter
change scenarios which require long build times. In many cases,
it would suffice to build only a subset of the dependent build
components to generate sound build results. Current approaches
for change-specific identification of affected build components
rely on knowledge about the language-specific propagation of
changes, which renders them inapplicable to multi-language
systems. In this paper, we present a model-based approach to
derive the affected build components for a change scenario using
an existing change propagation approach. This way, we make
the advantages of a set of change-specific dependencies also
accessible to those members of the development team who are less
knowledgeable about the build process. Our approach enables the
use of change-specific dependencies in multi-language software
systems and shortens build times. We implemented our approach
in a productive build environment to show the feasibility and
practicability in a user study.

Index Terms—software modeling, build automation, change
propagation

I. INTRODUCTION

Modern software engineering practices such as continuous
integration use builds as fast feedback mechanisms to validate
the quality of software [5]. Build systems usually face two
requirements: i) Building should be fast. ii) The build process
should yield reliable and reproducible results. Existing build
tools often allow structuring a system into build components
and defining a dependency graph on them. This enables devel-
opers to run partial builds (e.g., the modified build component
and all its dependents). However, the structural dependencies
defined by the dependency graph can differ significantly from
actual dependencies with regard to the nature of a change.

A small change to a large software system may cause long
build times, when considering only a subset of the dependent
build components may be sufficient to produce sound build
results. Making use of this knowledge and building only the
affected build components is referred to hereafter as a build
shortcut. Building only those components which are affected
by a specific change can save a lot of time. However, in
large development teams, there is often only a small number
of developers who can identify the build components that
are actually affected by a change. As the evolution of the
product affects the dependency graph, the change-specific
dependencies are also subject to change, but keeping all team
members up to date is a time-consuming task.

DOI reference number: 10.18293/SEKE2018-030

Existing build tools, like grexmk [1] or vroom [3], speed up
build times by executing build tasks in parallel, but come at
the cost of the employed hardware. Approaches such as jmake
for Java [13] allow language-specific change propagation
analysis. However, they can only be applied to a specific set
of software projects. Approaches like pluto [6] offer extensive
customization of build tasks, but at high integration costs.

In this paper we propose an approach which enables devel-
opers less-experienced with build dependencies to selectively
build those components that are affected by a specific change.
To achieve this, our approach utilizes build shortcuts. The build
experts of a development team annotate their knowledge on
change-specific dependencies in the model of the software’s
build architecture. This model and the change scenarios are
input for an existing change propagation approach for soft-
ware architectures – Karlsruhe Architecture Maintainability
Prediction (KAMP) [12]. The change propagation algorithm
of KAMP identifies the build components to be built in order
to implement the change. This way, we avoid rebuilding un-
affected build components and consequently shorten the build
times. Our model-based approach allows the formulation of
build shortcuts for multi-language projects. Due to its simple
interface, it can be used to extend an existing build system
with little effort. The content of this paper has been developed
in the context of the thesis KAMP for Build Avoidance on
Generation of Documentation [9]. We evaluated our approach
in a productive build environment by means of a user study.
Our approach produced builds that were up to 27 times faster
than building with the established build tool. The subjects of
the user study assessed the approach as practicable.

The following section illustrates the PTV xServer, where
our approach was applied. The foundations are described in
Section III. Section IV gives an overview of the related work.
We present our approach for build avoidance in Section V. In
Section VII, we describe the results of our evaluation. This
paper is concluded with a summary and an outlook on future
work in Section VIII.

II. THE PTV XSERVER

We use the PTV xServer – a product of PTV Group – as
a running example in this paper. The PTV xServer provides
logistic and geographic solutions such as geocoding and trip-
planning. PTV xServer is currently being developed by thirty
developers from Germany and France.

104

The Application Programming Interface (API) of the server
is described in so-called XServer Interface Description Lan-
guage (XSIDL) files, which are used for the generation of
C++ and Java source files. Furthermore, the comments in the
XSIDL files are used in front-end components of the xServer
to generate the product documentation for the customers. To
build the xServer, an in-house build tool (the so-called b-Tool)
is used, which is based on Apache Maven1. Apache Maven
utilizes a dependency graph to identify the affected build
components (called Maven projects) by a change. According
to those dependencies, a change to one of the XSIDL files
(e.g., a change the comments) requires a large part of the
product to rebuild. Currently, this build process takes around
four hours on average. However, rebuilding just the affected
front-end components would only take a few minutes.

To avoid rebuilding unaffected build components, we use
KAMP to analyze the scope of the change propagation in
the PTV xServer. For this purpose, we modeled seven build
shortcuts to consider various change scenarios. Furthermore,
we extended the b-Tool by a new build command, called
shortcut.

III. FOUNDATIONS

Our approach is based on KAMP to identify the relevant
build components affected by a specific change request. The
KAMP approach aims to ”analyse the change propagation
caused by a change request in a software system based on
the architecture model” [12]. For this purpose, KAMP uses a
change propagation algorithm, which is validated through an
empirical study [12]. Starting with the initial change request,
the change propagation algorithm calculates the affected ele-
ments in the architecture model.

To model the architecture of a component-based software
system, a Palladio Component Model (PCM) [10] can be used.
In a PCM, the parts of a software system such as interfaces,
components and their relations are modeled [10].

IV. STATE OF THE ART

The build tool grexmk [1] splits monolithic builds into
multiple sand-boxed ”mini-builds”, taking advantage of loose
coupling between system components. By executing these
mini-builds incrementally or simultaneously, overall build
times are shortened. The Vroom approach [3] analyzes the
dependencies of test cases and carries out long-running tests
in parallel. Although parallelization shows immediate results
and is scalable by increasing hardware resources, it comes at
the cost of this additional hardware. Instead of reducing time
through parallelization, our approach saves time by not build-
ing unaffected components in the first place. Subsequently, the
workload on build machines is lowered.

The build system pluto ”supports the definition of reusable,
parameterized, interconnected builders” [6]. As it abstracts
from the programming language, pluto is applicable to a wide
variety of projects. It can extract specific information from

1http://maven.apache.org

a file through domain-specific stampers. These file stampers
can be used to implement change-specific rebuild behavior.
But especially for large-scale projects, pluto would require a
lot of implementation work, which also brings in additional
risks. Our approach can coexist with a preexisting build
environment by extending it, without introducing potentially
breaking changes.

Smith describes the concept of smart dependencies [13].
This technique analyzes whether dependents need to be rebuilt
by applying knowledge of the language-specific change prop-
agation. The tool jmake [13, 8] applies smart dependencies
for Java. If it detects modifications to publicly visible parts
(e.g., method signatures), it rebuilds the dependent files. The
addition of a new method or changes to comments, private
methods, or the code within a method only requires a rebuild
of the modified file itself. A build tool based on smart de-
pendencies is language-specific, therefore it cannot be applied
to multi-language projects. Our approach views dependencies
between build artifacts on a more abstract level and is language
agnostic. This comes with the disadvantage that shortcuts for
specific change scenarios have to be defined manually and
cannot be automatically derived.

V. APPROACH FOR BUILD AVOIDANCE

Our approach allows the developers of a software system
to build only the subset of those build components which are
affected by a change. Figure 1 compares our build approach
using build shortcuts (right) and the build process by Apache
Maven (left). Apache Maven rebuilds the whole subgraph of
the dependent build components, while our approach allows
rebuilding only a specific subset of this subgraph.

The input of our approach is a PCM of the software
system’s build architecture, which contains the build shortcuts
and the initial change requests. In the next step, KAMP is
used to identify the build components which are potentially
affected by the initial change requests. The result is a set of
potentially affected build components. Deploying KAMP as
a web service allows a loosely coupled build tool to access
the build information. This way, only the model in the web
service needs to be updated in order to change a dependency
or add a new build shortcut. In the following subsections, we
discuss our approach in more detail.

Fig. 1. Comparison of build behavior without and with build shortcut [9]

105

A. Modeling of Build Shortcuts using Palladio Component
Model

The dependency of a build component may be change-
specific. Translated into a PCM, a component can provide
several interfaces, which are required by different subsets of its
dependent components. If a change to one of these interfaces
is made, only the components that require this interface are
potentially affected by the change (i.e., not all components
that require interfaces of a specific component) [12].

Figure 2 shows a simplified example from the PTV xServer.
The change scenarios of the component model are repre-
sented by the two interfaces model and documentation.
The model and documentation interfaces are required by
frontend component. The model interface is required by
services and runtime components. Let us assume that
documentation interface is changed. In this case, only the
frontend component is affected by the change, and will not
affect services and runtime components.

Our approach uses a PCM to model the build architecture,
which can differ from the software architecture. Originally,
PCM was designed to model component-based software ar-
chitectures. However, it can also be used to model the build
architecture, which describes relations between the build com-
ponents, thus providing a more technical view on the software
system.

A build component can contain several software compo-
nents, as illustrated in Figure 2. Although the build component
may provide more than one functionality, it cannot always
be divided into subcomponents in accordance to the change
scenarios. In the example of the model component in the
PTV xServer, the separation of the documentation from the
API model may cause the developers to neglect keeping the
documentation up to date.

B. Utilization of KAMP’s Change Propagation Analysis

As described above, the build architecture can differ from
the software architecture. The Apache Maven projects can
be mapped to components in PCM, while different types of
change scenarios for each Maven project represent different
interfaces. Based on an initial change request, KAMP uses
its change propagation algorithm to identify the affected build
components [12]. KAMP’s change propagation algorithm con-
sists of a set of change propagation rules [12]. An example of a

Fig. 2. Modeling of a build shortcut with PCM [9]

rule is the change propagation from a modified interface to all
components that provide or require this interface [12]. Applied
to the build architecture, this method allows identifying the
affected build components. By utilizing the domain knowledge
annotated in the PCM, KAMP can reduce the set of build
components that are rebuilt.

VI. PROTOTYPICAL IMPLEMENTATION

Figure 3 illustrates the deployment of our approach at PTV
Group. The components of our approach run on a server (i.e.,
the server side) in the PTV intranet and on the individual
developer workstations (i.e., the client side). On the server
side, the KAMP-WS Server is deployed together with the
PCM of the software under development (i.e. the PTV xServer
PCM) and KAMP. On the client side, the build tool (i.e.,
PTV b-Tool) is deployed. The PTV b-Tool is extended by
the command shortcut, which uses the web service.

When a build with the shortcut command is triggered,
the available change scenarios for the modified Maven project
are requested from the KAMP web service. This list is
presented to the user, who selects the appropriate scenario over
the command line interface. Then, a second request is sent to
the KAMP web service querying the dependent projects for
the selected change scenario. After shortcut receives the
response, it triggers an Apache Maven build of specifically the
dependent projects.

VII. EVALUATION

To evaluate our approach, we follow the Goal Question
Metric (GQM) [2] plan. We define two evaluation goals:

• Feasibility aims to ”validate the prediction accuracy
[...] by comparing the prediction results to reference
values” [7]. It is assumed that inputs are correct.

• Practicability aims to ”validate the practicability of a
method, when it is applied by target users, instead of
method developers” [7].

In the following, we define research questions (RQ) for
each evaluation goal. Furthermore, we propose the metrics
to evaluate the corresponding evaluation goals and research
questions.

Fig. 3. Deployment diagram of the system [9]

106

A. Feasibility

To evaluate the feasibility of our approach, we compare
the actual outputs of our approach to expected results. The
build experts provided reference lists for a total of seven build
shortcuts, each containing the build components that have to be
actually built to validate a change scenario. We annotated the
respective build shortcuts in the xServer PCM used by the web
service. Thus, we need to check the equality of the two sets
for each change scenario: the set of Maven projects proposed
by our approach (i.e., Pshortcut), and the set of Maven projects
in the corresponding reference list (i.e., Pref). In other words,
the following formula should be true for each of the seven
change scenarios:

Pshortcut = Pref ⇔ Pref ⊆ Pshortcut ∧ Pshortcut ⊆ Pref

This leads to the following research questions and hypotheses:

RQ 1: Does the output of our approach include all build
components that have to be built for the respective change
scenario?

Hypothesis H1 is that the output of our approach includes
all build components that have to be built according to the
reference lists (i.e., Pref ⊆ Pshortcut). In other words, we
assume that the build components that are necessary to validate
the change scenario are included.

RQ 2: Does the output of our approach not include build
components that are unaffected by the respective change
scenario?

Hypothesis H2 is that the output of our approach does not
include build components that are not on the reference list of
the change scenario (i.e., Pshortcut ⊆ Pref).

We designed a set of system tests to gather metrics to verify
hypotheses H1 and H2. Two types of tests exist for each
change scenario. The first test checks whether our approach
builds all build components specified in the reference lists.
The second test checks whether the build does not include
an unaffected build component. If both tests are successful,
the list of build components that are built with our approach
for a given change scenario is the same as the corresponding
reference list.

As described above, we implemented our approach as a
new build command shortcut and added it to PTV’s b-
Tool. We want to verify that building with the shortcut
command takes less time than building with down, which is
an established b-Tool command of the xServer development
team and builds a build component and its dependents.

RQ 3: Is the duration of a build process triggered with
the shortcut command shorter than the duration of a
comparable build process triggered with the down command?

Hypothesis H3 is that the duration of a build triggered with
shortcut is shorter than the duration of a comparable build
triggered with down.

To answer this research question we define the execution
time metric for both shortcut and down commands and

compare the build execution times measured by developers on
their workstations, as described in the following.

B. Practicability

Our evaluation of practicability is based on the Technology
Acceptance Model (TAM) [4]. According to TAM, the inten-
tions of a person to use a technology determines the actual
use [4, 9]. For each of TAM’s variables, a research question
and a hypothesis was formulated, taken from [9]:

RQ 4: Do the subjects find the activities provided by our
approach (i.e., shortcut command) important?

Hypothesis H4 is that the subjects find the activity pro-
vided by our approach (i.e., building only the affected Maven
projects in a change scenario) important.

RQ 5: Does our approach ease performing the activities?
Hypothesis H5 is that our approach eases performing the

activities (i.e., Perceived Usefulness [4]).

RQ 6: Is our approach easy to use in practice?
Hypothesis H6 is that our approach is easy to use in practice

(i.e, Perceived Ease of Use [4]).

RQ 7: Do the subjects have a specific intention to use our
approach?

Hypothesis H7 is that the subjects have a concrete intention
to use our approach (i.e., Behavioral Intention to Use [4]).

RQ 8: Do the subjects expect concrete consequences by using
our approach?

Hypothesis H8 is that the subjects expect concrete con-
sequences by using our approach (i.e., Attitude Toward Us-
ing [4]).

We conducted a user study to evaluate the previously de-
scribed research questions and validate the respective hypothe-
ses. The subjects of the study were the potential users of our
approach at PTV. They evaluated the usage and performance
of the shortcut command in comparison to the down
command.

C. User Study Design

The user study consisted of a task sheet and a questionnaire.
In the task sheet, the subjects were asked to run these three
different builds on the model Maven project (cf. Section II
and Figure 2):

• Trigger the build process using down command (here-
after referred to as down).

• Trigger the build process using shortcut with
the model change scenario (hereafter referred to as
shortcutmodel).

• Trigger the build process using shortcut with the
documentation change scenario (hereafter referred to as
shortcutdoc).

We chose these build scenarios because most members of the
development team are familiar with this build component and
have worked on it before. Thus, the change scenarios were
well understood by the subjects.

107

The subjects were asked to provide the resulting build
times in the questionnaire. Furthermore, the subjects provided
information about their usual build behavior and how they
evaluate our approach.

The questionnaires contained a set of free text questions.
Also, the subjects had to rate the following statements, taken
from [9], on a 6-point Likert scale, where 1 means ”I strongly
disagree” and 6 means ”I strongly agree”:
S1 I frequently validate changes through local builds.
S2 Building (parts of) the xServer is important for my work.
S3 I could work more efficiently if local builds were faster.
S4 Local builds take too long.
S5 I try to only build the projects that were affected by my

change.
S6 shortcut command will be useful to me.
S7 shortcut command is easy to use.
S8 I am motivated to use shortcut command for my local

builds in the future.
We aim to assess the importance of the build process to the
subjects with statements S1 and S2. Statements S3 – S5 are
included to verify that the subjects are dissatisfied with the
current build times. The remaining statements S6 – S8 aim to
evaluate RQ 5 – RQ 7.

The xServer team consists of 30 Java and C++ developers,
of which 18 participated in our study. Note that the C++ parts
of the xServer have longer build times than the Java parts. An
evaluation of the answers is presented in the following.

D. Results

System Test Results: The system tests for each of the seven
build shortcuts were successful. In other words, the statements
Pref ⊆ Pshortcut and Pshortcut ⊆ Pref hold true for each
shortcut. That confirms H1 and H2. Thus, we can conclude
Pshortcut = Pref .

User Study Builds: The subjects were asked to provide
the build times for the builds they had to trigger. Table I
gives an overview of the build times. The down build scenario
took longest (i.e., from about 1.5 hours to almost 9 hours).
The builds of the shortcutmodel scenario took between 30
minutes and almost 2.5 hours, while the builds of shortcutdoc
took only 3 to 12.5 minutes. On average, the builds of
shortcutmodel were 3.45 times faster than the builds of down,
while the builds of the shortcutdoc scenario were 27.07 times
faster than down.

The significant difference in build times for a single build
scenario can be accounted to different hardware of the devel-
oper workstations and network latency, as some subjects used
a VPN connection from France. The build execution times of

TABLE I
EVALUATED BUILD TIMES FOR THE SCENARIOS IN THE USER STUDY [9]

down shortcutmodel shortcutdoc
Max 8h 55min 2h 27min 12min 30s
Avg 3h 42min 1h 1min 30s 9min 4s
Min 1h 32min 30min 6s 2min 59s

TABLE II
DETAILED RATINGS FOR STATEMENTS S1-S8 IN THE USER STUDY [9]

1:
St

ro
ng

ly
di

sa
gr

ee

2:
D

is
ag

re
e

3:
R

at
he

r
di

sa
gr

ee

4:
R

at
he

r
ag

re
e

5:
A

gr
ee

6:
St

ro
ng

ly
ag

re
e

S1: 0 0 0 0 2 17

S2: 0 0 0 0 3 16

S3: 0 0 0 2 4 13

S4: 0 0 1 2 7 9

S5: 0 0 0 1 5 13

S6: 0 0 2 1 3 13

S7: 0 0 1 1 4 13

S8: 0 1 1 1 3 13

the shortcutmodel and shortcutdoc scenarios are lower than
the build time of down. This confirms H3.

Activity Importance: Statements S1 and S2 aim to assess
the importance of builds to the subjects, as illustrated in
Table II. All subjects rated statements S1 and S2 with 5 (i.e.,
agree) or 6 (i.e., strongly agree), which confirms H4.

Satisfaction with Builds: Table II shows how the subjects
rated statements S3–S5. Those subjects who rated statement S4
with 4 or lower contribute mainly to Java parts of the xServer,
which have lower build times in general. We conclude that
developers perceive long builds as a problem and they try to
shorten them.

Usefulness: Statement S6 aims to assess the perceived
usefulness of our approach. As seen in Table II, most subjects
rate our approach as useful. This confirms H5. Only two Java
developers specified that they rather disagree with the state-
ment. One of them noted that they work on a partial checkout
of the xServer repository. They could not use our approach,
because the utility functions used by the implementation of
shortcut work under the assumption of a full checkout.
We did not consider this requirement (i.e., working on partial
checkouts) during development of our approach, but it could
be supported in the future.

Ease of Use: Most subjects found our approach easy to
use (i.e., statement S7), as seen in Table II. This confirms H6.
Eight subjects additionally mentioned in the free text fields that
they found our approach easy and intuitive to use. One subject
rated statement S7 with 3 (i.e., rather disagree), however, gave
no further comment in the free text fields.

Intention To Use: Most subjects rated Statement S8 (i.e.,
using our approach shortcut for the local builds in the
future) with 4 or higher. That confirms H7. One subject, who
works on the Java parts of the xServer, rather disagreed with

108

this statement. Also, the subject who stated that they work on
partial checkouts disagreed with the statement.

Attitude Toward Using: The questionnaire contained two
free-text questions regarding the advantages and disadvantages
of our approach. We can derive from the given answers which
consequences the subjects expect by using our approach. The
following advantages were expected by the subjects, taken
from [9] (The number in parentheses states how often it was
mentioned by the subjects):

• Faster builds (10)
• Fewer unnecessary builds (6)
• Increased work efficiency (3)
• Fewer failed builds (2)
• Less knowledge about dependencies required (2)
• Conveniently trigger subtarget builds (2)
• Faster validation of code / Earlier detection of defects (2)
• Sharing of useful build shortcuts
• No more manual triggering of different artifacts

The following disadvantages were expected by the subjects,
taken from [9]:

• Maintenance cost of build shortcuts (7)
• Shortcut names may become confusing (2)
• Far-reaching consequences if a shortcut is incorrect (2)
• No batch-compatibility
• Less pressure to solve dependency problems
• Less pressure to optimize build times
• Developer’s knowledge about dependencies decreases

Each subject stated at least one expected consequence. This
confirms H8 (i.e., subjects expect concrete consequences by
using shortcut). The number of advantages mentioned
is higher than the disadvantages. In other words, subjects
expected predominantly positive consequences.

By the results of our user study, we see both the feasibility
and the practicability of our approach confirmed.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to shorten the
build times, based on build shortcuts. It makes the advantages
of build shortcuts also accessible to those members of the
development team who are less knowledgeable about the build
process.

The change-specific dependencies are modeled in a PCM.
The model of the build architecture and the change requests are
used as input for the KAMP approach. The KAMP approach
uses a change propagation algorithm to identify the affected
build components for a given change scenario.

We evaluated our approach using a set of system tests and
a user study. The system tests, which checked whether the
builds produced by our approach are conform to the reference
lists created by build experts, were all successful.

In the user study, 18 developers were asked to compare the
results of three different build scenarios. The execution time
of the build process for the model scenario was on average
about 3.5 times faster than the reference build with the down
command, while the documentation build was 27 times faster.

In the questionnaires of the study, the subjects indicated that
they found the new command useful and have the intention to
use it in the future. We see both feasibility and practicability of
our approach confirmed through the results of the evaluation.

The KAMP web service continues to be used and main-
tained in the PTV xServer project. Much of the feedback
received in the user study was already incorporated (e.g., the
extension of shortcuts API to support batch-compatibility).
Furthermore, additional shortcuts were added to the model.

As future work, we plan to extend the KAMP web service to
assist development teams with other tasks such as analyzing
the change propagation of backlog items to coordinate the
work of multiple scrum teams in a scrum of scrums.

ACKNOWLEDGMENT

This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593
(RE1674/12-1).

REFERENCES

[1] Glenn Ammons. “Grexmk: speeding up scripted
builds”. In: International workshop on Dynamic systems
analysis. ACM. 2006, pp. 81–87.

[2] Victor Basili et al. “The Goal Question Metric Ap-
proach”. In: Encyclopedia of Software Engineering
2.1994 (1994), pp. 528–532.

[3] Jonathan Bell et al. “Vroom: Faster Build Processes for
Java”. In: IEEE Software 32.2 (2015), pp. 97–104.

[4] Fred Davis et al. “User acceptance of computer tech-
nology: a comparison of two theoretical models”. In:
Management science 35.8 (1989), pp. 982–1003.

[5] Paul Duvall, Stephen Matyas, and Andrew Glover. Con-
tinuous Integration: Improving Software Quality and
Reducing Risk. Addison-Wesley, 2007.

[6] Sebastian Erdweg et al. “A sound and optimal incre-
mental build system with dynamic dependencies”. In:
SIGPLAN Notices. Vol. 50. ACM. 2015, pp. 89–106.

[7] Robert Heinrich. Aligning Business Processes and In-
formation Systems: New Approaches to Continuous
Quality Engineering. Springer, 2014.

[8] JMake. JMake. https : / /github.com/pantsbuild / jmake.
[Online; accessed April 2018]. 2014.

[9] Milena Neumann. “KAMP for Build Avoidance on
Generation of Documentation”. Bachelor’s thesis. Karl-
sruhe Institute of Technology, 2017.

[10] Ralf Reussner et al. Modeling and simulating software
architectures: the Palladio approach. MIT Press, 2016.

[11] Kiana Rostami et al. “Architecture-based Change Im-
pact Analysis in Information Systems and Business
Processes”. In: ICSA2017. IEEE, 2017, pp. 179–188.

[12] Kiana Rostami et al. “Architecture-based Assessment
and Planning of Change Requests”. In: 11th Interna-
tional ACM SIGSOFT Conference on Quality of Soft-
ware Architectures. ACM, 2015, pp. 21–30.

[13] Peter Smith. Software Build Systems: Principles and
Experience. First. Addison-Wesley Professional, 2011.

109

Conceptual Software: The Theory Behind Agile-
Design-Rules

Iaakov Exman
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel
iaakov@jce.ac.il

Abstract—Software practices often evolved sets of efficient
software design rules embodying together a kind of methodology.
However, methodologies per se are no substitute for a rigorous
software theory. Methodologies can live side by side with a
software theory which explains and justifies the widely accepted
wisdom of the field. This paper shows that Linear Software
Models, an algebraic Software Theory together with its basis, the
Conceptual Integrity principles, indeed explain the deeper
contents of the so-called “four rules of simple design”, which we
concisely name as Agile-Design-Rules. These rules are a succinct
expression of agile design methodologies that emerged from
Extreme Programming (XP). Thus one obtains the best benefits
from Software Theory and methodology co-existence: 1st, the
explained rules reinforce the Software Theory plausibility; 2 nd,
the Software Theory selectively clarifies roles of the Agile-Design-
Rules enabling quantitative calculations for their application in
practice; 3rd, co-existence leads to the idea of Design Tests as
illustrated by case studies. 1

Keywords: Conceptual Software; algebraic Software Theory; Agile-
Design-Rules; Software Design; Linear Software Models;
Modularity Matrix; Modularity Lattice; Conceptual Integrity;
Propriety; Orthogonality.

I. INTRODUCTION

A well-known set of rules for software system design is the
so-called “four rules of simple design” which we concisely
name as Agile-Design-Rules. These rules were first formulated
by Kent Beck (see page 57 in [2]) at the end of the previous
century, within the context of Extreme Programming (see e.g.
[3]), commonly abbreviated as XP. This well-known kind of
agile design methodology had a significant influence on
approaches to practical software system development.

Some outstanding XP development characteristics [3] are:

• Simple Design – expressed, e.g. by the Agile-
Design-Rules;

• Tests – software development is driven by tests
written and run in parallel to the software itself.

• Pair Programming – production code is often
written by two people at one
screen/keyboard/mouse.

DOI: 10.18293/SEKE2018-182

We claim, that however successful in practice, any
development methodology such as XP is no substitute for a
rigorous Software Theory. On the other hand, a theory totally
disconnected from practical directives in a field eminently
application-oriented such as Software Engineering is of no use.

This paper has two-way goals: a- to argue that the algebraic
Software Theory is a rigorous basis for applicable software
design methodologies; b- to show that the Agile-Design-Rules
essence is selectively explained and justified by the referred
Software Theory. We introduce the Agile-Design-Rules, the
basics of Conceptual Software design, and the algebraic Linear
Software Models.

A. Agile-Design-Rules for Software
Development

There are several formulations of the Agile-Design-Rules,
differing by the wording of each rule and the rules’ order. The
rules’ essence is common to all formulations. Here, we choose
a formulation by Ron Jeffries [25], reordering rules 2 and 3:

1. Test Everything – All the tests for the SUD

(Software Under Development) are passing;
2. Explicit Intent – Express the ideas the software’s

author wants to express;
3. Eliminate Duplication – Contain no duplicate code;
4. Minimize Entities – Minimize classes and methods.

The selective interpretation of these rules will be given

later on in this paper, after the theory basics are explained.

B. Conceptual Integrity

Conceptual Integrity is a deep software design idea
proposed by Frederick Brooks [6], [7], much earlier than the
Agile-Design-Rules. Historically, the earlier ideas were not
recognized as the basis for the practical rules.

Three principles suggested by Brooks [6] were verbally, not
formally, explained by Jackson et al. [10], [23], [24]. We focus
on the two most relevant to clarify Agile-Design-Rules:

1. Orthogonality – individual functions should be
independent of one another;

2. Propriety – a product should have just the
functions essential to its purpose and no more;

110

The Conceptual Integrity principles can be expressed in
terms of modularity and design simplicity. Orthogonality is a
basic modularity mechanism. Propriety is an optimization: the
fewer the functions performing exactly the same tasks, the
simpler the software product. One immediately perceives their
relevance to the Agile-Design-Rules. Full interpretation will
follow from the theory, presented next.

C. Linear Software Models: the Modularity
Matrix and the Modularity Lattice

We concisely characterize two Linear Software Models’
algebraic structures, representing a software system. These are
the Modularity Matrix and the equivalent Modularity Lattice.
Here we explain the primitive terms of these models relevant to
this work; for further details, see [11], [12].

Software systems are assumed to be hierarchical. Structors,
the Modularity Matrix columns, are vectorial expressions of
software structure, generalizing classes for any hierarchical
level. Functionals, the Modularity Matrix rows, are vectorial
expressions of software behavior, generalizing functions which
are provided by structors. The standard Modularity Matrix is
block-diagonal. Modules, illustrated in Fig. 1, are sub-system
blocks along the Modularity Matrix diagonal, made of structor
and functional sub-sets, disjoint to other module sub-sets.

As shown by Exman and Katz [18], Modularity Matrix
design optimization neatly corresponds to Conceptual Integrity
principles. Propriety justifies Linear Independence of structors
among themselves and functionals among themselves.
Orthogonality implies the existence of modules.

The Modularity Lattice [14] is obtainable from the
Modularity Matrix, by well-known algorithms embodied in
software tools (e.g. Concept Explorer) building the lattice from
a given Formal Context. This Context is a rectangular Boolean
matrix showing relations between a set of attributes and a set of
objects. The standard Modularity Matrix can be seen as a
special case of Context: it is square, with relations respectively
between structors and functionals. A fitting Modularity Lattice
is obtained (Fig. 2 corresponds to Fig. 1), in which the Top
node contains the set of all functionals and the Bottom node
contains the set of all structors. Modularity Lattice modules
(see Exman and Speicher [14]) are the connected components,
obtained by erasing the Top and Bottom nodes, which
represent the whole system, and not specific modules.

The goal of Linear Software Models is to reach the standard
Modularity Matrix for a software system, where all blocks are
orthogonal. An outlier matrix element coupling modules, not
orthogonal anymore, demands a system redesign. Due to the
Modularity Lattice to the Modularity Matrix equivalence, all
conclusions extracted from the Matrix are valid for the Lattice.

Paper Organization

The remaining of the paper is organized as follows. Section
II describes related work. Section III concerns the intent of
Conceptual Software Design. The central section IV formulates
the quantitative algebraic software theory of Agile-Design-
Rules. Section V illustrates Design Tests with case studies.
Section VI concludes the paper with an overall discussion.

Figure 1. Software Theory explains Agile-Design-Rules – “Conceptual
Integrity” directly explains the first two rules and is a conceptual basis for the
algebraic “Linear Software Models”. These Models directly explain the three
other Agile-Design-Rules. This diagram motivates the paper organization.

Figure 2. An Abstract Standard Modularity Matrix – It has 4 Structors
(matrix columns) and 4 Functionals (matrix rows). Three block-diagonal
modules are seen (in blue): two strictly diagonal (S1, F1) and (S2, F2), and
one 2*2 block (S3, S4, F3, F4). Matrix elements outside the modules (in
white) have zero values (omitted for easier visualization). F3, an example of
functional inheritance, is provided by both classes S3 and S4.

Figure 3. Abstract Modularity Lattice diagram – This Lattice exactly fits the
Modularity Matrix in Fig. 1. It has three modules: two with just one-vertex
(S1, F1) and (S2, F2), and one with two vertices (S3, S4, F3, F4). Structor
labels are shown above and functional labels below the vertices. A vertex
above another one, provides all the functionals below the higher one: e.g. S4
provides both F4 and F3, as also seen in the matrix in Fig. 1, while S3
provides only F3. Modules are the connected conponents remaining after
cutting Top and Bottom nodes, as shown by the red dashed lines.

111

II. RELATED WORK

A. Agile-Design-Rules for Sofware Design

Agile-Design-Rules were formulated by Kent Beck, in the
first 1999 edition of his book “Extreme Programming
Explained: Embrace Change” [2]. They were reformulated by
Beck himself [3] and by several authors in different rules’
order and specific wording. Martin Fowler collaborated with
Kent Beck, writing together the “Planning Extreme
Programming” book [4], and later on wrote a blog entitled
Beck-Design-Rules [19] with his own version of the Rules.

Corey Haines published a whole book entitled
“Understanding the 4 Rules of Simple Design” [21] using the
Game of Life to illustrate the rules. Several other variations of
the Agile-Design-Rules are due to Bekkers [5], Rainsberger
[30] and Sironi [31], among others.

Hunt and Thomas [22] in their book “The Pragmatic
Programmer” mention the simple design rules, stressing in
Chapter 2 the relationship between Duplication (3rd rule) and
Orthogonality: “The first warns not to duplicate knowledge
throughout your systems, the second not to split any one piece
of knowledge across multiple system components”.

B. Applications of Conceptual Integrity

After Frederick Brooks’ proposal of Conceptual Integrity
as a fundamental idea for software development, researchers
tried to apply Conceptual Integrity in practice. Despite the
absence of formal quantitative criteria, these authors
interpreted the Conceptual Integrity principles in ways similar
to the Agile-Design-Rules, in particular rules 3 and 4.

Kazman and Carriere [27] extracted a meaningful software
architecture using conceptual integrity. The guideline was a
small number of components connected in regular ways,
minimizing numbers of entities (rule 4). Kazman [26]
described a SAAMtool, in which Conceptual Integrity is
estimated by the number of primitive patterns of a system.

Clements et al. [9] interpreted conceptual integrity as
“similar things should be done in similar ways”, with
parsimonious data and control, i.e. duplication avoidance and
minimization of entities (rules 3, 4). They suggested counting
entities as a way to quantify Conceptual Integrity.

C. Algebraic Structures for Software Systems

In this work we focus on the Modularity Matrix [13]. Other
matrices have been used for modularity analysis. The Laplacian
(von Luxburg [28]) has been used in various applications.
Exman and Sakhnini [17] derived a Laplacian matrix with
equivalent information to the Modularity Matrix, obtaining the
same modular design for a given software system.

The ‘Design Rules’ by Baldwin and Clark [1], despite the
name similarity to the Agile-Design-Rules, have a very
different character. This approach is based upon a Design
Structure Matrix (DSM), whose design quality is estimated by
an external economic theory superimposed on the DSM. It has
been mostly applied to non-software systems, and also to some
software systems, e.g. Cai et al. [8]. A key difference from the
Modularity Matrix is the lack of model linearity of the DSM.

Conceptual lattices, analyzed within Formal Concept
Analysis (FCA) were introduced in Wille [32]. An overview of
its mathematical foundations is given by Ganter and Wille [20].
The equivalence between Modularity Matrices and Conceptual
Lattices has been shown by Exman and Speicher [14], which
justifies dealing with structors as concepts.

III. CONCEPTUAL SOFTWARE DESIGN: REVEALING

INTENTION

We start here the systematic interpretation of the Agile-
Design-Rules. By Fig.1 Conceptual Integrity directly explains
the first two rules.

A. A Separability Principle for Software

The first Agile-Design-Rule deserves special consideration.
To this end we need a Separability Principle for Software
Engineering. We have formulated such a principle in [16]. It
states the following:

 “Software Proper vs. Human Concerns Separability
Principle” – theories dealing with software proper are
separable from theories dealing with human concerns of
software engineering.

This Separability principle says that theories dealing with
properties of the software system proper are independent of
theories dealing with human stakeholder concerns, either
developer processes or end-user interactions with developers.

B. Relevance to Agile Software Development

The Separability Principle is relevant to the possible
meaning of the 1st Agile-Design-Rule, which tells us to
continuously run all tests and make sure they still pass. This
depends on the particular interpretation of this rule.

The first interpretation is trivial: a code with bugs is not
runnable, and no next rule is applicable to code quality
analysis. Successful tests are a pre-condition for the next rules.

Another interpretation directly touches pair-programming
characteristics of XP. Pair-programming works by one person
writing the code while the other person of the pair writes tests
to be run on the written code, and then they switch the
programmer/tester roles. From this viewpoint this rule concerns
the human social aspects of development, and is not relevant to
the software product proper.

In our view, the best interpretation touches the motivation
for testing. The importance of tests it not just for finding bugs,
but rather to enforce system redesign, in case design problems
were identified. In this view, testing is an inherent part of the
software product design and not an extraneous human concern.
But was this the truly original motivation behind this rule?

C. 1st Agile-Design-Rule: Passing Design Tests

Whatever was the original motivation behind the first
Agile-Design-Rule, we propose here a novel interpretation
consistent with our emphasis on Design instead of
implementation or development process.

The goal of the 1st Agile-Design-Rule is to pass systematic
“Design Tests”, viz. to reveal design problems conflicting with

112

Conceptual Integrity. This new focus on design means that the
tests themselves should be carefully designed to be consistent
with the SUD (System Under Design) Conceptual Integrity.
Design test examples will be given in section V.

D. 2nd Agile-Design-Rule: Revealing Intention

The focus on design interpretation of the first rule is a
suitable transition to the deep meaning of the 2nd Agile-Design-
Rule. This rule in the formulation presented in the Introduction
of this paper (in sub-section A) reads “Explicit Intent”, viz. to
explicitly express the ideas of the software author. In other
words, the concepts embodied in the software design units
should both reflect the main ideas of the software system and
be clearly understood by other stakeholders reading the
software. Summarizing, Conceptual Integrity is not only
essential to high-quality design, it should be explicitly revealed
in the software itself, and not just in its documentation.

IV. THE ALGEBRAIC SOFTWARE THEORY IS QUANTITATIVE !

To be applicable to the practice of software system design
an actual Software Theory should be quantitative, as it is clear
even in the naïve formulation of the rules: “no duplication” and
“minimize entities”. In this section we provide formulas for
calculating the relevant quantities, to explain rules 3 and 4 and
later on propose a 5th rule.

A. A Quantitative Theory of Agile-Design-Rules

The quantitative algebraic Software Theory, the Linear
Software Models, which in turn is based upon Conceptual
Integrity (see Fig. 1), obeys the following demands:

• Software represented by a mathematical
structure – be it a matrix or a lattice; in this paper
we chose the matrix representation;

• Quantities in formulas amenable to calculation –
getting precise numbers for each obtained design;

• Standard Criteria for design quality – allowing
comparison of proposed designs with standards;

Quantities involved in the Conceptual Integrity calculations
are normalized. These quantities are independent of the
vector/matrix sizes, by dividing results by relevant entity sizes.

B. 3rd Agile-Design-Rule: No Duplication

“No duplication” in terms of vectors, is the simplest case of
linear independence: any set of identical structors are obviously
linearly dependent and all but one should be eliminated. The
same is true for identical functionals. Thus, the 3rd Agile-
Design-Rule is a particular case of the 4th rule discussed next.

C. 4th Agile-Design-Rule: Minimize Entities i.e.
Propriety

Following Exman and Katz [18], the naïve “Minimize
Entities” rule corresponds to the generic linear independence
Propriety principle of Conceptual Integrity. Linear
independence within a module is evaluated by equation (1), in
which r is the rank and c is the number of columns of the
module sub-matrix. Since module sub-matrices are square, one

could use as well the number of rows instead of the number of
columns. The module propriety criterion in equation (1) has a
value between zero and the maximum propriety value of 1
obtained when r equals c.

Propriety = 1 - ((c - r) c) (1)

D. Orthogonality

As already mentioned, Hunt and Thomas [22] linked in

their book the “No duplication” rule with Orthogonality. The
latter quantity is calculated as follows. Assume a pair of
normalized vectors u and v i.e. all their elements are divided by
the length of the respective vector. Their Orthogonality is
calculated by equation (2), where ()u vi is the vectors’ scalar

product. Orthogonality has a value between zero and the
maximal value 1 obtained for zero scalar product.

)iOrthogonality = 1 - (u v (2)

Software system calculations, using the above equations,
should be done for the whole set of Modularity Matrix modules
to obtain the combined system conceptual integrity.

V. DESIGN TESTS ILLUSTRATED BY CASE STUDIES

The Agile-Design-Rules are here illustrated by Case

Studies. They are numbered and presented according to the
rational interpretation given by the algebraic Software Theory,
and adding a fifth Orthogonality rule.

A. 1st Agile-Design-Rule: Design Tests – ATM
Conceptual Integrity Case Study

Design Tests are distinct from Unit Tests whose purpose is
to find syntactic or logical errors. A design test, may check the
Conceptual Integrity of a sub-system. For instance, an ATM
(Automatic Teller Machine) is a reasonable machine to deposit
or withdraw cash or deposit checks. But it is not currently an
acceptable way to obtain a house mortgage.

Thus, a design test to verify an ATM design for Conceptual
Integrity is a loop on a Financial Ontology, looking for and
flagging for deletion all concepts appearing in the ATM
design that are related or sub-types of the mortgage concept.

B. 2nd Agile-Design-Rule: Revealing Intention –
Interdisciplinary Ambiguity Case Study

Revealing Intention is again a matter of Conceptual Design
verification. Trivial cases are to demand naming of classes and
functions by meaningful names such as “Bridge” or “Liquid”,
instead of meaningless names such as “X” or “Y” (see e.g.
[29]), or even worse, misleading names.

Less trivial cases deal with ambiguity, for instance in an
interdisciplinary software in which the same term has different
meanings in two disciplines. An example is the usage of the
“Bridge” software design pattern within an application for

113

civil engineering dealing with tunnels and “bridges”. Another
example is the usage of “Liquid” financial assets within an
application about “Liquid” chemicals.

In order to verify ambiguity absence one may build an
SUD (Software Under Development) Application Ontology,
from the domain ontologies intersection, and check whether
the same term appears in different Application Ontology
branches dealing with the different disciplines.

C. 3rd Agile-Design-Rule: No duplication –
Circle Functionals Case Study

As already stated above, “No duplication” is a particular
simple case of Linear Dependence. Whenever there are two or
more identical functionals (similarly for identical structors),
one should eliminate all of them except one.

For instance, assume a geometrical application involving
circles. The Modularity Matrix has a “circle” structor. Suppose
it also has two functionals – calculate area by Π*Radius2 and
calculate perimeter by 2*Π*Radius. Then there are two
identical rows in the matrix, in which there are 1-valued
elements for these two rows in the same circle structor
column. One should eliminate duplication, since both these
functions depend only on the Radius variable; when one fixes
either the Area or the Perimeter, the Radius is determined and
also the value of the other function. These functionals are
trivially dependent.

D. 4th Agile-Design-Rule: Minimize Number of
Entities – General Propriety Case Study

The Propriety principle of Conceptual Integrity effectively
minimizes the numbers of structors and respective functionals
in a Modularity Matrix representation of a software system.
Whenever there are linear dependences of row or column
vectors within the matrix, one must eliminate some vectors to
obtain total linear independence in the matrix. This is checked
by equation (1), in which the matrix rank r should be equal to
the number of structors (columns), or equivalently the number
of rows (functionals). If Propriety is less than 1 by equation (1),
some vectors must be eliminated by the software engineer,
using semantic considerations.

For instance, in elementary trigonometry there are various
cases of mutually dependent functions, in which one needs a
lesser number of independent functions. To calculate the
values of sine, co-sine and tangent fuctions of an angle in
radians, one needs at most two of these functions.

E. 5th Agile-Design-Rule: Orthogonality –
Redesign to Eliminate Coupling Case Study

The Software Theory leads us to add a fifth Agile-Design-
Rule in our formulation to comply with the Orthogonality
principle of Conceptual Integrity, which is obeyed by the
standard Modularity Matrix. It means that all structors and
functionals of a given module should be respectively
orthogonal to all structors and functionals of all other modules

in the software system represented by the Modularity Matrix.
Orthogonality is calculated by repeated application of equation
(2). If the overall matrix orthogonality is not 1, with some
sparse modules, there is a case of coupling and the software
system must be redesigned by the software engineer to
eliminate coupling and assure orthogonality.

For instance, in a sub-system whose purpose is geodesy
applications, a module performing proper geodetic
calculations should be orthogonal to a module containing
generic algebraic functions needed for e.g. matrix
computations that may be needed within the geodetic
calculations. Any redefinition of a generic algebraic function
within a proper geodetic class, causes coupling of the geodetic
and the algebraic modules, in need of redesign.

VI. DISCUSSION

A. Agile-Design-Rules: Plausibility of the
Conceptual and Algebraic Software Theory

Our analysis in this work of the four original Agile-Design-
Rules in the formulation by Jeffries, as displayed in sub-section
A of the Introduction to this paper, shows the following picture:

• For consistency of the 1st rule on running tests
with the other rules, we proposed a novel
interpretation in which tests should be essentially
Design Tests, instead of just debugging unit tests;

• The 2nd rule says that Conceptual Integrity besides
being a general demand, it must be explicitly
expressed in the names of the entities, such as
classes and functions;

• The 3rd and 4th rules are completely explained by
the Propriety principle which is part of the
Conceptual Integrity approach; quantitatively it
corresponds to the demand of Linear
Independence among structors and among
functionals in the Modularity Matrix;

Overall, the explanations for the Agile-Design-Rules
reinforce the plausibility of the algebraic Linear Software
Models, based upon Conceptual Integrity, as a Software
Theory of software composition.

B. Rules Variability: Selectivity, Numbers and
Order

Any theory proposed to explain and justify methodological
rules of development, must be a self-consistent theory. A
possible outcome is that justification must be selective, i.e. not
all practical rules are derivable from the Software Theory and
the theory may generate additional practical rules.

In the particular case of the Agile-Design-Rules, the 1st rule,
on running tests, has a novel interpretation in order to comply
with the Software Theory self-consistency. Furthermore, a new
reasonable 5th rule of Orthogonality has been explicitly
generated, as suggested by Hunt and Thomas [22].

The particular order of the rules seems less important, as
long as they rigorously follow from the Software Theory. The

114

rule order is perhaps of interest for rule classification, in which
the 1st and 2nd rules strictly belong to a Conceptual viewpoint
and the 3rd and 4th rules belong to an algebraic viewpoint.

C. Future Work

In order to solidify the explanation and justification for the
Agile-Design-Rules one needs to analyze software system
examples of a variety of sizes.

Another open issue is the applicability of these or similar
rules to other development methodologies.

While linear independence is relevant to Modularity
Lattices, their orthogonality deserves further investigation.

D. Main Contribution

There are three main contributions of this paper. 1st, it
argues that Linear Software Models, the algebraic Software
Theory based upon Conceptual Integrity, is a rigorous basis for
software design methodologies. 2nd, it shows that the Agile-
Design-Rules essence is selectively explained and justified by
the Software Theory. 3rd, it proposed the idea of systematic
Design Tests.

ACKNOWLEDGMENT

The author thanks Reuven Yagel for his useful suggestions
which contributed to improve the paper.

REFERENCES

[1] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. I. The Power of

Modularity, MIT Press, Cambridge, MA, USA, 2000.

[2] K. Beck, Extreme Programming Explained: Embrace Change, 1st
edition, Addison-Wesley, Boston, MA, USA, 1999.

[3] K. Beck, “Embracing Change with Extreme Programming”, IEEE
Computer, Vol. 32, pp. 70-77, October 1999. DOI: 10.1109/2.796139

[4] K. Beck and M. Fowler, Planning Extreme Programming, Addison
Wesley, Boston, MA, USA, 2000.

[5] N. Bekkers, “4 Rules of Simple Design”, 2016. Web:
https://www.theguild.nl/4-rules-of-simple-design/

[6] F.P. Brooks, The Mythical Man-Month – Essays in Software
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

[7] F.P. Brooks, The Design of Design: Essays from a Computer Scientist,
Addison-Wesley, Boston, MA, USA, 2010.

[8] Y. Cai and K.J. Sullivan, “Modularity Analysis of Logical Design
Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software Eng.
ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[9] P. Clements, R. Kazman and M. Klein, Evaluating Software
Architecture: Methods and Case Studies. Addison-Wesley, Boston, MA,
USA, 2001.

[10] S.P. De Rosso and D. Jackson, “What’s Wrong with Git? A Conceptual
Design Analysis”, in Proc. of Onward! Conference, pp. 37-51, ACM,
2013. DOI: http://dx.doi.org/10.1145/2509578.2509584.

 [11] I. Exman, “Linear Software Models”, video presentation of paper at
GTSE 2012, KTH, Stockholm, Sweden, 2012b. Web site:
http://www.youtube.com/watch?v=EJfzArH8-ls.

[12] I. Exman, “Linear Software Models: Standard Modularity Highlights
Residual Coupling”, Int. Journal of Software Engineering and
Knowledge Engineering, Vol. 24, pp. 183-210, 2014. DOI:
10.1142/S0218194014500089.

[13] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Matrix Eigenvectors”, Int. Journal of Software Engineering
and Knowledge Engineering, Vol. 25, pp. 1395-1426, 2015. DOI:
http://dx.doi.org/10.1142/S0218194015500308

[14] I. Exman and D. Speicher, “Linear Software Models: Equivalence of the
Modularity Matrix to its Modularity Lattice”, in Proc. 10th ICSOFT’2015
Int. Conference on Software Technology, pp. 109-116, ScitePress,
Portugal, 2015. DOI: 10.5220/0005557701090116

[15] I. Exman, “Linear Software Models: An Algebraic Theory of Software
Composition”, in Proc. 28th Int. Conf. on Software Engineering and
Knowledge Engineering, Keynote Abstract, KSI Research, Redwood
City, CA, USA, 2016.

[16] I. Exman, D.E. Perry, B. Barn and P. Ralph, “Separability Principles for
a General Theory of Software Engineering: Report on the GTSE 2015
Workshop”, ACM SIGSOFT Software Engineering Notes 41 (1): 25-27
(2016). DOI = 10.1145/2853073.2853093

[17] I. Exman and R. Sakhnini, “Linear Software Models: Modularity
Analysis by the Laplacian Matrix”, in Proc. 11th ICSOFT’2016 Int.
Conference on Software Technology, Volume 2, pp. 100-108,
ScitePress, Portugal, 2016. DOI: 10.5220/0005985601000108

[18] I. Exman and P. Katz, “Conceptual Software Design: Algebraic Axioms
for Conceptual Integrity”, in Proc. 29th Int. Conf. on Software
Engineering and Knowledge Engineering, pp. 155-160 , KSI Research,
Pittsburgh, PA, USA, 2017. DOI: https://doi.org/10.18293/SEKE2017-
148

[19] M. Fowler, “Beck Design Rules”, Blog, March 2015, URL:
https://martinfowler.com/bliki/BeckDesignRules.html.

[20] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations, Springer-Verlag, Berlin, Germany, 1998.

[21] C. Haines, “Understanding the Four Rules of Simple Design”, Leanpub,
2014.

[22] A. Hunt and D. Thomas, The Pragmatic Programmer: From
Journeyman to Master, Addison-Wesley, Boston, MA, USA, 1999.

[23] D. Jackson, “Conceptual Design of Software: A Research Agenda”,
CSAIL Technical Report, MIT-CSAIL-TR-2013-020, 2013. URL:
http://dspace.mit.edu/bitstream/handle/1721.1/79826/MIT-CSAIL-TR-
2013-020.pdf?sequence=2

[24] D. Jackson, “Towards a Theory of Conceptual Design for Software”, in
Proc. Onward! 2015 ACM Int. Symposium on New Ideas, New
Paradigms and Reflections on Programming and Software, pp. 282-296,
2015. DOI: 10.1145/2814228.2814248.

[25] R. Jeffries, “Essential XP: Emergent Design”, October 2001. URL:
https://ronjeffries.com/xprog/classics/expemergentdesign/.

[26] R. Kazman, “Tool Support for Architecture Analysis and Design”, in
ISAW’96 Proc. 2nd Int. Software Architecture Workshop, pp. 94-97,
ACM, New York, NY, USA, 1996. DOI: 10.1145/243327.243618

[27] R. Kazman and S.J. Carriere, “Playing Detective: Reconstructing
Software Architecture from Available Evidence.” Technical Report
CMU/SEI-97-TR-010, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, USA, 1997.

[28] U. von Luxburg, “A Tutorial on Spectral Clustering”, Statistics and
Computing, 17 (4), pp. 395-416, 2007. DOI: 10.1007/s11222-007-9033-
z

[29] K. Owen, “What’s in a Name? Anti-Patterns to a Hard Problem”, 2016.
Web: https://www.sitepoint.com/whats-in-a-name-anti-patterns-to-a-
hard-problem/

[30] J.B. Rainsberger, “The Four Elements of Simple Design”, 2016. Web:
http://blog.jbrains.ca/permalink/the-four-elements-of-simple-design

[31] G. Sironi, “The 4 rules of simple design”, 2011. Web:
https://dzone.com/articles/4-rules-simple-design

[32] R. Wille, “Restructuring lattice theory: an approach based on hierarchies
of concepts” In: I. Rival (ed.): Ordered Sets, pp. 445–470, Reidel,
Dordrecht-Boston, 1982.

115

DOI reference number: 10.18293/SEKE2018-145

Classutopia: A Serious Game for Conceptual
Modeling Design

Felipe Larenasa, Beatriz Marína, Giovanni Giachettib
aFacultad de Ingeniería y Ciencias, Universidad Diego Portales, Chile

{felipe.larenas, beatriz.marin}@mail.udp.cl
 bUniversidad Tecnológica de Chile INACAP, Chile (ggiachetti@inacap.cl)

Abstract— One of the more complex topics to teach to
software engineering students is the conceptual modeling design,
which has several concepts that students must learn in order to
specify the structural, behavioral and interaction views of
software systems. Learning the design of class diagrams is of
paramount importance since these diagrams are used to guide
concrete development tasks such as programming and software
testing, and -consequently- to avoid defective software products.
Applying novel teaching/learning techniques in this topic may
help students to reduce the defects that are committed at the
moment of designing a class diagram. One interesting technique
is the use of serious games, due to the fact that they provide
learning environments free of risks and pressure for students,
allowing the students to know the topics that they must learn in a
fun way. Serious games have been widely used in programming
courses. Thus, we aim to investigate the feasibility to replicate
this experience for conceptual modeling of class diagrams at
software engineering courses. In this paper, we present a role-
playing game specially focused in the class diagram, which is
called Classutopia. This serious game provides modeling
challenges, comprehension and correction of diagrams with
different complexity levels for learning conceptual modeling
design.

Keywords— Gamification, serious games, class diagram,
software engineering.

I. INTRODUCTION
Conceptual modeling is one of the more complex topics

that must be learnt by software engineering students since they
need to abstract concepts from reality and express them in
computational terms. The conceptual modeling design is of
paramount importance in the development of software projects
because it specifies the different views of a software system,
which guide the programming and the testing tasks. The class
diagram is one of the most representative design approaches
for software modeling [1], which serves as a guideline to
develop the structures and the methods of a software product.
A faulty class diagram misleads the software development
teams, leading to mistakes in coding and delays in project
implementations, and subsequently causing project failures.

Some common defects encountered in the development of
class diagrams [2–5] are as follows: confusion amidst elements
such as aggregation and composition; overspecification; errors
in the cardinality, i.e., creating infinite recursive associations;
poor choices of names for classes and attributes; class

replications; lack of inheritance between classes of the same
type; lack of classes, attributes, and lost methods.

The defects mentioned above can be overcome if the
students actively participate in the learning process. The use of
games and simulation-based experiences has been of great help
for teaching and offering learning environments without any
risk. These games are designed for a different purpose than to
solely entertain and are known as serious games [6,7].
Moreover, the use of videogames characteristics such as points
or rewards in a game is known as gamification. Currently,
there are several systematic reviews in the literature [8,9] that
have reported the positive results of serious game-based
learning, wherein the use of this type of game has been verified
in various domains of learning in topics related to health,
education (school and university), culture, social skills, and
vocational training, among others. Within the domain of
education, specifically in the area of computing [10], it has
been used to teach topics such as programming, project
management software, and operating systems.

We believe that by implementing serious games,
specifically focused on learning conceptual modeling, it is
possible to motivate and entertain students by modifying their
behavior in a positive manner when coping with class
diagrams. Therefore, the design of a serious game for learning
and understanding conceptual modeling design is presented in
this paper. The game is a Role-Playing Game (RPG) wherein a
character hero (characterized by a robot) is assigned to a player
who must complete an adventure by overcoming three types of
challenges to defeat the villains (characterized as evil wizards).
As the game progresses, the difficulty of the challenges will
increase based on the predefined problems.

Therefore, the contribution of this work is the design of a
serious game for conceptual modeling learning of the class
diagram and the implementation of a mobile application for
Android that provides support for running the game on tablets.
This contribution is useful for students that want to learn how
to do a class model design avoiding defects, and it is also
useful for researchers that want to add new challenges to the
Classutopia serious game.

The rest of the article is organized as follows: Section 2
presents some relevant related works. Section 3 presents the
design of a serious game developed for learning conceptual
modeling of the class diagram. Section 4 presents the

116

evaluation of the game. Finally, Section 5 presents the main
conclusions and future works.

II. RELATED WORK
Even though there are several serious games published in

literature, as we can observe in the systematic literature
reviews presented in [8,9], we did not find literature of serious
games that had been applied to teaching/learning class
diagram. Nevertheless, some of the games that are focused on
teaching object-oriented programming concepts are closely
linked to the modeling of classes, so that we review these
documents in this section.

Java Ninja [11] evaluated the effects of utilizing serious
games focused on teaching specific concepts of modeling and
programming, wherein the students receive help in
understanding the inheritance in object-oriented programming
and show positive results in their learning processes and
motivation.

In [12] a game-theme instructional model is presented,
which demonstrates the concepts of object-oriented
programming, specifically encapsulation, polymorphism, and
inheritance. The game uses virtual-reality to engage students
with 3 problems related to the programming topics mentioned
above. The student must answer correctly in the inheritance
situation in order to construct a class model diagram. Results
indicate that 80% of students agreed that the module developed
their interest in programming.

In [13] a game focused in object-oriented programming
concepts is presented. In this game, the players can select an
object and the class diagram is displayed in order to show the
inheritance relationships of the selected object.

A serious game focused in the education of object-oriented
analysis and design and artificial intelligence is presented in
[14]. The game is about the Sokovan problem, where five types
of relationships can be identified: association, composition,
dependency, inheritance and aggregation. Authors state that to
facilitate applying serious game a promising strategy would be
accumulating and opening game-based materials. So that, they
provides this game with a puzzle style, but no information is
provided about the usage or empirical evaluations.

In summary, we didn’t find serious games specifically
focused in learning conceptual modeling design, nevertheless
clear examples of the use of class diagrams in challenges of
serious games have been obtained. Considering the importance
and difficulty of conceptual modeling learning in software
engineering, a serious game has been created specifically for
class diagram learning, which is shown in the next section.

III. DESIGN OF CLASSUTOPIA SERIOUS GAME
The design of a serious game for the conceptual modeling

of class diagram learning has been developed using the engine
Unity, aiming toward it being executed in a mobile application
for devices with Android operating system. The conceptual
framework of the MDA (Mechanics, Dynamics and Aesthetics)
[15] is used to explain the design of the game, which allows the
implementation of the game by taking into account the player
and the developer viewpoints.

A. Aesthetics
For making the game attractive and fun for the player, the

game has a minimalist graphic style, displaying easy-to-
interpret buttons, lists, and menus. In a similar way, common
visual representations of RPG games are used, such as health
bars, characters’ dialog windows, and sprites for the same. The
visual feedback of the player's interaction with the elements on
the screen is based on the changes of hues and approaches.

Moreover, an interesting context has been created to
motivate playing the game. Classutopia is a technological
utopia wherein human beings have reached the pinnacle of
civilization thanks to the help of technology. Amidst all
significant technological advances achieved, five are
considered the most important, called The Pillars, in which all
this social prosperity is underpinned: a satellite plant of solar
energy, a synthesized food system, an organ cultivation center,
an anti-pollution multi-industrial system, and a robots factory
for unwanted tasks.

All the basic needs of humanity (health, food, and energy)
have been met. The villain in this story is the last descendant of
a caste of sorcerers, who is bothered by the fact that humanity
has reached fullness thanks to technology and not magic.
Therefore, he has initiated an attempt to sabotage The Pillars,
making use of his magic tricks to modify this systems software
by altering the class models to overthrow the utopia. However,
a maintenance robot has become aware of these failures; the
reason why it pursues an original adventure to repair the
damages and ruin the sorcerer’s plans. This context works as a
guideline for the creation of the diagrams arranged for the
missions since each mission represents the robot’s attempt to
save one of The Pillars. A diagram is modeled to represent the
satellite plant of solar energy, synthesized food system, and
organ cultivation center; these diagrams are presented in the
missions 1, 2 and 3, respectively.

Classutopia is available for download at
https://www.dropbox.com/s/sfcjjz0jlp6a911/Classutopia.apk?dl=0

B. Mechanics
The game is based on three types of mechanics: modeling

the character, correcting defective diagrams, and understanding
diagrams.

1) Character Modeling
The main character is a robot with three basic attributes:
attack, defense, and speed. Attack relates to the damage the
protagonist can cause to the enemy, defense is the resistance
posed to the damage received from the enemy, and speed is
the management of the limited time to solve the problems.
These attributes can be modified and enhanced through
modeling of class diagrams, which describe the features and
components of the robot. Initially, the robot needs to be
modeled correctly, and subsequently, as the game progresses,
new improvements can be unlocked, which should be properly
included in the class model of the robot so that the changes
take effect. These improvements, in addition to modifying the
character's attributes, also unlock some special powers that
can be used in the clashes between the protagonist robot and
its enemy (the magician).

117

2) Correction of Defective Diagrams
During the game, the hero battles against the enemy; the
disputes are based on the challenge of correcting defective
class diagrams. In these challenges, given a defective class
diagram, the player can tap the screen of the tablet to highlight
the various elements that make up the class diagram, which
have been considered to be defective. Therefore, Classutopia
offers options to correct the possible defects. Once the
correction has been made, feedback on whether the player has
made a mistake or done it correctly is not instantaneous but
the player must “Attack” to be able to assess the correction.
This has been designed in this manner to give an option to the
player to evaluate one or more modifications made to the
diagram by pressing a single button, in which mistakes result
in harming the protagonist (robot) and the successful
corrections affect the enemy (magician). This is graphically
presented on the characters’ health bars that indicate the status
for each character. In addition, Classutopia delivers feedback
in the class diagram; it indicates in green the modification that
was applied correctly and in red where it has been incorrectly
modified. It also includes a button to undo the recent applied
modifications.

3) Understanding Diagrams
During the battles, the player can activate special powers in
the robot that allow him to perform various effects such as
enabling damage modifiers to apply more force on the attacks,
reducing corrections in the diagram to finish it on time, or
healing the protagonist. These modifiers have limited use and
are activated by means of a challenge in understanding class
diagrams. By pressing the button which activates a certain
power, the player must answer a question with respect to the
concepts that can be used in a class diagram. This question
displays a small diagram or some conceptual construct and
offers between two and four possible answers. If the player
answers correctly, the power is effective; if answered
incorrectly, the effect will not be applied. The powers are
arranged in the battle according to the previously modeled
characteristics for the robot.

C. Dynamics
The mechanics previously described have been presented to
the player in a smooth, consistent, and understandable way
during the execution of the game. To obtain the expected
gameplay, a series of screens, menus, and systems are
implemented, which are explained below.

1) Control Systems
Like most mobile applications available today, the game is
controlled via touch-screen by simply tapping on buttons and
menu items displayed on the screen. In some game mechanics,
multi-touch gestures are used to zoom in and out and scroll
through the proposed class diagrams.

2) Start screen and save game handling
When the player runs the application, a screen is shown with
the name of the game, a representative image, and a Start
button to initiate the game. It is a simple landing screen like
that of most mobile games. Once the player has clicked on the

Start button, the button disappears presenting to the player two
new options within the same screen (see Figure 1): one to start
a new game and the other to load a previous game. The game
uses a system of unitary games, i.e., you can only save one
game at a time, therefore, creating a new game automatically
deletes (if any) the previous game. For this reason, as a
precaution, a warning window to confirm deletion is displayed
to avoid accidental loss of the game. The games are saved
automatically, indicating this with a symbol at the end of each
challenge. If the player presses the button to start a new game,
the stored data are reestablished and the game moves on to the
main menu. If the player presses the button Load Previous
Game, it goes directly to the main menu preserving the
conditions recorded during the last auto-save.

Fig. 1. Game selection. Upper text: Classutopia. Lower left text: START

NEW GAME. Lower right text: LOAD PREVIOUS GAME

3) Main menu
The main menu displays three buttons (see Figure 2): one to
access the construction challenge of modeling the main
character, one to access the missions’ menu, and one to return
to home screen. In addition, it displays a summary table with
the current attributes of the character robot. The first time the
player accesses this screen (when he/she starts a new game),
the missions button is disabled in order to force the player to
model the character on the construction screen before
accessing the missions’ menu.

Fig. 2. Main menu. Upper right text: CURRENT ATTRIBUTES: ATTACK

1, DEFENSE 1, SPEED 1, HEALTH 100. Left text: BUILD UP,
MISSIONS.

4) Build and upgrades
On the construction screen (see Figure 3), the mechanical

modeling of the character is presented, as has been previously
described. Initially, the player must connect the classes that
represent the parts of the robot correctly, for example, sensors,
extremities, core, and weapons. The player can see, as he/she
models the robot appropriately, how its attributes (attack,
defense, speed, and unique skills) modify according to the
characteristics of the diagram. Defects in modeling during the

118

construction of the diagram result in the non-modification of
the attributes, i.e., the classes do not apply their effects and the
features of the robot are not improved. There is a button to save
the changes made, continuing to the main menu. Within this
screen, the list of improvements for the robot is presented,
those that get unlocked, as a reward, each time a mission is
completed. These represent the improved components of the
robot or new components that, by being adequately included in
the model, increase the attributes and activate new powers.

Fig. 3. Building screen.

5) Missions
After modeling the robot for the first time, in the main menu,
the button to access the missions’ menu is enabled. The
missions correspond to each of the clashes the robot must
complete by defeating the magician (see Figure 4). These
tasks are presented as a list and are sequential, i.e., the second
mission is enabled when the previous mission is completed,
and the third is activated upon completion of the second
mission. Each mission is shown with a name and its level of
difficulty. The difficulty of the missions is incremental. In the
first instance, the game has three missions: the basic level,
mid-level, and advanced level. The missions can be repeated
for practicing or unlocking new rewards (those corresponding
to the accomplished level). To start a mission, the player must
tap on it, by doing so it gives way to the battle.

Fig. 4. Missions menu.

6) Battle
The battle screen shows the class diagram to be corrected (as
explained in Mechanics Section), which can be navigated
using tactile gestures (see Figure 5). The avatars that represent

the parts in conflict are shown at the top of the screen with
their respective health bars and with the remaining time for the
mission. The confrontation ends when the time runs out, when
one of the parties loses all their health or when all defects are
corrected. If the player (robot) wins, the level is completed,
regards are awarded, progress of the game is saved, and the
missions menu appears. If the player (robot) loses, the
missions menu appears without rewards but with the option to
reattempt to complete the mission.

Fig. 5. Battle screen.

Each level focuses on the correction of different groups of
defects in class diagrams. The basic level focuses on learning
the essential elements within a class (names and attributes).
The medium level focuses on learning the correct specification
of services in a class. The advanced level focuses on learning
the associations and cardinalities. Table 1 shows the injected
defects in each of the levels.

TABLE I. DEFECTS INJECTED IN CLASSUTOPIA LEVELS

Level Defects

Basic

• Classes without name
• Classes without id
• Classes with repeated attributes
• Classes with attributes without data type

Medium
• Classes without creation service
• Classes with service without return
• Classes without visualization of attributes

Advanced

• Associations of wrong type
• Association without cardinality
• Minimum cardinality of 1 at both ends
• Descending cardinality at one end of the association

The more advanced levels include the types of defects of
the levels of lesser complexity. These defects are applied
randomly at the beginning of a confrontation on a diagram
without defects, i.e., the game can generate any of these defects
in any of the elements of the class diagram presented in a battle
and generate another type of defect, completely different, in the
same elements when repeating the mission.

7) Special Powers
On the battle screen, there are buttons to activate the special

skills obtained in the construction of the robot (see Figure 6).
By tapping on a skill, the understanding problem is presented,
which must be answered correctly for its activation. While this
occurs, time is not paused. Once the problem is addressed, the

119

battle continues and if answered correctly, the effects of the
skill are applied; otherwise, the effects do not apply. Whether it
is answered correctly or incorrectly, the selected skill is
disabled for the rest of the combat. The types of effects that the
skills have are as follows: Multipliers of special powers, Health
recovery of the protagonist, Mission’s time manipulation or
Reduction of remaining defects.

Fig. 6. Special powers panel.

IV. EVALUATION OF CLASSUTOPIA
An exploratory empirical evaluation of Classutopia has

been conducted with the aim of assessing the understanding of
the game and the perceived utility to support the conceptual
modeling learning in the Software Engineering course. For the
design of this activity, the guidelines previously defined in [16]
were used. The following research question was defined:

RQ1: Do the students find the use of Classutopia for
learning the conceptual design of class diagrams beneficial?

The context of the experiment is included in the Software
Engineering course, which is a fourth-year course of the
Engineer degree in Computer Science and
Telecommunications at the Diego Portales University (Chile).
The subjects are students of this course that have already
attended classes on conceptual modeling. These classes have
been conducted using traditional techniques of
teaching/learning such as PowerPoint slides and inspection
exercises in diagrams printed on a sheet.

In the experiment, the subjects receive a small description
of what is Classutopia and then they must play. They begin
building the robot and go through the missions. Finally, the
subjects must respond to a questionnaire in order to obtain the
perceptions of the usefulness of the game as a new technique of
teaching/learning of conceptual modeling in Software
Engineering. The sentences of the questionnaire are presented
at Table 2, and subjects must answer using a Likert scale,
where 1 is totally disagree to 5 totally agree.

TABLE II. QUESTIONNAIRE TO ASSESS CLASSUTOPIA

Sentence

1. Classutopia facilitates the understanding of a class diagram.

2. Classutopia helps determine how to correct a class diagram.

3. Classutopia helps to understand the concepts of the class diagram.

4. I find Classutopia easy to understand.

5. Classutopia allows you to learn about the design of a class diagram in an
easier way than by using text.

6. In general, I found Classutopia to be useful.

A. Operation of the empirical evaluation
The research was conducted in first semester of 2017 with

students who have completed the course of Software
Engineering in the second half of 2016. Thirteen students
participated voluntarily. Participation in the experiment was
not related to the score of the students but the students were
urged to make their best effort. The start and end of each
student for each mission and the times they had to conduct a
mission to win it were registered. It is important to mention
that each student should complete mission 1 (M1) to unlock
mission 2 (M2) and further complete M2 to unlock mission 3
(M3).

The students had 30 minutes to conduct the activity.
However, most subjects wanted to continue playing to defeat
the magician. The students realized that each time they earned
a mission, they unlocked new features that could improve the
robot and they were going to build the robot to improve their
attributes. In addition, the subjects used the easier mission to
unlock the features thanks to they win many times to build the
robot to defeat the most powerful wizard in the last mission.

B. Results
Results are shown in Table 3. It can be observed that 7
subjects were able to correctly build the robot and detect all
defects injected in the diagrams.

TABLE III. RESULTS

Subject Time
M1

Num.
of M1

Time
M2

Num.
of M2

Time
M3

Num.
of M3

Win

S1 5 2 13 3 14 7 yes
S2 2 1 25 8 - - no
S3 3 1 27 6 22 9 yes
S4 4 3 7 2 15 5 yes
S5 5 3 22 5 - - no
S6 1 1 12 5 7 3 no
S7 3 2 10 4 6 3 yes
S8 11 11 7 2 46 16 no
S9 11 5 37 12 20 8 no
S10 2 1 1 1 6 3 yes
S11 4 2 28 7 21 6 no
S12 4 2 17 5 22 8 yes
S13 3 2 8 2 30 10 yes

Of these 7, 3 subjects exceeded the game in 30 minutes but 4
subjects were engaged in the game to overcome it. Four
subjects correctly build the robot but did not exceed M3 that
had defects in the associations of the classes. Two subjects did
not exceed M2 that had defects in the services of the classes
and did not continue to play after 30 minutes. It is important to
note that the four subjects who did not win had to stop playing
the game although they were eager to continue playing.

The results indicate that all students (13 subjects) could
learn how to build the robot and to detect defects in the class
attributes (basic level). 11 of them were able to learn how to
build the robot and to detect defects at basic and medium
levels. From these 11 students, 7 students could learn how to
build the robot and to detect defects in the class diagrams at
basic, medium, and advanced levels. This allows to observe
whether it is feasible to use a serious game to learn about the
conceptual modeling software, the game improves the

120

students’ understanding of class diagram, and encourages us to
improve the testing to evaluate the effectiveness in learning.

Regarding the survey, Questions 1, 2, and 3 are related to
the perception of the subject matter of learning using the
serious game. The results (see Figure 7) indicate that the
students perceive that Classutopia helps in the comprehension
of the class diagram, in the understanding of how to construct a
class diagram, and that Classutopia helps to understand the
concepts used in the class diagram (the majority of the subjects
agree or totally agree with the statements of Q1, Q2, and Q3).
Regarding the ease of use of the game (Q4), there are two
subjects that did not find it easy to understand how Classutopia
works. However, more than 50% of the students agree or
totally agree that it is easy to understand how the game works.
Regarding the utility of the game, the majority of students
agree that Classutopia allows to learn more easy than using
texts (Q5), and they are totally agree that in general found
Classutopia useful (Q6). The results of this survey allows to
answer the research question since the students find it
beneficial to use a serious game for learning conceptual
modeling, in particular, for learning class diagrams.

Fig. 7. Results of the questionnaire.

V. CONCLUSIONS
Novel teaching techniques in computer courses are

required, particularly for the advanced levels of Software
Engineering, because in many cases, the emphasis of research
has been placed on the most basic courses such as
programming. The design, implementation, and use of a
serious game to learn conceptual modeling in software
engineering courses are presented in this study. From this
work, it can be concluded that it is feasible to implement new
teaching techniques with gamification and serious games for
Software Engineering courses.

In the development of computer projects, modeling a
correct class diagram is of vital importance for the reduction of
problems and delays in deploying a software. In this work, we
provide a solution for the problems caused by the
misunderstanding of class diagrams and their semantic
components. Thus, Classutopia has been presented, which is a
serious game that supports the conceptual modeling learning,
and it can be a good solution to correct the most common
problems that students have to familiarize themselves with
class diagrams, offering them a space free of pressure and
consequences to learn and understand how to model and
correct class diagrams.

In addition, there has been an exploratory empirical
evaluation to verify the perception of students with respect of

this new method of teaching/learning in Software Engineering.
Results indicate that Classutopia provides benefits for learning
conceptual modeling design. We are aware that with a limited
number of subjects, it is not possible to apply statistical
techniques to increase confidence in the results. One of the
limitations of the empirical assessment performed is the lack of
evidence of the effectiveness of Classutopia in the learning
process. Therefore, further work is referred to conduct
experiments to evaluate the effectiveness of Classutopia.
Finally, there are plans to improve the Classutopia graphics
aspects that will help to enhance the gaming experience.

ACKNOWLEDGMENT
This work was funded by CONICYT project ENSE REDI170020, 2017-2019.

REFERENCES
[1] OMG, Unified Modeling Language (UML) 2.4.1 Superstructure
Specification, 2011.
[2] D. Giordano, F. Maiorana, Object Oriented Design through game
development in XNA, 3rd Interdisciplinary Engineering Design Education
Conference (IEDEC), pp. 51-55, 2013.
[3] J. Cabot, Common UML errors (I): Infinite recursive associations.
http://modeling-languages.com/common-uml-errors-i-infinite-recursive-
associations/ (last access 14.03.18)
[4] Guidelines for UML Diagram Development.
http://eng.umd.edu/~austin/nsf-crcd/uml-guidelines.html(last access 14.03.18)
[5] B. Marín, G. Giachetti, O. Pastor, A. Abran, Identificación de Defectos
en Modelos Conceptuales utilizados en Entornos MDA, XII Ibero-American
Conference on Software Engineering (CIbSE'2009), pp. 109-114, 2009.
[6] C. Abt, Serious Games, University Press of America, 1987.
[7] M. Zyda, From visual simulation to virtual reality to games, IEEE
Computer, vol. 38, issue 9, pp. 25–32, 2005.
[8] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, J. M. Boyle, A
systematic literature review of empirical evidence on computer games and
serious games, Comput. Edu. Vol. 59, issue 2, pp. 661–686, 2012.
[9] A. Calderón, M. Ruiz, A systematic literature review on serious games
evaluation: An application to software project management, Comput. Edu. vol
87, pp. 396–422, 2015.
[10] J. Vargas-Enríquez, L. García-Mundo, M. Genero, M. Piattini, Análisis
de uso de la gamificación en la enseñanza de la informática, XXI Jornadas de
la Enseñanza Univ. de la Informática (JENUI 2015), pp. 105-112, 2015.
[11] J. Zhang, E. Caldwell, E. Smith, Learning the concept of Java
inheritance in a game, 18th International Conference on Computer Games
(CGAMES), pp. 212-216, 2013.
[12] S. Sharma, J. Stigall, S. Rajeev, Game-theme based instructional
module for teaching object oriented programming, International Conference
on Computational Science and Comp. Intelligence (CSCI), pp. 252-257, 2015.
[13] J. Livovský, J. Porubän, Learning object-oriented paradigm by playing
computer games: concepts first approach, Central European Journal of
Computer Science, vol. 4, issue 3, pp. 171–182, 2014.
[14] Z. Li, L. O'Brien, S. Flint, Object-oriented Sokoban solver: A serious
game project for OOAD and AI education, IEEE Frontiers in Education
Conference (FIE) 2014.
[15] R. Hunicke, M. LeBlanc, R. Zubek, MDA: A formal approach to game
design and game research, AAAI Workshop on Challenges in Game AI, 2004.
[16] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell,
Experimentation in Software Engineering, Springer, 2012.

121

Automatic Audience Focusing by Event
Interestingness

Iaakov Exman, Yakir Winograd and Avihu Harush
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, yakirwin@gmail.com, tchvu3@gmail.com

Abstract— Large social Networks have marketing potential to
spread information about interesting events to suitable audiences.
However, huge network sizes and varieties of information
available are obstacles to reach the desired goal. This paper
investigates the hypothesis of computable Interestingness as a
criterion to focus on suitable audiences for any given event.
Interestingness is calculated by combining two functions:
Relevance and Surprise. A generic software tool has been
developed as an experimental testbed to interact with any social
network. Its inputs are the event characterization and audience
candidates for the given event. Two results validate this work’s
hypothesis: first, audience candidates who actually visited the
event site, have on the average a bigger computed Interestingness
than the rest of the population; second and most important,
computed Interestingness better differentiates event site visitors,
actually interested in the Event, from non-visitors, while
Relevance alone, does not distinguish so-well between visitors and
non-visitors. 1

Keywords: Interestingness; Automatic focusing; Event; Relevance;
Surprise; Match; Mismatch; Randomization; Social Network;
Software Architecture; Knowledge Discovery; Analytics; Marketing.

I. INTRODUCTION

Social Networks, by labeling their members with common
interests, have the potential of efficiently marketing specific
events. On the other hand, their huge sizes and proliferation of
information types are impediments to reach the desired goals.

Our working hypothesis is that a computable Interestingness
criterion focuses on suitable audience candidates for a chosen
event, overcoming the sizes obstacle. Having a computable
Interestingness, one automates its usage with a software tool.
This tool is an experimental testbed for the working hypothesis.

The goal of this paper is to validate the working hypothesis
by comparison of the calculated Interestingness with the
behavior of audience candidates. The validation experiment
consists of: 1) Send information items to audience candidates; 2)
Compute the candidate’s interestingness relative to the given
event; 3) Compare it with the candidate action of visiting or not
the Event Web site.

DOI: 10.18293/SEKE2018-220

II. RELATED WORK

We concisely review the literature related to Interestingness,
its applications, and internet agents within social networks.

A. Interestingness Concepts and Applications

Overviews of Interestingness measures for Data Mining and
knowledge discovery are given by Geng et al. [6] and McGarry
[11]. Interestingness approaches are described by Tuzhilin [13]
in the Klosgen and Zytkow Handbook [9].

Criteria to determine interesting rules/patterns generated in
data mining are discussed by Lenca et al. [10].

Exman, in 2009, [2] defined Interestingness as a product of
relevance and surprise. This definition has been embodied in
Web search software tools such as the one described in [4].

B. Social Networks Applications

Social network bots, i.e. software robots, are ubiquitous, as
seen in the book on Twitter and Society by Weller et al. [14].
Of particular interest is the Twitter Accounts chapter by
Mowbray [12], describing Twitter marketing bots. Gentry et al.
[7] analyze shop-bots, advising online shoppers about products
and prices.

It is essential to distinguish bots from humans. Chu et al. [1]
deal with this issue. Gilani et al. [8] also aim at bot recognition.
Ferrara [5] reliably classify bots despite similar behavior to
humans. Exman et al. [3] explored bot survivability within a
human social net, as a kind of anti-Turing test.

III. INTERESTINGNESS

Here we give generic and specific Interestingness
definitions. Then, events and candidates are characterized.

A. Interestingness Definitions

The assumptions behind the Interestingness definition are:

1. Domain of interest choice is arbitrary – one may
express interest in pre-Columbian archeology or in
Jazz music; any choice is a matter of personal taste;

2. Unusual items attract more attention than average
items – unusual items should be given more weight
than average ones, when computing interestingness.

122

Interestingness is a two function composition: the Relevance
of an item to a domain chosen by one’s personal taste and the
Surprise caused by most unusual items, among the relevant
ones. We simplify it to be just a commutative multiplication:

Interestingness Relevance Surprise= ∗ (1)

In this work an item is a candidate for a conference event, in
a given domain. Relevance measures to what extent the
candidate fits the event audience. Surprise measures to what
extent the candidate for a conference event is outstanding,
relatively to the average candidate for this event.

There exist several specific functions to calculate Relevance
and Surprise. A well-known formula is TfIdf used in data
mining. Tf, Term Frequency, expresses Relevance, based upon
the chosen term frequency in a given document. Idf, Inverse
Document Frequency, expresses Surprise, or rarity, i.e. inverse
ratio of relevant documents relative to all examined documents.

In this work match and mismatch, respectively stand for
Relevance and Surprise. These functions compare keyword sets
for each Candidate C with the keyword set for Event E. Match
calculates a similarity measure of the input sets, i.e. keywords

appearing in the intersection ∩ of these sets:

Match C E= ∩ (2)

The output is the number of intersection elements of E and C.
Mismatch calculates the sets’ dissimilarity, viz. a symmetric

difference ∆ between E and C. It is the union ∪ of the relative
complements of these sets:

() ()Mismatch C E C E E C= ∆ = − −∪ (3)

The final formula is normalized by a factor NormF to assure
results independence of set sizes:

Match Mismatch
Interestingness

NormF

∗
=

(4)

B. Characterization of Events and Candidates

The keyword sets characterizing an event are obtained
from its Call-for-Papers after filtering stopwords, i.e. frequent
words such as conjunctions and articles, “and”, “the”, which
are not domain specific. Candidate characterization is
similarly obtained, and schematically seen in Fig. 1.

Figure 1. Schematic Match and Mismatch diagram – E is the Event set (dark
blue). C is the candidate set (light blue). Match is the intersection C∆E (in
yellow). Mismatch is the union between the relative complements C-E and E-C.

IV. THE AUTOFOCUS SYSTEM SOFTWARE ARCHITECTURE

The AutoFocus software tool aims to automatically test the
focus on targets within an event by computing Interestingness.

A. Overall Experimental Client-Server System

The experimental system client-server architecture (in Fig. 2)
enables server interaction with the remote user agent through the
Web. The server interacts through a Restful API with the
AutoFocus tool, each having its own database.

Figure 2. Overall Experimental system client-server Software Architecture –
This system has three components: a User client agent and its Server and the
system core, the AutoFocus tool. Both the Server and the AutoFocus tool have
their own Database, and they communicate through a Restful API.

Figure 3. AutoFocus Software tool Architecture – The main sub-system (in
yellow) has four modules. Two infrastructure modules: Core and Cache; two
essential modules: generic API Access and the Functions module. Outside the
main sub-system we emphasize the Social Net API for any specific Social Net.

B. AutoFocus Tool Generic Architecture

The architecture goal is to clearly separate a generic API
interface from any specific social net API. Assuming that social
networks have much in common, one replaces any specific
social net attached to the AutoFocus tool by any other one, with
minimal or no modification of the generic API interface. The
generic Functions Module, is also usable with any social net.

The AutoFocus architecture, in Fig. 3, is composed of
infrastructure (Core and Cache Modules) and essential

123

functionalities (General API to access any social network and
Functions Modules). The AutoFocus tool is implemented in
Java. The Interestingness calculator is programmed in Python.

C. Automation Criteria

Messages are automatically sent to social net members by
some basic criteria: a) ground frequency (e.g. once in 24 hours)
upon which actual communication is randomized; b) random
latency with a lesser order of magnitude than the ground
frequency (e.g. order of minutes); c) message variation specific
message contents are sent only once to each target.

V. RESULTS AND DISCUSSION

Starting from a small initial candidate set, the AutoFocus
tool scans the net searching for new members related to previous
candidates; the new members are added to the candidate list and
the process continues recursively. Messages are actively sent
and passively received, while calculating Interestingness values.

A. Geographic Distribution Results

The countries distribution for a sample of AutoFocus
contacts (received/sent messages) is seen in Fig. 4. These are: a)
Asia – 8 countries, 8 contacts; b) Europe – 14 countries, 53
contacts; c) North America – Canada, USA, 34 contacts; d)
Other – from Africa, Oceania and South America.

Figure 4. Geographical Distribution of Contacted Candidates – The majority of
contacts are from Europe and North America. “Other” means a few countries in
other continents. “Unknown” means unavailable country information.

B. Interestingness vs. Event Site Visitors

Fig. 5 shows statistics for a larger sample of 959 candidates,
"visitors" (those that visited the Event Site) vs. "non-visitors".

Figure 5. Candidate Statistics for Visitors vs. Non-Visitors.

C. The Importance of Surprise in Interestingness

Preliminary conclusions from the above results are:
a- A significant number of candidates visited the Event

Web site. Their average Interestingness is clearly higher
than the average of those that did not visit the Event site;

b- The average Matched_Only does not distinguish so-well
visitors from non-visitor candidates: Surprise within
Interestingness is significant.

Typical search techniques look for similarities with a pattern.
The Relevance function does exactly this. This is feasible with a
comparison standard. But, when searching something potentially
interesting, and not sure about its existence, or without an
available standard, using Relevance alone is infeasible.

The importance of Interestingness for searching – either in
the Web or in other large data depositories – and for focusing on
candidates for a certain Event resides in the Surprise function.
This work's experiment points out to the feature, that even when
a standard ruler is available, Interestingness – including Surprise
– affords advantages in order to focus on suitable items.

D. Future Work & Main Contribution

Future work includes: time-axis distribution; measuring
larger samples; usage of other Interestingness expressions such
as TfIdf; more precise statistical criteria for analysis;
experiments with other events.

The main contribution of this paper, besides AutoFocus tool
generic development, is to test the independently computed
Interestingness as a criterion to focus on candidates with real
interest in a certain event, viz. Event Web site visitor candidates.

REFERENCES

[1] Z. Chu, S. Gianvecchio, H. Wang and S. Jajodia, “Who is Tweeting on

Twitter: Human, Bot or Cyborg?”, in Proc. ACSAC’10, 26th Annual
Computer Security Applications Conf. pp. 21-30, 2010.

[2] I. Exman, “Interestingness – A Unifying Paradigm – Bipolar Function
Composition”, in Proc. KDIR Int. Conf. on Knowledge Discovery and
Information Retrieval, pp. 196-201, 2009.

[3] I. Exman, N. Alfassi and S. Cohen, “Semantics of Social Network
Frequencies for Turing Test Immunity”, in Proc. SKY’2012 Int.
Workshop on Software Knowledge, pp. 79-84, 2012. DOI:

[4] I. Exman, G. Amar and R. Shaltiel, R., “The Interestingness Tool for
Search in the Web”, in Proc. SKY’2012 Int. Workshop on Software
Knowledge, pp. 54-63, 2012.

[5] E. Ferrara, O. Varol, C. Davis, F. Menczer and A. Flammini, “The rise of
social bots”, Comm. ACM, Vol. 59, pp. 96-104, 2016.

[6] L. Geng and H.J. Hamilton, “Interestingness Measures for Data Mining:
A Survey”, ACM Computing Surveys, Vol. 38, (3), Article 9, 2006.

[7] L. Gentry and R. Calantone, “A comparison of three models to explain
shop-bot use on the web”, Psychology and Marketing, Vol. 19, pp. 945-
956, 2012.

[8] Z. Gilani, R. Farahbakhsh, G. Tyson, L. Wang and J. Crowcroft, “An in-
depth characterization of Bots and Humans on Twitter”, 2017.

[9] W. Klosgen and J.M. Zytkow, (eds.), Handbook of Data Mining and
Knowledge Discovery, Oxford University Press, Oxford, UK, 2002.

[10] P. Lenca, P. Meyer, B. Vaillant and S. Lallich, “On selecting
interestingness measures for association rules: user oriented description
and multiple criteria decision aid”, European J. Operational Res., Vol.
183, pp. 610-626, 2008.

[11] K. McGarry, “A survey of interestingness measures for knowledge
discovery”, Knowledge Engineering Review J., 20 (1), 39-61, 2005.

[12] M. Mowbray, “Automated Twitter Accounts”, Chapter 14 in ref. [21], pp.
183-194, 2014.

[13] A. Tuzhilin, “Usefulness, Novelty, and Integration of Interestingness
Measures”, chapter 19.2.2 in ref. [14], pp. 496-508, 2002.

[14] K. Weller, A. Bruns, J. Burgess, M. Mahrt and C. Puschmann, (eds.),
Twitter and Society, Peter Lang Publishing, New York, NY, USA, 2014.

124

Improvement of User Review Classification Using
Keyword Expansion

Kazuyuki Higashi
Graduate School of Information

Science and Technology
Osaka University

Osaka, Japan
Email: k-higasi@ist.osaka-u.ac.jp

Hiroyuki Nakagawa
Graduate School of Information

Science and Technology
Osaka University

Osaka, Japan
Email: nakagawa@ist.osaka-u.ac.jp

Tatsuhiro Tsuchiya
Graduate School of Information

Science and Technology
Osaka University

Osaka, Japan
Email: t-tutiya@ist.osaka-u.ac.jp

Abstract—Application users can submit reviews for down-
loaded applications. Recently, developers have received more
and more user reviews. However, it is still difficult to extract
beneficial comments from a large amount of reviews. Latent
Dirichlet Allocation (LDA) is a promising way of topic modeling,
which classifies documents according to implicit multiple topics.
However, there is a gap between the documents that the developer
wants to extract and the document extracted by LDA. In this
paper, we propose a method to extract documents of each
category, such as requirements descriptions or bug reports, more
accurately. Our method first decomposes the topics. Then, the
method uses the keyword list which is a set of semantically similar
words collected by word2vec, to integrate the decomposed topics.
We apply our method to the applications user reviews in Apple
Store and demonstrate the validity of it. Our approach can help
application developers to extract beneficial information.

I. Introduction

With popularity of smartphones and tablets, mobile appli-
cation stores, such as Apple Store, Google Play Store, and
Windows Phone Store, have been growing. Over two million
applications on the Apple Store exists, and those applications
have been downloaded over 130 billion times [1].

These application stores allow users to submit reviews
for downloaded applications in form of star ratings and
text reviews. User reviews for downloaded applications are
beneficial resources for developers because these reviews
contain information, such as user requirements, bug reports,
and evaluations of specific features. However, the amount of
reviews is too large to extract beneficial information manually.
Some popular applications receive hundreds of user reviews
every day. From this background, it is needed to analyze user
reviews more efficiently. In order to extract useful information
from documents written in natural language, Latent Dirichlet
Allocation (LDA) for topic modeling can be used. LDA is
one of the most famous topic modeling techniques, which can
classify the set of documents according to implicit multiple
topics. When applying LDA to user reviews, LDA is good
at classifying topics related to functions, such as stability and
design. However, it is difficult to correctly gather requirements
descriptions or bug reports in the same topic because they are

not functions. These reviews are often distributed into multiple
topics. Therefore, we try to extract such crosscutting topics.

In this paper, we propose a method that allows to more accu-
rately extract documents of crosscutting topics that developers
need. Our approach is improving LDA by decomposing the
topics and combining semantically similar topics. We apply
this process to Facebook for iOS user reviews and compare it
with the general LDA. The experimental results indicate that
our approach can extract the documents more accurately than
the general LDA.

This paper is organized as follows: Section II discusses
related work. Section III gives the overview of our approach.
Section IV gives the background of this study by providing the
explanation of Latent Dirichlet Allocation (LDA). Section V
explains our method of user reviews classification and keyword
expansion. Section VI presents the results of experimental ex-
traction from user reviews. Section VII discusses the feasibility
of our approach, and Section VIII concludes the paper.

II. Related work

Several studies analyzed reviews in application stores to
give findings to application developers. Iacob et al. [2] eval-
uated user reviews about change requests and discovered that
23% of user reviews describe feature requests. Chen et al.
[3] devised AR-MINER which is an approach to filtering
and ranking informative reviews, and demonstrated that, on
average, 35% of reviews contain informative content. These
papers motivated our work because a noticeable percentage of
user reviews contain useful information for developers.

Guzman et al. [4] proposed an approach that introduces
rating of each function from words and user’s sentiments by
associating each other. Fu et al. [5] introduced a system that
analyzes application reviews and identifies problems such as
stability issues or cost by topic modeling. Palomba et al. [6]
classified user reviews and grouped user reviews linking source
code components. While these studies use Latent Dirichlet
Allocation (LDA) for topic modeling and extract topics re-
lated to functions of the target application, our work, to the
best of our knowledge, aims to improve LDA to accurately

DOI reference number: 10.18293/SEKE2018-047

125

classify documents according to crosscutting topics, such as
requirements descriptions and bug reports.

There are some studies that combine LDA with word
embedding, which is a set of feature learning techniques in
Natural Language Process. Moody [7] devised lda2vec which
is a model that learns word vectors jointly with Dirichlet-
distributed latent document-level mixtures of topic vectors. Li
et al. [8] devised TopicVec which is a generative model com-
bining LDA and word embedding, with the aim of exploiting
the word collocation patterns both at the level of the local
context and the global document. For sets of short sentences
such as user reviews, feature learning is difficult. Therefore,
these models are not suitable for the purpose of this study.

III. Background

Latent Dirichlet Allocation (LDA) [9][10] is a topic model,
which can classify documents written in natural language.
LDA can be applied to various subjects such as news articles,
feedback comments, and microblogging. In LDA, we assume
that words are generated by topics and that those topics are
mixed within a document. Figure 1 represents the graphical
model of LDA. The variables in the figure correspond to the
following concepts:

α: hyper parameter about topic distribution
θ: topic distribution for document
z: topic for word
β: hyper parameter about word distribution
ϕ: word distribution for topic
w: word
K: the number of topics
M: the number of documents
N: the number of words in m-th document

Hyper parameter α determines the topic distribution for docu-
ment θ, and the topic z is determined according to θ. Another
hyper parameter β determines the word distribution for topic
ϕ. Finally, the word w is determined according to z and ϕ.

In order to construct the topic model that can classify the
user reviews, LDA is used according to the following steps:
• Step 0 (Preparation): Give a set of documents (M and

N are determined) and set the number of topics K.
• Step 1: Set a default topic for each word in all docu-

ments.
• Step 2: Select each word w from the documents.
• Step 3: Change the topic z for the word w according to

the probability P shown in Eq. (1).
• Step 4: Repeat 2 and 3 until N−t and N−mt in Eq. (1) are

converged.
• Step 5: Output ϕ as the word distribution for topic and
θ as the topic distribution for a document.

P(z = t|Z−,W, α, β) ∝ β + N−tw
βV + N−t

(αk + N−mt) (1)

where
Z−: set of topics of all words excluding the word w.
W: set of all words in all documents.

Fig. 1. Graphical model representation of LDA.

N−t : the number of words in all documents whose
topics are t.
N−tw: the number of word w in all documents whose
topic is t.
N−mt: the number of words in selected document m
whose topics are t.
αk: the k-th (topic k’s) parameter α.
V: the number of words in all documents.

Inputting the set of documents, LDA can output ϕ, θ, and z
by constructing the topic model.

IV. Approach

Figure 2 shows the schematic view of our approach using an
example. Each circle represents a topic. The figure shows the
classification of topics with the general LDA and our method.
We try to extract topics related to bug by the general LDA.
However, if we extract one topic, there are documents related
to bug that can not be extracted. If we extract two topics,
we extract the documents unrelated to bug. Therefore, it is
necessary to decompose the topics. By classifying topics finely
as shown and extracting topics in consideration of the meaning
of words, documents related to bug can be extracted more
accurately. In order to obtain the meaning of words, we use
word2vec.

Word2vec [11][12] is an unsupervised learning algorithm
for learning distributed representations of words in a vector
space using a neural network model. Each word in the doc-
ument can be learned from surrounding words. Distributed
representations of words help to improve performance in nat-
ural language processing tasks. For example, spatial distance
between words describes the similarity between the words
semantically and syntactically.

Training learns representations for each word wt (the t-th
word in a corpus of size T) so as to maximize the average log
likelihood Eq.(2).

1
T

T∑
t=1

log p(wt | wt+c
t−c) (2)

c is the size of the training context (window size). wt+c
t−c is the

set of words in the window of size c centered at wt. Continuous
bag-of-words (CBOW) architecture predicts the current word
based on the context. CBOW defines wt+c

t−c as Eq.(3).

126

Fig. 2. Our approach is based on the decomposition of topics and binding decomposed topics using keyword expansion

p(wt | wt+c
t−c) =

exp(e′wt

T ·∑−c≤ j≤c, j,0 ew+ j)∑
w exp(e′w

T ·∑−c≤ j≤c, j,0 ew+ j)
(3)

where ew and e′w are the input and output vector represen-
tations of w.

V. Review Classification Using Keyword Expansion

In this section, we explain our method to classify reviews
more accurately by using topic modeling. First, we collect
the user reviews for a specific application and extract the title
and text body from each review. Then, we preprocess the text
data to remove the noise for topic modeling. Afterwards, we
classify user reviews based on LDA.

We, in particular, classify the reviews more finely than in
the general LDA. We can fragment reviews by setting larger
value to the parameter topic size of LDA. In order to obtain
the meaning of words, we collect semantically similar words
by word2vec. We call this process keyword expansion. Finally,
we select topics for each category we want to extract by using
keyword list which is a set of semantically similar words.

Algorithm 1 explains the details of our method. We input
the topic size, i.e., the number of topics to be generated, and
keywords to the algorithm. The algorithm outputs documents
belonging to the categories that the given keywords specify.

A. Topic Modeling Using LDA

We use Latent Dirichlet Allocation (LDA) to classify user
reviews. LDA is one of the most widely used topic models,
to classify user reviews.

We use MALLET [13], a tool package for the topic mod-
eling based on LDA. This tool also has the word tokenization
and unnecessary word removal functions. We input user re-
views to MALLET, and MALLET outputs following results
by constructing the topic model based on LDA:

Algorithm 1 Review Classification Using Keyword Expansion
input the number of topics larger than the general LDA
topic classification
for n in prepared keyword list do

for top words in topics do
calculate similarity between each keyword and top
word

end for
sum similarity of each word

end for
add the top words of similarity to the keyword list
for topics do

calculate the number of occurrences of the keyword list
O = sum the number of occurrences
if O ≥ threshold then

output the documents in the topic
end if

end for

• topic distribution for each review
• topic for each word
• word distribution for each topic (top words for each topic)
As shown in Figure 2, we intentionally obtain further

segmentalized topics than those of the general LDA. For this
purpose, we use a larger topic size than the size that we use
in the general LDA modeling. As a result, we can obtain a
number of smaller size topics than those of the general LDA
modeling.

B. Keyword Expansion

After the review classification, our method collects topics
that meet with categories, which a developer is interested in.
First, the developer prepares keywords that represent cate-
gories. Our method finds similar words to the given keywords.

127

Fig. 3. Keyword expansion process

To obtain such similar words, our method uses word2vec,
which can generate word vectors. By using word2vec, it is
possible to calculate similarity between words and acquired
similar words. Training data is full text of English Wikipedia
[14] because the source covers various fields. After learning
word vectors, when we input two words, the similarity between
the words can be calculated. We use gensim [15], which is a
package for python to learn word2vec model.

Figure 3 shows our keyword expansion process. When we
find topics that belong to each category, we use keyword list
obtained by keyword expansion. LDA can output topics for
words and the number of occurrences of each word in each
topic. We calculate the number of occurrences in each topic of
the keyword list respectively. Then, the number of occurrences
of each keyword is summed up for each topic, and topics
whose sum is equal to or larger than the threshold are selected.
Finally, we extract documents belonging to the selected topics.

VI. Experiment

We compared our method with the general LDA to evaluate
it. We applied our method to Facebook user reviews, and
extracted documents of three categories: requirements, bug,
resource. Requirements and bug are crosscutting categories,
and resource is one of the general functions. Requirements
type review is a review that requests changes or improvement
of specific features, and desires to add a new function. Bug
type review is a review about application problems, stability
issues, bugs of specific function. Resource type review is a
review about the effect of application use on hardware, such
as battery consumption and memory usage.

A. Dataset

We applied our approach to application user reviews to
evaluate it. Apple Store is a well-known review platform. In

� �
Title: Works, but need to stop turning off Music
Body: While listening to music using the default music

app on iOS 9.0.1 opening Facebook will pause
the music no matter if the music is playing over
the Built in Speaker, Headphones, or over Air-
Play to an Apple TV. Please Fix. Very annoying.� �� �

Title: Causing my iPhone to freeze
Body: App freeze When watching videos or scrolling

down though my feeds. While frozen my iPhone
power button won’t work and once the time out
causes ur screen to go to sleep mode, u won’t
be able to turn it on till about 3-4 mins. Anyone
having this issue?� �� �

Title: Battery killer
Body: This app is destroying my battery. Even with

background refresh off and location off it still
plows through battery with background activity.� �

Fig. 4. User reviews of each category

this experiment, we used 1200 user reviews of Facebook for
iOS in Apple Store from August 5 to September 8, 2015. The
reviews in Apple Store are composed of five parts: title, rating,
author, date, and body text. We extracted titles and body texts
from the reviews. The reviews shown in Figure 4 are reviews
for Facebook. The first one is about requirements that the user
wants to stop turning off music. The second one is about bug
that freezes the device when using the application. The third
one is about resource, claiming that the application drains
battery with background activity. Among 1200 reviews, 270
reviews should be classified into the requirements category,
447 reviews should be classified into the bug category, 40
reviews should be classified into the resource category.

B. Preparation

In order to classify documents more accurately, we pre-
processed the documents. English documents contain very
common words (e.g.,“a”,“for”,“is”, and“that”), which are
noisy to NLP activities. We removed these words as stop words
from the documents. We used stop word list of MALLET, and
modified it. Takahashi et al. [16] demonstrate that it is possible
to make topics related to requirements likely to appear by
removing several words related to the requirements from stop
word list. Figure 5 represents the words that we excluded from
the stop word list.

C. User reviews classification process

First, we used the general LDA as the baseline method. In
this method, we constructed topic models under the conditions
that the number of topic is 20. We prepared keywords which

128

TABLE I
Keyword expansion results : top similar words and similarity for each category

requirements bug resource
want 1.41598253025 drop 0.910286822769 devices 1.07031276398
wish 1.34129323342 fix 0.880712643248 functionality 1.0634093351

hopefully 1.10542239509 glitches 0.826809114425 storage 1.0331266395
try 0.965955479289 overload 0.8121774242 cache 0.965408862186

help 0.944442417494 kill 0.76876851121 user 0.942083889095
sigh 0.920252507561 reset 0.765789424058 load 0.892174335253
feel 0.902822493972 trouble 0.763711373632 function 0.872954556545
will 0.883233011125 stuck 0.722607486066 software 0.836354576718

� �
able, appropriate, appreciate, asking, ask, awfully, be-
cause, better, best, cannot, can, contains, containing,
contain, considering, consider, currently, could, different,
enough, except, help, hopefully, if, like, need, needs,
necessary, new, normally, please, shall, should, toward,
towards, tries, trying, try, unfortunately, useful, want,
wants, will, why, would� �

Fig. 5. The words removed from stop word list.

are related to category. Topics are selected by keywords. The
following keywords are prepared for this experiment.

• requirements : please, need, hope
• bug : bug, crash, freeze
• resource : battery, memory, data

We selected topics if these keywords are in the top words of
each topic.

In our method, we applied LDA under the conditions that
the number of topic is 40 to break down the topic more. Then,
we expanded keywords by using word2vec of gensim.

We constructed word2vec model under the conditions that
learning model is CBOW, the dimensions of the vectors is
400, the size of window is 5, and other conditions are default
of gensim.

We calculated similarity between each keyword mentioned
above and the top 20 words of each topic. The similarities of
the three keywords are summed, and the top three words are
added as new keywords. Table I lists the results of keyword
expansion. After applying word2vec to the user reviews, we
acquired the top similar words and the similarity between
these words and the prepared keywords for each category. We
acquired the following words by keyword expansion.

• requirements : want, wish, hopefully
• bug : drop, fix, glitches
• resource : devices, functionality, storage

Topics for each category are selected based on the number
of appearances in each topic of the keywords in the keyword
list obtained by the keyword expansion. Total number of
appearances in each topic of all keywords is summed up and
top topics are selected. If the total number of appearances was

less than 30, the topic was not selected. The number 30 was
decided based on preliminary experiments.

D. Experimental results

Table II lists the results of applying our method. In order to
evaluate the effectiveness of the proposed method, we check
whether the extracted documents of each category actually
correspond to the content of that category. We investigated the
total number of documents in each category manually. After
applying our approach, we counted the number of documents
of extracted topics and the number of documents belonging to
each category, out of the documents of the extracted topics.
In order to evaluate our method, we used precision, recall,
and F-measure as metrics. Precision is the rate of retrieved
documents that are relevant to the category, and recall is the
rate of the relevant documents that are successfully retrieved.
F-measure is the harmonic average of the precision and recall.

Table II demonstrates that our method improves F-measure
for all categories compared with the general LDA, especially
requirements category.

VII. Discussion

In this section, we discuss our results and describe the
limitations and threats to validity.

Our method improves F-measure for all categories com-
pared with the general LDA, especially requirements category.
User reviews representing requirements have many feature
words, such as, ”please”, ”want”, ”hope”, ”wish”, and ”need”,
and sometimes there is no specific word, such as, “ Add
the new button to save a picture!”. Therefore, it is difficult
to gather these reviews on the same topic. In the general
LDA, unrelated documents are often mixed in the topic
representing the requirements, resulting in a problem that
precision is low. However, in our method, by preparing many
keywords, it is possible to acquire the reviews of requirements
more accurately. Our method also improves the F-measure
of bug category. Since feature words representing bug are
limited, precision and recall are higher than requirements.
Our method improves the F-measure of requirements category
slightly compared with the other two categories. There are few
words representing resource, such as battery and memory, and
documents tend to gather on the same topic.

Based on these results, our method is effective to extract
crosscutting categories, such as requirements and bug. On the

129

TABLE II
Document extraction results : #total number of documents in each category (#D), #the number of extracted topics(#T), #the number of documents of
extracted topics (#Dt), #the number of documents belonging to each category out of documents of extracted topics (#Dtc), Precision = Dtc/Dt ,

Recall = Dtc/D, F − measure = 2 ∗ Precision ∗ Recall/(Precision + Recall)

#D #T #Dt #Dtc Precision Recall F-measure
requirements general LDA 270 4 350 117 0.334 0.433 0.377

our method 6 265 122 0.460 0.452 0.456
bug general LDA 447 4 389 272 0.699 0.609 0.651

our method 8 446 311 0.697 0.696 0.697
resource general LDA 40 1 48 26 0.542 0.650 0.591

our method 1 34 22 0.647 0.550 0.595

other hand, we can not expect much improvement to extract
the category of the general function such as resource.

In keyword expansion by word2vec, it is considered that
similar words could be extracted with high accuracy because
semantically similar words have higher similarity. However,
there are still semantically similar words that we cannot
extract. In order to expand keyword, we could extract more
general similar words by using full text of English Wikipedia
as trainig data of word2vec. By using user reviews itself as
training data of word2vec, there is a possibility that more
similar words in reviews can be extracted.

VIII. Conclusions

In this paper, we proposed a method for extracting docu-
ments with contents required by developers with high accu-
racy. This method is based on topic classification by LDA and
keyword expansion with word2vec. We applied this method to
user reviews of a well-known application. Our experimental
results demonstrated the validity of our method.

The results presented in this paper indicate some possible
directions of further work and improvements. One of our
primary on-going studies is further improvement of precision
and recall rate of our extraction. We would like to establish a
method for determining the appropriate number of topics. We
also plan to define guidelines for keyword expansion. We will
also conduct case studies using a large amount of user reviews
to discover further findings for the extraction. We believe
that automatic and sophisticated keyword expansion and topic
classification help us to analyze user reviews efficiently.

References
[1] “Techcrunch,” https://techcrunch.com/2016/06/13/apples-app-store-hits-

2m-apps-130b-downloads-50b-paid-to-developers/.
[2] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps

feature requests from online reviews,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, ser. MSR
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 41–44. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487094

[4] E. Guzman and W. Maalej, “How do users like this feature?
A fine grained sentiment analysis of app reviews,” in IEEE
22nd International Requirements Engineering Conference, RE 2014,
Karlskrona, Sweden, August 25-29, 2014, 2014, pp. 153–162. [Online].
Available: https://doi.org/10.1109/RE.2014.6912257

[3] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “Ar-
miner: Mining informative reviews for developers from mobile app
marketplace,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. New York, NY, USA: ACM,
2014, pp. 767–778. [Online]. Available: http://doi.acm.org/10.1145/
2568225.2568263

[5] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why
people hate your app: Making sense of user feedback in a mobile
app store,” in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’13.
New York, NY, USA: ACM, 2013, pp. 1276–1284. [Online]. Available:
http://doi.acm.org/10.1145/2487575.2488202

[6] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests
for mobile apps based on user reviews,” in Proceedings of the 39th
International Conference on Software Engineering, ser. ICSE ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 106–117. [Online].
Available: https://doi.org/10.1109/ICSE.2017.18

[7] C. E. Moody, “Mixing dirichlet topic models and word embeddings to
make lda2vec,” coRR, 2016.

[8] S. Li, T.-S. Chua, J. Zhu, and C. Miao, “Generative topic
embedding: a continuous representation of documents,” in Proceedings
of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 2016, pp. 666–675. [Online]. Available: http://www.aclweb.
org/anthology/P16-1063

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=944919.944937

[10] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and
M. Welling, “Fast collapsed gibbs sampling for latent dirichlet
allocation,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’08.
New York, NY, USA: ACM, 2008, pp. 569–577. [Online]. Available:
http://doi.acm.org/10.1145/1401890.1401960

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 3111–3119.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2999792.2999959

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient es-
timation of word representations in vector space,” coRR, 2013.
http://arxiv.org/abs/1301.3781.

[13] “Mallet homepage,” http://mallet.cs.umass.edu/.

[14] “Training word2vec model on english wikipedia by gensim,”
http://textminingonline.com/training-word2vec-model-on-english-
wikipedia-by-gensim.

[15] “gensim: models.word2vec-deep learning with word2vec,”
https://radimrehurek.com/gensim/models/word2vec.html.

[16] H. Takahashi, H. Nakagawa, and T. Tsuchiya, “Towards automatic
requirements elicitation from feedback comments: Extracting
requirements topics using LDA,” in The 27th International
Conference on Software Engineering and Knowledge Engineering,
SEKE 2015, Wyndham Pittsburgh University Center, Pittsburgh, PA,
USA, July 6-8, 2015, 2015, pp. 489–494. [Online]. Available:
https://doi.org/10.18293/SEKE2015-103

130

A New Scheme for Citation Classification based on
Convolutional Neural Networks

Khadidja Bakhti1, Zhendong Niu1,2, Ally S. Nyamawe1
1School of Computer Science and Technology

Beijing Institute of Technology
Beijing, China

2School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA
(bakhti.khadidja, zniu)@bit.edu.cn, nyamawe@udom.ac.tz

Abstract—Automated classification of citation function in scien-
tific text is a new emerging research topic inspired by traditional
citation analysis in applied linguistic and scientometric fields. The
aim is to classify citations in scholarly publication in order to
identify author’s purpose or motivation for quoting or citing a
particular paper. Several citation schemes have been proposed
to classify the citations into different functions. However, it is
extremely challenging to find standard scheme to classify cita-
tions, and some of the proposed schemes have similar functions.
Moreover, most of previous studies mainly used classical machine
learning methods such as support vector machine and neural
networks with a number of manually created features. These
features are incomplete and suffer from time-consuming and
error prone weakness. To address these problems, we present
a new citation scheme with less functions and propose a deep
learning model for classification. The citation sentences and
author’s information were fed to convolutional neural networks
to build citation and author representations. A corpus was built
using the proposed scheme and a number of experiments were
carried out to assess the model. Experimental results have shown
that the proposed approach outperforms the existing methods in
term of accuracy, precision and recall.

Index Terms—Citation Annotation, Citation Scheme, Deep
Neural Networks, Citation Function Classification, Convolutional
Neural Networks.

I. INTRODUCTION

In the previous published research works the citation is cat-
egorized as a tool to calculate impact factor with an objective
to know how the citation is used [1], [2]. Citation function
classification is defined as the reason or motivation that why
the authors cite others works in their literature, and the field
of research concerned with classifying citations into classes
based on the purpose behind the citations. Classification of
citations could provide precise representation of the influence
or the impact of a publication. For example, by considering
only citations that are important to the citing paper and
discarding citations that are perfunctory. The first step in
citation function classification includes selecting a number of
functions that citations can be categorized into, which is called
a citation function classification scheme. When a scheme has
been selected, a classification method is used to carry out the
classification of citations.

Several citation function classification schemes have been
created with a different number of functions and levels
of granularity [3]. For example, [4] established a citation

scheme containing four dimensions with two functions in
each dimension. Each dimension groups two related classes
together; a citation can belong to one class only from one
or more dimensions. Different names are used in the lit-
erature to represent specific purposes for citations such as
“category”,“class”,“type”,“reason” and “facet”. We refer to the
different names throughout the paper by the word “function”.

Manual citation function classification has been proposed,
but subsequently automated classification became inevitable
due to the large number of publications produced on a daily
basis [3]. Automated citation function classification has been
carried in the literature into two ways; the first way is the use
of rule based methods where domain experts developed rules
that were coded into computer programs to perform citation
function classification [5]. The rules were created based on a
set of human labeled citations where each citation was labeled
with a function or label revealing the related purpose. The
second way involves applying supervised machine learning
techniques [6] where a set of citations were labeled by human
annotators to build the training phase.

Previous studies on automated citation function classifi-
cation commonly used rule-based and supervised machine
learning methods [5], [7]. However, the rule-based techniques
do not generalize well for citations that have never been
seen by the domain experts. Therefore, multiple schemes
have been proposed with different granularity varies from 35
to 3 functions [8]. However, there is no standard scheme
established for citation function. Therefore, there is no way
that a scheme can allow authors to frame their citations and
how this framing can influence the use by future citers. [7]
proposed a citation scheme for classifying citation function
into six functions namely based on/supply, useful, weakness,
contrast, acknowledge, hedges. [9] proposed a new scheme to
annotate the citations which has seven functions: background,
motivation, uses, extension, continuation, comparison, and
future. Regarding these proposed schemes, there is no defined
standard for citation classification schemes. However, the ma-
jority of functions like based on/useful and uses/extension have
the same purpose; and similarities exist between functions
could be difficult for an annotator to differentiate them for the
future use. Moreover the usability of the functions proposed
is limited and cannot be adopted for all the annotators from

DOI reference number: 10.18293/SEKE2018-141 131

different domains. Therefore, in this context we unify the
functional common roles in several classifications and grouped
together all similar functions in some categories which reflect
the particular reason or motivation a citation is serving in
the discourse. By focusing on the dimension of organic or
perfunctory citations following [4] scheme, we divide the
citations into five general functions. For this initial study, we
have limited to use only the top level functions. We propose
these functions mainly due to the following reasons: first
of all, these proposed functions cover the most general and
mutually exclusive citation functions for different domains;
one could facilitate the annotation because it will be easy
for annotators to have these functions separated and easily
to use them later on. Secondly, it is easy to depict a typical
scientific publication based on citations from these functions.
Thus, our proposed strategy is valuable for the construction
of further detailed citation function classification models with
more refined functions. The proposed functions are: Useful,
Correct/Weakness, Contrast, Mathematical and Neutral. The
proposed approach can solve the limitations of supervised
learning approaches such as the incomparable citation schemes
used to label the training sets provided to the supervised
algorithms and the high cost of annotating the training sets
by humans.

Regarding the success of neural network methods in docu-
ment classification models, [10] proposed a model for design-
ing features from words representation in neural network. The
citation function classification has recently become an active
field to design new features for citation function classification
based on neural network methods by identifying author’s
reasons for citing the literature. A deep learning approach
based on convolutional neural network (CNN) algorithm with
a specific layer for author information is proposed in our
case to learn author’s information (including author-id and
name) for embedding word vector in the input layer. We
will demonstrate that the proposed approach using CNN is
able to solve the feature selection and representation issues
automatically and achieve better results compared to other
existing methods in citation function classification task. The
model is tested on our corpus based on the proposed scheme
and the output vector is classified into the proposed five
functions.

The paper is structured as follows: section II responds to the
state of the art on citation function classification. In section
III, the proposed methodology is presented. In section IV and
V, experiments and results are discussed. Finally, a conclusion
and future work are drown in section VI.

II. STATE OF THE ART ON CITATION FUNCTION
CLASSIFICATION

Citation function classification has been defined as the
process of identifying the functions or purpose of quoting
from other works [11]. In other words, it means the pro-
cess of detecting the relationship between citing paper and
cited paper. Many authors formulate this relationship as a
citation schemes and reported several schemes to identify the

influence of cited papers on citing papers. For example, the
citation scheme proposed in [12], where fifteen reasons were
suggested to justify the quoting from previous work. Another
citation function classification contains four dimensions which
include conceptual or operational use, evolutionary, organic
or perfunctory and confirmative or negation [4]. [13] reported
seven argumentative zones as another classification scheme,
namely: background, other, own, aim, textual, contrast, and
basis according to the citation role in the author’s argument.
However, this scheme has some limitations, due to the large
number of functions used which is time-consuming for citation
annotation and cannot process a large data set of documents.

The automatic classification of citation functions can handle
the schemes limitations. [14] used rule-based approach with
cue words to reduce the citation functions into three categories:
reference type B, C, and O. Another classification of the
citation was proposed by [3] where they chose 116 articles
in a random way from the Computation and Language E-
Print Archive and classified twelve citation functions into four
categories. In [8], authors used a semi-supervised learning
method and the Naive Bayes (NB) as the main technique with
features such as negation and cue words.

In [15], based on the implementation of the hybrid method
algorithm, authors used discourse as their tree model and
analyzed part of speech to find out citation relations regarding
contrast and corroboration. [16] proposed an unsupervised
bootstrapping algorithm, which led to the categorization of
two concepts: application and technique. [8] used the Support
Vector Machine (SVM) algorithm with linear kernel method
and established a faceted classification of citation links in net-
works that are functional, perfunctory, and ambiguous cases.
In [11], authors classified the purpose and polarity of a citation
using the SVM algorithm, along with the trained classification
model and linear kernel to the ACL Anthology.

Recently, citation function scheme has been created using
clustering techniques found to be useful to address the annota-
tion difficulty in previous schemes. [17] proposed an approach
based on contains semantic and syntactic-based models. Their
models employed multiple similarity methods to calculate the
similarity between citations sentences, each cluster of similar
sentences considered as a citation function.

Moreover, authors in [18] explored these issues by selecting
the relevant verb in a citation sentence. They labeled each
citation sentence by using semantic role labeling and then
proposed six rules to extract and select the best verb that
represents the citation sentence. Their rules were evaluated
using four test sets and their results are reasonable. To this end,
we propose here a different concept based on the deep neural
networks model to address citation function classification task.

III. METHOD

In this section, we first introduce our methodology for
dataset creation and then describe the CNN based model for
citation function classification. Each step will be presented
below.

132

A. Dataset selection

The citation corpus was built from ACL Anthology net-
work 1(ANN). ACL Anthology is an academic repository that
contains full-text articles with associated meta-data. Hundred
papers were chosen as a corpus size for citation sentences
extraction. Our choice of these papers follows a number of
previous works [6], [7]. We have used parsing rules to extract
citation sentences followed by regular expressions for data
cleaning, and non-citation sentences were excluded. After this
step, 8700 sentences were obtained and passed as inputs for
citation annotation process. As expected from previous works
[7], [9], we found some citation functions were infrequent.
Therefore, we attempted to build frequent functions mathe-
matical, correct, follow and neutral, by basing on keywords
used towards extracting citing citations. For example, the
word statistical for the mathematical function. In the citation
annotation process, three PhD students worked separately as
annotators to manually annotate the citation sentences using
the proposed scheme. The annotators not only focused on
labeling word in the citation sentence, but also read the entire
sentence and the whole context where the sentence is located.
Then made a decision on the function of the citation and
determine function of each citation by choosing from the five
functions described in Table I. To test annotation reliability, we
measured inter-annotator agreement between three annotators,
we used κ coefficient as proposed in [19]. We used a small
section of the corpus about 800 citations to analyze them
according to their function. Inter-annotator agreement was
κ = 0.76 with parameter n = 5 and N = 800. The results is
quite high given the fact that Kappa value of 0.76 is considered
as stable [3]. Table II illustrates the distribution of the dataset.

B. Model architecture

Fig.1 shows our proposed model architecture based on CNN
method. In this model, we have a citation sentence consisting
of n words as {w1, w2 , w3 , w4 , wi ,... wn } where wi means
the ith word in the sentence ∈ Rd and the d is dimensional
word vector corresponding to the word. The output of word

Softmax

layer

Convolutional

layer

A

matrix

CF

matrix ACF

input

matrix

Features

map
Max poling

layer

Fig. 1. Architecture of citation function classification based on CNN model.

1http://clair.eecs.umich.edu/aan/index.php

TABLE I
THE PROPOSED CITATION FUNCTIONS FOR CITATION CLASSIFICATION.

Functions Description
useful The citation sentence is classified as use if the cited

work utilized or followed data, method, tools from
the citing work.

contrast Is reserved for correct of previous research, address-
ing by the authors such as error, weakness from cited
paper.

mathematical Describe the comparison between the cited own
work and other works, the result can be positive or
negative.

correct The cited work base on tools, results, statistical
tables, algorithms from citing paper.

neutral Expression of author using own language marked as
no useful interpolation or the description of specific
method, concept.

TABLE II
THE DISTRIBUTION OF THE DATASET.

Functions The number of citation sentences Ratio
useful 2195 24.81%

contrast 1800 20.68%
mathematical 1846 21.21%

correct 1700 19.54%
neutral 1195 13.73%

Total Sentences 8700 100%

vectors gets a real-valued vector known as word embedding.
The word embedding is a powerful technique to capture the
semantic and syntactic of words and also it could be useful
to extract features from the sentence. Therefore, following
[10], [20] strategy of word vectors representation, we used
word2vec to build our CF matrix as depicted in Fig.1. In
addition, we proposed to exploit author’s information such as
personal demographic data (id-author, name) to build a matrix
A. The model takes as inputs the citation sentences and the
author that cites the paper with relative information. Then we
link all the authors with their citation sentences, which have
the same function from our functions.

In our model, Author Citation Function (ACF) is a matrix
that combines the representation of citation sentences and the
author’s information as presented in equation (1).

ACF = A · CF (1)

Finally, the ACF is passed to the CNN method to classify
citation into our proposed functions.

In the CNN, the convolutional process consists of applying
filters W ∈ Rh∗d in a window of h words in the sentence
of length n {w1:h, w2:h+1,... wn−h+1:n}. We have chosen
multiple convolutional filters with varying filters window size
from 3 to 5, and applying these filters using non-linear
activation function (In our model we used wide Rectified
Linear Unit (Relu) as the activation function, [21]) for each
window of words within the citation sentence to produce a new
feature pi of size n − h + 1. A feature pi is generated from
a window of words wi:i+h−1. Let consider the following ex-

133

ample illustrating the non-linear activation function operation
given as:

pi = f(W · wi:i+h−1 + b) (2)

where b ∈ R is the bias, f is the non-linear activation function.
The max-pooling operation, [22] is then applied. We used
max-pooling because it is widely used, and the idea is to take
the maximum value pmax from the feature map as the most
important feature among one map P .

pmax = max{P} = max{p1,, pn−h+1} (3)

C. Function classification

To perform citation function classification, our classifier
used citations with functions. The performance of the classifier
can be affected by over-fitting problem, which could come
from the weakness of the neural net. We have employed the
dropout regularization to prevent over-fitting problem of the
hidden units in the classifier. In the classification stage, we
feed the final feature map to the softmax layer. We chose
the softmax because it is commonly used for classification
problem, which gives a probability of the sample belongs
to each label (class). The outputs of softmax layer can be
interpreted as conditional probabilities. Equation (4) shows the
softmax function formula.

Softmaxi =
exi∑L
j=1 e

xj

(4)

where L is number of labels (we have five functions as
labelling (classes)) and xj is the weight vector of the Lthlabel.

IV. EXPERIMENTS

Experiments were carried out using the dataset described
in section III.A in order to test our approach by applying it
into classification of citation function. The results from the
experiments were then compared.

A. Experimental Setting

First, let address some hyper-parameters used. For each filter
size as a window, we chose 3, 4, 5 respectively. We enable the
dropout in training and disable it in evaluating the model and
set 0.5 as a dropout rate. We used 10-fold cross validation
for training and evaluating our model. We also apply the
loss function classifier to correct and minimize errors that our
network makes [23]. For evaluating the model, we calculate
the accuracy using the standard accuracy formula described in
[24].

B. Baseline methods

We compared the proposed ACFNN model with the follow-
ing state of the art methods for citation function classification:

• N-gram+SVM: this method uses n-gram and train classi-
fier with SVM [7].

• Word2vec+SVM: this method considers each function as
a separate feature and train classifier with SVM [9].

• Word2vec +Naive Bayes: this method uses vector and
train classifier with Naive Bayes [9].

TABLE III
ILLUSTRATION OF ACCURACY MEASURE.

The method Acc(%)
N-gram+SVM (Hernandez) 56.8
Word2vec+SVM (Jurgens) 57.1
Word2vec+Naive bayes (Jurgens) 55.4
Cue phrases+IBK algorithm (Toufel) 52.2
CNN (no A) 58.2
ACFNN 62.7

• Cue phrases or meta-discourse: this method uses cue
phrases and train classifier with IBK algorithm [3].

• CNN (no A): in this method, we remove matrix based
representations (A) from ACF and train the model with
CNN.

C. Results and discussion

In this sub-section, we report the details of the experimental
results as presented in the following.

1) Accuracy measure: The results of the experiments are
presented in Table III. As output, the final vector is a fine
grained classification into five functions: useful, contrast,
mathematical, correct and neutral.

Comparing the results of the proposed model tested along
with the baseline methods, the results indicate the performance
calculated in accuracy (Acc) by incorporating different feature
sets with the batch size of 25, obtaining 62.7% as a best
performance achieved using the proposed (ACFNN) model.
Comparing (ACFNN) with CNN (no A), we can clearly
observe that our model achieves the highest accuracy (62.7%),
followed by the CNN (no A), which has an accuracy of
58.2%. The results show that the proposed model improves
the classification accuracy by 4.5%, and this illustrates that
author’s information can improve the impact of the importance
of their integration in the citation function process to handle
the problem of citation function classification task.

The baseline’s approaches n-gram features (SVM), word
vector features (SVM, Naive Bayes), and cue phrases (IBK
algorithm) suggest that word2vec features with deep neural
networks models (word2vec+CNN) dual an improvement to
oriented methods for a better classifier for citation function.
Furthermore, the capacity in exploiting information is proven
by the CNN workflow by scanning the combination of words
sequentially and retaining the sequential information to attract
a pool operation, which can bridge the information space at
both ends of the citation sentence. Thus, it is evident that the
CNN can handle the problem of manual features extraction.

2) Performance evaluation: Experiments were conducted
to evaluate the performance of the proposed ACFNN. In
comparing the performance of the proposed ACFNN approach
against the baseline methods, we used precision, recall and
f-measure metrics. In using precision and recall evaluation
metrics, labels are mapped into a binary scale (relevant versus
not relevant). We also considered learning elements as “not rel-
evant/not classified” and “relevant/classified”. The description
of precision and recall metrics is shown in Table IV. Precision

134

TABLE IV
PRECISION AND RECALL METRICS.

Classified Not Classified
Used True Positive (tp) False Negative (fn)

Not Used False Positive (fp) True Negative (tn)

is the ratio of relevant instances selected by the classifier to the
number of instances selected. A learning element is considered
non-relevant if the classifier ignores it.

Precision =
Correctly classified instances

Total classified
=

tp

tp + fp
(5)

Recall is the ratio of relevant instances selected to the number
of relevant instances.

Recall =
Correctly classified instances

Relevant instances
=

tp

tp + fn
(6)

where relevant instances is the number of learning elements
classified as relevant by the classifier.

F-measure is the harmonic mean of precision and recall, F-
measure uses both precision and recall to correctly assess the
efficacy of the classification.

F − measure = 2.
precision.recall

precision + recall
(7)

The results of citation functions classification in 10-fold cross-
validation are given in Table V. The results are conducted in
three overall measures: Precision, Recall and F-measure of five
functions. Precision for all the functions is above 0.58. To
test the contribution and success of the proposed functions,
we used Macro-F which is the mean average of F-measure
of all five functions. In the case of Macro-F, regarding the
reported result; we can see that the classification yield higher
values in the functions such as useful and mathematical than
other functions. The distribution of the citations functions as
shown in Table II are: 24.81% useful, 20.68% contrast, 21.21%
mathematical, 19.54% correct and 13.73% neutral. We found
that total number of useful and mathematical citations is
higher than the other citations, this empirically confirm that the
authors are likely to use, follow or extend (useful) works from
the cited works (p=0.59) as well as they are more focusing
on mathematical concept (mathematical) such as methods,
statistical tables, results from the citing work (p=0.59). In the
contrast function, as we know that the authors start the state
of the art with an objective (compare) the previous works.
In addition to this, in the correct, the authors address the
errors and weakness of previous works and suggest solutions
to correct them, as shown in the Table V (p=0.58). Finally, the

TABLE V
RESULTS OF CITATION FUNCTION CLASSIFICATION.

Precision Recall F-measure
useful 0.62 0.59 0.60

contrast 0.58 0.57 0.57
mathematical 0.61 0.58 0.59

correct 0.60 0.57 0.58
neutral 0.58 0.56 0.57

Macro-F = 0.58

citations which do not belong to any of the above citations
are tag as not useful description (neutral). The analysis of
the functions indicates that there is higher negative correla-
tion between all functions, this leads to a conclusion that
these proposed functions outperform the state-of-art citation
schemes described in section I (no similarities between them).
Thus, it is evident that the proposed five functions can cover
the most general functions and increase the performance of
the classification task. Fig.2 illustrates the performance of the
proposed model in terms of precision into batch size of 25 in
comparison with the baseline methods. The experiment was
repeated in different number of iterations.

Comparing results from Fig.2, it is observed that the pro-
posed model provides best performance in terms of precision
than the other methods with batch size of 25 regardless of the
number of iterations.

It is evident that as shown in Fig.3 the proposed model
outperforms the baseline methods in terms of recall. The
experiment was repeated for the different number of iterations.

V. DISCUSSION

The results conducted using our corpus have shown the
effectiveness of the proposed model. We can see that our
model (ACFNN) significantly outperforms existing methods
such as SVM, Naive Bayes and traditional CNN in terms
of accuracy, precision and recall. The reason is that since
the CNN can absolutely capture the semantic content of
citations and select number of features needed automatically.
In addition, using the concept of word embedding, we can
acquire richer features automatically. Our results suggest that
word2vec+CNN concentrate on weakness of prior works and
had the largest impact on the performance. With the help of
the authors information in concatenation with the citations
and feed them to CNN, making our model more efficient and
outperforms the baseline CNN by 4.5% in accuracy. As we
stated the limitations of previous works in section II, there is
no standard scheme up to date and it is difficult to distinguish
between the functions with close similarities. Regarding the
high frequency of usage frequent functions shown in Table II,
we belief that our proposed scheme can handle the problem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2000 4000 6000 8000 10000 12000 14000 16000 18000

P
R

E
C

IS
IO

N

ITERATIONS

N-gram+SVM

Word2vec+SVM

Cue phrases +IBK

CNN (no A)

ACFNN

Fig. 2. The performance of the methods in term of precision.

135

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2000 4000 6000 8000 10000 12000 14000 16000 18000

R
E

C
A

L
L

ITERATIONS

N-gram+SVM

Word2vec+SVM

Cue phrases +IBK

CNN (no A)

ACFNN

Fig. 3. The performance of the methods in term of recall.

of annotation for citation function. In addition, these functions
can cover the most general and mutually exclusive citation
functions for different domains. Moreover, these functions
remain an important line for the future use since will be easy
for the annotators to separate them later.

VI. CONCLUSION

In this paper, we have presented an approach that uses
the CNN based model combined with author’s information
to classify citation sentences into five functions. Experimental
results show that the proposed method is able to identify
authors’ reasons semantically. Moreover, combining citations
with authors’ information achieves best performance in our
corpus. Therefore, our proposed scheme is able to handle
the weakness of the citations annotation and can be used
in different domains. The proposed model reveals that CNN
can outperform the shallow classification for citation function
classification task. Valuable information can be extracted using
the data citation function, which will have a real interest to
help in the search of high-quality papers. Our future work is
to explore other deep learning approaches such as Long Short-
Term Memory Networks (LSTM) which is a type of recurrent
neural network (RNN).

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China (No. 61370137), the Ministry of
Education-China Mobile Research Foundation Project (No.
2016/2-7) and the 111 Project of Beijing Institute of Tech-
nology.

REFERENCES

[1] Jingqiang Chen and Hai Zhuge. Summarization of scientific documents
by detecting common facts in citations. Future Generation Comp. Syst.,
32:246–252, 2014. 10.1016/j.future.2013.07.018.

[2] Abdallah Yousif, Zhendong Niu, John K Tarus, and Arshad Ahmad. A
survey on sentiment analysis of scientific citations. Artificial Intelligence
Review, pages 1–34, 2017.

[3] Simone Teufel, Advaith Siddharthan, and Dan Tidhar. Automatic classi-
fication of citation function. In EMNLP 2007, Proceedings of the 2006
Conference on Empirical Methods in Natural Language Processing, 22-
23 July 2006, Australia, pages 103–110

[4] Michael J Moravcsik and Poovanalingam Murugesan. Some results on
the function and quality of citations. volume 5, pages 86–92. CA,1975.

[5] Mohammad Abdullatif. Making the h-index more relevant: A step
towards standard classes for citation classification. In Workshops
Proceedings of the 29th IEEE International Conference on Data Engi-
neering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 330–
333, 2013. 10.1109/ICDEW.2013.6547476.

[6] Myriam Hernández Alvarez and José M. Gómez. Citation impact
categorization: For scientific literature. In 18th IEEE International Con-
ference on Computational Science and Engineering, CSE 2015,Portugal,
October 21-23, 2015, pages 307–313.

[7] Myriam Hernández Álvarez, José M Gómez, Patricio Martı́nez-Barco,
et al. Annotated corpus for citation context analysis. 2016.

[8] Han Xu, Eric Martin, and Ashesh Mahidadia. Using heterogeneous
features for scientific citation classification. In Proceedings of the 13th
conference of the Pacific Association for Computational Linguistics,
2013.

[9] David Jurgens, Srijan Kumar, Raine Hoover, Dan McFarland, and Dan
Jurafsky. Citation classification for behavioral analysis of a scientific
field. 2016.

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing systems,
pages 3111–3119, 2013.

[11] Amjad Abu-Jbara, Jefferson Ezra, and Dragomir R. Radev. Purpose
and polarity of citation: Towards nlp-based bibliometrics. In Human
Language Technologies: Conference of the North American Chapter of
the Association of Computational Linguistics, Proceedings, June 9-14,
2013,USA, pages 596–606, 2013.

[12] Eugene Garfield. Citation indexes for science. a new dimension in
documentation through association of ideas. International journal of
epidemiology, (5):1123–1127, 2006.

[13] Simone Teufel, Jean Carletta, and Marc Moens. An annotation scheme
for discourse-level argumentation in research articles. In Proceedings of
the ninth conference on European chapter of the Association for Com-
putational Linguistics, pages 110–117. Association for Computational
Linguistics, 1999.

[14] Hidetsugu Nanba and Manabu Okumura. Towards multi-paper summa-
rization using reference information. In IJCAI, pages 926–931, 1999.

[15] Adam Meyers. Contrasting and corroborating citations in journal
articles. In RANLP, pages 460–466, 2013.

[16] Chen-Tse Tsai, Gourab Kundu, and Dan Roth. Concept-based analysis
of scientific literature. In Proceedings of the 22nd ACM international
conference on Conference on information & knowledge management,
pages 1733–1738. ACM, 2013.

[17] Mohammad Abdullatif, Yun Sing Koh, and Gillian Dobbie. Unsuper-
vised semantic and syntactic based classification of scientific citations.
In Big Data Analytics and Knowledge Discovery - 17th International
Conference, DaWaK 2015, Valencia, Spain, September 1-4, 2015, Pro-
ceedings, pages 28–39, 2015.

[18] Mohammad Abdullatif, Yun Sing Koh, Gillian Dobbie, and Shafiq Alam.
Verb selection using semantic role labeling for citation classification. In
Proceedings of the 2013 workshop on Computational scientometrics:
theory & applications, pages 25–30. ACM, 2013.

[19] Jean Carletta. Assessing agreement on classification tasks: the kappa
statistic. Computational linguistics, 22:249–254, 1996.

[20] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing
Qin. Learning sentiment-specific word embedding for twitter sentiment
classification. In ACL (1), pages 1555–1565, 2014.

[21] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalua-
tion of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

[22] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)
from scratch. Journal of Machine Learning Research, 2493–2537, 2011.

[23] Ahmad Parsian and Nader Nematollahi. Estimation of scale parameter
under entropy loss function. Journal of Statistical Planning and
Inference, 52:77–91, 1996.

[24] Dan Jurafsky. Speech & language processing. Pearson Education India,
2000.

136

Learning API Suggestion via Single LSTM
Network with Deterministic Negative Sampling

Jinpei Yan, Yong Qi, Qifan Rao, Hui He
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China

Emails: yjp2013@stu.xjtu.edu.cn, qiy@xjtu.edu.cn, asd5510@stu.xjtu.edu.cn, huihe@xjtu.edu.cn

Abstract—Modern programming relies on a large number of
fundamental APIs, but programmers often take great effort
to remember names and the usage of APIs when coding, and
repeatedly search the related API documents or Q&A websites.
To improve the programming efficiency, we present a Java API
suggestion approach called APIHelper which learns API sequence
pattern via the Long Short-Term Memory (LSTM) network, then
provides API suggestion based on the program context. Previous
related works use statistical methods based on Hidden Markov
Model (HMM), which require establishing one specific model for
each class. We propose Determininstic Negative Sampling (DNS)
to make API suggestion for a large number of Java classes by
one single end-to-end LSTM. To verify this approach, we make
API suggestion for 50,000 Java classes and evaluate it with top-K
accuracy. Results show that APIHelper outperforms other prior
works both on accuracy and computation efficiency.

Keywords—API suggestion; Long short-term memory; Nega-
tive sampling

I. INTRODUCTION

Modern programming languages continue to evolve and
introduce more and more high level APIs/methods/functions,
while increasing third-party libraries are available for pro-
grammers to use. The constantly optimized and rich APIs
allow programmers to achieve demo codes easily for different
kinds of requirements, but give programmers a great challenge
to memorize all these APIs. Programmers often use multi-
ple programming languages, and each programming language
involves a large number of grammar rules and APIs. Some
programming languages, like Java, have a large number of very
complex and long API names, which may be very similar. A
simple example, Java offers a lot of classes for I/O operations,
such as FileInputStream(), ByteArrayInputStream(), CharAr-
rayReader(), InputStream(), StringReader(), StringWriter(),
PrintStream(), PrintWriter(), BufferedInputStream(), Buffered-
OutputStream(), BufferedReader(), BufferedWriter().

For this problem, some current IDEs are integrated with
API tip tools, such as the one in Eclipse (shown in Fig.1).
But these kinds of tools have a common problem that only
shows all API methods in the alphabetical order containing
the current Java class. Since a Java class often has a lot of
methods, programmers still need to look over the list to find
the right one in a bunch of similar method names.

To this end, we put forward a new approach of API
suggestion called APIHelper to complete APIs pattern learning
for full Java classes through the Long Short-Term Memory
(LSTM) network. Our approach has two advantages over

DOI reference number: 10.18293/SEKE2018-193

Fig. 1. Eclipse IDE tools integrated with API tips.

the statistics-based approach. First, LSTM can capture more
long-term contextual patterns or relationships, resulting in a
higher prediction accuracy. Second, the mainstream statistical
approaches [1], [2] are based on Hidden Markov Model
(HMM), which require building separate HMMs for each
single Java class. Since the existing Java classes are huge
and keep increasing, the scalability of HMM-based method
is seriously challenged. Instead, we propose a method called
Deterministic Negative Sampling (DNS) to model all Java
classes and APIs in one single LSTM network, which is more
flexible and scalable.

Our main contributions are summarized as follows:
• We propose a new API usage pattern learning method

based on LSTM, which learns context features from Java
API sequences to make API suggestion.

• We build an API suggestion approach called APIHelper.
It makes use of one single LSTM network combining
with a proposed DNS method for all Java classes&APIs
learning and predicting.

• We collect 18,000 Java project codes from Github for the
API suggestion experiment. Results show that APIHelper
has a better classification accuracy and computational
efficiency compared with HMM and N-gram.

II. RELATED WORK

API Mining/Usage Learning. These prior works are closely
associated with API suggestion. Xie et al. [3] first proposed
the method to mine API usage patterns from source code
called MAPO. UP-Miner [4] was proposed to improve the
efficiency on API sequences mining compared to MAPO. They
used a probabilistic graph to describe API sequences and
introduce a set of N-gram features of API call sequences for
clustering distance metric calculation. Recently, Fowkes et al.
[5] proposed a tool named PAM which is a near parameter-free
probabilistic algorithm to output a list of API call patterns.

137

PAM significantly outperforms both MAPO and UPMiner.
Similar work was proposed by Nguyen et al. [6] which also
used the graph to represent API sequences. They built a tool
called GROUM, a vector-based approximation approach, to
dig out the object usage pattern by finding the isomorphic
subgraph for anomaly detection.

Other works try to use NLP techniques to represent and
mine API usage patterns. For example, Nguyen et al. [7]
proposed API2VEC which represents APIs with a dense
vector. They came up with a series of rules to extract API
sequences from Java source codes and used API2VEC to do
the Java to C# code translation work for evaluation. Gu et
al. [8] used natural language to represent APIs and extracted
them from Javadoc annotations for code blocks to collect
<API seq,annotation> pairs as the dataset and mine the
correspondence.

API Suggestion/Recommendation. Currently, these are
some strategies for API suggestion/recommendation. The first
strategy is focused on sequential pattern mining. Nguyen
et al. [1] designed an API suggestion tool specifically for
Android mobile development. They used GROUM to extract
the API call graph from the Android source code, then simply
traversed the graph to generate the API sequences and process
it using a special HMM model for each Java class. On this
basis, further improvements were made by Pham et al. [2],
who analyzed directly the Android applications to find the
usage for APIs. They first decompiled the Android application
to get bytecodes, then transferred them into Control Flow
Graph (CFG), finally built HMMs to mine API usage patterns.
Raychev et al. [9] implemented a tool called SLANG for
API prediction. They tried N-gram, Recurrent Neural Network
(RNN) and the combination of both methods to extract the API
call sequence, and used N-gram or RNN for training.

The second strategy is focused on frequent subgraph or
itemset mining. Zhong et al. [10] used code search engines and
code snippets to extract API call sequences. These extracted
APIs are clustered according to the distance metric which
reflects the similarity between class names and API names.
They mined the most frequent API calls using SPAM for each
cluster. Nguyen et al. [11] presented a tool named LIBSYNC
to guide the developer to update APIs so as to fit the third-
party library update. They used several graph-based techniques
to describe changes in the APIs.

Besides, Niu et al. [12] mined API usage patterns without
relying on frequent-pattern mining, but automatically extracted
usage patterns by clustering the data based on the co-existence
relations between object usages. Tetsuo Yamamoto [13] instead
took a simply and lightweight method, the author designed
a specific algorithm based on rules to give a method call
suggestion according to the context.

III. OUR METHODOLOGY

A. Overview

The main idea is to use the LSTM network to learn the
semantic and context information from Java source codes, the
embedding representation of Java classes&APIs (methods) and
the context features from API call sequences, respectively. We
treat API suggestion as a multi-class classification problem.

Java Source
Code

Eclipse JDT
Parser

Extra Package
Catalog Structure

Information

Deterministic
Negative
Sampling

Softmax Class & API
Embedding

AST

Depth First
Search

Wildcard
Import

APIHelper

API Calls & Control
Flow Context

Extraction

Data
Augmentation by
Sliding Window

Fields and
Local Variables

Tracking

API Suggestion
Result

LSTM

Fig. 2. The core flowchart of proposed method.

Given an API call sequence as an input, LSTM uses a softmax
output layer to predict next API call and outputs probabilities
of all candidate API calls. The core flowchart of our approach
is shown in Fig.2. We first extract API sequences from Java
source codes. Then APIHelper embeds Java classes and APIs
into dense vector representations. As a result, it transfers the
API sequence into a vector data stream as LSTM’s input for
training. Here API suggestion can be regarded as a “predict
next word” task. Given an API call sequence as one input,
LSTM tries to predict next API call.

B. API Sequence Extraction

We mainly extract the API call information from source
codes. For this information, we extract Java method invoca-
tions and Java class instance creations. Concretely, we first
obtain the corresponding Abstract Syntax Tree (AST) with
Eclipse JDT parser tool from Java source codes. Then we
traverse the AST tree through Depth First Search (DFS) to
extract nodes for Java classes and API calls, and track all
fields and local variables’ method calls. Thus we can resolve
the fully qualified name of an API call according to the field
or local variable. In this phase, we also need to parse the
import statements to get fully qualified class names to identify
all Java classes explicitly imported. Note that in some codes,
wildcards can be used to load all classes in a high level
package path, which will cause the fully qualified name of
some classes cannot be resolved. Under this situation, we
can obtain the package catalog structure information to get
a fully qualified path through the relevant Java documents.
After that, some method names cannot be fully resolved, so
we filter them in the data preprocessing phase. It should be
noted that the superclass method, method override, constructor
call, and class conversion expression do not take into account
for simplification in our scenario.

C. Learning API Usage Pattern with LSTM

Programming languages have some similarities to natural
languages, so here we use language models for API suggestion.
For a Java API sequence, since Java is an object-oriented
language and all methods are encapsulated in an object belong-
ing to one specific class, we can define an API sequence as
S = {c1, a1, c2, a2, ..., cT , aT }, where ct, t ∈ (1, T) represents
the class to which the tth object belongs, and at represents the
corresponding API called by the object. Then we can use the
statistical language model to define the occurrence probability
of this API sequence. According to the Bayesian algorithm,

138

…… ……

java.lang.StringBuilder.newInstance java.lang.StringBuilder.append

Softmax

ObjectT

Choose APIs Which ObjectT has

Form Negative Sampling Softmax Matrix

Candidate APIs: append, get, set, getValue, indexOf, hasNext, moveTo,
insert, parse, max, charAt, delete, getFile, close, start, length, ...

LSTM LSTM LSTM
Deterministic

Negative
Sampling

Class Embedding
Lookup

java.lang.StringBuilder.???

API Embedding
Lookup

Class Embedding
Lookup

API Embedding
Lookup

API Embedding
Lookup

Class Embedding
Lookup

Fig. 3. The neural language model for API suggestion by the LSTM network.

the probability that occurrence probability of a sequence S
equals to the combination of the probability that each “word”
appears, so Pw(S) can be expanded to:

Pw(S) = Pw(a1) ∗
T∏

t=2

Pw(at|ct, at−1, ct−1, ..., a1), (1)

where w is a parameter learned by the statistical language
model and updated through training model. For the API
sequences in the training dataset, we maximize the occurrence
probability:

argmaxwPw(c1, a1, c2, a2, ..., ct, at). (2)

For the API suggestion task, we choose at to maximize the
occurrence probability of current API sequence, and calculate
the maximum likelihood probability as the objective function
in the training phase which gets the highest probability when
at equals to the true value y:

argmaxwPw(at = y|c1, a1, c2, a2, ..., ct). (3)

However, the actual Java API sequence often has a long-
term context, like follows:

F i l e W r i t e r w r i t e r = new F i l e W r i t e r ("XX.csv") ;
{ . . . a bunch of codes . . . } ;
w r i t e r . c l o s e () ;

The bunch of codes in the middle part may be very long.
Therefore, we need a way to learn longer context information
to suggest API close(). The neural language model is one
good solution which is widely used in NLP tasks in recent
years. In this paper, we use LSTM to build a neural language
model. It is a powerful deep neural network for temporal data
mining and learning. As a variant of RNN, LSTM takes a
bunch of previous API sequences as context to predict next
API call, which actually gives a prediction category from all
candidate API calls as classification. The overall model part
that APIHelper uses for API suggestion is shown in Fig.3.

Specifically, the whole model contains three parts: embed-
ding layer, LSTM layer, and classification layer. First, the
embedding layer will embed these input API sequences into
dense vectors that actually learn some semantic and logic in-
formation from Java classes and API calls. These dense vectors
will be used as the input for several LSTM units to learn the
context features. Then, LSTM sequentially takes the elements
in the API sequence as an input. Each step, LSTM will update

Constant Error Carousel (CEC) and “gates” to selectively store
information from previous inputs and calculate them with the
input of current time node. In this way, after receiving the
complete API sequence input, LSTM can learn the context
information in the sequence to generate a dense vector for
the final prediction. Then this dense vector is regarded as the
highly abstract feature information to be added to the softmax
output layer, which outputs the prediction result. The formula
is as follows:

Pw(at = ŷ|c1, a1, c2, a2, ..., ct) =
exp(WT

ŷ ht + bŷ)∑K
k′=1 exp(W

T
k′ht + bk′)

,

(4)
where WT

ŷ represents the part of weight matrix W correspond-
ing to the prediction category ŷ, and ht is the final dense vector
calculated by LSTM forward propagation along the time series.
The softmax layer uses a nonlinear transformation to calculate
the conditional probability for outputting the final prediction
result. Meanwhile, it uses maximum likelihood probability as
the objective function to train model parameters.

It should be noted that, unlike dealing with natural language,
we have conducted some specialized training strategies for
API sequence learning. As mentioned earlier, each of Java
classes follows a specific API call. A straightforward approach
to digitalize these elements is directly mapping them using
one same dense embedding matrix. But this approach is not
good for several reasons. First of all, these two elements
are not the same type. Using one embedding matrix would
mix them up and lose this boundary between two elements.
Second, Java language contains a large number of classes and
APIs, and needs a very large embedding matrix to represent
them, which would greatly slow down the training speed. And
most importantly, LSTM is not effective due to the gradient
vanishing when dealing with a very long API sequence.
Therefore, we propose a new approach using two embedding
matrixes W e

c and W e
a for representing Java classes and APIs,

ect =W e
c [ct], e

a
t =W e

a [at]. (5)

Considering that each Java class must be followed by an API
call, we come up with a strategy called Embedding Concate-
nation (EC), which uses [ect , e

a
t] to concatenate the Java class

embedding in the current timestep and the corresponding API
call embedding as the input for LSTM, that is xt = [ect , e

a
t].

Since one embedding vector can represent one Java class
and one API call, and LSTM can deal with a Class&API unit
in one timestep, the length of the API sequence that LSTM
needs to process is actually reduced by nearly half. It allows
LSTM to handle and learn more long-term context information
and eases the gradient vanishing problem.

The last API call aT of an API sequence is to be predicted,
so the last timestep input is received by LSTM which contains
only the Java class information cT . Here we use an identifier
epred to remind LSTM that it is the section to make a
prediction, that is xT = [ecT , e

pred].

D. Deterministic Negative Sampling

The concept of Negative Sampling (NS) comes from a
training strategy for word vectors in the NLP area. Some
famous models using negative sampling are Skip-gram with

139

Negative Sampling (SGNS) and CBOW with Negative Sam-
pling (CBOW-NS). The main purpose of negative sampling
is to improve computational efficiency. For a multi-class clas-
sification problem, machine learning models usually use the
softmax layer to output multi-class prediction probabilities:

Pw(at = ŷ|context) =
exp(WT

ŷ ht + bŷ)∑K
k′=1 exp(W

T
k′ht + bk′)

. (6)

As we can see the softmax layer outputs probabilities by
a normalization operation, which is usually called the Cross
Entropy (CE) error function in machine learning. The compu-
tation cost increases linearly with the number of categories.
So the cost of CE is |V |+ 1, where V represents the number
of vocabularies to be predicted, and the cost of NS is |K|+1.
The speed up ratio is K/V (NS is much faster). Since in
each NLP word classification task, there is only one positive
category (the word to be predicted) and all other words
are negative. So instead of updating weights through whole
negative vocabularies, NS only samples some negative words
for weight updating.

APIHelper tries to build one single LSTM network for all
API suggestions. However, the biggest challenge is that the
number of candidate APIs to be predicted is so huge (for com-
mon Java classes, there are more than 30,000 candidate APIs
in total). From above we know the softmax is inefficient when
dealing with such a big multi-class classification. Therefore
we propose DNS to solve this. The main difference between
DNS and NS is that DNS is a deterministic sampling strategy
rather than a random sampling. The deterministic sampling is
from the specific constraints for API calls that every API call
must come from one specific Java class. Considering the API
we need to predict must belong to the current Java class, we
can use the last Java class cT to limit the range of candidate
APIs to be predicted. There are around 5 to 108 APIs for a
common Java class, so the LSTM network does not need to
do a prediction in the entire candidate APIs set. Instead, it first
picks out APIs subset for current Java classes, and then makes
a prediction based on that. Meanwhile, the LSTM network
computes softmax errors and does weight updating only for
negative API samples in this subset.

For the specific implementation of DNS, current mainstream
deep learning frameworks (such as Tensorflow, Caffe, Theano,
etc.) only provide a random negative sampling function. For
example, Tensorflow simply provides a random negative sam-
pling error function: tf.nn.sampled softmax loss(), which
computes the cross entropy over the subset of candidate
classes. Since it cannot achieve the function of DNS, we
devise a special LSTM training module to implement DNS
in Tensorflow. Specifically, in each iteration, we introduce
an additional Tensorflow place holder DNS to reduce the
prediction probability manually for APIs not belonging to
current Java classes. Then LSTM calculates the cross entropy
error for this fixed output probability:

dns1∗N = [bAPI1 , bAPI2 , bAPI3 , ..., bAPIN], where

bAPIn =

{
τ APIn ∈ current Java class CT

0 otherwise

(7)

logtis1∗N = [pAPI1 , pAPI2 , pAPI3 , ..., pAPIN], (8)

where logtis represents the logistics probability
of the original LSTM prediction. logtis adds
dns as bias, that is logtis = logtis + dns, and
calculates the loss for back propagation, shown as:
tf.nn.softmax cross entropy with logtis(logtis=logtis,
labels= ...). It can be seen as passing the prior knowledge to
the LSTM network by dns. By manually reducing the output
probabilities of some unrelated candidate APIs, their cross
entropy error is very low. This in turn lets the LSTM network
focus on learning to classify or distinguish APIs belonging to
current Java classes during error back propagation.

IV. EXPERIMENT AND RESULTS

A. Dataset and Data Preprocessing

We crawled 18,000 Java projects from Github and extracted
corresponding Java source codes for a total of 16GB data. To
ensure a high quality of Java codes dataset, we only collect
Java projects with over 100 stars. More stars means more
popular project and higher programming quality.

For example, APIHelper learns the most popular Java APIs,
as follows: java.*, Java foundation classes; javax.*, Java
foundation classes extension; android.*, Android related Java
classes; org.apache.*, all top level Java project from Apache
software foundation; com.google.*, all Java project provider
by Google; org.springframework.*, one of the most popular
structure for Java web development.

Above Java classes and APIs cover daily function needs for
programmers. However, these Java libraries also contain some
rarely used Java classes and APIs. Thus we do the frequency
counts for APIs and use UNK to represent Java classes that
occur less than 20 times and Java APIs less than 10 times in
our dataset. This greatly reduces the size of embedding matrix
for LSTM. Only 50,000 Java classes and 60,000 Java APIs
are reserved, so the hyperparameter numemb is reduced from
original 540,000 to 110,000.

The total number of candidate APIs to be predicted is
20,000, but the frequency of these APIs varies a lot. The
most frequent API is newInstance which occurs more than
5,000,000 times in our dataset, while the least popular API
only appears 50 times. Hence we use data augmentation strat-
egy to rebalance the distribution, which achieves the maximum
augmentation ratio up to 40 times.

B. Model Setup and Training Details

In experiment, APIHelper is trained by GPU. We use
NVIDIA’s GTX980 GPU and related software repositories
including CUDA 7.5, cuDNN V4, Python 2.7.6, Numpy 1.8.2,
Scipy 0.13.3, and Tensorflow 0.9.0. APIHelper uses a two-
layer LSTM network, and each layer contains 128 neuron
units. For the design of LSTM structure, we use ReLU as
activation function and use Dropout with dropping probability
0.5 to ease overfitting problem. To ensure the LSTM network
convergence, we use orthogonal weight initialization with
a range of ±0.04, add batch normalization layers, and set
gradient regularization factor to 10 (it is used to control
gradient expansion). APIHelper adopts an optimizer based on

140

the Adam optimization algorithm, sets the initial learning rate
of η = 5e− 03, and takes sequence length of 60 as the input
and batch size of 228. Also, we set the maximum number of
training epoches (=150,000). Since we use early stop strategy,
usually the training phase stops after 5 complete rounds.

Each element of an input API sequence consists of two
parts: Java class embedding with vector length of 150
and API embedding with vector length of 200. We pro-
pose EC to concatenate two-part embedding vectors to-
gether along the horizontal axis, xt = [ect , e

a
t]. So the in-

put API sequence [x1, x2, x3, ..., xT] can be represented as
{[ec1, ea1], [ec2, ea2], [ec3, ea3], ..., [ecT , epred]}, where epred is the
API to be predicted. The embedding lookup matrix is ini-
tialized randomly, and it uses 0.1 ∗ η to adjust learning rate
(otherwise model will get seriously overfitting during training).

C. Results and Evaluation

We use 18,000 Java projects and 10-fold cross validation
to evaluate the performance of LSTM network used in API-
Helper, as well as the effect of using EC and DNS to verify
whether they are valid. The results are shown in Table I.

TABLE I
THE PERFORMANCE FOR DIFFERENT LSTM NETWORKS

Methods Accuracy(%) top-5 Accuracy(%)
Standard LSTM 40 79

LSTM + EC 43 81
LSTM + EC + DNS (APIHelper) 53 90

We use accuracy and top-5 accuracy as evaluation indicators.
Here top-5 accuracy represents the prediction accuracy when
the model can provide top-5 predicted APIs. As we can see
from Table I, both EC and DNS give an improvement of
prediction accuracy. Specifically, the standard LSTM model
serves as the baseline method which regards each Java class or
API as one input, while EC merges and concatenates them into
one long vector as another input. EC enables LSTM to learn
API sequence in a more efficient way and capture more long-
term contextual information. So top-5 accuracy raises from
79% to 81% when using EC.

Apart from this, DNS has the most benefit to LSTM
performance, raising top-5 accuracy from 81% to 90%. For
each input API sequence, DNS builds one corresponding
softmax layer which narrows down the candidate APIs to
predict according to the last input Java class. Hence LSTM
only needs to choose one prediction API belonging to the last
input Java class instead of all Java APIs. This greatly reduces
the search space of LSTM network, making it more efficiently
during training and easier to converge. Most importantly,
this makes it possible to predict massive Java APIs (give
a API suggestion for massive Java classes) by using one
single LSTM network, because it simplifies the original multi-
class classification problem with hundreds of thousands of
categories into hundreds of categories classification.

In addition, we compare APIHelper with the current two
mainstream methods, HAPI [2] and N-gram. Original task of
HAPI is for Android API learning. It first extracts Android
bytecodes from .apk file through dex parser tool (e.g. baksmali)

(a) (b)

Fig. 4. (a) The results of API suggestion for predicting next API. (b) The
results of API suggestion for filling API hole.

and converts them to CFG, then traverses CFG to generate API
sequences for training HMM (HMM takes the sequence as the
input). For each Java class, HAPI trains one specific HMM
model and takes two experiments for evaluation, which are
called “predict next API” and “fill API hole”. The difference
is the latter task not only takes the context before the API to be
predicted, but also the context after it. The experiment takes
a 63GB dataset for 2,700 Java classes with 17,000,000 API
sequences. Each Java class has around 6,000 API sequence
samples and the average length of an API sequence is 4.
HAPI trains 1,200 HMM models on 2,700 Java classes, with
averaging eight hidden states per HMM.

The goal of HAPI is to solve Android API learning, which is
a subtask compared with Java API suggestion, but APIHelper
needs to predict APIs for 18,000 Java project codes which
contain all Android related APIs and many other Java APIs.
Thus, in order to better evaluate and compare APIHelper
with HAPI, we reproduce the HAPI method and conduct a
comparative experiment with the same task on our dataset.

Also, we make the experiment of 3-gram for API suggestion
or recommendation as a baseline. We first filter out low
frequency 3-gram combinations, then use the Random Forest
(RF) model for feature importance analysis, from which a
43,000-dimensional feature vector is extracted. Finally, we use
these features with softmax regression to achieve multi-class
classification and get the API suggestion result. As we can see
from the results shown in Fig.4(a) and Fig.4(b), APIHelper
outperforms other two methods. The performance of HAPI
is somehow lower than the original results in their paper.
One reason is that our task is to make an API suggestion or
recommendation at any randomly chosen location rather than
at the end of a well-extracted API sequence. Thus sometimes
the context is relatively insufficient.

D. Computation Efficiency

We analyze the computational efficiency and computation
resource consumption of all methods, and separately calculate
the storage consumption, training time and API suggestion
time-consuming for comparison. The evaluation results are
shown in Table II. As we can see, the training time con-
sumption for standard LSTM model takes 2.4 hours, which
is obviously slower than HAPI. Besides, the slowest method

141

TABLE II
THE EXPERIMENT RESULTS FOR DIFFERENT METHODS

Methods Accuracy(%) top-5 Accuracy(%) Training Time(h) Disk Space Consumption(MB) Suggestion Time(ms)
Standard LSTM 40 79 2.4 328 23.3

LSTM + EC 43 81 1.5 263 13.5
3-gram 43 68 1.4 182 172

HAPI [2] 48 81 1.2 18.5 14.4
APIHelper 53 90 0.5 263 13.2

is 3-gram model, mainly because 3-gram takes a lot of time
for feature extraction. As mentioned before, 3-gram counts
all occurrences of 1-gram, 2-gram and 3-gram in the dataset,
which means doing millions of counts as features. After that
the N-gram statistical method uses a simple classifier which
costs a little time for training.

However, after using EC and DNS, APIHelper only needs
half an hour to complete the training process. The main
reasons are as following: first EC almost reduces the input
sequence length by half for LSTM. EC concatenates class and
API embeddings as [ect , e

a
t], so LSTM timestep takes more

information for each one timestep. Then DNS further speeds
up the training phase because the back propagation calculation
only needs to be done on some softmax nodes instead of all of
them. This greatly accelerates the weight updating speed for
LSTM network. At last, coupled with GPU-accelerated deep
neural network computation, APIHelper takes the shortest time
for training. For HAPI [2], thought training a single HMM
model for a Java class takes less time, HAPI needs to train
thousands of HMMs for all Java classes. Overall, it is less
efficient than APIHelper. Since the model training phase is
often offline, the more critical indicator is the time-consuming
in API suggestion phase, which reflects the response speed
of API suggestion system. In the prediction phase, the LSTM
network is the fastest (13.2ms) which only needs to do one
forward propagation to get the prediction result.

Finally, we compare the memory and disk consumption.
Since data storage is critical for all methods, here the main
storage consumption we evaluate is the model storage for
storing model parameters. It can implicitly indicate the mem-
ory consumption because usually a system loads all model
parameters into memory for fast computation. The evaluation
results show APIHelper and N-gram consume more storage
than HAPI. APIHelper needs more storage because LSTM
network is complex and contains mass parameters. However,
all three methods consume less than 500MB of storage space,
which we think is not a bottleneck for current computer
resources in a server with GPU computation.

V. CONCLUSIONS

In this paper, we explore a new LSTM-based API suggestion
approach to improve programming efficiency. To this end, we
construct a prototype implementation called APIHelper, which
uses what we called deterministic negative sampling to build
one single end-to-end LSTM network to make API sugges-
tion for tens of thousands of Java APIs. While experiments
show that APIHelper can effectively provide API suggestions
according to the API contexts and has better performance in

terms of suggestion accuracy, computational efficiency and
scalability compared with previous works.

For the limitation of APIHelper, it has to rely on class object
information for API suggestion, so currently it can only be
applied to strongly typed languages. In the future work, we will
plan to explore APIHelper making API suggestion for weakly
typed languages like Python, which is a more challenging task.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61672421
and the Shaanxi Provincial Natural Science Foundation under
Grant No. 2017JM6109.

REFERENCES

[1] T. T. Nguyen, H. V. Pham, P. M. Vu, et al. Recommending API usages for
mobile apps with hidden markov model. In Proc. of 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
795-800, 2015.

[2] H. V. Pham, P. M. Vu, T. T. Nguyen. Learning API usages from bytecode:
A statistical approach. In Proc. of the 38th International Conference on
Software Engineering (ICSE), 416-427, 2016.

[3] T. Xie and J. Pei. MAPO: mining API usages from open source
repositories. In Proc. of the International Workshop on Mining Software
Repositories (MSR), 54-57, 2006.

[4] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie and D. Zhang. Mining
succinct and high-coverage API usage patterns from source code. In
Proc. of the 10th Working Conference on Mining Software Repositories
(MSR), 319-328, 2013.

[5] J. Fowkes, C. Sutton. Parameter-free probabilistic API mining across
GitHub. In Proc. of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), 254-265, 2016.

[6] T. T. Nguyen, H. A. Nguyen, N. H. Pham, et al. Graph-based mining
of multiple object usage patterns. In Proc. of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (ESEC/FSE),
383-392, 2009.

[7] T. D. Nguyen, A. T. Nguyen, H. D. Phan, et al. Exploring API embedding
for API usages and applications. In Proc. of the 39th IEEE/ACM
International Conference on Software Engineering (ICSE), 438-449,
2017.

[8] X. Gu, H. Zhang, D. Zhang, et al. Deep API learning. In Proc. of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 631-642, 2016.

[9] V. Raychev, M. Vechev, E. Yahav. Code completion with statistical
language models. In Proc. of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 419-428,
2014.

[10] H. Zhong, T. Xie, L. Zhang, J. Pei and H. Mei. MAPO: Mining and
recommending API usage patterns. In European Conference on Object-
Oriented Programming (ECOOP), 318-343, 2009.

[11] H. A. Nguyen, T. T. Nguyen, Jr. G. Wilson, et al. A graph-based approach
to API usage adaptation. In Proc. of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 302-321, 2010.

[12] H. Niu, I. Keivanloo, Y. Zou. API usage pattern recommendation for
software development. The Journal of Systems and Software, 129: 127-
139, 2017.

[13] T. Yamamoto. Code suggestion of method call statements using a source
code corpus. In Proc. of the 24th Asia-Pacific Software Engineering
Conference (APSEC), 2017.

142

Adaptive software search toward users’ customized
requirements in GitHub

Jinze Liu, Zhixing Li, Tao Wang, Yue Yu and Gang Yin
College of Computer Science

National University of Defense Technology
Changsha, Hunan, China

jinze liu@qq.com, {lizhixing,taowang2005,yueyu,yingang}@nudt.edu.cn

Abstract—Because of a tremendous growth of Open Source
Software (OSS) scale and the diversity of users’ requirements,
users now face the problem of finding OSS that meets their ex-
pectations in a huge number of OSS resources. However, current
GitHub-provided search service has a shortage in adapting to
user needs. When facing diverse users’ requirements, it cannot
always return satisfactory results. In this paper, we provide a
more efficient search service for OSS on GitHub. We first design
a multi-dimensional measurement model for OSS, which forms
a corresponding metric system and quantitative measurement
method. Then we propose a ranking algorithm based on fuzzy
synthetic evaluation in order to implement an adaptive metric
ranking method that is oriented to user requirements. We verify
that our work is useful by setting up experiments. The experiment
results show that compared with GitHub-provided search service
(searching by “Best Match” & searching by “Most Stars”), the
effectiveness of our method improved by 97.6% and 13.8%
respectively, which means our method returns search results
which meet users’ expectations more, and has high self-adaptive
ability.

Keywords-Open Source Software; Search; Multi-dimensional
Measurement; Fuzzy Synthetic Evaluation; GitHub

I. INTRODUCTION

With the rise of the open source movement, OSS has made
tremendous growth and the global OSS resources have become
an Internet-scale repository. Especially in recent years, the
rapid development of Internet technology has greatly enhanced
the influence of OSS around the world. Many well-known OSS
hosting platforms have emerged and the most successful plat-
form among them is GitHub. GitHub is a social programming
and code hosting platform [1], officially launched on April
10, 2008, after which countless open source projects began to
migrate to this platform, and the number of hosted software
showed the situation of “explosive” growth. As of December
2016, GitHub has hosted more than 35 million projects and
attracted more than 14 million developers to participate in open
source activities [2].

OSS resources are already a huge and diverse ecosystem. At
the same time, the users’ requirements of OSS is also diverse.
For example, some users like the popular OSS currently.
Some of them are more concerned about whether the authors
of OSS have high development enthusiasm and make good
maintenance of their work. And others may look for open-
source software that still maintains high activity. Therefore,

DOI reference number: 10.18293/SEKE2018-064

users now face the problem of finding OSS that suits their
diverse requirements in a huge number of OSS resources.

In a web search, as stated by studies [3] [4], people often
prefer results located on the first page, or at most, the first
three pages. Later search results people tend to no longer
be concerned about, so a good search service needs to make
more important results come in front. For this reason, GitHub
provides ranking indicators based on the text matching, pop-
ularity, etc. of OSS, but the results are not satisfactory. For
example, if the text matching degree is used as a ranking
indicator, GitHub only considers the matching between the
software name or description, and the users’ search keywords,
thus the quality of the software is not guaranteed. Due to the
low threshold of creating OSS in open source community and
the different ability of authors of OSS, there are a large number
of OSS with low quality in GitHub. So if the search service
does not consider the quality of OSS, the search results will
have very limited help to users. If we choose popularity as
the ranking indicator, GitHub ranks only by the number of
“Star” of the repository of OSS. Other attributes of OSS are
not taken into account at all, which makes the search results
still less helpful.

Although GitHub provides an advanced search service, al-
lowing users to propose multiple search criteria, from the point
of actual use, GitHub simply combines multiple search criteria
together. For example, if users choose both text matching
degree and popularity as ranking indicators, the final search
results are only based on the search results of text matching
degree, and delete the results which popularity do not meet the
requirements. So if what users want is being more interested
in the software which is more popular among all the related
software, the search results provided by GitHub still cannot
give them a satisfied answer. All in all, GitHub currently offers
a weak search service. On the one hand, it provides users with
less choice of ranking indicators. On the other hand, it cannot
adapt to complex users’ requirements. When users select an
indicator to rank, other indicators will be ignored, and this
often does not meet users’ expectations.

Therefore, we provide a more efficient search service for
OSS on GitHub by a multi-dimensional measurement model
and a ranking algorithm based on fuzzy synthetic evaluation.
In this paper, we first build a GitHub OSS information
database that contains information about the attributes of OSS

143

such as name, description, number of “Watch”, situation of
“Pull Request” (PR), and so on. Second, we get preliminary
search results by keywords matching. Third, we extract rank-
ing indicators and design a multi-dimensional measurement
model according to users’ requirements. Fourth, we propose
and implement a ranking algorithm based on fuzzy synthetic
evaluation. This algorithm calculates the synthetic evaluation
score of OSS according to the weight of OSS attributes, so
that we can get final search results from the order of evaluation
scores. At last, by setting up experiments with different users’
customized requirements scenarios, we compare our search
results with those of GitHub-provided search service and
verify that our method returns search results which meet users’
expectations more, and has high self-adaptive ability.

The key contributions of this study include the following:
• We analyze the key factors when users choose OSS from

four dimensions: popularity of software, collaborative de-
velopment of software, development attitude of software
author and activeness of software, and propose a detailed
quantitative measurement method.

• We allow users to set their personal search requirements
and provide users with enhanced, easier-to-use search
service.

• We propose and implement an OSS ranking algorithm
based on fuzzy synthetic evaluation, so that the OSS can
obtain the corresponding evaluation score according to
different users’ customized requirements so as to make
the search results more in line with users’ expectations,
greatly improving the self-adaptive ability of the search
service.

The rest of this paper is organized as follows. Section II
introduces related research on software ranking and fuzzy
mathematics theory. Section III elucidates the approach of
our study. Section IV elaborates our experimental process and
results. Section V concludes this paper and introduces future
work.

II. RELATED WORK

A. Software Ranking

In the field of software engineering, researchers evaluate
software quality through software evaluation models, and then
rank the software based on software quality. Researchers have
proposed Capgemini maturity model [5], Navica maturity
model [6], OpenBRR model [7], QSOS model [8], and SQO-
OSS model [9] and so on.

In the field of open source community, open source com-
munities typically use the feedback from community users
to rank the OSS. For example, GitHub provides the function
of ranking OSS according to the “Most Star” indicator. The
higher the number of “Star” of a software, the more popular it
is in the community. SourceForge uses the information which
is collected from users about the download and comment
situation of OSS to calculate the popularity of them, and then
rank the software. OpenHub has designed a button named “I
use it” for each OSS, which users can click to mark this

software was used. Then the platform ranks by the number
of users of them.

However, these ranking methods only consider a single
ranking indicator, not comprehensive enough to meet more
complex users’ customized requirements.

B. Fuzzy Synthetic Evaluation

Fuzzy synthetic evaluation is one of the most widely used
methods for multi-index synthetic evaluation [10]. With the
help of the theory of membership degree of fuzzy mathematics,
it turns qualitative evaluation into quantitative evaluation,
which can solve the problem of fuzzy and hard to quantify. The
basic steps of fuzzy synthetic evaluation shows in Table I [11].

TABLE I: Basic Steps of Fuzzy Synthetic Evaluation

1. Determine the evaluation indicator set and evaluation level set of
the evaluation target.
2. Determine the weight of each evaluation indicator and its member-
ship vector in order to get the fuzzy evaluation matrix.
3. Make fuzzy operation between the fuzzy evaluation matrix and the
weight set of evaluation indicators.
4. Normalize the calculation results in step 3 and get the evaluation
results.

III. APPROACH

The goal of our work is providing users with OSS search
service which has high self-adaptive ability. As shown in
Figure 1, we first get development history data of OSS
from GitHub to build an information database. Then we
get preliminary search results by keywords matching. Third,
we extract ranking indicators and design a multi-dimensional
measurement model according to users’ requirements. Fourth,
we get final search results by a ranking algorithm based on
fuzzy synthetic evaluation. In the following sections, we will
elaborate each step in detail.

Fig. 1: Overall Framework of Our Method

144

A. Database Building

Dataset collection. In this paper, we use the “GHTorrent”
project, which monitors the GitHub public event timeline,
to get GitHub open source data [2]. Whenever an event
occurs on GitHub, the project retrieves its content and all its
dependencies and stores them, then releases the data regularly
for users to download.

Dataset cleaning. GitHub allows users to “Fork” the origin
OSS project to create a new branch based on the main branch
of the project. The main branch and the “Fork” branch actually
refer to the same project. However, there are multiple records
stored in the database. Therefore, in order to avoid duplication
of processing, all “Fork” branches need to be removed and the
corresponding main branch should be reserved.

B. Preliminary Search Based on Keywords Matching

In this section, we get all OSS related to users’ search
keywords as preliminary search results by matching keywords
with the name and description of software. First, we use
WordNet to make synonym expansion of keywords in order to
improve the recall rate. Second, we set whether software name
or description contains keywords as the standard of whether
software is related to keywords.

C. Multi-dimensional Measurement Model for OSS

By collecting lots of posts of IT Q & A communities (such
as Stack Overflow etc.) and analyzing the community users’
comments on their needs for OSS, a multi-dimensional mea-
surement model is presented for OSS. As shown in Figure 2,
this model includes four dimensions, and each dimension has
one or more indicators. Each indicator is described by one or
more online attributes through the Github open source project
repository.

Popularity of software. In general, the software of higher
popularity degree often means more famous and has higher
quality. So an indicator named software popularity degree is
introduced to describe how popular is an OSS.

In GitHub, if developers in the community are interested in
an OSS project, their first choice is to “Watch” the software.
Then, whenever the software has any dynamic information,
developers can receive the corresponding data at the first time,
which like following celebrities interested in Facebook.

Therefore, the number of “Watch” of an OSS can describe
its software popularity degree, the higher the number of
“Watch”, on behalf of the developers concern more about this
software. This indicator can be calculated as Equation 1.

Ppopularity (j) = Nor (watch (j)) (1)

where Nor() is normalization and can be calculated as bellow:

Nor (watch (j)) =
watch (j)−min (watch)

max (watch)−min (watch)
(2)

Collaborative development of software. GitHub is an open
source collaborative development community. For the software
the developers are interested in, developers can work with
the related authors. Developers who involved in collaborative

development are called as contributors to this OSS. So an
indicator named software coordination degree is introduced
to describe the enthusiasm of contributors to participate in the
collaborative development of an OSS project.

In GitHub, the development mechanism based on
“Fork→Pull Request” is widely used [12]. If developers want
to participate in the collaborative development of a software,
they can clone the main branch of this software to developers’
local branch through “Fork”. After that, they can implement
some new features or fix bugs based on their personal reposi-
tory cloned from the latest version of project repository. When
their work is finished, the patches are packaged as a PR
submitted to GitHub and reviewed by software authors, which
indicates that developers request that their work be merged
into the main branch of the original project.

Therefore, the number of PR of an OSS can describe its
software coordination degree, the higher the number of PR, on
behalf of the more requests are sent and the higher enthusiasm
of contributors to participate in the collaborative development.
This indicator can be calculated as Equation 3.

Pcoordination (j) = Nor (pull request (j)) (3)

Development attitude of software author. When devel-
opers want to participate in a collaborative development of
OSS, they do not prefer those OSS developed by authors who
are indifferent to their work. When they encounter problems
during the development, the authors will not actively commu-
nicate with them and solve the problem, thus affecting the
user experience. This dimension describes how positive is an
author in his work.

The number of submitted PR per day on GitHub is enor-
mous, leading to the update iterative efficiency of OSS largely
dependents on whether PR can be reviewed in a timely manner.
Study [13] showed that the review of PR is a very important
way for distributed software development community like
GitHub to maintain the quality of code of OSS.

Therefore, two indicators including response degree of
PR (Presponse) and response speed of PR (Sresponse) are
introduced, which can be calculated as Equation 4.

Presponse (j) = Nor

(
pull requestresponse (j)

pull request (j)

)
Sresponse (j) = Nor

(
1

Tlatency (j)

)

= Nor

 1

Mid
16i6M

(
T i
closed (j)− T i

opened (j)
)

(4)

where Presponse is the ratio of the number of responded PR
to the total number of PR. Sresponse is the reciprocal of the
medium number of PR evaluation latency, which is the time
difference between the PR opened and closed.

Activeness of software. The less active OSS often means
that its author has not updated it for a long time and has even
abandoned its development. So we use the reciprocal of the

145

Fig. 2: Multi-dimensional Measurement Model for OSS

time difference between current time and the last updated time
of OSS to describe an indicator named software activeness
degree, which can be calculated as Equation 5.

Pactiveness (j) = Nor

(
1

Tcurrent − Tupdated (j)

)
(5)

For those dimensions above, users can choose one or more
of them and set the corresponding importance order. For
example, if users want to find OSS in great quality, they would
choose popularity of software as the first important dimension.
Then we determine the weight of dimensions according to
their requirements. After many experiments, we select a set
of weight values that have the better search performance, and
the results shows in Table II.

TABLE II: Weight of Dimensions

The order of importance

Number of dimensions First Second Third Fourth

4 0.4 0.3 0.2 0.1
3 0.5 0.3 0.2
2 0.7 0.3
1 1.0

As mentioned before, there are two indicators (response
degree of PR and response speed of PR) to describe the
dimension: development attitude of software author. So the
weight of both indicators will be the half of the weight of this
dimension.

D. Ranking Based on Fuzzy Synthetic Evaluation

We build a fuzzy synthetic evaluation model of OSS to rank
the preliminary search results by using evaluation score of
software.

Evaluation indicator set and evaluation level set. In this
paper, the evaluation indicator set U is:

U = {u1, u2, u3, u4, u5} (6)

where u1 represents software popularity degree, u2 represents
software coordination degree, u3 represents response degree
of PR, u4 represents response speed of PR and u5 represents
software activeness degree.

We choose “excellent”, “good”, “general”, “bad” and “aw-
ful” as the evaluation level set V :

V = {v1, v2, v3, v4, v5} (7)

where v1, v2, v3, v4, v5 represents “excellent”, “good”, “gen-
eral”, “bad” and “awful” respectively.

Membership function. We use the triangle func-
tion as membership function in our evaluation model.
µv1 , µv2 , µv3 , µv4 , µv5 is respectively the membership function
of “excellent”, “good”, “general”, “bad” and “awful”.

µv1 (x) =

{
4x− 3 x ∈ [0.75,1]
0 others

µv2 (x) =

4x− 2

−4x+ 4

0

x ∈ [0.5,0.75]
x ∈ (0.75,1]
others

µv3 (x) =

4x− 1

−4x+ 3

0

x ∈ [0.25,0.5]
x ∈ (0.5,0.75]
others

µv4 (x) =

4x

−4x+ 2

0

x ∈ [0,0.25]
x ∈ (0.25,5]
others

µv5 (x) =

{
−4x+ 1 x ∈ [0,0.25]
0 others

(8)

Fuzzy evaluation matrix. For each indicator, we get its
single factor evaluation according to the membership function.

146

Then we get the fuzzy evaluation matrix bellow:

R =

r11 r12 r13 r14 r15
r21 r22 r23 r24 r25
r31 r32 r33 r34 r35
r41 r42 r43 r44 r45
r51 r52 r53 r54 r55

 (9)

where ri = (ri1, ri2, ri3, ri4, ri5) represents the single factor
evaluation of ui.

Evaluation indicator weight set. In this paper, the evalu-
ation indicator weight set W is:

W = {w1, w2, w3, w4, w5} (10)

where wi is the weight of indicator ui.
Evaluation model and evaluation score. We get the fuzzy

evaluation set S bellow:
S =W ∗R

= (w1, w2, w3, w4, w5) ∗

r11 r12 r13 r14 r15
r21 r22 r23 r24 r25
r31 r32 r33 r34 r35
r41 r42 r43 r44 r45
r51 r52 r53 r54 r55

= (s1, s2, s3, s4, s5)

(11)
where ∗ is fuzzy synthesis operator and there are four common
operators: M (∧,∨), M (•,∨), M (∧,+) and M (•,+).In this
paper, we use M (•,+): sj =

∑5
i=1 wi • rij

Finally we get the evaluation score bellow:

Scorek =

∑n
i=1 c (vi) • ski∑n

i=1 s
k
i

(12)

where c (vi) is the quantified value of each evaluation level,
and can be expressed as bellow:

{c (v1) , c (v2) , c (v3) , c (v4) , c (v5)} = {5,4,3,2,1} (13)

IV. EXPERIMENT

A. Experimental Setup

Stack Overflow is the most popular developer community
of asking and answering questions and it is a platform which
reflects the real requirements of developers. As shown in Ta-
ble III, we summarize several hot software types by analyzing
the tags in Stack Overflow.

TABLE III: Hot Software Types in Stack Overflow

Software type Number of tags

database 138070
machine learning 20603

web crawler 6560

So we choose “database”, “machine learning” and “web
crawler” as the search keywords in the experiment.

In addition, we also summarize two representative users’
customized requirements:

Requirement I. Users want to find OSS resources for
software reuse. As for software reuse, users need OSS in

better quality and more mature. When the OSS has a high de-
gree of popularity and remains active, the quality of such OSS
can be better guaranteed. Therefore, popularity of software is
the first important dimension and activeness of software is the
second important dimension.

Requirement II. Users want to find OSS which is suitable
for collaborative development. For this need, users need
OSS of which contributors participate in passionately. These
software authors communicate with contributors frequently,
timely, and actively maintain software. Therefore, collabora-
tive development of software is the first important dimension
and development attitude of software author is the second.

B. Evaluation Metrics

In user study, in order to compare the effectiveness of our
search service and GitHub-provided search service, volunteers
will be asked to evaluate whether the top 10 OSS that in the
search results offered by our method and GitHub (include
searching by “Best match” and searching by “Most stars”)
is what they are looking for. The evaluation is a Likert-type
scale with a more detailed expression for each choice [14].
The respondents are asked to choose one of three candidate
response items, that is, our evaluation process is a three-point
Likert scale. Table IV describes these three candidates.

TABLE IV: Likert Scale Response Categories

Scale Response category

3 perfect expectations
2 general expectations
1 few expectations

To do the evaluation, twenty individuals with different back-
grounds were invited to assess the result. Among them, nine
are master students, six are Ph.D. students and five engineers
with at least three years software development experience.

At last, we believe that software which is more in line with
users’ requirements should be ranked in more front. So accord-
ing to the rank of software, we use weighted Likert score
to describe the effectiveness of search results.

weighted Likert score =

10∑
i=1

scalei∗weighti (14)

For the software ranked in the first, its weight is 1.0.
For the software ranked in the second, its weight is 0.9.
And for the last, the weight is 0.1. So the full marks of
weighted Likert score is 16.5.

C. Experimental Results

Volunteers will evaluate OSS separately according to Re-
quirement I and Requirement II.

As for Requirement I, after volunteers tried out these OSS,
they evaluated whether the OSS was mature and whether the
quality reached their expectations.

As for Requirement II, after participating in the collab-
orative development of these OSS, volunteers assessed the

147

enthusiasm of other contributors and whether the software
authors had good communication with them.

Figure 3 shows the evaluation results of user study in
Requirement I.1

Fig. 3: Score of three search results in Requirement I

Figure 4 shows the evaluation results of user study in
Requirement II.

Fig. 4: Score of three search results in Requirement II

Through Figure 3 and Figure 4 we conclude the following
conclusions:

• Whatever users’ requirements are, searching by “Best
match” has limited help with users.

• Searching by “Most stars” has better performance in
finding software in high quality than finding suitable
software for collaborative development. Because it does
not take other attributes into account.

• Our method shows good results under different users’
customized requirements and reflects a high self-adaptive
ability.

1Complete experimental results can be found at:
https://www.trustie.net/projects/4009/boards

• Compared with searching by “Best match”, the average
score of our method increased by 97.6%.

• Compared with searching by “Most stars”, the average
score of our method increased by 13.8%.

V. CONCLUSION AND FUTURE WORK

In this paper, we first introduce a problem that users have
to find OSS that suits their diverse requirements in a huge
number of OSS resources and analyze why the current GitHub-
provided search service is weak. Then we propose our own
approach, which is providing a more efficient search service
for OSS on GitHub by a multi-dimensional measurement
model and a ranking algorithm based on fuzzy synthetic
evaluation. At last, we verify that our method returns search
results which meet users’ expectations more, and has high
self-adaptive ability.

The software data hosted on GitHub is huge today and will
continue to grow rapidly. So in the future, we plan to optimize
our algorithm and improve its efficiency.

REFERENCES

[1] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Software, vol. 30, no. 1, pp. 52–66, 2013.

[2] G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of the
10th working conference on mining software repositories. IEEE Press,
2013, pp. 233–236.

[3] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to infor-
mation retrieval. Cambridge university press Cambridge, 2008, vol. 1,
no. 1.

[4] A. Aula, P. Majaranta, and K.-J. Räihä, “Eye-tracking reveals the
personal styles for search result evaluation,” in IFIP Conference on
Human-Computer Interaction. Springer, 2005, pp. 1058–1061.

[5] F. Duijnhouwer and C. Widdows, “Open source maturity model.
capgemini expert letter,” EU QualOSS project (grant number: 033547,
IST-2005-2.5. 5), 2003.

[6] B. Golden, Succeeding with open source. Addison-Wesley Professional,
2005.

[7] A. Wasserman, M. Pal, and C. Chan, “The business readiness rating
model: an evaluation framework for open source,” in Proceedings of the
EFOSS Workshop, Como, Italy, 2006.

[8] R. Semeteys, “Method for qualification and selection of open source
software,” Open Source Business Resource, no. May 2008, 2008.

[9] B. Russo, E. Damiani, S. Hissam, B. Lundell, and G. Succi, Open Source
Development, Communities and Quality: IFIP 20th World Computer
Congress, Working Group 2.3 on Open Source Software, September 7-
10, 2008, Milano, Italy. Springer Science & Business Media, 2008,
vol. 275.

[10] U. Höhle and S. E. Rodabaugh, Mathematics of fuzzy sets: logic,
topology, and measure theory. Springer Science & Business Media,
2012, vol. 3.

[11] X. Xue and X. Yang, “Seismic liquefaction potential assessed by fuzzy
comprehensive evaluation method,” Natural hazards, vol. 71, no. 3, pp.
2101–2112, 2014.

[12] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer recommender
of pull-requests in github,” in Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on. IEEE, 2014, pp.
609–612.

[13] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for it:
Determinants of pull request evaluation latency on github,” in Mining
software repositories (MSR), 2015 IEEE/ACM 12th working conference
on. IEEE, 2015, pp. 367–371.

[14] S. Jamieson et al., “Likert scales: how to (ab) use them,” Medical
education, vol. 38, no. 12, pp. 1217–1218, 2004.

148

A Non-Functional Requirements Recommendation
System for Scrum-based Projects

Felipe Ramos§, Alexandre Costa§, Mirko Perkusich¶, Hyggo Almeida§ and Angelo Perkusich§
§Intelligent Software Engineering (ISE) Group, Federal University of Campina Grande,

Campina Grande, Paraı́ba, Brazil, 58429-140
{feliperamos, antonioalexandre}@copin.ufcg.edu.br,

hyggo@dsc.ufcg.edu.br, perkusic@dee.ufcg.edu.br
¶Federal Institute of Paraı́ba, Monteiro, Paraı́ba, Brazil, 58500-000

mirko.perkusich@ifpb.edu.br

DOI reference number: 10.18293/SEKE2018-107

Abstract—Agile software development focuses on quick deliv-
ery and flexibility to change. Despite being effective in delivering
quality functional requirements, agile practices tend to neglect
non-functional requirements until the later stages of software
development. This work focuses on Scrum, the most popular
agile method, and presents a non-functional requirements recom-
mendation system to support Scrum practitioners on their early
identification. The solution is based on instrumenting the Scrum
process to extract useful data and the use of collaborative filtering
and item recommendation. To evaluate the recommendations, we
conducted off-line experiments with data collected from 12 Scrum
practitioners through a survey. The data was analyzed using 10-
fold cross-validation. As a result, our proposed solution showed
a recall rate of up to 81%, which indicates that it is a promising
approach to recommend non-functional requirements given a set
of functional requirements identified by project stakeholders.

Keywords—Non-functional Requirements; Scrum; Recommen-
dation System; Agile Software Development.

I. INTRODUCTION

Agile software development (ASD) methods, such as
Scrum and XP, have gained strength with the acceptance
of the fact that uncertainty is part of software development
[4], emerging as an alternative to keep up with the high
competitiveness and volatility of the software market. Unlike
traditional approaches, which rely on detailed processes and
extensive planning, ASD focuses on the rapid delivery of busi-
ness value to customers. Moreover, ASD supports requirement
changes at any stage of the development process [4]. However,
as well as in traditional approaches, Requirements Engineering
(RE) is a crucial process for the success of agile projects.

ASD methods, in contrast to traditional plan-driven pro-
cesses, follow an incremental and iterative development pro-
cess. Even though they are efficient in delivering quality
functional requirements (FRs) [7], non-functional requirements
(NFRs) are often overlooked until the later stages of software
development [10], which might increase the costs [10] and
probability of failure [2].

This work focuses on Scrum, the most popular agile
method. In Scrum, the requirements are usually managed by
a person with a business-oriented profile (i.e., the Product
Owner), which tends to focus on FR, neglecting NFRs. [13].

Most existing studies related to applying NFRs processes
to ASD [10], [6], [5] do not consider Scrum’s artifacts, events

and roles, reducing their applicability. The studies [14], [13],
[3] that focus on Scrum present processes to complement it and
consider, for instance, modeling NFRs as a “done” criteria or
a constraint story [13].

Our goal is to automate the definition of NFRs given
historical data of Scrum projects, supporting the team on
identifying them early in the process. For this purpose, in this
paper, we present a NFRs recommendation system to support
Scrum practitioners. It is based on collaborative filtering and
item recommendation and supported by an instrumentation of
the Scrum process to enable the collection of quality data for
the recommendations.

This paper is organized as follows. Section II presents
previous works on NFRs applied to the ASD. Section III
presents the proposed solution. Section IV presents the design
of the validation process. Section V discusses the results; and
Section VII presents our conclusions and future work.

II. RELATED WORK

There are several studies regarding the management of
NFRs on ASD [3], [5], [6], [7], [8], [10], [11], [13], [14],
[15].

In a study including a series of papers, authors presented
solutions for the capture, definition and prioritization of NFRs
in ASD. First, authors proposed a NFR modeling framework
that is tailored for agile processes, called Non-Functional
Requirements Modeling for Agile Processes (NORMAP) [6].
In addition, a simulation tool was proposed for modeling non-
functional requirements for semi-automatic agile processes
(NORMATIC) [7], which supports the more general NORMAP
methodology. In [5], authors proposed a methodology for
elicitation, reasoning and validation of NFRs in agile processes
(NERV), which showed better results in comparison to the
NORMAP framework. NERV is a lightweight methodology to
address NFRs early in ASD. In the study [10], the authors
proposed to use NFRs metadata from software requirements
artifacts - documents and images - as an extension of previous
works [6] and [5]. Finally, in [12], authors investigated the pri-
oritization of requirements based on the framework proposed
in [11].

Some studies conducted research on the topic of NFRs in
the context of Scrum [3], [13], [14].

149

Bourimi et al. [3] proposed the Agile Framework For In-
tegrating Non-functional requirements Engineering (AFFINE)
with the goals of: (1) conceptually considering NFRs early in
the development process, (2) explicitly balancing end-users’
with developers’ needs, and (3) having a reference architecture
to support NFRs. The authors introduced the role of an
NFR stakeholder. Although the proposed solution presents
contributions, the method is based only on a conceptual effort
of the early consideration of NFRs.

On the other hand, Sabry and El-Rabbat [13] discussed
about architectural refactoring framework and techniques for
achieving required levels of NFRs through the formalization of
Spikes and Definition of Done (DoD) within Scrum practices.

Sachdeva and Chung [14] proposed a novel approach to
handle non-functional requirements of security and perfor-
mance in Scrum-based projects involving big data and Internet
of Things (IoT). In their approach, authors proposed to con-
sider security as system functionalities (set of user stories) and
performance as spikes and acceptance criteria of user stories.

Although previous studies focused on the early definition
of NFRs in ASD, they based their approaches on conceptual
reinforcement or on the automatic capture of NFRs from
project documents, which may not always be available at the
beginning of agile projects. In this study, we focus on the early
definition of NFRs, but unlike previous works, we propose the
use of historical (considering Scrum roles, artifacts and events)
to generate recommendations of NFRs.

III. PROPOSED SOLUTION

In this section, we present the NFR recommendation sys-
tem, which aims to support Scrum practitioners in the early
definition of NFRs.

In Figure 1, we present an overview of the recommenda-
tion process, which is based on the Scrum instrumentation,
presented as follows. The activities take place during Sprint
Planning meetings: (1) the Scrum Team, with the support of
the Scrum Architect (SA), details product backlog items using
Semi-structured User Stories (SUS) (2). The SUSs is used by
the recommendation system (3) to generate recommendations
of NFRs for each FR; (4) The Product Owner (PO) and the
Development Team evaluate the recommendations, accepting
or rejecting them. If recommendations are accepted, the in-
formation about recommended NFRs is stored. If they are
rejected, negative feedback is stored.

A. Scrum Instrumentation

We instrument the Scrum framework by adding two new
elements, as shown in Figure 2. We added a new role, the
Scrum Architect (see Figure 2 (1)), and a new artifact based in
tags and categories to represent product backlog items: Semi-
structured User Story (see Figure 2 (3)). We detail the new
role and artifact as follows.

1) Semi-structured User Story

In Scrum, user stories are generally used to represent
product backlog items. They are composed of three aspects:
written description, conversations about their details and a list
of acceptance criteria. They usually have the following format:

Fig. 1: An overview of the recommendation process.

As a [type of user], I want [some goal] so that [some
reason].

This level of information is not enough to retrieve useful
data for the recommendation system. Therefore, to ensure
the traceability of requirements among different projects, we
propose the SUS (see Figure 3).

The SUSs are developed during Sprint Planning meetings
and, compared to traditional user story, they contain the
following additional information:

• FR category: represents a predefined category that
classifies a user story based on its goal (high-level FR).
For example, “Login”, “Alarm and Notifications”,
“Report Visualization”, etc.;

• Technology tags: represent labels related to the tech-
nologies necessary for the development of a user
story. For example, programming language (e.g., java,
python, etc.), database (e.g., mongo, sql, etc.), etc.;

• Associated NFRs: set of quality attributes that are
associated with the functional requirement represented
by the user story. Each NFR presents the following
information:
◦ NFR category: represents a predefined cate-

gory, which classifies the non-functional re-
quirement (e.g., security, performance, privacy,
etc.);

◦ NFR statement: represents the condition of
the NFR that must be met to consider the
associated functional requirement done. For
example, “SSL encryption” for a given FR.

In Figure 3, we present an example of a SUS, in which
FR category is “Login” (1), technology tags are “android”,
“java” and “mongo” (2), and presents an associated NFR (3)
of “Security” (4) with “SSL encryption” as statement (5).

150

Fig. 2: An overview of the instrumented Scrum process.

Fig. 3: An example of a Semi-structured User Story.

2) Scrum Architect

The SA is responsible for the following three activities:
i) categorize product backlog items and gather project infor-
mation (see Figure 2 (1)); ii) assign tags to the SUSs (see
Figure 2 (2)); and (iii) review previously assigned tags (see
Figure 2 (4)). The activities are executed at the beginning of
the project, during the initial definition of the product backlog
and, continuously, in the Scrum Planning and Review meetings
at each Sprint.

During the initial definition of the project backlog, the SA
is responsible to assign a predefined category for each product
backlog item defined by the PO. The decision on the category
of each item should be defined in common agreement between
PO and SA by face-to-face communication. If an specific
requirement can not be classified in any of the predefined
categories, the SA can create a new category, insert it into the
dataset, and reuse it (i.e., reuse-driven approach). By catego-
rizing product backlog items, we aim to classify requirements
of same purpose, and later, to ease the information retrieval.
Additionally, the SA is responsible for filling the project
profile with information such as project category (e.g., web,
mobile, embedded, desktop, etc.), project domain (e.g., health,
banking, etc), project goal (e.g., product or prototype), project
architecture (e.g., client-server, MVC, multilayered, etc.), and

assign technology tags to the project, which represent the basic
technologies needed in the software product development (e.g.,
programming language, database, etc.).

During Sprint Planning meetings, the SA is responsible for
obtaining the remaining information of the SUSs by following
the discussions between the PO and the Development Team,
ensuring that all product backlog items are categorized and
technology tags are properly assigned. Since it is during the
Sprint Planning meeting that the Development Team defines
all the tasks that must be performed to complete each selected
user story for a Sprint, the SA has the chance to accurately
obtain the information on which technologies will actually be
used to complete each one of them, based on direct feedback
from the Development Team.

Finally, during the Sprint Review meeting, the SA is
responsible for reviewing the tags assigned to user stories, i.e.,
to identify if any tag should be removed from a user story
representation and/or if new tags should be assigned to it.

B. NFR Recommendation

We address the definition of NFRs as a recommendation
problem. Thus, by adapting the generic definition of recom-
mendation problems presented by Adomavicius and Tuzhilin
[1], we have the following: let F be the set of all FRs and let
N be the set of all possible NFRs that can be recommended.
Let u be an utility function that measures the usefulness of a
NFR n to a FR f , i.e., u: F × N → T , where T is a totally
ordered set. Then, for each FR f ∈ F , we want to choose
such NFR n′ ∈ N that maximizes the utility of the FR f .
More formally:

∀f ∈ F, n′
f = argmax

n∈N
u(f, n). (1)

As follows, we present the main components of the NFR
recommendation system:

151

• Data Collector: collects information from SUSs and
project profiles to generate FR and NFR profiles;

• Profile Manager: generates FRs and NFRs profiles
based on information collected by the Data Collector;

• Recommender: analyzes FRs and NFRs profiles to
generate customized NFRs recommendations.

We detail each one of the three components in the following
subsections.

1) Data Collector

The data collection task consists of extracting information
from data sources to represent the elements of the recom-
mendation system to generate their profiles. In our case, the
elements are represented by FRs and NFRs. Before extracting
the information through the Data Collector, we need to define
the features capable of generating representative profiles of
the elements in the problem domain. For this purpose, we
elicited the knowledge of 3 scrum experts with experience
between 4 and 10 years. They identified 5 features of software
projects that may influence the definition of NFRs: project
category (e.g., web, mobile, embedded, desktop, etc.), project
domain (e.g., health, banking, etc.), project goal (e.g., product
or prototype), project architecture (e.g., client-server, MVC,
multilayered, etc.), and technologies (e.g., java, mongo, etc.).

For data collection, information about the FRs are retrieved
from the SUSs and project profiles. More specifically, for
each FR, information about FR category (high-level FR) and
project profile are collected. For each NFR, NFR category and
statements are extracted from the SUSs. Finally, information
about the association between FRs and NFRs are collected.

2) Profile Manager

After collecting the data through the Data Collector, FR and
NFR profiles are generated in the Profile Manager component.
The profile of a FR f ∈ F is composed by its FR category in
addition to the 5 features of project p which it belongs to. In
Table I, we present examples of FR profiles.

TABLE I: Examples of FR profiles.

ID Proj.
Categ. Domain Goal Arch. Tech.

tags
FR

categ.

f1 Mob. Home
Auto. Product MVC android, java,

mongo Login

f2 Mob. Home
Auto. Product MVC android, java,

sqlite
Alarm

and notif.

f3 Mob. Educat. Product MVC android, jsoup,
java, retrofit Login

f4 Web Busin.
info. sys. Product Client-

server
nodejs,angular,

webstorm Login

f5 Web Busin.
info. sys. Prototype multilayer nodejs,angular,

bootstrap
Status
Vis.

NFR profiles present two features, i.e., NFR category and
NFR statement. In Table II, we present examples of NFR
profiles.

TABLE II: Examples of NFR profiles.

ID NFR statement NFR category
n1 SSL encryption Security
n2 retrieved result must be paginated Performance
n3 access functionality with less than X clicks Usability

Finally, FR profiles are complemented with the analysis of
co-occurrences between FRs and NFRs based on information
from the SUSs. The result of this analysis is a binary matrix.
In Table III, we present an example of the matrix, in which
the assigned value is 1, if a FR f ∈ F has considered a NFR
n ∈ N or 0, otherwise.

TABLE III: Example of binary matrix that represents the co-
occurrence between FRs and NFRs.

n1 n2 n3

f1 1 0 1
f2 0 0 1
f3 1 0 1
f4 1 0 0
f5 0 1 1

After generating FR and NFR profiles, it is possible to
generate customized recommendations of NFRs to FRs.

3) Recommender

The proposed recommendation system is based in the
following characteristics:

• memory-based collaborative filtering (neighbor-
hood based technique) [9]: recommendations are
generated from the analysis of historical data on the
co-occurrence between FRs and NFRs. To calculate
the utility u of a NFR n for a FR f , we evaluate the
relation of n with the k FRs (from previous projects)
most similar to f ;

• recommendation of good items [9]: the proposed
recommendation system suggests a list with the j
NFRs best suited to a given FR f .

To generate NFR recommendations, we carry out two activ-
ities: (i) estimate neighborhood using the k-Nearest Neighbors
algorithm (kNN); and (ii) generate item recommendations.

For (i), we aim to identify the set of FRs F̂ which includes
the most similar FRs to a FR fa, where fa is the FR we intend
to generate recommendations, called target FR. We use the
kNN method to perform this task, since it returns the k nearest
neighbors of an input element. Before applying the kNN, we
perform a pre-filtering in the dataset to retrieve just those FRs
of the same category of the target one. Then, the returned list of
FRs is used as input of the kNN for the similarity calculation.

Before calculating similarities between FRs, we need to
represent each FR profile through an m-dimensional feature
vector, which enables the use of a similarity metric. We
generate feature vectors based on the information extracted
from the target FR profile, where each vector position refers
to its features and is filled with a value (i.e., 0 or 1) according
to the following condition: receives the value 1 if the feature
is present in the FR profile, or 0, otherwise. In Table IV, we
present an example of the vectors generated based on features
extracted from a target FR fa. In this example, it is possible
to see that requirement f ′

1 shares the same features of fa,
since its feature vector is filled only with values equal to 1.
On the other hand, the functional requirement f ′

3 differs from
fa in terms of “project domain” (i.e., Home Automation) and
technology tag “mongo”.

To calculate similarities among the feature vectors of fa
and pre-filtered FRs, we use the similarity based on Manhattan

152

TABLE IV: Examples of feature vectors generated based on
features extracted from a target FR fa.

Mobile Home
Auto. Product MVC android java mongo

fa 1 1 1 1 1 1 1
f ′

1 1 1 1 1 1 1 1
f ′

3 1 0 1 1 1 1 0
f ′

4 0 0 1 0 0 0 0

Distance (Equations 2 and 3), which is given by the sum of
the differences between the values of the two input vectors
of same dimension m. For example, the distance (Equation
2) between fa and f ′

3 is equal to 2, whereas the similarity
(Equation 3) between them is 0.71 (see Table IV).

d(fa, f
′) =

m∑
i=1

|fai − f ′
i| , (2)

sim(fa, f
′) = 1− d(fa, f

′)

m
. (3)

Therefore, to identify the k nearest neighbors of target FR
fa, we only have to sort in descending order the list of pre-
filtered requirements by the calculated similarity, and return
the first k items from that list. At the end of the process, we
have the set with FRs f ′ ∈ F̂ most similar to fa.

The second activity is to generate item recommendations.
More formally, we intend to recommend NFRs n′ ∈ N that
maximize the utility of a target FR fa. Thus, the value of
the unknown utility ufa,n′ (Equation 4) for target FR fa and
NFR n′ is computed as an aggregate of the amount of co-
occurrence between the k neighbors of fa and n′, weighted
by the similarity among fa and its neighbors, where uf ′,n′

returns 1 if NFR n′ was considered in the development of
neighbor FR f ′, or 0, otherwise.

ufa,n′ =
∑
f ′∈F̂

sim(fa, f
′)× uf ′,n′ . (4)

Finally, we generate recommendations for target FR fa as
a list of NFRs n′ ∈ N sorted in descending order by the utility
calculated for fa and each NFR n′, where ufa,n′ > 0.

IV. VALIDATION

To validate our approach, we executed an offline exper-
iment following the instructions presented by Gunawardana
and Shani [9], to answer the following research question: is
it possible to automate the definition of NFRs in scrum-based
projects based on historical data?

A. Experiment Goal

As mentioned before, the proposed recommendation sys-
tem is based on collaborative filtering and item recommenda-
tion approaches. In this context, the most suitable metrics for
evaluating our RS in an offline evaluation setup are related to
precision and recall [9].

Therefore, the main goal of the experiment is to analyze
the proposed RS for the purpose of NFRs recommendation

with respect to the precision and recall metrics from the point
of view of a dataset generated with information provided by
Scrum practitioners in the context of Scrum.

B. Data Collection Procedure

To perform an offline experiment, it is necessary to use a
dataset that corresponds as faithfully as possible to the real data
of the problem domain. Thus, we conduct a survey with Scrum
practitioners. To guarantee the reliability of the collected data,
we only requested information that can be collected with the
proposed instrumented Scrum.

The survey was responded by 12 Scrum project managers
with 4 to 10 years of experience, who are mostly members of
the same software company. At the end of the data collection,
we gathered a dataset with the following attributes:

• 31 different software projects profiles, each one with
its 5 features described;

• 31 different types of FR categories (e.g., “Login”,
“Status visualization”, etc.);

• 47 different types of NFR statements (e.g., “SSL en-
cryption”, “retrieved result must be paginated”, etc.);

• 130 functional requirements instances, where each
instance represents a FR of a software project and a
set of associated NFRs.

C. Offline Experimental Evaluation

In our experiment, we have two independent variables as
input source and two dependent variable as output information.
The first independent variable is represented by the number k
of neighbors considered in the generation of recommendations,
with 5 levels (1, 3, 5, 7 and 10). The second independent
variable is represented by the number j of recommended NFRs
that are considered to calculate the metrics, with 6 levels
(1, 3, 5, 7, 10 and |N̂ |, where N̂ represents the full list). Our
two dependents variable are represented by the precision and
the recall of the NFR recommendation achieved through a run
based on a set of independent variables.

To perform the experiment we use the 10-fold cross-
validation method, which randomly splits the dataset into 10
independent parts, and each part is used once as test set and
the remaining as training set. Therefore, we separate the whole
data into 90% for training and 10% for testing. Additionally,
we repeat the execution for each set of independent variables.
Thus, we have an amount of 300 runs.

D. Threats to Validity

The data collection was not done continuously during the
Sprints as indicated in the Scrum instrumentation, which is a
threat to internal validity. The size of the dataset is a threat to
external validity, because it is required to have a large dataset to
validate memory-based recommendation systems to represent
different cases of the domain. We plan to address both threats
in future work.

153

V. RESULTS AND DISCUSSION

In Figure 4, we present the scatter plot of the two evaluated
metrics (i.e., precision and recall), which summarizes the
results obtained in the experiments. For example, the averages
of precision and recall for the round with k = 10 and j = 5
are 44% and 73%, respectively.

Fig. 4: Results obtained in the experiments.

Considering that the domain of NFRs recommendation is
not sparse, since a FR is generally associated to a small number
of NFRs, we conclude the results of the offline experiments are
promising, since we observe rates of up to 81% of recall in the
recommendations (k = 7 and j = 10), i.e., we correctly rec-
ommended 8 out of 10 NFRs raised in the dataset. Moreover,
we observe recall rates greater than 70% and precision rates
of up to 49% based on lists of recommendations with a size
j equal to 5 (k ∈ {3, 5, 7, 10}), which can be easily handled
by Scrum Teams at Sprint Planning meetings and support the
early definition of NFRs. We also notice that the ideal number
of neighbors k is greater than or equal to 3.

Finally, we conclude that it is possible to automate the
definition of NFRs in scrum-based projects based on histori-
cal data. Furthermore, the precision observed in experiments
can be improved with a larger dataset, since the proposed
recommendation system is memory-based and the quality of
recommendations depends on the representativeness of the
dataset.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a NFRs recommendation system
to support Scrum practitioners to consider NFRs early in the
process. The proposed solution is divided into two main steps,
a Scrum instrumentation and a recommendation system. The
instrumentation contributes to the data collection process in
Scrum-based projects and can be used for different application
domains. The NFRs recommender uses historical data from
Scrum-based projects, which was not seen in previous works in
this research field. Therefore, our work can be used as baseline
for future works that intend to investigate this subject.

The offline experimental evaluation showed the feasibility
of automating the definition of NFRs through historical data
of Scrum projects. We observed an average recall rate of up
to 81%, which is promising. Although we observed values of

less than desired precision, we believe that the results can be
improved with a larger dataset.

For future work, we intend to keep the data collection
process to increase the dataset and improve its representative-
ness, and then, replicate experiments. Additionally, we intend
to carry out a case study with running Scrum-based projects
to evaluate recommendations in online environments.

ACKNOWLEDGMENT

The authors would like to thank CAPES for supporting this
work.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE TKDE, 17(6):734–749, 2005.

[2] V. Bajpai and R. P. Gorthi. On non-functional requirements: A survey.
In 2012 IEEE Students’ Conference on EECS, pages 1–4, March 2012.

[3] M. Bourimi, T. Barth, J. M. Haake, B. Ueberschär, and D. Kesdogan.
AFFINE for enforcing earlier consideration of NFRs and human factors
when building socio-technical systems following agile methodologies.
Lecture Notes in Computer Science, 6409 LNCS:182–189, 2010.

[4] T. Dingsyr, S. Nerur, V. Balijepally, and N. B. Moe. A decade of
agile methodologies: Towards explaining agile software development.
Journal of Systems and Software, 85(6):1213 – 1221, 2012. Special
Issue: Agile Development.

[5] D. Domah and F. J. Mitropoulos. The nerv methodology: A lightweight
process for addressing non-functional requirements in agile software
development. In SoutheastCon 2015, pages 1–7, April 2015.

[6] W. M. Farid. The normap methodology: Lightweight engineering
of non-functional requirements for agile processes. In Proceedings
of the 2012 19th APSEC - Volume 01, APSEC ’12, pages 322–325,
Washington, DC, USA, 2012. IEEE Computer Society.

[7] W. M. Farid and F. J. Mitropoulos. Normatic: A visual tool for modeling
non-functional requirements in agile processes. In 2012 Proceedings of
IEEE Southeastcon, pages 1–8, March 2012.

[8] A. Firdaus, I. Ghani, D. N. Abg Jawawi, and W. M. N. Wan Kadir.
Non functional requirements (NFRs) traceability metamodel for agile
development. Jurnal Teknologi, 77(9):115–125, 2015.

[9] A. Gunawardana and G. Shani. A Survey of Accuracy Evaluation
Metrics of Recommendation Tasks. The Journal of Machine Learning
Research, 10:2935–2962, 2009.

[10] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, predicting
and prioritizing (cepp) non-functional requirements metadata during the
early stages of agile software development. In SoutheastCon 2015,
pages 1–8, April 2015.

[11] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, and prioritizing
(cep) nfrs in agile software engineering. In SoutheastCon 2017, pages
1–7, March 2017.

[12] R. R. Maiti and F. J. Mitropoulos. Prioritizing Non-Functional Require-
ments in Agile Software Engineering. Proceedings of the SouthEast
Conference on - ACM SE ’17, pages 212–214, 2017.

[13] A. E. Sabry and S. S. El-Rabbat. Proposed framework for handling
architectural nfr’s within scrum methodology. In Proceedings of the
International Conference on SERP, page 238. The Steering Committee
of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2015.

[14] V. Sachdeva and L. Chung. Handling non-functional requirements for
big data and iot projects in scrum. In 2017 7th International Conference
on Cloud Computing, Data Science Engineering - Confluence, pages
216–221, Jan 2017.

[15] T. Suryawanshi and G. Rao. A Survey to Support NFRs in Agile
Software Development Process. 6(6):5487–5489, 2015.

154

DOI reference number: 10.18293/SEKE2018-0122

Analysis of Security Failure-Tolerant Requirements

Michael Shin
Texas Tech University

Department of Computer Science
Lubbock, Texas, USA
michael.shin@ttu.edu

Don Pathirage
Texas Tech University

Department of Computer Science
Lubbock, Texas, USA
don.pathirage@ttu.edu

Dongsoo Jang
Texas Tech University

Department of Computer Science
Lubbock, Texas, USA
dongsoo.jang@ttu.edu

Abstract - This paper describes an approach to analyzing
security failure-tolerant (SFT) requirements that are specified
by means of SFT use cases, along with security use cases and
application use cases for application systems. The SFT
requirements are analyzed with the analysis model that consists
of the static model and dynamic model. A meta-modeling
approach is taken to specify the static and dynamic models for
analysis of SFT requirements. Threats are identified in the
analysis of SFT requirements, and SFT countermeasures
against the threats are specified in the analysis model. An online
shopping system is used for illustrating our approach.

Keywords – Security Failure-Tolerant Requirements; Analysis of
SFT Requirements; Static Model; Dynamic Model; Threat; Meta-
Model

I. INTRODUCTION

Security services seem to be unbreakable and they can
protect security assets in applications from attacks. However,
this appearance is not a reality. Security services, such as
authentication, encryption or non-repudiation, are incorporated
into applications in order to achieve security goals of the
applications. Although the applications are designed by means
of security services, they are still vulnerable because the
security services can always be broken down as attack skills are
getting crafty [1, 2].

Several approaches [3, 4, 5, 6, 7, 8, 9, 10] have been
developed to make applications secure in software
development. Most of the approaches have focused on
specifying and designing applications using security services in
order to build secure applications. Security requirements are
specified with Unified Modeling Language (UML) [11, 12] and
its extended notation [3, 4], separately from application
requirements [7]. Secure software architecture is designed by
means of secure connectors [8, 9, 10, 13] that encapsulate
security services. However, less attention has been paid to the
tolerance of broken security services.

Security failure-tolerant (SFT) requirements in our previous
research [14] are specified to make applications tolerable when
security services are breached. SFT requirements are modeled
as SFT use cases, along with application use cases and security
use cases, against the threats identified in application use cases.
The SFT approach aims at reducing the possibility of security
damage to security assets in the applications from the breaches
of security services.

This paper is an extension of our research [14] by analyzing
SFT requirements specification using the analysis model that
represents the static and dynamic views of applications. The
research in [14] specifies SFT requirements using SFT, security
and application use cases against threats. This paper describes
the analysis of the use cases and finds new threats, which are
not identified in SFT requirements specification, and models
the threats in the analysis model. In addition, this paper attempts
to develop security and SFT countermeasures against the
threats.

This paper is organized as follows: Section 2 describes
related work for our research. Section 3 describes SFT
requirements specification. Section 4 describes the meta-model
for the analysis model of SFT requirements. Section 5 describes
the analysis of SFT requirements in terms of the static and
dynamic models. Section 6 describes the validation of our
approach. Section 7 describes conclusions and future work.

II. RELATED WORK

Related work focuses on threat modeling, secure software
development, and efforts to mitigate security failures so that
applications become more secure. There is some research on
security, but the research does not provide an adequate solution
for developing secure software systems that tolerate the failures
of security services.

Threat Modeling. Threats in a system have been modeled
by several approaches, which include attack trees [1], data flow
diagrams [15, 16], and UML-based modeling [17, 18, 19, 20,
21]. Attack trees in [1] provide an approach to modeling and
analyzing the threats of systems, and the threats are analyzed in
terms of attackers’ capabilities. The design models in the
research [15, 16] are specified with data flow diagrams, and the
threats to the models are identified and analyzed using scenarios
of each function in a system. Several threat-modeling
approaches, such as misuse cases [17, 18, 19], abuse cases [20]
and HAZOP (Hazard and Operability Analysis) [21], have been
developed for object-oriented software systems. The
approaches model threats using the use case model in UML and
specifies security requirements against them.

The misuse case model [17, 18, 19] extends the use case
model to misuse cases, along with actions that systems should
take to support security requirements. An inverse of a use case
is a misuse case, which is a negative requirement of a system
that should not occur. The scenario of each possible attack is
modeled using a misuse case. A use case description is analyzed
to identify misuse cases and their actors.

155

Secure Software Development. Some research for
developing secure software has been done in terms of secure
requirements and design. The studies in [3, 4] proposed a UML-
based modeling language for the model-driven development of
secure, distributed systems. The research in [22] illustrates an
ontology-based approach that uses predefined pattern-based
templates to aid requirements engineers in the formulation of
security requirements. Security patterns in [5, 6] address a broad
range of security issues that should be taken into account in the
stages of the software development lifecycle.

In earlier work by a coauthor in [7], an approach is described
to model complex applications by modeling application
requirements and design separately from security requirements
and design using the UML notation. In later work by a coauthor
in [8], an approach is described for modeling the evolution of a
non-secure application to a secure application in terms of the
requirements and software architecture. The recent work by
coauthors in [9, 10] proposes the design of reusable secure
connectors using a component-based approach in which
reusable secure connectors are structured into reusable security
components and communication components.

Mitigation of Security Failures. Security failures can be
mitigated by several approaches, such as layered security
(defense in depth) [23], intrusion tolerance [24], and self-
protection [25]. Layered security [23] addresses multiple facets
of a security on a network. It is made up of multiple layers of
complementary security technologies, so that all the
technologies work together to provide the required level of
protection.

The study in [24] presents the systematical notion of
intrusion tolerance by rearranging the concepts and design of
intrusion tolerance. Also the work in [26] presents a way to
combine preventive maintenance with an existing intrusion
tolerance system to improve the system security.

Self-protection [25] is a part of autonomic computing in
which a self-protection component controls the security of a
system without human interaction. To defend a system against
malicious attacks or cascading failures, a self-protection system
automatically prevents the attacks or failures.

III. SPECIFICATION OF SFT REQUIREMENTS

SFT requirements [14] are specified against threats to
application systems. The threats can be identified by considering
security assets described in the use case description. The threats
are represented using the use case notation in the use case model.
A threat use case may not have a specific actor because an
attacker can be any malicious persons or parties. A threat point
[14] is defined in the use case description for an application use
case where a security asset is contaminated if a security service
is broken and there is not any SFT service to protect the asset.
The threat to make order request use case in the online shopping
system [27] is modeled in Fig. 1a in which the release ID and
password threat threatens the make order request use case at the
ID and password threat point.

The requirements of security services for an application
system are specified with security use cases [7, 14] separately
from application use cases. When an application system
requires security services, the security use cases are extended

from the application use cases at extension points. An extension
point is a location in an application use case where a security
use case extends an application use case if the system requires
the security service. An application use case designates an
extension point in the use case description where a security use
case extends the application use case. The security use case for
the make order request application use case is depicted in Fig.
1b in which the check keystroke logging security use case is
extended from the make order request application use case if
the system requires the check keystroke logging security
service.

Fig. 1 Threat and Security use case and SFT use case for Make
Order Request application use case

SFT requirements for security services are modeled using

SFT use cases [14], which tolerate breaches of security services.
By careful separation of concerns, SFT requirements are
captured in SFT use cases separately from security use cases
and application use cases. A SFT use case extends an
application use case at an extension point if the system requires
the SFT service. The verify image SFT use case (Fig. 1b)
extends the make order request application use case at the
tolerant ID and password extension point if the system requires
the SFT service. The verify image SFT use case verifies that an
image selected by a customer is matched with the image that the
customer registered in the system. Even though the customer ID
and password are released to an attacker due to failure of check
keystroke logging security use case, the attacker would have to
know of the customer’s image registered in the system in order
to make a malicious purchase order.

IV. META-MODEL FOR ANALYSIS OF SFT REQUIREMENTS

SFT requirements are analyzed from the static model for
defining structural relationships between classes and dynamic
model for defining how objects participate in use cases. SFT
requirements are specified using the use cases that describe the
requirements of SFT applications. The static model is
developed using the class diagram in UML that determines the
classes supporting each use case of SFT requirements and
relationships between classes. The dynamic model is developed
using the communication diagram in UML that describes the
sequences of message communication between objects for each
use case.

Make Order Request
«application»

Check Keystroke
Logging

«security»

«extend»

Verify Image

«SFT»

«extend»

Secure ID and Password
Tolerant ID and Password

Customer

Customer

Make Order Request

Release
ID and Password

«threaten»
«threat» «application»

ID and Password

a) Threat to Make Order Request application use case

b) Security use cases and Security-Failure Tolerant use
cases for Make Order Request application use case

[System requires Check Keystroke
Logging security service]

[System requires Verify
Image SFT service]

156

 The static and dynamic models for SFT requirements
analysis are depicted in Fig. 2 using a meta-model, which is
extended from the meta-model for the class diagram and
communication diagram in UML. A meta-model describes the
meta-classes and relationships between the meta-classes. Any
class diagrams and communication diagrams instantiated from
the meta-model for SFT requirements analysis should follow
the meta-classes and relationships between the meta-classes
defined in the meta-model. The meta-model (Fig. 2) is
simplified by representing the underlying meta-classes and their
relationships associated with SFT requirements analysis.

Fig. 2 Meta-model for SFT Requirements Analysis

The meta-model for the class diagram (Fig. 2a) of SFT
requirements consists of class meta-class and relationship meta-
class. There is a relationship meta-class between class meta-
classes. A class meta-class is specialized to security class meta-
class or SFT class meta-class. A threat meta-class threatens a
class meta-class through a threaten meta-class. A threat meta-
class is described in a threat description meta-class. Similarly,
the meta-model for the communication diagram (Fig. 2b) of
SFT requirements is represented by means of object meta-class
and message meta-class in which an object meta-class may send
a message meta-class to or receive a message meta-class from
other object meta-classes. An object meta-class can be
specialized to a security object meta-class or SFT object meta-
class. An object meta-class in the meta-model for the
communication diagram is instantiated from a class meta-class
in the meta-model for the class diagram.

V. ANALYSIS OF SFT REQUIREMENTS

A. Static Modeling of SFT Requirements

The static model for SFT requirements defines the structural
relationships between application classes, security classes and
SFT classes. Application classes support application use cases,
whereas security classes are involved in realizing security use
cases. SFT classes are needed to implement SFT use cases. The
structural relationships between application, security, and SFT
classes depict the static view between the classes. The static
model for make order request application use case (Fig. 1b) is
depicted in Fig. 3 using the class diagram, which includes
Customer Interface, Customer Account and Delivery Order

classes (Fig. 3) for make order request application use case (Fig.
1b), Keystroke Logging Checker security class (Fig. 3) for check
keystroke logging security use case (Fig. 1b), and Image Verifier
SFT class (Fig. 3) for verify image SFT use case (Fig. 1b). The
Customer Interface class checks keystroke logging attack using
Keystroke Logging Checker security class, and it verifies the
image selected by a customer using Image Verifier SFT class.

Fig. 3 Static model for Make Order Request application use
case

B. Dynamic Modeling of SFT Requirements

The dynamic model for SFT requirements determines how
security objects and SFT objects participate in the sequence of
message communication between application objects. Security
objects are invoked by application objects if the application
objects require security services. Also, application objects
invoke SFT objects when they need SFT services in order to
tolerate the breaches of security objects. Security objects and
SFT objects are represented on the communication diagram
along with application objects.

The dynamic model for make order request application use
case is depicted in Fig. 4, which describes how security and SFT
objects are integrated into the sequence of message
communication between application objects. The Keystroke
Logging Checker security object checks malicious keystroke
logging software (messages M1.1 and M1.2 in Fig. 4) when a
customer initiates an order service (message M1 in Fig. 4). If
there is no keystroke logging software installed, Image Verifier
SFT object verifies whether the image selected by a customer is
matched with the customer’s image stored in the system
(messages M1.3 through M1.8 in Fig. 4). A customer’s order
request is sent to Purchase Order Manager business logic
object (messages M2 and M3 in Fig. 4), which requests a
customer’s account information from the Customer Account
entity object (message M4 in Fig. 4). The Purchase Order
Manager business logic object requests the authorization of a
customer’s credit card payment from a bank via Bank Interface
object when it receives a customer’s account information from
the Customer Account entity object (messages M5 through M6
in Fig. 4). If the bank approves a customer’s credit card payment
(message M7 in Fig. 4), Purchase Order Manager business
logic object stores an order in the Delivery Order entity object

Class

Security
Class

SFT
Class

Threat
Description

Threaten Threat Has 1 1..*

Described in

1

1 Has

1

1..*

Object

Security
Object

SFT
Object

1

Instantiated from

1..*

b) Meta-Model for Communication Diagram

a) Meta-Model for Class Diagram

Relationship
2..* 0..* Has

Message 0..* 1

Sends/Receives

Customer
Account

«entity»

«SFT»

Repudiate

Order Request

«threat»

Image
Verifier

«security»

Signature
Generator

Account
Logger

«SFT»

Sign Log

Customer
Interface

«user interface»

Delivery

Order

«entity»

«security»
Keystroke
Logging
Checker

Signature
Verifier

«security»

Check Verify Verify

«threaten»
«threaten»

157

(messages M8 and M9 in Fig. 4) and sends a confirmation email
to a customer via Email entity object (message M10 in Fig. 4).

Fig. 4 Dynamic model for SFT Make Order Request
application use case

C. Threat Modeling of SFT Requirements Analysis

Threats in SFT requirements specification focus on the
security assets that should be protected from attacks. A security
asset can be a security-relevant input to an application, secure
data maintained in an application, and a system itself on which
an application is running [17]. A security-relevant input to an
application is a user’s input to the application or an input from
an external system or device to the application in which the
inputs require security. An account identification (ID) or
password entered by a user to an application can be an example
of a security-relevant input to an application. Secure data stored
in an application can be a target of an attack. An example of
secure data can be the credit card information maintained by an
online shopping system or a patient’s medical records stored in
a healthcare system. Also, a system on which an application is
running should be a security asset when the system’s availability
affects the application’s availability.

New threats are found in the analysis of SFT requirements in
terms of confidentiality, integrity, or non-repudiation of
messages, which can be sent from an object to another. While an
object communicates a message with another object, the
message might require confidentiality. Also, some messages
should not be tampered with in an interaction between objects.
In addition, when an object sends a message to another, it might
need to prove who sends the message, so as to protect the non-
repudiation security.

New threats can be identified by examining the message
sequence between objects described in the communication
diagrams for SFT requirements analysis. Each use case is refined
by means of a communication diagram, which represents the
business logic using objects and message sequence between
objects. Some messages involved in the business logic might
need to be secure from the application perspective. The order
request (message M2 in Fig. 4) is created by a customer and is
sent to the Delivery Order entity object through the Purchase
Order Manager business logic object (messages M3 and M8 in
Fig. 4) after the customer’s credit card payment is approved by

a bank. The customer might deny the order request later due to
this or that reason after the customer made the order request.
The order request message is under a repudiation threat from the
application perspective.

The new threats identified in an analysis of SFT
requirements are modeled in the static model, which describes
application classes, security classes, and SFT classes. A threat is
represented by means of the class notation with the stereotype
«threat», and a threat class has a «threaten» dependency
relationship with a class (Fig. 2). The Repudiate Order Request
threat is modeled in the static model (Fig. 3) in which the
Repudiate Order Request threat threatens the Customer
Interface class and the Delivery Order entity class. This means
that the Customer Interface object and the Delivery Order entity
object in the dynamic model (Fig. 4) are under the Repudiate
Order Request threat.

Each new threat is defined in a short threat description that
describes threat name, description, security asset, security goal,
security class, and SFT class. The security class and SFT class
are the security countermeasure against the new threat. An
alternative to a short threat description, a threat can be analyzed
and specified in detail in terms of threat attributes, threat effect,
and security concern [2]. The following is the short threat
description for the Repudiate Order Request threat:

 Threat Name: Repudiate Order Request
 Description: Customer can repudiate the order request.
 Security Asset: Order Request
 Security Goal: Non-repudiation of order request
 Security class:

- Signature Generator security class
- Signature Verifier security class

 SFT class: Account Logger SFT class

As the analysis model of SFT requirements reveals a new threat,
a security service and its SFT service against the threat are
incorporated into the analysis model. The security and SFT
services are modeled through classes in the static model. A
digital signature security service is taken against the Repudiate
Order Request threat, being implemented using the Signature
Generator security class (Fig. 3), which signs a customer’s order
request using the customer private key, and the Signature
Verifier security class (Fig. 3), which verifies the order request
signed by the customer using the customer’s public key. Also,
an Account Logging SFT service is created against the Repudiate
Order Request threat, which is mitigated by the Account Logger
SFT class (Fig. 3) to record a customer’s access to the customer
account.

Security and SFT objects against a threat identified in the
analysis of SFT requirements are incorporated into the dynamic
model. The Signature Generator security object signs a
customer’s order request using the customer private key
(messages M2.1 and M2.2 in Fig. 4) before the order request is
sent by the Customer Interface object to the Purchase Order
Manager business logic object. The signed order request is
verified by the Signature Verifier security object (messages
M8.1 through M8.4 in Fig. 4) using the customer public key
obtained from a certificate authority before the Delivery Order

M1: Initiate Order Service
M1.6: Image Input
M2: Order Request & Key

M3: Order
Request

M11: Order
Confirmation

aCustomer
M1.5: Display Image
M1.9: Image Verified
M12: Customer Output

«proxy»
:Bank

Interface

M6: Authorize Credit
Card Request

M7: Credit Card
Approved

«entity»
:Delivery

Order

M8: Store
Order

M9: Order
Confirmation

«business
logic»

PurchaseOrder
Manager

«user
interface»
:Customer
Interface

«entity»
:Customer
Account

M4: Account
Request

M5: Account Info

«entity»
:Email

«security»
:Keystroke

Logging
Checker

«security»
:Signature
Generator

«security»
:Signature
Verifier

«SFT»
:Account
Logger

M1.1:
Check

M1.2: Checked

M10: Send Order
Confirmation Email

M2.1: Sign

M2.2:
Signature

M4.1: Logs

M8.1: Verify
Signature

M8.4: Signature
Verified

«SFT»
:Image
Verifier

M1.3 [No Keystroke logging]: check Image
M1.7: Verifies Image

M1.4: Image
M1.8: Verified

aCertificate
Center

M8.2: Request
Public Key

M8.3:
Public
Key

158

entity object creates a new order request. Also, the Account
Logger SFT object logs a customer’s access to the Customer
Account entity object (message M4.1 in Fig. 4) for proving the
customer’s transaction later.

VI. VALIDATION

A. Implementation

The dynamic model for the make order request application
use case (Fig. 4) was implemented along with the keystroke
logging checker, signature generator, signature verifier
security objects, as well as image verifier and account logger
SFT objects. The make order request application use case was
implemented on an online hosting sever to generate real world
results. The keystroke logging checker security object (Fig. 4)
was implemented as an antivirus agent, which was developed in
C# for this paper and ran on a customer’s local machine once
every 24 hours. The antivirus agent updates the security status
of the customer’s local machine in an online database. The
antivirus agent checks if the client’s machine installed anti-
keystroke logging software, such as Symantec Endpoint
Protection. The online shopping system connects to the online
database and checks the security status of the client’s machine,
which has been updated by the antivirus agent. If the database
indicates that the client’s machine is secure from keystroke
logging attack, the system allows the customer to proceed with
the order. If the system detects that the client’s machine does
not have an antivirus agent or does not have up to date anti-
keystroke logging software, it displays an appropriate warning
massage and stops the make order request use case. However,
no SFT service was implemented to protect the database. We
assumed that the database would remain secure for the
simplicity of our approach.

The Image Verifier SFT object (Fig. 4) accesses an image
repository in the online shopping system and displays a random
set of four images, including a customer’s personal image. The
system verifies that the image selected by the customer is
matched with the customer’s personal image stored in the
system. If the customer chooses a wrong image, the system
prompts a different set of images. If the customer selects an
incorrect image consecutively twice, the customer’s account is
locked.

The signature generator and signature verifier security
objects were implemented for the non-repudiation security

service. The signature generator security object computes a
signature for an order request using a secure hash algorithm 1
(SHA1) to generate a hash value, followed by an encryption of
the hash value using the customer’s private key. The signature
verifier security object verifies that the signature is correct for
the order request using the customer’s public key.

The account logger SFT object (Fig. 4) was implemented to
tolerate the breach of a digital signature. The account logger
SFT object logs the customer’s activities, including the
transaction time, customer’s information, and order details. The
log data is used later to confirm the validity of the order request.

B. Performance Analysis of SFT Requirements

This section describes the performance analysis of our
approach to see how much performance overhead occurs due to
SFT use cases that are specified for application and security use
cases. The computational performance of our approach was
measured using three approaches: (1) with standalone
application object approach, for running the application use
case with no security; (2) with security object approach, for
running the application use case with security objects; (3) with
security object and SFT object approach, for running the
application use case with security objects and SFT objects. 	

The performance was evaluated by measuring the average
time taken to complete the execution of three approaches, which
were run 20 times each to calculate the average execution time,
so that the performance evaluation would not be dependent on
a few exceptional running times. The average execution time
was calculated by measuring the run time of the program per
session, but it excluded the time that a customer interacted with
the system. Also, we assumed that the antivirus agent was
already installed on the client’s machine. Table 1 shows the
average execution time of the approaches and performance
comparison.

The second column of Table 1 shows that the average
execution time is 1.33 seconds for the make order request
application use case (Fig. 4). The third column of Table 1 shows
that the average execution time for the make order request
application use case with security objects (Fig. 4) is 1.57
seconds. The fourth column shows that the corresponding
average execution time for application use cases with both
security and SFT objects takes 1.64 seconds.

Table 1. Average execution time of approaches and performance comparison

Application use case

With

standalone

application

object

approach

With

security

object

approach

With security

object and

SFT object

approach

Time difference

between with

standalone

application

object approach

and with

security object

approach

Time difference

between with

standalone

application object

approach and with

security object and

SFT object

approach

Time difference

between with

security object

approach and with

security object and

SFT object

approach

Make order request

use case (Fig. 4)
1.33 s 1.57 s 1.64 s 0.24 s ≈ 18% 0.31 s ≈ 23% 0.07 s ≈ 3%

159

The fifth column of Table 1 indicates that there is the time
difference between the with standalone application object
approach and the with security object approach. Time
difference for the make order request application use case is
0.24 seconds (17 %) because the with security object approach
provides the application use case with security services. The
security services in the with security object approach consume
17% more processing time for logging account, and generating
and verifying a digital signature in the system; the with
standalone application object approach is faster because it
provides no security services.

Similarly, when an application use case is deployed with
both security and SFT objects, the average execution time is
increased further, as shown in the sixth column of Table 1. The
make order request application use case (Fig. 4) with security
and SFT objects takes 0.31 seconds, which is a 23% increase in
run time.

The last column indicates that the time difference between
with security object approach and with security object and SFT
object approach is 0.07 seconds for the make order request
application use case. This result indicates that with security
object and SFT object approach takes more execution time
(3%). However, the with security object and SFT object
approach makes the system more secure compared to the with
security object approach alone.

VII. CONCLUSIONS AND FUTURE WORK

This paper has described an approach to analyzing SFT
requirements. SFT requirements were analyzed by means of the
analysis model, which was represented using the class diagram
and communication diagram. The meta-model for the class
diagram and communication diagram was developed to specify
the static and dynamic models for an analysis of SFT
requirements. New threats were identified in the analysis of
SFT requirements, and security and SFT objects against the
threats were specified in the analysis model. Our approach can
be used by requirements engineers to specify security
requirements for applications, as well as SFT requirements
against the failures of security requirements.

This paper can be strengthened with further research. The
SFT requirements specification and analysis can be extended to
the SFT software architecture that describes the components
and their interaction for SFT applications. New threats could be
identified in the SFT software architecture and, if so, it is
necessary for both security and SFT services to be incorporated
into the software architecture. Also, we can investigate how
both security services and SFT services are encapsulated in
secure connectors [8, 9, 10, 13], along with communication
patterns.

REFERENCES
[1] B. Schneier, “Attack trees: Modeling security threats,” Dr.Dobbs Journal, pages 21–29,

December 1999.

[2] M. E. Shin, S. Dorbala, and D. Jang, “Threat Modeling for Security Failure-Tolerant
Requirements”, ASE/IEEE International Conference on Privacy, Security, Risk and
Trust (PASSAT2013), Washington D.C., USA, 2013.

[3] T. Lodderstedt, D. Basin, J. Doser, “SecureUML: A UML-Based Modeling Language
for Model-Driven Security”, Fifth International Conference on the Unified Modeling
Language, London, UK., 2002.

[4] J. Jürjens, “UMLsec: Extending UML for Secure Systems Development”, Fifth
International Conference on the Unified Modeling Language, London, UK, 2002.

[5] M. Schumacher, E. B. Fernandez, D. Hybertson, F. Buschmann, and P. Sommerlad,
“Security Patterns”, Wiley, 2006.

[6] E. B. Fernandez, “Security Patterns in Practice”, Wiley, 2013.

[7] H. Gomaa and M. E. Shin, “Modeling Complex Systems by Separating Application and
Security Concerns”, 9th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2004), Italy, April, 2004.

[8] M. E. Shin and H. Gomaa, “Software Modeling of Evolution to a Secure Application:
From Requirements Model to Software Architecture”, Science of Computer
Programming, Volume 66, Issue 1, pp. 60-70, 2007.

[9] M. E. Shin, B. Malhotra, H. Gomaa, and T. Kang, “Connectors for Secure Software
Architectures”, 24th International Conference on Software Engineering and
Knowledge Engineering (SEKE’2012), San Francisco, July 1-3, 2012.

[10] M. E. Shin, H. Gomaa, D. Pathirage, C. Baker, and B. Malhotra, “Design of Secure
Software Architectures with Secure Connectors”, International Journal of Software
Engineering and Knowledge Engineering, Vol. 26, No. 5, pp 769–805, 2016.

[11] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling Language User
Guide”, Second Edition, Addison Wesley, Reading MA, 2005.

[12] J. Rumbaugh, G. Booch, and I. Jacobson, “The Unified Modeling Language Reference
Manual (2nd Edition),” Addison Wesley, Reading MA, 2004.

[13] M. E. Shin, H. Gomaa, and D. Pathirge, Model-based Design of Reusable Secure
Connectors,” 4th International Workshop on Interplay of Model-Driven and
Component Based Software Engineering (ModComp2017), September 17, Austin,
Texas, USA, 2017.

[14] M. Shin and D. Pathirage, “Security Requirements for Tolerating Security Failures,”
29th International Conference on Software Engineering and Knowledge Engineering,
Pittsburgh, USA, July 5-7, 2017.

[15] P. Torr, "Demystifying the Threat-Modeling Process," IEEE Security and Privacy,
vol. 03, no. 5, pp. 66-70, Sept/Oct, 2005.

[16] M. Abi-Antoun, D. Wang and P. Torr, “Checking Threat Modeling Data Flow
Diagrams for Implementation Conformance and Security”, ASE 2007, 21 pages,
2006.

[17] G. Sindre and L. Opdahl, “Eliciting Security Requirements with Misuse Cases,”
Requirements Engineering, Volume 10 Issue 1, January 2005, pp. 34 - 44.

[18] P. Hope, G. McGraw, and A. I. Anton, ”Misuse and Abuse Cases: Getting Past the
Positive,” IEEE Software, 2003.

[19] I. Alexander, “Misuse Cases: Use Cases with Hostile Intent,” IEEE Software, vol.20,
no. 1, pp. 58-66, 2003.

[20] J. McDermott and C. Fox, “Using Abuse Case Models for Security Requirements
Analysis,” In Proceedings of 15th Annual Computer Security Applications
Conference (ACSAC`99), pp. 55-64, Phoenix, Arizona, December, 1999.

[21] T. Srivatanakul, “Security Analysis with Deviational Techniques,” PhD thesis,
Department of Computer Science, University of York, UK, 2005.

[22] D. Olawande, G. Sindre, and T. Stalhane, "Pattern-based security requirements
specification using ontologies and boilerplates", IEEE Second International
Workshop on Requirements Patterns (RePa), 2012.

[23] S. Gantz, “Layered Security Architecture: Establishing Authentication, Authorization,
and Accountability”, securityarchitecture.com/docs/, 2008.

[24] P. E. Veríssimo, N. F. Neves, and M. P. Correia, “Intrusion-Tolerant Architectures:
Concepts and Design”, Architecting Dependable Systems, Springer-Verlag, Berlin,
Heidelberg, 2003.

[25] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology”,
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf,
2001.

[26] Iman El Mir, D. S. Kim, and A. Haqiq. "Security modeling and analysis of a self-
cleansing intrusion tolerance technique." IEEE 11th International Conference on
Information Assurance and Security (IAS), 2015.

[27] H. Gomaa, “Software Modeling and Design: UML, Use Cases, Patterns, and Software
Architectures”, Cambridge University Press, 2011.

160

An Approach for System of Systems Requirements
Management

 Renata M. de Lima, Lisandra M. Fontoura
Programa de Pós-Graduação em Ciência da Computação, UFSM. Santa Maria, RS, Brazil

{rlima, lisandra}@inf.ufsm.br

Abstract—Systems of Systems (SoS) are becoming more common
in our society due to the diversity of stakeholders, heterogeneous
technology, ubiquity, or large-scale networks involved in the
development of software intensive systems. Consequently, there is
an increasing interest in closing the gaps still existing in the
System of Systems Engineering field, which is in constant growth
due to its complexity. Most of these gaps are related to the SoS
requirements management, the lack of well-defined and
standardized methods and techniques for Requirements
Engineering for SoS makes difficult the development and the
evolution of the overall SoS. In this paper we propose an
approach to requirements management for SoS through a
process capable of organizing the work among stakeholders and
managing changes in requirements, thus1 contributing to a more
adaptable evolutionary development of the SoS. The results of a
conformity assessment show that our approach is in conformity
with the most of international standards related to Systems
Engineering and Requirements Engineering.

Keywords-System of Systems; SoS; Capability Objectives;
Requirements Management; Requirements Engineering.

I. INTRODUCTION
In different application domains, it is possible to find

different systems working together to satisfy a specific goal.
This set of Constituent Systems (CS) collaborating with
each other establish a System of Systems (SoS). SoS is “a
set of systems that results when independent and useful
systems are integrated into a larger system that delivers
unique capabilities” [4]. The structural differences and the
diversity of stakeholders in a SoS development lead to
complexities and challenges unexplored by the SE [7].

Several studies indicate that there is a real need for a
requirements management that can facilitate the
collaborative work among the stakeholders and that can
support the evolution of SoS in a flexible and adaptable
way [7]. A well-defined management process for SoS
requirements would be capable to clarify the management
relationships among CS and SoS stakeholders, facilitating
the collaboration among them in the life cycle of the SoS
development. Thus, more consistent management options
would also facilitate the Requirements Engineering for SoS
activities, ensuring a more adaptable SoS development. In
this paper, we present an approach for SoS requirements
management, which aims to organize the work among the
stakeholders and the activities of the RESoS.

II. PROCESS DESCRIPTION

DOI reference number: 10.18293/SEKE2018-178

The proposed approach consists of a Requirements
Management Process for SoS (RMP-SoS) organized in three
activities: Manage Stakeholders, Elicit SoS Requirements and
Manage Changes & Validation. The process can be
implemented through the production of the documentation
using templates and following the workflow (illustrated in
Figure 1). The RMP-SoS is more adequate to be applied in
Directed SoS, because this type is built with a specific
purpose, so even though the CS can operate independently,
they are subordinated to a central managed purpose [8].

A. Activity 1: Manage Stakeholders
The first group of tasks aims to identify who are involved

in the RE activities for SoS, as well as their abilities,
knowledge and assign roles and responsibilities to the
stakeholders, develop a work plan for the next activities, and
facilitate the agreements among stakeholders.

1) Identify Stakeholders: This task has the main goal to
identify the main people who are involved in the requirements
activities related to the SoS and to the CS and describe their
abilities and knowledge. The responsible for this task is the
SoS Requirements Manager and the document generated is the
Stakeholders Register.

2) Assign Roles and Responsibilities: The purpose of this
task is to distribute roles and responsibilities among the
registered stakeholders. Roles and responsibilities may vary
over the SoS evolutionary development. The responsible for
this task is the SoS Requirements Manager, and the artifact
created is the Stakeholders Roles and Responsibilities.

3) Establish Collaboration Agreements: This task aims to
generate documents that express agreements and the level of
collaboration among stakeholders from CS and SoS involved
in the RE activities. In some ER tasks, it is essential that the
SoS requirements engineer get involved with the CS
requirements engineer to understand the nature of the CS
changes and evaluate impacts on SoS [4]. To meet this need, it
is necessary that agreements about sharing data and
information be clearly established. The SoS Requirements
Manager is responsible for this task and produce the
Collaboration Agreements.

4) Prepare RE Work Plan: In order to prepare and
authorize the beginning of the RE activities, it is necessary to
provide a summary of the work that will be done. It is needed
to define the SoS type, specify the project (SoS) scope and
context, the work purpose for this project phase, the
constraints, the requirements traceability policies, as well as
the list of stakeholders and their responsibilities [1]. The SoS
Requirements Engineer is responsible for the RE Work Plan.

161

Figure 1 - BPMN Diagram - Workflow of the RMP-SoS

B. Activity 2: Elict SoS Requirements:
This second activity has the purpose to organize all the tasks

for RESoS in order to generate a set of requirements ready for
incorporation to a future functional baseline for SoS.

1) Identify SoS Capability Objectives (SoS CO): It aims to
identify the capability objectives for SoS, describing in the
users language primary and secondary missions, the
operational constraints, and a general vision of the operational
environment [1]. The responsible is the SoS Requirements
Engineer, and the artifact is the SoS Capability Objectives.

2) Develop SoS Concept Of Operation (SoS Conops): This
task has the goal to describe the way the SoS functions works
by the user’s point of view [3]. SoS Conops document is
developed by the SoS Requirements Engineering with actively
participation of the SoS Users, who will describe the way they
are planning to use the SoS to meet their objectives.

3) Define SoS Requirements Space (SoS ReqSpace): In
order to limit the scope of SoS users primary needs and define
functionalities to promote the capabilities. And considering the
users environment variability, which impacts the way those
functionalities will be executed; the SoS Engineering team
develop the SoS Requirements Space document [2]. The
responsible for this task is the SoS Requirements Engineer.

4) Get Initial Requirements from Architecture: This task
has the goal to obtain the needed requirements to provide a
structure that allows changes in the SoS functionalities over its
evolution. SoS architecture is itself a requirements generator,
because when SoS engineers develop an architecture, they
need to overlap the CS in a structured way to make them work
together and share data. However, sometimes this structure
can be different from the original design of the CS.

Hence, some changes in the CS may be necessary to
support the SoS architecture [4]. In addition, after an
architectural construction or simulation, if the designer has
applied a good strategy, it is possible to identify and predict
emergent behaviors, which will be interesting for the

definition of requirements. SoS Requirements Engineer is the
responsible, with intensive collaboration of the CS
Requirement Engineers. The artifact is known as SoS Initial
Architecture Requirements.

5) Update SoS CO, SoS Conops and SoS ReqSpace: This
task has the main goal to update the documents based on the
corrections recommended by the Review Record, or
include/adapt an alteration approved by the Change Record
from the task Review SoS CO, SoS Conops and SoS
ReqSpace. The responsible is the SoS Requirements Engineer,
and the artifacts are SoS Capability Objectives, SoS Conops
and SoS Requirements Space documents updated.

6) Recommend Requirements for SoS: This task aims to
define the requirements that will be addressed in the next SoS
increment. The CS Requirements engineers work together
with the SoS Requirements Manager and Engineer to prioritize
and recommend relevant requirements for each iteration and
produce the SoS Recommended Requirements. Then, the
selected requirements are moved to the functional baseline to
be treated and addressed by the activities associated to the
Core “Addressing Requirements & Solution Options”.

C. Activity 3: Manage Changes
The tasks of this activity aim to review the documents for

validation and analyze problems or change requests.
1) Identify CS Requirements Changes:

 To identify changes in the CS requirements, SoS RE team
needs to connect to the process that manage the CS
requirements, and identify the changes that are capable of
affecting its capability objectives. The evolution of SoS is
directly related to the evolution of its CS [4]. Therefore, it is
important to keep a record of the changes and evolution
occurring in the CS and their impact on SoS. The SoS
Requirements Engineer and SC Requirements Engineers
perform this task. The document generated is CS Information
which impacts SoS Requirements.

162

2) Review SoS CO, SoS Conops and SoS ReqSpace:
Meetings among key stakeholders are performed to review

and validate the SoS Capability Objectives, the SoS Conops,
and SoS Requirements Space. All the key stakeholders may
participate, but the responsible is the SoS Requirements
Engineer. This task can generate a Change Request that is a
problem identified or a specific change purpose, which will be
analyzed in the sequence. Also, it can generate a Review
Record that points out necessary corrections to the documents.

3) Analyze Change Request
The task begins with a critical analysis of a problem

identified by the Review SoS CO, SoS Conops and SoS
ReqSpace, or of a specific proposal of change. The Change
Control Board performs an analysis of the problem or proposal
in order to verify its validity. If it is valid, the effect and
impact in terms of cost for the project is evaluated. Once the
analysis is done, the decision about to implement the change is
taken. The Change Control Board is responsible for generating
a Change Record or a new Change Request.

III. CONFORMITY ASSESSMENT
A conformity assessment is a demonstration that specific

requirements related to a product, process, system, person or
organizations are attended. This section summarizes the
assessment conducted to identify where the RMP-SoS is in
conformity with the international standards ISO|IEC|IEEE
15288 [8] and ISO|IEC|IEEE 29148 [5].

ISO|IEC|IEEE 15288 establishes a common framework of
process descriptions for describing the life cycle of systems
created by humans, defining a set of processes and associated
terminology. These processes can be applied at any level of
hierarchy of a system’s structure. Its Annex G brings an
application of these system life cycle processes to a SoS.

The Agreement Processes (G.3.2) says “they are crucial for
SoS because they establish the modes of developmental and
operational control among the organizations responsible for
the SoS and the independent CS”. The RMP-SoS has an
Establish Collaboration Agreements task, which aims generate
collaboration agreements to express how stakeholders will
collaborate with each other in a way that the operational
management independence of the CS is maintained.

Organizational project-enabling processes (G.3.3), “in a
SoS, the owners of a CS usually retain responsibility for
engineering their systems as they each have their own
processes. The SoS organization implement these processes
for the SoS for those considerations that apply to the overall
SoS”. For example, RMP-SoS is concerned with this topic
knowing all the stakeholders in the SoS requirements activities
and assigning them with roles and responsibilities adequately
through the tasks Identify Stakeholders and Assign Roles and
Responsibilities respectively.

Technical Management Process (G.3.4) “is applied to the
particular considerations of SoSE - planning, analyzing,
organizing and integrating the capabilities of a mix of existing
and new systems into a system of systems capability”. Also,
“the SoS organization must plan an integrated life cycle that
recognizes the independent changes in the CS, in addition to

the SoS-initiated changes in a life cycle that threats the SoS as
the system-of-interest”. In this context, we consider that RMP-
SoS uses some artifacts produced across the life cycle and the
evolution process of a SoS. For example, we consider the SoS
Architecture as generator of requirements, even though its
design is out of the RMP-SoS scope. Also, our proposed
process can be integrated in a life cycle that considerate
changes in the CS through the task Identify CS Requirements
Changes.

Finally, Technical Processes (G.3.5) are concerned with
technical actions throughout the life cycle”, and some of them
can be related to SoS. These technical processes are directly
related to requirements and they are addressed in our tasks
related to the RESoS in the Elicit SoS Requirements pool.

ISO|IEC|IEEE 29148 (2011) provides a unified treatment
of the processes involved in RE throughout the life cycle of
systems and software. For Stakeholder requirements definition
process (6.2) “the purpose is to define the requirements for a
system that can provide the services needed by users and other
stakeholders in a defined environment”. In this sense, RMP-
SoS attends all the activities proposed, because we are able to
Elicit Stakeholder Requirements (6.2.3.1) through the task
Identify Stakeholders, where we can identify the individual
stakeholders and their interest in the SoS throughout its life
cycle. Also, through the task Identify SoS Capability
Objectives we are able to elicit stakeholders requirements, that
is the capability objectives, from the identified stakeholders
and establish the traceability of the those requirements.

In order to Define stakeholder requirements (6.2.3.2) our
process uses the task Develop SoS Conops, to “define a
representative set of activity sequences to identify all required
services that correspond to anticipated operational and
supported scenarios and environments” and “identify the
interaction between the users and the system”, by means of
describing the operational environment and the operational
scenarios in the SoS operational users view.

The issues related to Analyze and maintain stakeholders
requirements (6.2.3.3) are addressed in part by our task called
Review SoS CO, SoS Conops and SoS ReqSpace, which
reviews the documents generated by the tasks mentioned
above and make sure that there is no conflicting, missing,
incomplete, ambiguous, inconsistent or unverifiable
requirements. If there is some problem, the task generates a
Review Record or a Change Request in order to fix this.

In Requirements Analysis Processes (6.3) the purpose is
“to transform the stakeholder, requirement-driven view of
desired services into a technical view of a required product
that could deliver those services”. RMP-SoS addresses this
recommendation by the definition of the SoS Requirements
Space. In order to Define system requirements (6.3.3.1), the
task Define SoS Requirements Space aims to limit the primary
needs of the stakeholders and define the functions to provide
those needs achieving the traceability between capabilities and
functionalities. Analyze and maintain system requirements
(6.3.3.2) is also addressed in part by the task Review SoS CO,
SoS Conops and SoS ReqSpace to ensure that the specified
system requirements adequately reflect the capability

163

objectives to address the stakeholders needs and expectations.
The standard also emphasizes that there are RE activities

in other technical processes. In Requirements in architectural
design (6.4.1), the Definition of the architecture (6.4.1.1) is
out of the scope of the RMP-SoS. However, we perform the
Analyze and evaluate the architecture (6.4.1.2) in a way that is
possible to identify which integration requirements are
missing by the tasks Get Requirements from Architecture and
in part by the Identify CS Requirements Changes.

About Requirements in verification (6.4.2), the purpose is
to confirm that the specified design requirements are fulfilled
by the system. For SoS, these issues related to the verification
should be done in execution time, and the activities are the
responsibility of the processes related to the Core Elements
“Assessing Performance to Capability Objectives” and
“Addressing Requirements and Solution Options”. The RMP-
SoS only provides input for defining and conducting a
verification plan based on requirements. The same assumption
is valid for Requirements in validation (6.4.3).

Finally, the clause related to Requirements management
(6.5) talks about the importance of “establish procedures for
defining, controlling, and publishing the baseline requirements
for all levels of the system-of-interest”. Our RMP-SoS is
totally about that, all the tasks pursue to identify, define,
maintain and prioritize consistent requirements during the
increments along the SoS life cycle.

About Change management (6.5.2) the standard says
“change has to be managed by ensuring that proposed changes
go through a defined impact assessment, review, and approval
process, and by applying careful requirements tracing and
version management”. These issues, in the RMP-SoS are
treated by the tasks Analyze Change and Update SoS CO, SoS
Conops and SoS ReqSpace. The first one analyses and
accesses the validity and the impact of the change in SoS
requirements. And the second one implements the change if it
was approved, or implement a correction pointed by the
Review SoS CO, SoS Conops and SoS ReqSpace.

V. DISCUSSION
Considering the conformity assessment presented, we

assume that our proposed process for SoS requirements
address the most of the recommendations suggested by the
two International Standards related to its field. It is important
to emphasize that there is no standard specific developed for
SoSE, and that until now the unique way is the application of
existing standards, such as ISO|IEC|IEEE 15288 [3].

In the case of ISO|IEC|IEEE 29148, we had to adapt some
concepts in order to make them applicable for SoS. For
instance, the stakeholder requirements mentioned can be
considered our “capability objectives” in the SoS context.
Some processes presented by this standard we understood that
they are out of scope of this SoS requirements management.
For example, Measurement for requirements (6.5.3) presents
activities we understand that is part of the processes related to
the Core Element Assessing Performance to Capability
Objectives, even though RE could benefit from this process, it
is not directly related to the tasks of the RMP-SoS.

In addition, the Information items (7), define three
documents as part of the RE processes. However, in the SoS
context these documents, even they are similar and have
almost the same proposal, they have different names and
different ways to be completed. For instance, the Stakeholder
requirements specification document (StRS) would be our SoS
Capability Objectives. In the same way, the System
Requirements Specification document (SyRS) would be the
union of our SoS Conops and SoS Requirements Space
translated into the SoS Requirements document.

VI. CONCLUSION AND FUTURE WORK
In this paper we presented a Requirements Management

Process for System of Systems (RMP-SoS), which aims to
organize the RE activities and the work among stakeholders,
by integrating techniques and methods from project
management and traditional requirements engineering,
providing support for translating capability objectives and the
definition of requirements and incorporating changes over the
evolutionary development of SoS. As a result of a first
conformity assessment, we understand that the process is in
conformance with the international standards of systems life
cycle processes and requirements engineering.

As future works we intend to improve templates to support
the RMP-SoS documentation and develop an online tool to
help the application of the process in real projects, which will
facilitate the communication among stakeholders and ensure
the geographical distribution of the CS is not a problem. After
that, the process will be empirically evaluated in a real project.

VII. ACKNOWLEDGMENT

We gratefully acknowledge financial support from
CAPES-Brazil, and the Brazilian Army through the SIS-
ASTROS Project (813782/2014), developed in the context of
the PrgEE-ASTROS 2020.

 REFERENCES

[1] ARNAUT, B. M., Ferrari, D. B., & e Souza, M. L. D. O. (2016,
October). A requirements engineering and management process in
concept phase of complex systems. In Systems Engineering (ISSE),
2016 IEEE International Symposium on (pp. 1-6). IEEE.

[2] DAHMANN, J., Rebovich, G., Lane, J. A., & Lowry, R. (2011). System
engineering artifacts for SoS. IEEE Aerospace and Electronic Systems
Magazine, 26(1), 22-28.

[3] DAHMANN, Judith; ROEDLER, Garry. Moving towards
standardization for system of systems engineering. In: System of
Systems Engineering Conference (SoSE), 2016 11th. IEEE, 2016. p. 1-6.

[4] DoD-USA (2008). Systems Engineering Guide for Systems of Systems.
Washington, DC.

[5] International Organization for Standardization. 2011. ISO/IEC/IEEE
29148—Systems and Software Engineering—Life Cycle Processes –
Requirements Engineering.

[6] International Organization for Standardization. 2015. ISO/IEC/IEEE
15288. Systems and Software Engineering. System Life Cycle
Processes: Annex G Application of System Life Cycle Processes to SoS.

[7] LIMA, Renata M.; VARGAS, Daniel. FONTOURA, Lisandra M.
System of System Requirements: A Systematic Literature Review using
Snowballing. In: SEKE: Software Engineering and Knowledge
Engineering. Pittsburgh, PA: KSI Research Inc. and Knowledge Systems
Institute, 2017. v. 29. p. 97 – 100.

[8] MAIER, M. W. (1996, July). Architecting principles for systems-of-
systems. In INCOSE International Symposium (Vol. 6, No. 1).

164

A Preliminary Investigation of Self-Admitted

Refactorings in Open Source Software

Di Zhang, Bing Li, Zengyang Li*, Peng Liang

School of Computer Science, Wuhan University

Wuhan, China

Abstract—In software development, developers commit code

changes to the version control system. In a commit message, the

committer may explicitly claim that the commit is a refactoring

with the intention of code quality improvement. We defined such

a commit as a self-admitted refactoring (SAR). Currently, there is

little knowledge about the SAR phenomenon, and the impact of

SARs on software projects is not clear. In this work, we

performed a preliminary investigation on SARs with an emphasis

on their impact on code quality using the assessment of code

smells. We used two non-trivial open source software projects as

cases and employed the PMD tool to detect code smells. The study

results shows that: (1) SARs tend to improve code quality, though

a small proportion of SARs introduced new code smells; and (2)

projects that contain SARs have different results on frequently

affected code smells.

Keywords-self-admitted refactoring; code smell; case study;

code quality

I. INTRODUCTION

Software systems are evolving over time once they are
delivered. Software evolution often comprises up to 75% of the
costs of software development [1]. However, the decrease in
quality and increase of complexity push developers and
practitioners to come up with flexible, maintainable, and
extensible techniques for improving software quality and
reducing change costs. One of these techniques is refactoring
that is “the process of changing a software system in such a
way that it does not alter the external behavior of the code yet
improves its internal structure [2].” Software maintainability
can be well indicated by code smells [3], while refactoring is a
recommended daily practice and considered as an effective way
to fix code smells [1].

Interestingly, developers often explicitly claim, in the
commit messages of version control systems, that their
modifications to the software system are refactorings. It means,
by definition, that the maintainability of the software system is
expected to have been improved. We call such code
modifications, claimed as refactorings by developers, self-
admitted refactorings (SARs). The concept of SAR is inspired
by [4, 5], in which the term of self-admitted technical debt was
introduced. Commits of a project can be divided into two
categories: SARs and non-SARs (commits without SARs).
Currently, there is little empirical evidence on whether SARs
do improve the structure quality of the code.

*Corresponding author. E-mail: zengyangli@whu.edu.cn.

 DOI reference number: 10.18293/SEKE2018-081

II. BACKGROUND AND RELATED WORK

A. Code Smells and Refactoring

Fowler et al. proposed to use code smells to indicate the
structure quality issues in code, which are possible refactoring
opportunities [2]. They defined 22 common code smells, e.g.,
duplicated code [2]. Later, some new code smells were
proposed. For instance, Kerievsky proposed 5 new code smells,
e.g., conditional complexity [6]. Refactoring can help improve
software design, software understandability, and development
efficiency [2]. An approach based on the quantitative analysis
of the dependencies between code smells was proposed by
Hamza [7], showing that some code smells require larger effort
to remedy and should be concerned by developers in
refactorings. Besides, the paper also presents the difference
between the code smells proposed by Kerievsky and Fowler.
However, in the commit records of a project, there are some
special refactorings that developers explicitly admit, and such
refactorings have seldom been investigated.

B. Code Smell Detection Tools

It is a complex and tedious work to detect code smells, and
tools for automatic detection of code smells are beneficial to
developers. Various methods and tools for automatic detection
of code smells were proposed [8]. DÉCOR, a method proposed
by Moha et al., has a good performance on specification and
detection of code and design smells [8]. Tools like Klockwork,
PMD, and FindBugs are the typical instances for detecting
potential code errors (e.g., naming flaw) and code smells (e.g.,
large classes). Some tools (e.g., PMD) have been applied into
software development practice.

III. STUDY DESIGN

We conducted a case study on two non-trivial OSS projects
written in Java and hosted on GitHub. We follow the guidelines
by Runeson and Höst [9] to describe the case study.

A. Objective and Research Questions

The goal of this study, described using the Goal-Question-
Metric (GQM) approach [10], is to analyze the impact of SARs
on source code for the purpose of validating its effectiveness in
improving maintainability of the code, from the point of view
of software developers in the context of OSS projects. We
formulated two main research questions (RQs) as follows:

RQ1: Do SARs improve the structure quality of source code?

Rationale: The aim of refactoring is to improve the internal

quality of software structure [2], thus, we want to explore

165

mailto:zengyangli@whu.edu.cn

whether SARs do improve the structural quality of source code.

This RQ can be further divided into two sub-RQs.

RQ1.1: Do SARs affect (introduce or reduce) code smells? If

yes, which code smells are affected most frequently?

RQ1.2: Do SARs tend to introduce less code smells than non-

SARs?

RQ2: What is the distribution of the severity levels of code

smells affected in SARs?

Rationale: Code smell detection tools (e.g., PMD) provide

code smells’ severity information, which suggests the priorities

of code smells for developers to fix. In SARs, the distribution

of code smell severity levels can be used to assess the status of

code quality.

B. Case and Unit of Analysis

According to Runeson and Höst [9], case studies can be
characterized based on the way they define their cases and units
of analysis. This study investigates the impact of SARs, thus
we use an SAR as the unit of analysis.

For case selection, we applied the following criteria:

 The project is with a history of more than 2 years.

 The project has at least 90% of its code written in Java,
since PMD is used to detect code smells and it is
dedicated to identifying code smells for Java source
code.

 The project has more than 20 SARs.

 The project has more than 10 committers.

 The source code of the project should be well
commented (high readability and analyzability) to
facilitate data analysis.

C. Data Collection

1) Data to be collected
To answer the RQs formulated in Section III.A, we

collected the data items listed in TABLE I, which also lists the
target RQ(s) of each data item.

TABLE I. DATA ITEMS TO BE COLLECTED

Data item Description Target RQs

D1 NCS – Number of

Code Smells

The number of code smells of a

software system of a revision

(commit)

RQ1.1,

RQ2

D2 DNCS – Delta of

the Number of

Code Smells

The change of the number of code

smells in a commit comparing with

its immediately previous commit;

DNCS>0 if NCS increases,

DNCS=0 if NCS does not change,

and DNCS<0 if NCS decreases

RQ1.1,

RQ1.2,

RQ2

D3 SLCS – Severity

Level of each

newly-introduced

code smell

The severity level of each newly-

introduced code smell in a commit

RQ2

2) SARs Collection
For each project, we performed the following steps:

(1) Download code repository. Download the code repository

of the project from GitHub.

(2) Export commit records. Export the commit records of the

project using the TortoiseGit client.

(3) Identify candidate SARs. According to the definition of

SAR, one way to identify SARs is to search the keywords in

the commit messages of the selected projects. Fowler et al.

defined 22 types of refactorings [2] , which can be used as

basis for SAR identification. We extracted key refactoring

verbs as detection roots from the refactorings, and the 22

roots of key words are shown in TABLE II. The output of

this step is a set of candidate SARs.

(4) Check candidate SARs manually. Check each candidate

SAR manually to exclude unexpected cases, e.g., the

developer might write ‘not to refactor’, but no refactorings

actually happened. Besides, we used a refactoring detection

tool called Ref-Finder [11], to check whether refactorings

had actually happened.

(5) Record commits of SARs. Record the commits

corresponding to the identified SARs in a spreadsheet. Each

commit contains revision number, committer, etc.

TABLE II. DETECTED KEY WORDS ROOTS

Key Words Roots

Refactor/Extract/Inline/Replace/Introduce/Rename/Move/Hide/

Encapsulate/Change/Convert/Separate/Decompose/Consolidate/

Add/Parameterize/Preserve/Pull up/Pull down/Collapse/Spilt/Substitute

3) Non-SARs Collection
To answer RQ1.2, for each selected project, it requires to

collect a set of normal commits that do not contain SARs. We
call such commits as non-SARs. We randomly selected a set of
non-SARs, and the size of the non-SAR set equals the number
of SARs in the project for eliminating the effect of quantity.

4) Code Smells Collection
We detected code smells through the PMD tool, which is a

widely-used code smell detection tool adopting a static
detection method. There are 33 rule sets and 237 detecting rules
(e.g., Cyclomatic Complexity) in PMD. For our case study, the
code repository of the selected projects were downloaded and
the corresponding code snapshots to SARs of the code
repository were exported. Then, we analyzed the source files of
the code snapshots corresponding to each SAR and its
immediately previous revision to get the differences of code
smells between the two code snapshots. Fig. 2 shows the
procedure of code smells collection. For each SAR or non-SAR
of each selected project, we performed the following steps:

(1) Export source code. Two revisions of a project need to be

exported: the revision corresponding to the SAR (or non-

SAR) (V1) and its immediately previous revision (V2).

(2) Detect code smells. Use the PMD plugin for eclipse to

detect code smells of revisions V1 and V2. The PMD

plugin will generate reports on the detected code smells.

(3) Export code smell reports. Export the code smell reports

generated in the previous step.

(4) Identify differences in code smell reports. Compare the

code smell reports of V1 and V2 to identify the differences

in code smells between the reports. We developed a

dedicated tool to accomplish this task.

5) Data Analysis
To answer the RQs formulated in Section III.A, we need to

analyze the collected data on SARs and code smells. For
RQ1.1, RQ1.2, and RQ2, only descriptive statistics were used.

166

IV. STUDY RESULTS

A. Selected Cases

We selected two OSS projects, i.e., Fastjson 1 and Junit4 2,
as the cases. The two OSS projects are widely used in many
software systems. TABLE III shows the demographic
information of the three selected projects. Fastjson has 111,247
lines of code, 121 SARs, and 1,662 commits; while Junit4 has
26,579 lines of code, 28 SARs, and 2,090 commits .

TABLE III. DEMOGRAPHIC INFORMATION OF THE SELECTED PROJECTS

Project Fastjson Junit4

Sponsor Company Alibaba Apache

Access Date 5/21/2016 5/19/2016

Contributors 116 120

Line of Code 111,247 26,579

Percentage of code written in Java 99.90% 99.00%

Number of commits containing SARs 121 28

Number of commits 1,662 2,090

Percentage of SARs against total commits 7.28% 1.34%

B. Results

1) Impact on code quality (RQ1)
RQ1.1: TABLE IV shows the number of SARs in the two
cases regarding the changed number of code smells. 70.25%
(85/121) and 67.86% (19/28) of SARs did not increase code
smells in Fastjson and Junit4, respectively. This suggests that
more than half of the SAR revisions of the two projects were
intended to decrease code smells compared with their previous
versions. That is a positive signal of improving code quality.

TABLE IV. DNCS IN SELF-ADMITTED REFACTORINGS

Project Fastjson Junit4

DNCS #(SAR) % #(SAR) %

DNCS > 0 36 29.75 9 32.14

DNCS = 0 39 32.23 9 32.14

DNCS < 0 46 38.02 10 35.72

DNCS ≤ 0 85 70.25 19 67.86

Total 121 100.00 28 100.00

We listed in TABLE V the top 5 code smells that are
affected (introduced or decreased) most. Among all types of
code smells, DataflowAnomalyAnalysis is the one that is
affected most frequently in the two cases. Specifically,
DataflowAnomalyAnalysis decreased in Fastjson and increased
in Junit4 most frequently. This type of code smells happened
most frequently as well.

TABLE V. TOP 5 MOST AFFECTED CODE SMELLS

Fastjson Junit4

Code smell DNCS NCS Code smell DNCS NCS

DataflowAnomaly

Analysis

-131 1153 DataflowAnomalyAnalysis 18 34

LooseCoupling -24 102 SignatureDeclareThrow

Exception

8 28

UnusedImports -20 84 TooManyMethods 6 8

CyclomaticComplexity -19 127 ConfusingTernary 3 5

SignatureDeclareThro

wException

-10 702 PreserveStackTrace 1 11

RQ1.2: As shown in TABLE VI, for Fastjson, there were 121

SARs, and thus 121 non-SARs were randomly selected for

1 https://github.com/alibaba/fastjson
2 https://github.com/junit-team/junit4

comparison. The number of code smells increased (DNCS>0),

kept unchanged (DNCS=0), and decreased (DNCS<0) in 76,

29, and 16 non-SARs, respectively. The number of code smells

increased, kept unchanged, and decreased, in 36, 39, and 46

SARs, respectively. 37.19% (45/121) of non-SARs did not

increase code smells while 70.25% (85/121) of SARs did not

increase code smells in Fastjson. It means that, compared with

non-SARs, SARs tend not to increase code smells in Fastjson.
However, different from Fastjson, in Junit4, more non-

SARs did not increase the number of code smells than SARs.
As shown in TABLE VI, 75.00% of non-SARs and 67.86% of
SARs did not increase code smells in Junit4.

TABLE VI. DNCS IN SARS AND NON-SARS

Project Fastjson Junit4

Name #(Non-SAR) #(SAR) #(Non-SAR) #(SAR)

DNCS > 0 76 36 7 9

DNCS = 0 29 39 11 9

DNCS < 0 16 46 10 10

DNCS ≤ 0 45 85 21 19

Total 121 121 28 28

Proportion (DNCS≤0) 37.19% 70.25% 75.00% 67.86%

2) Severity level distribution of affected code smells (RQ2)

 PMD can detect 237 types of code smells. The priority of

each code smell is defined in PMD, and it uses numbers 1 – 5

to denote the priority levels: Error High, Error, Warning High,

Warning, and Information. A smaller priority number of a code

smell means it is more important and more urgent to be fixed.

TABLE VII. PRIORITY DISTRIBUTION OF CODE SMELLS

PMD info Fastjson Junit4

Priority

#
(P

M
D

 c
o
d

e
sm

el
l

ty
p

e)

#
(D

et
ec

te
d

 c
o
d

e
sm

el
l

ty
p

e)

T
y
p

e
P

er
ce

n
ta

g
e

#
(D

et
ec

te
d

 c
o

d
e

sm
el

l)

D
N

C
S

#
(D

et
ec

te
d

 c
o
d

e
sm

el
l

ty
p

e)

T
y
p

e
P

er
ce

n
ta

g
e

#
(D

et
ec

te
d

 c
o
d

e
sm

el
l)

D
N

C
S

Information (5) 1 1 100.00 1153 131 1 100.00 34 18

Warning (4) 14 1 7.14 84 -20 1 7.14 4 0

Warning High (3) 188 77 40.56 6169 -327 55 29.26 559 137

Error (2) 19 2 10.53 96 8 1 5.26 4 -4

Error High (1) 14 6 42.86 813 -17 3 21.43 39 10

TABLE VII shows the distribution of default severity levels

of code smells identified by PMD. #(PMD code smell type)

represents the number of priorities of code smells that are

defined in PMD. DNCS is defined as the delta of the number of

code smells in SARs. #(Detected code smell type) is the

number of code smell types that were actually detected in a

project. Type Percentage denotes the proportion of detected

code smell types against all code smell types that can be

detected by PMD. #(Detected code smell) represents the

number of priorities of code smells that were actually detected

by PMD in the SARs. As shown in TABLE VII, in all the

SARs of Fastjson, 131 code smells with priority “Information”

and 8 with priority “Error” were introduced; 20 with priority

“Warning”, 327 with priority “Warning High”, and 17 with

priority “Error High” were removed. As for Junit4, the results

are similar in the distribution of code smell severity.

167

https://github.com/alibaba/fastjson

V. DISCUSSION

In this section, we discuss the study results and their

implications as well as threats to validity of the results.

A. Understanding on Study Results

RQ1.1: As shown in TABLE IV, more than one half of
SARs tend not to increase code smells in the two projects,
which indicates that the code quality is likely to be improved
through SARs. It is not surprising since developers take the
initiative to improve the maintainability of code in SARs.
However, the results imply that not all SARs can lead to quality
improvement of the source code. Only a small percentage of
SARs introduced new code smells. DataflowAnomalyAnalysis
is the code smell type that happened and affected most
frequently. The top 2 largest numbers of code smells may be
caused by the small granularity of code smell detection rules in
PMD.

RQ1.2: From the comparison between the two datasets of
SARs and non-SARs, 37.19% of non-SARs and 70.25% of
SARs did not increase code smells of project Fastjson, which
means less code smells introduced in SARs than in non-SARs.
Nevertheless, more non-SARs than SARs did not increase code
smells in Junit4, which indicates better performance of non-
SARs than SARs of Junit4 in code smells reduction. We
reviewed and used Ref-Finder to check the selected non-SARs,
and found that refactorings had happened in some non-SARs.
Additionally, the scale of Junit4 is relatively small, thus less
SAR information of Junit4 than Fastjson may lead to the
fluctuation of the results. Not all non-SARs do not contain
refactorings and not all SARs contain refactorings. SAR is a
signal to find refactorings happened, but it does not mean that
refactorings definitely happened in all SARs. This indicates
that some developers may not strictly distinguish refactorings
from normal code changes, which may result in
misunderstandings on developers’ modifications on code.

RQ2: As shown in TABLE VII, the priority types of
actually detected code smells cover all priority types defined in
PMD. Take Fastjson for example, 42.86% of the code smells
are with priority “Error High”. Code smells with priority
“Warning High” take the most proportion against all detected
code smells, which implies that the code quality of the studied
project may be moderate (similar performance in Junit4). This
may partially result from the fact that the numbers of
predefined code smell types are not balanced and most of code
smell types of PMD are with priority “Warning High” (see
TABLE VII). The number of code smells with priority “Error”
increased, which is a signal of code quality sliding and should
be paid special attention to.

B. Implications

More code smells means quality decline of a project, and in
our case study, SARs are generally a positive sign of code
quality improvement. However, some SARs may hurt the
quality of source code, i.e., a SAR may not be a real
refactoring. SARs indicate developers’ awareness of code
quality improvement, since the fact that developers claim
refactorings explicitly, to some extent, represents their
willingness to improve the structure quality of the code.

The distribution of severity levels of affected code smells in
SARs reflects the maintainability status of a project to certain
extent. When more code smells of high severity levels were
removed in SARs, the project’s maintainability would be more
improved.

VI. CONCLUSIONS

Self-admitted refactorings (SARs) were seldom studied in
previous research. In this work, we explored the SAR
phenomenon from multiple perspectives. Based on the results
on three studied OSS projects, we draw the following
conclusions: (1) SARs tended to improve code quality, though
a small proportion of SARs introduced new code smells. (2)
Different projects do not have the same results on frequent-
affected code smells. (3) More than half of SARs did not
introduce code smells; however, non-SARs did not suggest less
decrease of code smells than SARs. (4) In SARs, most code
smells are with a moderate priority of “Warning High” to fix.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China (Nos. 2017YFB1400602 and
2016YFB0800401), the National Natural Science Foundation
of China (Nos. 61572371, 61702377, 61472286, and
61773175), the Wuhan Yellow Crane Special Talents Program,
the CPSF (No. 2015M582272), the NSF of Hubei Province
(No. 2016CFB158), and the Fundamental Research Funds for
the Central Universities (No. 2042016kf0033).

REFERENCES

[1] M. Abebe and C.-J. Yoo, "Trends, opportunities and challenges of

software refactoring: A systematic literature review," International

Journal of Software Engineering and Its Applications, vol. 8, no. 6, pp.

299-318, 2014.
[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc., 1999, pp. 256-256.

[3] A. Yamashita and S. Counsell, "Code smells as system-level indicators

of maintainability: An empirical study," Journal of Systems and
Software, vol. 86, no. 10, pp. 2639-2653, 2013.

[4] A. Potdar and E. Shihab, "An Exploratory Study on Self-Admitted

Technical Debt," presented at the ICSME '14 Proceedings of the 2014
IEEE International Conference on Software Maintenance and

Evolution, Washington, DC, USA, 2014.

[5] E. Maldonado, E. Shihab, and N. Tsantalis, "Using Natural Language
Processing to Automatically Detect Self-Admitted Technical Debt,"

IEEE Transactions on Software Engineering, 2017.

[6] J. Kerievsky, Refactoring to Patterns. Addison-Wesley Professional,
2004, p. 400.

[7] H. Hamza, S. Counsell, T. Hall, and G. Loizou, "Code smell eradication

and associated refactoring," in European Computing Conference
(ECC'08), Malta, 2008, pp. 102-107: Springer.

[8] N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. L. Meur, "DECOR:

A Method for the Specification and Detection of Code and Design
Smells," IEEE Transactions on Software Engineering, vol. 36, no. 1,

pp. 20-36, 2010.

[9] P. Runeson and M. Höst, "Guidelines for conducting and reporting case
study research in software engineering," Empirical Software

Engineering, vol. 14, no. 2, pp. 292-295, 2008.

[10] V. R. Basili, Software modeling and measurement: the
goal/question/metric paradigm. University of Maryland at College

Park, 1992.

[11] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, "Template-based
reconstruction of complex refactorings," in 2010 IEEE International

Conference on Software Maintenance, 2010, pp. 1-10.

168

Formalization and Verification of the OpenFlow
Bundle Mechanism Using CSP

Huiwen Wang Huibiao Zhu∗ Yuan Fei Lili Xiao
Shanghai Key Laboratory of Trustworthy Computing,

School of Computer Science and Software Engineering,
East China Normal University, Shanghai, China

Abstract—Software Defined Network (SDN) is an emerging
architecture of computer networking. The most important feature
of SDN is that it separates the control plane from the data
plane. OpenFlow is considered as the first and currently most
popular standard southbound interface of SDN. It is a commu-
nication protocol which enables the SDN controller to directly
interact with the forwarding plane. The widespread use makes
the reliability of OpenFlow important. The OpenFlow bundle
mechanism is a new mechanism proposed by OpenFlow protocol
to guarantee the completeness and consistency of the messages
transmitted between SDN switches and controllers during the
communication process. Due to the requirement of reliability and
security of OpenFlow, we think that it is of great significance to
formally analyze and verify the safety-relevant properties of the
mechanism. In this paper, we apply Communication Sequential
Processes (CSP) and the model checker Process Analysis ToolKit
(PAT) to model and verify the OpenFlow bundle mechanism.
Our formalization and verification show that the mechanism can
satisfy four properties: deadlock freeness, parallelism, atomicity
and order property, from which we can conclude that the
mechanism offers a better way to guarantee the completeness
and consistency.

Keywords—OpenFlow; Bundle Mechanism; Formalization;
Verification

I. INTRODUCTION

Software Defined Network (SDN) is an emerging archi-
tecture of computer networking which is totally different
from the current network infrastructure. SDN separates the
control plane and the data plane to realize the flexibility
and programmability of the network. OpenFlow protocol was
originally proposed for campus network [1]. It is the first and
currently the most popular southbound interface of SDN. It
first defines the communication protocol which enables the
SDN controller to directly interact with the forwarding plane
consisting of network devices such as switches [2]. Therefore,
formalizing and verifying the mechanism of OpenFlow proto-
col is necessary.

OpenFlow protocol supports three kinds of messages:
controller-to-switch messages, asynchronous messages and
symmetric messages [3]. The bundle message is a kind of
controller-to-switch messages put forward to guarantee the
consistency and completeness of communication. In recent
years, several methods have been given to solve problems
like packet losses and duplications [4]. The bundle mechanism
is one of the solutions proposed by OpenFlow. A bundle is

∗Corresponding Author. E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu).

a sequence of OpenFlow messages sent from the controller
to the switch and all the modifications in these messages
are applied as a single operation. The bundle mechanism
groups related changes and applies them together so that the
completeness can be guaranteed [5]. And it also supports the
order property. It means that the modifications inside a bundle
should be applied in sequence. Our work in this paper is to
model and verify the mechanism.

The remainder of this paper is organized as follows. In
section 2, we present an overview of the OpenFlow bundle
mechanism and a brief introduction to CSP. Section 3 shows
the formalization of the OpenFlow bundle mechanism. The
implementation and verification of the model are presented in
section 4. Finally, we conclude the paper and discuss some
possible future work in section 5.

II. BACKGROUND

In this section, we give an overview of the OpenFlow bundle
mechanism and a brief introduction to the CSP is presented
as well.

A. The OpenFlow Bundle Mechanism

OpenFlow specification has defined a configuration that the
switch uses bundle messages as a transmission manner. A
sequence of OpenFlow messages sent from the controller to
the switch is stored in a bundle. Each bundle is specified with
a unique bundle ID in a specific controller connection.

The bundle messages are transmitted between the controller
and the switch. And there are two kinds of bundle messages:
the bundle control message and the bundle add message. The
bundle control message is used to perform operations on
a bundle, e.g. open operation, close operation and commit
operation. The bundle add message is formatted as a regu-
lar OpenFlow message which includes modifications in the
message to be applied later. The bundle message has two
properties: atomicity and order property, which are shown by
the parameter flag. Atomicity means that the modifications
should be done all or nothing. And order property means that
the modifications should be executed in the order they are
added in the bundle.

When a bundle is open, messages can be stored in the
bundle without being applied. When the switch commits a
bundle, the bundle should be closed and the switch should pre-
validate the modifications inside the bundle and commit the

DOI reference number: 10.18293/SEKE2018-127 169

bundle afterwards. The whole process includes the following
five oprations: opening a bundle, adding a message to a bundle,
closing a bundle, committing a bundle and discarding a bundle.
The detailed descriptions are presented as below:

1) Opening a bundle: The switch opens a new bundle
according to the connection ID and bundle ID pairs. The
switch should guarantee the validity of the connection
ID, by checking whether the bundle already exists and
verifying the correctness of other properties.

2) Adding a message to a bundle: The switch adds mes-
sages into a bundle and then the switch fetches the
bundle by the ID pairs. Once fetched successfully,
the switch validates properties of the added OpenFlow
messages. For example, the switch should guarantee the
consistency of the OpenFlow messages.

3) Closing a bundle: The switch closes the fetched bundle.
A bundle should be closed before it is committed while
a nonexistent bundle can not be closed.

4) Committing a bundle: The switch commits the fetched
bundle. If a bundle is not closed, the switch closes
the bundle and then commits it. The process of com-
mitting should satisfies the features of atomicity and
order property. The modifications should be applied in
all or nothing and in order. Whether the committing
is successful or not, the switch discards the bundle
afterwards.

5) Discarding a bundle: A bundle can be discarded during
the whole process from the creation of the bundle. But
if the bundle does not exist, the operation fails.

In addition, the switch must support the exchange of echo
messages during the transmission of bundle messages to
guarantee the liveness of the connection.

B. CSP

A brief overview of CSP is given in this subsection. Process
algebra is a representative of the formal methods, which can
illustrate concurrent systems easily using intuitive expressions
and strict mathematical theories. CSP is proposed by C.A.R
Hoare in 1978, which enriches process algebra [6]. Due to the
powerful expression, CSP has been successfully applied in
many fields [7], [8]. CSP processes are composed of primitive
processes and actions. The syntax of a subset of the CSP is
given as below. P and Q are two processes. a and b are two
actions. And c is a channel.

P,Q ::=Skip|Stop|a → P |c?x → P |c!v → Q|P / b . Q

|P ;Q|P�Q|P ||Q|P |||Q||P [|X|]Q

• Skip denotes that a process does nothing but terminates
successfully.

• Stop denotes that the process is in the state of deadlock
and does nothing.

• a → P represents that the process first engages in action
a, then the subsequent behaviour is like P .

• c?x → P receives a message through the channel c and
assigns it to a variable x, then behaves like P .

• c!v → Q sends a message v using the channel c, then the
behaviour is like P .

• P / b .Q denotes if the condition b is true, the behaviour
is like P , otherwise, like Q.

• P ;Q performs P and Q sequentially.
• P�Q behaves like either P or Q and the choice is made

by the environment.
• P ||Q denotes that P runs in parallel with Q.
• P |||Q indicates that P interleaves Q which means P and

Q run concurrently and randomly.
• P [|X|]Q indicates that P and Q perform the concurrent

events on the set X of channels.

III. FORMALIZATION OF THE OPENFLOW BUNDLE
MECHANISM

In this section, we model the OpenFlow bundle mechanism
using CSP. The formalization is based on the description of
the mechanism presented in section 2.

A. Sets, Messages and Channels

For convenience, we define seven sets in our model. The
set ConnectionID represents identities of connections and
the set BundleID represents identities of bundles. The set
Type denotes types of bundle messages, e.g echo, open,
close, commit and discard. The set Flag shows the two
properties of a bundle, e.g. atomicity and order property. The
set Operator represents operations of switches. The set State
indicates the states of the bundle including open and close.
And the set Content represents other message contents. Based
on the definitions above, we model the messages used in the
mechanism as below:

MSG=dfMSGecho ∪MSGcon swt ∪MSGswt bun,

MSGcon swt=dfMSGcon ∪MSGadd ∪MSGerr,

MSGswt bun=dfMSGreq ∪MSGrep ∪MSGerr,

MSGecho=df{connection id.content|content ∈ Content,
connection id ∈ ConnectionID}.

MSGcon=df{connection id.bundle id.type.flag|
connection id ∈ ConnectionID,
bundle id ∈ BundleID,
type ∈ Type, flag ∈ Flag},

MSGadd=df{connection id.bundle id.flag.content|
connection id ∈ ConnectionID,
bundle id ∈ BundleID,
flag ∈ Flag, content ∈ Content},

MSGerr=df{connection id.bundle id.type|
connection id ∈ ConnectionID,
bundle id ∈ BundleID, type ∈ Type},

MSGreq=df{connection id.bundle id.operator.content|
connection id ∈ ConnectionID,
bundle id ∈ BundleID,
operator ∈ Operator, content ∈ Content},

170

MSGrep=df{connection id.bundle id.operator.state|
connection id ∈ ConnectionID,
bundle id ∈ BundleID,
operator ∈ Operator, state ∈ State}.

We define three kinds of channels to model the communi-
cation among components:
• ComCS is a channel for controllers and switches to

transmit bundle messages.
• ComSB is a conceptual channel used to represent the

communication between the switch and its bundle process
field.

• ComEcho is an optional channel for controllers and
switches to transmit echo messages.

B. Components

In this subsection, we use CSP to model OpenFlow con-
trollers and switches which adopt bundle messages in the
transmission manner. There are two levels in the model system.
The first level happens between the controller and the switch.
In the second level, the switch will search the bundle field it
stores for the specific connection. To simplify, we abstract
a component Bundle communicating with the switch to
simulate the process that the switch searches the bundle field.
Our whole model is composed of three processes: Controller,
Switch and Bundle.
Controller. The controller sends a sequence of OpenFlow
modification requests in a bundle to switches. After that the
controller will receive the response messages from switches.
Each connection between a controller and a switch has an
identity. At the same time, the controller supports exchanging
echo messages to check the liveness of the connection. We
model the behaviors as followed:

Controller(connection id, bundle id, type)=df (ComEcho!Msgecho → ComEcho?Msgecho)
/type = echo.
(ComCS!Msgcon swt → ConCS?Msgcon swt)

→ Controller(connection id, bundle id, type);

Switch. After receiving the message sent from the controller,
the switch will search its bundle field to perform validations
corresponding to the message received. We abstract the process
as the communication between the switch and its bundle field.
The switch sends a request message to its bundle field and
receives a response after the bundle field checks the request
message. Then the switch sends a corresponding response
message to the controller. We model the behaviors as below:

Switch(connection id, bundle id, type)=df

ComEcho?Msgcon swt →
(ComEcho!Msgecho)
/type = echo.
(ComSB!Msgswt bun → ComSB?Msgswt bun

→ ComCS?Msgcon swt)

→ Switch(connection id, bundle id, type);

Bundle. It is a process abstracted out from the performance
of switches after receiving bundle messages. The bundle fields

store bundles created by a switch. And the pre-validations of
messages happen in this process. The detailed description can
be found in section 2.The behaviors are modelled as below:

Bundle(connection id, bundle id, operator)=df

Com?MSGswt bun →
Assort(connection id, bundle id, operator);(

Com!MSGswt bun →
Bundle(connection id, bundle id, operator)

)
;

Assort(connection id, bundle id, operator)=df

if(operator == opn)
then(openBundle(connection id, bundle id, operator))
elseif(operator == add)
then(addBundle(connection id, bundle id, operator))
elseif(operator == cls)
then(clsBundle(connection id, bundle id, operator))
elseif(operator == cmt)
then(cmtBundle(connection id, bundle id, operator))
elseif(operator == dis)
then(delete());

The five operations are described respectively as below:
1) openBundle(connection id, bundle id, operator)

creates a new bundle in the switch’s bundle field. The
switch must perform the following validations. The
connection should be reliable and the bundle id should
refer to a nonexistent bundle. And if the two conditions
are satisfied, the value of bundle id should be set to
false and the state of the bundle is set to open and
then return true.

openBundle(connection id, bundle id)=df
setContent(true, setBundleID(false),
setState(open))

/

(
(connection id ∈ ConnectionID)

∧ (bundle id /∈ BundleID)

)
.

setContent(false)

; openBundle(connection id, bundle id);

2) addBundle(connection id, bundle id, operator)
adds messages to a bundle. When the switch adds
messages, it should first fetch the bundle using the
bundle id and connection id pair. We define the
parameter vars as the number of messages to be added.
If the fetched bundle is open and other properties are
legal, the switch can add the message successfully and
return true.

addBundle(connection id, bundle id)=df |||i∈vars
setContent(true, setMsgNum(num+ 1))

/

 (connection id ∈ ConnectionID)
∧ (bundle id ∈ BundleID)
∧ (statebundle id = open)

 .

setContent(false)

; addBundle(connection id, bundle id);

3) clsBundle(connection id, bundle id, operator) clos-
es a bundle after finishing adding messages. And the

171

bundle to be closed should be fetched successfully with
connection id and bundle id pairs and its state should
be open. Once all these validations are successful, the
bundle state is set to close and return true.

clsBundle(connection id, bundle id)=df
setContent(true, setState(close))

/

 (connection id ∈ ConnectionID)
∧ (bundle id /∈ BundleID)
∧ (statebundle id = open)

 .

setContent(false)

; clsBundle(connection id, bundle id);

4) cmtBundle(connection id, bundle id, operator)
commits the bundle. After fetching the bundle with
legal connection id and bundle id pairs, the switch
performs the following actions. Firstly, if the bundle
state is open, the switch closes the bundle and then
continues to commit the bundle. Secondly, it verifies
the flag associated with the bundle and performs the
corresponding actions.

cmtBundle(connection id, bundle id)=df

appMsg(connection id, bundle id);(
setContent(true, setCmtNum(MsgNum));
disBundle(connection id, bundle id)

)
/

 (connection id ∈ ConnectionID)
∧ (bundle id ∈ BundleID)
∧ (statebundle id = close)

 .

(
clsBundle(connection id, bundle id);
cmtBundle(connection id, bundle id)

)
/

 (connection id ∈ ConnectionID)
∧ (bundle id ∈ BundleID)
∧ (statebundle id = open)

 .(
setContent(false, setCmtNum(0));
disBundle(connection id, bundle id)

)

; cmtBundle(connection id, bundle id);

5) disBundle(connection id, bundle id, operator) dis-
cards the bundle fetched with the connection id and
bundle id pair. Then it sets the bundle id to be 1 and
deletes all the messages in the bundle regardless of the
bundle state.

disBundle(connection id, bundle id)=df
setContent(true, setBundleID(true),
setMsgNum(null))

/

(
(connection id ∈ ConnectionID)

∧ (bundle id ∈ BundleID)

)
.

setContent(false)

; disBundle(connection id, bundle id);

And the mechanism should support the exchange of echo
messages and creations of multiple bundles. We add the two
processes into our model as below:
Echo. Exchanging echo request and echo reply messages
is supported during the whole process of the bundle. Echo
messages are not included in a bundle and only transmit-
ted between the controller and the switch with the channel

ComEcho. And multiple connections may be included. Mul-
tiple bundles can be created in parallel. We use N to represent
the number of interleaving connections.

Echo()=df |||i∈N Controller(i, bundle id, echo)
|[ComEcho]|
Switch(i, bundle id, echo)

BundleSys. The process of the creation of the bundle can
be modeled as the parallel composition of the the controller,
switch and bundle process and multiple connections may be
included. N and M represents the number of connections and
the number of bundles respectively.

BundleSys()=df |||i∈N,j∈M,type∈Type Controller(i, j, type)|[ComCS]|
Switch(i, j, type)|[ComSB]|
Bundle()

C. System

After modeling the processes Echo() and Bundle(), the
OpenFlow Bundle architecture can be modeled as the con-
currence of the two processes.

System()=dfEcho()|||BundleSys()

Fig.1 shows the whole system we have modeled. We
mark the Echo part of the system with color blue and the
BundleSys part with color black.

Fig. 1. Modeled System of OpenFlow Bundle Mechanism

IV. IMPLEMENTATION AND VERIFICATION

In this section, we encode the CSP description above in PAT
code and perform a series of validations. The verification is
about four key properties of the OpenFlow Bundle Messages
transmission. They are Deadlock Freeness, Parallelism, Atom-
icity and Order Property. In the following part, we give the
detailed description.

A. Implementation in PAT

PAT is a model checker tool for automatic system analysis
based on CSP [9]. Many systems can be verified in PAT such
as concurrent real-time system, probabilistic systems and other

172

domains [10], [11]. In this subsection, we encode our model
in PAT and verify it.

We define some significant channels and variables. N repre-
sents the number of connections between multiple controllers
and a switch. M denotes the number of bundles stored in
bundle field. P indicates the number of messages added into
a bundle. We use channel ComCS[N], channel ComSB[N]
and channel ComEcho[N] to describe different transmissions.

In the trial, we set N to be 3, M to be 2 and M to be
4 randomly respectively. And the buffer size is set to be 0 to
ensure the communication among components is synchronous.

#define N 3;
#define M 2;
#define P 4;
channel ComCS[N] 0;
channel ComSB[N] 0;
channel ComEcho[N] 0;

We define some arrays to determine whether the process is
successfully executed. We set the variables to be 1 to represent
true and 0 to represent false. We also define some other arrays
to record the state of the bundle, the messages added inside
the bundle and the message committed as the executed results.
Some of the declarations are given as below:

var EchoReturn = true;
var msgNum[N*M];
var cmtNum[N*M];

We define five functions with the same passing parameters
and call them with different values. Then we implement the
processes from the creation to the discard of a bundle. Because
there may be multiple controllers connected to a switch and
more than one bundle, we use subBundleSys to represent a
single connection and use i,j as connection id and bundle id
to distinguish it.

subBundleSys(i,j)=
(OpenBundle(i,j);AddBundle(i,j);
CloseBundle(i,j);CommitBundle(i,j)
|||Echo(i);

The OpenFlow Bundle message transmission system can
be implemented by taking advantages of non-determinism and
interleaving, with i identifying the number of each connection.
We give the definition of the complete system as follows:

BundleSystem()=
Init();(|||i:{0..N-1}@subBundleSys(i,0));

B. Verification

In this subsection, we use model checker PAT to simulate
the execution of transmission of OpenFlow bundle messages
and verify the properties. PAT searches the state space of the
system until it locates a counterexample or exhausts the state
space.
Property 1: Deadlock Freeness

If a component waits to receive information and no other
components feel like sending messages to it, the system gets

stuck in a deadlock state. A security protocol should be free
of deadlock. PAT tool provides a primitive assertion to verify
the property as below:

#assert BundleSystem() deadlockfree;

We can conclude from Fig 2 that the system is free of
deadlock.
Property 2: Parallelism

The system must support exchanging echo messages. Par-
allelism means echo messages can be transmitted without
waiting for the end of the bundle and support multiple
controller channels as well. It allows multiple bundles to be
created in parallel. Randomly, we define three bundles created
by different controllers and we add four messages into each
bundle. Our goal is that in the end, the number of messages
that each bundle commits successfully is four.

#define Parallelism(cmtNum[0] == 4&&
cmtNum[1] == 4&&
cmtNum[2] == 4);

#assert BundleSystem() reachesParallelism;

Fig 2 shows that the verification result of parallelism is
valid which means that the mechanism can support exchange
echo messages with multiple bundle messages transmitted in
parallel.
Property 3: Atomicity

Atomicity means that the switch should commit the mes-
sages inside the bundle in an all-or-nothing way. If one or more
messages stored in the bundle can not be committed properly,
then no messages will be committed. All the messages should
be pre-validated. We set the values to true or false to determine
whether it can be committed successfully. Then we check
whether the number of committed messages of each bundle
is zero or all.

#define Atm0(cmtNum[0] == 0 xor cmtNum[0] == 4);
#define Atm1(cmtNum[1] == 0 xor cmtNum[1] == 4);
#define Atm2(cmtNum[2] == 0 xor cmtNum[2] == 4);
#define Atomicity(Ato0 && Ato1 && Ato2);

If the verification is valid, the OpenFlow bundle mechanism
can guarantee atomicity.

#assert BundleSystem() |= Atomicity;

As shown in Fig 2, the bundle commits either all the
messages inside it or none of the messages which satisfies
the atomicity property.
Property 4: Order Property

If the switch supports the order property, it should strictly
commit the messages according to the order they added. We
use array msgApplied to represent whether the message is
committed. There are three valid conditions listed as follows.
None of the messages is committed. The former messages are

173

committed and the latter ones are not. And all of the messages
are committed.

#define NoApl(msgApplied[0] == 0&&
msgApplied[1] == 0);

#define ForApl(msgApplied[0] == 1&&
msgApplied[1] == 0);

#define AllApl(msgApplied[0] == 1&&
msgApplied[1] == 1);

#define Order(NoApl xor ForApl xor AllApl);

The system should satisfy any one of the three conditions.

#assert BundleSystem() |= Order;

The messages are committed in sequence which satisfies the
order property as shown in Fig 2.

Fig.2 shows the verification results of all the properties
and they are all valid. We can conclude that the OpenFlow
bundle mechanism can guarantee the four properties to keep
consistency and completeness of the communication.

V. CONCLUSION

The OpenFlow bundle mechanism is proposed to provide
a method for guaranteeing consistency and completeness of
network updates. In this paper, we construct a formal model for
the OpenFlow bundle mechanism based on CSP. In addition,
we encode the CSP description in the model checker tool
PAT and perform the validation of four properties including
deadlock freeness, parallelism, atomicity and order property.
Corresponding to the verification results, we conclude that the
mechanism can guarantee these transmission properties.

In the future, we will continue our work on the formal-
ization and verification of OpenFlow. As the communication
process we model in this paper is synchronous, We plan to
explore a more general method which can fully guarantee
consistency and completeness of the communication process
in asynchronous situations based on time.

Acknowledgement. This work was partly supported by
Shanghai Collaborative Innovation Center of Trustworthy Soft-
ware for Internet of Things (No. ZF1213).

REFERENCES

[1] Mckeown, Nick, et al. ”OpenFlow:enabling innovation in cam-
pus networks.” Acm Sigcomm Computer Communication Review
38.2(2008):69-74.

[2] Kreutz D, Ramos F M, Verissimo P, et al. Software-Defined Networking:
A Comprehensive Survey. Proceedings of the IEEE, 2015, 103(1): 14-
76.

[3] Lara A, Kolasani A, Ramamurthy B. Network Innovation using Open-
Flow: A Survey. IEEE Communications Surveys & Tutorials, 2014,
16(1):493-512.

[4] Kohler, Thomas, F. Drr, and K. Rothermel. ”Update consistency in
software-defined networking based multicast networks.” Network Func-
tion Virtualization and Software Defined Network IEEE, 2016:177-183.

[5] Azodolmolky, Siamak. Software Defined Networking with OpenFlow.
Packt Publishing, 2013.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice/Hall
International, 1985.

[7] Lowe G, Roscoe B. Using CSP to detect errors in the TMN protocol.
IEEE Transactions on Software Engineering, 1997, 23(10): 659-669.

[8] Roscoe A W, Huang J. Checking noninterference in Timed CSP. Formal
Aspects of Computing, 2013, 25(1): 3-35.

Fig. 2. Verification Results of Four Properties

[9] PAT, PAT: Process analysis toolkit. [Online]. Avail-
able:http://pat.comp.nus.edu.sg/

[10] J. Sun, Y. Liu, and J. S. Dong, Model checking CSP revisited: Intoducing
a process analysis toolkit, in Leveraging Applicaions of Formal Methods,
Verification and Validation. Springer, pp. 307-322, 2009.

[11] Yuanjie, S. I., et al. ”Model checking with fairness assumptions using
PAT.” Frontiers of Computer Science 8.1(2014):1-16.

174

Helpful or Not? An investigation on the feasibility
of identifier splitting via CNN-BiLSTM-CRF

Jiechu Li∗,† Qingfeng Du∗†, Kun Shi∗†§, Yu He∗† Xin Wang∗‡ and Jincheng Xu∗†
∗School of Software Engineering, Tongji University

†Software Engineering R&D Centre, Jishi Building, Tongji University
‡Smart City Labotary, Jishi Building, Tongji University
§Shanghai Research and Development Center, Baidu Inc.

Email: {lijiechu, Du cloud, skyline, rainlf, wangxin16, xujincheng}@tongji.edu.cn

Abstract—We recently introduced a new technique to handle
source code identifier splitting. The proposed technique, denoted
as CNN-BiLSTM-CRF[a neural network composed of a convolu-
tional neural network(CNN), bidirectional long short-term mem-
ory networks(BiLSTM) and conditional random fields(CRFs)]
enables us to obtain a model that splits identifiers correctly and
effectively. This technique combines the use of a CNN layer with
the mature BiLSTM-CRF model. The experimental results indi-
cate that CNN-BiLSTM-CRF delivers outstanding performance
on all four of the evaluation oracles. More importantly, we
endeavored to provide insight into the practical feasibility of
this technique by considering the aspects of generality, data size
in demand and construction cost, etc. Finally, we reasoned out
that CNN-BiLSTM-CRF should be helpful and improvable for
identifier splitting in practical works in terms of the accuracy
and feasibility. This was validated by multifaceted experiments.

Index Terms—identifier splitting, source code mining, program
comprehension, CNN, BiLSTM-CRF, feasibility investigation

I. INTRODUCTION

The rapid development of natural language processing
(NLP) and machine learning has derived many prominent tech-
niques[e.g., information retrieval(IR) model and deep learn-
ing] to support software engineering (SE) tasks[1], [2], [3],
[4](e.g., feature location and traceability link recovery). These
techniques extract domain concepts of corresponding software
projects by analyzing textual information mined from software
repositories.

Source code identifiers1, occupying most of the characters2

insides programs[6], are one of the critical components that
can be mined from software artifacts. To our knowledge, this
is owing to the fact that strong consistency is always reflected
between the source code and other software artifacts (e.g., doc-
umentation). However, the definitions of identifiers are strictly
constrained by the syntax rules of programming languages,
complicating not only the manual recognition process but also
the automatic NLP tokenization process on them.

1Source code identifiers are tokens that name language entities including
variables, types, functions, and packages in programming languages. These
tokens represent different meanings, according to their naming purposes.

2An identifier id is normally in the form of (s0, s1, s2, ..., sn), where si
is a letter, digit, or special character[5].

To be specific, an appointed source code identifier must be
composed of a series of terms without explicit blanks (e.g.,
XMLParser1, dorapntr, and treeNode) in which the terms are
normal dictionary words (e.g., Parser) and acronyms (e.g.,
XML), abbreviations or, even worse, unmeaningful vocabs.
Directly performing NLP procedures (e.g., word embedding)
on these irregular strings inevitably degrades the performance
of ongoing or upcoming concept-comprehension tasks. Hence,
normalizing identifiers into their constituent parts is crucial
when leveraging NLP techniques on SE tasks.

Identifier splitting is the first and highly critical step of
identifier normalization, with the subsequent step of mapping
or expanding the correct split terms into their original dic-
tionary words[7], [8]. Identifier splitting is also considered
as an indispensable procedure after tokenization[9], [10]. In
fact, existing techniques have already been put forward with
the aim to efficiently and correctly split identifiers, including
the investigated approach in our study: identifier splitting via
a trained CNN-BiLSTM-CRF model(CNN-BiLSTM-CRF is
used to represent this approach itself in the following literature
for short).

The mentioned CNN-BiLSTM-CRF, is derived from our
early research achievements. It is proposed under the mo-
tivation for better identifier splitting techniques that better
contribute to related SE tasks[11]. Our pioneering research and
initial experimental results showed that the CNN-BiLSTM-
CRF significantly outperforms other state-of-the-art tech-
niques. However, it remains certain thoughtlessness before we
resolve to apply this technique to split identifiers in practical
SE tasks. These issues certainly exist and are determined by
the methodology of CNN-BiLSTM-CRF, which takes samples
of manually built oracles as input for training, then tunes
and evaluates the outcome model with the rest of the oracle
samples. In terms of practical feasibility, there are concerns
regarding the generalization capability (refers to the ability
to correctly split identifiers outside of the oracle with which
it was trained) and the training cost of the model in addition
to the superficial outstanding performance.

In this study, our specially designed experiments and qual-
itative analysis on the obtained results lead to the conclusion
that splitting identifiers via CNN-BiLSTM-CRF is helpful and
absolutely feasible in terms of the above indicated facets.DOI reference number: 10.18293/SEKE2018-167

175

In summary, we make the following contributions:

• We prospectively present a new and novel identifier split-
ting method called CNN-BiLSTM-CRF, which possesses
great ability to split source code identifiers accurately.

• We systematically investigate and inspect the practica-
bility of the CNN-BiLSTM-CRF approach regarding its
comprehensive aspects.

• We offer evidence that the investigated approach is not
only superior to other state-of-the-art identifier splitting
techniques but also of enough generality and feasibility
based on empirical evaluations performed on a maximum
of four benchmark oracles.

• We provide the publicly available package and imple-
mented code for researchers to adopt, replicate, or further
explore our work.

The remainder of this paper is structured as follows: Section
II presents some significant related work on identifier splitting
and concisely describes the mechanism of our proposed CNN-
BiLSTM-CRF approach. Section III demonstrates the process
of setting up our experiments and discusses the results. Section
IV is a deeper discussion of our achieved results and of threats
to the validity of this method. Section V concludes this study.

II. BACKGROUND AND RELATED WORK

A. Previous Work on Identifier Splitting

Ideally, identifiers in recognizable forms such as the well-
known CamelCase and UnderscoreCase can be effortlessly
split by explicit rules (splitting at underscores or changes from
lower case to upper case). However, extra strategies still need
to be considered to effectively solve the splittings on identifiers
in more sophisticated forms (e.g., all characters are in single
case or containing digits). In this case, researchers are spurred
to promote the performance of identifier splitting, and hence
many innovative techniques have been introduced(e.g., [5],
[12], [13], [14], [15] and etc.).

Here, we selectively and briefly introduce several of these
state-of-the-art identifier splitting techniques. Field et al.[12]
first attempted to split identifiers with a simple greedy algo-
rithm and used a simple artificial neural network approach.
DTW[14] is based on a modified version of Dynamic Time
Warping. The fundamental idea behind this approach is to
determine the optimal matching of two series of characters
(x1, x2, ..., xn) and (y1, y2, ..., ym). GenTest[7] attempts to
score all possible splits for an identifier with a series of
handcrafted metrics, and the one with the highest score is con-
sidered to be the correct split. LINSEN[15] uses an efficient
approximate string-matching algorithm, BYP, in conjunction
with nested context-based dictionaries.

A number of man-made oracles for identifier splitting were
created from past accomplishments. Thereupon then previous
studies could evaluate their techniques on these available ora-
cles. In our study, four frequently used oracles namely Bink-
ley[16](containing 2,663 samples), BT11[17](21,122), Jhot-
draw(974), and Lynx(3,085)[14], will be applied.

B. Reformulating Identifier Splitting as a Sequence Labeling
Task

The essence of splitting an identifier is to determine at
which adjacent positions to insert splits. Thus, we can draw
on the experience of the advancing thought to solve Chinese
word segmentation[18]–sequence labeling. Similarly, identi-
fier splitting can be subtly mapped to a sequence labeling task:

For a given identifier id with characters sequence
(c1, c2, ..., cn), we label each ci with a corresponding tag.

The set of candidate tags contains only B, M, E, S, and N.

Assuming the unified max-length of the accepted identifier
is T, the interpretation of each tag is as follows: B, denoting
the beginning of a term; E, denoting the end of a term; M,
denoting the position between the beginning and end of a term;
S denoting a term with only one character; and N, denoting
the spare positions of an identifier if its length is less than T.

After tagging all ci of id, we subsequently insert splits
between any adjoining cn and cm with successive tags EB,
ES, SB, or SS. For instance, we input identifier nthreadpool
and obtain the output SBMMMMEBMME. Based on the rules
summarized above, two splits are inserted between n and t,
and d and p, respectively. Consequently, we obtain the splitting
result n-thread-pool.

C. CNN-BiLSTM-CRF Model

According to the above discussions, the oracles of identifier
splitting can be transferred into the form of sequence labeling
accordingly. On this basis, we are able to train a deep model
for labeling newly input identifiers, and then infer correct
splittings of them. The considered deep model is actually our
proposed CNN-BiLSTM-CRF model.

We vary the basic BiLSTM-CRF[19] network by adopting
an additional CNN layer with the aim to extract finer-grained
morphology features inside identifiers.

The architecture of CNN-BiLSTM-CRF is illustrated in Fig.
1, showing a slice of the entire network. The left side of Fig. 1
shows the general framework of BiLSTM-CRF. It differs from
the traditional framework because the input layer of BiLSTM-
CRF takes the replaced CNN-processed char representation of
the identifier as input.

In particular, Ct denotes the input character at time t
encoded using one-hot encoding3, and Convt denotes the tth

vector after convolution on the original input layer. To en-
sure one-to-one correspondence, we alternatively add padding
around the beginning and end of the original input char
representation. After that, we concatenate the output of the
convolution layer and the original char representation to gener-
ate the final CNN-processed char representation. This gives the
interpretation of Conct, which denotes the tth concatenated
vector. It is also worth mentioning that we skip the pooling
layer with the aim of preserving all information of the input
identifier in our task.

3We perform character-level embedding on each input character with a one-
hot vector (with shape 1×n). This means there is only one component equal
to 1 in this vector. For example, Ct can be [0, 1, 0, ..., 0].

176

Fig. 1. Architecture of CNN-BiLSTM-CRF. Red rectangles indicate the padding for the CNN layer.

Suppose that K is the convolution core with shape m×n (n
is equal to the length of dimensionality of the one-hot encoded
vector). The convolution layer is calculated as follows:

Convi = f(
∑
i

C ′i+m ◦Km) (1)

where symbol f denotes the activation function of convolution
layer (normally the Relu function), the ◦ operation produces
the Hadamard product of two vectors, and C ′i denotes the ith

vector of padded matrix C, defined as the original input layer
in Fig.1.

Consequently, the concatenated representation of an input
char is expressed by merging two corresponding vectors of
Convi and Ci, as shown in Equation 2.

Conti(2×n)
=
(
Convi(1×n)

Ci(1×n)

)
(2)

With regard to the remaining BiLSTM-CRF, CRF on the
top of BiLSTM takes the final softmax layer of the BiLSTM
layer as input. The softmax layer produces the probability
distribution over labels (i.e., B, M, E, S, and N). The CRF layer
calculates the emission scores and transition scores based on
the probability. The emission score of a label can be directly
expressed by reusing its output probability, while the transition
score is a bit difficult to deduce. This requires us to maintain
a 5× 5 matrix (5 meaning the number of all possible labels),
which records the transition score from one label to another
label. In nature, the matrix is randomly initialized with small
values. To elaborate, for a given output path p of an identifier
B ⇒M ⇒ E ⇒ S, we have

EmissionScorep = X0,B +X1,M +X2,E +X3,S (3)

TransitionScorep = TB,M + TM,E + TE,S (4)

Therefore, for a path p, the final score of p is calculated as

Scorep = EmissionScorep + TransitionScorep (5)

The final scores of other possible paths besides p are
calculated in the same way. Among all paths, the path with
the highest final score is actually thought to be the real path
(i.e., correct path). After determining how to calculate the final
score for each possible path, we are now able to define the
CRF loss function:

LossFunction = −log(ScoreRealpath∑N
n=1 Scoren

) (6)

During the training process, the parameter values (including
the transition score matrix) of our BiLSTM-CRF model are
updated repeatedly to continue increasing the percentage of
the score of the real path. Because only bigram interactions
between outputs are being modeled, the total scores for all pos-
sible paths can be computed using dynamic programming[20].
The log probability of the correct tag sequence is maximized
by automatically reducing the loss of Equation 6. When the
model is ready, we can infer the labels for the input identifier
by using a Viterbi decoding algorithm based on the transition
score matrix and the output of the BiLSTM layer.

III. EXPERIMENTAL VALIDATION

In this section, we describe the series of experiments con-
ducted on the four oracles mentioned previously. We chose 30
to be the unified length of the input layer because we found
that identifiers with the length less than 30 occupy more than
96% of the samples on average for all datasets.

In addition, approximately 5,000 manually constructed iden-
tifiers4 were collected as extra training materials, with which
we could optionally supplement the training set partitioned
from a given oracle. Specifically, these fake-identifiers were
used in ExperimentIII−B and ExperimentIII−C to further
enhance the performance of trained models.

The hyperparameters in use and details of the proposed
CNN-BiLSTM-CRF structure are summarized in Table I.

4They were generated with the aid of SCOWL – http://wordlist.aspell.net/

177

TABLE I
THE HYPERPARAMETERS & STRUCTURAL DETAILS TO CONSTRUCT

OUR PROPOSED CNN-BILSTM-CRF MODELS

Component Hyperparameter Value (Option)

CNN layer

Number of layers 1
Filter shape 3× n1

Filter stride 1
Activation function Relu

BiLSTM layer
Number of layers 2
Dropout probability 0.0

Fully connected layer
Number of layers2 1
Activation function None

General settings
of training process

Initial learning rate 1.0
Learning rate decay3 0.5
Max gradient norm 5
Max training epoch 13
Batch size 25

1 As mentioned in Section II.C, the n is equal to the length of dimensionality
of the one-hot encoded vector.

2 The number of nodes of the hidden layer is set to 200.
3 The learning rate will decay dynamically from one training epoch to next

epoch based on an exponential decay model.

A. Evaluation Measures

We use the measure Accuracy to evaluate the performance
of our trained models. To calculate the accuracy, we need to
measure whether every predicted split of an identifier is exactly
equal to the corresponding correct split in the oracle (i.e., the
percentage of correct splitting). Thus, it is simply calculated
as follows:

Accuracy =
Num(correctly split identifiers)

Num(all identifiers)
(7)

Several previous studies (e.g., [8], [13]) additionally used
Precision, Recall, and F-measure to measure the local ability
of evaluating techniques. However, we posit that these mea-
sures always follow the same trend with accuracy and behave
extremely congruously, based on observations of our early
research and previous experimental results. In addition, most
other studies highly related to this topic used no other kinds
of measures (e.g., ROC-AUC and Cohen’s kappa5). Therefore,
we pretermit considering other metrics in order to make our
outcomes clear.

B. Investigation of the ability to split identifiers

This experiment was set up to validate the effectiveness of
our proposed technique intuitively.

5There are two reasons for the unsuitablility of applying Cohen’s kappa
or ROC-AUC to this multiclass classification task: 1) Our task additionally
concerns the sequential relatedness of labels, and 2) other baseline techniques
used as benchmarks in this study infer identifier splitting on the word level,
whereas our proposed technique is on a different character level.

TABLE II
ACCURACY OF IDENTIFIER SPLITTING COMPARED WITH OTHER

STATE-OF-THE-ART APPROACHES

Splitting Approach Oracle

Binkley BT11 Jhotdraw Lynx
CNN-BiLSTM-CRF 0.817 0.936 0.912 0.876
GenTest 0.701 0.723 0.795 0.489
INTT 0.774 0.820 0.844 0.625
LIDS 0.713 0.811 0.903 0.542
DTW - - 0.931 0.703
LINSEN - - 0.949 0.803

To assess the prediction performance of our trained models
in a general and proper way, a 10-Time Hold-out Validation6

based on Train/Validation/Test Set Splitting7 was used in
this experiment. In other words, for every specific oracle,
we iteratively trained and evaluated models 10 times, and
the average of all results was subsequently used as the final
estimation result on our models.

Several techniques (listed in Table II) were selected for
benchmarking and were applied to split these oracles at the
same time. Slightly different from our proposed technique,
these compared techniques performed on all samples of the
four oracles because no training processes were used in their
cases. Specifically, we implemented LIDS[13], GenTest[7],
and INTT[17] because they are provided with publicly avail-
able tools. For those that do not have publicly available tools,
i.e., DTW and LINSEN, we tried obtaining their experimental
results from study[15].

The experimental results are listed in Table II, with the best
accuracies among all compared approaches in bold. The results
show the following: On the Binkley dataset, CNN-BiLSTM-
CRF achieves the highest accuracy (81.7%). On the Jhotdraw
dataset, our proposed technique is suboptimal (91.2%) among
all techniques. LINSEN seems to perform best on Jhotdraw
since it has the highest accuracy (94.9%). However, on BT11
and Lynx, oracles with relatively more samples for training,
the performance of our proposed technique is vastly superior to
that of all other techniques. In particular, in terms of accuracy,
CNN-BiLSTM-CRF outperforms the second best technique by
more than 7%–11%.

We conducted a hypothesis test (Pearson chi-square test
and odds-ratio) to investigate whether the difference in per-
formance between CNN-BiLSTM-CRF and other state-of-the
art techniques varies significantly. To simplify our results and

6One round of the k-time hold-out validation (a.k.a. Monte Carlo Cross
Validation[21]) involves randomly partitioning samples into disjoint subsets,
of which at least one is used as training set and at least one is used as test
set. Then, the model fit by the training set is evaluated with the test set. This
process is independently repeated k times, where the partitions of samples are
accomplished in the same random manner for each run.

7In this three-way split, the original dataset is randomly partitioned into
three parts at each time: 70% for the training set, 15% for the validation set
to help avoid overfitting during the training process, and the remaining 15%
to evaluate the performance of the model.

178

TABLE III
SIGNIFICANCE TEST FOR DIFFERENCE IN ACCURACY BETWEEN CNN-

BILSTM-CRF AND OTHER STATE-OF-THE-ART APPROACHES

Oracle
Compared
Approach

Chi-square Test Odds-ratio

Binkley
INTT p=0.03750(Significant) 1.35(Better)
LIDS p<0.00001(Significant) 1.80(Better)

BT11
INTT p<0.00001(Significant) 3.21(Better)
LIDS p<0.00001(Significant) 3.41(Better)

Jhotdraw
DTW p=0.4951 0.80(Worse)
LINSEN p=0.1069 0.59(Worse)

Lynx
DTW p<0.00001(Significant) 2.95(Better)
LINSEN p<0.00001(Significant) 1.71(Better)

*1 The difference between two approaches is significant if the adj. p-value
statistic is less than the significance level (0.05).

*2 Odds-ratio greater than one means the treatment approach (CNN-
BiLSTM-CRF) performs better than the compared control approach.

make things clearer, we chose only the top two well perform-
ing techniques except CNN-BiLSTM-CRF for comparison.
The statistical results of the hypothesis test are listed in Table
III, from which we learn the following:
• CNN-BiLSTM-CRF performs significantly more accurately

than other techniques on the Binkley, BT11, and Lynx
datasets.

• Even though CNN-BiLSTM-CRF achieves lower accuracy
than LINSEN on Jhotdraw, there is no significant difference
between them with the p-value of a chi-square test of 0.1069,
which does not exceed the critical value of 0.05. This
means our technique, for Jhotdraw, performs at least in line
with LINSEN (i.e., the technique with the best performed
accuracy on Jhotdraw).

C. Investigation of external generality

This part of experiments was set up to explore the extensive
feasibility of applying the CNN-BiLSTM-CRF model to split
identifiers outside of the original oracle with which it was
trained. Hence, to realize this aim, we trained models on
four training sets, namely, Binkley, BT11, Jhotdraw, and Lynx.
Then, we evaluated the accuracies of trained models by other
evaluation sets.

The experimental results are shown in Table IV. The top
header of Table IV lists the training sets with which we
trained the models. The sidebar lists all evaluation sets. Hence,
each cell inside the table refers to the average accuracy we
obtained from the models that were trained and estimated with
a specific pair of training and evaluation sets. It illustrates
that the performance of models on other oracles which they
were not trained with, by and large, approaches to the ideal
performance reported in Table II (despite declines at different
degrees). We even see a slight improvement in Jhotdraw from
the model trained with BT11. Not surprisingly, the models
trained with Jhotdraw perform worst since Jhotdraw contains
a limited number of samples (only 974).

TABLE IV
EXTERNAL PERFORMANCE (i.e., ACCURACY OF SPLITTING) OF

CNN-BILSTM-CRF MODELS

SEvaluation

STraining Binkley BT11 Jhotdraw Lynx

Binkley - 0.760 0.655 0.703
BT11 0.833 - 0.796 0.814
Jhotdraw 0.896 0.936 - 0.883
Lynx 0.782 0.844 0.709 -

Total Avg. 0.829 0.825 0.773 0.805

Fig. 2. Effect of training set size on model performance.

D. Investigation of effect of training set size

By picking and training samples with sizes from small to
large in every fixed intervals from all datasets, we built CNN-
BiLSTM-CRF models and then evaluated them by recording
the related data of the accuracies. Similarly, for each size,
we trained 10 models and acquired their average results. The
results are shown in Fig. 2, which indicates that models trained
on all different datasets follow the same trend. This reveals
that as the size of training set increases, the performance of
the model improves.

On the largest dataset BT11, however, it is noteworthy
that the increment gradually slows down when the size of
the training sets exceeds 6,000. It seems that 6,000 could
be an appropriate size of training sets if we want to strike
a compromise between the model performance and training
cost under this circumstance.

E. Investigation of training cost

We determined four categories of training set size, namely
2000, 8000, 15000, and 27000, to survey whether our proposed
technique is time-consuming. Specifically, we conducted 10
groups of experiments on four randomly constructed oracles
which are corresponding to the above-mentioned four sizes.
For each group, we separately trained four models on these
oracles, and respectively recorded their training times (graph-
ically provided in Fig. 3). Experiments from group No. 1 to
No. 10 were carried out independently, but the plotting line
of each corresponding size revealed strong consistency and
stability on the training time.

To deeply inspect whether the computational time would be
influenced by different constructions of samples, we randomly

179

Fig. 3. Computational time of training models on training sets of different
sizes. The No. on the x-axis represents that it is the ith group of experiment.
The value on the y-axis represents computational time of training a specific
model once.

Fig. 4. Training cost of five sets of data with 15,000 samples.

constructed four extra training sets, all with a size of 15,000, to
perform similar experiments. We used the box plot to measure
the dispersion of the computational time of each set. The
results are shown in Fig. 4, of which each horizontal line in
a box refers to the average training time. We found out that
models on all sets of samples finished their training with a
nearly identical median of training time (13.7 min).

From all the illustrated results, we concluded that

There is not a significant amount of time for training (It
takes about, on average, 10 minutes to train a model with
8,000 samples and 31 minutes with 27,000 samples.). In

addition, the training time is shown to be sufficiently stable.

These data were produced and collected from a PC with 1*
NVIDIA P100, Octa-core 2.5-GHz CPU and 16 GB of RAM.

IV. DISCUSSION

A. Deeper insight into CNN-BiLSTM-CRF approach

We determined that the CNN-BiLSTM-CRF model is suit-
able for handling identifier splitting after pondering the rela-
tionship between this adopted model and domain-specific data
(i.e., identifiers).

Through utilizing the characteristics of a CNN to perform
character-grained feature extraction, the model is capable of
learning the word morphology transformations. This provides
an expansion ability for our technique to effectively handle
multiple forms of a term. This will become more significant
if models are trained on large datasets. Furthermore, the
BiLSTM network enables the model to automatically learn
contextual information, i.e., whether to insert a split in the
current position according to characters in front and behind.
Third, the CRF layer helps to eliminate those candidates
splitting with few probabilities (e.g., tag M should never be
followed by B or S). By integrating all of the needed abilities,
our proposed technique certainly performs well.

We noticed from the above results that when our proposed
technique was applied to oracles with a sufficient number of
samples, the performance was significantly better than oracles
with fewer samples. This is because neural networks always
perform more poorly on small datasets. A larger training set
provides richer information for a neural network to learn and
to avoid overfitting. (Table II and Fig. 2 both strongly confirm
this point.)

B. Possibility for improvement

After observing 200 incorrectly split identifiers inferred by
our trained models, we figured out that a large proportion of
them (93/200) were caused by a lack of training materials.
This caused our models to fail to recognize terms inside these
identifiers (e.g., NXScanf, where Scanf is the name of a C
library function).

Given the extensibility of our technique, we are able to
address this problem easily by mining more complete iden-
tifiers or constructing more customized fake-identifiers. These
samples are then appended to the oracle before training a
model. In addition, we believe that some unused deep learning
or tuning skills provide the possibility of improving the
performance from the model itself.

C. Is CNN-BiLSTM-CRF really feasible?

We deduce the answer of this question to be yes, based
on all of the aforementioned outcomes. First, this proposed
approach is superior if the training samples are customized and
sufficient enough (according to the results in part B of Section
III). Second, the model is of great extensibility. The results
in Table IV indicate that most trained models achieve a total
average accuracy of 80% when splitting those identifiers which
they never met. This convinced us that it is entirely possible
to construct a model with sufficient generality. Although we
failed to obtain good performance on Jhotdraw, to some extent
this is insignificant because we will certainly ensure that our
models are trained on oracles with enough samples in practice.
Third, training the model is feasible with regard to time. Only
a little time is needed to construct an available CNN-BiLSTM-
CRF model, and this is within the acceptable range. (Samples
of all oracles are within 21,000 in our study, but all of them led
to good performance). The cost of inferring a newly received
identifier could even be omitted.

180

D. Threats to validity

The validity of our study has three major threats.
The threat to content validity is that using only four oracles

as in our study seems to be insufficient for the hypothesis tests
to be reliable. Although they contain identifiers that originated
from several kinds of programming languages (i.e., C, C++,
and Java), they still cannot represent all kinds of languages.
Moreover, some of these oracles may not contain enough
multiplex samples because of their small size.

Threats to internal validity include the hyperparameters of
constructing the CNN-BiLSTM-CRF network and the random-
ness of the training process of a neural network. We selected
the hyperparameters (e.g., the activation function and batch
size) based on practical experience from the academic area.

The threat to instrumental validity is that we merely obse-
rved accuracy data on the Jhotdraw and Lynx datasets of
LINSEN and DTW from a previous study. However, we still
made a strong effort to compare our proposed technique with
other state-of-the-art techniques on two other datasets.

We realized our approach with Tensorflow 1.4, a mature
deep learning framework maintained by Google. The ready-
made package to split identifiers, implemented code, oracles,
and indications to reproduce our experimental results can be
found in our Github repository8.

V. CONCLUSION

We described a completely new approach, CNN-BiLSTM-
CRF, to perform identifier splitting. In the premise of properly
setting up the model, this approach is superior to other state-
of-the-art techniques. We further investigated the feasibility
of the proposed technique. The experimental results jointly
demonstrated that the technique is practical and efficient with
regard to training cost and the demand on the size of the
training sets. The results also showed that this approach
exhibits good generalization performance on various datasets,
including splitting identifiers outside from trained-with ora-
cles. Ultimately, splitting identifiers via CNN-BiLSTM-CRF
is proven to be helpful in practice, in combination with all the
qualitative and quantitative analyses in this study.

Detailed heuristics and processes of constructing CNN-
BiLSTM-CRF models will be introduced in the next phase of
our research. In the future, we will also improve the feasibility
and generality of this approach by integrating transfer learning
techniques (e.g., investigation of cross-programming-language
identifier splitting).

ACKNOWLEDGMENT

Sincere appreciation to Li Sun, Juan Qiu, Robbie Xie, and
Kanglin Yin, who provided us with valuable comments and
tremendous encouragement. We are also grateful toward S.
Butler, D. Binkley, and Madani et al. because it would not have
been possible to complete this work without their previous
substantial efforts on the topic of identifier splitting and their
publicly available oracles.

8https://github.com/ jaki2012/ IdentifierSplitting-SEKE2018

REFERENCES

[1] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Mining Software Repos-
itories (MSR), 2015 IEEE/ACM 12th Working Conference on, pp. 334–
345, IEEE, 2015.

[2] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 87–98, ACM, 2016.

[3] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[4] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings
of the 22nd International Conference on Program Comprehension,
pp. 279–290, ACM, 2014.

[5] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in Mining
Software Repositories, 2009. MSR’09. 6th IEEE International Working
Conference on, pp. 71–80, IEEE, 2009.

[6] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261–282, 2006.

[7] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code vocab-
ulary,” in Reverse Engineering (WCRE), 2010 17th Working Conference
on, pp. 3–12, IEEE, 2010.

[8] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker, “An
empirical study of identifier splitting techniques,” Empirical Software
Engineering, vol. 19, no. 6, pp. 1754–1780, 2014.

[9] S. W. Thomas, A. E. Hassan, and D. Blostein, “Mining unstructured
software repositories,” in Evolving Software Systems, pp. 139–162,
Springer, 2014.

[10] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: An
enhanced tag recommendation system for software information sites,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pp. 291–300, IEEE, 2014.

[11] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can bet-
ter identifier splitting techniques help feature location?,” in Program
Comprehension (ICPC), 2011 IEEE 19th International Conference on,
pp. 11–20, IEEE, 2011.

[12] H. Feild, D. Binkley, and D. Lawrie, “An empirical comparison of
techniques for extracting concept abbreviations from identifiers,” in Pro-
ceedings of IASTED International Conference on Software Engineering
and Applications (SEA’06), 2006.

[13] N. R. Carvalho, J. J. Almeida, P. R. Henriques, and M. J. Varanda, “From
source code identifiers to natural language terms,” Journal of Systems
and Software, vol. 100, pp. 117–128, 2015.

[14] N. Madani, L. Guerrouj, M. Di Penta, Y.-G. Gueheneuc, and G. An-
toniol, “Recognizing words from source code identifiers using speech
recognition techniques,” in Software Maintenance and Reengineering
(CSMR), 2010 14th European Conference on, pp. 68–77, IEEE, 2010.

[15] A. Corazza, S. Di Martino, and V. Maggio, “Linsen: An efficient
approach to split identifiers and expand abbreviations,” in Software
Maintenance (ICSM), 2012 28th IEEE International Conference on,
pp. 233–242, IEEE, 2012.

[16] D. Binkley, D. Lawrie, L. Pollock, E. Hill, and K. Vijay-Shanker, “A
dataset for evaluating identifier splitters,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, pp. 401–404,
IEEE Press, 2013.

[17] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the
tokenisation of identifier names,” ECOOP 2011–Object-Oriented Pro-
gramming, pp. 130–154, 2011.

[18] N. Xue, “Chinese word segmentation as character tagging,” International
Journal of Computational Linguistics & Chinese Language Processing,
Volume 8, Number 1, February 2003: Special Issue on Word Formation
and Chinese Language Processing, vol. 8, no. 1, pp. 29–48, 2003.

[19] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[20] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv preprint
arXiv:1603.01360, 2016.

[21] Q.-S. Xu and Y.-Z. Liang, “Monte carlo cross validation,” Chemometrics
and Intelligent Laboratory Systems, vol. 56, no. 1, pp. 1–11, 2001.

181

How to Incorporate a Usability Technique in the

Open Source Software Development Process

Lucrecia Llerena, Nancy
Rodriguez

Dpto. de Ingeniería Informática
Universidad Autónoma de Madrid

Madrid, Spain
lucrecia.llerena@estudiante.uam.es,
nancy.rodriguez@estudiante.uam.es

John W. Castro
Dpto. de Ingeniería Informática y

Ciencias de la Computación
Universidad de Atacama

Copiapó, Chile
john.castro@uda.cl

Silvia T. Acuña
Dpto. de Ingeniería Informática

Universidad Autónoma de Madrid
Madrid, Spain

silvia.acunna@uam.es

Abstract— The growth in the number of non-developer

open source software (OSS) application users and the

escalating use of these applications have both created a

need for, and interest in, developing usable OSS. OSS

communities are unclear about which techniques to use in

each activity of the development process. The aim of our

research is to adopt the visual brainstorming usability

technique in the HistoryCal OSS project and determine

the feasibility of adapting the technique for application. To

do this, we participated as volunteers in the HistoryCal

project. We used the case study research method to

investigate technique application and community

participation. As a result, we identified adverse conditions

that were an obstacle to technique application and

modified the technique to make it applicable. We can

conclude from our experience that these changes were

helpful for applying the technique, although it was not easy

to recruit OSS users to participate in usability technique

application.

Keywords- open source software; usability techniques;

requirements engineering; visual brainstorming.

I. INTRODUCTION
The usability technique definition and integration into OSS

projects is a complicated process, about which there are few
papers [1]–[4] These papers suggest that usability techniques
should be reconceptualized, but they do not explain how the
OSS community should go about adaptation. Nichols and
Twidale [5] are the only authors to put forward some general
ideas for improving usability. However, the issues to be taken
into account to adopt such techniques in OSS developments are
unclear. In particular, few studies have reported the application
of the visual brainstorming (VB) technique in OSS projects [4],
[6]. It appears to be less straightforward to integrate usability
into the OSS development process than into commercial
development due to some of the characteristics of the OSS
community. Consequently, usability technique adoption is a
demanding task because most HCI techniques are not designed
for the type of environment in which OSS is developed [7].

On one hand, the human-computer interaction (HCI) field
offers usability techniques whose key aim is to build usable
software. However, they are applied as part of HCI methods
and not within the OSS development process. On the other
hand, the OSS development process focuses on source code
and thus on feature development. The OSS development
process has a number of characteristics (i.e., a developer’s
culture that may be somewhat distant from the interaction).
This prevents many of the HCI usability techniques from being
adopted directly [7].

Requirements engineering activities play a very important
role in the success or failure of an OSS project. However, they
are sometimes extremely hard to perform because there is no
definition of OSS user segments before the software is
developed. Also, it is far from straightforward to address all the
requirements analysis activities due to the particular
characteristics of OSS development groups. Additionally, OSS
projects have not adopted many usability techniques related to
the requirements engineering and product concept development
activities [7]. The next step after selecting the activity is to pick
one related usability techniques for adoption in the OSS
development process. VB is a technique involving idea-
sketches used to explore alternative designs [8]. This technique
helps to focus product concept design on its hypothetical
features [9], that is, developers can use this technique to
discover a user’s mental model of the product. We selected the
VB from among other techniques because it can benefit the
user interface (UI) design process: it generates creative ideas in
the process of solving specific problems, with one hour of
session they obtain positive results, supports Conceptual design
by generating metaphors for UI architectures and providing
new ways to implement old functionalities [10]. On this
ground, we selected the VB technique for adoption in an OSS
project.

Our research spans two areas: OSS developments and HCI.
We use usability techniques as a bridge to communicate these
two areas, where our aim is to deploy HCI knowledge in the
OSS development communities. If adapted, usability
techniques can be adopted in the OSS development process [7].
Therefore, the aim of our research is to adapt the VB usability
technique [11] for adoption in the OSS development process

Sponsors: SENESCYT, UTEQ, TIN2014-52129-R and TIN2014-60490-
P projects, eMadrid-CM project, “DIUDA 22316 Project” of the UDA

DOI reference number: 10.18293/SEKE2018-006 182

and determine the feasibility of adopting this usability
technique in a real OSS project. To do this, we first identified
and analysed which obstacles had to be overcome in order to
apply VB in OSS projects. This paper makes a significant
contribution to the field of SE and particularly OSS
development projects because there are few papers reporting
the use of the VB technique and detailing how it has been
applied in OSS development projects [4], [6]. The contributions
of this paper are as follows: (i) We identify the adverse
conditions that are an obstacle to the application of the VB
technique in OSS developments, (ii) we propose adaptations
for each of the steps of this technique to enable its adoption in
the OSS development process, as there are no specified
procedures for applying HCI techniques in this type of
development projects, (iii) we give some recommendations on
how to improve the UI of an OSS application by applying a
collaborative usability technique (VB) to tailor the original
interface design to real user needs.

This paper is organized as follows. After this introduction,
we describe the related works. We then illustrate the research
method. Then, we report the proposed solution. We then report
the results and discussion. Finally, we outline the conclusions.

II. RELATED WORKS
In recent years, the worldwide OSS community has adopted

just over 50% of the HCI techniques related to evaluation.
However, only about 20% of the usability techniques related to
requirements engineering and design activities have been
adopted [7]. Therefore, more research is required to support the
adoption of techniques related to requirements engineering in
OSS developments. In view of the importance of HCI and SE,
it is only logical to study the user-centred software
development activities in OSS projects. This is especially true
of the requirements engineering stage, because the discovery of
user requirements during the early development activities is
useful for putting right any defects in software detected later on
[4]. In this paper, we adapt the VB technique used in the
product concept development activity. According to Preece et
al. [11], product concept development relies on the creation of
a mental model based on psychological theories related to HCI.
Ferré [8] explains that this activity covers issues regarding how
users envisage the system. Therefore, this activity aims to
provide a picture of the product before defining the features
that the system should offer.

There are papers in the literature reporting the usability
evaluation of some OSS applications [12], [13]. Assa et al. [13]
study the usability issues facing software developers using code
analysers by evaluating one of the popular open-source static-
code analysis tools. Ternauciuc and Vasiu [12] tried to
inventory the existing methods for testing and improving
usability, with a particular focus on e-learning platforms.

In particular, very few studies have reported the application
of the VB technique in OSS projects [4], [6]. In the Carrot2
OSS project, the original application was redesigned according
to its target end users (data mining researchers). This project
adopted the VB technique in order to generate ideas for
designing the new interface [6]. According to Osiński and Weis
[6], the technique was applied as prescribed by HCI. However,
the VB technique reported by Terry et al. [4] was adapted for

adoption to develop a bit map graphics application. In the
adapted technique, ideas were gathered using a wiki instead of
at face-to-face meetings as established by HCI. Thanks to the
wiki, anybody involved in the project could put forward his or
her interface design ideas.

On the other hand, Castro [7] proposes a framework for
integrating usability techniques into OSS developments. This
framework is composed of a number of general adaptations in
response to the adverse conditions for adopting usability
techniques in OSS development projects. Castro [7] has
identified the unfavourable conditions that give rise to
adaptations. Unfavourable conditions are classified into three
groups (families of adaptations). First, some usability
techniques require an expert in usability (most OSS projects do
not involve experts). Second, certain techniques require the
participation of users or that several of them are physically
gathered (OSS users are geographically distributed throughout
the world). Finally, some techniques require several steps for
their execution, a previous preparation or need some initial
information (the work in the OSS community is completely
voluntary and performed in the free time of its members) [7].

Although research examining usability in OSS has been
published, there is no standardized procedure for determining
how to adopt usability in OSS development. The first step in
our research is to study how the OSS community uses usability
techniques in their development projects. Castro's work
proposes an integration framework that can incorporate most
usability techniques in OSS developments [7]. It is important to
clarify that this framework only proposes the general
adaptations that must be made to the techniques. These
adaptations depend on the requirements of the technique that
cannot be satisfied by the way the OSS community works.
Castro’s research [7] was validated on only two OSS projects
and for three usability techniques (user profiles, direct
observation and post-test observation). Therefore Castro’s
proposal [7] requires further validation by adapting new
usability techniques and participating in more OSS projects.

III. RESEARCH METHOD
In our research, the collected data nature is qualitative

(texts, images, documents) [14]. We used a case study as the
qualitative research method to validate our research [15]. From
a case study, we learn about the experiences of applying
usability techniques adapted to OSS projects. This research
method is used when the phenomenon under investigation (in
this case, the adoption of an adapted usability technique) is
studied within its real setting (in this case, an OSS project).
OSS projects are the perfect setting for the case study reported
here because OSS communities are, according to several
authors [16], [17], unfamiliar with usability techniques. Small
project teams in particular have little information about what
techniques are at their disposal for improving usability [1],
[18].

This case study aims to determine whether the VB usability
technique can be adapted for use in requirements engineering
activities in an OSS project. There are several OSS project
repositories. One of the most popular is SourceForge.net. This
repository classifies OSS projects by categories. Since this
technique is related to requirements engineering for product

183

concept development, we looked at projects with a low level of
coding (that is, projects where key features were still being
added) that were not overly ambitious and were at the very
early development stages (alpha version) in order to select a
suitable OSS project in which to adopt the selected usability
technique. Considering the above, we selected the HistoryCal
OSS project. Thanks to the characteristics of this project, we
can adopt the VB usability technique in a requirements activity
(product concept development). Therefore, the benefits of
applying the technique will have a bigger impact on the
development process and software system usability.

In this research, we first identified the obstacles to applying
the VB technique in the HistoryCal OSS project. It is important
to mention that the usability techniques cannot be applied
directly in the OSS developments so it is necessary to make
adaptations so that they can be incorporated in OSS. We then
decided how to deal with the obstacles. Finally, we proposed
the adaptations necessary to adopt the VB technique in the case
at hand. We created web artefacts to improve communication
with OSS community members and efficiently synchronize the
necessary activities to apply the VB usability technique. The
most important part of the data analysis process was to build a
web artefact, since HCI does not recommend any specified
document or particular tool for gathering information during
the application of usability technique. An accurate description
of the explanations given by users participating in the OSS
project is essential for interpreting and laying the general
foundations of our research. The web artefact used to test the
feasibility of the proposed technique was a blog, because this is
a technique commonly used by the OSS community [19].

We used blogs in the VB technique to gather information
and collect sketches related to the UI of the application under
study. Thanks to this web artefact, we were able to set up a
virtual meeting point with OSS users who are geographically
distributed all over the world. Using such web artefacts, we
aimed to record user opinions about the selected OSS project
UI. We selected a blog because it is a web artefact providing
better control of the opinions expressed by users during our
research (for example, the researcher controls the information
or sketches submitted by users for transmission to the
developers). Researchers should control the user-blog
interaction in order to ensure that they focus exclusively on
graphical interface design only and do not get sidetracked by
topics unrelated to the research.

IV. PROPOSED SOLUTION
In this section, we describe the VB usability technique

applied in an OSS project. Firstly, we describe the case study
design. Secondly, we specify the characteristics of the selected
OSS project. Thirdly, we describe the selected usability
technique as prescribed by HCI. We then introduce the
adaptations made to the VB technique for application in an
OSS project. Finally, we report the results of applying this
usability technique.

A. Case Study Design

Case study is a non-experimental design type, since we do
not randomly assign the subjects, nor do we control the groups.
In addition, subjects are observed in their real context.

Depending on the paradigm in which the researchers are
located, they have decided to use a case study with a positivist
approach. A positivistic case study within qualitative methods
is particularly suitable for research in information systems. The
research based on the positivist case study is characterized by:
not manipulating the experimental units, the results are
basically obtained from the capacity of integration that has the
researcher in the case, the study should focus on current
situations, the phenomenon is studied in its real environment,
only one or a few entities (individuals, group, community) are
examined, the phenomenon of interest is not isolated from its
context and there is no controlled observation that involves
manipulation of the experimental unit [20]. These
characteristics are present in our research.

We describe the case study following the guidelines set out
by Runeson and Host [15]. According to these guidelines, we
divide our research into two parts: an exploratory part and a
descriptive part. We start by looking at what happens in a real-
world scenario and then we describe what happens when we
apply the adapted techniques to improve application usability
[15]. The aim is, to determine whether, thanks to the proposed
adaptations, the VB technique can be adopted in the OSS
HistoryCal project. Our case study is based on the following
research questions: How to incorporate the VB technique in a
real OSS project?

B. Context and technique execution

We selected HistoryCal as the OSS project in which to
adopt VB. HistoryCal is a calculator designed to work with
different world calendar schemes, calculating date ranges and
ages based on these calendars. This application is written in
C++, and the reported number of downloads from its website is
one per week. As shown in “Fig. 1”, HistoryCal’s graphical UI
has a lot of room for improvement. At the same time, it is a
project of special interest since popular office suites do not
usually include a date converter. HistoryCal has only one
member, who plays the role of both developer and
administrator. We selected a small OSS project, like
HistoryCal, in order to control all aspects with a view to
conducting a larger-scale study.

The VB technique is a tool for generating new ideas about a
particular topic or problem [10]. A group of three to four
people is the ideal number for applying this technique [10]. In
this case, we got five OSS users. This is a large enough number
of users to be able to apply the VB technique. However, we
expected a higher participation rate because, according to the
related literature, OSS application users are very cooperative
[21]. We discuss this issue in the discussion of results.

As prescribed by HCI, the aim of the VB technique is to
generate ideas for interface design [8]. This technique cannot
be applied directly, that is, as is prescribed by HCI, in OSS
development projects because the OSS community has, as
discussed above, characteristics that are uncommon in the HCI
world. In addition, OSS users are characterized mainly because
they collaborate voluntarily, that is to say, without
remuneration. As a result, recruiting and retaining new
members is a critical success factor for an OSS project [22].

184

Figure 1. Original HistoryCal Interface

Even though usability techniques demand conditions that,
as a rule, OSS projects cannot meet, the techniques can be
adapted to bring them into line with the idiosyncrasy of the
OSS world [1]–[4]. In the analysed literature [8]–[10], there are
different procedures for applying the VB technique. Although
they are all very similar, the procedure proposed by Wilson [9]
is a good option for user-centred development processes
because it gives a simple description of the steps for applying
this technique. According to Wilson [9], this technique is
composed of four steps. In the following, we describe these
steps, the identified adverse conditions and adaptations
proposed to tackle these adverse conditions. The first step is to
arrange a meeting with the users to execute the VB technique.
Alternative UI designs proposed by participants are explored
and validated at small-scale meetings. This requires user
participation at face-to-face meetings [9]. This is a condition
that OSS projects cannot meet because of their particular
features. To tackle this adverse condition, we suggest setting
up a blog for users to post their comments on the UI. Due to
certain developer and user language-related circumstances
surrounding the selected OSS project, we created two blogs for
this case study.

The second step is to gather the designs proposed by users
(as mock-ups) based on which the UI is improved [9]. This step
is problematic because the OSS community is distributed all
over the world, and face-to-face meetings to build mock-ups
are out of the question. Instead, we suggest using a blog where
users can make comments and upload their designs. The third
step is for users to evaluate the designs. To do this, they are
required to attend face-to-face meetings [9]. Due again to the
geographical location of users, OSS projects cannot be meet
this condition. On this ground, we suggest that the designs be
posted on the blog at regular intervals for users to evaluate at
their convenience. The designs were published an average of 2
per week during the month that the blog was active for this
purpose. Finally, the fourth step is for a usability expert to
design the selected user interface [9]. To overcome this
obstacle (OSS project teams do not usually include a usability
expert), we suggest that a HCI student under the supervision of
mentor should stand in for the usability expert. It is important
to mention that the mentor not only monitors the application of
the technique, but also participates in the application of it. In
addition, the HCI student's participation as a usability expert is
competent thanks to the knowledge acquired during his studies.

Table I. summarizes the steps, identified adverse conditions
and proposed adaptations for the VB technique [9]. There are
mainly two adaptations. First, users participate online through
web artefacts (e.g. blog). Second, we suggest that a HCI
student or group of students under the supervision of a mentor
replace the usability expert. In this case, the expert was
replaced by a HCI student supervised by a mentor.

TABLE I. STEPS, ADVERSE CONDITIONS AND PROPOSED ADAPTATIONS

Steps Adverse conditions Proposed adaptations

1. Users meet to
apply the
technique

User participation
at face-to-face
meetings is
required

Users participate posting
their comments regarding the
interface design in web
artefacts (e.g., blog).

2. Users submit
their design tips
(in the form of
mock-ups)

Users are located at
different
geographical sites.

Users provide feedback and
attach their designs in their
blog comments.

3. Users evaluate
the designs

Users are not at the
same geographical
location.

The designs are published at
regular intervals on the blog
for evaluation by users.

4. An expert
designs the final
interface

A usability expert
specializing in the
technique is
required

The expert is replaced by a
HCI student or group of
students supervised by a
mentor.

V. RESULTS AND DISCUSSION
In this section, we describe the results of the case study that

were taken into account to adopt the adapted usability
technique (VB).

A. Results Analysis

As discussed earlier, we applied the adapted VB technique
to the HistoryCal OSS project. We had difficulties recruiting
real users to participate in technique application because the
developer did not have a list of HistoryCal user emails. As we
did not have access to this list of real users, we posted
messages in the project forum and webpage inviting users to
participate in the application of the VB technique. Finally, none
of these real HistoryCal users replied to our invitation, and we
decided to look at other user recruitment options (like social
networks, email, LinkedIn and classmates). We then publicized
the project using a mailing list with 150 LinkedIn contacts
supplied by one of the researchers and 13 students of the HCI
course taught as part of the Master in Information and
Communication Technologies Research and Innovation at the
School of Engineering, Autonomous University of Madrid.
Finally, only five responses were received from all the users
contacted (by email, LinkedIn and HCI students).

The VB technique was applied by creating two blogs on the
WordPress platform: one in English1 and the other in Spanish2.
We built two versions of the blog because not all users are
fluent in English and the developer does not understand
Spanish. When the users (all native Spanish speakers)
submitted their design tips or comments by email to one of the
authors of this paper, they were translated to English and
published on both blogs. Then, the developer examined and
responded to/commented on the tips or comments. All this
feedback was published on the blog. Additionally, the

1 https://historycalhci.wordpress.com
2 https://historycalhcies.wordpress.com

185

developer responses/comments were translated and published
on the Spanish blog. There is no risk of getting a low quality
translation of these comments because they were validated by a
bilingual member of the research team.

In the following, we summarize some responses given by
five users and posted on the blog: two users highlighted that
they had trouble understanding how the application worked and
that an example should be added, such as the input date in the
selected format and another user suggested adding a calendar
as an input data picker control. The interface developed as
result of applying this technique is shown in “Fig. 2”. This
interface was created based on the inputs of users and the
feedback received by the application developer.

Figure 2. Interface design after applying the VB technique

The administrator was not very familiar with usability
issues in the software development process. While he was
acquainted with the concept of usability, his knowledge of
usability techniques was limited. The project did not have a
usability manager. Additionally, the administrator had not
considered usability criteria in the design of the HistoryCal UI.

The results of applying the VB technique in the OSS
HistoryCal project were sent by electronic mail to the project
developer, who found our findings interesting. The project
developer needed time to consider and build the findings into
new versions of the HistoryCal project. On the other hand,
several significant improvements were made to HistoryCal
features following some of our recommendations. These
improvements mainly consist of the inclusion of new calendars
(i.e. Scottish, Julian, Gregorian). Another major improvement
was the extension of the date format to comply with ISO
standard: 8601.

B. Discussion Of Results

In this section, we discuss and answer the research question
raised in this research: How to incorporate the VB technique in
a real OSS project?

Usability techniques were built for other types of software
development, that is, they were not designed bearing in mind
the characteristics of the OSS development process. On this
ground, the techniques need to be adapted. These adaptations
are based on the adverse conditions for technique application.
Some of the adverse conditions can be overcome using web
artefacts (i.e., wikis) with which the OSS community is
familiar. Thus, community members will be acquainted with
the many of these adaptations, encouraging to some extent the
application of the usability techniques. Within the OSS

community the blog is the most frequently used web artefact to
facilitate open discussion and maintain communication through
a distributed community of members [19]. Indeed, the
proposed solution to use a blog has been effective in adapting
the VB technique in the HistoryCal project: Note that we tested
the feasibility of adopting usability techniques in OSS projects
adapted using web artefacts (i.e., a blog) rather than the
effectiveness of blog use as such. With regard to our proposal
of substituting a HCI student or group of students under the
supervision of a mentor for the usability expert, the expert was
replaced in this case by a HCI student supervised by a mentor.

By applying the VB technique to the HistoryCal project, we
were able to confirm that it is very hard to get a representative
set of real end users, as discussed by Raza et al. in their
empirical study [21]. However, our experience of participating
in large projects (e.g., OpenOffice Writer) has revealed that it
is very difficult to recruit real end users to participate in the
application of usability techniques in OSS projects generally.
We had banked on the OSS project leader keeping a list of e-
mails of representative real end users, but this was not the case.
The fact that OSS developers are unacquainted with their user
profile is a problem that has already been detected in other
papers [17], [23], [24]. One contribution of our research is to
provide empirical evidence that this really is the case. The OSS
user participation rate during technique application was low.
We believe that there are two main reasons for this. Firstly,
none of the users were had basic knowledge in graphic design.
The technique requires users with notions of graphic design
because they will be required to give tips for improving the UI,
for example, by creating sketches (albeit with simple graphics
programs like Paint) of UI improvements. Secondly, an OSS
usability project is unlikely to be able to provide any sort of
incentive to encourage user participation. Despite all these
problems, however, the adaptation of the VB technique was
reliable for adoption in the HistoryCal project, according to the
theory when using the VB technique it does not take many
users to get a reliable result (three to four people is the ideal
number) [10].

The application of this technique would be better if users
were allowed to submit, in either textual or graphic format via a
web artefact (like a blog or wiki where user inputs are
collected), their comments and designs at their leisure, that is,
without passing through the project administrator filter. Note
that the user proposals and comments were reviewed by Nick
Matthews, the developer. Again, some sort of incentive, like,
for example, recognition for having collaborated in usability
technique application, should be included to engage more users
and increase participation in usability projects in the field of
OSS. It is important to mention that these improvements were
not implemented during the time of the study case and these
suggestions were established at the end of the research.
Therefore, we consider as future work to apply the VB
technique in another OSS project with similar characteristics
and implementing the aforementioned improvements. The main
limitation of our research is the number of case studies (only
one). Another threat is that the participants recruited to apply
VB are not representative of end users.

186

VI. CONCLUSIONS
The goal of this research was to evaluate the feasibility of

adopting HCI usability techniques in OSS projects. Thanks to
the technique adaptations, adoption was possible and we were
able to account for some OSS development characteristics that
pose an obstacle to the application of the techniques as per HCI
recommendations. In particular, we adapted the VB usability
technique for application in the HistoryCal OSS project.

The developer was receptive and interested in participating
and receiving the results of the VB technique application to
improve his software. After analysing and applying the
usability technique, we found that there are adverse conditions
that are an obstacle to technique application such as problems
locating OSS users interested in applying the technique,
geographical distribution and time differences and OSS
community motivation.

This research sets out the procedure for applying the VB
usability technique in OSS projects despite obstacles that are
not exclusive to usability techniques: (i) lack of motivation
causes a low user participation rate, (ii) OSS users are not
usability experts, (iii) OSS users and developers are
geographically distributed, (iv) there are language barriers
between users and developers, and (v) OSS projects do not
have HCI experts to help with the application of usability
techniques. The results of this research are applicable to small
projects similar to the one for which we volunteered (i.e.
HistoryCal). This is because large OSS projects have different
characteristics: (i) they are very active and popular projects
with a large user base, (ii) bugs are reported in multiple
sources, (iii) common problems are accessible in online
infrastructures (e.g. email lists, forums, etc.), and (iv) their
work practices and tests are documented. Being a qualitative
study with these specific characteristics, an exact replication
for other OSS project types would not be possible.

We believe that, in order to improve the integration of
usability techniques in OSS projects, the OSS community has
to start attaching importance to and raising awareness about the
repercussions that the issues addressed by the HCI field have
on software development. Additionally, as HCI techniques
need to be adapted to overcome the adverse conditions for
adoption in OSS development projects, the OSS community
also has to broaden its view of software development in order
to consider usability and not focus exclusively on feature
development. In the future, we aim to conduct further case
studies to adapt and apply other usability techniques in OSS
projects. We will analyse other web artefacts that can be
adapted to improve communication in OSS communities (for
example, social networks) and gradually raise the awareness of
OSS developers about the benefits of applying HCI usability
techniques.

ACKNOWLEDGMENT
This research was funded by the SENESCYT-Ecuador, and

Quevedo State Technical University. Also this research was
funded by the Spanish Ministry of Education, Culture and
Sports FLEXOR (TIN2014-52129-R) and TIN2014-60490-P

projects and the eMadrid-CM project (S2013/ICE-2715).
Finally, this research received funding from the “DIUDA
22316 Project” of the University of Atacama.

REFERENCES
[1] G. Çetin and M. Gokturk, “A Measurement Based Framework for

Assessment of Usability-Centricness of OSS Projects,” in SITIS’08,

2008, pp. 585–592.
[2] G. Çetin, D. Verzulli, and S. Frings, “An Analysis of Involvement of

HCI Experts in Distributed Software Development: Practical Issues,” in

OCSC’07, vol. 4564, Springer., 2007, pp. 32–40.
[3] H. Hedberg, N. Iivari, M. Rajanen, and L. Harjumaa, “Assuring Quality

and Usability in Open Soruce Software Development,” in FLOSS’07,

2007, pp. 1–5.
[4] M. Terry, M. Kay, and B. Lafreniere, “Perceptions and Practices of

Usability in the FOSS Community,” in International Conference on

Human Factors in Computing Systems CHI 2010, 2010, pp. 999–1008.
[5] D. M. Nichols and M. B. Twidale, “The Usability of Open Source

Software,” First Monday, vol. 8, no. 1, p. 21, Jan. 2003.
[6] S. Osiński and D. Weiss, “Introducing usability practices to OSS: The

insiders’ experience,” IFIP Int. Fed. Inf. Process., vol. 234, no. d, pp.

313–318, 2007.
[7] J. W. Castro, “Incorporating Usability in the Open Source Software

Development Process,” Doctoral thesis. Departamento de Ingeniería
Informática. Universidad Autónoma de Madrid, 2014.

[8] X. Ferré, “Marco de Integración de la Usabilidad en el Proceso de
Desarrollo Software.,” Doctoral thesis. Facultad de Informática.
Universidad Politécnica de Madrid, 2005.

[9] C. Wilson, Brainstorming and Beyond: A User-Centered Design
Method. Morgan Kaufmann., 2013.

[10] A. Osborn, Applied Imagination: Principles and Procedures of Creative
Problem-Solving, 3rd Revise. Charles Scribner’s Son, 1963.

[11] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey,
Human-Computer Interaction, 1st Ed. Addison-Wesley Pub. Co, 1994.

[12] A. Ternauciuc and R. Vasiu, “Testing usability in Moodle: When and
How to do it,” in SISY 2015, pp. 263–268.

[13] H. Assa, S. Chiasson, and R. Biddle, “Cesar : Visual Representation of

Source Code Vulnerabilities,” 2016 IEEE Symp. Vis. Cyber Secur., pp.
1–8, 2016.

[14] A. A. Khan and J. Keung, “Systematic review of success factors and

barriers for software process improvement in global software
development,” IET Softw., no. April, pp. 1–11, 2016.

[15] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in
SE: Guidelines and Examples. John Wiley & Sons., 2012.

[16] J. Blitzer, W. Schrettl, and P. J. H. Schröder, “Intrinsic Motivation

versus Signaling in Open Source Software Development,” J. Comp.

Econ., vol. 35, no. 1, pp. 160–169, 2007.
[17] D. M. Nichols and M. B. Twidale, “Usability Processes in Open Source

Projects,” Softw. Process Improv. Pract., vol. 11, no. 2, pp. 149–162,
2006.

[18] L. Nielsen and M. Bødker, “To Do or Not to Do: Usability in Open

Source Development.,” Interfaces, vol. 71, pp. 10–11, 2007.
[19] D. Pagano and W. Maalej, “How do open source communities blog?,”

Empir. Softw. Eng., vol. 18, no. 6, pp. 1090–1124, 2013.
[20] Line Dubé and Guy Paré, “Rigor in Information Systems Positivist Case

Research: Current Practices, Trends, and Recommendations,” MIS Q.,
vol. 27, no. 4, pp. 597–636, 2003.

[21] A. Raza, L. F. Capretz, and F. Ahmed, “An Open Source Usability

Maturity Model (OS-UMM).,” J. Comput. Hum. Behav., vol. 28, no. 4,

pp. 1109–1121, 2012.
[22] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre open-

source software development: What We Know and What We Do Not
Know,” ACM Comput. Surv., vol. 44, no. 2, pp. 1–35, 2012.

[23] C. Benson, M. Müller-Prove, and J. Mzourek, “Professional Usability in
Open Source Projects: GNOME, OpenOffice.org, NetBeans,” in CHI
Extended Abstract on Human Factors in Computing System - CHI
EA’04, 2004, pp. 1083–1084.

[24] M. Müller-Prove, “User Experience for OpenOffice.org.,” Interfaces
(Providence)., vol. 71, no. Summer, pp. 8–9, 2007.

187

DOI reference number: 10.18293/SEKE2018-027

XPA: An Open Soruce IDE for XACML Policies

Roshan Shrestha

Department of Computer Science

Boise State University

Boise, ID 83725, USA

roshanshrestha@boisestate.edu

Shuai Peng

Department of Computer Science

Boise State University

Boise, ID 83725, USA

shuaipeng@boisestate.edu

Turner Lehmbecker

Department of Computer Science

Eastern Washington University

Cheney, WA, USA

edmfrosty@gmail.com

Dianxiang Xu

Department of Computer Science

Boise State University

Boise, ID 83725, USA

dianxiangxu@boisestate.edu

Abstract—This paper presents XPA (XACML Policy

Analyzer), an open source IDE (Integrated Development

Environment) for testing, debugging, and mutating XACML 3.0

policies. XACML is an OASIS standard for specifying attribute-

based access control policies. XPA provides a variety of new

techniques for generating test cases from policies, localizing bugs

in faulty policies, and repairing faulty policy elements. XPA has

been applied to numerous XACML policies from the literature

and real-world applications. These policies have been used to

quantitatively evaluate the effectiveness of various testing and

debugging methods. For system developers and administrators,

XPA is a practical IDE for developing dependable XACML

policies. For access control researchers, XPA offers a versatile

toolkit for studying and evaluating new testing, debugging, and

verification techniques.

Keywords—access control, XACML, testing, fault localization,

debugging

I. INTRODUCTION

Attribute-Based Access Control (ABAC) is a new
generation of access control techniques. It makes authorization
decisions based on attributes of users, resources, actions, and
environments [1]. Due to its fine granularity and high
flexibility, ABAC is playing an increasing role in business and
federal security domains. XACML (eXtensible Access Control
Markup Language) is an OASIS standard for specifying ABAC
policies in the XML format [2]. It has been integrated in major
identity management products, such as Oracle Identity
Manager and WSO2 Identity Server. Although these products
allow user to edit and query XACML policies, there is a lack of
tool support for policy testing, debugging, and evaluation.

The inherent complexity of real-world ABAC policies and
the expressiveness of the XACML language indicate the likely
existence of access control defects and the difficulty in finding
them. The access control defects may result from omission or
misunderstanding of access control requirements, unexpected
interactions between security policy and business logic, and
coding errors. These defects need to be uncovered and fixed
before the system is deployed; otherwise they may lead to
unauthorized access or denial of service. For quality assurance
purposes, we argue that, similar to system and software
development, policy development should follow a rigorous
engineering process, including requirements analysis, design
(e.g., decomposition and modularization), coding (e.g., in the
XACML language), validation (e.g., testing and debugging),
deployment and maintenance. Thus, an integrated development
environment (IDE) is needed to provide computer-aided
support for various activities in this engineering process.

This paper presents XPA (XACML Policy Analyzer), an
evolving IDE for the development and implementation of
dependable XACML policies. It consists of a variety of tools
for editing, compiling, testing, debugging, and mutating
XACML policies. The main features are: (1) coverage-based
test generation using a constraint solver for XACML policies,
(2) mutation-based test generation using a constraint solver for
XACML policies, (3) coverage-based fault localization of
XACML policies, and (4) mutation-based repair of XACML
policies. The underlying technical approach of each feature
implies substantial research effort and its elaboration requires a
separate paper. The fault localization and repair methods for
debugging XACML policies appeared in our previous work [3]
[4], but their implementations have been improved for
efficiency and user-friendliness. The policy mutator in XPA is
currently the only one that supports XACML 3.0 and second-
order mutation (i.e., application of two mutation operators).
Other mutation tools for XACML [5][6] can only apply one
mutation operator to XACML 1.0 and 2.0 policies.

The remainder of this paper is organized as follows:
Section II gives a brief introduction to XACML policies.
Section III presents the architecture of XPA, Section IV
describes the mutation tool for XACML 3.0 policies. Sections
V and VI present coverage-based and mutation-based test
generators, respectively. Sections VII introduces fault localizer
and policy repairer. Section VIII summarizes the evaluations of
XPA. Section IX reviews and compares related work. Section
X concludes this paper.

II. XACML POLICIES

The first class entities in XACML are policy and policy set.
A policy set consists of a policy set target, a policy-combining
algorithm identifier, a list of policies or policy sets, an
obligation expression, and an advice expression. Policy set
target, obligation expression, and advice expression are
optional. An obligation expression describes the string attached
to the access privilege, whereas an advice expression describes
an optional suggestion on the access. A policy comprises a
policy target, a rule-combining algorithm identifier, a list of
rules, an obligation expression, and an advice expression. A
rule consists of a target, a condition, an effect (permit or deny),
an obligation expression, and an advice expression. The rule
target specifies the set of requests to which the rule is intended
to apply. The rule condition refines the applicability of the rule
established by the rule target. The target of a rule, policy, or
policy set is a conjunctive sequence of AnyOf clauses. Each
AnyOf clause is a disjunctive sequence of AllOf clauses, and
each AllOf clause is a conjunctive sequence of match

This work was supported in part by US National Science Foundation
(NSF) under grants CNS 1618229 and CNS 1461133.

188

predicates. A match predicate compares attribute values in an
access request with the embedded attributes. Logical
expressions for match predicates and rule conditions can apply
a great variety of predefined functions and data types (such as
string, Boolean, integer, double, time, and dates) to attributes.
XACML provides four pre-defined categories of attributes:
subject, resource, action, and environment. It also allows user
to introduce additional attribute categories.

When an access request is fed to an XACML engine that is
running a policy set or policy, the engine will return an access
decision (permit, deny, not applicable, or indeterminate) per
the policy set or policy. The decision may be attached with
obligation or advice, depending on the policy or policy set. An
access request consists of a list of attribute names, types, and
values. In this paper, it is also call test input, specified in a text
file. A complete test case is composed of both test input and
expected access decision (i.e., oracle value). The oracle value
for a test input is usually determined by the access control
requirements of the system under development. When a policy
set or policy is known to be correct (e.g., for experiment
purposes), the actual response of the policy set or policy can be
recorded and then used as the oracle value of the corresponding
test input. In an evolving policy development process, the
actual access decisions of test inputs from earlier policy
versions can be recorded and then used as the oracle values of
corresponding test inputs for testing the current or future
versions if their correctness has been confirmed before. Given
a test case for a policy set or policy, the actual response
returned by the XACML engine depends on the evaluation of
all policy elements. Consider a typical policy set with a list of
policies, where each policy is composed of a list of rules. The
final access decision per the policy set depends the evaluation
results of the policy set target, access decisions of individual
policies within the policy set, and the policy combining
algorithm. The access decision of each individual policy
depends on the evaluation results of the policy target, access
decisions of individual rules in the policy, and the rule
combining algorithm. XCAML3.0 provides 11 rule combining
algorithms and 12 policy combining algorithms. The most
commonly used combining algorithms are Deny-overrides,
Permit-overrides, First-applicable, Deny-unless-permit, and
Permit-unless-deny.

III. THE ARCHITECTURE OF XPA

Figure 1 shows the architecture of XPA. The main
components are: editor, test runner, fault localizer, policy
repairer, policy mutator, mutation-based test generators, and
coverage-based test generators. It is implemented in Java and
AspectJ (an aspect-oriented extension to Java). The editor is
adapted from the open source project UMU-XACML-Editor
[7], which was originally developed for XACML 1.0 and 2.0.
The XACML engine is Balana [8], the only open source
implementation for XACML 3.0 when we started this project.

The test runner feeds a test suite to the XACML engine
running a policy set or policy and reports the pass/fail result of
each test. For a test case without an oracle value (expected
response), the actual response is recorded. For a test case with
an oracle value, the test runner also compares the oracle value
with the actual response and makes a verdict of pass or fail.

The failure of a test case indicates that the policy or policy set
under test has one or more faults if the test input and the oracle
value are both correct.

Fig. 1. Architecture of XPA

When there is a test failure, the fault localizer can be used
to pinpoint the possible locations of faults (e.g., policy
elements in the policy or policy set under test). It ranks all
policy elements in the descending order of their suspicion
scores calculated from the execution of the entire test suite.
The user can then examine the top-ranked elements to
determine whether they are faulty and how to fix them.
Because Balana does not keep track of test execution
information, we use an aspect-oriented instrumentation
technique in AspectJ to monitor the evaluation result of each
policy element when each test case is executed. This technique
does not need to modify the source code of Balana.

The policy repairer takes a step further, aiming to repair a
faulty policy automatically. It attempts to make a series of
changes to the faulty policy, i.e., mutate the faulty policy, so as
to make all test cases pass. The repair attempt may or may not
be successful, depending on the faults. Note that automatic
repair is a hard problem. To the best of our knowledge, our
work is the first effort toward automatic repair of XACML
policies and policy sets. The current repairer can fix a fault
policy with no more than two simple faults. A simple fault is
one that can be corrected by one mutation operation.

The policy mutator is a program that generates mutants of a
given policy or policy set. Each mutant is a variation of the
original policy or policy set. A first-order mutant is obtained by
applying one mutation operator to make one change, whereas a
second-order mutant is created by applying two mutation
operators to make two changes. As the mutants of a correct
policy contain different types of faults, they are commonly
used to evaluate the effectiveness of a testing method, i.e., how
many faults can be detected.

XPA also exploits policy mutation for test generation
purposes. Given an original policy and its mutant, a mutation-
based test generator produces an access request such that the
two policies yield different responses. To do so, it first collects
the constraint on attributes by comparing the two policy
versions and then feeds the constraint to Z3 to find attribute
values to satisfy the constraint, and converts the result into an
access request. For a set of policy mutants, the mutation-based
test generators can produce an optimal test suite that reveal all
faulty mutants. This test suite can be used to test a policy or

Graphical User Interface

Editor Test

runner
Policy

Repairer

Fault

localizer

debugger

Policy

mutator

Mutation-

based test

generators

Coverage-
based test

generators

Balana

(XACML engine)
Z3

(constraint solver)

Constraint transformer

189

policy set without knowing whether the policy or policy set is
faulty. It can also be used to measure other testing methods. Z3
is an SMT (Satisfiability Modulo Theories) Solver from
Microsoft Research [9]. It is worth pointing out that, although
policy mutation is commonly used for evaluating testing
methods in the literature, mutation-based test generation and
mutation-based policy repair in our work are new.

Coverage-based test generators are a set of programs that
generate a test suite from a given policy or policy set according
to a chosen coverage criterion. The main coverage criteria are
rule coverage, rule pair coverage, permit/deny rule pair
coverage, decision coverage, MC/DC (modified-condition and
decision coverage), non-error decision coverage, and non-error
MC/DC. Each coverage-based test generator first collects the
constraints on attributes according to the chosen coverage
criterion, feeds each constraint to Z3, and converts the result
into an access request. The coverage-based test generators
focus on the extent to which the policy elements are exercised
by tests, whereas the mutation-based test generators aim to
produce tests that can reveal hypothesized faults. Both are
useful for quality assurance of XACML policies.

IV. POLICY MUTATOR

The policy mutator creates mutants of a policy set or policy
by applying mutation operators to the policy set or policy.
Mutation operators are defined with respect to a fault model,
which represents a comprehensive set of fault types in
XACML. Table I shows the fault model (i.e., column 1) and
mutation operators for each fault type. Application of one
mutation operator may result in a number of mutants. For
example, the rule combining algorithm of a policy can be
changed to any of the other rule combining algorithms.

TABLE I. FAULT MODEL AND MUTATION OPERATORS

Fault type Mutation operator

Name Mutation

Incorrect policy/
policy set target

PTT set Policy/set Target True

PTF set Policy/set Target False

Incorrect

rule/policy
combining

algorithm

CRC Change Rule/Policy Combining algorithm

Incorrect rule
effect

CRE Change Rule Effect

Incorrect rule

target

RTT set Rule Target True

RTF set Rule Target False

Incorrect rule
condition

RCT set Rule Condition True

RCF set Rule Condition False

ANF Add Not Function in condition

RNF Remove Not Function in condition

Incorrect rule
ordering

FPR First Permit Rules

FDR First Deny Rules

Missing rule RER REmove a Rule

Missing target
element

RPTE Remove Parallel Target Element

Mutation operators in Table I are named with respect to
correct policy sets and policies. Mutants of a correct policy set
or policy may or may not contain faults. It is possible that a
mutant is functionally equivalent to its original version, i.e.,
they always yield the same access decision for any access

request. Mutants of a correct policy set or policy are commonly
used for evaluating the fault detection capability of a testing
method in term of mutation score. A mutant is said to be killed
if a failure is reported by any test case produced by the testing
method. A mutant that is not killed may be equivalent to the
original policy. Given a test suite produced by a testing
method, its mutation score or mutant-killing ratio is as follows:

Note that mutation operators can be applied to a policy set
or policy no matter whether the policy set or policy is known to
be correct or faulty. In particular, XPA applies mutation to test
generation (Section VI) and policy repair (Section VII). In
these cases, the fault types in Table I do not represent the
meanings of mutation operators.

V. COVERAGE-BASED TEST GENERATORS

The coverage-based test generators produce access requests
from a given policy set or policy to satisfy a chosen coverage
criterion. As policies are special cases of policy sets, we
describe the coverage criteria with respect to policy sets.

Rule coverage: A test suite for a policy set is said to satisfy
rule coverage of the policy set if, for each rule in each policy of
the policy set, there is as least one test in the test suite that
evaluates the rule to its specified effect (permit or deny).

Decision coverage: A test suite for a policy set is said to
satisfy decision coverage of the policy set if the test suite
covers all three decisions (true, false, error) of each decision
expression, including the policy set target, the target of each
policy, the target and condition of each rule in each policy.

Non-error decision coverage: A test suite for a policy set
is said to satisfy non-error decision coverage of the policy set
if the test suite covers all non-error decisions (true and false)
of each decision expression, including the policy set target, the
policy target of each policy, the rule target and condition of
each rule in each policy.

MC/DC: A test suite for a policy set is said to satisfy
MC/DC of the policy set if the test suite satisfies MC/DC and
covers the error condition of each decision expression,
including the policy set target, the policy target of each policy,
the rule target and condition of each rule in each policy.

Non-error MC/DC: A test suite for a policy set is said to
satisfy MC/DC of the policy set if the test suite satisfies
MC/DC of each decision expression, including the policy set
target, the policy target of each policy, the rule target and
condition of each rule in each policy.

Rule pair coverage: A test suite for a policy set is said to
satisfy rule pair coverage of the policy set if, for each pair of
rules within each policy, the test suite has a test to make both
rules evaluate to their specified effects.

The above coverage criteria can also be used to measure the
coverage adequacy of a given test suite. Such a test suite may
be produced by other testing methods when a policy is
developed or represent actual access requests in operation.

number of killed mutants

total number of mutants – number of equivalent mutants

190

Generally speaking, test suites of different coverage criteria
have different levels of fault detection capabilities. The
measurement of coverage adequacy provides important
guidelines for the development of access control tests.

VI. MUTATION-BASED TEST GENERATORS

Given a policy set or policy whose correctness is unknown,
mutation-based test generators create access requests by
comparing the policy set or policy with each of its mutants
(i.e., a hypothesized fault). The mutants are obtained by
applying the mutation operators in Table I. A mutation-based
test generator with respect to a mutation operator tries to
generate one access request for each mutant obtained by the
mutation operator. For such an access request, the original
version and the mutant will respond with different access
decisions. Assuming that one version is correct and the other
version is faulty, the idea of mutation-based test generation
relies on the following fault detection conditions: (1)
Reachability condition: the access request must reach the
mutated policy element, such as rule target, rule condition,
rule effect, policy target, policy set target, and rule/policy
combining algorithm. (2) Necessity condition: the access
request must make the mutated element and the corresponding
element in the original version evaluate to different
intermediate results; (3) Propagation condition: the access
request must make the mutant and the original produce
different responses. Propagation condition largely depends on
the rule and policy combining algorithms.

By comparing the two policy versions, the mutation-based
test generator derives a constraint that is composed of all three
conditions. Then it feeds the constraint to Z3. If the constraint
is solved, the solution is converted into an access request;
otherwise the two policy versions are considered to be
equivalent, assuming Z3 is sound and complete.

The key challenge of mutation-based test generation is the
formalization of reachability condition, necessity condition,
and propagation condition for each kind of mutants. The idea
originated from fault-based testing or constraint-based testing
in the software testing community. However, practical
mutation-based test generators for software remain to be seen
unless for toy examples – it is difficult, if not impossible, to
formulate the fault detection conditions because of the inherent
complexity of software. Due to the special structure of
XACML policy sets and policies, we have been able to
automatically derive complete fault detection conditions of all
mutants. The details will be described in a separate paper.

VII. AUTOMATED DEBUGER

The automated debugger consists of the fault localizer and
the mutation-based policy repairer. Fault localizer aims to
identify which element of a policy set or policy is likely faulty
if there is a failure when it is tested with a test suite. The basic
idea is to build a correlation between the evaluation result
(firing or not) of each policy element and the test verdict (pass
or fail) for each test case. The correlation data is then used to
rank all policy elements with a certain scoring method. A
policy element with a high suspicion score has a high
probability of having fault(s). XPA has implemented 14

scoring methods selected from the best-performing spectrum-
based methods for software fault localization [10].

The policy repairer takes a step further to modify the policy
set or policy so that no test in the test suite will fail. According
to the suspicion rankings from the fault localizer, the repairer
starts with the most suspicious policy element, mutates it to
create a new policy set or policy, and runs the new policy set or
policy to check if all tests pass. If there is no failure, the repair
is successful; otherwise the repairer will try another mutation
or another suspicious element. Because a policy set or policy
may have a number of faults, the repairer exploits the notion of
plausible fix. A plausible fix does not make all tests pass.
Instead, it makes the debugging progressive, indicated by a
decreased number of failed tests. The repairer allows user to set
up the depth of mutation for repair, a scoring method for
sorting suspicious elements, and select some or all of the
mutation operators. If the repair attempt is successful, XPA
presents the relevant policy elements of both original and
repaired versions.

VIII. EVALUATION AND APPLICATION

We have applied a number of XACML policies to XPA, as
listed in Table II. All of them are available at the project
website. Three policies, continue, fedora, and itrust, were
obtained from the literature. They were originally coded in 1.0
or 2.0. We upgraded them to 3.0 without changing their
semantics. We also created three variations of itrust (itrust5,
itrust10, and itrust20) for studying scalability of testing and
debugging methods. itrustX has X times as many rules as itrust.
The new rules are created by replicating original rules with
new attribute values. HL7 is a real world policy set provided by
an XACML developer. The system that uses the HL7 policy
set is not available, though. GPMS (Grant Proposal
Management System) is an open source Java project that we
have developed as an exemplar application of XACML. The
motivation behind GPMS was that there is no real-world
XACML3.0 application whose policy files and application
source code are publicly available. GPMS is a web-based
application for an academic institution to manage the internal
workflow for grant submissions. It uses XACML to implement
a fine-grained access control of the workflow.

TABLE II. SAMPLE XACML3.0 POLICIES

Policy # of rules # of lines of the XACML file

continue 15 229

fedora1 12 227

itrust2 64 1,283

itrust5 320 6,403

itrust10 640 12,803

itrust20 1,280 25,603

HL7 19 809

GPMS policy 97 7,678

Evaluation of the coverage-based test generators: Six
policies (continue, fedora, itrust, itrust5, itrust10, and itrust20)

1 http://www.fedora.info
2 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start

191

have been used to evaluate all coverage-based test generators.
As they are considered to be the correct version, the oracle
value of each test input is the actual response from the original
policy. The fault detection capability of each test generator is
assessed through mutation testing, where both first-order and
second-order mutants were generated by the policy mutator.
The results show that the MC/DC test suite has the highest
mutation score, whereas the rule coverage test suite was only
able to kill about 50% of the mutants. All test generators have
acceptable time performance for all policies.

Evaluation of the mutation-based test generators: All
policies in Table II have been applied to the mutation-based
test generators. They are able to generate a test input for every
non-equivalent first-order mutants.

Evaluation of the fault localizer: All policies except
itrust20 and the GPMS policy in Table II have been applied to
the fault localizer. The first-order and second-order mutants of
each policy are used as inputs to the fault localizer. The
experiments show that the 14 scoring methods have varying
accuracy. Naish2 and CBI-Inc can accurately localize the faults
regardless of the policy size. The actual faulty policy element
is usually among a few top candidates that are suggested by the
Naish2 and CBI-Inc methods.

Evaluation of the policy repairer: All policies except
itrust20 and the GPMS policy in Table II have been applied to
the policy repair. Both first-order and second-order mutants of
each policy are used as inputs. All scoring methods were able
to repair them. This indicates that the mutation operators for
policy mutation and the mutation operators for policy repair are
reversible. The Naish2 and CBI-Inc methods have the best time
performance to locate the faulty elements.

Application to GPMS: XPA was used to test the GPMS
policy in the development process of GPMS. The mutants of
the GPMS policy is currently being used to evaluate the fault
detection capability of a model-based test method for GPMS.

IX. RELATED WORK

Several methods have been proposed to generate test inputs
for XACML policies: Cirg [11] generates access requests from
counterexamples produced by the change-impact analysis of
two synthesized versions. The difference of the two versions of
a policy targets a test coverage goal (e.g., rule, or condition).
Because access requests are encoded in XML, they must
conform to the XML Context Schema. Bertolino et al., have
developed different test generation algorithms by considering
the structures of the Context Schema, such as Preliminary XPT
and Incremental XPT [12]. Li et al. [8] used symbolic
execution technique to generate access requests by converting
the XACML policy under test into semantically equivalent C
Code Representation (CCR) and symbolically executing CCR
to create test inputs and translating the test inputs to access
requests. The coverage-based test generators in XPA are
different from the above work except for the rule coverage. In
addition to the new coverage criteria, XPA generates access
requests for exercising error conditions. Policy mutation has

been used to evaluate the above testing methods, but limited to
1.0 and 2.0 [5][6]. XPA also uses policy mutation for test
generation and policy repair.

X. CONCLUSIONS

We have presented a comprehensive toolkit, XPA, for
editing, testing, debugging, and mutating XACML policies. It
also provides an infrastructure for experimentation with new
testing and debugging methods. For example, when mutation is
used to evaluate a new testing method against a policy, XPA
can apply the test suite to all mutants of all or selected mutation
operators and produce a summary of test execution results.

Our future work will focus on tool support for access
control requirements analysis and policy maintenance in the
policy engineering process. We plan to develop a computer-
aided approach for transforming access control requirements
specification in a natural language (e.g., English) into XACML
policies. We will also implement various refactoring methods
to facilitate changes of XACML policies.

REFERENCES

[1] V. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, K.

Scarfone, “Guide to attribute based access control (ABAC) definition
and considerations,” NIST Special Publication 800-162, October 2013.

[2] OASIS, “eXtensible Access Control Markup Language (XACML)
Version 3.0,” http://www.oasisopen.org/committees/xacml/, Jan. 2013.

[3] D. Xu, Z. Wang, S. Peng, N. Shen, “Automated fault localization of
XACML policies,” Proc. of the 21st ACM Symp. on Access Control
Models and Technologies (SACMAT’16), pp. 137-147, June 2016.

[4] D. Xu and S. Peng, “Towards automatic repair of access control
policies,” Proc. of the 14th IEEE Conference on Privacy, Security and
Trust (PST’16), pp. 485-492, Auckland, New Zealand, December 2016.

[5] E. Martin, and T. Xie, “A fault model and mutation testing of access
control policies,” Proc. of WWW’07, pp. 667-676, May 2007.

[6] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, “XACMUT:
XACML 2.0 mutants generator,” Proc. of 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation
Workshops, pp. 28-33, 2013.

[7] P. G. Morcillo, A. J. Lázaro, G. Tormo UMU-XACML-Editor.
http://umu-xacmleditor.sourceforge.net/

[8] WSO2. “Balana: An open source XACML 3.0 implementation.”
http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-
implementation/

[9] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” Proc. of the
14th International Conference Tools and Algorithms for the
Construction and Analysis of Systems (TACAS'08), LNCS volume
4963. 2008, Springer.

[10] X. Xie, T. Y. Chen, F. Kuo, and B. Xu. “A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. on Software Engineering and Methodology (TOSEM), 22(4):31.

[11] E. Martin, and T.Xie. "Automated test generation for access control
policies via change-impact analysis." Proceedings of the Third
International Workshop on Software Engineering for Secure Systems.
IEEE Computer Society, 2007, pp.5-11.

[12] A. Bertolino, S. Daoudagh, F. Lonetti, and E.marchetti. "The X-
CREATE Framework-A Comparison of XACML Policy Testing
Strategies." Proc. of the 8th International Conference on Web
Information Systems and Technologies (WEBIST). pp.155-160.

192

Automatic Detection of Public Development

Projects in Large Open Source Ecosystems: An

Exploratory Study on GitHub

Can Cheng, Bing Li, Zengyang Li*, Peng Liang

School of Computer Science

Wuhan University

Wuhan, China

Abstract— Hosting over 10 million of software projects, GitHub

is one of the most important data sources to study behavior of

developers and software projects. However, with the increase of

the size of open source datasets, the potential threats to mining

these datasets have also grown. As the dataset grows, it becomes

gradually unrealistic for human to confirm quality of all samples.

Some studies have investigated this problem and provided

solutions to avoid threats in sample selection, but some of these

solutions (e.g., finding development projects) require human

intervention. When the amount of data to be processed increases,

these semi-automatic solutions become less useful since the effort

in need for human intervention is far beyond affordable. To solve

this problem, we investigated the GHTorrent dataset and

proposed a method to detect public development projects. The

results show that our method can effectively improve the sample

selection process in two ways: (1) We provide a simple model to

automatically select samples (with 0.827 precision and 0.947

recall); (2) We also offer a complex model to help researchers

carefully screen samples (with 63.2% less effort than manually

confirming all samples, and can achieve 0.926 precision and 0.959

recall).

Keywords- open source ecosystem; project sample selection;

automated method; public development project;

I. INTRODUCTION

In recent years, the GitHub ecosystem has witnessed an
increasing popularity, and it has attracted more than one
hundred studies focused on it [1]. With more than 10 million of
software projects hosted on this ecosystem, it is hard to select
appropriate samples (i.e., projects) when conducting large scale
case studies. Early studies often use manual selection methods
to select samples. But as large datasets appear [2], researchers
often face a dilemma that they want to use a large dataset to
verify the generality of their results and at the same time they
cannot confirm whether these projects meet their research goals.
Thus, it is important to find a way to automate the sample
selection process.

Most research on GitHub needs to satisfy an implicit
hypothesis: their sampled projects under investigation are
public development projects, which means that these projects

*Corresponding author. E-mail: zengyangli@whu.edu.cn.
 DOI reference number: 10.18293/SEKE2018-085

should be open to public and the content of these projects
should be about development. For example, when studying
communities and teams of projects in GitHub, their samples
must be public development projects. Because many projects
hosted on GitHub are not for software development (e.g., blogs,
translation and student homework) and are private [3]. When
the sample size is small, it is doable to read the descriptions
and readme files manually to select appropriate samples.
However, as the dataset becomes larger, this manual method
becomes inefficient. Hence, in this study, our goal is to
automatically detect public development projects.

We developed a model in this work to automatically detect
public development projects based on the J48 decision tree
algorithm [4]. We verified our model on a dataset of 6,715
GitHub projects labeled by master and PhD students on
software engineering. Our model performs well in classifying
public development projects. The main contributions of this
work are:

 We identified a set of words and phrases (e.g., mirror,
personal) that can reflect projects’ properties.

 We fitted a simple decision tree that can classify
public development projects with a precision of 0.839
and a recall of 0.950, and this model can help
researchers effectively select appropriate samples.

 For those studies that have strict requirements on the
dataset, we provide a complex decision tree, with
63.2% less effort than manually confirming all
samples, and it can obtain a classification with a
precision of 0.926 and a recall of 0.959.

In the rest of this paper, related work is discussed in Section
II. Design of this study is described in Section III. The results
are elaborated in Section IV. Threats to validity of the results
are presented in Section V, and this work is concluded in
Section VI.

II. RELATED WORK

A. Problems in Studying Open Source Ecosystem

Nowadays, more and more research studied software
ecosystems [5] (most objects of software ecosystem research
are open source software (OSS) ecosystems), the potential
reasons for this phenomenon is that open source ecosystems

193

mailto:zengyangli@whu.edu.cn

provide publicly available historical datasets which researchers
can benefit from.

However, there are some problems when studying the
historical data of open source ecosystems. Howison and
Crowston found that projects hosted on SourceForge were
often abandoned and their information was often missing since
some project data are hosted outside SourceForge [6]. Weiss
argued that it is not necessary to consider all SourceForge data
because of the fickleness of some projects [7]. Rainer and Gale
conducted in-depth analysis on the quality of SourceForge data
[8]. They noted that only 1% of SourceForge projects were
actually active, and suggested that researchers should be
careful when using project samples. Kalliamvakou et al.
investigated on the defects of GitHub datasets [3, 9]. They
detected 13 perils and gave strategies to avoid these perils.

Although researchers have already been aware of the
problem, some solutions to the problem still remain in the stage
of manual verification. When facing a rapidly-increasing
amount of data on OSS projects, these methods are not
effective any more.

B. Studies on GitHub Datasets

As our dataset was retrieved from the GitHub ecosystem
[10], we first investigate the datasets which can be potentially
used to study GitHub. Cosentino et al. conducted a systematic
mapping study on GitHub [1] and concluded that currently
there are six ways to get GitHub data: (1) GHTorrent [2], (2)
GitHub Archive, (3) GitHub API, (4) others (e.g., BOA [11]),
(5) manual approach, and (6) a mixture of them. It is pointed
out by Kalliamvakou et al. [3] that GitHub Archive started data
collection in 2011, and is an incomplete mirror to GitHub.
GHTorrent, in comparison, has retrieved the complete history
of GitHub. Moreover, GHTorrent can be extended by GitHub
API which is most frequently used, hence we collected studies
based on GHTorrent.

We selected high quality articles (published in top
journals/conferences or highly cited) that used GHTorrent to
see how researchers chose samples to avoid potential threats.
The results are shown in TABLE I.

TABLE I. SAMPLE SELECTION METHODS IN LITERATURE
Method Literature

Remove projects that have poor perfomance in some
dimensions (e.g., pull request)

[12-18]

Select projects that are top in some dimensions (e.g.,

star number)

[19-21]

Only consider projects in several programming
languages (e.g., ruby)

[13, 14, 18]

Remove projects that are forks [17, 18]

Use a task-related strategy (e.g., select .rb files in ruby
projects)

[12, 13, 17,
18, 21]

Have no clear project selection strategy [22-25]

As shown in TABLE I, sample selection methods are not
unified in literature. Most of the literature aims to select
samples according to specific criteria (e.g., projects that are top
in number of stars), which reduces the diversity of samples. In
addition, these sample selection methods also do not
distinguish between development projects and the projects for
other purposes, like storage. Intuitively, development projects
and projects for other purposes are developed in different ways,

and this will negatively affect the validity of research results. In
this work, we tried to solve this problem.

III. STUDY DESIGN

As our goal is to automatically detect public development
projects, and standard datasets are required to validate our
proposed model. In this section, we discuss how to create a
standard dataset and how to automatically detect public
development projects.

A. Key Concepts

In this study, the key concept is public development project,
thus we first give its definition in two aspects:

Public project: Projects that are not built for private use.
Anyone has the opportunity to participate in these projects.
Development project: Projects that are set up for software
development. This type of tasks include repositories of
libraries, plugins, gems, frameworks, add-ons, and so on [3].

B. Research Questions

We formulate the following research questions (RQs) to
investigate the feasibility of automatic detection of public
development projects.

RQ1: Can public development projects be detected
automatically without collecting additional data?

Rationale: There are many datasets (e.g., GHTorrent) and
tools (e.g., GitHub API and web crawlers) that can be used to
collect OSS data. However, although some methods (e.g., web
crawlers) can get rich information, these methods are
inefficient due to access restrictions of GitHub to fixed IP
addresses. In order to increase the usability of our approach, we
decided to do this work with only readily available data. In this
study, we only use data from GHTorrent.

RQ2: How well can public development projects be
detected?

Rationale: Existing sample selection methods have either a
good recall rate (e.g., removing poor projects) or a good
precision rate (e.g., selecting top projects). These methods have
their own flaws: (1) inaccurate samples lead to inaccurate
conclusions; (2) missing samples result in poor generalizability
of the conclusions. In this study, we aim to automatically select
public development projects with both high precision and recall
rates.

C. Standard Dataset

Creating a standard dataset means that we need to know
which projects are public development projects. Since we
cannot obtain a publicly available dataset that contains such
information, we decided to manually create such a dataset (i.e.,
extending the GHTorrent dataset).

In order to make the dataset more convincing, the size of
our dataset should not be too small. To achieve this goal we
asked several master and PhD students on software engineering
to manually examine which projects are public development
projects. Due to the limited resource, we could not mobilize
many people to confirm all projects hosted on GitHub, which
contains more than 10 million projects. Therefore, with limited

194

samples that we can manually check, we should create a
strategy to ensure that our samples contain as many types of
projects as possible.

As the number of projects that we can manually check is
limited (around 10,000 projects according to our available
resource), we should select 10,000 samples from over 10
million projects. Then there are two possible strategies: (1)
Select all projects created over a period of time; (2) Randomly
select a specific number of projects. Considering that a random
selection is unstable (i.e., different selection results may
contain different types of projects), we decided to select all
projects created over a period of time in this study.

After selecting samples, we need participants to decide
whether a sample is a public development project. This process
may introduce personal bias. In order to alleviate this problem,
we first defined how to identify public software development
projects (see TABLE II). Then, we randomly selected 100
samples and strictly labeled these samples according to
identification criteria in TABLE II. We showed these labeled
samples to participants to give them a first impression to reduce
their personal bias.

TABLE II. IDENTIFICATION CRITERIA OF PUBLIC PROJECTS AND SOFTWARE

DEVELOPMENT PROJECTS

Category Identification

Public
project

If the project’s description and readme file do not state that
the project is a private project (i.e., this project is

established for the project owner’s own use), we classify

this project as a public project.

Software
development

project

We classify projects as software development projects if
their contents are files used to build tools of any sort. This

type of use includes repositories of libraries, plugins,
gems, frameworks, add-ons, and so on [3].

Lastly, we assign tasks to participants according to the
following procedure (see Fig. 1):

1) Divide the set of samples into several subsets.
2) For each sample subset, assign a participant to decide

whether each sample meets the criteria in TABLE II.
If participants are not sure which category a sample
belongs to, they can put such a sample in a collection
“undecided” first.

3) Collect all undecided samples, and convene all
participants to discuss how to categorize these samples.
For each sample, participants need to give their
classification and reasons. If a consensus cannot be
achieved, we vote to decide which category the
project should be assigned to .

4) Form the final dataset by combining clearly
categorized samples based on the discussion.

In conclusion, we first collected samples created over a
period of time in GitHub. Then we assigned these samples to
participants for manual classification. Finally, by summarizing
these results, we got the final standard dataset.

D. Automatic Detection of Public Development Projects

After getting the standard dataset, the next step is to
automatically classify these samples. In the GHTorrent dataset,
the project-related data include issue data, commit data,
committer data, and basic data of the project (owner,

description, star number, watcher number, language, and
readme file). Hence, we collected 1,000 samples (in the sample
set discussed above) and their project-related data to conduct a
pilot study that investigates the difference between public
development project samples and the remaining samples.

Figure 1. Procedure of classifing projects.

The main findings of this pilot study are twofold (1) most
projects (80% in our samples) clearly stated their purposes in
the project description. (2) We cannot simply exclude a project
that contains some special strings. For example, a project with
the word ‘test’ in its description does not necessarily mean that
this project is a private project, and this project may be a
‘testing tool’.

The inspiration from this pilot study is that the decision tree
model is suitable to address our RQs, because a combination of
keywords can avoid the problem in finding (2). For example, if
a description contains the keyword ‘test’, the project may be a
private project that aims to test how to use GitHub. But if the
description also contains the keyword ‘tool’, then this project
may be a testing tool, and should be classified into public
development projects.

In order to improve the keywords that are used in the
decision tree, we used the following procedure to gradually
improve the quality of matched strings (see Fig. 2):

(1) Generate an initial matching string from the survey
samples (1,000 samples discussed above) in the pilot
study. For example, we can match projects from other
ecosystem by matching string ‘%mirror%’.

(2) Test the results through the J48 decision tree
algorithm on the standard dataset.

(3) Count the number of misclassified samples; if the
number exceeds 15% of the standard dataset,
investigate these samples and update our strings, and
return to (2), else, output the final strings.

As shown in TABLE I, there are several methods to select
research samples. Removing projects that are forks is necessary
for all researchers who want to study base projects. This
method should be used by all studies that aim to investigate
base projects, and consequently it is not necessary to compare
our model with these methods. Some task-related strategies
were used for special research purposes and these methods are
not in the scope of our comparison. For example, selecting only

195

Java projects means that the purpose is to study the pattern that
exists merely in Java projects. As our objective is to study a
common model to select samples, we should not compare our
model with those task-related methods. Hence, our model
should be compared with the two methods: (1) removing poor
projects and (2) selecting top projects.

Figure 2 The process of updating string.

There are different dimensions to measure success. We
select four dimensions that are widely accepted and easy to
obtain [26]: committer numbers, community member numbers,
star numbers, and watcher numbers. Then we used different
thresholds to segment the dataset to select samples. Methods
are shown in Fig. 3.

Figure 3 Baseline method schematic diagram.

For each dimension, we have ten choices to select samples
(i.e., selecting top 1%,2%,4%,8%,15% projects or deleting
bottom 1%,2%,4%,8%,15% projects). Therefore, we should
compare 40 different strategies on selecting samples.

IV. STUDY RESULTS

A. Standard Dataset

Following the procedure in Section III, we first collected all
projects established in GitHub between 2012-1-1 and 2012-1-
15. We chose this period of time because GHTorrent started
data collection in 2012, and we need to collect about 10,000
projects (considering about the work load). Then, we deleted
projects that are forks (recommended by [17, 18]) and obtained
8,638 samples. In addition, we deleted projects that are not
described in English or have been removed. Some projects in
the GHTorrent dataset have been removed from GitHub by
their owners, therefore, we deleted such projects due to the lack
of sufficient development information to classify such projects.

Finally, we got 6,715 projects acting as the standard dataset in
this study.

Then, we labeled these samples by human judgment. These
samples were sent to four participants and we asked them to
determine whether these projects are public development
projects using our definitions in TABLE II. Doubtful projects
(625 projects) were discussed and classified through a meeting.
Finally, we obtained 6,715 labeled projects.

B. Sample Features

After several rounds of iterative process described in Fig. 2.
For each sample, we collected keywords existed in the
description and URL as features of the sample. Besides, we
also collected basic information of projects to help classify
samples. All features are shown in TABLE III.

TABLE III. SAMPLE FEATURES
Feature

Source

Feature Content Remarks

Description mirror, fork, moved, longer, test,

personal, website, framework, tool,

module, component, app, system,
dotfiles, collection, blog, plugin,

library, server, config, guide, set,

repository, deprecated, file, demo,
my, github, dot, simple, extension,

helper, template, http, https, source,

setting, list of, collection of,
example, vim, sample, university,

school, practice, backup, intro, first,

tutorial, course, copy, null,
localization, storage, theme,

resume, clone, translation,
documentation

If the description of

a project contains a

feature string, this
feature is set to 1.

If not, this feature

is set to 0. For
example, project i's

desscription

contains string
‘mirror’, then we

set feature “mirror”

of project i to 1.

Basic

information

star number, watcher number,

community member number,

committer number. have_language

This information is

available through

the GitHub API.

URL Dot, config, doc If URL of a project
contain this string,
this feature is set to
1. If not, this
feature is set to 0.

C. Models and Effects

We used the J48 algorithm in Weka1 tool to fit the model,
and debug parameter confidencefactor2 to control model size
and results. Then, we got two typical models: a simple model
to automatically classify projects and a complex model (in need
of human judgment) that can meet strict requirements of
studies.

1) Simple model

When confidencefactor is set to 0.05, we can get a simple
model. The decision tree model is shown in Fig. 4. This model
can achieve precision of 0.827 and recall of 0.947 in classifying
public development projects. Furthermore, this model is stable,
in the sense that precision and recall do not change drastically
(precision of 0.820 and recall of 0.941 relatively) when using
the 10-fold cross-validation.

2) Complex model

1 https://www.cs.waikato.ac.nz/ml/weka/
2 A parameter that affects the pruning process of a decision tree. The

smaller the parameter value, the smaller the model.

196

When confidencefactor is set to 0.5, we can get a complex
model. The decision tree model cannot be shown in this paper
due to the space limit, and this decision tree is provided online3.
The complex model can achieve a precision of 0.837 and a
recall of 0.956. The complex model has a distinct characteristic:
a large proportion of misclassified samples are located on two
leaf nodes. We showed these paths which are the classification
conditions to obtain projects in these leaf nodes in TABLE IV.

TABLE IV. THREE DICISION PATHS THAT CONTAIN THE VAST MAJORITY OF

MISCLASSIFIED SAMPLES

Decision Path (common part) Decision Path

(sub-part)

Correct/I

ncorrect

Simple = 0; tutorial = 0; dot = 1;
have_language = 1; mirror = 0; my = 0;

collectionof = 0; fork = 0; personal = 0;

url_dot = 0; demo = 0; example = 0; test
= 0; url_config = 0; config = 0; blog = 0;

plugin = 0; library = 0; framework = 0;

star <= 2; sample = 0; source = 0; set =
0; committer <= 2; app = 0

Committer <= 1;
Star > 0 ;

Classify_Result=

TRUE

1,467/355

Committer > 1;
community <= 2;

Classify_Result=

TRUE

538/113

If we can manually confirm the samples (2,473 out of 6,715,
36.8%) on these nodes, this model achieves a precision of
0.926 and a recall of 0.959. The result can satisfy most of strict
requirements of studies.

D. Comparison with Baseline Method

We compared our model with two base-line methods:
selecting top projects and deleting bottom projects. The results
are shown in TABLE V and TABLE VI, respectively.

3 https://github.com/sekematerial/S-E-K-E-supplementary-material

TABLE V. RESULTS OF SELECTING TOP PROJECTS
 top precision recall top precision recall

C
o
m

m
it

te
r

1% 0.761 0.011

S
ta

r

1% 0.865 0.013

2% 0.768 0.233 2% 0.880 0.026

4% 0.791 0.048 4% 0.865 0.052

8% 0.783 0.095 8% 0.834 0.101

15% 0.771 0.176 15% 0.824 0.188

C
o
m

m
u
n
it

y
 1% 0.805 0.012

W
at

ch
er

1% 0.895 0.013

2% 0.835 0.025 2% 0.895 0.027

4% 0.835 0.050 4% 0.869 0.052

8% 0.811 0.098 8% 0.843 0.102

15% 0.772 0.176 15% 0.810 0.184

TABLE VI. RESULTS OF DELETING BOTTOM PROJECTS
 bottom precision recall bottom precision recall

C
o
m

m
it

te
r

1% 0.656 0.988

S
ta

r

1% 0.655 0.986

2% 0.655 0.976 2% 0.652 0.973

4% 0.652 0.952 4% 0.648 0.947

8% 0.646 0.904 8% 0.642 0.898

15% 0.637 0.824 15% 0.627 0.811

C
o

m
m

u
n
it

y
 1% 0.655 0.987

W
at

ch
er

1% 0.654 0.986

2% 0.653 0.974 2% 0.652 0.972

4% 0.649 0.949 4% 0.648 0.947

8% 0.644 0.901 8% 0.640 0.897

15% 0.635 0.821 15% 0.629 0.814

We can see from the results that compared with our model
(0.827 precision and 0.943 recall), these two baseline methods
have obvious weaknesses. Selecting top method has a low
recall rate, and the precision of deleting bottom method is not
very high. Besides, the two methods do not have room for
debugging, which means that there are no direct methods to
improve the results of the two methods, while by using 63.2%
less human effort than manually confirming all samples, our
complex model can get a classification result with precision of
0.926 and recall of 0.959. This is an advantage of our approach.

E. Answers to Research Questions

We formulated two research questions and perform
experiments on the standard dataset with 6,715 labeled samples.
Our results can answer these research questions:

Answer to RQ1: Yes, we can automatically detect public
development projects with only descriptions and basic
properties of projects (e.g., committer number), and achieve
acceptable accuracy (0.827 precision and 0.943 recall).

Answer to RQ2: (1) Our model performs better than existing
methods. The precision and recall rates are acceptable to be
applied to the experiments on GitHub. (2) For studies that have
strict requirements on the dataset, our work can reduce 63.2%
human resources in selecting samples.

V. THREATS TO VALIDITY

In this section, we identified several threats to the validity
of the study results.

A. Construct Validity

In this study, we only measured whether a project is a
public development project. Thus, the construct validity is
whether projects classified as “TRUE” are real public
development projects. As the concept development project
and public project are clearly defined and we asked
participants if they had any doubt to classify a sample.
Doubtful projects were put into the “undecided” set to be

Figure 4. Simple decision tree model. Nodes with TRUE or FALSE is leaf

nodes and TRUE or FALSE is the corresponding judgment on these nodes.

197

further discussed by a group. Then, in the discussion session,
all undecided projects are discussed and decided. Hence, the
construct validity is limited.

B. External Validity

External validity in this study depends on whether the
obtained results can be generalized to the GitHub ecosystem, or
further other OSS ecosystems. The information used in this
study to classify a public development project only contains
description, URL, and basic properties of the project, and such
information also exists in other OSS ecosystems. We believe
that our model can be applied to other OSS ecosystems.

C. Reliability

 The GHTorrent dataset used in this study is provided by
[10], and it is a public and popular dataset for studing OSS
development behaviors. Hence, this study can be repliciated
using the dataset. At the same time, to mitigate personal bias,
we asked participants to avoid classifying samples that may
cause disagreements, and then classified these samples through
discussion in the data collection procedure. Hence, we believe
that our work is relatively reliable.

VI. CONCLUSIONS

The study aims to develop a model to automatically detect
public development projects. The main points of this study are
summarized as follows. First, we can automatically detect
public development projects with a precision of 0.827 and a
recall of 0.943, which is better than existing sample selection
methods. Second, by using 63.2% less human effort than
manually confirming all samples, we can get better results with
a precision of 0.926 and a recall of 0.959, which can meet strict
sample requirements.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China (Nos. 2017YFB1400602 and
2016YFB0800401), the National Natural Science Foundation
of China (Nos. 61572371, 61702377, and 61773175), the
Wuhan Yellow Crane Special Talents Program, the CPSF (No.
2015M582272), the Natural Science Foundation of Hubei
Province (No. 2016CFB158), and the Fundamental Research
Funds for the Central Universities (No. 2042016kf0033).

REFERENCES

[1] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, "A Systematic Mapping
Study of Software Development With GitHub," IEEE Access, vol. 5, pp.
7173-7192, 2017.

[2] G. Gousios and D. Spinellis, "GHTorrent: Github's data from a
firehose," in International Working Conference on Mining Software
Repositories, 2012, pp. 12-21.

[3] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, "An in-depth study of the promises and perils of mining
GitHub," Empirical Software Engineering, vol. 21, pp. 2035-2071, 2016.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, "The WEKA data mining software: an update," Acm Sigkdd
Explorations Newsletter, vol. 11, pp. 10-18, 2009.

[5] K. Manikas and K. M. Hansen, "Software ecosystems–a systematic
literature review," Journal of Systems and Software, vol. 86, pp. 1294-
1306, 2013.

[6] J. Howison and K. Crowston, "The perils and pitfalls of mining
SourceForge," in International Working Conference on Mining Software
Repositories, 2004, pp. 7-11.

[7] D. Weiss, "Quantitative analysis of open source projects on
sourceforge," in Conference on Open Source Software, 2005, pp. 100-
104.

[8] A. Rainer and S. Gale, "Evaluating the Quality and Quantity of Data on
Open Source Software Projects," in Conference on Open Source
Software, 2005, pp. 11-15.

[9] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, "The promises and perils of mining github," in International
Working Conference on Mining Software Repositories, 2014, pp. 92-
101.

[10] G. Gousios, "The GHTorent dataset and tool suite," in International
Working Conference on Mining Software Repositories, 2013, pp. 233-
236.

[11] T. N. Nguyen, "Boa: A language and infrastructure for analyzing ultra-
large-scale software repositories," In International Conference on
Software Engineering 2013.

[12] G. Gousios, M. Pinzger, and A. V. Deursen, "An exploratory study of
the pull-based software development model," in International
Conference on Software Engineering, 2014, pp. 345-355.

[13] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, "Quality and
productivity outcomes relating to continuous integration in GitHub," in
Joint Meeting on FSE/ESEC, 2015, pp. 805-816.

[14] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, "Wait for It:
Determinants of Pull Request Evaluation Latency on GitHub," in
International Working Conference on Mining Software Repositories,
2015, pp. 367-371.

[15] Y. Yu, H. Wang, G. Yin, and T. Wang, "Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?," Information and Software Technology, vol. 74, pp. 204-
218, 2016.

[16] G. C. Murphy, R. Terra, J. Figueiredo, and D. Serey, "Do developers
discuss design?," in International Working Conference on Mining
Software Repositories, 2014, pp. 340-343.

[17] R. Kikas, M. Dumas, and D. Pfahl, "Using dynamic and contextual
features to predict issue lifetime in GitHub projects," in International
Working Conference on Mining Software Repositories, 2016.

[18] E. Constantinou and T. Mens, "Socio-technical evolution of the Ruby
ecosystem in GitHub," in IEEE International Conference on Software
Analysis, Evolution and Reengineering, 2017, pp. 34-44.

[19] R. Padhye, S. Mani, and V. S. Sinha, "A study of external community
contribution to open-source projects on GitHub," in Working
Conference on Mining Software Repositories, 2014, pp. 332-335.

[20] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, "Usage, costs,
and benefits of continuous integration in open-source projects," in
IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 426-437.

[21] J. Xavier, A. Macedo, and M. D. A. Maia, "Understanding the popularity
of reporters and assignees in the Github," in International Conference on
Software Engineering & Knowledge Engineering, 2014.

[22] K. Aggarwal, A. Hindle, and E. Stroulia, "Co-evolution of project
documentation and popularity within github," in Working Conference on
Mining Software Repositories, 2014, pp. 360-363.

[23] M. M. Rahman and C. K. Roy, "An Insight into the Pull Request of
GitHub," in Working Conference on Mining Software Repositories,
2014, pp. 364-367.

[24] K. Yamashita, S. Mcintosh, Y. Kamei, and N. Ubayashi, "Magnet or
sticky? an OSS project-by-project typology," 2014, pp. 344-347.

[25] J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B. Rolandi, "Exploring
the use of labels to categorize issues in Open-Source Software projects,"
in IEEE International Conference on Software Analysis, Evolution and
Reengineering, 2015, pp. 550-554.

[26] K. Crowston, J. Howison, and H. Annabi, "Information systems success
in free and open source software development: Theory and measures,"
Software Process: Improvement and Practice, vol. 11, pp. 123-148,
2006.

198

Recovering Three-Level Architectures
from the Code of Open-Source Java Spring Projects

Alexandre Le Borgne1, David Delahaye2, Marianne Huchard2,
Christelle Urtado1, and Sylvain Vauttier1

1LGI2P, IMT Mines Ales & Montpellier University, Ales, France
{Alexandre.Le-Borgne, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

2Montpellier University, CNRS, LIRMM, Montpellier, France
{David.Delahaye, Marianne.Huchard}@lirmm.fr

Abstract

Despite the well-admitted benefits of keeping design
decisions as a documentation all along the lifecycle of
software, many software projects have lost this informa-
tion. In order to use design information to guide software
maintenance and evolution, this paper proposes to retro-
engineer architecture descriptions from source code. The
originality of this work is to target a three-leveled architec-
ture description language which represents software spec-
ification, configuration and deployment. Retro-engineering
these three levels will provide a more precise source
of guidance for the maintenance of software. Targeted
projects are open-source Java projects that use Spring to
describe the implemented ”architecture”.

Keywords: Component-Based Software Engineering,
Model-driven engineering, Architecture retro-engineering
from code, Architecture evolution, Component reuse, Ar-
chitecture reuse.

I. Introduction

As software systems constantly become more complex,
retrieving design decisions has become an increasingly
important problematics when conceptual documentation
is missing. However, despite numerous researches in the
field of software architecture reconstruction, few work was
dedicated to extract raw (”as implemented”) component-
based description. It is important, in the first place, to
understand design decisions to recover architectures as

they are implemented and to not perform any improvement
(re-engineering tasks) altogether. Moreover, it is important
to represent the software at three abstraction levels in order
to trace design decisions through the whole development
process. To do so, we use the Dedal [12], [8] architecture
description language (ADL) developed by our team. This
paper proposes to reconstruct component-based architec-
tures from Java Spring [6] projects.

The remainder of this paper is organized as follows.
Section II presents the background of our approach. The
core of the paper is developed in Section III where
component-based architecture reconstruction from Java
Spring projects is explained. Section IV details the existing
work in software architecture reconstruction and Section V
concludes on perspectives.

II. Background

A. Dedal, a Three-Level Architecture Description
Language

Dedal [12], [8] is a three-level architecture description
language (ADL) designed to give a representation of the
entire life cycle of architectures and a support to manage
their evolution. Design is represented by the Specification
level which is composed of abstract component types.
Those types are called roles which means that they define
the functionalities present in the components of the future
software. Implementation choices are captured by the
Configuration level. This architecture level is composed
of concrete component classes which are realizations of

DOI reference number: 10.18293/SEKE2018-140 199

the roles. Deployment is described in the Assembly level.
This level is composed of a set of component instances
that define how to tailor software for specific execution
contexts.

B. Spring

Java Spring framework [6] is widely used in industry
to manage the deployment of software architectures. It
provides standardized architecture deployment capabilities
thanks to a container that is able to handle explicit archi-
tecture descriptors. Architecture descriptors are defined as
XML files or directly embedded in the code as annotations.
They are based on the concept of beans, which define the
objects that the container must instantiate and connect in
order to set the initial architecture up. For instance, the
deployment descriptor of Figure 1a is composed of four
beans: lampDesk, lampSitting, clock1 and orchestrator1.

Connections between beans are handled by the con-
tainer using dependency injection to preserve decoupling.
Beans only declare reference attributes corresponding to
their dependencies with other beans. These dependencies
are then resolved at runtime thanks to the connections
defined in the deployment descriptor. For instance, the
deployement descriptor in Figure 1a defines three connec-
tions between the orchestrator, the lamps and the clock
beans. Those connections are defined by the property
tag which corresponds to the injection of dependencies.
For instance, < property name = ”clock” ref =
”clock1”/ > sets the clock1 bean as the clock property
of the orchestrator1 bean.

As compared to raw code, Spring projects provide some

explicit architectural descriptions. However, these descrip-
tions do not capture design decisions and thus cannot be
considered as abstractions of the software architecture.

III. Extracting Component-Based Software
Architectures

In order to ease the extraction of information from
the Spring descriptor, using a model-driven approach, a
small domain specific language named SpringDSL has
been developed. It consists of an implementation of the
Spring XML descriptor grammar in EMF1. XText2 has
been used to automatically generate the corresponding
EMF metamodel since we could not find an already
developed metamodel. This metamodel enables thus to
parse Spring XML descriptors and get all their content
as concept instances.

This section discusses how each concept of Dedal is
extracted from the source code and a Spring deployment
description.

A. Extracting Components

Considering component extraction as a model trans-
formation between SpringDSL and Dedal, only a simple
mapping is required to extract the assembly and also a
small part of the configuration models. To do so, the
eclipse QVTo3 language is used since it defines model to

1https://www.eclipse.org/modeling/emf/[Last seen 03-14-2018].
2https://www.eclipse.org/Xtext/ [Last seen 03-14-2018].
3https://projects.eclipse.org/projects/modeling.mmt.qvt-oml [Last seen

03-14-2018].

<bean class="AdjustableLamp" id="lampDesk" />
<bean class="AdjustableLamp" id="lampSitting" />
<bean class="Clock" id="clock1" />
<bean class="Orchestrator" id="orchestrator1" >

<property name="lamps">
<set><ref bean="lampDesk" />

<ref bean="lampSitting" /></set></property>
<property name="clock" ref="clock1" />

</bean>

(a) HAS Spring description
public class Clock implements Time {

public void run() {...}
}
public class AdjustableLamp extends Light {

...
public void switchState(State s) {...}
public void adjustInensity(int value) {...}

}
public class Orchestrator extends HomeOrchestratorImpl {

protected void run(){...}
}

(b) HAS classes instantiated in Figure 1a

public interface Time {
public void run();

}
public abstract class Light {

...
public abstract void switchState(State s);

}
public abstract class HomeOrchestrator {

Light[] lights;
Time clock;
public abstract void run();

}
public class HomeOrchestratorImpl

extends HomeOrchestrator {
protected void run(){...}
public HomeOrchestratorImpl (Light[] lights,

Time clock) {...}
public Light[] getLights() {...}
public void setLights(Light[] lights) {...}
public Time getClock() {...}
public void setClock(Time clock) {...}

}

(c) HAS most abstract classes

Figure 1: HAS implementation

200

Figure 2: Extracted component class: Orchestrator

model transformations through the concept of mapping.
As a first step, beans are mapped to the component
instances of the architecture Assembly, using the id of
the beans as the name of the components and the class
attribute as the instantiated component class. Thus the bean
tag describing the Orchestrator instance orchestrator1
in Figure 1a is mapped as the component instance of
Figure 3 named orchestrator1 that is an instance of the
primitive component class Orchestrator. If the compo-
nent class does not exist in the Configuration yet, then it
is created.

Figures 1b and 1c present an extract from the Java code
of the Home Automation Software (HAS) example. Code
introspection enables to extract complementary informa-
tion required to build higher level architecture models and
more detailed component definitions.

For generating the component roles of the architec-
ture Specification, the type hierarchy of the beans
classes is analyzed, in order to extract the most generic,
thus reusable, architecture model as possible. The main
idea is to retrieve the abstract superclasses that are re-
alized by the bean class corresponding to a component
class. To extract the component role, the type hierar-
chy is traversed and the role which is picked is the
most generic component role which still holds all the
required interfaces that are present in the correspond-
ing component class and which preserves the connec-
tions which exist in the Configuration. Figure 2 is the
component role HomeOrchestrator role that is real-
ized by the primitive component class Orchestrator.

B. Extracting Interfaces

Two types of interfaces are distinguished: (i) provided
and (ii) required interfaces. All the methods that are pro-
vided by the beans classes must be provided into respective
component interfaces. However, in order to not provide
only one large interface per component, the interfaces are
cut according the type hierarchy of classes. In other words,
each implemented interface is mapped as a component
interface and if a class does not implement an interface,
a ”conceptual” interface is extracted, which is composed
of the public methods of the beans class, except for get-
ters / setters that are used whether to initialize properties or

Figure 3: HAS generated Dedal three-level architecture

Figure 4: Extracted class connection

to manage connections. For extracting required interfaces,
the reference attributes declared in the Spring descriptor
are used to manage the binding of the beans. The type and
the name of the attribute are used to generate the type and
the name of the corresponding interface.

The HomeOrchestrator role extracted interfaces are
described in Figure 2 with their names, direction and
implemented types.

C. Extracting Connections

The XML description (Figure 1a) makes it possible to
start the extraction of connections between components.
Indeed, thanks to the dependency injection, clients and
servers of connections are identifiable. For instance, in
the current example, the orchestrator1 bean contains a
property which refers to clock1, so it is possible to map a
new connection between orchestrator1 and clock1. This
connection is propagated to the Configuration level by
creating a connection between the two instantiated compo-
nent classes. Following the same principle, the connection
between the realized component roles is created.

Then the interfaces that are implied in connections must
be set. To do so, we search among two connected com-
ponents which are their matching interfaces. For matching
two interfaces, their types must be equal and their direc-
tion complementary (provided with required). Thus, for
instance in our case, Clock provides the IT ime interface

201

of type Time and, Orchestrator requires an interface of
the same type (Figure 3). Then those two interfaces match
and the connection presented in Figure 4 can be set. Then
it is propagated following the instantiate relation between
component class interfaces and component instance inter-
face (Figure 3). Finally, connection between roles are set
in the same way as the connections between component
classes.

Figure 3 is the visual representation of the three-level
Dedal architecture which is composed of four component
instances into the Assembly (that correspond to the beans
of the Spring description), the component classes of the
Configuration that are instantiated by the component in-
stances and also the component roles into the Specification
which are realized by component classes. The connections
between components are also represented.

IV. Related Work

This section narrows the studied approaches to the ones
which extract component-based architecture descriptions
and, if possible, from object-oriented code. Moreover,
retro-engineering approaches which consist in simply ab-
stracting the software artifacts for retrieving raw design de-
cisions are differentiated from re-engineering ones which
intend to re-organize the extracted information and / or the
software artifacts.

In their work, Ducasse et al. [3] defined a taxonomy
for categorizing software architecture reconstruction ap-
proaches. Following this taxonomy, the goals of the dis-
cussed approach are twofold. The first goal is to improve
component reuse, by extracting component-based architec-
ture descriptions, such as MAP [10], PuLSE / SAVE [7]
and ROMANTIC [1], [9] approaches, but targeting the
Dedal [12], [8] ADL. The second goal is to pro-
vide the foundations for managing conformance checking
(Bauhaus [4], [2], DiscoTect [11], PuLSE / SAVE [7]), evo-
lution, co-evolution (PuLSE / SAVE [7], Huang et al. [5])
and maintenance using the formal rules that have previ-
ously [8] been defined in Dedal.

However none of the studied methods intends to extract
raw information of how the software is implemented.
Moreover, all the discussed approaches only deal with two
levels of abstraction (i.e., implementation and architecture)
that may not correspond to the same paradigms (code
vs component-based architecture description). Indeed three
component-based architecture descriptions are essential for
maintaining, evolving, tracking software life-cycle since
it gives a more global and direct understanding to the
architect which can get an overview of the code structure
by managing components. Moreover, even the approaches
which seem to fit with the discussed one, either recover
architecture in a semi automatic manner from execution

trace of software (i.e., DiscoTect [11]) or do not reconstruct
raw architecture such as ROMANTIC [1], [9] approach
which performs re-engineering of the deployed architecture
by clustering classes into bigger semantic components that
encapsulate classes.

This is why a retro-engineering approach is proposed
that builds three-level component-based architecture de-
scription from structural artifacts.

V. Conclusion and Future Work

This paper introduces an approach for software architec-
ture reconstruction, using three levels of architecture mod-
els (Assembly, Configuration, Specification). An aspect
of future work will be to improve and refine the extraction
of the Specification for making it more abstract.

Real Spring projects have already been identified in
open-source repositories in order to perform large scale
experimentations on evolution and reuse. Getting projects
from open-source repositories will also allow the imple-
mentation of versioning mechanisms.

References

[1] Z. Alshara, A. D. Seriai, C. Tibermacine, H. L. Bouziane, C. Dony,
and A. Shatnawi. Materializing architecture recovered from object-
oriented source code in component-based languages. In 10th
ECSA Proc., volume 9839 of LNCS, pages 309–325, Copenhagen,
Denmark, Nov. / Dec. 2016. Springer.

[2] A. Christl, R. Koschke, and M. A. Storey. Equipping the reflexion
method with automated clustering. In 12th WCRE Proc., pages
10–98, Pittsburgh, USA, Nov. 2005.

[3] S. Ducasse and D. Pollet. Software architecture reconstruction: A
process-oriented taxonomy. IEEE TSE, 35(4):573–591, 2009.

[4] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in
source code. IEEE TSE, 29(3):210–224, 2003.

[5] G. Huang, H. Mei, and F. Q. Yang. Runtime recovery and
manipulation of software architecture of component-based systems.
Automated Software Engineering, 13(2):257–281, April 2006.

[6] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, et al.
The spring framework – reference documentation. Interface, 21:27,
2004.

[7] J. Knodel, M. Lindvall, D. Muthig, and M. Naab. Static evaluation
of software architectures. In 10th CSMR Proc., pages 279–294,
Bari, Italy, March 2006. IEEE.

[8] A. Mokni, C. Urtado, S. Vauttier, M. Huchard, and H. Y. Zhang.
A formal approach for managing component-based architecture
evolution. SCP, 127:24–49, 2016.

[9] A. Shatnawi, A. D. Seriai, H. Sahraoui, and Z. Alshara. Reverse
engineering reusable software components from object-oriented
APIs. JSS, 131:442–460, 2017.

[10] C. Stoermer and L. O’Brien. Map–mining architectures for product
line evaluations. In IEEE / IFIP WICSA Proc., pages 35–44,
Amsterdam, The Netherlands, Aug. 2001.

[11] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman.
DiscoTect: a system for discovering architectures from running
systems. In 26th ICSE Proc., pages 470–479, Edinburgh, UK, May
2004.

[12] H. Y. Zhang, C. Urtado, and S.Vauttier. Architecture-centric
component-based development needs a three-level ADL. In 4th
ECSA Proc., volume 6285 of LNCS, pages 295–310, Copenhagen,
Denmark, Aug. 2010. Springer.

202

An Agent-based Software Framework for Machine
Learning Tuning

Jefry Sastre1, Marx Viana1, Carlos Lucena1
1Laboratory of Software Engineering (LES) - Pontifical Catholic University - PUC-Rio

Rio de Janeiro, RJ - Brazil
{jperez, mleles, lucena}@inf.puc-rio.br

Abstract— Nowadays, the challenge of knowledge discovery is

to mine massive amounts of data available online. The most

widely used approaches to tackle that challenge are based on

machine learning techniques. In spite of being very powerful,

those techniques require their parameters to be calibrated in

order to generate models with better quality. Such calibration

processes are time-consuming and rely on the skills of machine

learning experts. Within this context, this research presents a

framework based on software agents for automating the

calibration of machine learning models. This approach

integrates concepts from Agent Oriented Software Engineering

(AOSE) and Machine Learning (ML). As a proof of concept, we

first train a model for the IRIS dataset and then we show how

our approach improves the quality of new models generated by

our framework.

Keywords. Agent oriented Software Engineering (AOSE);

Machine Learning; Time-consuming

I. INTRODUCTION
The big data era is coming! According to [1], every minute

on the internet over 4 million queries are made on Google,
more than 200 million emails are sent and users share almost
2.5 million pieces of content on Facebook, among other actions.
The amount of data generated is growing exponentially [2] and
we need to be prepared to face all the challenges upfront. Peter
Norving at Google’s Zeitgeist Conference (2011) refers to this
matter, stating: “We don’t have better algorithms. We just have
more data”.

Indeed, the huge volume of data available is a massive
challenge to be accepted, but at the same time a vast
opportunity to learn from the data to generate more expert
artificial intelligence software and to enhance the knowledge
discovery processes (KDD). One of the most popular and widely
used approaches to generate knowledge is through the machine
learning techniques. In order to be better rewarded from machine
learning algorithms, we need to adjust their parameters. This
calibration process makes the resulting models more accurate
and, certainly, more profitable; but the drawback at stake is time.
The tuning process is generally done by hand, is highly time
consuming and strongly relies on the skills of machine learning
experts, turning it into an extenuated, endless process. We
foresee a chance to incorporate the Agent Oriented Software
Engineering (AOSE) [23] area to automate the process of tuning
the models prone to the generation of more accurate models and,
at the same time, reduce efforts dedicated to produce more
profitable models.

DOI reference number: 10.18293/SEKE2018-074

Agents are software components with autonomy,
reactiveness, proactiveness and social capabilities [3]. Agent
autonomy comes in handy when a system needs to make its own
decisions. The agents can also use their proactiveness to guide the
tuning process. As a result, it is possible to see how multiagent
systems can contribute to the automation of machine learning. To
solve this problem, we propose a framework based on software
agents to handle the tuning of the machine learning models.

The contributions are: (i) the framework will facilitate
building new models that might display good performance
based on the previously trained models. This includes a new set
of possibilities in the selection of the ways and strategies that will
guide the optimizations; (ii) the framework allows the creation of
an ensemble of models to predict and negotiate a consensus
among all the predictors in order to deliver a solution. In addition,
the results of the system do not depend on a single trained model,
but rather on a set of models that might be specialized at detecting
specific characteristics; (iii) the framework reduces the time spent
by the user to train a successful model with a multiagent system
to support the training process. The idea is to configure some of
the training and allow the framework to handle the training
results, the timing and the long wait for the end of the training and
the start of a new one without human interference, and (iv) to
validate a case scenario, IRIS. This test case is an exploratory
study taken as a proof of concept but instantiating the framework
and exploiting the agents to generate new models.

This paper is organized as follows. Section 2 gives an
overview of the main concepts. Section 3 shows the related
work. Section 4 presents the framework. Section 5 describes
an exploratory study. Finally, Section 6 offers the conclusion
and future work.

II. BACKGROUND
First, we will discuss the relation between multiagent systems

and machine learning. After, the KDD process.

A. Multiagent Systems and Machine Learning

A multiagent system can be defined as an environment
shared by autonomous entities that live, interact, receive
information and can act in the environment [5]. These agents are
abstractions with the following properties [6]: (i) autonomy — it
is the capability of taking their own actions within their
environment; (ii) reactivity — it is the capability of response to
the changes in the environment, which involves a notion of
perception of the environment; (iii) social ability — it is the
capability of interaction with other agents and possibly humans,
and (iv) proactive ability — it is the capability to take actions
towards the agent’s goals.

203

The exploratory study in Section 5 shows how agents’
properties are useful in the simulation of the training process
to optimize the parameters of a model based on the previously
trained models. It also evidences how the software agents are
able to propose new models that might be more accurate. The
idea of joining together these two areas seems very natural. In
artificial intelligence, we consider that software agents are
autonomous entities and are capable of making decisions without
human interference. On the other hand, learning is a crucial part
of the autonomy: the more skilled the agent, the better decisions
it will take [7]. Indeed, in most dynamic domains it is extremely
hard to predefine the agents’ actions, which mostly emerge with
new behaviors in order to adapt themselves to the current
situation.

There are several aspects to take into account when dealing
with machine learning in multiagent systems. First, the
coordination of agents — there must be some coordination
mechanism for agents to engage and interact in some way.
Second, dealing with cooperation can be a problem when agents
need to team up to achieve some goals. Third, the noisy
environment — specifically, how to deal with supervised learning
when the result can be biased by the noise. Finally, together with
the noisy environment comes the partial knowledge; to deal with
it, agents use strategies and metaheuristics to guide the search, as
in [8]. Some approaches use a machine learning model in the
agents’ activities cycle to take actions [5]. Other approaches use
a multiagent system — known as multiagent learning (MAL) —
to learn [9] [10]. In the latter approaches the integration of the
agents’ capabilities and the learning algorithms are combined to
solve a problem from another domain. Nevertheless, our
approach is a multiagent system applied to a machine learning
domain.

B. KDD Methodologies

The KDD process [11] [12] contains five stages: (i) Selection:
This stage is to precisely define a target dataset. It can be done by
directly selecting a dataset or a subset of features; (ii) Pre-
processing: This stage focuses on cleaning the data. It means that
the data most of the times is generated crowded with null values
and inconsistencies and needs to be cleaned in order to became
profitable; (iii) Transformation: This stage aims at applying some
transformation algorithms to generate the final dataset to explore.
It is common to use dimensionality reduction algorithms,
normalize the data, etc; (iv) Data Mining: This stage focuses on
the search of the required patterns in the data according to the
mining objectives, and (v) Interpretation/Evaluation: This stage
consists of the interpretation and evaluation of the extracted
patterns.

III. RELATED WORK
Many authors [13, 14, 15, 16, 17] broach the idea of creating

systems to support the data mining process. A common
discussion among all authors is about the target user and the
environment — some systems are designed to be used by domain
experts and others by data mining experts. Systems dedicated to
non-experts, normally focus on the analysis of the domain’s
specific features while other systems propose educational
environments for novices to learn and interact. On the other hand,
systems designed to be used by data mining experts focus on
performance, optimizations and coding capabilities. Within the
context of non-experts, [18] presents a simulation tool that aims
at creating an initial intuition on neural networks with a very

user-friendly interface and it has proven to be a great choice for
educational purposes. However, the datasets available for
analysis are fixed and focused only on gaining some
understanding of the learning process. There are some
commercial solutions, such as Google Prediction [19] and Azure
Machine Learning [20]. Both are on line services and provide
support to the data mining process by means of an intuitive
interface and a huge collection of ready to use algorithms.
However, Azure is not free and Google Prediction’s dataset
size is limited to 250 megabytes. WEKA [17], [21] is a system
that offers a collection of algorithms to explore real world
datasets. It has three well defined categories of algorithms: (i)
dataset processing, (ii) machine learning schemes, and (iii) output
processing. By combining all these tools together, WEKA has
proved essential to the analysis process and as an introductory
tool for educational environments. However, all these algorithms
are presented as black boxes and do not focus on distributed
ways to improve the data mining processes.

There are some solutions that target data mining experts
and focus on tools to improve the techniques. MLI [15]
presents an API to easily code machine learning algorithms,
using their proposed operations for data loading and linear
algebra to boost the performance; but it relies on the expertise of
the programmers rather than the use of previously tested and well-
established implementations of the algorithms. ML Base [14] is
another solution that provides a Domain Specific Language
(DSL) with high level abstractions to simplify the process. It
creates very elaborated plans — logical and physical — that come
with several optimizations to gain performance and accuracy. The
solution aims at solving a problem with a single model. However,
the composition of models that create ensembles has been proven
to outperform single models, and according to [16] many
algorithms and large datasets can be slow and limited. The
work [13] presents LARA, a DSL to reduce problems created
when the pre-processing and the algebra are done by using
different programming paradigms. It includes optimizations that
are normally loose in the mismatch of the paradigms. In addition,
LARA compiles to an intermediate representation to enable
optimizations and finally compiles with different languages. On
the other hand, it is embedded into Scala and it is focused on
coding. Predict-ML [16] is a software that uses big clinical data
to build predictive models automatically. It presents techniques
to automatically select algorithms, hyper parameters and
temporal aggregations of the clinical data, but the innovations
are focuses on the clinical area and the system is still in the
design phase.

All these solutions focus on reducing usage complexity,
tuning hyper parameters and gaining some understanding of the
data, but none of the previous approaches aims at creating a
shared environment to enhance the interaction between the users
and the system. By using the agent’s capabilities, users and agents

can both solve the data mining process, complementing each
other’s weaknesses.

A. Auto ML

Auto ML is a new area in computer science pursuing the
progressive automation of the machine learning process [22].
This area addresses all the aspects which are related to
machine learning automation, such as search and selection of
model, hyper parameters optimization, feature engineering,
meta learning and transfer learning, among others. Within this

204

context, a challenge to boost new solutions towards the Auto ML
goals was created. This challenge includes a novel design
element: code submission. The code runs in an open-source
platform ensuring there is no human intervention during testing
phases and that all proposed solutions run on hardware equality.
The challenge contains six phases in which the dataset difficulty
is progressively increased. After each phase, the competitors have
a Tweakathon time to improve their method with access to the
previously tested datasets. This challenge aims at advancing the
theoretical state of the art about model selection, implementing
useful automation solutions, a chance to compare results of the
automatic software and the Tweakathon phase and to
disseminate the top solutions and papers.

IV. PROPOSED SOLUTION
This section describes the main elements required to

understand the solution proposed in this paper. In addition, we
will provide an overview of the architecture and discuss the
different components, including the data model and the software
agents.

A. The Archicteture

The application is implemented using the software agents, as
illustrated in Fig. 1. It contains a module for: (i) data storage
(DB); (ii) data access (ORM); (iii) agents; (iv) optimizations
(OPT), and (iv) API layer — which will bring the functionalities
to the final user.

Figure 1. The proposed architecture.

The API is directly connected to the ORM. The ORM is in
charge of all the operations that require data access. It allows the
system to be independent from the physical data storage and it is
also the only way to interact with the data. The data refers to the
relevant concepts that appear in the domain and their
relationships. All of them are physically saved in the DB module.
Considering the user’s experience, the main flow of the
application only involves the API, the ORM and DB modules.
ORM provides stability and independence for the following
layers to use, allowing: (i) the change of the data provider without
changing the core of the project, and (ii) the design of the logic
without specific read, write operations that might bind the
solution to a particular data access. The software agents interact
in this flow via ORM module and expertly use the main
application flow the same way as normal users do. They retrieve,
run and propose new experiments in a collaborative environment.
By working together, the users (as domain experts) and the agents
(as machine learning experts) increase the number of
experiments, searching for a better model to identify the desired
patterns. The agents in charge of the optimizations trust most of

the algorithmic analyses in the fifth and last module dedicated to
the Optimizations. The Trainer Agent and the Optimizer Agent
are both hot spots [23]. Therefore, it is possible to add new
models into the system by creating subclasses and implementing
the particular details of the new model.

By using the API, the users can evaluate the results, that
is, they can check if the results meet the initial objective. This
phase is crucial, because the models selected to be deployed will
finally be in contact with non-controlled environments and
real-life mining examples. Nevertheless, if the users determine
that the models are not ready to be used, they can define a new
experiment or allow the agents to search for better models. At all
times, the users can monitor the results obtained and then,
analyze, retrieve and compare several of the model’s
parameters.

B. Data Model

Fig. 2 presents the data model of the concepts involved in
the problem. We used the entity-relationship model (ERM) [24].
The entities are: (i) Task: Aims at capturing the training process
of a successful model for a machine learning problem, i.e., it is a
collection of experiments; (ii) Experiment: Defines an
experiment, but this concept just contains the common aspects,
such as running_time, train_accuracy, etc; (iii) Decision Tree:
Defines a specific kind of experiment. In fact, it defines an
experiment to train a decision tree and contains aspects such as
max_depth; (iv) Support Vector Machine: Defines a support
vector machine type of experiment and contains attributes such
as kernel; (v) Neural Network: Defines a neural network type of
experiment and contains attributes such as the model that
specifies the structure of the network; (vi) Host: Defines a
computer in the network, and basically selects the computer in
which the model is going to be trained; (vii) Dataset: Represents
a generic data collection, used as the examples to train a model;
(viii) RData: Represents a particular type of dataset generated
from a script executed in R [25] and contains the environment
variables at the save point, and (ix) CSV: Represents a standard
data exchange format. Most of the time it is a collection of
comma separated fields.

Figure 2. The architecture proposed.

C. Agents Model

Figure 3 shows and details the agent-based model
proposed. In all the cases, the agent’s cyclic behavior was the
best option for these software agents – for instance, in the
exploratory study presented in Section 5 the agents have a
cyclic behavior with 10 seconds between iterations. The
Trainer Agent is responsible for training an experiment. In

205

order to do so, it has to accomplish several subtasks. First of
all, it needs to understand the type of experiment that the agent
is going to execute. For each type of experiment, there are
different parameters used to set up the training process. Based
on these parameters the agent determines the type of dataset
that is going to be used and it loads the data. At this point, the
strategy pattern [26] was used to define which algorithm
should be chosen to train and validate the results. After the
validation, the agent has to collect all the variables being
measured and write the experiment back. Fig. 4 describes this
process.

Figure 3. Agents Model.

A specific trainer was created to override the specificities of
each model and to set up some initialization variables, such as the
type of experiment. To run an experiment, both the experiment
and the datasets to be used in the training and testing must be
previously defined. This process only runs the experiments and
collects the results. On the other hand, due to the characteristics
of the agent’s cyclic behavior, if there are no experiments
programed to run, the agent waits a few seconds and asks again.
Therefore, once a new experiment is added to the database, it will
be automatically detected and executed at the right time. Another
important detail is that the experiments are executed as if they
were on a queue — one at a time in each host. But it is possible
to program a set of experiments that the agents will automatically
run until all the experiments have been executed.

Figure 4. Trainer Agent Activity Diagram.

The Optimizer Agent is responsible for generating new
models that might have good performance and accuracy based on
the previously executed experiments of the same type.

Figure 5. Optimizer Agent Activity Diagram.

To complete this task, the agent starts by selecting a dataset,
because the performance and the accuracy are directly related
with the dataset used in the training process. Once the dataset is
selected the agent retrieves the best experiments of a given type
and, based on the parameters, it generates and saves a new model.
Notice here that for each type of experiment the Optimizer Agent
was extended in order to create specific agents which selected the
correct algorithm in each case. Fig. 5 describes the workflow of
the Optimizer Agent. Observe that the Optimizer Agent needs a
different strategy to create the new model, depending on the type
of the experiment.

D. Optimizers

Each machine learning strategy comes with a lot of tricks and
techniques to improve the performance of the model. Some of the
techniques can include mathematical operations, such as
transpose, reverse, etc., that can increase the dataset and have a
direct impact on the performance as a result. Other techniques aim
at increasing the number of features in the dataset to facilitate the
training process and obtain a better model. Some examples
include multiplication of numeric fields or the use of
trigonometrical functions. In addition, there is a group of
techniques that filter the outliers to obtain a more general model.
All these approaches work directly on the dataset, but our focus
here is to work with the existing datasets and calibrate the model’s
parameters. Each one of the techniques has its own unique
parameters, so, it was necessary to create an optimizer for each
one. Namely: SVM Optmizer, DT Optimizer and NN Optimizer.
The SVM Optimizer takes advantage of the kernel trick [27] and
creates a new model based only on the best SVM experiment
executed. If the best model memorizes the dataset, it then
decreases the kernel to compact the data. On the other hand, if the
model’s accuracy is low, then the agent increases the kernel to
separate the data by adding new dimensions. The DT Optimizer
uses a similar criterion to increase or decrease the max_depth of
the decision tree while the NN Optimizer creates a new model by
randomly combining the two best experiments executed.

E. Details of the API

Finally, we created an Application Programming Interface
(API) that contains the new objects and functionalities required
to set up an environment: create, train and validate the
experiments; test the results, and use the best models for
prediction.

Figure 6. API Class Diagram.

Fig. 6 shows the API class diagram. The Task class defines a
collection of experiments of the same problem and refers to the
same machine learning problem. Every machine learning
problem requires the analysis of data. The Dataset class
represents a collection of data to be used and contains features
such as the path in which it is stored. The data can be stored in
different file formats. For this reason, each Dataset contains a
DatasetType class to specify its type, such as RData, CSV, etc.
An Experiment class represents the training process of a model
and contains general variables being measured, such as time. It
also contains more specific features, depending on the particular
model being trained. In order to specify the types of experiments
allowed to run within the platform, all the Experiments contain

206

an ExperimentType class. The Predictor class defines an object to
evaluate a model and the Committee class defines a collection of
Predictors and contains a parameter to set the number of
members. First, to use the API, we need to select a Task to work
with and after that the experiments can be created, linked to the
selected task. Each Experiment has a type defined in
ExperimentType and can have training, validation and testing
datasets associated to it, respectively. Each Dataset has a type
defined in DatasetType. Finally, to predict, based on previously
trained models, there are two possible classes: (i) Predictor, which
selects the best trained model based on accuracy and uses it to
predict, and (ii) Committee, which has a collection of predictors
and returns a consensus among them.

V. USER SCENARIO
This section details an exploratory study taken as a proof of

concept for the framework. The experiment is divided into two
stages. First, we set up the environment and create the proper
conditions to run the experiment — in this case, it was necessary
to launch the agents’ platform, to configure the database access
and to establish the initial experiment. Second, the agents start
their work by training the first model and writing the results. The
variables that were measured were the training and validation
accuracy, as well as the start and end time. At this point, the
Optimizer Agent analyzes the results of the finished experiments
and proposes a new experiment using the same dataset.

A. The Dataset

The data used in this example was the IRIS dataset found in
the UCI Machine Learning Repository [28]. It contains 150
instances of three classes of iris plants. The predictable attribute
is the type of plant, based on four other attributes: sepal length,
sepal width, petal length and petal width — all the measurements
are in centimeters (cm). This dataset has no missing values and
two of the three types of iris are not linearly separable. Table 1
shows a brief summary of the data.

Table 1. Summary of the IRIS Dataset

IRIS
Sepal

Length
Sepal
Width

Petal
Length

Petal
Width

Min 4.3 2 1 0.1
Median 5.8 3 4.35 1.3
Mean 5.843 3.057 3.758 1.199
Max 7.9 4.4 6.9 2.5

B. Results

The framework was instantiated as shown in Figure 7.
The TrainingAgent and the OptimizationAgent were extended
into the SVMTrainingAgent and the SVMOptimizationAgent
respectively in order to implement specificities about how to
train and optimize an SVM model [29]. In this case, for the
optimization agent, we use a grid search approach allowing
the parameter C the values 1.0, 1.5, and 2.0 and for the Degree
the values 1, 2 and 3. The class SVMExperiment inherits for
the SpecificExperiment hotspot and adds the parameters
needed to train an SVM experiment. Finally, the FileData
class and the CSVData are classes created to store a reference
to the dataset. The starting point is an instance of the
SVMExperiment class and we choose the following
parameters, as shown in Table 2 (first line).

Figure 7 Framework instance for the Iris experiment

Table 2. Parameters of the executed experiments

Id Kernel C Degree Coef0 Gamma Probability Shrinking
Max

Iterations

Decision

Function

1 poly 1 1 0 Auto 0 1 ‑1 odr

2 poly 1.5 1 0 Auto 0 1 ‑1 odr

3 poly 1.5 2 0 Auto 0 1 ‑1 odr

Table 3. Measures of the executed experiments

Id Started Ended Time (in seconds) Validation Accuracy
1 2017‑02‑27 19:09:43 2017‑02‑27 19:09:43 0.006163 0.96

2 2017‑02‑27 19:09:53 2017‑02‑27 19:09:53 0.004834 0.96

3 2017‑02‑27 19:10:03 2017‑02‑27 19:10:03 0.005739 0.97

The training agents were essentially training the new models
proposed, while the optimizer agents were trying to tune the
parameters of the previously executed models and proposing new

ones that might have a good accuracy. Table 2 in rows 2 and 3
shows the experiments proposed by the Optimizer Agent and
Table 3 shows the variables measured. The first row in table 2

207

shows the beginning of the second stage where only the first
model had been proposed. Then, the Trainer Agent trained the
model, resulting in an accuracy of 0.96 (first row in Table 3). The
Optimizer Agent performed a query to retrieve the trained models
and based on the best one, it modified the allowed error
(parameter C in Table 2) from 1.0 to 1.5 and proposed the second
model. The Trainer Agent realized that there was a model to train
and then trained it, resulting in an accuracy of 0.96, as well. Once
again, the Optimizer Agent modified the degree of the function to
propose the third model (parameter degree in Table 2) based on
the first and the second models. As a result, the Trainer Agent
trained the new model and obtained a better accuracy of 0.97.

To obtain new models the Optimizer Agent balanced the
allowed error and the degree of the polynomial function. It is
possible to see in Table 3 that the last trained model performed
better in the validation. Thus, in the next KDD phase the
prediction algorithm will use the best models, based on their
accuracy.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a software framework based on

multiagent systems to automate the process of calibrating
machine learning models and reduce the amount of human time
dedicated to the parameters adjustment. By means of this
framework, the agents will tune the parameters of the models
while the data mining experts are focused on providing the
framework with potential parameter insights. Together, the
agents and the data mining experts can complement each other’s’
capabilities in a shared software environment. We conclude that
it is possible to take advantage of the characteristics of the
software agents to train machine learning models, and also to
make decisions about new models that might have good accuracy.
The multiagent system inside the proposed solution is the core of
the application because it requires autonomy to make decisions,
proactivity to create new experiments, and reactivity to deal with
overfitting and low accuracy. By automating this process, the
users only need to set up the initial battery of experiments, which
reduces the time dedicated to train a successful model.

For future work, we have two goals. First, Selection of the
first model: The framework needs initial models as inputs to
begin the calibration processes, but it would be interesting if the
system was capable of auto-generate starting models. Second,
Features Selection: Another interesting problem is how to
improve the performance of the training by first selecting the
most important attributes. This could significantly impact the
time spent to train a model. Other possible approaches to
improve performance include the use of heuristics such as
Principal Features Analysis (PFA) [30] or methods, such as
Sequential Forward Selection (SFS) [31] and Sequential
Backward Selection (SBS) [31].

REFERENCES
[1] J. James, Data never sleeps 2.0. 2014.
[2] P. Ranganathan, The data explosion. IEEE Computer Society Press,

2011.
[3] C. Lucena and I. Nunes, “Contributions to the emergence and

consolidation of Agent-oriented Software Engineering,” J. Syst.
Softw., vol. 86, no. 4, pp. 890–904, Apr. 2013.

[4] M. E. Markiewicz and C. J. de Lucena, “Object oriented framework
development,” Crossroads, vol. 7, no. 4, pp. 3–9, 2001.

[5] K. M. Khalil, M. Abdel-Aziz, T. T. Nazmy, and A.-B. M. Salem,
“MLIMAS: A Framework for Machine Learning in Interactive Multi-
agent Systems,” Procedia Comput. Sci., vol. 6, Jan. 2015.

[6] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley
& Sons, 2009.

[7] E. Alonso, M. D’inverno, D. Kudenko, M. Luck, and J. Noble,
“Learning in multi-agent systems,” Knowl. Eng. Rev., vol. 16, no. 3,
pp. 277–284, 2001.

[8] H. E. Nouri, O. B. Driss, and K. Ghédira, “Hybrid Metaheuristics
within a Holonic Multiagent Model for the Flexible Job Shop
Problem,” Procedia Comput. Sci., vol. 60, pp. 83–92, Jan. 2015.

[9] Y. Shoham, R. Powers, and T. Grenager, “If multi-agent learning is the
answer, what is the question?,” Artif. Intell., vol. 171, no. 7, pp. 365–
377, May 2007.

[10] P. Stone, “Multiagent learning is not the answer. It is the question,”
Artif. Intell., vol. 171, no. 7, pp. 402–405, May 2007.

[11] A. I. R. L. Azevedo and M. F. Santos, “Kdd, semma crisp-dm: a parallel
overviee,” IADS-DM, 2008.

[12] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to
Knowledge Discovery in Databases,” AI Mag., vol. 17, Mar. 1996.

[13] A. Kunft, A. Alexandrov, A. Katsifodimos, and V. Markl, “Bridging
the gap: towards optimization across linear and relational algebra,”
2016, pp. 1–4.

[14] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “MLbase: A Distributed Machine-learning System.,” in
CIDR, 2013, vol. 1, pp. 2–1.

[15] E. R. Sparks et al., “MLI: An API for distributed machine learning,” in
Data Mining (ICDM), IEEE 13th International Conference on, 2013..

[16] G. Luo, “PredicT-ML: a tool for automating machine learning model
building with big clinical data,” Health Inf. Sci. Syst., Dec. 2016.

[17] S. R. Garner and others, “Weka: The waikato environment for
knowledge analysis,” in Proceedings of the New Zealand computer
science research students conference, 1995, pp. 57–64.

[18] M. Abadi et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” ArXiv Prepr., 2016.

[19] T. Green and others, “Prediction API: Every app a smart app,” Google
Dev. Blog Apr, vol. 21, 2011.

[20] J. Barnes, “Azure machine learning: Microsoft azure essentials,” 2015.
[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The WEKA data mining software: an update,” ACM
SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[22] I. Guyon et al., “Design of the 2015 ChaLearn AutoML challenge,” in
International Joint Conference on Neural Networks (IJCNN), 2015.

[23] M. Wooldridge and N. R. Jennings, “Pitfalls of Agent-oriented
Development,” in Proceedings of the Second International Conference
on Autonomous Agents, New York, NY, USA, 1998, pp. 385–391.

[24] P. P.-S. Chen, “The Entity-relationship Model—Toward a Unified
View of Data,” ACM Trans Database Syst, vol. 1, pp. 9–36, Mar. 1976.

[25] R. Gentleman, R. Ihaka, D. Bates, and others, “The R project for
statistical computing,” R Home Web Site Httpwww R-Proj. Org, 1997.

[26] “Design Patterns by Gamma: Pearson India 9789332555402 Paperback
- A - Z Books.” [Online]. Available:
https://www.abebooks.com/Design-Patterns-Gamma-Pearson-
India/17320714110/bd. [Accessed: 12-Apr-2017].

[27] B. Scholkopf, “The kernel trick for distances,” Adv. Neural Inf.
Process. Syst., pp. 301–307, 2001.

[28] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[29] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,

vol. 20, no. 3, pp. 273–297, Sep. 1995.
[30] Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, “Feature Selection Using

Principal Feature Analysis,” in Proceedings of the 15th ACM
International Conference on Multimedia, New York, 2007.

[31] J. Doak, “CSE-92-18 - An Evaluation of Feature Selection Methods
and Their Application to Computer Security,” UC Davis Dept Comput.
Sci. Tech Rep., Jan. 1992.

208

Accompanying Observation Modes and Software
Architecture for Autonomous Robot Software

Zhe Liu, Xinjun Mao, and Shuo Yang
College of Computer,

National University of Defense Technology
Changsha, Hunan, P. R. China

Email: {liuzhe, xjmao, yangshuo}@nudt.edu.cn

Abstract—To support robust task execution in open
environment, autonomous robots (AR) should include reactive
capabilities to cope with the dynamics and uncertainties from
real-world environment. The uncertainties pose great challenges
for robots being sensitive to the environmental changes and
flexible to adjust self-behaviors. To this end, this paper aims
to improve the sensing and acting capabilities of autonomous
robots by novel behavioral theories, observation modes and
software architectures. Specifically, this paper has three main
contribution: (1) presents an accompanying model that specifies
a novel accompanying pattern for interacting robot behaviors;
(2) proposes four types of accompanying observation modes
that coordinate multiple robot sensing behaviors; (3) proposes
a concrete multi-agent software architecture that implements
aforementioned accompanying model and accompanying
observation modes. To demonstrate the applicability and
validity of our accompanying modes and MAS-based software
architecture, this paper conducts a case study to implement a
domestic service example, which requires the robot to run in
a highly dynamic environment and can adapt its behaviors to
unexpected situations.
∗

Keywords-Autonomous robot software; accompanying model;
accompanying observation mode; multi-agent system

I. INTRODUCTION

Nowadays, more robots are increasingly applied in open
environments (e.g., family, hospital, battlefield) and expected
to autonomously behave without human beings intervention
to achieve assigned tasks [1], [2]. Typically, we call them
as autonomous robots (AR), which is a complex software-
driven system. The software (Autonomous robot software,
ARS) expects to (1) manage and control physical devices
(e.g., arm, motor, leg) of robots; (2) make decisions on robots
behaviors and drive robots to act; (3) perform computations
on robot sensing data.

In presence of dynamics and uncertainties, the autonomous
robot software is challenged with the following issues: (1)
no explicit behavior theories that specify interacting processes
between robot sensing and acting behaviors; (2) limited ob-
servation modes that effectively coordinate various robotic
sensing behaviors; (3) lack of suitable software architectures
that suitable to implement the novel behavior theories.

DOI reference number: 10.18293/SEKE2018-088.
∗This research is supported by research grants from Natural Science

Foundation of China under Grant No. 61532004.

In the field of the behavior of autonomous robots, there are
many researches focus on behavior-based model for robot [3]–
[5]. And in recent year, [6] presented a behavior-based hier-
archical architecture and defined fourteen robot behaviors to
assist telepresence control a humanoid robot. [7] reproduced
the kind of individual recognition and attention that a human
can provide in robot based on observed behavior. However, the
relationship between robotic behaviors and behavior theories
are not hot research directions. Sony company had simply
classified and described robotic behaviors in their behavior
module [8], but we think their behavior classification cannot be
used for AR’s behaviors because their method didn’t meet the
characteristics of AR. And for software architectures of ARS,
there are several researches has combined ARS with MAS
(multi-agent system). VOMAS (Virtual Operator Multi-Agent
System) [9] is developed to support spontaneous generation
of a task without the need to re-plan. COROS [10] is a
multi-agent software framework for cooperative robots in
which each of the agents represents a robot machine or a
monitoring/control workstation.

This paper aims to improve the sensing and acting capa-
bilities of autonomous robots by novel behavioral theories,
observation modes and software architectures. Specifically,
this paper has three main contribution: (1) presents an accom-
panying model that specifies a novel accompanying pattern
for interacting robot behaviors. (2) proposes four types of
accompanying observation modes that coordinate multiple
robot sensing behaviors. (3) proposes a concrete multi-agent
software architecture that implements aforementioned behav-
ior models and observation modes.

The rest of this paper is organized as follows: Section 2
analyzes the features of autonomous robot behaviors through
a motivating example and presents an accompanying model.
Section 3 proposes four types of accompanying observation
modes. Section 4 introduces a MAS-based architecture. Sec-
tion 5 illustrates a case study and conclusion is made in Section
6.

II. ACCOMPANYING BEHAVIOR THEORY

In this section we analyze the features of autonomous
robot behaviors through a motivating example, and present
the accompanying behavior model that specifies the novel
behavior patterns.

209

Figure 1. The motivating sample of autonomous robot

A. A motivating sample

Let us consider a domestic service robot example that moti-
vates our research (see Figure 1). The service robot operates in
an open home environment with several rooms and is designed
to care for elderly inhabitants. Specifically, the robot expects
to identify whether they have fallen off and provides the
necessary information services, e.g., calling an ambulance or
notifying the family. As the elderly person moves around, the
service robot should follow the person within a safe distance to
timely perceive his moving information, determine his safety
status, and answer his service requests.

• Scenario 1 (searching for the elderly person): the robot
should search for the target by moving through the rooms
autonomously and recognizing his body features. If the
target is lost, the robot repeats the search for the target.

• Scenario 2 (following the elderly person): when the target
is found, the robot follows the target when he moves. The
robot should follow the target closely to avoid losing the
target.

• Scenario 3 (lock on to the elderly person): when there is
someone else next to the target, the robot should lock on
to the target and avoid mistakes on recognizing the target
person.

Through the example, we have found some common fea-
tures of the autonomous robot behaviors: (1) the robot needs
to plan a rational route and timely process multi-feedback
from multiple robotic behaviors; (2) the robot should cope
with the environment uncertainties by adjusting its behaviors
to avoid obstacles or lock on to the right target. From the
concrete example, we can claim that: (1) close connection and
interaction between different behaviors of robots is important
for acting robustly in open environments; (2) massive sensing
information is necessary for robotic behavioral adjustment and
adaptation.

B. Accompanying behaviors

For a complex task, robots usually need to carry out diverse
behaviors to cooperatively reaching a common task goal. Some
of the behaviors are responsible for observing the environment
and sensing changes, whereas others drive physical actuator
devices to achieve physical tasks. In this view, robot behaviors
can be classified into two types: task behaviors that performed

by actuators (e.g., arms, legs, and motors), and observation
behavior typically performed by sensors or probes (e.g., sonar
and cameras).

Although the two types of behaviors are relatively indepen-
dent, the robot should enhance their synergy when achieving
tasks, so that task behaviors can obtain on-demand feedback
to adjust, optimize and self-manage the planned behaviors.
Such a synergistic relationship between task behaviors and
observation behaviors was defined as accompanying behavior.

C. Accompanying model for ARS

Furthermore, we found that accompanying relation doesn’t
only occur between observation and task behaviors, but can
also occurs between observation behaviors. Multiple obser-
vation behaviors is the basis of accompanying behavior. For
example, when robot follows the target, the robot should
use the camera to lock on the target and use the radar to
measure the distance between it and the target. There are
several features in accompanying relations with observation
behaviors:

• Interactivity: the observation and task behaviors of au-
tonomous robots must interact with each other frequently
and rapidly. The sensing information from observation
behaviors allows the task behaviors informed of the status
of task execution and make adaptation timely.

• Concurrency: when accompanying relation occurs, there
are always more than one observation behaviors execut-
ing. Multiple observation behaviors can observe the envi-
ronment in multi-dimension and improve the perception
ability.

• Temporality: when multiple observation behaviors exe-
cute in parallel, the processing of massive observation
information will show a kind of timing. Usually, these
information will be processed sequentially. However,
sometimes, one kind of information is more important for
task execution and it should be given a high processing
priority.

• Dependence: different accompanying behaviors reply on
different types of information while interacting with each
other. Some interactions depend on data-type messages,
and others may depend on event-type messages.

Based on the accompanying behavior and the analysis
above, we present an accompanying model for autonomous
robot software (see Figure 2). In the model, we divide these
behaviors into system-level behaviors that perform common
robotic capabilities (such as planning behavior, scheduling
behavior, etc), and application-level behaviors that relate to
specific tasks (task behavior and observation behavior).

As shown in Figure 2, multiple observation behaviors are
the core pf the accompanying model: (1) when accompany-
ing relation occurs between observation behaviors, it can let
software receive more accurate environmental information. (2)
when accompanying relation occurs between task behavior and
observation behaviors, it can let software know task execution
more accurately and rapidly. Therefore, accompanying model
have achieved two purposes for ARS: (1) On the one hand,

210

Figure 2. The accompanying model for autonomous robot software

multiple observation behaviors can enhance the sensitivity
of the robot to the dynamic environment by more than one
sensors. The accompanying behavior can help the robot make
plan more accurately by multi-feedback. (2) On the other hand,
accompanying model can assist autonomous robot software
adjust its behaviors and tasks more flexibly with interaction
between different behaviors.

III. ACCOMPANYING OBSERVATION MODES

This section identifies four types of accompanying modes
for the autonomous robot software in runtime phase.

A. Classification of accompanying observation modes

As robots operate in open environments, different observa-
tion behaviors can form into diverse accompanying relations.
In this section, we try to analyze the essential types of
accompanying observation in following cases:

• Purpose-oriented: in aforementioned sections, there are
two main purposes for accompanying relations based
on multiple observation behaviors. One purpose is to
improve the perception ability to the dynamic environ-
ment, while the other one is to facilitate flexibility and
adaptivity for robot behaviors. From this view, we divide
the accompanying observation modes into two major
categories: (1) environment perception modes, (2) task
assistant modes.

• Multi-dimension consideration: as illustrated in section 2,
there are many characteristics for accompanying behav-
iors, and these characteristics of different dimensions can
also result in diverse accompanying observation modes.
For example, for interactivity, sometimes observation be-
havior needs to interact with other observation behaviors
and sometimes neednt, considering this we design a
cooperation mode for the former situation.

Based on aforementioned classification principles, we have
identified four types of accompanying observation modes: ac-
cident mode, observation behaviors cooperation mode, priority

mode, non-priority mode. And the characteristics of these
modes in multiple dimensions as show in Table I. In Table I,
Interactivity means the types of behavior which interact with
each other in the mode; Concurrency means whether there
are multiple observation behaviors occurs at the same time;
Temporality means whether there are behaviors with high
processing priority; Dependence means the type of message
between behavioral accompanying in the mode.

TABLE I.
THE CHARACTERISTICS OF ACCOMPANYING OBSERVATION MODES IN

MULTIPLE DIMENSIONS.

Dimension
Environment Perception

Modes
Task Assistant

Modes
AM OM PM NPM

Interactivity OB, TBs
and SBs

OB and
OB

OBs and
TB

OBs and
TB

Concurrency No Yes Yes Yes
Temporality No No Yes No
Dependence Event-type Data-type Data-type Data-type
1 AM=Accident Mode, OM=Observation behaviors cooperation Mode,

PM=Priority Mode, NPM=Non-Priority Mode
2 OB=Observation Behavior, TB=Task Behavior, SB=System-level Behavior

B. Four types of accompanying observation modes

1) Accident mode: This mode is designed for some emer-
gencies in runtime for software operation safety, which is
a kind of event-type message dependence mode between
one observation behavior, task behaviors and system-level
behaviors. This mode can improve robotic emergency response
to sudden changes from the environment. Autonomous robot
software usually operates in a complex environment where
many unexpected statuses may occur. These statuses some-
times have side effects on robotic task execution, and the
software may not open all sensors to these uncertain statuses
all the time.

For possible accidents from the environment, the software
expects to plan corresponding observation behavior to detect
them. When accident occurs, the observation behavior will
send the event-type message to system-level behaviors. Then,
the software will let the robot block current execution task
and switch to pre-designed corresponding task to deal with
the accident. As soon as the accident is removed, the software
will let robot resume the task.

As described in the motivating example, when the depth
sensor finds that there is an obstacle in front of the robot, it
will send event-type message “Obstacle” to planning behavior,
and the software will let robot stop to avoid the obstacle until
there are no obstacle.

2) Observation behaviors cooperation mode: This mode is
designed for the interaction between observation behaviors in
runtime. The active interaction can help observation behaviors
adjust themselves rapidly and on this basis robot can receive
environmental information with more accuracy and efficiency.
This mode is a kind of data-type message dependence mode.

Under observation behaviors cooperation mode, when the
software needs multi-observation behaviors to observe a spe-
cific target or environment, observation behaviors can interact
with each other to adjust their observation strategies.

211

Figure 3. The processing sequence diagrams of Priority mode and Non-
priority mode

3) Priority mode: This mode is designed for observation
behaviors with different priorities. This mode is a kind of data-
type message dependence mode between one task behavior
and multi-observation behaviors. Generally speaking, different
priorities mean different processing orders. In some tasks,
the software should give some sensing information a higher
processing priority than others. In other words, the software
will process these sensing information more frequently and
rapidly.

Under priority mode, for specific tasks, the processing
priority of observation behaviors will be predefined in task
behaviors or assigned by planning behavior. After collecting
the sensing information, task behaviors will process these
information according to their processing priorities.

4) Non-priority mode: This mode is designed for behaviors
with the same processing priority and their information will
be fused by task behaviors. This is a kind of data-type
message dependence mode between one task behavior and
multi-observation behaviors.

Under non-priority mode, observation behaviors have the
same processing priority. The task behavior just need to receive
the sensing information sequentially and process them as
predefined according to tasks.

Figure 3 shows processing sequence of the same series
of behaviors under priority mode and non-priority mode. In
Figure 3, under priority mode, observation O1 has a higher
processing priority than O2 and O3. And under non-priority
mode, all observation behaviors have the same processing
priority and are processed sequentially.

IV. SOFTWARE ARCHITECTURE AND IMPLEMENTATION
APPROACH OF ACCOMPANYING OBSERVATION MODES

A. MAS-based software architecture

The Multi-Agent System (MAS) provides an effective so-
lution to address the development issues of high-level au-
tonomous robot software for both modeling and implemen-
tation aspects. The autonomous robot software is a complex
system that consists of a number of diverse and interacting
components. All of these components work together to achieve
the robots design objectives. Therefore, the autonomous robot
software can be decomposed and organized as multiple au-
tonomous agent entities. Furthermore, MAS maintains strong
concurrency of plan execution, flexible interactions among
diverse agent behaviors, and strong robustness of system
functionalities. These features of MAS can greatly benefit

Figure 4. MAS-based software architecture for ARS

the implementation of accompanying model and observation
modes, which require both concurrency and interaction mech-
anisms from implementation software architecture.

In this paper, we propose a multi-agent software architecture
to implement the autonomous robot software and provide sup-
port for accompanying modes (Figure 4). In the architecture,
each agent plays different role, takes distinct behaviours, and
cooperates with each other to achieve the common task goals.
Integrating with our previous works for the dual-loop control
model [11], the multi-agent software architecture provides sup-
port for accompanying model and observation modes through
agent communication mechanisms. However, in this MAS-
based architecture, we don’t consider the non-deterministic
characteristic of MAS such as learning [12], self-adaptation
and self-organization [13]. The description of the role that
each agent plays in this multi-agent model is as follows:

• The modeler agent establishes the world model on the
sensor inputs from sensor agents and offers the specifi-
cations of planning domain and problem to the planner
agent for task planning.

• The planner agent performs planning jobs, including
activities of establishing world models and planning over
a specific problem domain.

• The schedule agent acts as a mediator that dispatches the
generated plans to a specific actuator agent capable of the
corresponding action.

• An actuator agent is implemented as the abstraction
over the robot physical actuator and maintains a simple
reactive structure, which will dispatche sensing tasks to
sensor agents.

• A sensor agent controls an independent sensor device
of the robot and is implemented to perform a stimulus-
response behaviour aimed towards external state changes.

B. Implementation of accompanying observation modes

As shown in Figure 4, in our multi-agent software archi-
tecture, sensor agents (observation behaviors) can feedback
sensing information to actuator agents (task behaviors) and
high-level layer agents (system-level behaviors). Besides, sen-
sor agents can interact with each other. Furthermore, multiple
agents can be executed concurrently. These designs for the

212

architecture guarantee the implementation of accompanying
modes.

In the implementation of this MAS-based architecture, we
developed a multi-agent software framework AutoRobot [16]
for developing autonomous robot software applications. In
AutoRobot, MAS-based software architecture can be imple-
mented under JADE [14] and robot controllers can be imple-
mented under ROS [15]. For accompanying implementation,
JADE has provided three communication behaviors for agents:
One-shot, Cyclic and ThreeStep. Besides, we also design two
interaction mechanisms for agents’ communication: topics-
based mechanism and services-based mechanism. These above
communication behaviors and mechanisms guarantee the im-
plementation of the accompanying modes.

V. CASE STUDY

In this section, we implement the motivating example to
validate the effectiveness and applicability of accompanying
model and observation mode.

The hardware platform we adopted in the case study is the
Turtlebot2 mobile robot, including a mobile base and a Kinect
module that contains an RGB camera and a depth camera. The
software infrastructure consists of the AutoRobot server and
the ROS server.

A. Implementation of the motivating example

The case study for the aforementioned example is im-
plemented using a multi-agent system prototype from the
AutoRobot framework, and the concrete architecture for the
case study is illustrated in Figure 5.

Figure 5. The multi-agent implementation architecture of the case study

For this specific example and the Turtlebot2 capability, we
designed the following agent roles: 1) a WalkAgent to drive
the mobile base to move around, 2) an RGBSensorAgent and
DepthSensorAgent to obtain the RGB and depth images from
the RGB and depth cameras.

Moreover, we implement the low-level robot controllers into
ROS nodes that offer the fundamental robot functionalities.
Each of the ROS node programs, such as the RGBInfoNode,
corresponds to a high-level agent entity used to fulfil the
agent’s capability. The ROS nodes communicate with the high-
level agent programs through the Java nodes that implemented
by RosBridge middleware.

Under the implementation architecture, we implemented the
service scenarios of searching, following and locking on the
elderly inhabitants. In each scenario, the agent roles involved
in the scenario include all agents in Figure 5. Figure 6 shows
the actual effect of the implementation of these scenarios in
human’s view and robot’s view.

(a) Following scenario (b) Following scenario

(c) Lock on scenario (d) Lock on scenario
Figure 6. The implementation of scenarios in real world. In (a) and (b) robot
follows the target and avoids a chair. In (c) and (d) robot locks on the correct
target when other people is surrounding.

B. Implementation of accompanying model and accompanying
observation mode

The implementation details of accompanying model is
shown in Figure 7 which is the sequence diagram of agent
collaboration in the Following and Lock-on scenario. The
accompany behavior is occurs between WalkAgent, RGBSen-
sorAgent, DepthSensorAgent.

Figure 7. The sequence diagram of agent collaboration based on accompa-
nying model in the Following and Lock on scenario

213

Figure 8. The scanning way of Depth sensor and the cooperation between
agents in Follow Scenario in traditional way

Figure 9. The scanning way of Depth sensor and the cooperation between
agents in Follow Scenario with observation behaviors cooperation mode

The implementation details of one accompanying observa-
tion mode, observation behaviors cooperation mode, is shown
in Figure 8 and Figure 9. In our case study, when robot is
following the target, the software will open the observation
behaviors cooperation mode between RGBSensorAgent and
DepthSensorAgent. In Following Scenario, RGBSensorAgent
is responsible to determine the position of the target in robot’s
view, while DepthSensorAgent is responsible to determine
the distance between robot and the target. In a traditional
way, RGBSensorAgent and DepthSensorAgent will feedback
different sensing information to WalkAgent. Then WalkAgent
will handle this information to calculate the location of the
target and adjust the moving parameters. In real-world en-
vironments, the target may appear in any position in front
of the robot and the DepthSensorAgent should scan a very
large region to avoid losing of the target such as illustrated in
Figure 8. The process of scanning and calculating the distance
will cost lot of computing resource and spend more time than
RGBSensorAgent, which will cause the robot losing the target.

When under observation behaviors cooperation mode,
firstly, RGBSensorAgent will inform DepthSensorAgent
where the target is to reduce the scan region as illustrated in
Figure 9. And then RGBSensorAgent and DepthSensorAgent
will send sensing information to WalkAgent. In this way, the
processing time for the target location is greatly reduced and
the sensitivity of the robot to the location of the target is
greatly improved.

VI. CONCLUSION

This paper presents an accompanying model and four types
of accompanying observation modes for autonomous robot
software to solve the challenge about being sensitive to the en-
vironmental changes and flexible to adjust self-behaviors. Our
contributions are threefold. First, we investigate the features
of behaviors in autonomous robot software and present an ac-
companying model based on accompanying relations. Second,
we identify a number of important accompanying observation
modes. Third, we propose a MAS-based software architecture
to examine and specify the accompanying observation modes.

REFERENCES

[1] Mao, X. J. (2016). Autonomous Robot Software Technologies, Commu-
nications of the CCF, 12(7): 60-65.

[2] Ziafati, P. (2013). Programming autonomous robots using agent program-
ming languages. In Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems (pp. 1463-1464). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

[3] Ringert, J. O., Rumpe, B., and Wortmann, A. (2014). A requirements
modeling language for the component behavior of cyber physical robotics
systems. arXiv preprint arXiv:1409.0394.

[4] Topalidou-Kyniazopoulou, A., Spanoudakis, N. I., and Lagoudakis, M. G.
(2013). A CASE tool for robot behavior development. In RoboCup 2012:
Robot Soccer World Cup XVI (pp. 225-236). Springer, Berlin, Heidelberg.

[5] Liu, C., and Tomizuka, M. (2017). Designing the Robot Behavior for Safe
HumanRobot Interactions. In Trends in Control and Decision-Making for
HumanRobot Collaboration Systems (pp. 241-270). Springer, Cham.

[6] Zhao, J., Li, W., Mao, X., Hu, H., Niu, L., and Chen, G. (2017). Behavior-
Based SSVEP Hierarchical Architecture for Telepresence Control of
Humanoid Robot to Achieve Full-Body Movement. IEEE Transactions
on Cognitive and Developmental Systems, 9(2), 197-209.

[7] Glas, D. F., Wada, K., Shiomi, M., Kanda, T., Ishiguro, H., and Hagita,
N. (2017). Personal Greetings: Personalizing Robot Utterances Based on
Novelty of Observed Behavior. International Journal of Social Robotics,
9(2), 181-198.

[8] Hoshino, Y., Takagi, T., Di Profio, U., and Fujita, M. (2004). Behavior
description and control using behavior module for personal robot. In
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on (Vol. 4, pp. 4165-4171). IEEE.

[9] Hsu, H. C. H., and Liu, A. (2007). A flexible architecture for navigation
control of a mobile robot. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 37(3), 310-318.

[10] Koubâa, A., Sriti, M. F., Bennaceur, H., Ammar, A., Javed, Y., Alajlan,
M., ... and Shakshuki, E. (2015). COROS: a multi-agent software archi-
tecture for cooperative and autonomous service robots. In Cooperative
Robots and Sensor Networks 2015 (pp. 3-30). Springer International
Publishing.

[11] Liu, Z., Mao, X., and Yang, S. (2017). A Dual-Loop Control Model and
Software Framework for Autonomous Robot Software. In Asia-Pacific
Software Engineering Conference (APSEC), 2017 24th (pp. 229-238).
IEEE.

[12] Briot, J. P., de Nascimento, N. M., and de Lucena, C. J. P. (2016). A
multi-agent architecture for quantified fruits: Design and experience. In
28th International Conference on Software Engineering & Knowledge
Engineering (SEKE’2016) (pp. 369-374). SEKE/Knowledge Systems
Institute, PA, USA.

[13] do Nascimento, N. M., and de Lucena, C. J. P. (2017). FIoT: An agent-
based framework for self-adaptive and self-organizing applications based
on the Internet of Things. Information Sciences, 378, 161-176.

[14] Bellifemine, F., Caire, G., Poggi, A., and Rimassa, G. (2008). JADE:
A software framework for developing multi-agent applications. Lessons
learned. Information and Software Technology, 50(1-2), 10-21.

[15] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... and
Ng, A. Y. (2009, May). ROS: an open-source Robot Operating System.
In ICRA workshop on open source software (Vol. 3, No. 3.2, p. 5).

[16] Yang, S., Mao, X., Yang, S., and Liu, Z. (2017). Towards a hybrid
software architecture and multi-agent approach for autonomous robot
software. International Journal of Advanced Robotic Systems, 14(4),
1729881417716088.

214

An Architecture for the Development of Ambient
Intelligence Systems Managed by Embedded Agents

Carlos Eduardo Pantoja
CEFET/RJ

Universidade Federal Fluminense
e-mail: pantoja@cefet-rj.br

Heder Dorneles Soares and
José Viterbo

Universidade Federal Fluminense
e-mail: hdorneles,viterbo@ic.uff.br

Amal El-Fallah Seghrouchni
Sorbonne Universités

UPMC Univ Paris 06, LIP6
e-mail: amal.elfallah@lip6.fr

Abstract—Ubiquitous systems consider the use of electronic
components for enhancing daily objects with some kind of com-
putational intelligence for aiding users in their tasks pervasively.
Ambient Intelligence (AmI) is a branch of ubiquitous computing
that provides an environment full of interconnected devices
and it can provide data communication, inference mechanism
based on context information and collaboration among system’s
devices. Similarly, the Internet of Things (IoT) provides uniquely
identified devices or things in a network for helping users
in their activities. Multi-Agent Systems (MAS) are intelligent
systems where agents are responsible for reasoning, competing
and using resources to achieve desirable goals pro-actively and
autonomously. Agents have been employed in some approaches
and works during the last years, but none of them considered
embedded MAS responsible for smart devices in an AmI system
running over an IoT network. Besides, it is also interesting that
agents of the embedded MAS can interact, sharing information
with agents situated in another embedded MAS using the IoT
network to learn from user’s experiences. This paper proposes an
architecture for the development of AmI systems using embedded
MAS for interfacing with sensors and actuators in a heterogenous
network using an IoT middleware.

I. INTRODUCTION

Ubiquitous Computing or pervasive computing is the ca-
pability of embedding intelligence in everyday objects in a
way that the person who interacts with this object reduces the
level of interaction with the device or even does not notice
it [1]. The tendency of Ubiquitous Systems, supported by the
advances in communication and network interconnection, is
to allow everyday objects to interact with humans pervasively
and to communicate with each other [2]. There are several
fields and applications that will be impacted by the use of the
Internet of Things (IoT), such as Ambient Intelligence (AmI).

Some questions about the development of AmI solutions
refer to technologies that are necessary in the process of
communication between devices, node synchronization, col-
lecting and storing context data and inferences for decision
making. In general, the objects that participate in this system
are usually sensors or embedded devices, which have several
limitations regarding hardware resources and the communi-
cation capability [3]. In an AmI system where the number
of devices can grow exponentially, the concern with scala-
bility becomes latent. To address these limitations, there is

DOI reference number: 10.18293/SEKE2018-110

ContextNet middleware [4], which treats the communication
and connectivity of Mobile Nodes (MN) in a scalable way
using data distribution protocols based on the DDS standard
of OMG [5].

Intelligent agents are entities that can be constructed in both
hardware and software and they are able of performing ac-
tions in certain environments autonomously and pro-actively.
A Multi-Agent System (MAS) is composed of intelligent
agents capable of communicating and collaborating — or
even competing — for using resources in an environment
to achieve conflicting or common goals [6]. The use of the
MAS approach applied in AmI is justified by the autonomous
characteristics of agents and their application in complex
systems, both found in AmI [7]. However, some traditional
smart objects are mainly data gathers and senders, and the
data is stored and processed in servers, compromising the
autonomy of these objects and because of the high dependency
on centralized technologies to provide communication and
reasoning in such kind of system [8]. The idea of decentralized
MAS responsible for cognitive intelligence in distributed com-
puting is being discussed instead of using centralized MAS for
creating real autonomous smart objects [9].

This paper proposes an architecture for developing intel-
ligent systems integrating devices using embedded MAS as
smart objects for IoT to be used in the AmI domain. In
this architecture, it is possible to develop embedded MAS
for controlling devices composed of sensors and actuators.
Besides, some characteristics of these nodes are: the ability
to communicate with other devices apart of the technology
employed in them; truly autonomous; and resilient from the
IoT network. For this, our smart objects use Jason frame-
work [10] adopting a specific kind of agent able of commu-
nicating with others devices using internally the ContextNet.
A case study will be presented in a laboratory with several
devices employing MAS, Java and Android applications. The
contributions of this work are: an architecture for developing
solutions for IoT and AmI using different devices supported by
intelligent agents; and an extension of a well-known Agent-
Oriented Programming Language (AOPL) for programming
intelligent devices.

This work is structured as follows: in section 2 is presented
some necessary concepts for the understanding of the proposal
of this paper; section 3 presents the proposed architecture, a

215

extension of Jason framework integrating the ContextNet; in
section 4 it is presented a case study e some experiments;
in section 5 we discuss some related works and; finally, the
conclusions and references are presented.

II. BACKGROUND

In this section, it is presented the middleware ContextNet
for IoT, which is responsible for communicating and gathering
data from several nodes in a network. Next, some characteris-
tics of the Jason framework [10] is discussed once it is used
to develop agent-oriented nodes in the proposed architecture.

A. The Middleware ContextNet

The ContexNet is a service for providing context data in
stationary and mobile networks. It counts with a Scalable
Data Distribution Layer (SDDL) layer [4], which is used for
tracking applications in vehicles, industrial automation and
data spreading. This service deals with major questions in
data communication such as fault tolerance, network load
balancing, support for node disconnection, and security. It
also provides creation resources and dynamic management
for groups. The ContexNet middleware works in a publish/-
subscriber model. The data transferring occurs by using two
protocols: the MR-UDP [11] and the OMG DDS [5]. The MR-
UDP treats messages between a client and a gateway; the DDS
is responsible for distributing data in the core of the network.
By using ContextNet, it is possible to enable the growing of
a network, ensuring the scalability of the content distribution
between millions of devices.

B. Framework Jason

The Jason is a framework for developing MAS using a
cognitive model named Belief-Desire-Intention (BDI) [12] and
has an interpreter for the BDI based AOPL AgentSpeak in
Java language. The BDI allows agents to reason based on
perceptions captured of the environment, beliefs that represent
the knowledge obtained during their existence and they are
able of communicating with each other in order to exchange
information or achieve mutual or conflicting goals. Besides,
they can have plans composed of actions that are activated
depending on beliefs on their belief bases.

Specifically, a Jason’s standard agent has a reasoning cycle
[10] responsible for the processing of all perceptions and
beliefs to generate events which activate plans and actions.
It is important to understand the reasoning cycle of a standard
agent because several extensions (including a proposal in this
paper) modify some characteristics of this reasoning cycle to
enhance specific kind of agents with new customized abilities.
First, the agent captures the perceptions from a simulated
environment where agents can interact with virtual objects
that may have information represented as perceptions. The
agent verifies its mailbox at the beginning of each cycle for
existing messages to be read. It is important to remark that the
original distribution of Jason does not have any access to real
environments. Afterwards, a function updates the Belief Base
using the captured perceptions from the environment. For each

modification in the Belief Base it is generated an event that an
agent has to deal with to achieve its goals. Then, an event is
selected from a list of generated events and when it is selected,
it retrieves all the relevant plans of the agent’s plan library.
After that, a verification is performed to identify which plans
can be executed based on its current beliefs and perceptions
and a function selects only one plan to be executed. Finally,
an action of the selected plan is executed one at a time.

There is an extension of Jason’s agents capable of con-
trolling devices such as sensors and actuators connected to
microcontrollers named ARGO [13]. This customized archi-
tecture is able of capturing perceptions and send them to agents
without any interference of the programmer and agents are
able of executing actions using actuators without worrying
about what kind of hardware is being employed. The hardware
and software layers are uncoupled. The reasoning cycle of an
ARGO agent uses the Javino [14] for capturing perceptions.
The Javino provides a serial communication between micro-
controllers and Jason using a basic protocol to guarantee the
correct information exchange between the transmitter and the
receiver.

An ARGO agent has the abilities, at runtime, of: select-
ing the microcontroller which it desires to control; deciding
whether or not to block the perceptions coming from sensors
releasing processing time for other tasks, for example; filtering
undesirable perceptions; and limiting the time interval of
perceiving the environment. However, ARGO agents only
communicate with agents hosted in its MAS. This implies that
if a MAS is embedded into a device, the communication will
be limited to this device. Therefore, in this paper we propose
a new kind of agent that is able of communicating with other
agents (and devices) using Jason and ContextNet to be used in
an architecture for programming pervasive solutions in AmI.

III. THE OVERALL ARCHITECTURE FOR AMI SYSTEMS
USING MAS

In this section, it is presented our architecture for developing
AmI systems using real autonomous and embedded MAS as
devices. The architecture considers an open and dynamic en-
vironment where devices using the agent approach and others
devices can enter or leave anytime. This approach leads us to a
decentralized and a collective reasoning since every embedded
MAS is considered an autonomous and independent thing
capable of communicating and negotiating — or even acting
as a group pursuing common goals — with others devices. By
independent, it means that a smart object embedded with MAS
are able to keep running and reasoning even if communication
and interaction technologies stop. In fact, we consider this
embedded smart object a MAS as a Thing.

Basically, the AmI system uses the ContextNet as IoT
middleware where every device should connect as a Mobile
Node (MN) to be part of the system and to communicate with
others devices. Some of these devices can be MN with sensors
and actuators, Android devices or electronic smart objects (tv,
refrigerator, etc.). In this approach, we assert that MN can
employ embedded MAS for managing sensors and actuators

216

in the AmI systems. This MN is composed by a cognitive layer
using Jason framework with agents responsible for interfacing
with hardware using ARGO; and agents responsible for com-
munication in the network using an instance of ContextNet
nodes. The hardware layer is composed by: the platform for
embedding the MAS, which could be any tiny computer such
as Raspberry Pi; sensors and actuators; and microcontrollers.
Figure 1 depicts an overview of the proposed architecture.

In some cases, the use of MAS can bring advantages
compared to MN that only work as data repeaters sending
information from sensors to a server for discovering context
about a situation and from MN which need stimulus from other
devices to act upon the environment. Agents are pro-active,
autonomous and are capable of reasoning about information
from the environment that they are situated. These characteris-
tics allow an improved information or even a previous context
discovery before sending it to a server , releasing its processing
power, for example. Besides, agents can make decisions and
act autonomously without depending of a third part processing
(if they have sufficient processing power).

Another important characteristic is that a MAS can be
programmed individually as a MN that is able to interact with
other devices (including another MAS) using a special kind
of agent named Communicator, which has an instance of
ContextNet. There is another type of agent responsible for
controlling sensors and actuators that can be used along with
the Communicator one. Therefore, it can exist four types of
agents in a project:

• Standard: the standard agent is able to communicate
with others agents of its MAS but it is not possible to
communicate with agents from a different MAS and it
is not able of controlling any kind of hardware. It is the
basic unit of a MAS.

• Argo: it is a customized architecture of agents capable
of controlling microcontrollers independently of its type
and the domain applied in the solution. ARGO agents
have all the abilities of a standard agent but are not able
of communication with agents from a different MAS.

• Communicator: this agent is able of communicating
with agents from a different MAS or any device using
ContextNet. It has the same abilities of a standard agent
but but it is not able of controlling hardware devices.

The ContextNet is a scalable architecture, which guarantees
a great number of devices transmitting data at same time. In
this approach, we propose the use of MAS developed using
Jason to exploit some advantages of using a robust middle-
ware for IoT applications and a well-know framework for
agents solutions. Jason already counts with implementations of
Standard and ARGO agents. Then, we propose an extension
of Jason framework creating a customized architecture for
agent Communicator with a ContextNet instance embedded
into its implementation in order to facilitate the use of such
kind of agent. If some device needs to communicate with a
MN with a MAS, it should send messages in KQML format
and translate the received KQML messages. It is important to

remark that Jason uses KQML as communication language.
We also propose a mechanism for processing messages based
on KQML performatives in the following section.

A. Extending Jason using an IoT Middleware

In order to allow the programming of agents that are able
of communicating through IoT, a special kind of agent named
Communicator was proposed. This agent is responsible for
exchanging messages between agents hosted in different MAS
or in any other device. For this, all the devices must be con-
nected to the ContextNet middleware and the Communicator
agent must have a communication mechanism for sending and
receiving messages through the IoT. Thus, the reasoning cycle
of the Communicator agent was extended with the ContextNet
embedded in its architecture (Figure 2).

The first modification happened in the beginning of the
reasoning cycle and it is capable of receiving messages from
others devices using ContextNet and messages coming from
agents of its own MAS using the checkMail method. All
messages received are processed to generate events and update
the agent’s Belief Base. The next modification was inserted at
the end of the reasoning cycle after the sendMsg step. In this
moment, the agent can send a message to agents hosted in its
MAS or to another device in IoT using ContextNet.

A message can be sent to another Communicator agent or
any device able of understanding the message format. Every
agent must have a unique identification number provided by
ContextNet and to send any message, the agent uses an internal
action named sendOut likewise the original internal action
send from Jason. Both of them send a message to an addressee
using a illocutionary force. The major difference between
them is that sendOut sends a message to a mobile device
or a Communicator agent in another MAS. In this paper, the
available illocutionary forces are:

• achieve: sends a goal to be accomplished by the ad-
dressee. The content of the message sent will be inserted
in the base of intentions of this agent.

• unachieve: drops a goal in case it has not been reached
yet. The content of the message will be removed from
the base of intentions of the addressee.

• tell: sends a belief of the sender that the addressee
believes to be true. The content of the message must be
a literal, which represents a belief and will be inserted
into the belief base of the addressee.

• untell: the sender agent informs the addressee agent that
the belief is no longer to be believed. The content of the
message is removed from the belief base of the addressee.

In order to integrate ContextNet into Jason architecture,
some modifications were performed. First of all, the Com-
municator class for creating an agent with the ability of com-
municating was added as an agent’s customized architecture.
This class has an attribute commBridge, which is responsible
for sending and receiving messages from ContextNet. This
class also has a function for adding the received message
from ContextNet to the agent’s mail box. The commBridge
implements a process for mounting and verifying a message to

217

Fig. 1. An overview of the proposed architecture.

guarantee no losses of data in the communication. A message
is composed of the following fields: a pre-amble to identify
the origin of the message with a length of 4 bytes; fields to
identify the sender and the receiver of the message with 32
bytes each; the identification of the illocutionary force with
32 bytes; and the message content with 256 bytes.

When the sender starts sending the message, the size of
all fields are calculated to identify the beginning and the
end of each field. After that, the pre-amble is added at the
beginning of the message to verify the origin of the message.
The message is mounted adding all the fields in a single string
message that is sent by ContextNet. When the receiver receives
the message, the pre-amble is verified to guarantee the origin
of the message. Then, all the fields’ size is verified to guarantee
no losses in the communication process. If everything is ok,
the message is mounted and processed as a Jason’s message.
Otherwise, the message is discarded.

The native TransitionSystem class of Jason was modified
in the reasoning cycle function for allow to check if exist
messages to be read coming from ContextNet. The existing
messages are added to the mail box of the agent to be pro-
cessed as beliefs or intentions depending on the illocutionary
force related to the message as explained before. After that,
the agent can send a message using an internal action named
sendOut, which uses the commBridge to send a message using
the ContextNet. Another internal action named setMyCommId
is responsible for setting the identification string used by
ContextNet to identify uniquely a device in the IoT. It is
important to remark that all modifications proposed do not
interfere in the original Jason distribution nor in ARGO.

IV. CASE STUDY

In this section, we present an initial study case based on
the proposed architecture using the Jason and the ContextNet
middleware in order to control some functionalities in a labo-
ratory. The following scenario explicit the general behavior of
our approach: Kate is the head of the laboratory and she wants
to get information in her smartphone about some features such
as the temperature, luminosity and the status of the lights (on

or off). She also wants to know if there are students using the
laboratory while she is away receiving an updated list every
time she requests. Only students which have an authorization
can enter in the laboratory. So, the student’s will request
access to the laboratory and use its smartphone. Besides, every
student when entering the laboratory should connect to the
network to inform of his or her presence.

The laboratory is equipped with some devices managed
by MAS and MN using Java language and Android. The
temperature and luminosity sensors (LM35 and LDR respec-
tively) are controlled by a MAS using a Galileo Intel Gen
2. For controlling status and activation of lights, a MAS
running in Raspberry Pi Zero and an Arduino UNO assembled
with an ATMEGA328 microcontroller were employed. The
electrical installation of the laboratory was modified to accept
commands coming from the microcontroller. The door is
controlled by a MAS embedded into a Raspberry Pi and is
responsible for registering the students entrance and to verify
if they have the permissions to enter the laboratory accessing
a remote database. The Android applications were developed
implementing Android MN from ContextNet.

Every device has only one MAS embedded in a tiny
computer such as Raspberry and Galileo since they have
enough processing power to host embedded MAS. ARGO
agents are responsible for controlling actuators and sensors
that are connected to one or more microcontrollers. In our case,
we assembled an Arduino UNO board, an ATMEGA micro-
controller, and the Galileo GEN’s GPIO. The ARGO agents
send serial messages to the microcontroller to some action to
be performed in the laboratory. On the other hand, every MAS
can employ Communicator agents. It is important to remark
that every MAS should have only one Communicator agent,
because it will be responsible for the identification in the IoT
network of the device; to communicate with other agents; and
to send and receive data from ContextNet gateway.

The MAS responsible for controlling the temperature and
luminosity sensors are composed of one ARGO agent and
one Communicator agent. The former one is responsible

218

Fig. 2. The Reasoning Cycle of a Communicator agent.

for capturing the perceptions from sensors and to transmit
them to the later one, which manages the received requisitions
from other smart devices and respond to them with the most
current perceptions using ContextNet. The MAS responsible
for controlling the door is composed of three agents: ARGO,
Communicator, and Standard. The ARGO agent is able
of opening the door if it is closed and for retrieving the
status of the door (opened or closed) when requested. The
Communicator receives the requisitions from other devices
and it sends to the Standard agent the requisitions that
need to be verified if the user has access permission using
a customized internal action for accessing the database. If the
user has the access permission, the agent sends a message to
the ARGO agent for opening the door.

The MAS that controls the activation of lights and other
electrical stuff has an ARGO and a Communicator agent.
The former one interfaces with the hardware that controls the
electrical installation, and it is capable of retrieving percep-
tions about the status of the lights or it receives commands for
activating resources (light, air-conditioning, etc.). The Com-
municator just manages requests coming from other devices
like the previous examples. The Android application for the
head of the laboratory employs functionalities for listing every
access registered in the laboratory; status of electrical stuff and
door; commands for activation and deactivation; and some
administrator function such as registering a new user and
setting new permissions. The user’s Android application com-
municates with the MAS of the luminosity and temperature
sensors in order to get these information and to define the

preference for the temperature (warm, hot or cold); and it asks
for accessing the laboratory. In fact, every Android application
uses an instance of ContextNet for MN.

V. RELATED WORK

It is possible to find several works that try to integrate
MAS in AmI systems. However, these solutions only pro-
vide communication with agents originally from its MAS,
avoiding communication with other agents or embedded MAS
that can enter in the AmI system eventually The Agent of
Things (AoT) [15] is a definition for devices or things that
are managed by a single agent in dynamic environments.
The authors suggest that in such kind of environments, the
communication between devices are highly programmable
and depends on a previous interaction configuration. It is
proposed a conceptual framework which consider a direct
physical interaction between devices using the hardware layer
and using a software layer where every agent represents a
device. However, the framework is conceptual and agents are
centralized in a software layer. In our approach, we consider
a MAS as a thing and a real laboratory implementation as
proof-of-concept.

In [16], it is discussed the use of MAS in IoT rising
questions about communication and the use of protocols where
the main objective is to implement functionalities for access
control in a agent-based IoT. The architecture uses a central
server for controlling and coordinating agents and it is also
presented a hybrid system containing intelligent agents and
IoT devices in traffic scenario. There is one embedded agent

219

for each device and the authors do not explicit how agents
are organized. The Agent-based Cooperating SO (ACOSO)
is used as IoT middleware for providing an IoT network
where agents are devices and the whole group of agents
is a MAS [17]. The ACOSO supports the development of
MAS in the level of things. So, every smart object can be
abstracted to a cooperating agent using Jade as AOPL. The
agents are able of managing sensors and actuators; reasoning
and decision making using local and distributed databases; and
a communication system for the interaction between smart
objects. However, the environment is closed and it is not
possible of new devices to enter in the system and there is
only one agent per device.

A decentralized approach with a framework and an archi-
tecture for engineering IoT applications based on autonomous
smart objects is proposed in [8]. The authors defend that tradi-
tional smart objects are data gathers and senders and the data
is stored and processed in central servers. The proposed smart
objects are capable of running even if remote technologies
(i.e. gateways) are not available. There is one agent for smart
object and it is programmed using XML technologies (it does
not use AOPL) in a web platform named Eve agent.

VI. CONCLUSION

This work presented an architecture for the development
of AmI systems employing the agent approach and supported
by an IoT middleware named ContexNet. In this architecture,
it is possible to assemble devices, which have embedded
MAS responsible for controlling sensors and actuators and
for communicating with other devices. Every device is an
independent solution and it is free to enter and leave in the
architecture. The proposed approach uses Jason framework
for the development of the MAS. Besides, we enhanced a
real laboratory with such technologies to use it as a proof-of-
concept application. This architecture aims to provide a kind
of framework for the development of AmI systems.

By using the proposed architecture, it is possible to create
an AmI system, which allows communication among several
devices at real time, where all devices connected can change
information, offering flexibility in the choice of which technol-
ogy employed in the solution. From MN — which do not use
agents — the data information is transmitted to the ContextNet
gateway in raw format. So, the discovery of context situations
coming from these nodes only will happen exclusively in the
server. In some cases, it could be necessary that the context
and the reasoning for specific situations happen directly in
the devices. In cases where the device is embedded with
a MAS, a previous reasoning can be performed using the
raw information captured as perceptions from ARGO agents
reducing the processing in the server and avoiding bottlenecks.

This work also presented an extension of Jason to allow
embedded MAS in mobile devices to communicate with other
agents hosted and embedded in different devices. It provides
a specific and new kind of agent that has the ability to
communicate with other agents using ContextNet. In this type
of agents, the middleware is part of the reasoning cycle of

the agent, which uses internal actions for sending messages to
agents with the same ability and hosted in a different MAS.
For future works, the architecture will be employed in other
laboratories containing different devices and technologies. We
also aim to improve and formalize the ability of infer rules in
the ContextNet middleware. Besides, we also aim to create a
testbed for automation of experiments and resource sharing,
in order to assist in the validation of new proposals involving
IoT technologies and MAS.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” IEEE pervasive
computing, vol. 1, no. 1, pp. 19–25, 2002.

[2] D. Surie, O. Laguionie, and T. Pederson, “Wireless sensor networking of
everyday objects in a smart home environment,” in Intelligent Sensors,
Sensor Networks and Information Processing, 2008. ISSNIP 2008.
International Conference on. IEEE, 2008, pp. 189–194.

[3] H. D. Soares, R. P. de Oliveira Guerra, and C. V. N. de Albuquerque,
“Ftsp+: A mac timestamp independent flooding time synchronization
protocol,” in XXXIV Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuı́dos - SBRC. Sociedade Brasileira de Computação,
2016, pp. 820–832.

[4] M. Endler, G. Baptista, L. Silva, R. Vasconcelos, M. Malcher, V. Pan-
toja, V. Pinheiro, and J. Viterbo, “Contextnet: context reasoning and
sharing middleware for large-scale pervasive collaboration and social
networking,” in Proceedings of the Workshop on Posters and Demos
Track. ACM, 2011, p. 2.

[5] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in Distributed Computing Systems Workshops, 2003. Pro-
ceedings. 23rd International Conference on. IEEE, 2003, pp. 200–206.

[6] M. Wooldridge, An Introduction to MultiAgent Systems. Wiley, 2009.
[7] C. Maciel, P. C. de Souza, J. Viterbo, F. F. Mendes, and A. El Fal-

lah Seghrouchni, A Multi-agent Architecture to Support Ubiquitous
Applications in Smart Environments. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 106–116.

[8] M. E. P. Hernández and S. Reiff-Marganiec, “Towards a software
framework for the autonomous internet of things,” in Future Internet of
Things and Cloud (FiCloud), 2016 IEEE 4th International Conference
on. IEEE, 2016, pp. 220–227.

[9] M. P. Singh and A. K. Chopra, “The internet of things and multia-
gent systems: Decentralized intelligence in distributed computing,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 1738–1747.

[10] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. John Wiley & Sons Ltd,
2007.

[11] L. Silva, M. Endler, and M. Roriz, “Mr-udp: Yet another reliable user
datagram protocol, now for mobile nodes,” Monografias em Ciência da
Computação, nr, vol. 1200, pp. 06–13, 2013.

[12] M. E. Bratman, Intention, Plans and Practical Reasoning. Cambridge
Press, 1987.

[13] C. E. Pantoja, M. F. Stabile, N. M. Lazarin, and J. S. Sichman, “Argo:
An extended jason architecture that facilitates embedded robotic agents
programming,” in Engineering Multi-Agent Systems: 4th International
Workshop, EMAS 2016, M. Baldoni, J. P. Müller, I. Nunes, and R. Zalila-
Wenkstern, Eds. Springer, 2016, pp. 136–155.

[14] N. M. Lazarin and C. E. Pantoja, “A robotic-agent platform for em-
bedding software agents using raspberry pi and arduino boards,” in 9th

Software Agents, Environments and Applications School, 2015.
[15] A. M. Mzahm, M. S. Ahmad, and A. Tang, “Enhancing the internet of

things (iot) via the concept of agent of things (aot),” Journal of Network
and Innovative Computing, vol. 2, no. 2014, pp. 101–110, 2014.

[16] D. Rivera, L. Cruz-Piris, G. Lopez-Civera, E. de la Hoz, and I. Marsa-
Maestre, “Applying an unified access control for iot-based intelli-
gent agent systems,” in Service-Oriented Computing and Applications
(SOCA), 2015 IEEE 8th International Conference on. IEEE, 2015, pp.
247–251.

[17] C. Savaglio, G. Fortino, and M. Zhou, “Towards interoperable, cognitive
and autonomic iot systems: an agent-based approach,” in Internet of
Things (WF-IoT), 2016 IEEE 3rd World Forum on. IEEE, 2016, pp.
58–63.

220

DOI: 10.18293 / SEKE2018-175

Understanding Normative BDI Agents Behavior
Francisco Cunha, Marx Viana, Tassio Sirqueira, Marcio Rosemberg and Carlos Lucena

Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
Software Engineering Laboratory (LES)

Rio de Janeiro, Brazil
{fcunha, mleles, tmartins, mrosemberg, lucena} @inf.puc-rio.br

Abstract— Testing the autonomy of, and the interaction between,
the agents in Multiagent Systems (MAS) is the frontal challenge
of traditional software testing approaches. When we study MAS
governed by norms – mechanisms created to restrain the
behavior of agents – this challenge increases even further.
However, agents are autonomous and it is not guaranteed that
they will fulfill all norms. Given the fuzzy notion of “test”,
especially in the context of MAS, in addition to the difficulties of
dealing adequately with normative constraints, the overall
understanding of how to handle the creation of tests for
normative MAS is still vague. This paper proposes a testing tool
to build and run MAS test scenarios and it relies on the use of
aspect-oriented techniques to monitor the behavior of
autonomous agents. We demonstrated our tool with a simulation
of a traffic intersection scenario, based on the Brazilian Transit
Code. Our experience shows that the tool can be used to build test
scenarios that can achieve high fault detection effectiveness.

Keywords – BDI Agent; Autonomous Behavior; Nomative
Agents; Testing in Multiagent Systems.

I. INTRODUCTION
Multiagent Systems (MAS) are societies in which

autonomous, heterogeneous and independently designed
entities work toward a common goal [9]. To reach this common
goal, it is necessary to deal with the agents’ autonomy and
establish a strategy that will allow open systems to provide
social control mechanisms to ensure the desired order [9].
Agent autonomy is very important in MAS, however, from a
testing perspective the characteristics of normative agents add
many new challenges to software testability. Traditionally,
software behavior can be easily tested and understood when
compared to a reference behavior, whereas in multiagent
systems, the behavior depends on the interactions with other
agents in a dynamic environment.

This means that if on one hand agent technology helps to
address application requirements of complex systems, on the
other hand, its characteristics, such as the autonomy and the use
of norms in the environment, bring obstacles to software
testability [2]. According to Voas and Muller [2], testability has
two facets: (i) controllability – the ability to control the test
input, and (ii) observability – the ability to observe the output
of the component under test. Agent autonomy impairs
observability since agents may employ some degree of
nondeterministic behavior. Consequently, it is hard to define
(control) the test input that is not only derived from
environment data but also from the messages received from
concurrent conversations among agents – this is made worse
with the use of norms.

This paper presents a tool named N-JAT4BDI: a JUnit-like
testing tool implemented in Java and Aspect-Oriented
Programming, which is a technique to improve the
modularization of crosscutting concerns. N-JAT4BDI has been
developed with the purpose of testing agents built in
NBDI4JADE [12], a framework for normative agent-based
applications that follows the BDI architecture. We can point
out the following contributions: (i) an adaptation of JAT4BDI
[13] that adds mechanisms to test the relevant properties of
normative BDI agents and their interactions with others; (ii) a
tool to support the implementation and automatic execution of
test cases; (iii) a real test showcasing a Brazilian traffic
scenario and (iv) a quality assessment of this test scenario by
using a fault injection technique.

The remained of this paper is organized as follows: Section
2 presents the background and related work. Section 3 presents
the testing approach to normative MAS. Section 4 presents
design and implementation details of the N-JAT4BDI tool.
Section 5 presents the usage scenario. Section 6 presents the
evaluation of the results. Finally, Section 7 presents our
conclusions and future work.

II. BACKGROUND
This section summarizes the concepts of norms and their

use in Multiagent Systems as well as MAS Testing approaches
and their limitations.

A. Norms and Normative Multiagent Systems
In MAS, norms are mechanisms commonly accepted as

efficient means of regulating agents behavior and representing
the way in which agents understand the responsibilities of other
agents [4] [9]. The definition of the norms used in this work is
represented by the following properties: Addressee, Condition
(for example, Activation, Expiration), Motivation (for example,
Rewards, Punishments), Deontic Concept, and State. The
description of each property is given as such: (i) addressee is
used to specify the agents or roles responsible for norm
compliance; (ii) activation is the condition for the norm to
become active; (iii) expiration is the validity condition for the
norm to become inactive; (iv) rewards is used to represent the
set of rewards to be given to the agent for norm compliance; (v)
punishments is the set of punishments to be given to the agent
for violating a norm; (vi) deontic concept is used to indicate
whether the norm establishes an obligation, a permission, or a
prohibition, and (vii) state is used to describe the set of states or
actions that are being regulated [10].

221

B. Multiagent Systems Testing
According to Nguyen et al. [17], the full testing process of

a multiagent system consists of the following levels: unit,
agent, integration (or group), system and acceptance.

Several approaches have proposed unit testing for individual
agents in multiagent systems [6] [5] [7] [13] [16], whereas few
studies deal with the issue of testing a MAS at group level [6]
[15] [18] [1] [3]. According to Serrano [18], most approaches
have focused on capturing and visualizing messages exchanged
among agents, and do not provide ways of tracking the
correlation among the agents’ behavior. It is important to
emphasize that none of the papers mentioned above provides
an approach to verify the behavior of normative agents. The
main focus of this work is to test the capability of an individual
agent to fulfill a norm in order to reach its goal.

III. THE APPROACH PROPOSED
This section presents a testing tool – the N-JAT4BDI – that

proposes test cases to test normative BDI agents encoded in the
NBDI4JADE framework [12]. The N-JAT4BDI tool resorted
to the main ideas of the JAT4BDI approach [13] and added
new features capable of monitoring the behaviors of normative
NBDI4JADE agents.

A. Overview
Our tool simulates real agent interactions by using mock

agents [14]. The mock agents interact and exchange messages
with the agent under test (AUT) in order to verify the AUT
response and to check whether the environment was affected as
expected.

Figure 1 depicts all the participants used in our testing
approach: (i) Agent Under Test (AUT): agent whose behavior is
verified by the unit test execution; (ii) Mock Agent: a fake
implementation of a real agent that interacts with the AUT; (iii)
Monitor: responsible for monitoring agents’ behaviors
(reasoning cycle); (iv) Synchronizer: manages the test scenario
execution by defining the order in which the mock agents
interact with the AUT; (v) Test Scenario: defines a set of
conditions to which the AUT will be exposed and verifies
whether this agent obeys its specification under those
conditions. Each scenario encompasses only one AUT and one,
or more, mock agents, and (iv) Test Case: a particular situation
that requires verification.

Figure 1. Flow among the participants of the unit test [13]

The workflow steps used by the tool are: (i) to create a Test
Scenario that will define the test cases involved; (ii) to start the
Test Scenario; (iii) the test case creates and starts the AUT and
Mock Agents. The component Monitor starts to observe the
AUT’s reasoning cycle (its beliefs, executed plans, goals, and
norms fulfilled, or refused), and (iv) mock agents exchange
messages with the AUT. During this interaction process, the
Monitor keeps track of the information gathered during the
execution. To do so, it uses a set of data structures to store that
information. Both the Monitor and Synchronizer were
implemented by aspects [8].

B. Normative assertions
Aiming to support norm fault identification in NBDI4JADE

agents, we provide a set of assertive methods that follow the
JUnit style and are capable of verifying the agents’ decisions.
These assertion methods check the information stored by the
tool during the agent’s execution.

The main assertions are described below: (i)
assertNormActive: It checks whether a norm is active in the
environment; (ii) assertNormFulfillment: It checks whether a
norm is fulfilled by the agent; (iii) assertNormAffectGoal: It
checks whether a norm affects an agent’s goal; (iv)
assertNormAffectPlan: It checks whether a norm affects an
agent’s plan; (v) assertNormAddressee: It checks whether a
norm is addressed to the agent under test; (vi)
assertNormExpired: It checks whether a norm has expired
during the AUT’s execution; (vii) assertNormReward: It
checks whether the AUT has received a reward for fulfilling
the norm; (viii) assertNormPunishment: It checks whether the
AUT has received a punishment for violating the norm; (ix)
assertNormDeonticConcept: It checks the type of norm
constraint (obligation, permission or prohibition) that affects
the AUT, and (x) assertNormState: It checks the internal state
of an element that has been regulated.

IV. N-JAT4BDI: DESIGN AND IMPLEMENTATION DETAILS
This section discusses the main classes of the N-JAT4BDI

tool.

A. NBDI4JadeMockAgent
The NBDI4JadeMockAgent class implements the mock agent
concept in N-JAT4BDI and is an instance of the NBDI4JADE
class; it has a simple plan that executes a mock agent’s single
action. The messages exchanged between the mock agents and
the AUT is also stored in the internal data structures and can be
accessed by using assertive methods.

B. Monitor
The Monitor defines the pointcut that will intercept both the

normative agents and the NBDI4JADE framework in order to
observe the agents’ reasoning, their decisions and all the
changes that occurred in the environment.

C. Synchronizer
The Synchronizer intercepts the code of the

NBDI4JadeMockAgent class and orchestrates the sequence of
interaction between the AUT and mock agents.

222

D. NBDI4JadeTestCase
This class extends the JUnit framework features to support

the NBDI4JADE agent tests. As a result, developers can create
agent tests more easily since they will be using their own
experience with JUnit tests. This is possible because
NBDI4JadeTestCase provides a set of Junit-based assertive
methods to verify the normative agent’s behavior and to
manage the execution environment before a test scenario starts.

V. USAGE SCENARIO
Our case study focuses on the simulation of a traffic

scenario in Brazil. This section summarizes our experience
with the testing tool and its use in this scenario.

A. Motivation
According to Article 29 of the Brazilian Transit Code

(BTC), the right of way rules for vehicles arriving at an
uncontrolled intersection are: (i) Norm1: vehicles moving on
main thoroughfares have the preference; (ii) Norm2: in the case
of a traffic circle, the ones circulating around it have the
preference, and (iii) Norm3: in all other cases, vehicles coming
from the right have the preference. In addition, Article 38, in
its sole paragraph, states that before making a right or left turn,
or merging onto traffic, the driver must yield to oncoming
pedestrians, cyclists and vehicles, always respecting the norms
of preference described in Article 29.

B. Usage Scenario
This simulation of Brazilian traffic rules was implemented

to briefly demonstrate how N-JAT4BDI can be used to test a
normative agent. The complete simulation involves
autonomous cars (agents), highways, traffic circles, traffic
intersections, and traffic rules. The goal of the autonomous cars
is to arrive at their destination without accidents, following
local traffic rules.

Figure 2 presents the scenario implemented with the
NBDI4JADE framework: three cars arrive at an intersection at
the same time. The goals of the autonomous cars are: (i) the
pink car wants to proceed on street 1; (ii) the yellow car wants
to proceed on street 2 and will have to cross street 1, and (iii)
the red car is on street 1 and wants to turn left onto street 2. In
this scenario, however, there are no traffic signs and the agents
need to make decisions to avoid collision among the cars,
taking into account Brazil’s traffic rules.

Figure 2. Traffic Intersection rules in Brazil

In our scenario, neither Norm1 nor Norm2 of Article 29 of
the BTC can be applied. Therefore, the agents need to decide
whether they will fulfill, or violate, Norm3 of Article 29. In our
simulation, they all fulfilled Norm3, as follows: (i) The PINK
car arrives at the intersection and stops because the YELLOW
car is on its right; (ii) The YELLOW car arrives at the
intersection and stops because the RED car is on its right; (iii)
The RED car arrives at the intersection and there is no car on
its right, therefore, the agent’s reasoning cannot comply with
Article 29 and must, instead, comply with Article 38.

Because the BTC does not deal with similar situations at
uncontrolled intersections, it creates an impasse, and requires
that the agent’s reasoning process be improved.

Due to space limitation, we describe only one simple test
scenario and its implementation, as demonstrated in Table 1.

TABLE I. TEST SCENARIO EXAMPLE

Agent Under Test Test Scenario Description

The RED autonomous car
(Red car)

The RED car arrives at the intersection and
there is no car on its right, therefore, the
agent’s reasoning cannot comply with
article 29.

C. Encoding test scenario
Figure 3 illustrates the implementation of the test scenario.

Line 13 of the test case starts the agent under test (Red car) and
line 15 configures the concurrence from the test environment
execution. Line 17 creates a local norm that emulates a real
norm in the environment. Line 18 checks whether the norm is
active in the environment and line 19 checks whether the norm
is addressed to the agent under test.

Figure 3. Checks if the norm is active and was addressed to the Red agent

Figure 4 depicts the result of the test case execution
visualized in a JUnit style.

Figure 4. The result of test casse execution

VI. EVALUATION
Fault injection is considered a very useful technique to

evaluate the effectiveness of testing approaches. The key idea

223

is to introduce faults during system execution and verify
whether the testing approach precisely detects the injected fault
[11], which depends on the fault model associated with a
testing approach.

In order to estimate the effectiveness of the test cases
development, we implemented a module in the tool that uses
Java Annotations and aspect-oriented programming that
intercepts the execution of the N-BDI4JADE agents and
introduces faults in our normative agent.

A. The Fault Injector
The fault injector component adds specific faults defined by

the annotation. Each annotation describes one type of fault and
aims to check how agents react to the fault. For instance: (i)
@ActivateNorm: forces the activation of a norm in the
environment. The attribute of this annotation is the norm that
will be activated; (ii) @DeactivateNorm: forces the
deactivation of a norm in the environment. The attribute of this
annotation is the norm that will be deactivated; (iii)
@IncreaseReward: forces the increase in the agent’s reward
score even when a norm is not fulfilled; (iv)
@IncreasePunishment: forces the increase in the agent’s
punishment score even when a norm is not fulfilled; (v)
@ChangeAddressee: forces a change in the addressee of a
norm, and (vi) @ChangeFulfillment: forces the agent to fulfill,
or not, a norm.

B. Results
We have injected 22 faults inside our simulation to check

whether the test scenarios were able to diagnose the injected
faults. According to the results, the N-JAT4BDI tool helps the
developer in the identification of these types of faults. We
attribute these results to the use of the testing driven
development technique during the development of our testing
tool. Thus, the test cases became consistent and accurate
whereas the injection of faults that involved reward and
punishment, failed completely. Table 2 summarizes the results.

TABLE II. FAULTS INJECTED AND DETECTED BY THE TEST SCENARIOS

Fault Type Faults Injected / Detected

Activate Norms 9 / 9
Deactivate Norms 1 / 1
Reward Norms 3 / 0
Punishment Norms 3 / 0
Addressee Norms 3 / 3
Fulfillment Norms 3 / 3

VII. CONCLUSION AND FUTURE WORK
This work presented N-JAT4BDI, a testing tool for building

and running automated test cases for normative agents with N-
JAT4BDI to verify a Brazilian traffic simulation involving
traffic intersections. To evaluate our approach, we used a fault
injection technique to assess the quality of the test scenarios
developed for this simulation. The results have shown that

N-JAT4BDI can effectively uncover bugs in normative agents.
As future work, we plan to improve the normative fault model
and add features when testing other normative properties such
as reward and punishment.

REFERENCES
[1] A. Ferrando, D. Ancona and V. Mascardi, “Decentralizing mas

monitoring with decamon”, Proceedings of the Conference on
Autonomous Agents and MultiAgent Systems, pp. 239–248, 2017.

[2] J. M. Voas and K. W. Miller, “Software testability: The new
verification.”, IEEE software, v.12, n.3, pp. 17–28, 1995.

[3] N. M. do Nascimento, C. J. M. Viana, A. von Staa and C. J. P. de
Lucena, “A Publish-Subscribe based Architecture for Testing Multiagent
Systems”, 2017.

[4] M. Alberti, A. Gomes, R. Gonçalves, J. Leite, and M. Slota, “Normative
systems represented as hybrid knowledge bases,” Computational Logic
in Multi-Agent Systems, pp. 330–346, 2011.  

[5] R. Coelho, E. Cirilo, U. Kulesza, A. von Staa, A. Rashid and C. J. P. de
Lucena, “Jat: A test automation framework for multi-agent systems”, in
IEEE International Conference on Software Maintenance, pp. 425–434,
2007.

[6] D. T. Ndumu, H. S. Nwana, L. C. Lee and J. C. Collis, “Visualising and
debugging distributed multi-agent systems”, in Proceedings of the third
annual conference on Autonomous Agents. ACM, 1999, pp. 326–333.  

[7] Y. Abushark, J. Thangarajah, T. Miller, J. Harland and M. Winikoff,
“Early detection of design faults relative to requirement specifications in
agent-based models”, in Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, pp. 1071–1079, 2015.  

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.
Loingtier and J. Irwin, (1997, June). “Aspect-oriented programming”, In
European conference on object-oriented programming (pp. 220-242).
Springer, Berlin, Heidelberg.

[9] F. L. y López, “Social power and norms: Impact on agent behavior”,
Ph.D. dissertation, University of Southampton, June, 2003.  

[10] V. T. da Silva, “From the specification to the implementation of norms:
an automatic approach to generate rules from norms to govern the
behavior of agents,” Autonomous Agents and Multi-Agent Systems, vol.
17, no. 1, pp. 113–155, 2008.

[11] J. Voas and G. McGraw, “Software Fault Injection: Inoculating
Programs Against Errors”, Wiley, 1998.

[12] F. J. P. da Cunha, T. F. M Siqueira, M. L. Viana and C. J. P. de Lucena,
“Extending BDI Multiagent Systems with Agent Norms”, International
Conference on Intelligent Agent Technology, 2018 – In Press.

[13] F. J. P. da Cunha, A. D. da Costa, M. L. Viana and C. J. P. de Lucena,
“JAT4BDI: An Aspect-based Approach for Testing BDI Agents”, Web
Intelligence and Intelligent Agent Technology (WI-IAT), 2015
IEEE/WIC/ACM International Conference on. Vol. 2. IEEE, 2015.

[14] R. Coelho, U. Kulesza, A. von Staa and C. J. P. de Lucena, “Unit testing
in multi-agent systems using mock agents and aspects”, In Proceedings
of the international workshop on Software engineering for large-scale
multi-agent systems, 2006, pp. 83–90, ACM.

[15] J. J. Gomez-Sanz, J. Botía, E. Serrano, and J. Pavón, “Testing and
debugging of mas interactions with ingenias,” in International Workshop
on Agent-Oriented Software Engineering. Springer, 2008, pp. 199–212.

[16] V. J. Koeman, K. V. Hindriks and C. M. Jonker, “Automating failure
detection in cognitive agent programs”, Proceedings of the International
Conference on Autonomous Agents & Multiagent Systems, 2016, pp.
1237–1246.

[17] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón and J. Thangarajah,
“Testing in multi-agent systems,” in International Workshop on Agent-
Oriented Software Engineering. Springer, 2009, pp. 180–190.

[18] E. Serrano, A. Muñoz and J. Botia, “An approach to debug interactions
in multi-agent system software tests”, Information Sciences, vol. 205,
pp. 38–57, 2012.

224

Towards a Representation of Enterprise Architecture
based on Zachman Framework through OMG

Standards1
Miguel Ehécatl Morales-Trujilloa,b, Boris Escalante-Ramírezb, Pilar Ángelesb, Hanna Oktabac and Guadalupe

Ibargüengoitia-Gonzálezc

a University of Canterbury, Christchurch, New Zealand
miguel.morales@canterbury.ac.nz

b Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico
{boris, pilarang}@unam.mx

c Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
{hanna.oktaba, gig}@ciencias.unam.mx

Abstract — This paper presents a rearrangement of the

Zachman framework carried out in order to facilitate the

representation of an enterprise architecture (EA). The approach

proposes a diagram-based alternative to model EA using two well-

known Object Management Group standards: UML and BPMN.

The proposal is directed to organizations in charge of developing

and maintaining software systems under the premise that the

people who develop software are highly familiarized with both

standards. The proposal reduces 30 elements required by

Zachman to 17, which are 7 diagrams and 10 documents,

providing organizations with a viable alternative to model their

structure, processes and environment in a business-oriented

vision.

Keywords— Enterprise Architecture, Zachman framework,

software development, UML, BPMN, modeling language

I. INTRODUCTION
Organizations constantly look for an improvement and one

of the strategies for a more efficient management is process
automatization through Information Technology (IT) [1].
Automatization of processes aims at fulfillment of objectives,
metrics and requirements of an organization. However, for a
process to be correctly aligned, it should be well-defined in a
common language and amendable to detailed analysis.

Considering this premise, it becomes an acute necessity to
establish a mechanism for representing the elements that
comprise an organization. This representation of the elements,
their relationships and executional context constitute the
Enterprise Architecture (EA) of the organization. EA is a
structured and aligned collection of plans for the integrated
representation of a given business and IT landscape [2]. EA can
be a useful tool for aligning the IT application and organization’s
activities. Besides, it can facilitate business success to the
effectiveness by using information of management strategic and
IT resources [3].

DOI reference number: 10.18293/SEKE2018-001

In the process of creating an EA representation for software
development organizations some obstacles are faced. In the first
place, it is imperative to define a method to build the elements
of an EA. Even though, as exposed in [4], the way in which an
EA specification would be built is not relevant, this premise does
not hold at the moment of integrating the elements. If the EA
structure is not properly defined since the beginning, it will be
difficult to maintain relationships between future elements,
which may substantially weaken the cohesion among them.

Moreover, in [5] it is established that the current EA
implementation methods have a broad scope and a lack of
structure; this usually causes complication and difficulty in
implementation. Besides, the fact that there is no comparison
between existent EAs complicates the initiative to define EA and
leaves those defining it for the first time without a point of
reference or comparison.

Last but not least, there is a necessity to offer alternatives to
manage an EA evolution. Nowadays there is a considerable gap
between defining an EA and its management over time. Any
changes within the organization directly affect the previously
defined EA, which is why there is a need for a specific
mechanism to be able to manage the change and to allow for the
EA to evolve alongside the organization [6].

Addressing this necessity, this paper presents an alternative
to represent the EA of an organization, which is based on
Zachman framework [7] in terms of two widely used Object
Management Group (OMG) standards: the Unified Modeling
Language (UML) [8] and Business Process Model and Notation
(BPMN) [9].

This paper is organized as follows: Section II presents the
background of the proposal and its fundamentals. Section III
details the proposed adaptation of the Zachman framework and
the mechanism to represent the EA. Section IV contains
preliminary results related to the applicability of the proposal.
Finally, section V presents conclusions and future work.

225

II. BACKGROUND
In this section an overview of EA definitions, the Zachman

framework and the relevant for this paper OMG standards are
presented. Related to the Zachman framework work and OMG
modeling languages are described as well.

A. Enterprise Architecture

EA is defined as a process of strategic planning that
integrates the business management with IT in order to improve
the organization’s financial and enterprise efficiency. EA is a set
of descriptive representations relevant for describing an
enterprise so that it can realize management requirements and be
maintained over the period of its useful life [10]. EA is an
approach to enterprise information systems management that
relies on models of the information systems and their
environment [11]. EA supports the analysis, design and
engineering of business-oriented systems through multiple
views [12].

In order to create an EA, frameworks like Zachman, TOGAF
ADM [13], DoDAF [14] or MODAF [15] have been created. An
EA framework is a model used by an organization to develop
good corporate governance, creating added value for their
business [16]. For the purposes of this proposal, the Zachman
framework will be the base to represent an EA and is detailed in
the next subsection.

B. The Zachman framework

The Zachman framework is an ontology that represents EA
concepts and their relationships. The ontology is developed
through an empirical approach and answers the questions who?
when? why? what? how? and where?. This question-based
approach, according to Zachman, allows for a full and
understandable description of complex ideas, which is the case
with EA.

Each question aims at finding the necessary Data (what?),
the Function (how?), the People (who?), the Network (where?),
the Time (when?) and the Motivation (why?) involved in the EA.
According to [17] each element is defined as follows:

Data (Thing—Relationship—Thing): this element focuses
on the material composition of the product.

Function (Process—Input/Output—Process): this
element focuses on the functions or transformations of the
product.

People (People—Work—People): this element focuses on
the people, the manuals and the operating instructions or models
they use to perform their tasks.

Network (Node—Line—Node): this element focuses on
the geometry or connectivity of the product.

Time (Event—Cycle—Event): this element focuses on the
life cycles, timing and schedules used to control activities.

Motivation (End—Means—End): this element focuses on
goals, plans and rules that prescribe policies and ends that guide
the organization.

In addition, the framework proposes 5 models, which,
according to [17], are defined as follows:

Scope (Contextual): describes the models, architectures and
representations that provide the boundaries for the organization.

Business model (Conceptual): describes the models,
architectures and descriptions used by the individuals who are
the owners of the business process.

System model (Logical): describes the models,
architectures and descriptions used by engineers, architects and
those who mediate between what is desirable and what is
technically possible.

Technology model (Physical): describes the models,
architectures and descriptions used by technicians, engineers
and contractors who design and create the actual product.

Detailed representations (Out-of-context): describes the
actual elements or parts that are included in, or make up, the final
product.

The 6 questions and the 5 models comprise a two-
dimensional matrix of 30 cells. Each cell describes or represents
a particular element, which can be defined by means of
diagrams, documents or work products, according to the
organization preferences.

The EA representation that is achieved following this
framework is a static view of the organization, as a consequence
it is impossible to model its operational processes. The major
advantage, however, is the possibility to represent the EA
fundamental elements in a precise and well-defined manner.

The Zachman framework is a well-known alternative for
modeling an organization’s EA, however, it faces three
considerable weaknesses: low cohesion of its elements, lack of
a method to use it and lack of specificity in the cells description.

In addition, there are no detailed examples demonstrating the
successful practical application of the Zachman framework [4],
which is a strong limiting factor.

C. OMG standards and Related work

OMG develops IT standards for a broad variety of industries.
Two of the most well-known and broadly used in software
engineering related industries are UML and BPMN. UML is one
of the most used specification in IT industry; software
engineering practitioners know the specification and use it daily
in their projects.

In order to provide a unified language architecture, the OMG
developed the Unified Profile for DoDAF and MODAF
(UPDM) [18]. The UPDM specification reuses a subset of UML
and provides additional extensions to allow the representation of
architecture models. UPDM is based on UML class diagrams,
where each class represents common elements of DoDAF and
MODAF; however, the only way to differentiate between classes
is through stereotypes. As a result, the main drawback of UPDM
is a lack of expressiveness.

A more expressive language is ArchiMate [19] that is an EA
specific modeling language created by the Open Group.
ArchiMate is aligned with TOGAF. In this case, an important
obstacle that hinders its spreading is its level of complexity as
well as its lack of familiarity to practitioners. Besides,
ArchiMate is targeted to big companies.

Based on the assumption that one quarter of all EA
representations is done through the Zachman framework, the
OMG published a proposal that represents the Zachman
framework cells through OMG modeling specifications [20].

226

The proposal reuses UPDM, BPMN and UML mainly.
However, there are also Zachman’s cells that are not represented
at all.

III. PROPOSED SOLUTION
The enterprise willing to model its EA has to cope with two

challenges: it must define procedures for gathering the needed
information and must devise a conceptual model defining the
necessary information [21].

Modeling EA requires representing multiple diagrams of an
enterprise, which typically shows the multiples business entities,
IT systems and the services they offer [22]. Therefore we
propose to model these aspects by using UML and BPMN
mainly. On the one hand, the proposed solution pursues the goal
of adjusting the EA elements to the organization’s context. In
other words, we intend that the created EA views become
meaningful to the organization and fulfill its necessities or
objectives.

On the other hand, the representation mechanism should use
a language that is close to the organization’s members, so that
the EA representation can be easily assimilated and applied,
demanding as little effort as possible. It is also possible to use a
more complex notation, which may allow to keep more aspects
together thus reducing the number of cells; however, our main
goal was to increase comprehension and simplicity in the
representation.

In the following lines, we describe the proposed
readjustment to the Zachman framework together with the
alternative that was chosen to represent each of the elements.

A. Rearrangement

The first step taken to create this proposal was to rearrange
the elements of the Zachman framework. This was done in order
to reduce the number of cells proposed by Zachman. A grouping
of the cells of the framework in first place would reduce the
complexity and the number of work products to represent the
EA.

On the other hand, taking into account software engineers’
reasoning, several elements were combined. For example,
Business model and System model of the Data column are
represented by an Entity-Relationship diagram in the context of
software development, while, within the Zachman framework,
they are separated cells.

Another example is that it comes natural for software
engineers to model processes in terms of three fundamental
elements: activities, work products and roles. Even though the
Zachman framework places these elements on the layer Scope,
they are separated into Function (what is done) and People (who
does that).

This separated representation renders incomplete and loses
the perspective of what is being modelled. Therefore, the
proposed rearrangement merges both elements into one, which
is might be represented by a BPMN diagram integrating what is
being done and who is in charge of it.

During the software design phase, the database is often
modelled by the means of tables and class diagrams. The class
diagrams represent a table through its attributes and methods.
Therefore, the Physical Data Model and the System Design,
attached to the questions What? and How? in the Technology
model, can be combined and represented as a class diagram. This
class diagram will show the database and the tables that express
the persistency of the system.

We propose to integrate and rearrange several of the 30
Zachman’s cells, finally obtaining 17. For the proposed model
to be practical, we name each element as presented in [17]; in
case the elements are merged, their names are introduced
through a slash. In the following subsections the 17 elements are
described in more detail.

Figure 1 shows the obtained rearrangement, the first work
products to be created are lists, shown in green; the blue ones are
diagrams and red ones are documents.

B. Representation using diagrams

In this subsection we describe the elements represented
through diagrams.

1) Semantic model / Logical data model: represents entities
(things) and their relationships that are involved in the Business
model and its logic representations in the System model. It is
carried out by means of an Entity-Relationship diagram.

2) Physical data model / System design: represents the
databases and the domains of the Technology model. The
representation is carried out by means of a class diagram.

3) Business process model / Work flow model: represents
the processes, resources, persons and work products involved in
the business model. The representation of these elements is
carried out by means of a BPMN or a UML activity diagram.

4) Application architecture / Human interface architecture

/ Presentation architecture: it is a combination of the System
model with the Technology model and represents the functions
of the system and its users. Both aspects are represented by
means of a Use case diagram.

5) Distributed system architecture / Technology

architecture / Network architecture: the nodes, communication
protocols, hardware and software that are necessary to allow
communication between different locations of the organization
are represented by means of a deployment diagram. This
diagram represents a physical distribution of objects alongside
with how they relate and communicate with each other.

6) Master schedule / Processing structure / Control

structure: the organization’s time-related aspects can be
represented through a statechart diagram. The states that
business or organizational systems go through as well as the
events that cause a change of a state are the main components
of the Business, System and Technology models.

7) Timing definition: This element describes events and
their times. It is possible to represent the active state of each
organizational process by means of a time diagram.

227

Fig. 1. Rearrangement of the Zachman framework

C. Representation using lists and documents

The Scope layer in particular describes the context in terms
of lists, 4 of the 6 Scope layer elements did not undergo any
rearrangement nor integration with other elements:

1. List of things important to the business.
2. List of processes the business performs.
3. List of organizations important to the business.
4. List of events significant to the business.

The remaining two were merged with the cell from an
inferior row.

1) List of locations / Business logistics system: this
document enlists the organizational offices and their
descriptions.

2) List of business goals / Business plan: this document
enlists the business objectives as well as the strategies for
achieving them.

3) Data definition: contains a detailed representation of data
carried out by means of a data dictionary containing fields, their
descriptions and restrictions applied to them.

4) Program: the programs that the organization uses to
carry out its functions are represented by means of a tools and
software systems list.

5) Security architecture: the detailed representation of the
people involved should contain the persons or identities, and
their roles and privileges. This representation is carried out by
means of an organigram.

6) Business rule model / Rule design / Rule specification:
this document gathers the business rules and restrictions. By
means of assertions, hypothesis and restrictions the context for
achieving the organizational objectives is described.

IV. RESULTS
The proposal of representing an EA by means of work

products, in this case diagrams and documents, originates in the
idea from [4]. Ylimäki states that “since the Zachman framework
is not a methodology, a method is needed to fill in the framework
cells”. However, Ylimäki’s study offers 52 work products to
cover the EA definition.

Our proposal, on the other hand, reduces the number of the
Zachman’s cells and offers 17 work products to cover them,
which we consider an advantage. Besides, although they are
created specifically for EA, they are based on the languages that
belong and are closely familiar to software development
organizations and their work teams. In addition, the UML-based
approach allows representing a wider range of enterprise
concerns [24], taking advantage of its flexibility and popularity.

The preliminary results are classified in advantages and
drawbacks. The following are the advantages that are identified
in relation to the proposed solution: (i) software development
organizations widely use BPMN and UML. In consequence,
people in charge of creating, maintaining or using an EA can
understand its language. Besides, diagrams increase the EA
expressiveness; (ii) work products and diagrams used in this
proposal are fully familiar to members of work teams, which
means that minimal effort is required to comprehend and create
them; and (iii) the number of the necessary work products is

228

reduced, making an EA definition simpler and lighter. Once the
proposal is validated through case studies, further reductions of
work products or more optimal rearrangements could be
proposed.

However, several disadvantages are identified: (i) once the
EA is created, additional effort is required for its maintenance
and evolution. Since there is no explicit framework to guide
these processes, the organization has to manage them by its own;
(ii) as mentioned before, the Zachman framework faces three
considerable weaknesses: low cohesion of its elements, lack of
a method to use it and lack of specificity in the cells description.
Even though the identified disadvantages are significant, they
are all inherited from the original Zachman framework.

V. CONCLUSIONS
This proposal is an initial approach towards how software

development organizations can build their EA. EA is a complex
concept that aims at modeling the structure and behavior of an
organization and enables its stakeholders to make decisions.
There is no one-size-fits-all template for EA. However, the
Zachman framework is widely acknowledged to encompass all
the concepts necessary to describe an organization [20].

The Zachman framework provides an alternative for
modeling an organization’s EA; however, as its own creator
said: “so, if you ask who is successfully implementing the whole
framework, the answer is nobody that we know of yet”
(http://archive.visualstudiomagazine.com/ea/magazine/spring/o
nline/druby3/default_pf.aspx, accessed 01/05/2018). Up to now
there is no solid evidence to reject this statement. The intention
of our proposal is to simplify the framework, taking advantage
of the fact that it is well-known in the industry although rarely
used.

This proposal integrates the Zachman framework and a work
product based approach. The work products are mainly created
by means of UML and BPMN, and represent the fundamental
components of an EA. In addition, populating the Zachman
framework with OMG modeling specifications is widely
supported by software tools [20]. We believe that this joined
approach will allow more software development organizations
to get involved into the subject of EA and, what is more
important, be able to define their own by using reachable and
well-known to their work teams tools.

As future work we consider the following: (i) to create real-
life examples applying the proposed rearrangement; (ii) to create
a guide for work teams to be able to define their own EA; and
(iii) establish a framework for managing the future evolution of
already defined EAs.

ACKNOWLEDGMENT
This work has been developed under the “Programa de Becas

Postdoctorales en la UNAM” of the Dirección General de
Asuntos del Personal Académico (DGAPA) of the Universidad
Nacional Autónoma de México (UNAM).

REFERENCES
[1] S. Townson. Why does Enterprise Architecture Matter? The Open Group

(2008)

[2] M. Zhang, H. Chen and A. Luo. A Systematic Review of Business-IT
Alignment Research with Enterprise Architecture. IEEE Access, Vol. 6,
DOI: 10.1109/ACCESS.2018.2819185 (2018)

[3] D. Rusli and Y. Bandung. Designing an Enterprise Architecture based on
TOGAF ADM and MIPI. In: Proc. Of the Intl. Conf. on Information
Technology Systems and Innovation, pp. 38–43, DOI:
10.1109/ICITSI.2017.8267915 (2018)

[4] T. Ylimäki and V. Halttunen. Method Engineering in Practice: A Case of
Applying the Zachman Framework in the Context of Small Enterprise
Architecture Oriented Projects. In: Proc. of the Information, Knowledge,
Systems Management, Vol. 5, No. 3, pp. 189–209 (2006)

[5] S. Leist and G. Zellner. Evaluation of current architecture frameworks. In:
Proc. of the ACM Symposium on Applied Computing, pp. 1546–1553
(2006)

[6] B. Rouhani, M. N. Mahrin, F. Nikpay, R. B. Ahmad and P. Nikfard. A
systematic literature review on Enterprise Architecture Implementation
Methodologies. Information and Software Technology, No. 62, pp. 1–20,
DOI: 10.1016/j.infsof.2015.01.012 (2015)

[7] J. Zachman. A framework for information systems architecture. IBM
Systems Journal, Vol. 26, No. 3 (1987)

[8] OMG. Unified Modeling Language (UML). Technical report, Object
Management Group, Needham, MA, USA (2017)

[9] OMG. Business Process Model and Notation (BPMN) 2.0. Technical
report, Object Management Group, Needham, MA, USA (2011)

[10] J. Zachman. Enterprise architecture: The issue of the century” Database
Programming and Design, vol. 10, no. 3, pp. 44–53 (1997)

[11] A. Källgren, J. Ullberg and P. Johnson. A Method for Constructing a
Company Specific Enterprise Architecture Model Framework. In: Proc.
of the 10th Int. Conf. on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing, pp. 346–351, DOI:
10.1109/SNPD.2009.103 (2009)

[12] M. Bakhshandeh, G. Antunes, R. Mayer, J. Borbinha and A. Caetano. A
Modular Ontology for the Enterprise Architecture Domain. In: Proc. of
the Int. Enterprise Distributed Object Computing Conference Workshops,
pp. 5–12, DOI: 10.1109/EDOCW.2013.8 (2013)

[13] Open Group. TOGAF 9.1 Architecture Development Cycle (ADM).
Reference Card (2011)

[14] United States Department of Defense. Department of Defense
Architecture Framework (2015)

[15] British Ministry of Defence. The MOD Architecture Framework (2012)
[16] I. Alonso, J. Verdún and E. Tovar. The IT Implicated Within the

Enterprise Architecture Model: Analysis of Architecture Models and
Focus IT Architecture Domain. In: Proc. of the IEEE Int. Conf. on
Service-Oriented Computing and Applications (SOCA), DOI:
10.1109/SOCA.2010.5707174 (2010)

[17] D. Frankel, P. Harmon, J. Mukerji, J. Odell, M. Owen, P. Rivitt, M.
Rosenm and R. Soley. The Zachman Framework and the OMG's Model
Driven Architecture. Business Process Trends (2003)

[18] OMG. Unified Profile for DoDAF and MODAF (UPDM). Technical
report, Object Management Group, Needham, MA, USA (2013)

[19] Open Group. ArchiMate 3.0.1. Specification (2017)
[20] OMG. OMG’s Enterprise Architecture Specifications (white paper).

Object Management Group, Needham, MA, USA (2015)
[21] S. Buckl, F. Matthes, C. Schweda. Conceptual Models for Cross-cutting

Aspects in Enterprise Architecture Modeling. In: Proc. of the 14th IEEE
Int. Enterprise Distributed Object Computing Conference Workshops, pp.
245–252, DOI: 10.1109/EDOCW.2010.18 (2010)

[22] H. Dam, L.-S. Lê and A. Ghose. Supporting change propagation in the
evolution of enterprise architectures. In: Proc. of the 14th IEEE Int.
Enterprise Distributed Object Computing Conference, pp. 24–33, DOI:
10.1109/EDOC.2010.23 (2010)

[23] J. Zachman and J. Sowa. Extending and Formalizing the Framework for
Information Systems Architecture. IBM Systems Journal, Vol. 31, No.3
(1992)

[24] A. Gerber, A. van der Merwe and K. Bayes. An Investigation into UML
Case Tool Support for the Zachman Framework. In: Proc. Of the
Enterprise Systems Conference, DOI: 10.1109/ES.2013.6690080 (2013)

229

STEM: A Simulation-Based Testbed for

Electromagnetic Big Data Management

Mengyuan Lyu1, 3, Peiquan Jin1, 2, Zhou Zhang1, 2, Shouhong Wan1, 2, Lihua Yue1, 3

1 School of Computer Science and Technology, University of Science and Technology of China
2 Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences

3 Science and Technology on Electronic Information Control Laboratory, Chengdu 610036, China

Hefei, China

lmys@mail.ustc.edu.cn, jpq@ustc.edu.cn, zzwolf@mail.ustc.edu.cn, {wansh, llyue}@ustc.edu.cn

Abstract—With the development of networked radars and

wireless communication technologies, electromagnetic data is

becoming a new type of big data. Compared with other kinds of

big data, such as Internet big data, financial big data, and

healthcare big data, electromagnetic big data has some special

properties. For example, they usually contain rich and varying

labels that describe the features of electromagnetic space.

However, existing big-data benchmark tools cannot support the

generation and test of electromagnetic big data. In this paper, we

aim at providing a simulation-based testbed for electromagnetic

big data. The testbed, named STEM, can simulate real-world

electromagnetic big data. It supports generating real-time

electromagnetic data streams with varying labels. In addition, it

is reusable, reconfigurable, and flexible for users to generate

workloads for different scenarios. After a brief introduction on

the architecture of STEM, we present the implemental details of

STEM. Then, we present a case study as well as performance

evaluation to demonstrate the usability and flexibility of STEM.

Keywords- Electromagnetic big data; Testbed; Simulation

I. INTRODUCTION

According to an IDC report, the global data will grow to
163 zettabytes by 2025, which is ten times to the 16.1
zettabytes of data generated in 2016 [1]. The increasing of data
volumes in different areas, such as web search [2], social
networks [3], moving objects databases [4-5], and
electromagnetic spaces, leads to the big data era.
Electromagnetic big data is a new type of big data, which is
advanced with the development of electromagnetic space
networks, networked radars, and wireless communication
technologies. Compared with other kinds of big data, such as
Internet big data, financial big data and healthcare big data,
electromagnetic big data has its own characteristics. First, it
contains rich label information, e.g., time and location labels,
which is very important for the analysis and use of the data.
Besides, unlike the common multi-sensor data whose file size
is dozens of kilobytes [6], electromagnetic big data is a kind of
single-sourced big data, meaning that each electromagnetic
device can produce high-speed data streams with a large
volume of data. In an electromagnetic space network, multiple
radar devices can simultaneously generate high-speed
electromagnetic data flows up to 100Gbps. To address these
challenges, a testbed for accurately evaluating the performance

of electromagnetic big data related approaches has been a
critical and important issue.

Existing benchmarks, such as YCSB [7], BigDataBench [8]
and BigBench [9], have their own data generators. However,
the generated benchmark data cannot exhibit the characteristics
of electromagnetic big data. As a result, it is difficult to
accurately measure the performance of electromagnetic big
data. Another problem in testing electromagnetic big data is
that we lack real environments. So far, it is much hard to
construct a real electromagnetic space network that contains
multiple satellites and radar devices. Moreover, a specific
electromagnetic space network is not able to support the
diversity of test requirements.

In this paper, aiming to build a reconfigurable and flexible
environment for electromagnetic big data researches, we
propose a simulation-based testbed called STEM (Simulation-
based Testbed for Electromagnetic big data Management).
STEM is designed to be reusable and flexible to allow users to
customize different electromagnetic environments. In addition,
it provides a friendly user interface. The main contributions of
the paper are summarized as follows:

(1) We present a simulation-based testbed named STEM for
electromagnetic big data. STEM can simulate real-world radar
echoes and integrate the characteristics of electromagnetic big
data into the simulation process.

(2) The proposed STEM provides a user-friendly interface
and flexible configuration options for data generation, which
help users to modify field data (such as labels) to satisfy new
requirements and customize the electromagnetic environment.

(3) We present a case study of STEM on MongoDB [10] to
demonstrate its reusability and configurability.

The remainder of the paper is structured as follows. Section
Ⅱ introduces related work. Section Ⅲ presents the architecture
of STEM. In Section Ⅳ, we show the key technologies of
STEM. Section Ⅴ presents a case study of STEM on
MongoDB. And finally we conclude the paper in Section Ⅵ.

II. RELATED WORK

Many existing big data benchmark tools have their own
data generators. Some of data generators are extensible, while
others are inextensible. For example, LinkBench [11] uses an
inextensible data generator which is designed to generate
synthetic data with similar characteristics to real social graph
data, while BigDataBench uses an extensible data generator

DOI reference number: 10.18293/SEKE2018-083

230

mailto:lmys@mail.ustc.edu.cn
mailto:jpq@ustc.edu.cn
mailto:zzwolf@mail.ustc.edu.cn

named BDGS [12], which contains a text generator, a graph
generator and a table generator. No matter using which kind of
data generator, they both have pros and cons.

Benchmarks with inextensible data generator usually can
produce meaningful results for specific application, such as
HiBench [13] (for Hadoop system), LinkBench and TPC-DS
[14] (for RDBMS). None of them can generate data with
similar characteristics to electromagnetic data. For example,
HiBench contains eight workloads, which can be classified into
four categories: Micro Benchmarks, Web Search, Machine
Learning and HDFS Benchmarks. LinkBench, as mentioned
before, can generate social graph data like Facebook network.
TPC-DS implements a multi-dimensional data generator—
MUDD, which is designed for structured data type. For these
application-specific limitations, some researchers turn to
extensible data generator.

Though extensible data generator can produce various kinds
of big data, it still has limitations. First, the data’s veracity is
questionable. For example, PGDF [15], a parallel data
generation framework applied in BigBench, uses distribution
functions to generate distributed big data. But its distribution
functions’ data source is provided by RNG (Random Number
Generator). Second, the lack of flexibility is also a common
issue. Besides PGDF, another data generator—BDGS, which is
implemented on BigDataBench, uses the data model derived
from real data sets. But electromagnetic big data contains a
wealth of label information and the labels can be changeable
for fitting different requirements. A data generator like BDGS,
would lead to more redundant work on deriving data models.
Another example is YCSB, a popular benchmark for NoSQL
system, also have two limitations mentioned above. Its
workloads consist of records, each with several fields which are
random strings of ASCII characters and it also need to modify
the data configuration every time, which is inconvenient.

An ideal way for electromagnetic big data tests is to run
tests in a real electromagnetic environment. However, it is
costly and hard. Instead, a simulation-based testbed is more
suitable for electromagnetic big data researches, due to its
flexibility and reconfigurability. Compared with previous
methods, our proposal can simulate real-world radar echoes. In
addition, it provides a user-friendly interface and flexible
configuration options for users to customize the
electromagnetic environment. To the best of our knowledge,
our proposal is the first testbed that supports the simulation of
electromagnetic big data.

III. ARCHITECTURE OF STEM

Fig. 1 shows the architecture of STEM. It mainly consists
of three modules: the EES (Electromagnetic Environment
Setting) module, the SDT (Simulation and Data Testing)
module, and the TEM (Tools for Easy Management) module.
The detailed architecture is described as follows.

The EES Module. This module is designed to customize
electromagnetic environments. It contains three components:
Target Setting, Label Setting, and Device Setting. Every
component is designed to be flexible and configurable. Users
can add, delete, or edit elements within each component. The
Target Setting component provides two operational modes,
namely automatic generation and manual setting. This makes
the system

Figure 1. Architecture of STEM

easier for users to operate. After setting up the three
components, the EES Module can generate a configuration of
electromagnetic environment for the SDT Module.

The SDT Module. This module includes two sub-modules:
the Echo Simulation module and the Data Testing module. The
Echo Simulation module plays the role of data generator. It can
generate electromagnetic data based on the configuration which
is set by the EES Module, and then send them to the Data
Testing module. The Data Testing module is designed to
evaluate the performance of a database in electromagnetic big
data. Currently, we’ve implemented it on MongoDB, which is
the most popular NoSQL database system according to the DB-
Engines Ranking [16]. Testing results and the data generated
by Echo Simulation module will be sent to the TEM Module for
visualization.

The TEM Module. This module provides some
management tools for easy use. For example, the Real-Time
Statistic in the TEM Module can display the results produced
by the SDT Module in line chart and numbers. The line chart
can clearly reflect the trend of the results, while the numbers
can accurately show the value. Meanwhile, the Real-Time
Statistics can convert the electromagnetic data into signal
waveform synchronously in order to express it more vividly. In
addition, we design some other management tools, such as
Config View, User Management and Timer. Config View can
help users check the configuration. User Management divides
users into administrators and regular user, and grants different
authorities. Timer can set the running time of whole system for
saving users’ time.

IV. IMPLEMENTATION OF STEM

In this section, we describe the implemental details of
STEM.

A. Implementation of the EES Module

The EES Module is a software layer that simulates the real
electromagnetic environments. We divide it into three parts

231

Figure 2. The class diagram of Devices Setting

according to the principle and characteristics of
electromagnetic data, which are Devices Setting, Targets
Setting, and Labels Setting. These components provide
functionalities with similar interfaces for users to customize the
environments. We are going to take the Device Setting as an
example to introduce the similar parts of these interfaces. Then,
we describe the differences between the Labels Setting and
Targets Setting.

Devices Setting. Fig. 2 shows the class diagram of Device
Setting. In our models, a radar device is represented as the
following structure: {DeviceID, Pulse Width, Band Width,
Period, Center Frequency}. The DeviceID is used to facilitate
access to specific device. Pulse Width, Band Width, Period and
Center Frequency are the parameters of a device, which
generally won’t change. In order to prevent these invariant
parameters from being transmitted over and over again, we put
device information into the database and use “DeviceID” to
replace these parameters during transmission. As for some
parameters that can be changed during the work, such as
pitching angle and azimuth angle, we treat them as labels and
put them in Label Setting module.

In order to make the module flexible and configurable, we
offer some interfaces for users to construct they own devices.
AddDevice() and EditDevice(SelectedID) provide a new
graphical interface for user input, The interfaces and the
descriptions are shown in Table 1.

Each interface provides guidance for easy use and can handle
users’ operation errors, like DeviceID is repeated or didn’t
select the devices to delete. The other two sub-modules offer
similar interfaces, like AddTarget(), DeleteLabel(List
<SelectedID>) and so on. The differences will be discussed in
their own sections.

Targets Setting. Fig. 3 gives a simple class diagram of
Target Setting. Considering that there may be a lot of targets
needed to be set in one experiment, so we offer two operations
mode: Manual and Automatic. The Manual mode is similar to
what we use in Devices Setting. It involves the following
interfaces like AddTarget(), DeleteTarget(List <SelectedID>)
and so on. If there is no requirement on simulating specific
targets, we can leave this to the Automatic mode, which can
automatically generate the targets.

TABLE I. DEVICE INTERFACES AND DESCRIPTIONS

Interface Description

AddDevice() Create a new radar device

DeleteDevice(List <SelectedID>)
Delete the radar devices selected

by users

EditDevice(SelectedID)
Edit a radar device selected by

users

AddDeviceToSim(List <SelectedID>)
Add the selected devices into the

simulation list

Figure 3. The class diagram of Targets Setting

For the sake of simplicity, each target is modeled as a point,
which means that we ignore its size and shape. Thus, the model
we use to describe a target can be expressed as {TargetID,
Distance, Scattering Coefficient, Velocity}. In our previous
design, we also need to set the appearance and disappearance
timing of the target. But it will bring much inconvenience. For
example, suppose that an identical target appears intermittently
within the radar field of view, we have to repeatedly set its
appearance and disappearance timing while other parameters
remain the same. Considering this, we remove these two
parameters from the target model and offer other two
parameters needed to be set only once for users: Idle Time
Upper and Existence Time Upper. The Idle Time Upper
defines the maximum time between the disappearance of the
last target and the occurrence of next target. And the Existence
Time Upper defines the maximum time that a target can be
exposed within the radar field of view. Therefore, the
appearance and disappearance timing of the target are
determined by system while users only need to define the
boundaries.

Labels Setting. The rich label information is one of the key
characteristics of electromagnetic data. The labels can be
divided into two categories: some valuable information for the
analysis of the electromagnetic data, such as the time and space
label, and the parameters that can be changed during the
working of a radar device, as mentioned in the Device Setting
of this section.

A label can be simply described as: {LabelID, Description,
Bytes, Count}. Similarly, we design some interfaces like
AddLabel(), DeleteLabel(), EditLabel() and AddLabelToSim()
for user-friendly extension. The difference is that we add a
little limitations due to the importance of the time and space
labels, for example, the time and space labels cannot be deleted
and they are added to the simulation list by default even if not
be selected.

Now we can give a general introduction to the final data
structure. The electromagnetic data model can be divided into
four parts: Labels, IdBytes, DeviceID and Amplitude. Fig. 4
gives an example of electromagnetic data.

As mentioned in the Devices Setting of this section, the
elements we use to represent a radar device generally remain

232

Figure 4. An example of electromagnetic data

stable. Thus, in order to prevent these invariant parameters
from being transmitted, we use the DeviceID like “001” to
replace these parameters for saving space and maintain a
Devices Configuration in the database for accelerating the
search on devices. We also use IdBytes to point out the bytes it
takes for reading it later, which equals 3 in Fig. 2. Amplitude is
calculated by the SDT Module, we will introduce it in the next
section.

The label part is represented by a byte array. After setting
up the Labels Setting module, the format of labels will be
applied to every piece of data generated by devices. Through
this way, we do not need to record the bytes for every label, i.e.,
the Labels Configuration is space efficient, which is similar to
the Devices Configuration. In the example shown in Fig. 2, we
can see from the Labels Configuration that the first 200 bytes
are the label parts, containing five labels which occupy 30 * 2,
70, 50 and 20 bytes, respectively. The next four bytes are an
integer with the value of 3, which means that the next three
bytes are the DeviceID. The rest is the Amplitude.

B. Implementation of the SDT Module

The SDT Module is the core module of STEM. The most
important component in the SDT module is the echo model.
Next, we describe the echo model as well as the echo
simulation process.

Echo Model. In the design of radar echo model, we have
borrowed some ideas and methods in the [17]. We select the
LFM (linear frequency modulation) pulse as the simulation
object, which is the most widely used pulse compression signal
and not sensitive to the Doppler frequency shift. For the LFM
pulse, the radar emit signal can be expressed as in (1), where
rect() is a rectangle function which defined in (2), T represents
pulse width, fc is center frequency, K is frequency modulation
rate and B is band width.

 2/ exp 2 / 2 , = /E cS t rect t T j f t Kt K B T

1 / 1/ 2

0 / 1/ 2

t Tt
rect

T t T

Suppose that there is a point target approaching a radar
device whose distance to the target is R0, at a radial velocity v.

Figure 5. An example of Echo Simulation Process

The pulse repetition frequency of radar is set as Tr. When the
nth pulse is emitted, the distance between the target and the
radar can be expressed in (3).

 0 , /n

r rR t R vnT n t T

Then, we define the echo by (4). Here, the symbol A
represents the scattering coefficient. τ(t) is time delay function
and n(t) is a random function for simulating the environment
noise.

 , 2 /n

R ES t AS t t n t t R t c v

Echo Simulation. Next, we give the process of the echo
simulation process. Fig. 5 gives an example with the Timer in
the TEM Module and with the choice of Automatic mode in
Target Setting of the EES Module. If no Timer is used, the end
of system is controlled by the Pause Button. If choosing
Manual mode in Target Setting, we do not need to get new
target during the process.

The parameters we need to input into the system is Fs
(sampling frequency) and T (time limit set by the Timer).
GetShowTime() and GetLeaveTime() are designed to calculate
target’s appear and disappear time based on the Idle Time
Upper and the Existence Time Upper, which are set in the
Targets Setting. Flag is used to determine if there is a target.

The process in Fig. 5 can be described as follows:
(1) LeaveTime and t (represents time) is set to zero, Flag

is set to false and ShowTime is calculate by
GetShowTime().

(2) If Flag = false, which means there is no target, go to
(3), otherwise it means that target appears, go to (4).

(3) If t < ShowTime (the next target has not appeared yet),
the echo that radar has received is just the noise, so
Amplitude is determined by n(t). Otherwise it means t
is equivalent to or over ShowTime, which also means
that there would be a new target in the radar range
immediately. Thus, we need to design this new target

233

by using GetNewTarget(), calculate its LeaveTime and
set Flag to true. Then, we go to (5).

(4) If t < LeaveTime, which means the target is still in the
radar range, the echo is calculate by SR(t). Otherwise it
means that this target will disappear. In such a
situation, we need to calculate the next target’s appear
time and set Flag to false. Then, we go to (5).

(5) t = t + 1/Fs.
(6) If t < T, return to (2), otherwise the process is ended.

V. EVALUATION

In this section, we describe a case study of using STEM for
evaluating the storage performance on MongoDB in
electromagnetic big data. The results show that STEM is easy
to reconfigure to simulate different electromagnetic
environments and evaluate the performance in electromagnetic
big data.

A. Experiment Setup

The experiment is based on the network architecture as
shown in Fig. 6. It consists of five server nodes and several
client nodes. The server nodes constitute a distributed storage
cluster for simulating the data receiver and each server node is
equipped with Intel 2.1GHz dual CPU, 128GB DDR4 memory,
twelve 4T 7200RPM SAS drives and two 240GB SSDs. The
client nodes are common computers, mainly used for data
acquisition. The server nodes and the client nodes are
connected by ten gigabit LAN.

Our STEM runs on the clients of Data Acquisition. First,
the client nodes run STEM to set the environment. Then, all the
client nodes run the SDT Module at the same time to generate
data and transmit the data to the server nodes. The states of the
servers are monitored by STEM.

B. Use Cases of STEM

We present two cases of using STEM. In the first case, the
electromagnetic environment set by each client node is ten
radars, automatic targets and 300 labels (each is 50 KB, the file
size limit in MongoDB is 16 MB), we test the throughout rate
of MongoDB under different number of processes.

The second one is designed to test the throughput of
MongoDB under different numbers of labels. Its environment
is set to ten radars, automatic targets and ten processes. For the
sake of simplicity, all the labels are set to having the same size
(50 KB). Both experiments are run for five minutes.

Figure 6. Experiment Network Deploment Architecture

Figure 7. The setting interface of STEM

Figure 8. The running screenshot of STEM

The experimental process consists of three steps:
(1) Every client node finish the experiment environment

setting, click the Next button to the running page;
(2) Every client node sets the Timer to five minutes, then

click the Run button to run the system;

(3) Just wait for five minutes and click the Back button to
the setting page, reset the environment setting, and
back to (2).

Fig. 7 shows the setting page of STEM, and Fig. 8 shows
the running screenshot of STEM.

C. Results

Fig. 9 shows the highest throughput (top throughput) as
well as the average throughput under different processes. We
can see that when the number of processes reaches 13, the top
throughput reaches 1126 MB/s, which is close to the upper-
bound of the network speed. Basically, the top throughput
increases linearly with the increase of the process and the
average throughput reaches the bottleneck when the number of
processes reaches 11, which is nearly 788 MB/s.

Fig. 10 shows the throughput under different numbers of
labels when the number of processes is 10. The average
throughput increases with the increasing of the numbers of
labels. On the other hand, the top throughput does not show an
apparent trend. Specially, the top throughput reaches 1105
MB/s when the number is 20, which is close to the result of 11
processes and 300 labels. A possible reason is that the small
numbers of labels make the number of files that can be
generated and inserted per second increase, as shown in Fig. 11.

234

Figure 9. Throughout under different processes

Figure 10. Thoughout under different size of labels

Figure 11. Insert Count under different size of labels

VI. CONCLUSIONS AND FUTRUE WORK

In this paper, we propose a simulation-based testbed for
electromagnetic big data researches, which aims to provide
effective support for evaluating the performance of
electromagnetic big data management, such as throughput test
and real-time processing measurement. The proposed testbed is
designed to be reusable, flexible, and reconfigurable. Currently,
STEM is able to evaluate the storage performance of
electromagnetic big data on MongoDB, such as the test of write
throughput, the average throughout, and the insert counts per
second.

Our future work will concentrate on supporting multiple
types of databases, offering more kinds of performance tests,

and improving the efficiency of data generation. We plan to
support HBase, Cassandra and other popular database systems
in future. In addition, we will adopt other performance tests
like query processing to make the testbed multifunctional and
the parallel computing on every radar to make data generation
more efficient.

ACNOWLEDGEMENT

This work is supported by the National Science Foundation
of China (61672479 and 61472376), and a fund from the
Science and Technology on Electronic Information Control
Laboratory. Peiquan Jin is the corresponding author.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, “Data Age 2025: The evolution of
data to Life-Critical,” https://www.seagate.com/files/www-content/our-
story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf, Accessed
in April 2018.

[2] J. Zhao, P. Jin, Q. Zhang, and R. Wen. “Exploiting location information
for Web search”. Computers in Human Behavior, 2014, 30: 378-388.

[3] L. Zheng, P. Jin, J. Zhao, and L. Yue. “A fine-grained approach for
extracting events on microblogs”, International Conference on Database
and Expert Systems Applications (DEXA), 2014, pp. 275-283

[4] P. Jin, L. Zhang, J. Zhao, L. Zhao, and L. Yue, “Semantics and modeling
of indoor moving objects”, International Journal of Multimedia and
Ubiquitous Engineering, 2012, 7 (2): 153-158

[5] C. Huang, P. Jin, H. Wang, N. Wang, S. Wan, and L. Yue. “IndoorSTG:
A flexible tool to generate trajectory data for indoor moving objects.,
2013 IEEE 14th International Conference on Mobile Data Management
(MDM), 2013, pp. 341-343

[6] X. Hao, P. Jin, and L. Hua, “Efficient Storage of Multi-Sensor Object-
Tracking Data,” IEEE Transactions on Parallel and Distributed Systems,
2015, 27(10): 2881-2894

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” ACM Symposium
on Cloud Computing (SoCC), 2010, pp. 143-154.

[8] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, et al, “Bigdatabench: a big
data benchmark suite from internet services,” IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2014,
pp. 488-499.

[9] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, et al, “BigBench: towards
an industry standard benchmark for big data analytics,” ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2013,
pp.1197-1208.

[10] MongoDB. https://www.mongodb.com/.

[11] T. G. Armstrong, V. Ponnekanti, D. Borthakur, M. Callaghan,
“LinkBench: a database benchmark based on the Facebook social graph,”
ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2013, pp.1185-1196.

[12] Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, et al, “BDGS: a scalable big
data generator suite in big data benchmarking,” Workshop on Big Data
Benchmarks, 2013, pp. 138-154.

[13] S. Huang, J. Huang, J. Dai, T. Xie and B. Huang, “The HiBench
benchmark suite: characterization of the MapReduce-Based data
analysis,” IEEE International Conference on Data Engineering (ICDE)
Workshops, 2010, pp. 41-51.

[14] R. O. Nambiar and M. Poess, “The making of TPC-DS,” International
Conference on Very Large Databases (VLDB), 2006, pp. 1049-1058.

[15] T. Rabl, M.Frank, H. M. Sergieh and H. Kosch, “A data generator for
cloud-scale benchmarking,” Technology Conference on Performance
Evaluation and Benchmarking, 2010, pp. 41-56.

[16] DB-Engines Ranking. https://db-engines.com/en/ranking.

[17] M. A. Richards, “Fundamentals of Radar Signal Processing, Second
Edition”, 2017.

235

https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.mongodb.com/
https://db-engines.com/en/ranking

Towards Reference Architecture for a Multi-layer
Controlled Self-adaptive Microservice System

Peini Liu, Xinjun Mao, Shuai Zhang, Fu Hou
College of Computer

National University of Defense Technology
Hunan, China 410073

Email: peini.liu@foxmail.com, xjmao@nudt.edu.cn, zhangshuai16a@nudt.edu.cn, houfu@nudt.edu.cn

Abstract—With the features of high distribution in deployment

and independence in running, the microservice systems that

operate in heterogeneous infrastructures and open Internet

environment are expected to be self-adaptive to adapt to various

changes of both operating contexts and application requirements.

This requires the adaptability of the microservice systems to be

diverse and flexible, and independent of implementation

technologies and platforms. This paper presents a reference

architecture for self-adaptive microservice systems with the

abilities of multi-layer controlled self-adaptations, including

infrastructure-controlled layer and application-controlled layer.

Such reference architecture presents a blueprint to cope with

diverse changes from different levels in microservice systems and

supports the interactions between layers. We have implemented a
practical platform called SAMSP based on the reference

architecture and Kubernetes and evaluated our approach using a

sample. The experimental results are promising, and demonstrate

the feasibility and effectiveness of our proposed reference

architecture.

Keywords-microservice system; reference architecture; self-

adaptive microservice system; multi-layer control loops

I. INTRODUCTION
Microservice, a popular architectural style, attracting more

and more attention in both academia and industry areas, is
widely adopted now by many large companies such as Amazon
[1], Netflix [2], LinkedIn [3]. This architecture style is
considered to the best efforts for cloud computing and service-
oriented system engineering [4].

In the early years of service-oriented architecture, the
monolithic architectural style has been an approach to build web
applications. These applications were built as a single unit, and
all the logic for handling a request runs in a single process [5].
As system under this architecture is lack of independence and
flexibility, services have to get scaled and evolved together,
which result in a huge waste of server resources. Hence, the
monolithic architectural style is not suitable enough to construct
ultra-large-scale information system anymore. To overcome the
challenges, microservice has become a new architectural style to
build such complex system [6]. It decomposes a large complex
software application into a suite of small services, with each
service running in its own process and communicating by
lightweight mechanisms [7]. The microservice architecture style
brings many benefits for service-oriented systems, such as

scalability [8], functional separation [9], loose coupling [7] and
fast delivery [10].

However, microservice system still faces serval challenges.
Firstly when turning into microservice, since these highly
distributed microservices often run on containers deployed on
cloud and are organized to realize an application, we have to take
a software architecture with adaptability. Secondly, as the
microservice system is evolving because of changes of context
and requirements, system must adapt to handle the challenges.
In addition, the agile and DevOps methodology expect the
system runs without downtime and integrates continuously.
Therefore, system is no longer running in a known context and
with static requirements, meaning that the system needs to
reconfigure and restructure themselves to meet the dynamic
changing world [11].

Obviously, it is infeasible for operators to take all the
changes into consideration and manually control such system.
However, self-adaptive system brings some inspiring
approaches to adapt system at runtime, which help to preserve
and optimize the system’s operation in dynamic changes [12, 13].
For example, Rainbow [14], an architecture-based approach,
allows the self-adaptive system to be aware of the software
structure and drives the self-adaptation by the external control.
Another reflection approach can use the reflected ability of
software to examine and possibly modify its structure (structural
reflection) or behavior (behavioral reflection) at runtime [15].
These two methods inspire us to build MAPE control loops as
an autonomic manager to monitor the states of microservice
system, to analyze the changing and to plan and execute the
actions at runtime [16].

Our work presents a reference architecture for a multi-layer
controlled self-adaptive microservice system. The self-
adaptation idea comes from self-adaptive systems which can
manage system itself according to the high-level goals [16]. The
reference architecture makes microservice system to be aware of
its dynamic contexts continuously and the changing
requirements in order to adjust its behavior and structure at
runtime. The innovation of this architecture is using autonomic
computing MAPE control loop to form multi-layer control loops.
On the one hand, self-adaptive microservice system might run
on third-party provided infrastructure servers, and the system
workload at the infrastructure layer has to be adapted through
infrastructure-controlled loop. On the other hand, self-adaptive

DOI reference number: 10.18293/SEKE2018-086

236

Operating system

Context

Application Context

-contextA : Int

System Context

-contextB : Int

External Context

-contextC : Int Hardware

Non-functional
requirement

-QoSType : Int
-QoSConstraint : Int

Functional
requirement

Software resource

-sResourceType:Int

Microservice instanceMicroservice Dependency

Changes

changes : Int

Requirements

-requirementType:Int -contextType : Int

Network Topology

-topology : Graph

Figure 1. Diversity of changes in self-adaptive microservice system.

microservice system has multiple microservices organized to
realize an application, and the applications’ requirements and
performance at the application layer have to be assured through
application-controlled loop.

The remainder of this paper is organized as follows: Section
2 analyses the diverse changes and multiple layers in self-
adaptive microservice system. Section 3 proposes a reference
architecture for a multi-layer controlled self-adaptive
microservice system; Section 4 presents a practical
implementation of the reference architecture; a sample and a
promising experiment based on reference architecture are given
in Section 5; Section 6 compares with related work and section
7 concludes and discusses the future work.

II. DIVERSE CHANGES AND MULTIPLE LAYERS IN SELF-
ADAPTIVE MICROSERVICE SYSTEMS

Self-adaptive microservice system has challenges to facing
the diverse changes. Inspired by Cherif Sihem et al.[17] who
bring a context model of SOA that divided into several parts—
Infrastructure, Platform, and Application. Figure 1 represents the
diversity of changes in self-adaptive microservice system.

Changes in self-adaptive microservice system contain the
context and the application requirements, each of which has its
own rules and presents a part of self-adaptation. The former
changes have three basic elements that provide different levels
of context from different perspectives. For example, (1) external
context is a part of the external world and includes hardware
resource, operating system and other related system. System can
sense these context but cannot directly control. (2) system
context is internal system environment with software system
resources like microservice instance. (3) application context
includes system network topology, and they are concerned with
specific application. The latter changes are from users and
include application functional and non-functional requirements.
For instance, (1) functional requirements are about the
organization of applications. (2) non-functional requirements are
the QoS related to the application performance.

Each part of changes has its own adaptation rules that can be
conducted. However, from the result of adaptation, the system
needs to achieve adaptation by reconfiguring microservice
instances or restructuring the microservice topology. So we can

provide adaptation facilities isolated in the infrastructure and
application two layers. Thus, a key challenge is how to structure
and coordinate the two layers to handle the diverse changes.

To overcome the challenge, the structure with two control
layers upon the microservice system is shown, and a conceptual
model of multi-layer controlled self-adaptive microservice
system is proposed in order to clarify the layers and their
interactions. In Figure 2, the self-adaptive microservice system
is composed of multi-layered control layers and the microservice
system. Microservice system is a target system that achieves the
function of business. Managing system has multiple controlled
layers, and each of the layer manages different types of
adaptation: (1) the infrastructure-controlled layer (ICL) senses
the system context and external context to manage the containers
with the platform predefined rules, system adaptation often
appears as reconfiguration; (2) the application-controlled layer
(ACL) senses the application related changes like requirements
and application context, system adaptation can be restructured
or with the lower control loops help.

environm
ent

Infrastructure-controlled Layer

Application-controlled Layer

(a)

(e) (f)

(d)

(b)

Microservice System

(c)
requirments

external
context

Figure 2. The conceptual model of multi-layer controlled self-adaptive

microservice system.

III. REFERENCE ARCHITECTURE FOR SELF-ADAPTIVE
MICROSERVICE SYSTEMS

Nowadays, microservice system needs a reference to support
continuous changes in context and requirements. Facing the
challenge in Section Ⅱ, in this section we proposed a reference
architecture for self-adaptive microservice system as a guideline

237

Microservice
System

Microservice
Registry

legend

Dependency

Control flow

Data flow

File flow

Self-adaption Managing System

P EM A

Adaption
Strategy
Registry

ACL

EM

ICL

A P

(d)

(b)

(f)(e)

(a)

(c)

Instantiate

M Monitor

A

P

E

Analyze

Plan

Execute

Registry

Microservice

Microservice
Instance

M

M E

E

Image
Registry

MSI

MS

En
vi

ro
nm

en
t

External context

requirments

Microservice image

Container

MSa MSb

MSIa1 MSIb1

MSa'

MSIa2

Figure 3. The reference architecture for multi-layer controlled self-adaptive microservice system.

for engineers on how to design, develop and adapt such systems
in a specific domain. Our reference architecture is inspired by
the control theory and find an effective instantiation –‘MAPE
model’ to build control loops. In fact, our contribution is to
design the architecture by considering these aspects explicitly:
(1) decoupling the different layer control loops required to
satisfy each part of changes; (2) achieving self-adaptation goals
through the collaboration between two layers.

A detailed view of the reference architecture for multi-layer
controlled self-adaptive microservice system is given in Figure
3. The reference architecture defines the functional elements, as
well as the control, data or file interactions among the internal
elements of each layer and the multiple layers. In addition, the
reference architecture characterizes the collaboration among the
multi-layer to assure that it can be applied partially in case
someone does not need some parts of adaptation. These details
are explained in the following sections.

A. Microservice system

As a target system, the microservice system consists of a set
of microservices, which are organized in applications through
lightweight protocols. There are two concepts in a microservice
system: one is a microservice instance (MSI), which refers to a
real entity that handles requests to accomplish the appropriate
functions. The other is a microservice (MS), which can be
understood as an abstraction of a set of microservice instances
which exactly have the same capabilities.

At run time, the microservices are discovered by each other
through the microservice registry. In particular, the microservice
itself does not process the request but distribute the request to its
corresponding microservice instances to perform the functions.
The microservices instance is the smallest running unit that runs
in a container and is deployed on cloud, giving us an inspiration
to operate the container to manage microservices instances.
Meanwhile, microservices also shield the operation details

through the abstract microservices interface and well maintain
the topology of the application. Once the topology changes due
to the change of the dynamic context or the change of
applications’ requirements, the adaptive system can timely
observe the microservices and dependencies between them to
restructure the application. Therefore, the microservice system
needs to sense the running status information of the microservice
instance and the topology of the organized microservice
application to determine whether the target system is healthy.

B. Infrastructure-controlled layer

The infrastructure-controlled layer (cf. ICL in Figure 3)
solves the adaptive problem at the infrastructure level of the
adaptive microservice system. It consists of a MAPE control
loop: the Monitor senses the external context from the
environment and the system context from the microservices
instances (cf. Interaction (a) in Figure 3) and collects monitoring
data. Analyze analyzes the system-related information, and
triggers the system-level policy in plan by the event whether the
context changes. Finally, Execute in the control loop adjusts the
system configuration according to the policy, so that the system
adaptation can be implemented by scheduling the place that
containers deployed, scaling the number of containers and
limiting or increasing the resources of the container (cf.
Interaction (b) in Figure 3).

C. Application-controlled layer

The application-controlled layer (cf. ACL in Figure 3) as the
upper layer of self-adaptive microservices system, also consists
of a MAPE control loop: Monitor senses the context from the
application organized by the microservices— the application
topology (cf. Interaction (e) in Figure 3) or the requirement
changes by users through adaptation strategy, and Analyze
analyzes the application functional requirements information
and triggers the strategy written by the application developer in
Plan when the topology changes, e.g., changing the dependency

238

Drools Topology
EngineELK

Adaption
Strategy
Registry

ACL

Harbor
requirments

Microservice image

Requirement
Analyze

Microservice
System

Etcd

legend

Dependency

Self-adaption
Managing System

Instantiate

Component

Registry

Microservice

Microservice
Instance

En
vi

ro
nm

en
t

Monitor Analyze Plan Execute

Kubernetes
API serverHeapster

ICL

AutoSystemExternal context

Container

cAd
visor

Logs
tash

Kub
elet

MSa MSb

Docker

MSIa1

Docker

MSIa2 MSIb1

MSa'

Docker Link

Figure 4. SAMSP - A practical implementation of the reference architecture.

between two microservices. Finally, Execute in the loop
achieves the system adaptation according to the tactics that
adjust the microservices organized in application and their
related dependency (cf. Interaction (f) in Figure 3).

Moreover, ACL governs a part of changes with the
collaboration of the ICL. We define the application-related
runtime information at the ICL layer as variables to be controlled
in ACL. In the circumstances, ICL Monitor uploads the related
data to ACL Analyze (cf. Interaction (c) in Figure 3) to judge
whether it satisfies the application non-functional requirement
and decide to obtain the results in Plan. At last, ACL Plan sends
the approach to ICL Execute (cf. Interaction (d) in Figure 3) to
mentor the runtime adaptation.

IV. A PRACTICAL IMPLEMENTATION OF THE REFERENCE
ARCHITECTURE

This section describes a practical implementation of the
reference architecture that is built based on Kubernetes1. Our
implementation provides an extended platform called SAMSP
with a toolkit to realize the multi-layer self-adaptation. The
whole implementation architecture of the reference architecture
is depicted in Figure 4.

In the design stage, application logic and adaptive logic are
separated. For one, we develop microservices with independent
function and use jersey.jar to implement the Restful interaction
protocol. After the development, we structure their environment
through Docker2 images and put them into Image registry
Harbor3. For the other, some self-adaptation goals are considered
by using self-adaptation strategy language to describe and
registered in our adaptation strategy registry.

When it comes to runtime stage, in microservice system,
microservice instantiate several microservice instances, running
in containers and deployed on distributed cloud servers. We use
a container orchestration Kubernetes to help us deploy our
microservice instances containers, also, some plugins like Etcd4
which is used for microservice discovery. As an important role
in monitoring system status, cAdvisor2 collects the performance
of the microservice instances, and the logstach obtains a calling
chain in local.

In ICL, in the monitor stage, we use Heapster5 to collect the
status of clusters and microservices instances’ performance like
CPU usage, memory usage, etc. in local cAdvisor2. In analyze
and plan stages, the Autosystem component that expanded from
HPA (Horizontal pod autoscaler) in Kubernetes to analyze the
status of the system and choose optimal values for the
configurable parameters. In the execute stage, the Kubernetes
API server hands out the new configuration parameters to the
cluster kubelet to adapt the changing context.

In ACL, firstly, ACL needs to load the adaptation strategies
from the adaptation strategy registry. In the control loop,
internally, ELK6 (ElasticSearch, Logstash, Kibana) are used to
collect the organization of the application from local logstash.
After the requirement check from requirement analyze, Drools7
as our application rules engine will fire the self-adaptation
strategy we have defined and use topology engine to change the
dependency between the microservices or build a new structure.
As for collaborating with ICL, the requirement analyze asks the
application-related property from ICL and the Kubernetes API
server obtains an application required results from Drools to
operate the containers.

V. CASE STUDY AND EXPERIMENTS
To illustrate the feasibility of our proposed reference

architecture and the effectiveness of its self-adaptation, in this
section, we use a book information system (BIS) as a running

1 https://kubernetes.io/
2 https://www.docker.com/
3 http://vmware.github.io/harbor/
4 https://coreos.com/etcd/
5 https://github.com/kubernetes/heapster/
6 https://www.elastic.co/products
7 https://www.drools.org/

239

example [18]. This application provides the book information
support to help users to know the book through the internet.
Basically, the BIS application shows the information of books
by composing a book review microservice with a book content
microservice. Meanwhile, the book contents can be provided by
some different book content information providers, such as
Wikipedia, Baidupedia and several school library systems.

A. Sample development based on BIS

Here, the generic adaptation scenarios for microservice
system are divided in two aspects, the infrastructure level
adaptation and the application level adaptation. (see Table 1)

TABLE I. GENERIC ADAPTATION SCENARIOS OF MICROSERVICE
SYSTEM

Layer Type of changes Scenarios

ICL
External context S1: Microservice instance unavaliable

System context S2: Microservice instance overload

ACL

Application context S3: Microservice unreachable

Functional

Requirements
S4: Application function enhancement

Non-functional

Requirements

S5: Application-related QoS

constraints violation

A real BIS application has been set up based on our reference
architecture. This BIS adopts microservice, and the ICL/ACL
can be implemented exactly as Section IV. The ICL layer is used
to enhance the reliability and the performance of the system by
reconfiguring the microservice instances. It takes effect on S1
and S2 in Table 1. In S1, if one of these book review
microservice instances is unavailable, the rest of the book review
microservice instances need to accept the requests from the
unavailable microservice instance, and to restart this failed
microservice instance. (2) S2: if one of them is overloaded,
reconfiguring the number of the microservice instances or
scheduling it to an available server will achieve better system
performance.

However, if all instances failed, the microservice will be
unreachable. So the ACL is responsible to handle this through
restructuring the organization of the application. For instance, in
S3, if the book content microservice is unreachable, the ACL
will be notified the situation. In response, this layer will register
the alternative service (e.g. Wikipedia or Baidupedia) into the
system, adjust the dependency between these related
microservices and relink that service to the latest available
microservices. For requirement changes, in S4, if the application
needs a new function, e.g., book rating, ACL will handle the
functional requirements by pushing a new microservice into
image registry and a new configuration into the ICL to make use
of the microservice that is newly added. Finally, as for the
collaboration between the ACL and ICL, the scenario is that, if
the user requires the average response time of the service to be
no more than 1.5s (i.e. S5). To satisfy this, ACL will sense the
average response time information from ICL and trade-off the
planning when the condition has been violated, at last execute
the plan in ICL.

B. Experiments Analysis

To evaluate the self-adaptation effect and performance in the
self-adaptive microservice system compared to the original
microservice system without self-adaptation, we conduct an
experiment on a distributed testbed Locust8. In this experiment,
some of the adaptation scenarios from Table 1 have been
selected (e.g. S1: Microservice instance failure, S2:
Microservice instance overload, S5: Application-related QoS
constraints violation). We observe the microservice’s average
response time (ART) in 30min to evaluate the performance when
microservice faces diverse changes.

Figure 5 shows the results of system performance with and
without adaptation during the whole running time. The solid line
shows that, without adaptation, once the average response time
rises when facing the changes, it never falls again. On the other
hand, the dashed line shows that if SAMSP works in the
adaptation, average response time rises but soon return to
optimal level. Table 2 shows the details of the changes in the
periods, and also compared the results of our case. The results
indicate that self-adaptation is effective and significantly
improves system performance in this experiment.

Figure 5. System performance with and without adaptation.

TABLE II. SCENARIOS PERIOD AND RESULTS OF THE CASE STUDY

Time (s) Scenarios
ART without

adaptation(ms)

ART with

adaptation(ms)

0-300 System stable

running
51.11 47.15

301-900
S2: Book information

microservice

overload

644.81 408.32

901-1200
S1: Book information
microservice instance

failure

895.51 231.26

1201-
1800

S5: Book information
microservice QoS

constraints violation

5559.90 1454.25

Total time 2148.94 646.67

VI. RELATED WORK
We find some work related to self-adaptive microservice

system, and also we take a look at some models for designing a
self-adaptive system and the microservice architecture
nowadays. Some work is briefly described in this section.

8 https://www.locust.io/

240

An architecture for self-managing microservices is presented
at [19]. It proposed a novel architecture that enables scalable and
resilient self-management of microservices application on cloud.
The main approach is using the algorithm to select a leader to
assign management functionality to nodes and allowing atomic
service to become self-managing. However, the distributed
configuration management is much easier to conflict compared
to centralized architecture and cannot implement expensive
algorithms to elect leaders. A reference architecture from
Krasimir based on SOA and autonomic computing [20] provides
a way to transform the microservice instances by adding an
autonomic manager into a part of the service and build an
adaptation registry. However, in this approach, microservice
instances need to be transformed into an intelligent instance by
weaving code, which is quite difficult and expensive to
implement. In [21], Namiot provides an overview of
microservices architecture and implementation pattern.
However, it treats microservices as components and analyses its
communications in a design view. An autonomic computing
system supports a continuous process, J. Kephart in [22] discuss
a view of autonomic computing that has four elements: Monitor,
Analyze, Plan and Execute (MAPE). This model reflects a
general method for self-adaptive system.

Our research is different from previous work among the
following: (1) We analysis the diversity of changes and divide
adaptation into different layers; (2) We present a reference
architecture for self-adaptive microservice system with the
multi-layer control loops; (3) Our research ensures the coherence
between the reference architecture and implementation and
deploys a case in real system.

VII. CONCLUSION AND FUTURE WORK
Microservice system is distributed and deployed on the cloud,

which often uses container technology. It needs the capability of
self-adaptation to face the diverse changes and challenges. Our
contribution is discussing this question from an architecture
perspective, and presenting a reference architecture for a multi-
layer controlled self-adaptive microservice system, which
constitutes a guide to design self-adaptive microservice systems.

Our contributions are threefold: (1) designing a novel
reference architecture for multi-layer controlled self-adaptive
microservice system, which decouples different layer control
loops required to satisfy different parts of changes, and achieves
self-adaptation goals through reconfiguring or restructuring the
microservice system at runtime; (2) presenting an
implementation architecture of microservice systems based on
our reference architecture and K8S, and providing an extended
platform SAMSP with a toolkit; (3) validating our proposed
reference architecture in term of sample development and
experiments, and showing the feasibility and effectiveness of
architecture and platform for self-adaptive microservice
systems.

For further research, we would like to improve our reference
architecture in the following aspects: (1) enhance the self-
adaptation managing system to provide more common self-
adaptive abilities; (2) design a context model and relation model
for microservice systems as self-adaptation knowledge to
improve the control loop; (3) integrate accurate and efficient
algorithms to choose adaptation strategies optimally.

ACKNOWLEDGEMENT
This research is supported by research grants from Natural

Science Foundation of China under Grant No. 61532004 and
61379051.

REFERENCES
[1] Staci kramer. gigaom - the biggest thing amazon got right: The platform.

https://gigaom.com/2011/10/12/419-thebiggest-thing-amazon-got-right-
the-platform/, 2011.

[2] Tony mauro. nginx - adopting microservices at netflix: Lessons for
architectural design. http://nginx.com/blog/microservices-at-netflix-
architecturalbestpractices/, 2015.

[3] Steven ihde. infoq - from a monolith to microservices + rest: the evolution
of linkedin’s service architecture.
http://www.infoq.com/presentations/linkedin-microservices-urn, 2015

[4] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Architecture.
IEEE Computer Society Press, 2016.

[5] M Fowler, j lewis. monolith first.
http://martinfowler.com/bliki/MonolithFirst.html, 2015

[6] Mario Villamizar, Oscar Garcs, Harold Castro, Mauricio Verano, Lorena
Salamanca, Rubby Casallas, and Santiago Gil. Evaluating the monolithic
and the microservice architecture pattern to deploy web applications in
the cloud. In Computing Colombian Conference, 2015.

[7] M fowler, j lewis. microservice a definition of this new architectural term.
https://martinfowler.com/articles/microservices.html, 2015.

[8] Thomas F. Dllmann and Andr Van Hoorn. Model-driven generation of
microservice architectures for benchmarking performance and resilience
engineering approaches. In The Acm/spec, pages 171–172, 2017.

[9] Sara Hassan, Nour Ali, and Rami Bahsoon. Microservice ambients: An
architectural meta-modelling approach for microservice granularity, 04
2017.

[10] Tasneem Salah, M. Jamal Zemerly, Yeob Yeun Chan, Mahmoud
AlQutayri, and Yousof Al-Hammadi. The evolution of distributed
systems towards microservices architecture. In Internet Technology and
Secured Transactions, pages 318–325, 2017.

[11] Schmerl B, Kazman R, Ali N, et al. Managing Trade-Offs in Adaptable
Software Architectures. 2017.

[12] Danny Weyns. Software engineering of self-adaptive systems: an
organised tour and future challenges. 2017.

[13] Krupitzer C, Roth F M, Vansyckel S, et al. A survey on engineering
approaches for self-adaptive systems. Pervasive & Mobile Computing,
17(PB):184-206, 2015.

[14] Cheng Huang, David Garlan, and Bradley Schmerl. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46–54, 2004.

[15] J. Malenfant, M. Jacques, and F. N Demers. A tutorial on behavioral
reflection and its implementation. 1996.

[16] IBM corp. an architectural blueprint for autonomic computing, tech. rep.
http://www03.ibm.com/autonomic/pdfs/AC, 2005

[17] Cherif S, Djemaa R B, Amous I. ReMoSSA: Reference Model for
Specification of Self-adaptive Service-Oriented-Architecture. ADBIS.
p121-128, 2014.

[18] Danny Weyns and Radu Calinescu. Tele assistance: A self-adaptive
service-based system exemplar. 05 2015.

[19] Giovanni Toffetti, Sandro Brunner, Florian Dudouet, and Andrew
Edmonds. Anarchitecture for self-managing microservices.
InInternational Workshop on Automated Incident Management in Cloud,
pages 19–24, 2015.

[20] Krasimir Baylov and Aleksandar Dimov. Reference architecture for self-
adaptive microservice systems. pages 297–303, 2017.

[21] Dmitry Namiot and Manfred sneps sneppe. On micro-services
architecture. 2:24–27, 09 2014.

[22] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, January 2003

241

A Heterogeneous Architecture for Integrating
Multi-Agent Systems in AmI Systems
Vinicius Souza de Jesus and

Fabian Cesar Pereira Brando Manoel
CEFET/RJ

e-mail: souza.vdj,fabiancpbm@gmail.com

Carlos Eduardo Pantoja and José Viterbo
Universidade Federal Fluminense

e-mail: pantoja@cefet-rj.br,viterbo@ic.uff.br

Abstract—Several challenges arise when applying Multi-Agent
System (MAS) in Ambient Intelligence scenarios such as the
heterogeneity of the hardware and the domain where it is
applied. There are several applications that use Agent-Oriented
approaches but they provide solutions that tie the hardware to the
software, and they do not provide generic architectures. So, in this
paper, we propose a heterogeneous architecture for applying dif-
ferent microcontrollers in the design of embedded MAS for such
kind of systems. An architecture and a small-scale prototype of a
smart home assembled with several hardware devices connected
to different ATMEGA and PIC microcontrollers are presented as
proof-of-concept. Our architecture shows to be effective in several
tests performed using different implementation strategies.

I. INTRODUCTION

Ambient Intelligence (AmI) comprises electronic and in-
telligent environments characterized by the interconnection
of different technologies with the purpose of helping users
in their daily tasks in an autonomous, proactive and perva-
sively way [1]. Multi-Agent Systems (MAS) are composed
of autonomous agents situated in an environment and have
the capacity of making decisions based on perceived stimuli
and interactions between others agents to realize common or
conflicting goals [2]. The agent-oriented paradigm is appro-
priate for implementing AmI systems because agents can be
proactive, have social abilities and autonomy, and it is capable
of learning from its past experiences [3].

In a common architectural approach to implement AmI
systems and MAS, many sensors and actuators are managed
by different microcontrollers, while in a more external layer,
generic services for accessing sensors and actuators are im-
plemented and provided for cognitive applications running on
a top layer. Thus, is important to have an architecture able of
controlling microcontrollers supported by an Agent-Oriented
Program Language (AOPL) responsible for reasoning. Partic-
ularly, Jason [4] is a framework to develop MAS widely used
in the agent community for programming cognitive systems
interfacing hardware of the same type [5].

An extension of Jason named ARGO aims to facilitate the
use of hardware devices by intelligent agents independently
of the domain of the solution [6]. It means that it is possible
to develop MAS where the software layer is not tied to the
hardware layer and it can be used in any domain. Since the

DOI reference number: 10.18293/SEKE2018-211

hardware choice in the design of the solution is limited since
it is only possible to use ATMEGA microcontrollers, ARGO
employs a generic communication interface between the AOPL
and the microcontroller [7], and nothing prevents the develop-
ment of a communication interface for other microcontrollers.

Therefore, the objective of this paper is to present a layered
architecture for designing MAS capable of adopting different
microcontrollers where all layers are independent from each
other. For this, we adopt Javino as communication interface
between microcontrollers and the software layer, and we
propose Javic for interfacing the software layer with PIC or
other C based microcontroller. The PIC was chosen since it is
often used in industrial applications because of its reliability.
Besides, the Jason framework and ARGO agents were used as
the cognitive reasoning in the software layer.

Then, we present as proof-of-concept a small-scale proto-
type of a smart home for temperature control and a doorbell
system for helping the hearing impaired to identify if there
is someone in front of the door. In order to evaluate the
MAS and the prototype, some performance tests were executed
taking into account parameters such as the number of agents
and controllers, the agent’s reasoning and the amount of
environmental perception, to explore different implementation
strategies of AmI System development supported by MAS.

Our contributions are: (i) the use of different kind of
microcontrollers in the same MAS ; and (ii) a communication
interface for working along with ARGO to program MAS for
controlling PIC microcontrollers. This paper is structured as
follows. In Section 2, we present some related work; In Section
3, the architecture is presented; In Section 4, the Smart Home
architecture and its prototype are discussed; and Conclusion
and future works are presented in Section 5.

II. RELATED WORK

Some works exploit existent architectures and middleware
to facilitate the connection between hardware and software.
Some works try to embed the MAS into hardware platforms
to provide real autonomy and other use a central processing
unit for controlling the hardware from a distance.

In [8], it is presented an unmanned ground vehicle con-
trolled by a MAS hosted in a computer and programmed in
Jason. The agents can control the vehicle using commands that
are sent to the hardware using radio transmitters on both sides

242

(computer and microcontroller), but the MAS only communi-
cates with a single type of microcontroller. In addition, in all
cited works, the MAS is not embedded with the hardware.

In [7], a platform for embedding MAS programmed in Jason
using a Raspberry Pi board is presented. The MAS controls the
functions of a vehicle using external actions. The agents are
not able of controlling devices directly, becoming dependent
on the simulated environment programmed in Java. Besides,
it only communicates with a single type of microcontroller.

Applying MAS in AmI is not a new topic and several
proposals integrating devices have already been presented in
simulated smart homes such as [9]. However, it does not use
AOPL, the agents do not use a cognitive model, and the
implementation is tied to the solution. In [10], it is proposed
a model for supporting residential accidents using embedded
agents and Arduino. For each Arduino, there is a specific agent
and a high-level agent replicated in case the former is not
capable of processing. In this work, an ARGO agent controls
many devices. An embedded approach in real time using Jade
for programming MAS is proposed by [11]. The architecture
maps each sensor and actuator in the high-level language, and
there are six types of generic agents. In this paper, the sensors
and actuators are connected to controllers and only ARGO
agents can manage such devices.

III. THE ARCHITECTURE

In this section, we propose a layered architecture for the
development of MAS using an AOPL (responsible for the
MAS) and a separated and heterogeneous hardware layer,
with several microcontrollers, actuators and sensors (a het-
erogeneous architecture is able of employing different types
of microcontrollers in the same solution). To establish com-
munication between both independent layers, a third layer is
used as middleware that is responsible for the exchanging data,
through serial communication, between the software and the
hardware. Using this middleware, the hardware is programmed
to send all the perception and execute requests arriving from
the MAS. Already in the software layer, agents are designed to
interact with the infrastructure available sending actions to the
hardware layer and receiving perceptions coming from sensor.
In our architecture, the MAS is independent from the hardware
and can be modified or changed if it is desirable.

So, the proposed architecture could employ microcontrollers
of different types, each of them controlling sensors and actu-
ators in the hardware layer, and a central core responsible for
the deliberation based on information perceived by sensors
in the software layer. It is used the Jason and ARGO agents
for controlling hardware devices. The use of Javino and Javic
middleware along with Jason and ARGO agents provides a
platform, which supports the developer to deploy AmI systems
without concerns about integration issues between hardware
and software because of the independence between layers.
All perceptions are directly processed by the MAS without
intervention of the designer. Besides, the capability of using
different microcontrollers in the same project controlled by a
MAS is the main contribution of using the architecture.

A. The Hardware Layer Implementation

In the hardware layer of the architecture, it can be employed
different types of microcontrollers. For this, libraries for
capturing data from sensors and sending them to the software
layer must be adopted. In this section, we discuss Javino and
present the Javic library for interfacing PIC microcontrollers.

1) The Javino [7]: Javino is a communication interface
used to exchange messages between microcontrollers and
programming languages using serial communication. Its main
benefit is to ensure that the receiver will not accept messages
with errors. The Javino consists of two libraries: one on
the hardware-side (microcontroller), and another one on the
software-side (programming language).

When using Javino, the message follows a structure with
three fields: Preamble, composed by 2 bytes of a fixed
value to identify the message; Size that has 1 byte used to
inform the size of the message sent and; the Message (up
to 256 characters) to be sent. The two firsts fields are both
used to identify errors that can occur because of information
loss during the message transmission. In this work, Javino
is used on the hardware layer for interconnecting ATMEGA
microcontrollers or any other platform that uses the Arduino
IDE such as Galileo, Galileo Gen 2, and NodeMCU. In this
case, Javino is responsible for gathering perceptions from all
sensors connected to the microcontroller, and it sends them
for the software layer. The designer of the system must be
responsible for programming the sensors and actuators stimuli
based on messages received from the communication layer.

2) The Javic: Javic implements the same protocol as
Javino. The Javic is a C-based library for PIC microcontrollers.
Depending on the type of the PIC, the amount of available
memory can interfere in the functioning of the library, because
it was developed to work in PIC with at least 256 bytes of
RAM because the size of the message is up to 256 bytes. The
methods implemented for Javic and Javino are:

• sendMsg(String msg): Sends a message to the software
layer using serial communication;

• availableMsg(): Checks if exists messages coming from
the software layer, returning a boolean value informing
whether there is a message available or not;

• getMsg(): If there is a message available, it is used to get
the request information sent by the software to perform
some action using actuators or to gather perceptions.

When the software side library needs to send a message to
the other side, it is necessary to inform the port where the
target device is connected. Including Javino and Javic, there
are 3 libraries: one for the software side that uses the Java
language, and two for the hardware side, one for ATMEGA,
and another one for PIC microcontrollers.

B. The Software Layer Implementation

In this section, we discuss the technologies used in this work
for the development of the software side of the architecture.
Jason [4] is a framework used to build cognitive MAS, and
when used together with the customized architecture of agents

243

named ARGO [5], it is possible to develop solutions using
actuators and sensors that can interact with the real world.

Jason is a framework that has an interpreter in Java of
AgentSpeak for the development of cognitive agents using the
BDI. The BDI contains three basic constructions: “Beliefs”
(information considered to be truth by the agent acquired in-
ternally, with other agents or with the environment), “desires”
(agent’s motivation to perform determined goal), and “inten-
tions” (actions that the agent is compromised to execute) [4].

ARGO is a customized architecture of Jason agents for
enabling the programming of agents capable of interacting
with platforms of prototyping. The ARGO allows the inter-
mediation between the cognitive agents and a real environ-
ment (using microcontrollers) through the Javino. A MAS
can be composed of traditional Jason agents and ARGO
agents working simultaneously. The Jason agents can perform
plans and actions only in software level and communicate
with other agents in the system (including ARGO agents).
An ARGO agent is a traditional agent with additional fea-
tures, such as the ability to communicate with the physical
environment, perceive it, act upon it, and filter informa-
tion perceived from sensors connected to microcontrollers.
For this, ARGO has five internal actions to be used at
runtime: (i) the action .port(Port), where the agent
chooses which device to control selecting the serial port where
the device is connected (e.g. .port (com8)); (ii) the action
.percepts (open or block), where it is defined if the
agent blocks or releases the flow of perceptions from the con-
troller; (iii) the action .limit (milliseconds), which
defines for how long the environment should be perceived;
(iv) the action .act (message), which sends a message
through the serial port to execute an action using an actuator
and; (v) the action .filter (XML), which selects the XML
file responsible for filtering perceptions.

IV. THE SMART HOME PROPOTYPE

In this section, we present a Smart Home architecture based
on the proposed architecture using the Jason and the ARGO
and containing several controllers with sensors (temperature)
and actuators (LED lights). In Figure 1, we propose one
possible architecture for a Smart Home prototype developed
in wood, which has six rooms each one controlled by a
microcontroller (three ATMEGA328 and three PIC). Four
rooms have light sensors (LDR) and LEDs; one room has
a temperature sensor (LM35), an air-conditioner(Peltier), a
heater(Peltier) and LEDs and; the last room has the bell door
button, the bell’s sound emitter (buzzer), the door motor and
a LED. For each room, an ARGO agent is responsible for the
cognitive management of sensors and actuators. The ARGO
agents have the same communication skills as a traditional
Jason agent, where an ARGO agent can communicate with
another ARGO agent or with a traditional agent.

The methodology employed in the development of the smart
home takes into account three layers where interventions
are required: the interconnection of hardware devices, where
sensors and actuators should be connected to the controllers in

the desired room; the microcontroller programming, where all
the activation functions of the actuators must be programmed
in the controllers in response to serial port stimuli, and;
the MAS’s creation, where the perceptions coming from the
sensors must be prepared to take into consideration the format
expected by the MAS. The perceptions are sent to the agent
every time an ARGO agent performs its reasoning cycle.
Finally, the MAS must be independently programmed to the
hardware, taking into account only the actions that must be
performed in hardware. If it is necessary to change the device,
there is no need to recode the MAS, but the agent should point
to the proper serial port it desires to control, and the actions
messages to be executed must be available on the new device.

Fig. 1. The Smart home architecture and prototype.

A. Performance Tests

In order to test the applicability and to identify strategies
for using ARGO agents in the AmI domain, we executed
performance tests by performing a circuit of activating and
deactivating of LEDs (the agent turns on all the LEDs from
room to room and then turn them off). In the Jason, an event is
generated for each perception received from the environment.
This feature can lead to delays in the reasoning and execution
of actions in situations that require fast responses. To deal with
this situation, an agent can vary the use of the internal action
that blocks and release the perceptual flow from sensors. Thus,
tests were performed and the execution time of the activation
circuit was measured employing from 1 to 6 microcontrollers
being controlled by 1 to 6 agents in the MAS (36 possibilities)
and using three different strategies:

1) opened: the agents open the flow of perceptions at the
beginning of the execution to continuously perceive the
environment until the end of the MAS execution without
blocks its perceptions.

2) just once: the agent opens the flow of perceptions
according to the need to execute each plain to search
sensorial information and after that, it closes it again,
acquiring just a few perceptions at the moment.

3) lazy: the agent open and close the flow of perceptions
at the beginning of the first plan, repeat the operation at
the last plan, and eventually when is necessary to modify
controllers in the middle of the execution.

244

For each strategy, the tests were replicated 3 times totalizing
324 tests, of which 135 resulted in conflict because of the
amount of ARGO agents was greater than microcontrollers
employed (two or more agents can not use the same serial
port at the same time). When there are conflicts by serial
port competition, one solution is to implement a negotiation
strategy to avoid that they do not use a device at the same time.
For the remaining tests, when considering only the number of
controllers managed by the MAS, it is noticed that opened
strategy is the slowest of all because the number of perceptions
processed is larger than the other strategies (this strategy never
blocks its perceptions). The lazy strategy is slightly faster than
just once strategy, but depending on the agent’s programming
or the domain, keeping the perception out of date for a period
could cause some mistaken decisions.

Analyzing the results and the number of agents, we noticed
that when one agent is responsible for controlling all devices,
the execution time increases. The opened strategy is again
the slowest due to the number of perceptions captured from
sensors (they are updated in every reasoning cycle) while the
just once and lazy strategy were faster because of the way
perceptions were blocked. It is noteworthy that for all tests,
the agent’s codes were the same, differentiating only where
the flow of perceptions was opened or closed. Figure 2 shows
the scatter plot of the tests. For the next examples we decided
that just once strategy should be used, it is slightly slower
than lazy strategy, but it guarantees that the agents will have
up-to-date perceptions of the sensors when compared with the
former one. The opened strategy was not chosen because it
was slower than the others. However, its characteristics always
keep up-to-date information from sensors.

Fig. 2. The scatter plot of the number of agents employed (left) and the
scatter plot of the number of controllers employed (right).

V. CONCLUSIONS

This work presented a layered architecture for programming
MAS which uses hardware devices, it uses Jason framework

and ARGO in the software layer, and it also uses libraries for
communication to different microcontrollers. Then, we devel-
oped a specific library for integrating PIC microcontrollers
with Jason framework allowing the design and construction of
MAS and prototypes using both PIC and ATMEGA. This het-
erogeneous characteristic is an important issue for developing
AmI systems because it is possible to use devices accordingly
to the requirements of the designed MAS. Most of the plat-
forms in the literature are directed to one kind of technology,
or it ties to a particular domain. Our proposed architecture
does not tie the design of the system to a particular domain,
and it allows the use of several types of microcontrollers.

In AmI, we aim to use this heterogeneous characteristic
of the proposed architecture to develop smart and proactive
environments. So, we presented as proof-of-concept, a smart
home example showing that is possible to use Jason to develop
such kind of solutions. Besides, an analysis of three strategies
for MAS implementation were presented to identify the best
strategy to obtain quicker and efficient responses from agents.
The results show that the delays generated are acceptable
depending on the domain and strategy applied. As future work,
it is necessary to test the approach in a real environment using
complex scenarios with a high number of sensors.

REFERENCES

[1] W. Weber, J. Rabaey, and E. Aarts, Ambient Intelligence. Springer,
2005.

[2] M. Wooldridge, An Introduction to MultiAgent Systems. Wiley, 2009.
[3] C. Maciel, P. C. de Souza, J. Viterbo, F. F. Mendes, and A. El Fal-

lah Seghrouchni, A Multi-agent Architecture to Support Ubiquitous
Applications in Smart Environments. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 106–116.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. John Wiley & Sons Ltd,
2007.

[5] C. E. Pantoja, M. F. Stabile, N. M. Lazarin, and J. S. Sichman, “Argo:
An extended jason architecture that facilitates embedded robotic agents
programming,” in Engineering Multi-Agent Systems: 4th International
Workshop, EMAS 2016, M. Baldoni, J. P. Müller, I. Nunes, and R. Zalila-
Wenkstern, Eds. Springer, 2016, pp. 136–155.

[6] C. E. Pantoja and J. Viterbo, “Prototyping ubiquitous multi-agent
systems: A generic domain approach with jason,” in Advances in
Practical Applications of Cyber-Physical Multi-Agent Systems: The
PAAMS Collection: 15th International Conference, PAAMS 2017, Porto,
Portugal, June 21-23, 2017, Proceedings, Y. Demazeau, P. Davidsson,
J. Bajo, and Z. Vale, Eds. Springer International Publishing, 2017, pp.
342–345.

[7] N. M. Lazarin and C. E. Pantoja, “A robotic-agent platform for em-
bedding software agents using raspberry pi and arduino boards,” in 9th

Software Agents, Environments and Applications School, 2015.
[8] R. S. Barros, V. H. Heringer, N. M. Lazarin, C. E. Pantoja, and L. M.

Moraes, “An agent-oriented ground vehicle’s automation using Jason
framework,” in 6th International Conference on Agents and Artificial
Intelligence, 2014, pp. 261–266.

[9] K.-I. Benta, A. Hoszu, L. Văcariu, and O. Creţ, “Agent based smart
house platform with affective control,” in Proceedings of the 2009
Euro American Conference on Telematics and Information Systems: New
Opportunities to increase Digital Citizenship. ACM, 2009, p. 18.

[10] G. Villarrubia, J. F. De Paz, J. Bajo, and J. M. Corchado, “Ambient
agents: embedded agents for remote control and monitoring using the
pangea platform,” Sensors, vol. 14, no. 8, pp. 13 955–13 979, 2014.

[11] E. Kazanavicius, V. Kazanavicius, and L. Ostaseviciute, “Agent-based
framework for embedded systems development in smart environments,”
in Proceedings of International Conference on Information Technologies
(IT 2009), Kaunas, 2009.

245

BackPocketDriver – A Mobile App to Enhance Safe
Driving for Youth

Catherine Shanly, Michael Ieti
Department of Electrical and Computer Engineering

The University of Auckland, New Zealand
{csha289, miet001}@aucklanduni.ac.nz

Ian Warren and Jing Sun
Department of Computer Science

The University of Auckland, New Zealand
{i-warren, j.sun}@cs.auckland.ac.nz

Abstract—Young drivers are one of the highest risk groups for
being involved in car accidents. BackPocketDriver (BPD) is an
Android application that aims at encouraging young drivers to
adopt and hone safe driving skills. Smartphone sensors are used to
monitor driver behaviour, including speed, turning, acceleration
and braking. The journey data is analysed for unsafe behaviour
with user feedback, which includes journey review, positive
reinforcement using textual messages, goal setting and points
scoring. To achieve this, behavioural change techniques were
studied in relation to gamification, and several features were
implemented into BackPocketDriver including achievements,
leader board, quizzes, friends system, etc. Evaluations in terms of
functional comparisons with related tools were conducted to
measure the advantages of the proposed solution. The BPD app
provides effective improvements to youth driving.

I. INTRODUCTION
Youth drivers are one of the most at-risk groups in New

Zealand with regards to car accidents. From 2013-2015, drivers
from 15-24 accounted for only 13% of all licensed drivers, but
were involved in 24% of all minor crashes, 23% of all major
crashes, and 19% of all fatal crashes [1]. These crashes resulted
in more than 200 deaths in those two years.

Further investigation into the causes of these crashes resulted
in a number of primary factors being identified. The main factors
were alcohol/drug consumption, losing control, and speed. More
than half (53%) of all fatal crashes had alcohol, drug use, or
speeding identified as being contributing factors. Young drivers
are more than twice as likely to have speed or alcohol as a crash
factor compared to drivers over the age of 25 [1]. In a report by
Transport Engineering Research New Zealand (TERNZ), it is
stated that most fatal crashes occur at speeds over 60 km/hr [2].
These statistics highlight points where action can be taken to
reduce deaths - reducing speed and reinforcing safe driving
behaviours and habits may be the key to minimising driving-
related injuries and deaths in New Zealand.

Avoidable crashes also create a large amount of economic,
financial, and intangible cost for society. These costs are largely
attributed to reduced quality of life for victims, fatalities, loss of
productivity, as well as medical and legal fees, totaling $3.79
billion in the year 2015. Vehicle damage only accounts for
around 5% of this cost [3].

The ubiquity of smartphones in all demographics opens a
channel for engagement with drivers of all ages. Smartphones
have reached 70% market penetration in New Zealand, with 91%
of 18-34 year olds owning at least one smartphone [4-7]. In order
to focus efforts towards younger drivers, the use of a smartphone
app can be seen as an appropriate measure to analyse and correct
unsafe driving behaviours [8].

BackPocketDriver (BPD) is an Android application that aims
at encouraging young drivers to adopt and hone safe driving
skills. Smartphone sensors are used to track a user’s driving,
such as speed, turning, acceleration, braking, etc. Behavioural
Change Techniques (BCT) [3,4] and gamification ideas [9, 10]
were adopted in the development of the tool. Users can set their
own goals to improve the smoothness of their driving and to
reduce their speeding. The data is then analysed for unsafe
behaviour through user feedback. A journey summary is
provided after a trip, detailing the route taken, the user’s current
goals, and if they have met them. In this summary, specific
feedback is also given to the user. An additional feature of
BackPocketDriver is a daily messaging system gives the user
safe driving tips or instructions daily.

The rest of the paper is organised as follows. In Section II,
we present the development of the BackPocketDriver app.
Section III presents the evaluation of the tool, including the
feature comparison to existing safe driving applications. Finally,
Section VI concludes the paper and outline the future work.

II. DESIGN AND IMPLEMENTATION

A. Overall Technologies

Fig. 1 shows the components of BackPocketDriver and its
overall architecture. The user’s smartphone uses the GPS,
accelerometer, and gyroscope to calculate journey data. This is

Fig. 1. BackPocketDriver component diagram

DOI reference number: 10.18293/SEKE2018-011

246

then sent to the BackPocketDriver web service for processing
before journey feedback is sent back to the device. A messaging
service is also used for registration purposes and to send daily
messages and notifications to the user.

We integrated several technologies for the development of
the app and server for BackPocketDriver. The app is an Android
smartphone app and the server code was implemented in Java
programming language. The MySQL relational database
management system was used for the server while SQLite was
used for the app. Additionally, the GreenDAO generator was
used in the app to map Java objects to the relational database.
We used Apache Tomcat, an open-source servlet container that
provides an HTTP web server environment. We used Google
Cloud Platform to host the application.

B. Key Features
Fig. 2 shows the Home screen that the user first sees when

they open BackPocketDriver. Users can start and stop recording
their journey on this screen by pressing the car icon. The
username of the user is displayed which allows the user to
identify themselves and more easily compare themselves with
others.

The user can click on the gear icon to access user preferences.
This gives the user control over their use of the app, for
example, in our implementation users can choose to appear on
the global leaderboard. The use of preferences can promote
feelings of autonomy, which increases motivation [15], but is
also important because BackPocketDriver contains potentially
sensitive information about users.

On the Home screen the user can also see how many points
they have earned. This is immediately available for the user to
see and links with the BCT [12] of feedback on behaviour as
users will see an increase in their score as soon as they perform
a good behaviour, such as recording a journey without harsh
braking.

The leaderboard has also been implemented on this screen.
The leaderboard shows the top-ten users and ranks them against
the number of points they have earned (users can earn points by
recording journeys, completing quizzes, and obtaining
achievements). Users are motivated to perform point earning
activities when they compare their score against others and are
motivated to continue performing them if they see themselves
as a role model on the top of the leaderboard [11].

Fig. 3 shows the Achievements screen where users can obtain
achievements by carrying out certain tasks, for example, the
“Baby Steps” achievement requires that the user complete a
journey for the first time. Achievements are motivating as users
can set goals for themselves to obtain a specific achievement
and they also visually show (achievement items are no longer
greyed out) a sense of progress for the user as they obtain more
achievements [14].

We have implemented achievements so that users can earn
points when they complete a specific task. Each achievement
has a number of points associated with it making the use of
points more meaningful as users know exactly that they need to
do, for example driving a total of 10km, to earn points.

There are two different types of achievements implemented
in BackPocketDriver. The “Let’s Get Quizzical” achievement,
for example, directs users towards the quiz functionality in the
app. This can help direct users to functionality that they may not
be aware of. Alternatively, the “Smooth Moves” achievement
motivates the users to display good driving behaviours
(completing a journey without harsh braking or acceleration)
[13]. This links with the BCT of instruction on how to perform
a behaviour as it explicitly shows the user what is considered
good driving behaviours [16].

Fig. 4 and 5 show the screens for the redefining trip goals,
reviewing trip goals after a journey, and redesigning journey
feedback requirements. Fig. 4, the My Goals screen, allows the
user to set themselves a speeding goal and a smoothness goal
for each journey. In our implementation, the goals are clearly

Fig. 3. Home screen
implementation

Fig. 3. Achievements
implementation

Fig. 4. My Goals screen Fig. 5. Journey Summary screen

247

defined, for example, on the My Goals screen the speeding goal
is “I will drive 15km without speeding.” The user can scroll
through a list of available numbers to change the goal
depending on their ability. The “∞” indicates that the user, for
example, will not brake or accelerate harshly for the whole
duration of their journey. If the length of the user’s trip is less
than their current goal, then the user must also drive the whole
trip perfectly.

Fig. 5 shows the Journey Summary screen which has been
updated from the original app to reflect the changes in the goals.
There is now a circular progress bar that shows the user progress
towards their goal as well as the exact distance they have driven
without speeding and the distance they have driven smoothly.
These two features show the discrepancy between the user’s
behaviour and their goal, another BCT.

On the Journey Summary screen, we have implemented a
button that prompts the user to update their goals after they have
seen their journey feedback and if they have met their goals.
This leads the user back to the My Goals screen, allowing them
to review their goals. Redefining the journey goals involved
many changes across the app and server code. Journeys had to
be processed differently so that the distance speeding and
driving harshly was calculated, stored, and sent to the app as
part of a journey summary object (previously only the
proportion of the distance speeding was stored).

C. Summary of Implemented Features
Table I shows a summary of the features implemented during

the timeline of this project and the BCTs they are associated
with. Additionally, there are other links between features. For
example, users are ranked on the leaderboard based on how
many points they have, which they can earn by recording
journeys, achievements, and completing quizzes. Achievement
activities correspond to several other functionalities of the app
and support the behavioural change ideas, e.g., the achievement
for appearing on the leaderboard is named “Role Model”. The
friends system also allows users to view the achievements of
their friends. These links all show how the implemented features
are designed to support and reinforce each other.

III. EVALUATION

A. Performance Measurements
The performance of the server was briefly analysed using

loader.io, a website that can stress test web applications with
multiple concurrent connections [17]. Our tests retrieved the top

ten users on the leaderboard where each test had, over a 1
minute period, an increasing amount of client requests.

There were no errors up to 500 client requests over a minute.
This test had an average response time of 70ms. 1000 clients
had a 0.04% error rate and an average response time of 133ms.
For 5000 clients, there was an 0.82% error rate with an average
response time of 156ms. 10,000 clients over a 1 minute period
had a 25.21% error rate with an average response time of
1224ms. All errors were timeouts (set at 10 seconds).

This shows that as the number of clients increase the longer
the response time is and the more errors there are due to
timeouts. Our web server has therefore limited scalability. This
problem needs to be addressed before BackPocketDriver is
made available to more users.

B. Comparisons of BackPocketDriver to Other Safe Driving
Applications

Table II shows a selection of safe driving applications,
available on the Google Play Store, and their features (based on
the app description). The most similar app to BackPocketDriver
is the TOWER Insurance SmartDriver app [18], however, as
this has been created by an insurance company users may not
be motivated to use the app if they initially identify as a poor
driver.

Some gamification features, such as points, appear to be
popular across some of the other apps. Other features that
BackPocketDriver does not include are a safe driving mode
where the app discourages the user from handling their phone
while driving. Instead, the app may perform tasks on behalf of
the user using voice commands.

The data demonstrates that there is a gap in safe driving apps
that BackPocketDriver has the potential to fill. The proposed
solution uses a range of gamification features and uses a social
network (friends system) which is not otherwise common. In
the future, BackPocketDriver could support some of the other
features present in the other apps to appeal to a wider audience.

IV. CONCLUSIONS
The relationship between BCTs and gamification was

examined and a clear link was found between these two
concepts. The results of this study were applied to
BackPocketDriver, a smartphone application created for
encouraging safe driving in youth drivers. Limitations of the
existing app were addressed by extending existing features and
by implementing the following game elements: achievements,
leaderboards, and quizzes. Additionally, a friends system was

TABLE I
SUMMARY OF FEATURES

 Feature
BCTs Points Leaderboard Achievements Quizzes Friends (Redefined) Trip Goals

Feedback on behaviour X X X
Social comparison X X X

Goal-setting X X X
Identification of self as role-model X

Instruction on how to perform a behaviour X X
Discrepancy between current behaviour and goal X

Review behaviour and goals X

248

implemented. These features were chosen based on their
motivational effectiveness and their relevance to BCTs. They
were evaluated by conducting a performance and comparative
study to related tools. The results found that proposed solution
provides effective means to improve youth driving.

In the future, the validity of the app needs to be evaluated by
carrying out a long-term study of users recording their driving
with the app. During this study the motivational effectiveness
of features could be evaluated by recording how often the user
visits different functionality as well as seeing if their driving
performance improves over time.

REFERENCES
[1] Young Drivers | NZ Transport Agency. Available:

http://www.nzta.govt.nz/safety/driving-safely/young-drivers/.
[2] Young drivers crash facts | Ministry of Transport. Available:

http://www.transport.govt.nz/research/crashfacts/youngdriverscrashfacts
[3] S. Michie et al, "The behavior change technique taxonomy (v1) of 93

hierarchically clustered techniques: building an international consensus
for the reporting of behavior change interventions," Annals of Behavioral
Medicine, vol. 46, (1), pp. 81-95, 2013.

[4] C. Abraham and S. Michie, "A taxonomy of behavior change techniques
used in interventions." Health Psychology, vol. 27, (3), pp. 379, 2008.

[5] A. Direito et al, "Do physical activity and dietary smartphone applications
incorporate evidence-based behaviour change techniques?" BMC Public
Health, vol. 14, (1), pp. 646, 2014.

[6] C. C. Quinn et al, "Cluster-randomized trial of a mobile phone
personalized behavioral intervention for blood glucose control. Diabetes
Care 2011; 34: 1934-1942," Diabetes Care, vol. 36, (11), pp. 3850, 2013.

[7] F. Fylan and S. Stradling, "Behavioural Change Techniques used in road
safety interventions for young people," Revue Europenne De Psychologie
Applique/European Review of Applied Psychology, vol. 64, (3), pp. 123-
129, 2014.

[8] S. Deterding et al, "From game design elements to gamefulness: Defining
gamification," in Proceedings of the 15th International Academic
MindTrek Conference: Envisioning Future Media Environments, 2011,
pp. 9-15.

[9] M. Sailer et al, "How gamification motivates: An experimental study of
the effects of specific game design elements on psychological need
satisfaction," Comput. Hum. Behav., vol. 69, pp. 371-380, 2017.

[10] J. Hamari, J. Koivisto and H. Sarsa, "Does gamification work?--a
literature review of empirical studies on gamification," in System
Sciences (HICSS), 2014 47th Hawaii International Conference On, 2014,
pp. 3025-3034.

[11] R. N. Landers, K. N. Bauer and R. C. Callan, "Gamification of task
performance with leaderboards: A goal setting experiment," Comput.
Hum. Behav., 2015.

[12] J. Hamari, "Do badges increase user activity? A field experiment on the
effects of gamification," Comput. Hum. Behav., 2015.

[13] C. Cheong, F. Cheong and J. Filippou, "Quick quiz: A gamified approach
for enhancing learning." in Pacis, 2013, pp. 206.

[14] E. A. Edwards et al, "Gamification for health promotion: systematic
review of behaviour change techniques in smartphone apps," BMJ Open,
vol. 6, (10), pp. e012447, 2016.

[15] R. M. Ryan and E. L. Deci, "Self-determination theory and the facilitation
of intrinsic motivation, social development, and well-being." Am.
Psychol., vol. 55, (1), pp. 68, 2000.

[16] L. de-Marcos, E. Garcia-Lopez and A. Garcia-Cabot, "On the
effectiveness of game-like and social approaches in learning: Comparing
educational gaming, gamification & social networking," Comput. Educ.,
vol. 95, pp. 99-113, 2016.

[17] Application Load Testing Tools for API Endpoints with loader.io.
Available: https://loader.io/.

[18] SmartDriver - Android Apps on Google Play. Available:
https://play.google.com/store/apps/details?id=com.tower.smartdriver.

[19] Dash - Drive Smart - Android Apps on Google Play. Available:
https://play.google.com/store/apps/details?id=com.dashlabs.dash.android

[20] Drive Safe - Android Apps on Google Play. Available:
https://play.google.com/store/apps/details?id=westport.andrewirwin.com
.drivesafe.

[21] Safe Driving App - Android Apps on Google Play. Available:
https://play.google.com/store/apps/details?id=com.risktechnology.ingdir
ect.

[22] EROAD Driver - Android Apps on Google Play. Available:
https://play.google.com/store/apps/details?id=com.eroad.driver.

TABLE II
COMPARING BACKPOCKETDRIVER TO OTHER SAFE DRIVING APPS

 Application

Feature BackPocketDriver TOWER Insurance
SmartDriver [18]

Dash – Drive
Smart [19]

Drive Safe
[20]

Safe Driving App
[21]

EROAD Driver
[22]

Journey feedback X X X X
Goals X

Statistics X X X X
Daily messages X

Points/Score X X X X
Leaderboard X X X

Quizzes X
Achievements X X

Rewards X
Social network X X

Logging driving X
Vehicle inspection

details
 X

Driving tips X
Safe driving mode X X

249

A Real-Time Ride-Sharing Matching Framework

Using Simulated Annealing Genetic Algorithm
Jie Xu

1
, Yong Zhang

1
, Chunxiao Xing

1
, Guigang Zhang

2

1
Research Institute of Information Technology, Beijing National Research Center for Information Science and Technology,

Department of Computer Science and Technology, Institute of Internet Industry, Tsinghua University, Beijing 100084, China
2
Institute of Automation, Chinese Academy of Sciences

{xuj15}@mails.tsinghua.edu.cn, {zhangyong05, xingcx}@tsinghua.edu.cn, {guigang.zhang}@ia.ac.cn

Abstract: Recently, ride-sharing services are becoming more

popular in commercially application, which have attracted many

researchers' attention. The ride-sharing provides significant

economic, societal and environmental benefits in a sharing

economy, such as reducing pollution, travel costs and traffic

congestions. This kind of problem essentially is to maximize the

matched ride-sharing pairs, and obviously is an optimization

problem. There are lots of platforms for dynamic peer to peer

ride-sharing, however, existing researches can be improved

better. For example, how to reduce the algorithm computing time,

and maximize the matching effectiveness to gain more economic

benefits. In this work, we first introduce the problem of ride-

sharing with time guarantee on road network, and then design a

novel heuristic simulated annealing genetic algorithm. In

addition, we carefully adjust the parameters with different

constraints, and conduct extensive verification experiments with

realistic datasets derived from Beijing car services, the results

demonstrate the advancement of our methodologies.

Keywords—Road Network, Ride-sharing, Simulate Annealing

Algorithm, Gentic Algorithm

I. INTRODUCTION

Recently, we witness the rapid growth of the sharing
economy, in which the resource owners temporarily transfer
their properties to someone to acquire the benefits, the ride-
sharing is the one of the most representative applications, that
means someone acts as a driver and offers the ride-sharing
service to bring together travelers with similar trip. Nowadays,
the ride-sharing has become very prevalent application,
consequently appearing lots of startups companies, typical like
DIDI, Uber, and Lyft. There are lots of increasing researches,
however, most existing methods have several limitations, for
example, the efficiency is not high, and the methods need deep
analysis of specific issues of the problems, or the extendibility
is weak. Generally speaking, solving this kind of optimal
problem is not easy. People have studied various approaches
to address it [1,2,3], such as the integer linear programming,
the branch-and-bound problem and the approximation
algorithm [4].

 In this work, we focus on the ride-sharing problem with
time windows. There are many challenges to address such
problems: First, it has been proved as an NP hard problem
[10]; Second, to calculate the sharing ratio, it needs to
calculate the shortest path, it is time-consuming; Third, for the
1
drivers, their main concerns are the economic benefits, thus it

is not only needed to minimize detour distance at most in carry

DOI reference number: 10.18293/SEKE2018-079

services, but also to maximum the number of matched pairs, it
is a bi-objective problem, which can be solved by the
simulated annealing(abbr.SA) or genetic algorithm(abbr.GA).
Simulated annealing is a probabilistic technique for
approximating the global optimum in a large search space, and
the genetic algorithm is derived from the process of natural
selection and genetic evolutionary. With the above mentioned
knowledge, we present a framework which combines the
simulated annealing algorithm with the genetic algorithm. The
contributions of this work are summarized as follows: First,
we establish the map grid, it can effectively reduce the shortest
path calculation time. Second, we designed a formulation to
describe the problem, and then develop a novel simulated
annealing genetic algorithm(abbr. SAGA). Third, we conduct
extensive experiments on the real dataset, and our results show
the superiority of our approach.

 The rest of this paper is organized as follows: we propose
the related important work on ride-sharing and kinds of
approaches in Section 2, and then model the problem in
Section 3, afterwards, we illustrate our algorithm in detail in
Section 4. Experimental results are presented in Section 5. We
outline the conclusions of the paper in Section 6.

II. RELATED WORKS

The ride-sharing problem has attracted increasing attention,
In this section, we introduce the related work and summarize
the key technologies for different algorithms [5,6]. The studies
can be classified into three categories, approximation
algorithms, filter and refine algorithms, heuristic algorithms.

Ta et al. [7] proposed a new ride-sharing model that each
driver has a requirement restriction with the shared route
percentage, two variants of the ride-sharing problem are
proposed, i.e., multiple drivers and a single rider and multiple
drivers and multiple riders. To improve the efficiency, an
approximate method with error bound guarantee was proposed,
that meant updating the lower and upper bounds of the
maximal graph matching until the bounds gap was small. The
ides was very innovative and useful.

In [8], a highly generalized model for the taxi and delivery
services in the market economy was proposed. The model can
efficiently used with surge pricing mechanism. To solve the
above problem, they proposed an approximation algorithm
which was transferred to the multiple disjoint paths (MDP)
problem, and carefully proved their algorithm had a tight
approximate ratio with the original problem.

250

https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Natural_selection

Furuhata et al. [9] proposed a review of ride-sharing to
understand the key aspects of existing ride-sharing systems.
The main characteristics to describe different aspects of ride-
sharing systems were described. They classified the existing
problem into six categories depending the target segments and
criteria. The objective of the work was to identify key
challenges thus helped to build the effective formal ride-
sharing mechanisms.

Ma et al. [10] demonstrated a large-scale taxi ride-sharing
for a dynamic ride-sharing problem, the framework included

two steps：the first was a definition of a searching algorithm

by taking advantage of a spatial-temporal index, then a
scheduling algorithm was proposed. To address the heavy
computational load, a lazy method was described by
partitioning the road network into several grids. The
approximated distance finally approved the effectiveness of
their approach.

Thangaraj et al. [11] described a platform named Xhare-a-
Ride (XAR) system for dynamic peer-to-peer ride-sharing.
Three kinds of geographical hierarchical discretization
including region using grids, landmarks and clusters, were
used to help to eliminate shortest path computation during
search. The notions were valuable for integration with multi
modal trips.

Alarabi et al. [12] presented an effective framework named
SHAREK which can embed inside existing approaches to
improve the performance and quality. The model took into
consideration the users' maximum willing waiting time and the
cost of both riders and drivers. Three consecutive phases
named Euclidian temporal pruning, Euclidian cost pruning,
and Semi-Euclidean skyline-aware pruning were used to avoid
the expensive shortest path computations.

 Qian et al. [13] introduced SCRAM in order to provide
recommendation fairness without sacrificing driving
efficiency, the by-product of a framework named SCRAM
was the capability of offering actual driving routes rather than
rough driving directions. The recommended routes were
evaluated from three aspects, i.e., priority principle, decaying
principle, sharing principle. The successive probability of
picking up customers had higher priority than the driving cost,
and the probabilities of road sections were appraised
decreasingly with the distance from the starting point.

 Huang et al. [14] proposed a large scale service guarantee
real-time ride-sharing, and demonstrated kinetic tree
algorithms which can satisfy dynamic scheduling requests.
They depicted a hotspot-based algorithm to avoid duplicates
computation, the drop-off locations were grouped which led to
a large number of valid schedules to satisfy the rider-driver
constraints.

In [15,16], a genetic and insertion heuristic algorithm for a
single rider was proposed. The main idea was to fine the best
trips which can be shared by more than one driver with time
constraints. They first modeled the ride-sharing problem with
the time constraints, then illustrated the detailed
implementation steps of the genetic algorithm. They also
defined five different mutation operators basing on diverse

services time constraints. The experimentation results
indicated their algorithm was feasible.

III. PROBLEM DEFINITION

In this section, we formally propose the preliminaries and
define the notions of our ride-sharing problem, and then depict
the framework of our system.

A. Preliminaries

 Definition 1. G = (V, E) is used to model a road network,
where a vertex set V is associated with a geographical position,
including the longitude and latitude. An edge set E is
associated with the weight such as the distance or travel cost
between two different vertices.

Definition 2. (Rider). A rider ri=(r
s
i, r

e
i, tr

e
, tr

L
, tr-r

L
) is

defined as a rider who intends to go to the destination r
e
i from

r
s
i within an interval bounded by the earliest time tr

e
 and the

latest time tr
L
. (Driver). A driver di=(d

s
i, d

e
i, td

e
, td

L
, d

s
i, t

e
i, λmax)

is defined as a driver who plans to go to the destination d
e
i

from d
s
i,, at the latest start time td

L
 with a acceptable detour

distance ratio λmax. D denotes the drivers set, R denotes the
riders set.

Definition 3. (Sharing ratio for driver) considering the
driver's minimum detour distance λ max, we introduce the
sharing ratio to measure the ride-sharing effectiveness.

 (1)
,

,
, det ,

i j

j

j j

i

i i

r
d r

r our d r

（d ）

（d ）+

δ (di,rj)stands for the shortest distance of rider rj, the

 de o , jit ur d r refers to the cost of detour distance to pick up or

put down the riders. We assume that if the sharing ratio is less
than the ratio bound (λmax), the match is valid. Some key
notations are summarized in Table 1 [7]:

Table 1. Some Key Notaions

Notation Definition

r
s
i rider's start point

r
e
i rider's destination point

tr
e
 rider's earliest start time

tr
L
 rider's latest start time

tr-r
L
 rider's latest reach time

td
e
 driver's earliest start time

td
L
 driver's latest start time

d
s
i, driver's start point

d
e
i driver's destination point

λ max driver's maximum acceptable detour ratio

ξ (d,r) detour distance for matched pair

B. Problem definition

The ride-sharing problem is defined as follows: For a set
of drivers and a set of riders on a road network G(V,E), when
the riders send series requests, we aim to satisfy the requests

251

and acquire the maximum sharing matching ratio denoted

by
,

,detour
ji r

i j

d D R

d r

 under the temporal and distance

factors [9]. In Figure 1, there are 3 drivers and 3 riders, we
aim to match the drivers and riders with the minimum detour
distance.

V1

V4 V6

V2

V9

V11

V7

V3

V1 0

V8

V12

V5

d1(v1,v8)

d2(v7,v3)

 d3(v2,v10)

r1(v4,v8)

 r2(v3,v11)

 r3(v10,v2)...

Fig. 1. Example of ride-sharing between drivers and riders

IV. A SIMULATED ANNEALING GENETIC ALGORITHM

Our goal is to minimize the detour distance for whole
riders' requests, it is obvious a global optimization problem. A
brute force method is to enumerate all possible driver-rider
pairs. However, traditional approaches are rather time
consuming and inefficiency. To tackle the challenges, we first
divide the map into many regular squares to quickly find the
approximate shortest distance, and then introduce a heuristic
simulated annealing genetic algorithm (SAGA) to address the
optimal driver-rider pairs matter.

A. Grid construction

To calculate the shortest path on road networks, Ma et
al.[10] presented a spatial gird which did pre-calculation and
stored the shortest path by dividing the map into small fixed
square areas [18]. Their main ideas lay in the approximate
path and distance. Similarly, we also utilize this basic ideas,
select the history hottest visited places on behalf of the grid's
location, and then construct the shortest distance matrix and
the shortest path matrix. For any two arbitrary points, we first
figure out which girds they geographically belong to, then we
acquire the shortest distance by querying the corresponding
grid matrix.

B. Formulation representation

The bi-objective function that minimizes the total distance
and maximizes the number of the valid matched pairs is
provided in Equation 2. The α, β, γ define the relative weight
factors. Let xi,j=1 if the driver-rider pair is matched from node
i to node j. The formulation is,

 ,

, ,

) (), 2
i n

i j

D r R x D y R

i n

d

max(detou rr d x

subject to:

 {0,1}ijx (3)

i j

i D j R

d r D R

 (4)

ij numberx D (5)

ij numberx R (6)

r

L

d

et t (7)

r

L L

dt t (8)

 max,i jd r (9)

where Constraint (3) enforces the matched pairs have only
two choices: 0 or 1. Constraints (4) ensures that the number of
drivers and riders leaving the starting is equal to the number of
drivers and riders arriving at the destination. Constraints (5)
and Constraints (6) ensures the total matched driver-rider are
less than the total initial given drivers. Constraints (7) ensures
driver's latest start time is earlier than rider's earliest start time.
Constraints (8) ensures driver's latest start time is earlier than
rider's latest start time. Constraints (9) ensures driver's detour
distance is less than the driver's default acceptable detour
distance.

C. Procedure of SAGA

The procedure of SAGA is described in Figure 2. The
GASA process firstly starts by given some important
parameters such as population size, initial temperature,
number of generations, probability of crossover and mutation.
An initial population of chromosome is also generated, every
chromosome is a candidate solution for problem [17].

Generate initial random

population, set

parameters

Calculate every

chromosome’s

neighborhood f(j)=U(i)

Set new chromosome

as f(j)

Y

Accept new chromosome

with above probability

Select new chromosome by fi(tk)
probability distribution

 Chromosome crossover

Chromosome mutation

new next generation

population

End

N

N

Loop M1 times

Loop M2 times

Start

Meet the stop
condition

Fig. 2. SAGA procedure for ride-sharing

min()
exp() 1

k

f i f

t

min()
() exp()k

k

f i f
Calculate t

t

 ｉｆ

252

For every chromosome, we use the objective function
(Equation 2) as a fitness function. The selection of fitness
function directly affects the convergence speed of genetic
algorithm. A random value U(i) as f(j) is selected from the
neighborhood of f(i), then probability function

k

f (j) - f (i)
(-)

t
exp is calculated. If the value is greater than

constant one, then accept the neighborhood f(j) as the new
chromosome, else accept the new one with above probability.
After above steps have been executed in M1 cycles, new
population named NewPopOne where the size is equal to the
initial population is generated. Later, the fitness of each

chromosome represented by function min

k

f () - f
(-)

t

i
exp is

calculated, afterward, new chromosome with the probability
distribution determined by above fitness function is generated,
that process which is executed in M2 cycles finally results in
the next new population named NewPopTwo. In addition, the
crossover and mutation strategies are executed to create
offspring until the next new population is generated.

The above mentioned steps are repeated until the results
meet the expectation value or iteration operations are all
completed.

D. Problem coding

We randomly assemble the driver-rider matched pairs
successively in one chromosome, the length of the
chromosome depends on the minimum of drivers or riders.
The whole population is set as 50. Figure 3 presents the
problem coding.

parent 1:

1 4 8 8 7 3 11 3 2 10 2 10

parent 2:

1 3 11 8 7 10 2 3 2 4 8 10

parent i:

......

Fig. 3. Chromsome initial coding

E. Annealing Algorithm Fundamentals

In general, the key to integrate the two algorithms lies in
how to select the next generation, the SAGA selects the next
generation with the higher probability of getting close to the
target in the range of neighborhood, in which the algorithmic
process is a constant random walk from one state to another.
We can use Markov process to describe the transfer
probability, acceptance probability.

The challenge of Annealing Algorithm are as follows:

(1) The initial temperature t0. When the initial temperature
is high, it is more likely to search for the global optimal
solution, but it takes a lot of computation time. On the other
hand, the computation time can be decrease, but the global
search performance may be affected.

(2) The annealing speed. The global search performance is
closely related to the number of iterations at each temperature
t. "Full" search at the same temperature is quite necessary, but
it also takes time to calculate. The increase of the number of
loop cycles will inevitably lead to an augment in computation
overhead. We use the following function [18]:

1

k+1

0

1 0

t (1) (10)

(11)

k k

f

f

t t

t t

M t t

the t0 and the tf are default value, M1 is the number of
iterations. In theory, SA can solve most of the optimization
problems, but in practice, due to the global optimum annealing
speed is too slow to be accepted. In this article, we select the
cooling strategy as follows:

min()
f () exp() (12)i k

k

f i f
t

t

while the fmin denotes the minimum of fitness value in
population. According to the Metropolis criterion [21], the
probability that particles tend to equilibrate at temperature t is
exp (-ΔE / (kT)), where E is the internal energy at temperature
T, k is Boltzmann's constant. Metropolis formulation are often
expressed as follows:

1 () ()

p (13)() ()
exp() () ()

new old

new old

k

if E x E x

f j f i
if E x E x

t

 which means the algorithm is more likely to accept sort-
of-bad jumps rather than complete refuse to accept it, the
probability gradually decreases over time till solution becomes
global stability.

F. Crossover

The function of the crossover is to ensure the stability of
the population and evolvement towards the optimal solution.
Crossover can facilitate avoiding premature convergence.
Chromosome crossover doesn't mean descendants are definite
better than their parents, but represent the next generations
have a better development tendency than the previous
generation. There are many kinds of crossover methods, multi-
point crossover refers to exchanging the multiple crossover
points in an individual chromosome. In this paper, we use the
method of position-based multi-point crossover (PBC) [20]:

As in Figure 4, first, we select a random pair of
chromosomes (parents) in population, the location may not be
continuous, but the two parents chromosomes were selected at
the same location; Second, a pro-offspring with the guarantee
that the selected gene position is located at the same with the
parents position is generated. Third, we find the position of the
gene selected in the first step in another parent, and then put
the remaining genes sequentially into the pro-offspring
generated in the previous step 2.

parent 1:

1 4 8 8 7 3 11 3 2 10 2 10

253

proto-child:

 7 3 11 3

offspring 1:
1 10 2 8 7 3 11 3 2 4 8 10

parent 2:

1 3 11 8 7 10 2 3 2 4 8 10

Fig. 4. Chromosome crossover

G. mutation

The role of mutation is to ensure the vast diversity of the
population with the operation that change the value of a
particular gene from one generation of a population, that also
can avoid the possible convergence of local convergence. In
this work, the probability of mutation is set as 0.01~0.1.

V. PERFORMANCE EVALUATION

In this section, we conduct experiments and evaluate the
performance of our algorithm by using real trajectories dataset.
We use the Beijing road data with about 300,000 vertices and
400,000 edges, and utilize two historical trajectories datasets,
the Taxi, which contains about 100,000 trajectories of user
orders generated by more than 5,000 public taxicabs in one
month in Beijing, Ucar [7], which contains about 300,000
trajectories of user orders generated by more than 4,000 public
taxicabs in two weeks in Beijing. The riders' trajectories
include start and destination point, earliest start time, latest
start time, latest reach time, the drivers' trajectories includes
start and destination point, earliest start time, latest start time.
We also simulate some drivers trajectories by using history
hottest start and destination points. Experimental settings: All
experiments are run on a machine equipped with 3.6 GHz Intel
Core i7-4790 CPU, 16GB RAM, window7 OS and algorithms
implemented in Python 27.

We evaluate the algorithms mainly from two aspects, the
running time, the shared path ratio. We compare our algorithm
with the XAR [11], TGA [15]. We conduct our experiments
for different number of drivers from 3000 to 15000 with a
fixed number of riders (i.e., 9000). By default, t0 = 100, tf = 10,
and M1=1000 for SAGA algorithm. We make use of the grid
matrix in Section 4 when compute the shortest distance.

A. Efficiency

We assess the efficiency by fixing the number of drivers as
9000 while varying the number of riders from 3000 to 12000

presented by x-axis. In Figure 5a, 5b, we set the same number
of iterations as 800 for SAGA and GA. Figure 5 shows the
results corresponding to different algorithms. We can see that
SAGA is greater than the pure genetic algorithm(GA).
Meanwhile, since the SAGA takes advantage of a fast
acceleration adaptation function, the running time is not too
high. From Figure 5c and Figure 5d, our algorithm running
time is superior to XAR and TGA.

B. Effectiveness

Figure 6 shows the performance of average shared path
ratio. The number of iteration is set as 800 for SAGA and GA.
We have the following observations that the matched ratio of
SAGA is higher than the GA, because the SAGA search in the
range of chromosome neighborhood, thereby avoiding falling
into local optimal. Figure 6c and Figure 6d show that our
algorithm ratio is within 72%-75%, and is better than baseline
algorithms within 65%-54%.

C. The effects of the parameter：descent speed M1

We evaluate how the annealing descent speed affects the
running time and the matching ratio. We set parameter M1 as
500, 1000, 1500 for SAGA_t1, SAGA_t2, SAGA_t3
respectively, the results are shown in Figure 7. The larger the
M1 is, the faster the evolution change. We have the following
observations in Figure 7, as M1 grows, the running time also
increase, this is because it requires more loop iteration
calculations. Meanwhile, from Figure 7b and Figure 7d, the
approximate matched ratio enlarge as well, because it is
possible to gain more candidate chromosomes from the
neighborhood of old chromosomes.

VI. CONCLUSION

In this work, we utilize real dataset to model a ride-sharing
problem and present a simulated annealing genetic algorithm
to address it. The proposed SAGA outperforms commonly
baseline algorithms including XAR and TGA. We run a
careful iterative turning process, and the extensive
experiments on large car services datasets show the advantage
of our algorithm.

There are three interesting directions for the future work,
(a)we will incorporate traffic conditions to assemble the
candidate riders, (b)consider the ride-sharing with social
networks, (c)introduce artificial intelligence algorithm to solve
the ride-sharing problem.

3000 6000 9000 12000 15000

0

50

100

150

ru
n
n
in

g
 t
im

e
(s

)

(a) TaxiDataset, 9000 drivers

 SAGA

 GA

3000 6000 9000 12000 15000

30

60

90

120

150

180

ru
n
n
in

g
 t
im

e
 (

s
)

(b) UcarDataset, 9000 drivers

 SAGA

 GA

3000 6000 9000 12000 15000

30

60

90

120

150

180

ru
n
n
in

g
 t
im

e
(s

)

(c) TaxiDataset, 9000 drivers

 SAGA

 XAR

 TGA

3000 6000 9000 12000 15000

30

60

90

120

150

180

ru
n
n
in

g
 t
im

e
(s

)

(d) UcarDataset, 9000 drivers

 SAGA

 XAR

 TGA

Fig. 5. Comparison of running time taken by SAGA, GA, XAR,TGA

254

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h
a
re

 p
a
th

 r
a
ti
o

(a) TaxiDataset, 9000 drivers

 SAGA

 GA

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h
a
re

 p
a
th

 r
a
ti
o

(b) UcarDataset, 9000 drivers

 SAGA

 GA

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h
a
re

 p
a
th

 r
a
ti
o

(c) TaxiDataset, 9000 drivers

 SAGA

 XAR

 TGA

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h
a
re

 p
a
th

 r
a
ti
o

(d) UcarDataset, 9000 drivers

 SAGA

 XAR

 TGA

Fig. 6. Comparison of share path ratio taken by SAGA, GA, XAR,TGA

3000 6000 9000 12000 15000

0

40

80

120

160

ru
n

n
in

g
 t
im

e
(s

)

(a) TaxiDataset, 9000 drivers

 SAGA_t1

 SAGA_t2

 SAGA_t3

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h

a
re

 p
a
th

 r
a
ti
o

(b) TaxiDataset, 9000 drivers

 SAGA_t1

 SAGA_t2

 SAGA_t3

3000 6000 9000 12000 15000

0

50

100

150

200

ru
n

n
in

g
 t
im

e
(s

)

(c) UcarDataset, 9000 drivers

 SAGA_t1

 SAGA_t2

 SAGA_t3

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h

a
re

 p
a
th

 r
a
ti
o

(d) UcarDataset, 9000 drivers

 SAGA_t1

 SAGA_t2

 SAGA_t3

Fig. 7. Performance of running time and share path ratio by varying descent speed M1

ACKNOWLEDGMENT

This work was supported by NSFC(91646202), the
National High-tech R&D Program of
China(SS2015AA020102), Research/Project 2017YB142
supported by Ministry of Education of The People's
Republic of China, the 1000-Talent program, Tsinghua
University Initiative Scientific Research Program.

REFERENCE

1. Bartolini E, Bodin L, Mingozzi A. The traveling salesman

problem with pickup, delivery, and ride‐ time constraints[J].

Networks, 2016, 67(2): 95-110.

2. Agatz N, Erera A, Savelsbergh M, et al. Optimization for

dynamic ride-sharing: A review[J]. European Journal of

Operational Research, 2012, 223(2): 295-303.

3. Deb K, Pratap A, Agarwal S, et al. A fast and elitist

multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions

on evolutionary computation, 2002, 6(2): 182-197.

4. Z. Chen, H. T. Shen, X. Zhou. Monitoring path nearest neighbor

in road networks. SIGMOD, pages 591–602, 2009.

5. Goel P, Kulik L, Ramamohanarao K. Optimal pick up point

selection for effective ride sharing[J]. IEEE Transactions on Big

Data, 2017, 3(2): 154-168.

6. Asghari M, Shahabi C. An On-line Truthful and Individually

Rational Pricing Mechanism for Ride-sharing[J]. 2017.

7. Ta N, Li G, Zhao T, et al. An Efficient Ride-Sharing Framework

for Maximizing Shared Route[J]. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 2017.

8. Jia Y, Xu W, Liu X. An Optimization Framework For Online

Ride-sharing Markets[C]//Distributed Computing Systems

(ICDCS), 2017: 826-835.

9. Furuhata M, Dessouky M, Ordó?ez F, et al. Ridesharing: The

state-of-the-art and future directions[J]. Transportation Research

Part B: Methodological, 2013, 57: 28-46.

10. Ma S, Zheng Y, Wolfson O. T-share: A large-scale dynamic

taxi ridesharing service[C]//Data Engineering (ICDE), 29th

International Conference on. IEEE, 2013: 410-421.

11. Thangaraj R S, Mukherjee K, Raravi G, et al. Xhare-a-Ride: A

Search Optimized Dynamic Ride Sharing System with

Approximation Guarantee[C]//Data Engineering (ICDE), 2017

IEEE 33rd International Conference on. IEEE, 2017: 1117-1128.

12. Alarabi L, Cao B, Zhao L, et al. A demonstration of SHAREK:

an efficient matching framework for ride sharing

systems[C]//Proceedings of the 24th ACM SIGSPATIAL. ACM,

2016: 95.

13. Qian S, Cao J, Mou?l F L, et al. SCRAM: a sharing considered

route assignment mechanism for fair taxi route

recommendations[C]//Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining. ACM, 2015: 955-964.

14. Huang Y, Bastani F, Jin R, et al. Large scale real-time

ridesharing with service guarantee on road networks[J]. Pro-

ceedings of the VLDB Endowment, 2014, 7(14): 2017-2028.

15. Herbawi W, Weber M. The ride matching problem with time

windows in dynamic ridesharing: A model and a genetic

algorithm[C]//Evolutionary Computation (CEC), 2012 IEEE

Congress on. IEEE, 2012: 1-8.

16. Herbawi W M, Weber M. A genetic and insertion heuristic

algorithm for solving the dynamic ridematching problem with

time windows[C]//Proceedings of the 14th annual conference on

Genetic and evolutionary computation. ACM, 2012: 385-392.

17. Shen B, Zhao Y, Li G, et al. V-Tree: Efficient kNN Search on

Moving Objects with Road-Network Constraints[C]//Data

Engineering (ICDE), 2017 IEEE 33rd International Conference

on. IEEE, 2017: 609-620.

18. Wenxun Xing, Jinxing Xie. Modern optimization calculation

method[M]. Tsinghua University Press, 2005

19. Pham D, Karaboga D. Intelligent optimisation techniques:

genetic algorithms, tabu search, simulated annealing and neural

networks[M]. Springer Science & Business Media, 2012.

20. Razali N M, Geraghty J. Genetic algorithm performance with

different selection strategies in solving TSP[C]//Proceedings of

the world congress on engineering. Hong Kong: International

Association of Engineers, 2011, 2: 1134-1139.
21.Van Laarhoven PJM. Simulated annealing[M]//Simulated
annealing: Theory and applications. Springer, Dordrecht, 1987.

255

*Corresponding Author
10.18293/SEKE2018-101

A Mutilple-Level Assessment System for Smart City Street Cleanliness
Wenrui Li1, Bharat Bhushan2, Jerry Gao2,3*

1School of Information Engineering, Nanjing Xiao Zhuang University, Nanjing, China
2Department of Software Engineering, San Jose State University, San Jose, USA

3School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
Email Address: {wenrui_li@163.com; Bharat.Bhushan@sjsu.edu; jerry.gao@sjsu.edu}

Abstract—Advancement in mobile, cloud technologies and
IoT has made the world even smaller and connected like
never before. It has become a challenge and an opportunity
for cities to leverage these growing technologies to solve real
city administration problems. Cities are in the
transformation state to become state of the art smart-city
using these technologies. This paper is about the automation
of street cleanliness assessment in near real-time. It answers
the question of how can we assess the status of streets more
efficiently and effectively. In order to address the problem,
this paper proposes a multiple-level assessment service
system on how the cleanliness status of streets is collected
using mobile stations, connected via city network, analyzed
in the cloud and presented to city administrators online or
on mobile. The real applications show the usability and
feasibility of our system. This also gives opportunities to city
residents to participate and contribute towards making the
city a better place.

Keywords- Smart City, Street Cleaning, Litter Detection,
Machine Learning, Cloud Computing, Dashboards

I INTRODUCTION

Street cleaning is an important city service, which
involves a set of activities concerning the cleanliness of
the street (usually defined as pavements and adjoining
edges of roads and grassed and planted areas) [1].
Therefore, it involves street-sweeping (whether manual or
machine), litter-picking, the uplift of fly-tipped refuse and
the removal of graffiti and flyposting. When the street
cleaning service is ineffective, the evidence is visible.
And it could cause a significant impact on the quality of
life and the attractiveness of its neighborhoods, towns and
cities [2][3]. Moreover, people believe that there are the
links between environmental problems and other forms of
disorder and crime in cities [4]. On the other hand, good
quality street cleaning service in a city provides and
contributes the good environmental quality in its
communities and neighborhoods, which can help urban
development, make places attractive to tourists, investors
and mobile workers [5]. Moreover, the effective street
cleanliness could reduce the costs in cleaning
underground water systems for cities.
In 2016, the city of San Jose has set up its goal for 2020
to provide a real-time city dashboard based on its city
map to present the city street cleanliness to the public.
The major objective is to provide more cost-effective and
efficient street clean services and improve the quality of
life for its neighborhoods by providing a more attractive

clean environment. Since 2017, the research center of
Smart Technology, Computing, and Complex System in
San Jose State University has been teamed up with the
Environment Service Department (EDS) in the City of
San Jose to develop an innovative smart digital street
cleanliness assessment service system, known as
SmartClean, based collected camera-based images using a
cruise car on city streets. SmartClean is developed based
on a well-defined street cleanliness assessment model
with digital standards using machine learning
technologies. In summary, the major contributions and
distinct features of SmartClean service system for the city
of San Jose are highlighted below..
 The system implemented the first and innovative

hierarchical grid-based city street cleanliness
assessment model [14] for digital processing, map-
based regional analysis, street cleanliness pattern
analysis and prediction.

 The system is the first one supporting automatic
detection of diverse city street litter objects using
machine learning techniques [13] based on collected
camera images from the mobile stations as well as
users’ images. Different neural network models are
used here. Based on our recent case studies in 2017,
different types of litter object detection could
achieve over 70% to 95% accuracy for major classes
[13].

 After the system deployment, the system will be the
first cloud-based comprehensive mobile enabled
service system for city street cleanliness assessment
and diverse services.

The rest of the paper is organized as follows. Existing
work about smart city cleanliness is surveyed in Section II.
Section III gives an overview and detail of our assessment
model used in the paper. Section IV shows the
architecture of our model. The implementation and case
study are provided in Section V. Finally, Section VI
concludes the paper.

II RELATED WORK

Based on our recent online search and literature survey
about the city street cleanness, we found that many cities,
industries, and IoT evangelists are still talking and
looking for innovation solutions to address this challenge
and need, even though there are some publications
discussing the related issues and solutions. In addition to
some case study reports [1][6][7], the closely related
initiatives and solutions are summarized below.

256

Clean Street LA [8] is an initiative challenge launched by
the Landon City Mayor, and its objective is to use the
ESRI GIS tool to map and plot the street cleanliness status
block by block. Multiple layers and grids are created to
reflect different parts of the city. Cleanliness information
on the streets with a cleanliness score is visualized on a
map. This information is used to decide the area that
requires attention and cleaning services. However, the
limitation of the system is that the monitoring is limited to
Garbage bins and cannot be extended to monitor city
streets.
LondonCleanStreets (UK) [9] is a crowdsourcing-based
system which can keep the streets of London clean with
cloud computing. Also, LoveCleanStreets is a
crowdsourcing based online portal, which has a mobile
app for the public to snap pictures and submit to local
councils. This is widespread in UK and surrounding
countries. It has an interactive map using Microsoft
silver-light technology. Reports illegal dumping, potholes,
and graffiti complain and shows clean-up time has
improved by 87%.
SmartBin [10] is an intelligent monitoring solution which
can enable waste management and recycling companies to
optimize their collection operations and maximize the use
of valuable resources. They do this by deploying
SmartBin wireless ultrasonic sensors to a wide range of
containers and using the data intelligence to drive
operational efficiencies including optimized routes, asset
tracking, and cost analysis. SmartBin sensors leverage the
latest in IoT and cellular network technologies. However,
the limitation is that the information is fed manually into
the system. Also, the system is not real time and requires
human intervention to update the status.
Spot Garbage [11] is a crowdsourcing approach based on
the public inputs about the street clean status, where a
crowdsourced platform is developed to use the pictures
contributed by the public. The process of trash detection
is automated. The limitation is that the litter in the images
is not classified into object classes.
In [12], a mobile app is developed to evaluate the Street
Cleanliness and Waste Collection Service. This app is
based on a Plan of Indicators that can be used to evaluate
the Street Cleanliness and Waste Collection Service of
Santander municipality. Specific methodologies for
calculating and evaluating 59 indicators have been
developed to obtain information regarding the status of
the different elements of the service. Pearson correlation
coefficient results suggest that an inverse relationship
between the Street Cleanliness Index values and the
Frequency Street Cleanliness Services/population density
ratio exists.

III ASSESSMENT MODEL - LDAS

A. Overview

Fig.1 shows the various modules and the interconnection

between them. The proposed system has three layers.
- Edge: This layer is the layer where the data

collection takes place in the form of images from
streets. This data along with location coordinate is
sent to cloud for processing.

- Cloud: This is the layer where the images are
processed using analytical tools, created or fed the
training model. Results from this layer fed to the end
user database for visualization and reporting.

- User: This is the layer where reports are generated
based on the Cloud processing. These results are
visualized for city and community.

Fig. 1 the Assessment System Overview

The proposed model depends on various attributes which
need to have well defined before and are assumed.
Assumptions are made in the following:
- Fixed image resolution and camera angle.
- Vehicle speed is approx.15 – 25 mph.
- Picture covers 150ft. of distance.

 Pictures are collected every ~3 sec.
 Set of four pictures are collected every spot in

each direction.
 Multiple pictures collected to increase the

confidence level of the machine learning system.
- Start and End Locations are predefined.
- Stable Cloud connectivity requires continuous stable

connection in order to achieve online image
transmission or offline image transmission

- Data is unique and is collected on a weekly basis for
the entire city. This can be customized.

B. Multi-level Assessment Model

Litter Detection Assessment System (LDAS) providing
the cleanliness assessment is done in layers. Lower layers
contribute to layers above. Top layer generalizes the
results of layers below. On a high level this model is
divided into four layers.
Layer 1 is the first layer which defines the city area
overall and sets the scope of assessment. This covers all

257

streets in the city and is the base layer. Layer 2 is the
second layer where a city is divided into areas from
Layer1 based on the city plan. Each area has a code. It
may not be same as zip code but would be a group of GPS
locations and distance.

Fig. 2 Assessment Layers for San Jose.

Layer3 is the third layer where each area is divided into
blocks. Each block is uniquely identified by a
combination of area and block name. Layer4 is the top
Layer which represents individual streets in the block
with individual data collection points called grid points.
Fig.3 shows the hierarchical view of San Jose City. From
the figure, we can see that city represents entire city
divided into different areas. It is divided into no. of Areas
(represented by a circle) E.g. Central San Jose or Alum
Rock. Each Area has a number of blocks e.g. 20 in
Central and 16 in Alum Rock. Color represents the
cleanliness level of area overall. Area Value (AV) is
indicated with an average of results from each block
within the area.

Figure 3: Multi-level Assessment Model

A grid is used to describe detail pictures of each point.
The formal definition of a grid is described in the
following:
Fig. 4 shows an example of the grid architecture. In the
figure, all blocks are divided into several Grid Point and
INodes. Then INodes are also divided into subsections

with SNodes. Each grid point has at most four picture
points.
All blocks collectively represent an area. The different
color-coding scheme is used to represent cleanliness level
for each area. Table 1 describes the different street
assessment levels. Grid Point is composed of all the
picture points in 150ft Radius. All pictures within this
range generate the collective value which indicates the
cleanliness level of the point. Collection of grid points
represents the Block. This includes the streets within the
block based on the latitude (lat.) and longitude (long.) and
distance in miles but can be customized. It is assumed that
the distance between two grid points is 150 feet.

Fig. 4 Layer Point Plot.

Tabel 1. litter levels along with color code
Color Level Desc.
Green A or 1 Not Littered
Yellow B or 2 Slightly Littered
Orange C or 3 Littered
Red D or 4 Very Littered

Group Point is composed of all the picture points in 150ft
Radius. All pictures within this range generate the
collective value which indicates the cleanliness level of
the point. Collection of grid points represents the Block.
This includes the streets within the block based on the
latitude (lat.) and longitude (long.) and distance in miles
but can be customized. It is assumed that the distance
between two grid points is 150 feet.

Fig. 5 Block Nodes and Edges.

Fig. 5 shows a block with intersections represented in
solid dark circles as Nodes i1, i2, i3 … iN, white circles
represent the intermediary road joins. Joining two nodes
are Edges represented by e1, e2, e3… eN. Each Edge

258

represents one-way traffic. Points, where pictures are
taken, are represented as p1, p2, …, pN. Directed Graph (G)
is used to represent entire city as one big graph as each
road has a direction.
A graph is defined as G= (N, E) where N is the set of
nodes and E is the set of edges. Each edge e E would
have a starting node and ending node represented as e = (i,
e) where i is nodes and e is edges.

e= (i (source), I (term)) (1)
Each photo point (shown as Pic Point in Fig. 4) has a
value from the ML system represented by pV (point value)
between i1 and i2. All values for each point are added and
the average is generated for each photo point pV using:

(1)
1

/
n

i in
p

pV pi n

 (2)

Once pV is calculated, the sum of n pV in a range from
both directions are averaged to generate the average value
of grid point (shown as a circle in Fig. 4) gV (grid Value)
using:

1

/
n

g

gV gi n

 (3)	

Block constitutes all gV in a distance x which is a custom
value and is a collection of all the pic point and respective
grid points as you can see in red, yellow and green. Each
color represents block average (bV) representing the
cleanliness level. This is calculated by the average value
of all the grid points in a block using:

1

/
n

b

bV bi n

 (4)

Fig.4 is also an example of the visualization of
representing the calculations above. Validation at each
photo point:

1. Four pictures from each camera are clicked in
quick succession.

2. All pictures are associated with the date and time
and also with the geo location in the as latitude
and longitude.

3. Each camera has a predefined angle and
resolution which can be customized and covers
defined range 20ft.

4. All pictures are sent to cloud for analysis and
assessment value is returned.

From Fig. 5 i1 and i2 are connected with two edges and
similarly e5 and e10 are. These two edges represent two
lanes of the same road. Every picture point on either side
of the road would be part of same grind point and will be
validating each other to confirm the cleanliness of the
same point. This would base on the GPS coordinate of
each photo point.
All blocks collectively represent the area. The different
color coding scheme is used to represent the cleanliness

level. Tab. 1 describes the litter levels along with the
color code.

IV ARCHITECTURE

Smart City Infrastructure has various components. Below
shows the components required for the cleaning
infrastructure. We are going to explore the use and
application of machine learning, mobile, and cloud
computing, Big-data, Databases, Web and UI
technologies and solutions to address the city cleaning
issues. Big data analytics implementation along with
machine learning would create an autonomous system,
which shall serve as a self-detection engine to analyze the
data on the fly. Mobile system using the latest available
wireless and Wifi networks would establish the secure
network connectivity between the edge device, cloud, and
the city infrastructure.
The system is divided into three major segments, which is
shown in Fig.2. Below is the high-level view of each
segment.
Edge: This is the edge layer where data collection takes
place in the form of pictures and location coordinates
from streets using a smart vehicle with a camera called
Mobile Station. This data along with time stamps are sent
to cloud for processing over wireless or Wifi networks. At
this layer, mobile station controller and mobile apps are
the interfaces to the users. A mobile app is created to
simulate this layer.
Cloud/Server: This is the layer where the images are
processed using analytical tools, created or feed to the
training model. Results from this layer fed to the end user
database for visualization and reporting. This layer runs
various services like web application servicer to connect
to multiple mobile stations and receive data, database
services, and Web server services. In our practical system,
Amazon Web Service (AWS) is used to simulate the
cloud enabling the connectivity between the mobile
stations and cloud services for city administrators.
User: This is the layer where users, city administrators
and residents can interact with the system. A dashboard
created for city admin to monitor and control the system
as a single pane of glass. A map view can see the street
cleanliness level. Analytics shows various statistics on
different sections of the city, management, and feedback
of the system. Various reports can be generated based on
the user requests. These results are then visualized for city
and community.

A. High-Level System Layers.

The approach is composed of different layers in order to
have more flexibility and scalability. Each layer has a
different component and functions; which are maintained
independently to minimize the impact on the entire
system. Lower layer contributes to the layer above. Upper
layers depend on lower layers. High availability is set to
be achieved by using a clustered approach in the cloud. At

259

a high level, there are two partitions of the system as
shown in Fig. 7.

Fig.7 High-level Architecture
Edge Service or Mobile Station – This is the set of
services run and managed on Mobile stations, which also
serves as the client to cloud system. These are trucks or
special vehicles, which connect to cloud service and
updates continuously with latest updates. They have a
local controller to manage edge service and have their
own computer, repository, security and communication
protocols for cloud connection. There is also a mobile app
where the users can communicate with the cloud. This
layer is heavily dependent on the network and needs to
maintain a persistent connection with the cloud in order to
have a real or near real-time communication.
Cloud Service or Server Side – This service includes
various sub service and is composed of many modules or
layers, which interact with clients and with each other and
are running continuously. UI and Dashboards are setups
for city administrators and other city officials. Part of it
would be visible to public. Reporting and Analytics to
reflect the assessment of the streets, blocks, zip codes, and
city as a whole. It has management functionality for
admin to manage the system. Various backend service
like database and monitoring runs to monitor the system.
It also has a detection engine, which is a machine learning
based analytical engine running visual recognition
algorithm to classify the images for cleanliness levels.
These services designed to be highly available and visible
to city admins and truck drivers and other users.

Figure 8: Detailed Systems Architecture.

B. Detailed Architecture

Architectures with all modules are described below.
Figure 8 shows all the components with every submodule
we have.

1) Mobile Station Controller
This component controls the functionality of the mobile
station. It is a specialized device mounted on every
mobile truck and manages the services like connectivity
to cloud, compute resources, local storage, monitoring,
and security. It notifies the city admin for any alerts or
issues with the mobile station. It enables the camera to
take pictures, store them locally and transmit them using
the wireless network to cloud.

2) Street Cleaning UI
Cloud user interface offers services to users who can view
the current status of streets or blocks. City admin can
view the status of mobile stations. Cleaning dispatch can
be made using this interface and feedbacks received can
be handled from the same view. System performance and
alerts are also managed from UI by respective city admins.
This UI is linked to the database and all events are logged.
City admin can manage users like user registration,
approvals, and access control. All system alerts and any
feedback received can be acknowledged from this same
view.

3) Street Cleaning Dashboard
Cleaning dashboard is the module where the status of the
entire system is visible to city admin. This includes
cleanliness status in grid view, on street basis. Mobile
station status is monitored from the same interface.
There is a submodule known as Street Cleaning Detection
Engine with two subcomponents names Street Cleaning
Analytics and Metrics, which are an external system. Our
project when integrated with this external system would
enable getting image processed for cleanliness level. This
also includes database services for various engines and
API end-points, which are being monitored from this
dashboard along with system performance.

4) Street Cleaning Service Protocols
Service protocol refers to the inter-connectivity between
various components of the system. This connectivity
enables the data flow from mobile station to end users. It
connects all mobile stations via wireless protocols
including Mobile networks like 4G or LTE or city Wi-Fi.
This layer also handles communication between various
components of the cloud from application to database to
detection engine.
Mobile Stations are connected to cloud services over the
Internet, which rely on the wireless or Wi-Fi network. 4G
or better connectivity is required for real-time
communication. As soon as mobile station starts, it makes
various network connectivity checks. Once connectivity is
established, TCP connections are established between a
mobile station and cloud services. Custom ports are used
for secure communications.

260

Service Requests are handled on cloud services and use
secure TCP protocol. It also uses authentication for each
mobile station. Every mobile station is uniquely identified
using a combination of use rid and mobile station id. It
can be further enhanced at camera level.
DB connection control mechanism handles the
connections to a database. In our case, most of the
connections are made from cloud service for mobile and
the application service. All DB connection is made over
TCP and is authenticated. For security reason, we have
kept DB services on a separate instance and it also
decouples the app from database layer and gives the
flexibility. UI connection modules are plugged into the
web application service. Users are authenticated using a
common separate database over TCP.

V IMPLEMENTATION

An attempt is made to simulate the end-to-end
functionality using a mobile app, cloud service and a UI.
Machine Learning is an external module. Mobile stations
(MS) are connected via mobile network preferred
4G/LTE. Testing is done by creating a mobile app. MS
would be specialized devices with the specifications
provided by a city.

A. Use case:

Data is collected at mobile stations and then fed to a
database in cloud for analysis and modeling. We created a
mobile app to simulate same and collected actual data in
San Jose city. This app at start performs checks like
Network connectivity, Storage space on device and
connectivity to cloud service. If any of the check fails it
can report to administrator via email or SMS (text) to
predefined contact. Data collected can be transmitted to
cloud in real time or offline depending on network
connectivity.
Certain assumptions were made to perform test. All
images collected are transferred to cloud based database
and then fed to machine learning for analysis. Data can be
downloaded manually in case network connectivity is not
available.
On the cloud side, data receiving application service run
continuously which is used by all mobile stations. Images
are stored on filesystem and metadata is stored in
database for each image. We used AWS (Amazon Web
Services)[11] cloud service to simulate the cloud
connectivity and able to transmit data from mobile to
cloud and update database. APIs are used to connect to
machine learning module to get the result on each photo.
Application service connects to machine learning system
and to the font-end database. NoSQL[12] and MySQL
based databases are used to store and manage the data.
NoSQL database would be used to have a detailed
analysis and would be recording the fine details of each
picture with assessment level. This would also be the base
of all historic data and feed the trends and decision

making for future. MySQL would be a backend database
for the dashboards.
User dashboards are created for city and residents. This
also has an admin module which can be integrated with
other city systems like weather, traffic or dispatch.
Residents can also view the latest activities on the street
cleaning and can contribute as a feedback or suggestions.

B. Analysis – Point Level

Point level analysis is the core and the granular level of
assessment. This is the key for entire system. Below are
the attributes of the point analysis. At least four pictures
are taken at every point. Two points distance is
customizable by admin and will be defined as part of the
configuration. From the experiences, we have taken 20Ft.
as a distance based on the speed limits. Pictures will be
sent to the cloud along with meta-data i.e. date, time,
location, image path. Log information will be stored on
device periodically. Each point will be represented in a
different color to indicate the level cleanliness level.
Figure 9 shows an example point level analysis, where a
figure is shown in four pictures, left, front, right and back.
If there are litters in these pictures, they can be caught by
these pictures for analysis.

Figure 9: Picture Point.

C. Analysis – Street Level

From each point on a street between start (S) and end (E)
points, all numbers would be averaged to generate an
overall assessment of the street. The assessment would be
done for every street. Results are stored in DB with image
reference, date time and level. Each street is a part of one
block. Grid based analysis and part of the block. Figure
10 is an example of street level analysis.

Figure 10: Street Level

261

D. Analysis – Block Level

It is an aggregate of all the points on the block. Block
Assessment Value is an aggregate value of all streets. The
assessment would be based on every street in the block
and the aggregate value. Results are stored in DB with
image reference, date time and level. Block can have any
number of streets. Everything is based on each data points.
Figure 11 is an example of block level analysis.

Figure 11: Block Level Analysis

E. Analysis – Area level
Based on the block level analysis, area level analysis can
also be performed. Figure 12 is an example of area level
analysis. Area is a combination of many blocks with
different colors.

Figure 12: Area Level Analysis

VI CONCLUSION

In order for a city to become a smart city, infrastructure
needs to be upgraded to next level. A clean city is the
essential component and reflects the image of the city for
residents and visitors. This system can also be well
integrated with other city systems like traffic, weather etc.
Residents can also contribute and help city using this
system by providing feedback and by reporting any issues
identified by them. This system can be implemented by
any city and in fact, this can act as one big system as a
grid of cities. Security and access can be controlled by
individual city administrators.

VII ACKNOWLEDGMENT

The authors thank the strong support from SJSU

Excellence Research Center on Smart Technology,
Computing, and Complex Systems, and Jesse Huang and
Rob Xiaoming Ding at Futurewei Technologies, Inc. and
Jo Zientek, Anna.Szabo, and Ed Ramirez at
Environmental Service Department in the City of San
Jose, especially. This work was also supported in part by
the Research Fund of Nanjing Xiao Zhuang University
under Grant 2016NXY16, and the Key Laboratory of
Trusted Cloud Computing and Big Data Analysis under
Grant 15BDA02.

REFERENCES
[1] Annette Hastings, Nick Bailey, Glen Bramley, Rob Croudace, and

David Watkins, “Street cleanliness in deprived and better-off
neighborhoods - A clean sweep?”, Technical Report, November
2009, URL:
https://www.jrf.org.uk/sites/default/files/jrf/migrated/files/neighbo
urhood-street-cleanliness-full.pdf

[2] A. Parkes, A. Kearns, and R. Atkinson, (2002), “What makes
people dissatisfied with their neighborhoods?”, Urban Studies, Vol.
39, No. 13, pp. 2413–38.

[3] Silverman, E., Lupton, R. and Fenton, A. (2006), “Attracting and
Retaining Families in New Urban. Mixed Income Communities”,
York: Joseph Rowntree Foundation.

[4] Home Office (2006) Respect Action Plan. London: Home Office.

[5] Hastings, A., Flint, J., McKenzie, C. and Mills, C. (2005) Cleaning
Up Neighborhoods: Environmental Problems and Service
Provision in Deprived Areas. Bristol: The Policy Press.

[6] Edinburgh Council, UK, “Street cleanliness”, URL:
www.edinburgh.gov.uk/download/downloads/id/3273/soe_street_c
leanliness.pdf.

[7] Hastings, A., Bailey, N., Bramley, G., Croudace, R. and Watkins,
D., 2009. Street cleanliness in deprived and better-off
neighbourhoods”, URL: https://www.jrf.org.uk/report/street-
cleanliness-deprived-and-better-neighbourhoods-clean-sweep.

[8] Clean Street LA, “Clean Streets LA Challenge”,
http://cleanstreetsla.com/clean-streets-challenge/

[9] A. E. F. Seghrouchni, F. Ishikawa, Hérault Laurent, and H. Tokuda,
Enablers for smart cities. London: ISTE, 2016.

[10] Sharma, Narayan, Nirman Singha, and Tanmoy Dutta. "Smart Bin
Implementation for Smart Cities." International Journal of
Scientific & Engineering Research 6.9 (2015): 787-791.

[11] Spot Garbage - Detects Garbage using Artificial Intelligence,
https://www.youtube.com/watch?v=cTkCsz5C8zs

[12] López, I., Gutiérrez, V., Collantes, F., Gil, D., Revilla, R., & Gil, J.
L. (2017). Developing an indicators plan and software for
evaluating Street Cleanliness and Waste Collection Services.
Journal of Urban Management.

[13] Chandni Balchandani, Rakshith Koravadi Hatwar, Parteek Makkar,
Yanki Shah, Pooja Yelure, Magdalini Eirinaki: A Deep Learning
Framework for Smart Street Cleaning, IEEE BigDataService 2017:
112-117.

[14] Wenrui Li, Bharat Bhushan, Jerry Gao, “A Multiple-Level
Assessment Model and System for City Street Cleanliness”,
Technical Report, 2017, which has been submitted for publication
in 2018...

262

Method and System for Detecting Anomalous User
Behaviors: An Ensemble Approach

Xiangyu Xi∗†, Tong Zhang∗†, Guoliang Zhao§, Dongdong Du†‡, Qing Gao‡, Wen Zhao † and Shikun Zhang†
∗School of Software and Microelectronics, Peking University

†National Engineering Research Center for Software Engineering, Peking University
‡School of Electronics Engineering and Computer Science, Peking University

§CASIC-CQC Software Testing and Assessment Technology(Beijing) Corporation
email:{xixy,zhangtong17,dudong,gaoqing,zhaowen,zhangsk}@pku.edu.cn

Abstract—Malicious user behavior that does not trigger access
violation or data leak alert is difficult to detect. Using the stolen
login credentials, the intruder doing espionage will first try
to stay undetected, silently collect data that he is authorized
to access from the company network. This paper presents an
overview of User Behavior Analytics Platform built to collect logs,
extract features and detect anomalous users which may contain
potential insider threats. Besides, a multi-algorithms ensemble,
combining OCSVM, RNN and Isolation Forest, is introduced.
The experiment showed that the system with an ensemble of
unsupervised anomaly detection algorithms can detect abnormal
user behavior patterns. The experiment results indicate that
OCSVM and RNN suffer from anomalies in the training set,
and iForest gives more false positives and false negatives, while
the ensemble of three algorithms has great performance and
achieves recall 96.55% and accuracy 91.24% on average.

Index Terms—anomaly detection, insider threat, user behavior,
unsupervised learning, ensemble

I. INTRODUCTION

Insider threat has emerged in enterprise security and re-
ceived increasing attention over last several years. A survey
[1] by Haystack shows 56% of respondents feel that insider
attacks have become more frequent. Privileged IT users such
as administrators with access to sensitive information, pose the
biggest insider threat. IT assets such as databases, file servers
and mobile devices are top assets at risk.

Insider threat is defined as any activity by military, gov-
ernment, or private company employees whose actions or
inactions, by intent or negligence, result (or could result) in the
loss of critical information or valued assets [2]. Two types of
insider threats are distinguished: malicious insider threats and
unintentional insider threats [3]. The first threat is a current
or former employee, contractor, or business partner who has
or had authorized access to an organizations network, system,
or data and intentionally exceeded or misused that access in
a manner that negatively affected the confidentiality, integrity,
or availability of the organizations information or information
systems. The attempted attack by a Fannie Mae employee after
being dismissed is a typical example of an insider threat likely
motivated by revenge [4]. The second form is from insiders
without malicious intent [5] such as human mistakes, errors.

This work was partially supported by National Key Research and Devel-
opment Program of China (No. 2017YFB0802900).

DOI reference number: 10.18293/SEKE2018-036

A key problem discussed frequently is to detect compromised
user accounts and insiders within the company, which does
not induce enormous data flow and/or any access violation
[6]. For example, an attacker may steal user credentials using
social engineering and access sensitive information or copy
it to untrusted storage. In this scenario, security systems
such as firewalls, IDS [7] or Security Information and Event
Management(SIEM), and Data Leak Prevention System(DLP)
[8] cannot detect effectively. Relying on analysts to investigate
attacks is costly and time-consuming, as they have to deal with
millions of logs.

User Behavior Analytics, which has been used in online
social media analysis [9] and improving web search ranking
[10] , is emerging in security area. User behavior analytics
is a cyber security process about detection of insider threats,
targeted attacks, and financial fraud. They look at patterns
of human behavior, and then apply algorithms and statistical
analysis to detect meaningful anomalies from those patterns
[11]. UBA collects various types of data such as organization
structure, user roles and job responsibilities, user activity trace
and geographical location. The analysis algorithms consider
factors including contextual information, continuous activities,
duration of sessions, and peer group activity to compare
anomaly behavior. UBA determines the baseline of normal
behavior of individual user or peer group according to history
data. The deviation of ongoing user activities compared with
past normal behavior is significant if the user acts abnormally
[12].

This paper introduces an User Behavior Analytics Platform
built to detect potential insider threats. Specifically, the plat-
form can 1) collect and preprocess logs from systems and
applications; 2) extract each user’s activity records from logs;
3) aggregate activity records and generate feature vector for
each user; 4) detect anomalous user access. Besides, an ensem-
ble by multiple unsupervised anomaly detection algorithms
is proposed and shows great performance in detecting user’s
anomalous access and operation within enterprise.

This paper is organized as follows. Section 2 introduces
related work. User behavior analytics architecture and platform
which contains four components is presented in Section 3.
Section 4 introduces experiment scenario, data characteristics
and feature selection. In Section 5, anomaly detection algo-

263

rithms for user behavior analytics are demonstrated. Section 6
gives dataset, experiment and results. Besides, discussion and
comparison of algorithms are demonstrated. Finally, section 7
concludes the paper and provides future work.

II. RELATED WORK

Anomaly detection is an important problem that has been
researched within diverse research areas and application do-
mains including information security [13]. Research of ap-
plying anomaly detection is popular in intrusion detection
[7], fraud detection [14] [15], medical and public health
anomaly detection and industrial damage detection. Many
anomaly detection techniques have been specifically developed
for certain application domains, while others are more generic.

Anomaly detection techniques being applied to user behav-
ior analytics is increasingly popular. Veeramachaneni K et
al. [16] put forward AI2 that combines analyst intelligence
with an ensemble of three outlier detection methods to detect
account takeover, new account fraud and service abuse.

Madhu Shashanka et al. [17] presented the User and Entity
Behavior Analytics(UEBA) module of the Niara Security
Analytics Platform which uses a SVD-based algorithm to
detect anomalies in user accessing server within an enterprise.
Both users historical baseline and peer baseline are applied
with same algorithm.

Sapegin A et al. [18] proposed a poisson-based two-step
algorithm to identify anomaly user access to workstation
within Windows domain. However, the dataset is from sim-
ulation scenario and of limited features. The algorithms are
not persuasive enough and of limited extensibility.

Wei Ma et al. [19] defined a user behavior pattern and
proposed a knowledge-driven user pattern discovery approach
which can extract users behavior patterns from audit logs from
distributed medical imaging systems. The work is emphasized
on extracting user behavior patterns and there is a long way
to go before administrator directly use it.

Li at al. [20] proposed a kind of security audit technology
based on one-class support vector machine detect the abnormal
behavior of database operations.

III. USER BEHAVIOR ANALYTICS ARCHITECTURE AND
PLATFORM

In this section, an architecture of user behavior analytics
is presented. Based on that, the implementation of our UBA
platform is described.

Relying on analysts to investigate attacks is costly and
time-consuming, as they have to deal with millions of logs
and alerts. Our UBA platform collects logs about user-related
events and user session activity in real-time or near real-time,
and compares each and every action to the corresponding
baseline of users to spot anomalies in their behavior. Based on
detection results, a risk label or score that reveals human risk
will be assigned to every user, which is helpful and meaningful
for security analysts especially when analysts investigate or
monitor employees for suspicious behaviors or attacks. Fig.1
provides the architecture composed of four components. Each
of them is described in the following.

User
Directory System Logs Application

Logs 3rd Party API

Real-Time Data Collection Component

Activity Record Generation Component

Filter Normalize Enrich

Centralized Raw Log

Activity Records

Feature Extraction Component

Feature Vectors

Anomaly Detection Component

One Class SVM Isolation Forest Replicator Neural
Network

Anomaly Detection Results

Fig. 1. Architecture of User Behavior Analytics Platform

A. Data Collection Component

Data collection component stores raw logs generated by
systems and applications for further extraction and analysis.
The collected raw logs are stored in ElasticSearch [21] ,
which is a distributed, JSON-based search and analytics engine
designed for horizontal scalability, maximum reliability, and
easy management. Logs of users accessing ftp server within
enterprise and operations such as downloading, uploading,
deleting files or directories are collected. The user information
can be gathered from activity directory of the enterprise.

Data source our platform can process includes:
1) system logs,
2) application logs such as web access logs and DLP logs,
3) user directory logs, etc.

B. Activity Record Generation Component

Centralized raw logs are of respective unique formats from
which feature cannot be extracted directly. For example,
apache server logs and windows security logs consist of
different items. Due to the lack of normalized formats, activity
record generation component

1) builds a general schema for activity records,

264

2) generates regular expressions as filters for each type of
log to extract useful information,

3) fills the schema with extracted information.
Then the activity records with user information are generated,
which will be processed in the following Feature Extraction
Component.

C. Feature Extraction Component

After generating normalized activity records with user
information attached, we compute user behavioral features
over an interval of time such as 24 hours. For performance
consideration, the strategy from [16] is applied. Each hour
we retrieve activity records within last hour and compute the
features labeled with last hour. In midnight, we only need to
retrieve the 23 feature sets and activity records within last hour
rather than activity records within last 24 hours.

D. Anomaly Detection Component

With features extracted for each user, anomaly detection
component detects anomalous users on a daily basis. The
component is designed losely coupled, flexible and indepen-
dent from other components. The details of algorithms are
demonstrated in V.

IV. DATA CHARACTERISTICS

In this section, a scenario within a typical software company
is introduced. The behavior of employees accessing ftp files
and data within work groups are monitored and audit logs are
generated and collected by UBA platform presented before.
Then dataset and feature selection is introduced.

A. Experiment Scenario

Consider a file server within an enterprise, authorized em-
ployees can access the server for files and data with different
authorization, which normally is configured by the adminis-
trator. For example, one can read, write, upload, download or
delete files or directories. As documents and data are important
information, accessing and operations need to be monitored for
possible actions from compromised accounts or rogue users.
UBA platform monitors the access patterns and operation
patterns of each user while accessing the server and files.

B. Dataset

The ftp server logs are collected by the data collection
component presented before. In total 8 kinds of logs are
collected and each corresponds to 1 or more types of events.
For example, Download Log only represents Download Event
and the log carries information including timestamp, user
name, SUCCESS/FAIL flag and client IP. An UPLOAD LOG
may represent an upload file/directory event, create file event
or remote copy event and cannot be distinguished by content
as different events share same format. Table I shows the
representation map between logs and events.

We collected operation logs within a software company for
3 months and selected four employees with explicit different
behavior patterns. Activity records generated were checked

TABLE I
LOGS AND CORRESPONDING EVENTS

LOG EVENT
CONNECT LOG CONNECT Event
LOGIN LOG Login Event
DOWNLOAD LOG Download Event

UPLOAD LOG
Upload Event
Create File Event
Remote Copy Event

DELETE LOG Delete File Event
Delete Directory Event

MKDIR LOG Make Directory Event
RMDIR LOG Remove Directory Event

RENAME LOG Rename Event
Remotely Move Files Event

and all can be considered as normal behaviors so we simulate
several abnormal operations for each user as testing dataset.
Based on investigation in the enterprise, abnormal behaviors
mainly include four categories shown in Table II.

TABLE II
CATEGORIES OF ABNORMAL BEHAVIOR

anomaly ID Description
anomaly 1 multiple login attempts and failures
anomaly 2 anomalous downloads operations
anomaly 3 anomalous delete operations
anomaly 4 operations at non-working hours

C. Feature Selection
With activity records generated by activity record generation

component, feature extraction component produces a feature
vector for each user daily, which characterize the pattern of
users’ access to ftp server and operations. The features are
shown in Table III. The features for a user daily is denoted

TABLE III
THE LIST OF FEATURES. 21 FEATURES ARE EXTRACTED AND USED IN

TOTAL.

Feature ID Description
1 number of total connections of the day
2 timestamp of first login attempt of the day
3 timestamp of last login attempt of the day
4 number of login success of the day
5 number of login fail of the day
6 total download bytes
7 number of download success of the day
8 number of download fail of the day
9 largest download bytes of the day

10 total upload bytes
11 number of upload success of the day
12 number of upload fail of the day
13 largest upload bytes of the day
14 number of delete success of the day
15 number of delete fail of the day
16 number of mkdir success of the day
17 number of mkdir fail of the day
18 number of rmdir success of the day
19 number of rmdir fail of the day
20 number of rename success of the day
21 number of rename fail of the day

by 21-dimention vector x = (x1, x2, ..., x21).

265

O

Fig. 2. diagram of OCSVM hyperplane

V. ALGORITHM

UBA platform practically is fed with data without label,
which motivates us to use unsupervised anomaly detection
techniques. In practice, it’s unknown whether training set
contains abnormal data points and the proportion, different al-
gorithms are of better performance under different conditions.
For example, when training set contains normal instances
only, Replicator Neural Network and OCSVM work better, but
Isolation Forest might suffer a small reduction. As a result, an
ensemble of three unsupervised anomaly detection algorithms
is used to improve the robustness and performance.

A. One Class SVM

OCSVM, proposed by Scholkopf [22], has been applied to
anomaly detection. As Fig.2 shows, the OCSVM algorithm
maps input data into a high dimensional feature space via a
kernel and iteratively finds the maximal margin hyperplane
which best separates the training data from the origin.

min
w,ζi,ρ

1
2 ||w||

2 + 1
νn

∑n
i=1 ζi − ρ

s.t. (wTφ(xi)) > ρ− ζi, i = 1, ..., n (1)
ζi > 0, i = 1, ..., n

The decision function presented is f(x) = sgn(wTφ(x)− ρ).
After solving the dual problem below:

min
α

1
2

∑
ij αiαjk(xi, xj)

s.t. 0 ≤ αi ≤ 1
νl′
, i = 1, ..., n (2)∑n

i=1 αi = 1

The decision function is given by :

f(x) = sgn(
n∑
i=1

(αiK(xi, x)− ρ)). (3)

… …

… …

Input Output

𝑥1

𝑥n

𝑥3

𝑦1

𝑥2

𝑦n

𝑦3

𝑦2

Fig. 3. Replicator Neural Network with three hidden layers

B. Replicator Neural Network

Replicator Neural Network is an artificial feed-forward
multi-layer neural network with an output layer having the
same number of nodes as the input layer. The purpose of
Replicator Neural Network is to produce the output data which
as is similar as the input data. Fig.4 presents the structure of
the fully connected RNN with three hidden layers.

Replicator Neural Network is effective in anomaly
detection as an unsupervised machine learning algorithm
because anomalies are few and there exist some common
patterns in normal data. By the trained RNN, the common
patterns representing bulk of the data can be well reproduced,
while anomalies will have a much higher reconstruction
error. The reconstruction error for a d-dimensional instance
x = (x1, x2, ..., xd) is computed as follow:

e =

d∑
i=1

(xi − yi)2 (4)

in which d is the dimension of input vector x and y =
(y1, y2, ..., yd) is the reconstructed output.

C. Isolation Forest

Since anomalies are few and different and therefore they
are more susceptible to isolation. Based on the concept of
isolation, Isolation Forest [23] builds a set of iT rees for a
given data set, then anomalies are those instances which have
short average path lengths on the iT rees. For example, in
Fig.4, the red outlier (8.7, 9.2) is isolated at first split, while
normal points marked as blue need more than 3 splits in the
isolation tree.

To be specific, for a given dataset, iTrees are constructed
by recursively partitioning the given training set until instances
are isolated or a specific tree height is reached. There are only
two variables in this method:

1) the number of trees to build t, and
2) the sub-sampling size ψ

Path length h(x) of a point x is measured by the number
of edges x traverses an iT ree from the root node until the
traversal is terminated at an external node. The anomaly score
s of an instance x is defined as:

s(x, n) = 2−
E(h(x))

c(n) , (5)

266

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

(a) Training Data

x>16.0

y>26.3

Y

(8.7,9.2)

N

x>29.8

Y

x>30.1

Y

(32.1,29.8)

Y

y>35.0

N

(31.4,18.8)

Y

y>22.6

N

(28.5,37.1)

Y

x>24.5

N

(29.3,24.1)

Y

(25.3,21.1)

N

(26.2,28.9)

Y

(22.7,33.2)

N

(b) Generated Isolation Tree

Fig. 4. Isolation Tree Generated with data set

where E(h(x)) is the average of h(x) from the trained
collection of isolation trees.

D. Ensemble and Strictly Filtering

We combine the predictions of three algorithms introduced
before and apply the strictly filtering strategy to predict
whether a user is anomalous or not. OCSVM directly produces
label y ∈ {0, 1}. Output of RNN is reconstruction error
err ∈ IR while iForest generates anomaly score s(x, n) =

2−
E(h(x))

c(n) ∈ (0, 1). Labels are given by comparing output with
corresponding threshold. Output 0 represents abnormal while
1 represents normal.

fOCSVM (x;X) =

{
0,
1

(6)

fiForest(x;X) =

{
0, s(x, n) > ε1
1, s(x, n) ≤ ε1

(7)

fRNN (x;X) =

{
0, err(x) > ε2
1, err(x) ≤ ε2

(8)

where “;X” indicates the model is trained with X as training
set. As recall is an important measure metric in security,
we apply strictly filtering strategy and regard data point as
abnormal as long as any of the three algorithms outputs 0,
shown by formula 9 and 10.

f(x;X) = fOCSVM (x;X) + fiForest(x;X) + fRNN (x;X)
(9)

s(x;X)=

{
0, f(x;X) < 3
1, f(x;X) = 3

(10)

Given the kth user’s historical behavior Xk =
[x1k, x

2
k, ..., x

i
k..., x

m
k], in which i ∈ {1, 2, ...,m} denotes

the index of days and xik = (xi,1k , xi,2k ..., xi,21k)T is the feature
vector of kth user in ithday.

For kth user with feature vector to be detected and denoted
by x̂k = (x̂1k, x̂

2
k..., x̂

21
k)T , the prediction is given by:

scorek = s(x̂k, Xk) (11)

VI. EXPERIMENT AND RESULTS

A. Experiment Setup

Data preserved on ftp server is not enough so we perform
a simulation after fitting the data collected with a polynomial
distribution. Besides, a small proportion 2.06% and 4.03% of
anomalous user behaviors is mixed into training set to find out
performance when training sets mixed with different purities.
Hence three training sets are used as Table IV shows and the
data sets are composed of five categories.

In OCSVM, we exploit LIBSVM [24] and RBF kernel
K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0, where γ = 0.01
and ν = 0.05 is selected as parameters.

In iT ree,number of trees t = 200 and the sub-sampling
size ψ = 200. The threshold ε1 = 0.45.

A RNN with 3 hidden layers is applied and the number of
neurons in each layer is [20, 8, 4, 8, 20]. Activation function
tanh(z) = ez−e−z

ez+e−z is selected. The threshold selected is
ε2 = 1.20. Based on stochastic gradient descent, the training
contains 60,000 train epochs and batch-size is set 20.

B. Results and Discussion

The detection rate of single algorithm in different category
of testing data is shown in Table V. Assuming abnormal
data points is our focus and marked as positive, the overall
accuracy, precision and recall is shown in Table VI.

With anomaly-free training set, OCSVM has best perfor-
mance with recall=100% and accuracy=96.72%. All of the
anomalies can be detected. With more anomaly points in the
training set, performance of OCSVM gets worse. With 4.03%
anomaly points, the recall is 75.86% and accuracy is 81.39%.

267

TABLE IV
COMPOSITION OF TRAINING SETS AND TESTING SET. TRAINING SETS WITH 0%, 2.06% AND 4.03% OF ANOMALIES MIXED INTO ARE USED.

dataset normal anomaly 1 anomaly 2 anomaly 3 anomaly 4 total anomalies
proportion

training set 1 1000 0 0 0 0 1000 0.00%
training set 2 1000 6 6 3 6 1021 2.06%
training set 3 1000 12 12 6 12 1042 4.03%

testing set 100 45 47 32 50 274 63.50%

TABLE V
DETECTION RATE OF OCSVM, RNN AND iForest WITH DIFFERENT TRAINING SETS

category training set 1(0.00%) training set 2(2.06%) training set 3(4.03%)
OCSVM RNN iForest OCSVM RNN iForest OCSVM RNN iForest

normal 91.00% 92.00% 51.00% 91.00% 88.00 % 87.00% 91.00% 92.00% 87.00%
anomaly 1 100.00% 100.00% 100.00% 93.33% 100.00% 91.11% 82.22% 62.22% 77.78%
anomaly 2 100.00% 100.00% 100.00% 79.59% 97.87% 68.09% 89.36% 55.32% 65.96%
anomaly 3 100.00% 100.00% 100.00% 100.00% 100.00% 68.75% 100.00% 81.25% 100.00%
anomaly 4 100.00% 92.00% 78.00% 54.00% 90.00% 38.00% 42.00% 92.00% 36.00%

TABLE VI
ACCURACY, PRECISION AND RECALL OF OCSVM, RNN AND iForest WITH DIFFERENT TRAINING SETS

category training set 1(0.00%) training set 2(2.06%) training set 3(4.03%)
accuracy precision recall accuracy precision recall accuracy precision recall

OCSVM 96.72% 95.08% 100.00% 83.58% 93.88% 79.31% 81.39% 94.29% 75.86%
RNN 95.62% 95.51% 97.70% 93.43% 93.33% 96.55% 79.56% 94.03% 72.41%

iForest 78.10% 76.89% 93.68% 73.58% 89.76% 65.52% 74.09% 89.92% 66.67%
ensemble 91.60% 88.32% 100.00% 90.88% 89.84% 96.55% 91.24% 93.10% 93.10%

RNN has the similar performance and trend to
OCSVM. Fig.5 shows the mean reconstruction error
e =

∑d
i=1 (xi − yi)2 of 5 categories of test data during

RNN training with 2.06% anomalies in training set. The
training process converged and abnormal data has higher
reconstruction error which makes separating possible. The
mean reconstruction error of normal data is 0,539, much
lower than abnormal data in testing dataset (4.947, 3.887,
8.627, 2.409). However, the time cost of training is much
higher than other algorithms.

Isolation Forest has the worst performance of the three
algorithms as Table V and Table VI shows. With training
set 2, the anomaly score of test data from Isolation Forest is
presented in Fig.6. The normal data has a lower anomaly score
0.390 than anomaly data (0.490,0.487,0.475,0.442). However,
scores of some data are pretty close as Fig.6 shows, especially
the data of operations at non-working hour. In each category
of anomaly data we simulated, data is anomaly in only few
dimensions. At training stage, attribute and split point is
randomly selected. Statistically it’s hard to split data with
anomalous attributes before the tree goes deep. However, if
the training set has more complicated and real anomalies,
iForest can be of better performance. Besides, the threshold
ε1 can be adjusted flexibly, which is a valuable characteristic.
In addition, iForest didn’t suffer an obvious reduction with
more anomalies mixed in the training set.

Table VI shows that the ensemble and strictly filtering
strategy improve robustness and performance especially recall.

0 1 2 3 4 5 6
training step ×104

0

5

10

15

20

25

30

35

re
co

ns
tru

ct
io

n
er

ro
r

loss

training set
testing set - normal
testing set - abnormal 1
testing set - abnormal 2
testing set - abnormal 3
testing set - abnormal 4

Fig. 5. Mean reconstruction error during training with Replicator Neural
Network.

When anomalies in training set increase, algorithms alone are
less reliable. With 2.06% anomalies in training set, the ensem-
ble gives recall=96.55% and accuracy=90.88%. With 4.03%
anomalies in the training set, RNN has recall=72.41% and
accuracy=79.56%, while the ensemble has great performance
recall=93.10% and accuracy=91.24%. It can be a good and

268

0.3 0.4 0.5 0.6
(a) testing set - normal

0

0.1

0.2

0.3

0.3 0.4 0.5 0.6
(b) testing set - abnormal 1

0

0.1

0.2

0.3

0.3 0.4 0.5 0.6
(c) testing set - abnormal 2

0

0.1

0.2

0.3

0.3 0.4 0.5 0.6
(d) testing set - abnormal 3

0

0.1

0.2

0.3

0.3 0.4 0.5 0.6
(e) testing set - abnormal 4

0

0.1

0.2

0.3

Fig. 6. Anomaly Score of Isolation Forest for test data of different categories

optional strategy especially when security analysts focus on
recall.

VII. CONCLUSION AND FUTURE WORK

This paper presents an overview of UBA architecture and
platform for detecting anomalous user behaviors within enter-
prise. The platform, composed of four components working
independently, is suitable for running on distributed platforms.
The anomaly detection component contains an ensemble of
OCSVM, RNN and Isolation Forest. Strictly filtering strategy
is applied and can improve the performance and robustness no
matter whether there exist anomalies in the training set.

The sequences of events contain valuable information about
users and we will focus on anomaly detection of sequence
data. Besides, the peer group analysis, which may play an
important role in practice, can be introduced into the UBA
platform in the future.

REFERENCES

[1] New haystax technology survey shows most organizations ill-prepared
for insider threats. https://haystax.com/blog/2017/03/29/new-haystax-
technology-survey-shows-most-organizations-ill-prepared-for-insider-
threats/ (accessed December, 2017).

[2] A. P. Moore, K. A. Kennedy, and T. J. Dover, “Introduction to the
special issue on insider threat modeling and simulation,” Computational
and Mathematical Organization Theory, vol. 22, no. 3, pp. 261–272,
2016.

[3] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak, The CERT guide
to insider threats: how to prevent, detect, and respond to information
technology crimes (Theft, Sabotage, Fraud). Addison-Wesley, 2012.

[4] U. A. Office. Fannie mae corporate intruder sentenced to over
three years in prison for attempting to wipe out fannie mae
financial data. https://archives.fbi.gov/archives/baltimore/press-
releases/2010/ba121710.htm/ (accessed December, 2017).

[5] F. I. P. Bureau, “Unintentional insider threats: A foundational study,”
2013.

[6] M. Uma and G. Padmavathi, “A survey on various cyber attacks and
their classification.” IJ Network Security, vol. 15, no. 5, pp. 390–396,
2013.

[7] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[8] A. Shabtai, Y. Elovici, and L. Rokach, A survey of data leakage detection
and prevention solutions. Springer Science & Business Media, 2012.

[9] Y. Amichai-Hamburger and G. Vinitzky, “Social network use and
personality,” Computers in human behavior, vol. 26, no. 6, pp. 1289–
1295, 2010.

[10] E. Agichtein, E. Brill, and S. Dumais, “Improving web search ranking
by incorporating user behavior information,” in Proceedings of the
29th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2006, pp. 19–26.

[11] T. Bussa, A. Litan, and T. Phillips, “Market guide for user and entity be-
havior analytics,” URL: https://www. gartner. com/doc/3538217/market-
guide-user-entity-behavior (29.07. 2017), 2016.

[12] W. Ma, “User behavior pattern based security provisioning for dis-
tributed systems,” Ph.D. dissertation, 2016.

[13] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[14] D. J. Weston, D. J. Hand, N. M. Adams, C. Whitrow, and P. Juszczak,
“Plastic card fraud detection using peer group analysis,” Advances in
Data Analysis and Classification, vol. 2, no. 1, pp. 45–62, 2008.

[15] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A survey of anomaly
detection techniques in financial domain,” Future Generation Computer
Systems, vol. 55, pp. 278–288, 2016.

[16] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li,
“Aiˆ 2: training a big data machine to defend,” in Big Data Security
on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International
Conference on Intelligent Data and Security (IDS), 2016 IEEE 2nd
International Conference on. IEEE, 2016, pp. 49–54.

[17] M. Shashanka, M.-Y. Shen, and J. Wang, “User and entity behavior
analytics for enterprise security,” in Big Data (Big Data), 2016 IEEE
International Conference on. IEEE, 2016, pp. 1867–1874.

[18] A. Sapegin, A. Amirkhanyan, M. Gawron, F. Cheng, and C. Meinel,
“Poisson-based anomaly detection for identifying malicious user be-
haviour,” in International Conference on Mobile, Secure and Pro-
grammable Networking. Springer, 2015, pp. 134–150.

[19] W. Ma, K. Sartipi, and D. Bender, “Knowledge-driven user behavior pat-
tern discovery for system security enhancement,” International Journal
of Software Engineering and Knowledge Engineering, vol. 26, no. 03,
pp. 379–404, 2016.

[20] Y. Li, T. Zhang, Y. Y. Ma, and C. Zhou, “Anomaly detection of user
behavior for database security audit based on ocsvm,” in Information
Science and Control Engineering (ICISCE), 2016 3rd International
Conference on. IEEE, 2016, pp. 214–219.

[21] elasticsearch.io. https://www.elastic.co/products/elasticsearch (accessed
December, 2017).

[22] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Platt, “Support vector method for novelty detection,” in Advances
in neural information processing systems, 2000, pp. 582–588.

[23] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Data Mining,
2008. ICDM’08. Eighth IEEE International Conference on. IEEE, 2008,
pp. 413–422.

[24] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

269

Modeling and Verification of IEEE 802.11i Security
Protocol for Internet of Things

Yuteng Lu and Meng Sun
LMAM & Department of Informatics, School of Mathematical Sciences,

Peking University, Beijing, China
{luyuteng,sunm}@pku.edu.cn

Abstract—IEEE 802.11i is the IEEE standard that provides
enhanced MAC security and has been widely used in wireless
networks and Internet of Things. It improves IEEE 802.11(1999)
by providing a Robust Security Network (RSN) with two new
protocols: the 4-way handshake and the Group-key handshake.
These protocols utilize the authentication services and port access
control described in IEEE 802.1X to establish and change the
appropriate cryptographic keys. In this paper, we carry out
a formal modeling and verification approach based on timed
automata for IEEE 802.11i protocol, using the UPPAAL model
checker, to check correctness of the changes in IEEE 802.11i
protocol and provide better security.
Keywords: IEEE802.11i Protocol, Model Checking, 4-Way Hand-
shake, Group-Way Handshake, UPPAAL

I. INTRODUCTION

The Internet-of-Things (IoT) [5], [17] is an evolving
paradigm that offers a family of sophisticated computing
services and physical instruments which cooperate with each
other over the Internet. It has gained increased attention in
the past decade due to rapid development in computing and
storage technologies and easy access to the Internet, and brings
promising opportunities and challenges. IoT has played a
key role in the next generation of information, network, and
communication systems. With the rapid development of IoT,
security of communication, being of paramount importance,
has attracted more and more attention. Since the intruder can
attack a network remotely, the industry has been trying to
introduce various security protocols to improve the security
of the wireless network and IoT.

IEEE 802.11 is a set of standards defined by IEEE for
wireless network communication, such as 802.11e for QoS en-
hancement of 802.11, 802.11k for radio resource management,
and 802.11n for high throughput enhancement, and so on. In
the actual usage, IEEE802.11 exposed a lot of security issues,
so IEEE also developed a set of IEEE802.11 amendment
to make up for its fragile security encryption, which is the
IEEE802.11i protocol being studied in this paper.

Industrial practice has shown that in the design of a complex
protocol, more time and effort are usually spent on verification
of the correctness of the protocol, rather than in the formu-
lation of the protocol itself. Formal verification techniques,
especially model checking [3], aim to establish correctness
with mathematical rigor and offer a large potential to obtain

DOI reference number: 10.18293/SEKE2018-060.

an early integration of verification in the design process,
to make verification activities more effective, and to reduce
the verification time. For these reasons, model checking has
been recognized as an important method to guarantee the
correctness of protocols formally and avoid further odious
problems caused by errors in early stage.

A large body of literature for analysis and verification of
IEEE 802.11i protocol already exist. For example, the High-
level Petri Net (HPN) model was adopted in [10] to specify
the protocol framework of the 4-way handshake protocol, and
model checking techniques are used to carry out the security
verification on the HPN models. In [11] a logic based approach
is taken to verify several properties of some typical methods in
extensible authentication protocol, which are major solutions
in IEEE 802.11i implementation. The behavior tree models for
IEEE 802.11i RSN were developed and verified by using the
SAL model checker in [15]. The IEEE 802.11i amendment
is analyzed and a number of potential threats are identified in
[18]. The 4-way handshake authentication WPA-PSK protocol
in IEEE802.11i was verified in [13] using the CasperFDR
model checker. On the other hand, the 4-way handshake phase
in IEEE 802.11i Standard has been analyzed in [1] using
theorem prover Isabelle to identify a new Denial-of-Service
(DoS) attack. A key refreshing technique to reduce 4-way
handshake latency in 802.11i based networks was proposed
in [14] which provides per frame key freshness and generates
a new refreshed secret key for encryption of each frame.
However, most of these works only focus on part of IEEE
802.11i protocol and ignore the other parts.

In this paper, we investigate the usage of UPPAAL [16]
to analyze and verify different protocols in the IEEE 802.11i
standard. UPPAAL is a toolbox for verification of real-time
systems that can be modeled as networks of timed automata
(TA) [2] extended with integer variables, structured data
types, and channel synchronization. UPPAAL can be used to
automatically check whether a given property is satisfied by
a system. The query language of UPPAAL used to specify
the properties to be checked is a subset of CTL. It uses a
client-server architecture, splitting the tool into a graphical
user interface and a model checking engine. The UPPAAL
model checker is based on the theory of timed automata and its
modeling language offers additional features such as bounded
integer variables and urgency. In the past decades, UPPAAL
has been applied successfully in various industrial case studies

270

ranging from communication protocols to multimedia applica-
tions, such as Bounded Retransmission Protocol [4], Bang &
Olufsen audio / video protocol [6] and Philips audio protocol
[9].

In an actual network communication, after the user login the
network, whether its landing time is more than the scheduled
time and in each time period whether it is still online are the
problems that the authentication side must concern about. So
timing parameters play an essential role in the IEEE 802.11i
protocol, especially for communications in wireless networks
and IoT. In addition, our work also examines whether the
protocol will be deadlocked, which is a vital security attribute
in communication. For wireless network and IoT, it is also
an important issue that the interactive port can eventually be
opened normally.

The rest of this paper is organized as follows: The IEEE
802.11i standard is briefly described in Section II. Section
III presents the analysis of the IEEE 802.1x protocol which
is used in the authentication process of IEEE 802.11i. Then
the verification of 4-Way Handshake for key management and
distribution and the Group Key Handshake in UPPAAL is
provided in Section IV. Section V concludes the paper and
discusses possible future work.

II. THE IEEE 802.11I PROTOCOL

IEEE802.11i is an IEEE standard designed to provide
enhanced MAC security in wireless networks, which enhances
the IEEE 802.11 standard in terms of security by providing a
Robust Security Network (RSN) [7]. The protocol consists of
several parts, including a 802.1X authentication phase using
TLS over EAP, the 4-way handshake protocol to establish
a fresh session key, and an optional Group Key Handshake
protocol for group communications. This series of protocols
together define a RSN.

The 4-way handshake protocol and the Group Key Hand-
shake protocol utilize the authentication services and port
access control described in IEEE 802.1X [8]. Authentication
services involve three parts: the applicant, the certifier, and
the authentication server. The applicant is a client device that
needs to be connected to a LAN / WAN, and can also refer
to software that runs on the client and provides credentials to
the certifier. The verifier behaves like a guard of a protected
network. Applicants (such as client devices) do not allow
authenticated access to the protected side of the network
until the identity of the applicant is verified and authorized.
And the authentication server is typically a host running
RADIUS and EAP-enabled protocols. The EAP data is first
encapsulated in an EAPOL frame and transmitted between
the supplicant and the authenticator, and then encapsulated in
RADIUS or Diameter, transmitted between the verifier and the
authentication server.

The initial authentication process is carried out either using
a pre-shared key (PSK), or following an EAP exchange
through 802.1X. If a 802.1X EAP exchange was carried out,
the PMK is derived from the EAP parameters provided by
the authentication server. The supplicant and the authenticator

use this handshake to confirm the existence of the PMK, verify
the selection of the cipher suite, and derive a fresh Pairwise
Transient Key(PTK), based on the shared PMK, the nonces
and MAC addresses. In case of multicast application, the au-
thenticator will generate a fresh Group Temporary Key(GTK)
and may distribute a GTK to supplicants. During the Group
Key Handshake, the same PMK may be used repeatedly for
multiple times.

III. VERIFYING THE IEEE802.1X PROTOCOL

In this section we first introduce the working principle of the
IEEE 802.1x protocol and verify some important properties.
The details of the message forwarding in the protocol and its
specific implementation process are described in Figure 1.

Figure 1. Message Forwarding in the IEEE 802.1X Protocol

When a user requests to access the network, the sup-
plicant receives the user’s request login information and
sends the start message “EAPoL-Start” to the authentica-
tor to trigger the authentication process. Once receiving the
“EAPoL-Start” packet from the supplicant, the authentica-
tor sends a request to the supplicant asking for the user iden-
tity. After receiving the “EAPoL-Request[Identity]”
packet from the authenticator, the supplicant sends the
user identity to the authenticator. Then, the authentica-
tor passes the user identity through the RADIUS Access-
Request “EAPoL-Response[Identity]” to the server.
After receiving the packet, the server sends an Access-
Challenge packet “EAPoL-Request[MD5 Challenge]”
to the authenticator to request a password, and then the
authenticator sends the message “EAPoL-Request[MD5
Challenge]” to the supplicant. After the supplicant receives
the packet, it sends the password to the authenticator through
the message “EAPoL-Response[MD5 Challenge]”.

271

Figure 2. UPPAAL Model for Supplicant in IEEE 802.1x Protocol

Figure 3. UPPAAL Model for Authenticator in IEEE 802.1x Protocol

After receiving the packet, the authenticator sends the
message to the server for verification. If the authentication
succeeds, the server sends the authenticator success message
“EAP-Success” to the device. The authenticator sends the
message “EAPoL-Success” to the supplicant to notify the
user that the authentication is successful. Otherwise, the server
sends an authenticator failure packet, and the authenticator
informs the supplicant of the failure of the authentication
message so that the user knows that the authentication fails.
The user can communicate normally once the authentication
successes. However, although the authentication is successful,
the legitimate users may be disconnected due to abnormal
circumstances, there may be the situation that illegal users
replace legitimate users, so the re-certification mechanism was
introduced. That is, after successful authentication for the first
time, the server authenticates the user to determine whether
the user is online and whether it is legitimate over a period of
time.

Figure 4. UPPAAL Model for Server in IEEE 802.1x Protocol

The UPPAAL templates of the automata for the supplicant,
the authenticator and the server in the IEEE 802.1x model are
provided in Figure 2, 3 and 4. They run exactly as the protocol
orders them. The main work of the IEEE802.1x protocol is to
carry out the exchange of information, for which we have
defined a number of channels. For example, the supplicant
model moves from state S0 to state S1, and sends the authen-
tication start message “EAPoLStart”, synchronizing with
the authenticator by output action EAPoLStart!, for which
we define the channel EAPoLStart. As a receiver terminal
apparatus, the authenticator moves from state A0 to state A1,
and synchronize with the supplicant by the corresponding
co-action EAPoLStart?. The supplicant, the authenticator
and the server interact with each other and their concurrent
composition leads to the protocol.

After the supplicant receives the “EAPoL-Request[MD5
Challenge]” packet, it sends the password to the authen-
ticator through the corresponding “EAPoL-Response[MD5
Challenge]” and the authenticator sends the message to the
server for verification. Once the authentication is successful,
we need to consider re-certification issues. Our model intro-
duces the time variable x to record the elapsed time after
the first authentication succeeds and the ReCertificationTIME
records re-authentication interval. After the authentication is
successful, the port is opened and the recording time starts,
correspondingly, x is initialized to 0. The state transition of the
authenticator sending the re-certification request is guarded by
“x == ReCertificationTIME”, so once the property “x
will eventually be equal to ReCertificationTIME” is satisfied,
it is guaranteed that the re-certification process can occur
normally.

Since the IEEE 802.1x protocol is used to authenticate the
identity of the user, the first property being required is that
once the authentication is successful, the network port will
open normally. Correspondingly, once the authentication fails,
the network port will not open. In addition, the protocol should
also ensure that the port can always be closed or opened, so
as to avoid the situation that the port is always closed or

272

open. Since we also consider the issue of re-authentication,
we should also ensure that the port can be opened or closed
according to the situation after each re-authentication.

Figure 5. UPPAAL Model for DosAttack in IEEE 802.1x Protocol

Authentication phase of 802.11i suffers against DoS attacks
mainly due to lack of authentication of packets [12]. In Figure
5 we define the DosAttack model to simulate a denial of
service and define a new channel, FakeEAPoStart. After
a denial of service attack, if there is no manual recovery,
a deadlock will occur and the authenticator model will stay
in the state A14. Once the Repair channel is added to the
model, the deadlock behavior will disappear.

A family of properties can be reformulated as CTL formula.
For example:

1) E<>port==1, on behalf of the port can be opened.
2) E<>port==0, on behalf of the port can be closed.
3) A[] not deadlock, on behalf of the IEEE 802.1x

protocol will not be deadlocked.
4) authenticator.A10->port==0, representing that

the port will be closed once the re- authentication
process begins.

5) authenticator.A8->port==0, representing that
once the authentication failed the port will not be
opened.

6) E<>x==ReCertificationTIME, representing that
the re-certification process will occur.

7) authenticator.A0->port==0, representing that
the port was closed initially.

The verification results given by UPPAAL show that all
these properties have been proved to be satisfied. Thus, the port
can be normally opened or closed, and there is no deadlock
in authenticating the identity of the user. After the 802.1X
authentication, a shared secret key is generated, called the
Pairwise Master Key (PMK). The PSK is derived from a
password that is put through the cryptographic hash function.
In a pre-shared-key network, the PSK is actually the PMK. If
a 802.1X EAP exchange is carried out and no deadlock can
be guaranteed, the PMK is derived from the EAP parameters
provided by the authentication server.

IV. 4-WAY HANDSHAKE AND GROUP KEY HANDSHAKE
PROTOCOLS

In this section, we first consider security properties of the
4-way handshake protocol. During the handshake, the authen-
ticator and the supplicant generate fresh nonces, then derive
a fresh PTK based on the shared PMK, the nonces, and their
MAC addresses, so that the authenticator and the supplicant
can independently prove to each other that they know the

PMK, without ever disclosing the key. They authenticate the
key material generated using keyed hashes. After this stage,
the IEEE 802.1x ports are unblocked for data packets.

Figure 6. The Authentication Process in the 4-Way Handshake Protocol

Figure 6 describes the authentication process in the 4-
way handshake protocol. In the form of first message the
authenticator (AP) sends the random number “ANonce” and
MAC address of itself. In response, the supplicant generates
another random number “SNonce”, and sends it to the AP
with the MAC address and message integrity code (MIC)
using PTK. Then, a third message is sent by the AP after
generating GTK and verifying MIC based on the PTK derived.
The supplicant verifies MIC of this message and sends a
MIC and install PTK at supplicant. After receiving the MIC
message, AP also installs PTK and the 4-way handshake
communication is completed. This is the normal way of
handshake behavior. Once the supplicant does not receive
the first message “ANonce+MAC” within the expected time
interval, it will try the authentication again. On the other
hand, the authenticator will timeout and retry the message if it
does not receive the expected message “SNonce+MAC+MIC”
within the configured time intervals.

Figure 7. UPPAAL Model for Authenticator in the 4-Way Handshake Protocol

273

Figure 8. UPPAAL Model for Supplicant in the 4-Way Handshake Protocol

Figure 9. UPPAAL Model for Hacker in the 4-Way Handshake Protocol

The UPPAAL templates of authenticator and supplicant in
the 4-way handshake protocol are described in Figure 7 and
8. The authenticator and the supplicant synchronize through
the channel. For example, Msg1! represents authenticator
sends the first message “ANonce+MAC” to supplicant, syn-
chronizing with Msg1?, representing supplicant has received
the message.

In Uppaal, we build a Hacker model and consider the
number of attacks. Hacker multiple attacks will exhaust the
memory and complete a denial of service attack. Here we
have a FakeMsg1 channel. Every time when the hacker sends
FakeMsg1 message, the Supplicant will be attacked. We use
Attack to record the number of hacker attacks. Combined
with the experience of the industry, we can notice that the
agreement will collapse when the number of attacks exceeds
a certain number limitation. In our model, once we set the
number of attacks more than 100 times, Supplicant will not
be able to reject the false information normally, thus it cannot
be restored to the initial state.

A family of properties related to the 4-way handshake
protocol have been verified in UPPAAL. For example, we have
checked whether the handshake behavior will be deadlocked,
and can eventually generate PTK. The corresponding proper-
ties are reformulated in CTL as follows:

1) A[] not deadlock, representing that the 4-way
handshake behavior will not be deadlocked.

2) E<>MIC==1, meaning that MIC eventually can be
verified so that the last message can be sent successfully
and PTK will be installed by the supplicant.

The verification results in UPPAAL show that the above
properties are satisfied.

We have not consider the attacker in this model. In the
transition from state S0 to state S1, ANonce is updated to
1, followed by the state transition as a guard so that once
ANonce has not been updated normally, the model blocks in
state S1. Attacker is in accordance with this principle on the
handshake attack. This Dos attack arises from the vulnerability
of the message Msg1. Actually, the 4-way handshake protocol
is vulnerable to Dos attack during handshake. So we use the
guard y<=ExpectedTIME1&&ANonce==1 to make sure
that we get the correct ANonce.

The authenticator may distribute a Group Temporary Key
(GTK) to supplicants in multicast applications. PTKs are used
to encrypt unicast data between a supplication station and an
authenticator, and GTKs are used to encrypt multicast data
between a supplicant station and an authenticator.

Group-key handshake contains 2-way handshake. The au-
thenticator sends message GrpMsg1 containing the new GTK
to each supplicant in the network. The GTK is encrypted and
assigned to the supplicant, and protects the data from tamper-
ing, by using a MIC. Then, the supplicant confirms receipt
of the new GTK and sends reply to the authenticator. MICs
are used to provide authentication and message integrity. This
2-way handshake lends simplicity and much less overhead to
multicast key generation and distribution to supplicants.

Figure 10. UPPAAL Model for Group Key Handshake Protocol

Figure 10 shows the models in the group-key handshake
protocol. Since group-key handshake is 2-way handshake, we
only need to define two states respectively. The authentica-
tor sends GrpMsg1 to the supplicant. Once the supplicant
synchronizes with the authenticator successfully (represented
by GrpMsg1? in Figure 10), the GTK used to protect the
data from tampering is updated (represented by the assignment
GTK:= 1 in Figure 10). Once the GTK has been updated to 1,

274

it means that the GTK has been successfully encrypted. Thus,
what we should ensure in our model now is that the supplicant
sends reply to the authenticator after confirming receipt of the
new GTK. The edge transforming from state A1 to state A0

is guarded by the condition GTK==1 so that only when GTK
is successfully received, the supplicant can send a reply.

Through the verification of our model, we can prove that
the property A[] not deadlock is satisfied, which means
that the model is not deadlock. It is further illustrated that
once the GTK has been successfully encrypted and sent to
the supplicant, group-key handshake will be able to keep
proceeding.

V. CONCLUSION AND FUTURE WORK

This paper analyzes the IEEE802.11i protocol for mutual
authentication, group communications and key establishment.
And we have considered the case of re-certification in the
protocol, which means we need adding timing issues to the
extended protocol. Using UPPAAL allows us to simulate,
debug and verify the IEEE802.11i protocol in a real time
setting. UPPAAL can be used to generate the protocol’s
simulation path and the study of time allows us to ensure
that the re-authentication process will occur. In addition, we
introduced a validation analysis of deadlock. Ensuring that
the deadlock does not occur in the protocol is the primary
requirement for regulatory security.

Designing secure and efficient key management protocol
in 802.11i standard is a significant issue. In this paper, we
model the 4-way handshake protocol with four synchroniza-
tion channels, simulating the interaction of the protocol and
consider the timeout issues. Based on the formal model,
we perform an integrated formal verification of the protocol
using UPPAAL. The verification results show that the 4-way
handshake protocol will not be deadlock if the Dos attack can
be prevented. Thus, in our further study we will consider an
enhanced 4-way handshake to repair vulnerability to attack.

Basic analysis for the 4-way handshake protocol in this
paper is based on the idealized handshake protocol shown in
Figure 6. In our model we have not considered subsequent
verification, such as verifying Message Integrity Code based
on the PTK. The PTK is generated by concatenating the
attributes PMK, ANonce, STA SNonce, MAC address of au-
thenticator and supplicant. In fact, the attacker precisely makes
the handshake deadlock by providing the wrong ANonce to
derive a wrong PTK. In the future, we will also consider
more situations, such as not successfully verifying MIC, in
our model.

Furthermore, we have just considered whether the protocol
is safe and proceeds normally and simplified the key passing
process in this work. Assuming that once the key has been
generated, the sub-protocol can run normally. This means
that we have not considered emergencies that can cause
transformation of the key failed. We will add the impact of
the environment into the formal model in the future work as
well.

ACKNOWLEDGEMENT

The work was partially supported by the National Natu-
ral Science Foundation of China under grant no. 61772038,
61532019, 61202069 and 61272160.

REFERENCES

[1] A. Alabdulatif, X. Ma, and L. Nolle. Analysing and attacking the 4-way
handshake of ieee 802.11i standard. In Proceedings of 8th International
Conference for Internet Technology and Secured Transactions, pages
382–387. IEEE, 2013.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT
Press, 2008.

[4] P. R. D’Argenio, J. Katoen, T. C. Ruys, and J. Tretmans. The bounded
retransmission protocol must be on time! In Proceedings of TACAS ’97,
volume 1217 of LNCS, pages 416–431. Springer, 1997.

[5] S. Dustdar, S. Nastic, and O. Scekic. Smart Cities - The Internet of
Things, People and Systems. Springer, 2017.

[6] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modelling
and analysis of an audio / video protocol: An industrial case study using
uppaal. In Proceedings of the 18th IEEE Real-Time Systems Symposium,
pages 2–13. IEEE Computer Society, 1997.

[7] IEEE Std 802-2014. Ieee standard for local and metropolitan area
networks: Overview and architecture, 2014.

[8] IEEE Std 802.1X-2010. Ieee standard for local and metropolitan area
networks–port-based network access control, 2010.

[9] K. G. Larsen, P. Pettersson, and W. Yi. Diagnostic model-checking
for real-time systems. In Proceedings of the 4th DIMACS Workshop
on Verification and Control of Hybrid Systems, volume 1066 of LNCS,
pages 575–586. Springer, 1996.

[10] J. Liu, X. Ye, J. Zhang, and J. Li. Security verification of 802.11i 4-
way handshake protocol. In Proceedings of ICC 2008, pages 1642–1647.
IEEE, 2008.

[11] X. Liu and A. O. Fapojuwo. Formal evaluation of major authentication
methods for IEEE 802.11i WLAN standard. In Proceedings of VTC Fall
2006, pages 1–5. IEEE, 2006.

[12] S. pyo Hong and J. Lee. Supporting secure authentication and privacy
in wireless computing. In 2006 International Conference on Hybrid In-
formation Technology(ICHIT), pages 594–599. IEEE Computer Society,
2006.

[13] K. V. K. Raju, V. Vallikumari, and K. Raju. Modeling and analysis
of ieee802.11i wpa-psk authentication protocol. In Proceedings of 3rd
International Conference on Electronics Computer Technology, pages
72–76. IEEE, 2011.

[14] R. Singh and T. P. Sharma. A key refreshing technique to reduce 4-
way handshake latency in 802.11i based networks. In Proceedings of 4th
International Conference on Computer and Communication Technology,
pages 157–162. IEEE, 2013.

[15] E. Sithirasenan, S. Zafar, and V. Muthukkumarasamy. Formal verifica-
tion of the IEEE 802.11i WLAN security protocol. In Proceedings of
(ASWEC 2006), pages 181–190. IEEE Computer Society, 2006.

[16] UPPAAL. http://www.uppaal.org/.
[17] R. H. Weber and R. Weber. Internet of Things - Legal Perspectives.

Springer, 2010.
[18] X. Xing, E. M. Shakshuki, D. G. Benoit, and T. R. Sheltami. Security

analysis and authentication improvement for IEEE 802.11i specification.
In Proceedings of GLOBECOM 2008, pages 1887–1891. IEEE, 2008.

275

SeqBAC: A Sequence-Based Access Control Model

Diogo Domingues Regateiro¹, Óscar Mortágua Pereira², Rui L. Aguiar³
Instituto de Telecomunicações

DETI, University of Aveiro
Aveiro, Portugal

{diogoregateiro¹, omp², ruilaa³}@ua.pt

Abstract—Access control, when used in the context of database

applications, is aimed to supervise the requests made by legitimate

users to access sensitive data. These requests represent actions that

a user can perform on a database and they typically read or write

data. While this supervision can be formalized at a higher level,

e.g. using an access control model such as RBAC, in the end, the

data access is done through each authorized action. Therefore, the

current access control models enforce their policies on an action

by action basis, being unable to support relations of order between

them. In many database applications, access to data is not done

randomly, but by following very specific sequences of actions

which are not supervised. This paper argues that a better security

policy can be achieved by supervising these sequences. Thus,

previous research is leveraged to propose a formalized model,

capable of enforcing access control over the sequences of actions

that can complement existing access control models.

Keywords-information security, access control, sequence

enforcement, database security, SeqBAC.

I. INTRODUCTION
Access control is a mechanism that limits the activity of

legitimate users in a system. There are many strategies to enforce
access control in a system, of which we emphasize the main four:
discretionary access control (DAC), mandatory access control
(MAC), attribute-based access control (ABAC) and role-based
access control (RBAC). However, these access control models
are not one-size fits all solutions, and so many other access
control models exist [1][2][3][4][5]. Nevertheless, RBAC has
risen as the dominating access control model used, especially for
relational database applications. In this model, a user can only
perform some action if he has been given permission to enact the
role that governs said action. When it comes to data, actions are
usually single read or write operations.

However, actions are not always independent of one another,
some are used to collect values that are passed on to subsequent
actions or to achieve some higher-level use case. A basic
example of this would be a doctor prescribing some drug to a
patient while allergies must be accounted for. First, the
information about the patient would be selected, then any
information about potential allergies for that user queried. This
information is then used to filter the drugs that can be prescribed
and added to the patient’s profile. The referenced access control
models do not support this kind of relation between actions to be
encoded in the policies. A possible solution is for this
dependency logic to be put into the application layer.
Unfortunately, if the application is incorrectly implemented or

exploitable, it may be possible to bypass this logic. If this is the
case, it would be possible to perform authorized actions in
unforeseen ways, such as prescribing a drug without allergies
being checked. Another solution is to use stored procedures
defined on the DBMS. However, they are not always supported
and are not easily manageable since it is difficult to know which
actions are being used and in which order.

A solution to prevent this dependency logic between actions
from being bypassed is to design and validate the sequences in
which actions are being executed. This approach benefits from
the fact that designing sequences of actions can be done early in
a project lifecycle, helping with implementation later. Moreover,
a model based on these sequences could validate the sequences
automatically and in real-time. In contrast, manually written
code (e.g. application logic, stored procedures, etc.) is prone to
implementation mistakes. These mistakes can compromise the
correctness of the system, such as forgetting a crucial validation
check, which can go unnoticed for extended periods of time.
Additionally, by imposing an order of execution, it is possible to
provide values for parameters directly from previous actions.
This would lead to a more secure solution because it becomes
possible to know the origin of the values passed as parameters
instead of being only provided by the user.

Thus, we present a sequence-based access control model
(SeqBAC) that aims to be able to encode the relations between
actions that a user is authorized to perform and guarantee that
they are executed in the sequence that they were meant to be.
Additionally, the work presented in [6] could be used to
implement a tool that could generate the code necessary to
follow the defined sequences automatically and access the data.
A previous iteration of this model [7] has seen a proof of
concept, showing that such a concept is possible to execute and
implement at a very basic level. This paper formalizes the results
obtained from that proof of concept, expanding the concepts to
include sequence branching and subsequence calls.

This paper is divided as follows: section II provides some of
the state of the art, section III describes the model in terms of the
desired policy, section IV introduces the necessary definitions to
formalize the model, section V provides the model formalization
and section VI provides our conclusions about the work.

II. RELATED WORK
There are many access control models in the literature. From

the previously mentioned DAC, MAC, RBAC, and ABAC, to
the Bell-LaPadula [8] model for government and military

This work is funded by National Funds through FCT - Fundação para a
Ciência e a Tecnologia under the project UID/EEA/50008/2013 and
SFRH/BD/109911/2015.
DOI reference number: 10.18293/SEKE2018-099 276

applications, and many others [1][2][3][4]. Other access control
models based on finite state machines also exist[9][10], but they
usually operate at a higher level, controlling authentication and
other access control related tasks. The model proposed in this
paper aims to control the lower level database operations.

The Extensible Access Control Markup Language
(XACML) [11][12] has been proposed as a standard which
includes a language for defining access control policies based on
ABAC, an architecture for enforcing them and a processing
model which describes how requests are evaluated. However,
defining policies to control the sequence of actions a user may
perform on a system is not within the original scope of ABAC.
XACML could be extended to support the set of rules required
to implement SeqBAC policies, but it would just be one
implementation of the model herein described. Other access
control languages exist, such as the Enterprise Privacy
Authorization Language (EPAL) [12][13] which has been
proposed to protect the customer's data privacy within a
company, and it is another possible language where our model
may be implemented on.

Barker [5] states that existing access control models all use
the same basic concepts, which are then applied in a restrictive
manner. Thus, Barker proposes a meta-model for access control
based on these basic concepts and shows some examples of how
other access control models are supported by this model. This
approach was studied but ultimately seemed inadequate for the
access control model being presented, as actions have several
order relations between them, i.e. actions can exist in several
sequences, and this was not supported by Barker's meta-model.
Staab and Muller [14] also introduced the MITRA framework,
which is another meta-model for information flow where trust
and reputation architectures are in place.

Non-deterministic access control models could also be
considered for implementation of sequences of actions,
especially when branches are considered and users can follow
any of them. Several of these models exist, of which we
emphasize: probabilistic models to determine risk [15][16][17],
cognitive-based systems [18] and fuzzy theory-based models
[19][20]. Ultimately, the SeqBAC model presented here is
meant to be deterministic, which would allow security experts to
conduct auditing and to keep a level of assurance that no
unexpected access decision is made.

The model in this paper builds upon a CRUD expression
driven access control model [7][21] and generalizes it so that it
no longer depends on the RBAC model to authorize to execute
the actions. In [21], an architecture was proposed to enforce
access control based on RBAC, and driven by the CRUD
expressions that are naturally part of the domain of the
applications using the architecture. In [7], an extension to the
RBAC model was proposed to support basic sequences of
CRUD expressions to complement the role-based approach. We
allow sequences of CRUD expressions to be ruled by roles, and
users can follow these sequences if they are allowed to play the
role. However, this extension was limited to simple chains of
CRUD expressions and it lacked a proper formalized model.

While to the best of our knowledge no attempts have been
made to create a model that can enforce sequences of actions to
access the data, the process of altering an existing model to re-

purpose it for other scenarios is widely used in the literature.
Many examples of this practice exist [2] where the RBAC model
is extended with geographic information for the purposes of
using a user's location to allow or deny access to data. The
formalized model in this paper addresses this gap and
generalizes the work in [7] to sequences of actions.

III. BASE POLICY
In this section, the SeqBAC model being proposed will be

described in terms of the simplest base scenario that it aims to
support.

A simple policy could contain just an ordered set of actions
and parameter tuples, where an authorized user could execute
the first action, then the second, etc. However, scenarios such as
the drug prescription, described in section I, could require a
doctor to go back in the order of execution to add a different drug
to a prescription after a previous one had been found to cause
allergic reactions on a patient. Thus, it is necessary to define
which actions a user can take at some point in a use case
execution.

Since the policy is meant to restrict the order in which actions
can be performed on a database by a legitimate user in the terms
described above, such a policy should contain the following:

• A set of actions A and their input parameters P.

• A set E of directed transition relations between actions.

• The set of users U allowed to execute the policy.

The set of users can be defined explicitly or implicitly
through some condition the users must satisfy, such as be
playing some role, possess a set of attributes, etc.

This type of policy is more descriptive than other policies,
such as RBAC policies, due to the set of transition relations
between the actions. There is an initial action, which each user
executes first, and then the users can execute other actions by
following the transition relations between them. Given the fact
that actions are defined with transitions between them, a policy
in SeqBAC defines a sequence of actions, hereby known as an
action flowchart.

Hence, the SeqBAC model supervises a set of actions that
can be executed over the set of available data and will limit the
executions of these actions to certain sequences. This list of
actions is not required to be complete apriori for the model to be
used: new actions may be added at any given time by the
system's administrator or other authorized users. Furthermore,
the sequences of actions may branch, allowing the users multiple
actions to choose from to allow flexibility. Sequences of actions
may also be reused in other sequences when their purpose is
needed in several situations, and this will be pursued in more
detail in section V.C.

The importance of these policies is that, in many cases,
actions over data are not executed randomly. Instead, actions are
executed following some notion of order that is related some use
case. However, these sequences are not generally encoded in the
access control mechanisms, which enforces access control on an
action by action manner. This can lead to unintended results
when malicious users can execute actions by impersonating a

277

legitimate user.

To exemplify one such policy, consider the following set of
four actions {A, B, C, D} in the context of an online shop. Action
A queries the database for client information to authenticate it,
action B queries for the checkout cart of the client, action C
allows the client to review its payment options and action D
allows it to place an order. In this scenario, we will require action
A to be done always first, following it by action B to show the
current checkout cart to the client once the authentication
succeeds. Then, once the client decides to place the order, the
client may want to review and update their payment options
before doing so, making action C optional and finalizing with
action D.

Figure 1. Scenario representation of the relations between actions.

This scenario is represented in Figure 1, where each action is
represented by its letter and an arrow connects one action to the
next one that naturally follows as per description. If a malicious
user breaches the application and tries to obtain payment details,
it is unable to do so. The action to review the payment options is
in the middle of a sequence of actions, and to reach it the
malicious user would have to execute actions A and B. Since
action A is used for authentication, unless the malicious user
possesses the authentication credentials or breaches the DBMS
itself, it will be impossible to access the payment options of the
users.

IV. MODEL CONCEPTS
Formally, the SeqBAC model is a set of action flowcharts

associated with each user. It follows closely the existing
concepts that govern flowcharts, and as such we will use
flowchart notation to formalize the model.

First, consider the set of defined actions A defined in formula
1 and a parameter P defined in formula 2, where actions a1 to aN
are the actions defined in the system, name is a string of
characters and datatype represents the datatype of the associated
parameter in the database, if relevant.

 .A = {a1, a2, ... aN} (1)

 .P = (name, datatype) (2)

With these concepts, we can define the set of action nodes V
in our model's flowcharts, where each node is a pair of an action
and a set of parameters as shown in formula 3. An action allows
an authorized user to access or modify some subset of the data.

 .V = {(a, {P})}, a ∈ A (3)

Having defined the action nodes of the flowchart we now
need to define the transitions between them. The set of valid
transitions E are defined as a set of ordered 2-element from V,
which forms the unidirectional transitions between elements of
V. Formally, the set of transitions E is defined in formula 4.

 .E = {(u, v) : u, v ∈ V} (4)

Formula 5 defines the flowchart G, used to model a high-
level use case. Each flowchart is an ordered pair of a set of action
nodes V and a set of transitions E that connects two action nodes.

 .G = (V, E) (5)

Additionally, we define the functions ActionSet(G) to return
the set of action nodes of the flowchart G and TransitionSet(G)
to return the set of transitions.

Finally, formula 6 defines the set of flowcharts SOF that
makes up the model. Each user U is then given a subset of SOFU
which they are authorized to execute, as shown in formula 7.

 .SOF = {G1, G2, … GM} (6)

 SOFU ⊆ SOF (7)

V. MODEL DEFINITION
In order to enforce SeqBAC, a way to define how a user can

be tracked along a flowchart 𝐺 ∈ 𝑆𝑂𝐹, is needed. Furthermore,
the possible move operations that a user can perform at a given
node, as well as what type of information can flow from one
node to the next is required.

From the information provided in the previous section, a
definition of the SeqBAC model can now be created.

Definition 1: SeqBAC. The SeqBAC model has the following
components:

• A, P, and U denote actions, parameters, and users,
respectively;

• V denotes an action node, which is a tuple of an action
and a set of parameters necessary to execute the action;

• E ⊆ V × V is a relation between action nodes,
describing the authorized transitions;

• G = (V,E) and 𝑆𝑂𝐹 denote an action flowchart, with
the set of actions and the authorized transitions between
them and the set of all defined action flowcharts,
respectively;

• auth : U ⟶ 2G is a function that determines if a user is
allowed to access a certain action flowchart:
auth(ui) ⊆ SOF, ui ∈ U.

Given that enforcing access control over sequences of
actions is the primary concern, it is required to locate the position
of a user within a sequence at any time. To achieve this, the User
Access Pointer is defined.

Definition 2: User Access Pointer. Given a SOF, the user access
pointer (UAP) is a pair of elements (G, v) that uniquely
identifies a flowchart G ∈ SOF and the current node v ∈ V the
user is allowed to use.

This UAP allows a system to keep track of which flowchart
the user is using and on which node within it. We will now define
how the UAP can be updated in order to move the user within a
flowchart, which uses an operation called Stepping and it
involves moving along a transition of the flowchart.

Definition 3: Stepping. Consider the flowchart G and its UAP

278

on step n of the flowchart traversal, denoted UAPn. Stepping is
the process in which UAPn+1 is generated by referencing a new
node such that:

 ∀x∀y (
(UAPn = (G, x) ∧ UAPn+1 = (G, y)) ⇒

(x, y) ∈ TransitionSet(G)
) (8)

Definition 3 constraints moving from node to node, and
therefore updating the UAP, along the transitions between them
as previously informally described. When a UAP first references
the initial node of the flowchart, we consider it to be in step 1
(UAP1) and the step counter increments with each stepping. A
UAP on step 0 (UAP0) is not referencing any node and is used
when no flowchart is currently being traversed by the user.

There are several different situations in which Stepping may
be used, and they differ on the in-degree and the out-degree of
the nodes involved, i.e. the number of transitions in and out of a
node respectively, as well as the direction of the transitions
between them. The transition between nodes will be detailed first
without considering the information that can flow between them.

A. Stepping

We will now describe several scenarios in which Stepping
operations may occur and how they are handled within the
context of our model. The most trivial Stepping operation occurs
when we have two nodes A and B, where node A has an out-
degree of 1 and node B an in-degree of 1, as shown in Figure 2.
In this case, if the UAP is at node A, then by Definition 3 it
follows that it can only move to node B.

Figure 2. Stepping's trivial case.

We will now analyze the different type of Stepping
operations that can occur when the in-degrees and out-degrees
differ. When the out-degree of node A is bigger than 1, then we
have more than one node that can satisfy Definition 3 and we say
that it causes Splitting in the sequence. In this case, the user can
decide which node to go to. This case is analogous to the piece
of pseudo-code on Figure 3, where the action A is always
executed, and then either action B or C are executed depending
on some condition criteria.

Figure 3. Splitting example and associated code.

We can now consider the opposite situation, where the in-
degree of a node is bigger than 1. This is shown in Figure 4 and
it represents a situation where two or more branches of a
sequence join at the node. For the user, it is exactly the same
situation as in a trivial Stepping operation, but he would have
been able to reach that node through some other sequence of
nodes in the flowchart. In the example, node C is simultaneously
reachable from both nodes A and B. This case is analogous to the

piece of pseudo-code on Figure 4, where either action A or B are
executed depending on some condition criteria. Then, action C
is executed independently of the condition criteria.

Figure 4. Merging example and associated code.

So far, we've only discussed situations were Stepping moves
the user forward in a flowchart. However, if a transition exists in
both directions between two nodes, then it is possible for the user
to step between those two nodes as many times as it wants given
that the only restriction to Stepping is the Definition 3. We call
this situation a Cycle in the sequence, as demonstrated in Figure
5, and it could potentially be created with many in-between
nodes. While this can make sense in some situations, it should
be possible to restrict the number of times the user can go back
to the same node. Additional restrictions will be discussed in
section V.B.2). This case is analogous to the piece of pseudo-
code on Figure 5, where the actions A, B, etc. can be executed in
a cycle. The cycle ends when the execution transitions out of the
cycle, normally on the last node.

Figure 5. Cycle example and associated code.

One particular case of a Cycle is when one is created using
only one node that can transition to itself. We call this case a
Loop and it allows a user to reuse the same node several times,
possibly with information obtained from past accesses. Bulk
operations can benefit from this type of transition.

B. Information Flow

One important fact to consider is that most data access is not
static, i.e. parameters can be used to select or modify data. In
fact, some of the data used as input parameters might need to
have its source validated to ensure that the user does not access
data that he is not authorized to access. To achieve this type of
data validation it is proposed that nodes can use data from
previous nodes as parameters. We refer to this concept as the
information flow and we will define it in this section.

1) User Context
To handle the passing of information between nodes, we

need to create a user context that contains all the data a user
accessed and that a node can use to parameterize the data access.
To define this context, we will first define the Accessed predicate
that indicates whether a node v was accessed in the past or not.

Definition 4: Accessed(G, v). A node v ∈ ActionSet(G) for a
given flowchart G is said to have been accessed when a user's
UAP possessed a reference to node v on at least one step leading
up to the current step N:

while(some condition)

 do A

do B

…

end while

 do A

do B

…

end while

if(some condition) then

 do A

else

do B

end if

do C

do A

if(some condition) then

do B

else

do C

end if

279

∀v ∈ ActionSet(G) ∃n ≤ N (Accessed(G, v) ⇒ UAPn = (G, v)) (9)

Definition 5: User Context. Given a user U and each graph 𝐺
from its set of flowcharts SOFU , the User Context of user U
(UCU) is a pair of elements containing the current UAP on step
N (UAPN) and a set of previously accessed nodes by user U,
which can be referenced by the predicate AccessedSet(UCU).

 .UCU = (UAPN, {v :v ∈ ActionSet(G) ∧ Accessed(G, v)}) (10)

This UCU is updated each time a Stepping operation occurs
and it can be used by a node to obtain values to parametrize the
data access. This means that the user does not provide the
parameters himself, ensuring that the data is valid and that the
user can request it. However, the UC must be made secure to
prevent a user from breaching it in any way. Additionally, when
a user stop traversing a flowchart, the UCU should be emptied so
the previously accessed data cannot be used out of context.
Formally, the reset operation of the UCU empties the set of
accessed nodes and puts the current UAP back to step 0:

 Reset(UCU) : UCU = (UAP0, ∅) (11)

There are several ways to implement this method of passing
a result of a previous action to another as a parameter. However,
one way to do this could involve the usage of a protected server
that caches the request results sent to each client, and then it
would automatically pass the necessary information to each
action when the client requests it to be executed.

2) Information Flow Restriction
One important aspect to ensure that data is not accessed out

of context is the ability to prevent an action from using some
specific data obtained through a previous action as parameter
inputs. Thus, a method to remove unneeded data from the UC
and free resources on the system is desirable.

To address this, we introduce the ability to revoke access to
the data obtained from a previously accessed node. The
revocation is done automatically using a list of nodes targeted
for revocation, which we call the revocation list. This list can
exist in the transitions between nodes or on each node. We will
analyze both options.

Definition 6: Revocation List. Given a flowchart G ∈ SOF, a
revocation list R is a set of previously accessed nodes in
ActionSet(G) that must prevent further access to their data.

 R = {v' ∈ ActionSet(G)} (12)

Since the enumerated nodes in the list prevent any further
access to their data, it cannot be used as parameter values for
consequent access attempts. We must now update the user
context definition to contemplate the revocation list, i.e. the user
context for some user U and a flowchart G must now contain, at
a given step N, the list of previously accessed nodes that have
not appeared on any revocation list, as shown in formula 13.

.UCU = (UAPN, {v : v ∈ ActionSet(G) ∧ Accessed(G, v) \ R}) (13)

When the revocation list is encoded in the transitions
between nodes, the set of transitions will then be defined by an
ordered triplet of two nodes and a revocation list:

.E = {(u, v, R) : u, v ∈ V} (14)

When a Stepping operation is carried out, the revocation list

associated with it is processed and the nodes in the list can be
removed from the list of nodes in the user context.

In the other solution, i.e. placing the revocation list at each
node, the revocation list is associated with each node in the
flowchart G instead:

.V = {(a, {P}, R)}, a ∈ A (15)

Whenever a Stepping operation is carried out and some node
v is referenced by the UAP, following the restriction imposed in
Definition 3, the user context must be updated with the
revocation list by subtracting the list from the user context's list
of accessed nodes. Both approaches are valid and which one is
used depends solely on the ease of implementation.

C. Subsequence Calls

We will now describe the process by which sequences of
actions may be reused on other sequences, also known as a sub-
sequence call. Sub-sequence calls are operations that move the
UAP to the root of another flowchart G to perform some action
that is required by multiple other flowcharts, making it a
common action. Figure 6 shows this idea, where the node A' on
the flowchart to the right is a call to the entire sub-sequence to
the left. Two main types of sub-sequence calls are considered in
this work: dependent and independent.

Figure 6. Sub-sequence calls example.

Dependent calls are distinguished from independent calls by
their need to use the current UC. As the name implies, dependent
calls require the UC to be passed to the sub-sequence, allowing
access to the data obtained from the initial flowchart.

Independent calls, however, do not require the data from the
initial flowchart to perform the data access. This ensures that
data is not misused and passed only on a need-to-know basis.
Just like the Stepping operation, the sub-sequence call allows the
user to move to another node except the node exists on a
different flowchart. When the UAP reaches the end of the sub-
sequence G', the UC from it is copied to the initial flowchart G,
allowing the node the user moves into in the original flowchart
G to access the data obtained, if any. This doesn't violate the
definition of the User Context (Definition 5) since the set of
accessed nodes do not have to belong to a single flowchart.

More formally, when a call to a sub-sequence finishes and
returns a 𝑈𝐶′, the initial 𝑈𝐶𝑛 is updated to 𝑈𝐶𝑛+1 as follows:

 .UCn+1 = (UAPn, AccessedSet(UCn) ∨ AccessedSet(UC')) (16)

Note that the original UAP remains the same as it was before
the sub-sequence call was made, and it is only updated when the
user execution returns to the original flowchart. It is also
important to note that the dependent calls and the UC' returned
by the sub-sequence call can have revocation lists associated
with them as described in section V.B.2). However, since the
new UC' is copied from the original UC, the revocation list of a

280

dependent call only affects UC', leaving UC untouched. The UC
can be restricted using a revocation list after the sub-sequence
call terminates and the user moves to the next node via Stepping.

Additionally, when the UC is copied for the execution of a
sub-sequence, the node of the original sequence is not passed
along with it. This means that when a sub-sequence finishes
execution, the system still needs to know where to point the user
to continue the sequence execution. Therefore, every time a
subsequence call is performed, the current UC should be saved.

A natural solution to save the UCs in is a stack, in which the
last item to be stored is the first to the removed. This way, when
a sub-sequence is called, the UC used is put into the stack and
copied to the sub-sequence. When a sub-sequence terminates,
the last UC is removed from the stack, merged with the current
one, and the previous UAP recovered as shown in formula 16.

D. Implementation

While this paper is concerned primarily with defining the
SeqBAC model, it can also be beneficial to consider how such a
model can be implemented. The unique way that actions interact
with each other through transition relations makes it clear that a
graph is the type of structure seems to be the most appropriate
for storing SeqBAC policies. Furthermore, graph databases,
such as Neo4j, allow to define properties on each node and edge.
This feature could be used to store things such as subsequence
calls by referencing another graph, the revocation list for
accessed data pruning purposes and other data.

However, storing the actions and the relations between them
is not enough. If the access control system only checks if a user
is authorized to execute some action, then either the user knows
the sequences or can experience many authorization errors. This
can be expected to happen since there can be many ways to fulfill
a use case and a defined sequence may only account for a
specific way to do it. A solution to this implementation issue is
the development of a tool that can parse the defined sequences
and then generate the necessary code that follows them
automatically. A previous work, presented in [6], shows how this
could be used to integrate a similar idea into existing DBMS
solutions. This way, when an application using SeqBAC is being
developed, the developers do not need to master the policies
defined as action flowcharts.

VI. CONCLUSION
In this paper, the SeqBAC model was introduced and

formalized. The model was designed to enforce access control
policies over sequences of actions, allowing users to execute
them in controlled sequences, and extends a previous work.

This paper also considers how this model could be
implemented, addressing the issue of developers having to
master the defined sequences of actions with the proposal of
using a tool to parse the defined sequences and generating the
code to use them automatically. While this model requires some
work to define the sequences of actions when compared to other
models that allow unrestricted access to data, it helps to ensure
that the use cases are implemented correctly faster.

Regarding future work, an actual implementation of the
example discussed in section V.D is thought to be next natural

step. Additionally, tools to define policies, validate source-code
and generate mechanisms based on the defined policies are also
being considered. These would allow developers to know easily
what operations are available at any point during the execution
of a sequence, preventing the need for them to master the
policies, and to ensure the overall correctness of their code.

REFERENCES
[1] E. Bertino, P. A. Bonatti, and E. Ferrari, “Trbac,” Proc. fifth ACM Work.

Role-based access Control - RBAC ’00, no. May 2016, pp. 21–30, 2000.
[2] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca, “Geo-Rbac,”

ACM Trans. Inf. Syst. Secur., vol. 10, no. 1, p. 2–es, 2007.
[3] E. Tarameshloo and P. W. L. Fong, “Access control models for geo-

social computing systems,” in Proceedings of the 19th ACM symposium

on Access control models and technologies - SACMAT ’14, 2014, pp.
115–126.

[4] I. Ray and M. Toahchoodee, “A Spatio-temporal Role-Based Access
Control Model,” Data Appl. Secur. XXI, vol. 4602, pp. 211–226, 2007.

[5] S. Barker, “The next 700 access control models or a unifying meta-
model?,” Proc. 14th ACM Symp. Access Control Model. Technol., pp.
187–196, 2009.

[6] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Secure, Dynamic and

Distributed Access Control Stack for Database Applications,” Int. J.

Softw. Eng. Knowl. Eng., vol. 25, no. 09n10, pp. 1703–1708, Nov. 2015.
[7] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Extending RBAC

Model to Control Sequences of CRUD Expressions,” SEKE’14 - Intl.

Conf. Softw. Eng. Knowl. Eng., 2014.
[8] D. Bell and L. LaPadula, “Secure Computer Systems: A Mathematical

Model. Volume II.,” vol. II, no. May 1973, 1973.
[9] Bin Duan and Bing Liu, “Design of security state machine of access

control for control object based on IEC 61850,” in 2006 IEEE Power

Engineering Society General Meeting, 2006, p. 3 pp.
[10] M. Thirumaran, P. Dhavachelvan, D. Aishwarya, and R. Shanmugapriya,

“Finite State Machine based Access Control Mechanism for Web Service

Work Flow Management,” IERI Procedia, vol. 4, pp. 391–397, 2013.
[11] B. Parducci and H. Lockhart, “eXtensible Access Control Markup

Language (XACML) Version 3.0,” OASIS Standard, 2013.
[12] G. Yee, Privacy Protection for E-Services. Idea Group Inc (IGI), 2006.
[13] J.-W. Byun, Toward Privacy-preserving Database Management Systems

- Access Control and Data Anonymization. ProQuest, 2007.
[14] E. Staab and G. Muller, “MITRA: A Meta-Model for Information Flow

in Trust and Reputation Architectures,” arXiv Prepr. arXiv1207.0405, p.
19, Jul. 2012.

[15] R. McGraw, “Risk-Adaptable Access Control (RAdAC),” inPrivilege

Manag. Work. NIST–National Inst. Stand. Technol. Technol. Lab., 2009.
[16] D. R. dos Santos, R. Marinho, G. R. Schmitt, C. M. Westphall, and C. B.

Westphall, “A framework and risk assessment approaches for risk-based
access control in the cloud,” J. Netw. Comput. Appl., vol. 74, pp. 86–97,
Oct. 2016.

[17] S. Kandala, R. Sandhu, and V. Bhamidipati, “An Attribute Based

Framework for Risk-Adaptive Access Control Models,” in 2011 Sixth

International Conference on Availability, Reliability and Security, 2011,
pp. 236–241.

[18] IBM, “Cognitive Security White Paper,” 2016. [Online]. Available:

http://cognitivesecuritywhitepaper.mybluemix.net/. [Accessed: 11-Jan-
2017].

[19] C. Martínez-García, G. Navarro-Arribas, and J. Borrell, “Fuzzy Role-
Based Access Control,” Inf. Process. Lett., vol. 111, no. 10, pp. 483–487,
2011.

[20] J. Kacprzyk, S. Zadrożny, and G. De Tré, “Fuzziness in database

management systems: Half a century of developments and future
prospects,” Fuzzy Sets Syst., vol. 281, pp. 300–307, Dec. 2015.

[21] Óscar Mortágua Pereira, D. D. Regateiro, and R. L. Aguiar, “Role-Based
Access Control Mechanisms,” … (ISCC), 2014 IEEE …, vol. 2, no. 1,
pp. 1–7, Jun. 2014.

281

A Self-Adaptation Framework of Microservice

Systems

Shuai Zhang, Xinjun Mao, Peini Liu and Fu Hou

College of Computer

National University of Defense Technology

Hunan, China 410073

{zhangshuai16a, xjmao, liupeini16, houfu}@nudt.edu.cn

Abstract—Microservice has been more and more applied to build

software systems in industry field and research in academic field.

And software systems are increasingly expected to dynamically

self-adapt to accommodate resource variability, changing user

needs, and system faults. Compared with traditional software

systems, microservice systems have some characteristics, such as

the highly self-contained components and the dynamic running

instance, which pose challenges to traditional self-adaptation

methods. Therefore, it needs to propose corresponding

techniques and methods to cope with the characteristics of

microservice systems. This paper analyzes the special self-

adaptive requirements of microservice systems, proposes a

microservice reference model, which describes basic elements

and their relationships of microservice systems. Then we present

a microservice system self-adaptation framework MSSAF to

support the self-adaptation of microservice systems. We illustrate

the feasibility and effectiveness of our approach in the context of

a microservice system case.

Keywords-self-adaptation; microservice; reference model;

framework

I. INTRODUCTION

Microservices recently demonstrated to be an effective
architectural paradigm to cope with software complexity and
scalability [1]. Although microservice has received more and
more pay attention, there is no generally accepted definition for
microservice. A widely-recognized concept of microservice is
proposed by Martin Fowler and James Lewis [2]. The success
of the paradigm has been demonstrated in some domains,
including mission-critical systems [3]. However, while
microservice systems run in open and dynamic environment,
there are still many uncertainties, e.g. changing user
requirements and unpredictable system errors. To deal with the
uncertainties, microservice systems need dynamically self-
adapt to state changes of external environment and itself.

Microservice systems have some characteristics, e.g.
platform-dependent and one microservice may have multiple
instances. Since traditional software systems don’t have these
characteristics, the traditional self-adaptation methods have no
specific solutions.

To realize the self-adaptation of microservice systems more
efficient, this paper proposes a microservice reference model

and a microservice system self-adaptation framework MSSAF.
The microservice reference model describes the basic elements
and their relationships of microservice systems. Microservice
system self-adaptation framework MSSAF integrates some
necessary tools to provide support for the self-adaptation of
microservice systems. Based on these methods and tools, this
paper has achieved better cost-effectiveness in self-adaptation
of microservice systems.

The rest of this paper is structured as follows. Section II
discusses some related works. Section III describes a
microservice reference model. Section IV gives a detailed
description of microservice system self-adaptation framework
MSSAF. In section V, our works are illustrated by an
intelligence system which is a microservice system. Finally, we
summary this paper and discuss further works.

II. RELATED WORK

Nowadays microservice has become more and more
popular in software engineering field. There are some
summaries of existing studies on microservice find that most of
the studies focused on microservice application, method and
architecture [4]. Those studies mainly focus on maintainability,
extensibility, complexity, flexibility and so on, while there are
few studies related to the self-adaptivity of microservice.
Nicola Dragoni et al. describe the origin, current and future of
microservice in detail [1]. Franco Callegati et al. describe a
service-oriented architecture that exploits the microservices
orchestration paradigm to enable the creation of new services
[5]. Massimo Villari et al. present an Orchestration Broker for
each involved Fog computing node[6]. Despite these works
consider the characteristics of microservice, there is no self-
adaptation in their works. Sara Hassan and Rami Bahsoon refer
to microservice and self-adaptation in their work [7]. But they
consider the self-adaptation microservice from a design
viewpoint without concrete implementation.

The aim of self-adaptation is to let the system monitor itself
and based on its goals reconfigure or adjust itself to satisfy the
changing conditions, or if necessary degrade gracefully [8]. In
recent years, many researchers have proposed many methods to
study the self-adaptation from different aspects. Shang-Wen
Cheng and David Garlan propose a self-adaptation framework
Rainbow which is based on software architecture [9]. Denaro

DOI reference number: 10.18293/SEKE2018-091

282

Giovanni et al. proposes an approach to design self-adaptive
service-oriented architectures [10]. Marcello Thiry and Roger
Anderson Schmidt present relevant approaches of self-adaptive
systems driven by runtime models [11]. Besides, Luca Florio
and Nitto focus on how to add autonomic capabilities to
microservices without changing the way they are implemented
but exploiting their containers [12]. The paper considers that
microservice is a kind of distributed component, but they
mainly discuss about autonomic capabilities which are different
from self-adaptive capabilities.

In the above researches, there are few works related to self-
adaptation in the study of microservice. To cope with the
characteristics of microservice, this paper analyzes the
characteristics and proposes corresponding solution to realize
the self-adaptation of microservice systems.

III. MICROSERVICE REFERENCE MODEL

Microservice manages growing complexity by functionally
decomposing large systems into a set of independent services.
Despite microservice is an architectural pattern emerging out of
Service-Oriented Architecture (SOA), it shows some important
distinctive characteristics that are different from SOA:

Platform-dependent: There may be a lot of microservices
in microservice software systems, communications are
complexity and configurations are rather difficult and can also
be prone to error. To make up these limitation, corresponding
platforms must be developed to manage MSS.

Multi-instance: In microservice systems, instance is a
running entity of a microservice, and a microservice can have
multiple instances. At runtime, there are a lot of microservice
instances that interact to realize the application logic of
microservice systems.

The characteristics mentioned above propose some special
needs for the self-adaptation of microservice systems. Since
traditional self-adaptation methods don’t have special solutions
for these characteristics, the best effect cannot be achieved
when realizing the self-adaptation of microservice systems.
Therefore, it is necessary to propose some methods to deal with
the characteristics. Based on descriptions of microservice
architecture in some microservice literatures [13][14][15], we
propose a microservice reference model (show in Fig. 1). The
model consists of three layers, including system layer, service
layer and instance layer.

System layer consists of three parts, microservice system
realize the business logic, management platform provides
management capabilities for microservice system, and
limitations impose constraints on microservice system. Service
layer consists of some microservices and corresponding
protocols, microservice communicates with each other through
protocols to compose microservice systems. Instance layer
includes containers and microservice instances. Microservice
instances run in containers. A set of microservice instances
compose a microservice and they communicate with other
microservice instances to realize concrete functions. The reason
for such layering is as follow. System layer realizes business
logic, mainly focuses on high-level goals and doesn’t involve
concrete implementation. Service layer focuses on how

microservices cooperate to provide services for the system
layer. Instance layer mainly related to the specific
implementation. These three layers provide different
observation dimension for microservice systems, and clearly
express the characteristics which have mentioned earlier.

Fig. 1 Microservice reference model

IV. MSSAF: SELF-ADAPTATION MICROSERVICE SYSTEM

FRAMEWORK

The customizable self-adaptation framework has many
advantages. For example, it reduces the cost of development by
providing a substantial base of reusable infrastructure greatly.
And it allows engineers to tailor the framework to different
systems with relatively small increments of effort by providing
separate customization methods.

To make microservice systems self-adaptation, we refer to
the MAPE loop proposed by IBM [16]. For each part of the
MAPE loop, we provide a corresponding tool, meanwhile we
also provide some other necessary tools. Based on the
microservice reference model, this paper proposes a
Microservice System Self-Adaptation Framework (MSSAF)
(as shown in Fig. 2). To automate system self-adaptation, we
provide a self-adaptation strategy description language to
represent self-adaptation scenario.

MSSAF consists of three parts, including translation tools,
self-adaptation engine and microservice systems. Translation
tools is used to translate the self-adaptation strategies, the
results of translation are used to support self-adaptation engine
to complete the self-adaptation logic. Self-adaptation engine
communicates with other two parts to implement self-
adaptation. Management platform and microservice systems
correspond to the system layer of microservice reference model.

283

Fig. 2 Self-adaptation microservice system framework

The reason why MSSAF has no the service layer and
instance layer of microservice reference model is that we
mainly focus on the self-adaptation process of microservice
systems in MSSAF. The actual adjustment objects are the
microservice and microservice instance which are the parts of
microservice systems.

Self-adaptation engine consists of several components that
provide the monitoring, detection, decision, and action
capabilities of self-adaptation. Event Monitor obtains the
monitoring data of microservice systems from the management
platform. Constraint Analyzer uses informations which come
from Event Monitor to judge whether there is a constraint
violation. There are some alternative constraints, and the
thresholds are specified in self-adaptation strategies by users.
Rule Manager selects corresponding rules after triggering by
Constraint Analyzer. A self-adaptation rule consists of two
parts, including condition and action. The condition includes a
signal which is sent by Constraint Analyzer for indicating if the
rule is triggered, and it may include some essential constraints
which are specified at design time. The actions of self-
adaptation rules are the abstract operations of different objects.
Action Executer performs the actual operations for
microservice systems according to the actions of self-
adaptation rules which are managed by Rule Manager.

Translation tools include an Interpreter and a Loader.
Strategies cannot be directly executed and needs to be
interpreted before running. Since we provide some common
self-adaptation strategies, it needs a tool for static translation.
And when there is a need for adding new self-adaptation
strategies at runtime, it needs to provide a tool for dynamic
loading. Our translation tools can be customized for different
program languages and platforms.

V. ILLUSTRATION OF MSSAF WITH INTELLIGENCE SYSTEM

Since there are few related studies as similar as our works,
it cannot compare our works with others. This paper adopts an

intelligence system to illustrate the feasibility and availability
of MSSAF.

The intelligence system is used to collect and manage
intelligence from different sources and provides the functions
of search, analysis, distribution for these intelligences. Besides,
the intelligence system also provides a frontend service and a
user service for access and management. When there are many
users accessing the system in a short time, it will need expand
to reduce CPU load. Correspondingly, when user access is too
small, it will need shrink to be cost saving. To meet these
requirements, we use MSSAF to design and realize the self-
adaptation of the intelligence system.

To illustrate the feasibility of intelligence system self-
adaptation by using MSSAF, we use the CPU usage rate of
microservice instance as the quality attribute that self-
adaptation concerns. We monitor the CPU usage of a
microservice instance for a period of time, and take the average
as CPU usage rate of this instance, namely "MSICPUUsage".

Self-adaptation scenario: If there is a swift growth of
MSICPUUsage in a short period of time, and there is a
threshold, such as 40%. Once the MSICPUUsage exceeds this
threshold, the self-adaptation rule is triggered. When the
constraints in the self-adaptation rule are satisfied, this self-
adaptation rule will be executed. Finally, the specific
modification is mapped to the platform by a series of self-
adaptation actions.

Experiment: The experimental object is analysis
microservice (ams), the experimental setup is that the initial
instance number is 2, the refresh interval is 120s, the CPU
usage rate threshold is set to 40%, and the number of
microservice instance is limited to no more than 5. The
translation of strategy StrategyMSICPUOverload is shown in
Fig. 3.

Fig. 3 The translation of self-adaptation strategy StrategyMSICPUOverload

In the experiment, we use the Locust performance testing
tool to simulate the stress test, it sets as 500 users access 1000
times per second, and it stops after 10 minutes. Fig. 4 indicates
the changes of the number and CPU usage rate of microservice
instance during the experimental process.

284

Fig. 4 The diagram of experiment process

As shown in Fig. 4, analysis microservice have two
instances amsi1 and amsi2 at beginning. There are large
numbers of user accesses in 2 minutes, the CPU usage rate of
microservice instance increases rapidly, then the overloading
strategy is triggered. The increased amsi3 handles large
numbers of accesses in 4 minutes, CPU usage rate is too high,
and the overloading strategy will be triggered. The increased
amsi4 begins to handle user requests in 6 minutes, the first 3
instances’ CPU usage rates still exceed the threshold 40%, and
the overloading strategy continues to be triggered. The instance
amsi5 was added in 8 minutes, while other instances’ CPU
usage rates exceed the threshold, the strategy won’t be
triggered now because the self-adaptation rule set the number
of microservice instance to be no more than 5. The stress test
has stopped after 10 minutes, the CPU usage rates of the five
instances tend to get closer because of the load balancing.

Through the experiment above, we illustrate that MSSAF
can provide some preliminary self-adaptation capabilities for
microservice systems. From the experimental results, the self-
adaptation implementation of MSSAF can utilize the
characteristics of microservice systems very well and conduct
elastic expansion on more fine-grained. In short, MSSAF has
the potential to satisfy the self-adaptation and customization
requirements of microservice systems.

VI. CONCLUSION

To deal with the problems that microservice systems need
to be self-adaptation and traditional self-adaptation methods
cannot cope the characteristics of microservice systems, we
analyze the characteristics of microservice systems and propose
a microservice reference model. To implement the self-
adaptation of microservice systems and provide reuse
infrastructures, we propose a self-adaptation microservice
system framework MSSAF, which can implement the self-
adaptation of microservice systems. Through an example of an
intelligence system, we illustrate that MSSAF can provide self-
adaptation capabilities for microservice systems.

In future work, we would like to improve our approach by
enhancing these tools, such as adding strategy conflict
detection for Constraint Analyzer, adding strategy selection

algorithm for Rule Manager, etc. These may be our future
research directions. In addition, each component of self-
adaptation engine can be published as a microservice, then it
will be possible to realize the self-adaptation of self-adaptation
logic via multiple MAPE loops to expand the self-adaptation
capabilities.

ACKNOWLEDGMENT

This research is supported by research grants from Natural
Science Foundation of China under Grant No. 61532004 and
61379051.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, and L. Safina, “Microservices: yesterday, today, and
tomorrow,” Present and Ulterior Software Engineering, Springer, Cham,
2017.

[2] J. Lewis and M. Fowler, Microservices, http://martinfowler.com/articles
/microservices.html.

[3] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L.
Safina, “Microservices: How To Make Your Application Scale,” arXiv
preprint arXiv:1702.07149, 2017.

[4] C. Pahl, and P. Jamshidi, “Microservices: A Systematic Mapping
Study,” in International Conference on Cloud Computing & Services
Science, 2016, pp. 137-146.

[5] F. Callegati, G. Delnevo, A. Melis, S. Mirri, M. Prandini, and P.
Salomoni, “I want to ride my bicycle: A microservice-based use case for
a MaaS architecture,” in IEEE Symposium on Computers and
Communications, 2017, pp. 18-22.

[6] M. Villari, A. Celesti, G. Tricomi, A. Galletta, and M. Fazio,
“Deployment orchestration of microservices with geographical
constraints for Edge computing,” in IEEE Symposium on Computers and
Communications, 2017, pp. 633-638.

[7] S. Hassan, and R. Bahsoon, “Microservices and Their Design Trade-
Offs: A Self-Adaptive Roadmap,” in IEEE International Conference on
Services Computing, 2016, pp. 813-818.

[8] D. Weyns, “Software Engineering of Self-Adaptive Systems: An
Organised Tour and Future Challenges,” Handbook of Software
Engineering, Springer, 2017.

[9] S.-W. Cheng, “Rainbow: Cost-Effective Software Architecture-Based
Self-Adaptation,” Dissertations & Theses - Gradworks, 2008.

[10] G. Denaro, D. Tosi, and D. Schilling, “Towards self-adaptive service-
oriented architectures,” in Workshop on Testing, 2006, pp. 10-16.

[11] M. Thiry, and R. A. Schmidt, “Self-adaptive Systems Driven by
Runtime Models,” in The International Conference on Software
Engineering and Knowledge Engineering (SEKE), 2017, pp. 248-253.

[12] L. Florio, and E. D. Nitto, “Gru: An Approach to Introduce
Decentralized Autonomic Behavior in Microservices Architectures,” in
IEEE International Conference on Autonomic Computing, 2016, pp.
357-362.

[13] D. Namiot, and M. Sneps-Sneppe, “On Micro-services Architecture,”
International Journal of Open Information Technologies, vol. 2, no. 9,
pp. 24-27, 2015.

[14] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 113-116,
2015.

[15] M. Mazzara, K. Khanda, R. Mustafin, V. Rivera, L. Safina, and A.
Sillitti, “Microservices Science and Engineering,” in International
Conference in Software Engineering for Defence Applications, Springer,
Cham, 2016, pp. 11-20.

[16] G. Agarwal, R. Shah, J. Walrand, H. A. Alzoubi, S. S. Lee, M.
Rabinovich, O. Spatscheck, V. D. M. Jacobus, I. Avramopoulos, and M.
Suchara, “An Architectural Blueprint for Autonomic Computing,” IBM
White Paper, 2006, pp. 31.

285

A Framework to Support the Development of
Self-adaptive Service-oriented Mobile Applications

William Filisbino Passini1 and Frank José Affonso2
Department of Statistics, Applied Mathematics and Computation

São Paulo State University – UNESP
PO Box 178, 13506-900, Rio Claro, SP, Brazil

1william.passini@gmail.com, 2frank@rc.unesp.br

Abstract—Today’s society is increasingly dependent on the use
of mobile devices, which have changed over these last 10 years the
way people perform their daily tasks. This can certainly be one of
the factors that has boosted the demand for development of high-
quality Mobile Applications (MobApps). In short, to improve
the efficiency of the development life cycle, these applications
often use third-party components (e.g., software components,
web services, and other mobile applications). Service-oriented
MobApps have been a feasible alternative to overcome hardware
limitations of these devices to increase the processing and storage
capacity. In another perspective, it is also noted a change in the
behavior of users of MobApps and their needs, which require
applications capable of modifying their structure and/or behavior
at runtime. Thus, this paper presents a framework to support
the development of Self-adaptive Services-oriented MobApps
(Self-MobApps), which enable adaptation of services at runtime.
To show the feasibility of our framework, a case study for a
smart restaurant was conducted. The results of this study enable
us to create a positive perspective on the contribution of our
framework to the research communities involved.

Index Terms—Framework; Mobile Applications; Service Com-
puting.

I. INTRODUCTION

The complexity of software systems and their computational
environments has increased in the last years. Nowadays, our
society has become increasingly dependent of such systems,
which must be able to work in 24/7 mode (i.e., 24 hours
per day, seven days per week). Thus, it can be noted that
most human daily tasks are managed by applications em-
bedded (i.e., Mobile Applications – MobApps) into mobile
devices (e.g., smartphones or tablets), which allow on-line
access to information regardless of the users’ location [1],
[2], [3]. Regarding the development, such applications can
have, at the same time, some items: (i) ad-hoc components and
applications developed by third-party; (ii) on-line services; and
(iii) platform-dependent components to access device-specific
hardware (e.g., camera, GPS – Global Positioning System,
microphone, among others) [4].

Mobile devices have some physical limitations (e.g., pro-
cessing and storage) compared to personal computers. For
these reasons, research has been boosted to minimize the
impact of such limitations and, at the same time, to facilitate
access to information providing mobility to their users. Based
on the presented context, the integration of MobApps into
SOA-based (Service-Oriented Architecture) systems have been
a feasible alternative to overcome these limitations. In short,
SOA provides an architectural model that enables services to
be published by service providers, discovered and consumed

by the stakeholders (i.e., client applications, other services,
among others) by means of platform-independent communi-
cation process based on set of XML-based (eXtensible Markup
Language) standards [1], [5], [6].

SOA-based systems have played an important role in the
development of distributed applications over the Internet. In
this context, web services can be considered elements of
first class to support the development of applications based
on services in heterogeneous environments. Moreover, such
applications, regardless of type (e.g., distributed, mobile, or
web), must be prepared to deal with the changes at runtime,
which can be performed to meet the user’s new needs (e.g.,
new requirements) or autonomously react to modifications
in their execution environment (e.g., services unavailability).
Therefore, services that enable adaptation at runtime can be
classified as self-adaptive service [4], [7].

Based on presented context, a framework to support the de-
velopment of Self-adaptive Services-oriented MobApps (Self-
MobApps) is proposed in this paper. In short, this framework
enables services to be monitored by a supervisor system
and adapted at runtime. Such system was designed by our
research group in previous work [8] and enables to classify
and analyze sensory data to autonomously detect and mitigate
faults at runtime (e.g., service unavailability, failures, or high
response time). Moreover, this framework aims to support
the development of Self-MobApps by means of a dynamic
approach for service deployment. In other words, unavailable
services can be replaced by a similar one in a transparent
way without the perception of their stakeholders (i.e., client
applications). For reasons of scope, our framework addresses
only services based on JAX-WS (Java API for XML Web
Services) [9].

The paper is organized as follows: Section II presents
the background and related work; Section III provides a
description of our framework; Section IV presents a case study
to show the applicability of our framework; and Section V
summarizes our findings, conclusions, and perspectives for
further research.

II. BACKGROUND AND RELATED WORK

This section presents the background (i.e., concepts and
definitions on self-star software and self-adaptive services)
and related work that contributed to the development of our
framework.

DOI reference number: 10.18293/SEKE2018-163 286

Self-star software. Self-adaptive Software (SaS) has spe-
cific characteristics compared to a traditional one because this
type of software enables structural, behavioral, or contextual
changes at runtime. Among these changes, some of them
deal with management of complexity, robustness in handling
unexpected conditions (e.g., failure), changing priorities and
policies governing the goals, and changing conditions (e.g., ex-
ecution environment). According to Salehie & Tahvildari [10],
“SaS is expected to fulfill its requirements at runtime in
response to changes. To achieve this goal, software should
have certain characteristics, known as self-* properties (...).
These properties provide some degree of variability, and conse-
quently, help to overcome deviations from expected goals (e.g.,
reliability)”. To manage the changes at runtime, feedback-loop
proposed by IBM [11] has been a good alternative, since all
decisions are taken based on a plan established in the data
collected from execution environment.

Self-adaptive service. Li et al. [12] proposed a self-healing
framework for QoS-aware (Quality of Service) web services
composition. Self-healing is a self-property that provides spe-
cial ability to software systems, which can perceive that they
are not operating correctly and, without human intervention,
make the necessary adjustments to restore them to normal op-
eration. To do so, this framework uses Case-Based Reasoning
(CBR) for using previous experiences to understand and solve
new problems by means of service similarity. A knowledge-
based approach for Service Composition based on self-healing
was developed by Angarita et al. [5]. SC is an application
composed of a service set that interacts with each other and is
invoked on the Web. This type of service can be classified in
two categories: (i) static, which represents the aggregation of
services taken place at design time; and (ii) dynamic, which
enables determining and replacing services at runtime [13].

As related work, Sefid-Dashti & Habibi [14] proposed
a mobile SOA Reference Architecture (RA) based on 26
mobile SOA patterns and introduced a new domain specific
layer. This RA enables reaction to changes in infrastructure
in order to streamline a service, which can be realized by
several mobile SOA patterns. A SOA-based platform-specific
framework for context-aware MobApps was developed by
Daniele et al. [15]. This framework was based on a RA
composed of components typically used by MobApps by
means of automated design approach. Moreover, the design
of context-aware MobApps is platform-independent and can
be realized with different specific target implementations.
Cherif et al. [6] proposed a Reference Model for specifying
Self-adaptive Service-based Applications (ReMoSSA). This
model was based on FORMS model [16] and the auto-
mate element proposed by IBM [11]. Moreover, costs and
efforts of maintenance can be minimized, since this model
enables to inspect if the dynamic monitoring and the dy-
namic adaptation are being considered in the design phase. A
declarative approach called SelfMotion (Self-Adaptive Mobile
Application) was designed by Cugola et al. [4]. In short,
applications based on SelfMotion can be performed by a
middleware that enables to create at runtime the best sequence

of abstract actions (i.e., service orchestration) to achieve the
goals, mapping them to the concrete actions to execute in
accordance with the specified QoS Policy. Such sequences
are elaborated by automatic planning techniques, which enable
the service changes without perception of their stakeholders.
Finally, Nasridinov & Byun [17] proposed a framework named
WS–DIRECT (Web Service–DIscoverability, REcoverability,
Classifiability and Trustworthiness). This framework provides
a set of mechanisms to deal with service adaptations at
runtime, such as: (i) semantic discovery; (ii) self-healing, i.e.,
monitoring, diagnosis and repair; (iii) classification of QoS;
and (iv) ontology-based security. Li et al. [12] designed a
framework QoS-aware web service composition based on self-
healing property and CBR. This framework enables to propose
solutions for detected problems, to make assumptions and
predictions based on previous experiences, and to adapt to
changes of the environment.

III. FRAMEWORK FOR SELF-MOBAPPS

According to Erl [18] and OASIS [19], SOA is composed of
three elements: (i) web service provider, which is responsible
for providing the services that will be executed; (ii) web
service repository, which is responsible for describing, pub-
lishing, and finding services; and (iii) web service client, which
represents the consumers of such services. Regarding the
second element, it represents an XML-based standard called
UDDI (Universal Description, Discovery, and Integration). In
short, it enables the registry of all web service’s metadata,
including a pointer to the WSDL (Web Service Description
Language) description of a service, beyond a set of WSDL port
type definitions for manipulating and searching such registry.
Figure 1 shows the general representation of SOA.

Publishes

Noti
fie

s

Req
ue

sts

IoT

Browse

Mobile

Web Services Client Web Services Provider

Web Services Repository

WSDL

Developers
Development
Environment

Exchange of messages

Legend:

WSDL file

Semantic
description file

Request

Response

Figure 1. Service-oriented Architecture (Adapted from [19])

Based on these concepts, this section presents a framework
to support the development of Self-MobApps. This framework
enables services to be monitored at runtime and replaced in
case of problems (e.g., service unavailability, failures, or high
response time). With regard to the replacement of services, two
possibilities are allowed by our framework: design time and
runtime. The first uses a list of preferred services defined by

287

the developers in the design phase of a primary service. The
second uses an automatic mechanism of search to find a similar
service in the web service repository. Finally, our framework
addresses only services based on JAX-WS and simplifies
creating and deploying web services and web services clients.
Figure 2 shows the general representation of our framework,
which is composed of a core for adaptation (dotted line) and
four additional modules: development, search, action plan,
and deploy. Next, a brief description of this architecture is
addressed.

Action Plan Module

WSDL Parser

Se
ar

ch
 M

od
ul

e

Web Service Model

Choreography Model Choreography Manager

Service Adaptation

D
eploy M

odule

Development Module

Figure 2. Framework for Self-MobApps

Development module. This module provides a set of
guidelines for Self-MobApps development. Web services are
designed by the developers and registered into environment
execution (i.e., Web Service Repository – Figure 1). These
services are composed of WSDL and semantic description
files. The first one provides to our framework technical de-
scription about operations embedded into a service that will
be used by our “WSDL Parser” for parameter matching.
The second one contains textual description of a service that
will be used by “Search Module” when a new service is
requested. Moreover, it is noteworthy that when a composition
of services (i.e., primary and preferred services) is developed,
the software engineer can associate a list of alternative services
to each preferred service of this composition. This list must
be used when the primary service presents execution problems
(e.g., unavailability, poor performance, among others) and a
preferential service can assume its role.

Search module. This module aims to assist in the search
of services in the repository when an adaptation activity
is invoked (Figure 1). To do so, three search methods are
provided: (i) semantic, which can be defined as a search query
by means of contextual meaning for services. This type of
search provides more meaningful results by finding the most
relevant service in the repository; (ii) technical, which can
be specified only with service information in template format,
which is converted as input parameters to search in the service
repository for matching operation; and (iii) quality, which can
be defined as the description or measurement of the overall
performance of a service. According to [20], unresolved QoS
issues may cause serious problems in relation to execution
(e.g., unacceptable levels of performance degradation). Thus,
our framework addresses seven quality attributes [20], [21]:
availability, accessibility, integrity, performance, reliability,

regulatory, and security. These attributes represent minimal
quality of a service. However, other attributes can be found
in the literature.

Action plan module. This module aims at assisting in
the adaptation activity of services providing means to control
dynamic behavior, individual reasons, and execution state of
each service in relation to the execution environment. To do
so, a framework for decision-making in SaS developed by
Affonso et al. [8] in previous work was used. In short, such
framework is composed of two modules: classification and
recommendation. The main purpose of the first module is to
present a classification for a data set collected via sensors from
execution environment. The second module aims to present
a solution set ranked by statistical measures for a problem
reported by the classification module.

Deploy module. This module aims to support the deploy-
ment process for Self-MobApps. In other words, a service
can be deployed, undeployed, and redeployed. To do so, we
have used jUDDI implementation [22], which is an open
source Java implementation of OASIS’s UDDI specification
for Web Services. When a service is inserted into repository
(Figure 1), its WDSL file is parsed into a structure that aims to
provide information about services and the operation of such
services. Then, for each operation, its parameters and types
are retrieved. In addition, technical service information (e.g.,
namespace and URL (Uniform Resource Locator) service)
must also be obtained.

Core of adaptation. This structure can be considered the
“heart” of our framework, since enables managing service
adaptation at runtime. Basically, this core is organized in
five modules: (i) Web Service Model, (ii) WSDL Parser,
(iii) Choreography Model, (iv) Choreography Manager, and
(v) Service Adaptation. Figure 3 shows the UML model for
core of service adaptation. Next, a brief description of each
module is reported.

Web Service Model. This module contains the model elab-
orated for the representation of a web service (parser-
Manager.model package – Figure 3). From this point
onwards, this model may be also referred to as WSModel
(Web Service Model). The WebService class is composed
of five attributes that describes a service. Each web method of
a service has none or many parameters (Parameter class).

WSDL Parser. This module (parserManager.parser
package – Figure 3) contains a set of classes responsible
for transforming a WSDL document (i.e., file or URL) into
WSModel (parserManager.model package). Thus, from
such document, relevant information of a service is extracted
by means of DOM (Document Object Model) API. The main
purpose of this operation is to read an XML file and parse its
content into a tree structure, where each node is composed of
XML document tags.

Choreography Model. This module has the model elaborated
for the representation of a choreography that must be executed
in the service (wsManager.model package – Figure 3). The
WebService class represents the list of web methods that
can be executed by a service and the respective parameters

288

Figure 3. UML model for core of service adaptation

that must be provided to each method at runtime.
Choreography Manager. This module has only the

WSOperation class (wsManager.ws package – Figure 3),
which is responsible for acting as a client application in the
communication process via web service. In short, this class
has only the operation method that enables executing a
web method of a service via parameters.

Service Adaptation. This module can be considered as
RA4Self-MobApps “orchestrator”, since it performs calls and
coordinates all activities of the other modules (i.e., Core of
adaptation). In short, this module can be defined as a super-
visor system of web services, monitoring their requisitions in
the execution environment. To do so, this module implements
a well-defined process to adapt a web service at runtime.
Finally, this process must be performed automatically by soft-
ware engineering tools, intending to reduce implementation
complexity and minimize uncertainties generation.

IV. CASE STUDY

To evaluate the applicability, strengths, and weaknesses of
our framework this section presents a case study we have
conducted. As subject application of our empirical analysis,
we have selected an application addressed to the management
of a smart restaurant called App2Rest. This restaurant provides
a table set for its customers, which are equipped with a device
set that aims to automate the restaurant service from orders to

payments. Next, a brief description of our subject application
and the empirical strategies adopted for conducting this case
study is presented.

Subject Application. The App2Rest was organized in two
layers: (i) Devices, which represent the means of access to the
clients (i.e., front-end side) of this application, which can use
mobile devices equipped with the Android operating system
(i.e., smartphones and tablets) and personal computers via the
Web; and (ii) Web Server, which represents an application
composed of a service set (i.e., back-end side). Regarding
the exchange of information between these two layers, a
subsystem was developed to serialize application models via
JSON (JavaScript Object Notation) and facilitate the exchange
of information between these layers (i.e., client and server).
For instance, when a menu is requested by the client side, a
query is performed on the server side and a model composed
of several classes (i.e., data) is instantiated. Next, such model
is serialized to a String (i.e., JSON format) and transferred to
the client side. The inverse process is also considered.

Empirical research strategy. Figure 4 illustrates the
generic structure of our application, which is organized in a
client-server architecture composed of two layers. Regarding
the operation of this application, all requests of the “Devices”
layer (i.e., client side) are sent to the “Web Server” layer,
whose purpose is to intermediate the communication (i.e.,
message exchange) between customer or restaurant devices

289

and requested web services of such application. The web
services contained in the App2Rest can be classified in two
levels of complexity: (i) simple service, which represents the
encapsulation of a functionality to be made available to its
customers (i.e., “Devices” layer); and (ii) service composed
of services, which represents the encapsulation of more than
one functionality of the restaurant application to be made
available to its customers. This service type executes a call
set to other services by means of a choreography (i.e., action
sequences and conditions) for its functionality to be fulfilled.
For instance, the authentication of a customer in the restaurant
application is a simple service. Customers request orders (i.e.,
items for an order) can be characterized as a composite service.

Regardless of the complexity level, the App2Rest has a
“Service Monitor” component in each service to monitor its
execution status (Figure 4). In a first analysis, this monitor will
determine if the web service that is being requested is available
to be accessed by a customer application (i.e., “Devices”
layer). In a more refined analysis, the quality of such services
can also be assessed. In both analyzes, one service can be
replaced by another equivalent at runtime without client’s
perception. In this sense, to present the details of this last
phase, the WS_01 service will be considered, which enables
customers to make orders for the restaurant. This service is
designed based on three services (WS_A, WS_B, and WS_C)
by means of a service composition. The first service (WS_A)
aims to authenticate the customer in restaurant application via
“E-MAIL” or “GOOGLE SIGN IN”. Once authenticated, the
App2Rest displays the main screen and the meal of the day
is suggested. Next, the customer can accept this suggestion or
select another dish via left side menu. To select another dish,
the customer must access the Menu option in the side menu
so that the dishes and all items available in the restaurant are
displayed. The restaurant menu is performed by the second
service (WS_B), which enables select some items by category.
When selecting a dish (add button), an order pad is initialized
and many items can be added to it (third service – WS_C).
Next, a brief description of each phase is addressed.

In the “design” phase, developers must select the preferred
services that will compose the primary service (e.g., WS_01).
These services are inserted into a dynamic list called “Pre-
ferred Services” (i.e., WS_A, WS_B and WS_C, and the position
of each service in such list is equivalent to its execution
order. More complex choreographies require an external file
to indicate the order of execution of each service. In addition,
for each preferred service there will be a list of “Alternative
Services”. For instance, for the preferred service WS_A, the
alternative services WS_A1, WS_A2 and WS_A3 were selected.

In the runtime phase, primary services are monitored by
the “Service Monitor” component. For instance, when the
monitoring activity detects problems in one of the preferred
services that compose a primary service, the list of alternative
services is consulted. Thus, three situations can be observed:
(i) the list has an alternate service that can replace a preferred
one; (ii) the alternative service list may be empty, i.e., the
developer has not prepared alternative services at the design

phase; or (iii) the list may be empty by attempts, i.e., services
have become unavailable over time. In the last two situations,
the “Service Monitor” component should launch a search in
the “Web Service Repository” to find a service of greater
similarity. Such search can return a service set ranked by statis-
tical measures in relation to the satisfaction of the parameters
initially provided.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a framework that intends to support the
Self-MobApps development. Such framework uses a dynamic
approach for service deployment. In other words, unavailable
services can be replaced by a similar one in a transparent
way without the perception of their stakeholders (i.e., client
applications). Moreover, our framework can classify and ana-
lyze sensory data to autonomously detect and mitigate faults at
runtime for a simple service or a composition of services [8].
As reported in Section I, our framework will address only
services based on JAX-WS [9]. Based on this scenario, the
main contributions of this article are: (i) for the SaS area
by providing a means (i.e., framework) that facilitates the
development of Self-MobApps; (ii) for the Service Computing
area, since we have proposed a framework that enables the
development of Self-MobApps or SOA-based systems by
means of a dynamic approach for service deployment; and
(iii) for both areas, since we have developed a means to replace
unavailable services at runtime without the perception of their
stakeholders. In this sense, the proposed mechanism based
on dynamic deploy for substitution of services (i.e., preferred
and alternative) must be highlighted. The previous selection
of services can further minimize the possible impacts (i.e.,
computational cost and time) caused by the deploy of services.

Regarding future work, at least two activities are intended:
(i) conduction of more case studies or proof of concepts
intending to completely evaluate our framework, including
different software domains; and (ii) use of this framework
in the industry, since it is intended to evaluate its behavior
when it is applied in larger real environment of development
and execution. Therefore, based on the content exposed in this
paper, a positive research scenario can be idealized, intending
to have this framework become an effective contribution to the
software engineering and SaS communities.

ACKNOWLEDGMENT

This research is supported by PROPe/UNESP and Brazilian
funding agencies (CNPq and CAPES).

REFERENCES

[1] J. Aghav and N. Sharma, “A software architecture for provisioning
of mobile services: An osgi implementation,” in MEMSTECH ’11.
Polyana, Ukraine: IEEE, May 2011, pp. 24–27.

[2] F. Gonçalves, C. E. T. Oliveira, I. Silva, and L. Moura, “An architectural
model for applications based on mobile services,” in ICCGI ’07.
Guadeloupe City, Guadeloupe: IEEE, March 2007, pp. 1–6.

[3] F. Gonçalves, C. E. T. Oliveira, I. Silva, L. Moura, and F. Franca, “A
software architecture for the provisioning of mobile services in peer-to-
peer environments,” in ICIW ’07. Morne, Mauritius: IEEE, May 2007,
pp. 1–6.

[4] G. Cugola, C. Ghezzi, L. S. Pinto, and G. Tamburrelli, “Selfmotion: A
declarative approach for adaptive service-oriented mobile applications,”
Journal of Systems and Software, vol. 92, pp. 32 – 44, 2014.

290

Web App

Web Services Repository

Service + WSDL + Semantic Information

Devices Web Server

Web
Service
(WS_01)

WS_A

WS_B

WS_C

WS_A1 WS_A2 WS_A3

WS_B1 WS_B2

WS_C1 WS_C2 WS_C3 WS_C4

Developers

Developers Automatic Search

Service Dynamic ListsService Composition

Preferred Services

Service
Selection

Service
Sugestion

Alternative Services

Web
Service
(WS_N)

WS_A

WS_B

WS_C

WS_A1 WS_A2 WS_A3

WS_B1 WS_B2

WS_C1 WS_C2 WS_C3 WS_C4

Developers

Service Dynamic ListsService Composition

Preferred Services Alternative Services

Web Service (...)

Service Monitor

Service Monitor

Client-Server Application

Web App composed of service

out

in

Web Service
(WS_02)

Web Service
(WS_N)

...

Web Service
(WS_01)

Service Monitor

in

out

Remote Server

Web Service

Legend:

Network / Internet

WDSL + Semantic Information

Web Service Information

Figure 4. Generic Representation of Service for Restaurant Application

[5] R. Angarita, M. Rukoz, M. Manouvrier, and Y. Cardinale, “A
knowledge-based approach for self-healing service-oriented applica-
tions,” in MEDES ’16, ser. MEDES. Biarritz, France: ACM, 2016,
pp. 1–8.

[6] S. Cherif, R. Ben Djemaa, and I. Amous, “Remossa: Reference model
for specification of self-adaptive service-oriented-architecture,” in AISC
’14, B. Catania, T. Cerquitelli, S. Chiusano, G. Guerrini, M. Kämpf,
A. Kemper, B. Novikov, T. Palpanas, J. Pokorný, and A. Vakali, Eds.
Cham: Springer International Publishing, 2014, pp. 121–128.

[7] D. Menasce, H. Gomaa, s. Malek, and J. Sousa, “Sassy: A framework
for self-architecting service-oriented systems,” IEEE Software, vol. 28,
no. 6, pp. 78–85, Nov 2011.

[8] F. J. Affonso, G. Leite, R. A. P. Oliveira, and E. Y. Nakagawa, “A
framework based on learning techniques for decision-making in self-
adaptive software,” in SEKE ’15. Pittsburgh, USA: Knowledge Systems
Institute, 2015, pp. 24–29.

[9] Oracle, “Java platform, enterprise edition: The java ee tutorial,” [On-
line], 2018, available: https://goo.gl/qGeGwd, Accessed on February 28,
2018.

[10] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1–42, 2009.

[11] IBM, “An architectural blueprint for autonomic computing,” [On-line],
2005, available: https://goo.gl/wawGvi, Third Edition, Accessed on
February 28, 2018.

[12] G. Li, L. Liao, D. Song, J. Wang, F. Sun, and G. Liang, “A self-
healing framework for qos-aware web service composition via case-
based reasoning,” in APWeb ’13, Y. Ishikawa, J. Li, W. Wang, R. Zhang,
and W. Zhang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 654–661.

[13] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,

“Web services composition: A decade’s overview,” Information Sciences,
vol. 280, pp. 218 – 238, 2014.

[14] B. Sefid-Dashti and J. Habibi, “A reference architecture for mobile soa,”
Systems Engineering, vol. 17, no. 4, pp. 407–425, 2014.

[15] L. M. Daniele, E. Silva, L. F. Pires, and M. van Sinderen, “A soa-based
platform-specific framework for context-aware mobile applications,” in
IFIP/IWEI ’09, R. Poler, M. van Sinderen, and R. Sanchis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 25–37.

[16] D. Weyns, S. Malek, and J. Andersson, “Forms: a formal reference
model for self-adaptation,” in ICAC ’10. New York, NY, USA: ACM,
2010, pp. 205–214.

[17] A. Nasridinov and J. Byun, “Ws-direct: Web service—discoverability,
recoverability, classifiability and trustworthiness,” in CUTE ’12, Y.-H.
Han, D.-S. Park, W. Jia, and S.-S. Yeo, Eds. Dordrecht: Springer
Netherlands, 2013, pp. 879–887.

[18] T. Erl, Service-Oriented Architecture: Analysis and Design for Services
and Microservices, 2nd ed. Upper Saddle River, NJ, USA: Prentice
Hall Press, 2016.

[19] OASIS, “Reference architecture foundation for service oriented architec-
ture version 1.0,” OASIS Committee Specification 01, [On-line], 2012,
available: https://goo.gl/m2pEm4, Accessed on February 28, 2018.

[20] A. Mani and A. Nagarajan, “Understanding quality of service for web
services, improving the performance of your web services,” [On-line],
2002, available: https://goo.gl/TqkVtX, Published on January 01, 2002,
Accessed on February 28, 2018.

[21] A. Al-Moayed and B. Hollunder, “Quality of service attributes in web
services,” in ICSEA ’10, August 2010, pp. 367–372.

[22] jUDDI, “An open source implementation of oasis’s uddi v3 specifica-
tion,” [On-line], 2018, available: https://juddi.apache.org/, Accessed on
February 28, 2018.

291

Modeling of Interlocking Systems based on Patterns

Wang Yan, Zhong Wen, Xiaohong Chen*, Dehui Du

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai

*corresponding author, xhchen@sei.ecnu.edu.cn

Abstract—The equipment faults of the interlocking system in rail

transit system has occurred frequently, and these faults can cause

serious accidents. The modeling of the interlocking system must

aim at the stochasticity and real-time characteristics of equipment

faults. Therefore, this paper proposes to model the interlocking

system using stochastic hybrid automata. In order to improve

model efficiency, we try to extract the pattern of the interlocking

system model, and reuses these patterns in system modeling. The

main contributions include: (1) Based on the business analysis of

the interlocking system, 12 model patterns of the interlocking

system are extracted; and (2) the modeling process of the

interlocking system based on patterns reuse is given to guide

system modeling. Finally, a case study is presented to illustrate the

feasibility and effectiveness of our approach.

Keywords-Interlocking system; Pattern reuse; Stochastic hybrid

automata; Modeling; UPPAAL-SMC

I. INTRODUCTION
The safety of rail transit systems is of great importance.

However, in recent years, railway accidents happen from time to
time. For example, July 23, 2011 Yong Wen line "7.23" major
railway traffic accident. This is a serious accident caused by the
design flaws of the equipment in the control center, inadequate
checks on the road, and ineffective emergency response after
equipment failure which caused by lightning. The accident led
to a rear-end train collision, and caused 40 deaths, 172 injuries,
and the direct economic losses of 19371.65 million RMB [1].

The interlocking system is one of the core subsystems in the
rail transit system [2]. It has SIL4-level safety requirements,
complex logic, and high requirements for real-time performance
[3] [4]. It can endanger the safety of the vehicle when a failure
occurs. Therefore, modeling and analyzing the interlocking
system become very important and is one of the key methods to
ensure system safety.

The interlocking system is composed by various equipment.
The main cause of most accidents in interlocking system is
equipment failure which is stochastic. For example, lightning
strike causes the short circuit of track and leads to an accident.
Therefore, we should consider the stochastic characteristic of
equipment faults when modeling. Stochastic Hybrid Automata
(SHA) [5] offers stochasticity and time modeling, and has been
widely used in various fields such as electromechanical systems,
computer simulation, automata and so on [6]. In this paper, we
take the time constraints into consideration and propose to use
SHA to construct the system model for verification. Considering

10.18293/SEKE2018-138

the modeling and verification, we choose the platform
UPPAAL-SMC [7] for modeling and analysis.1

In order to facilitate the construction of rail transit system
model, we extract the patterns of the system model for the
interlocking system. Using these patterns, one only needs to fill
in the appropriate parameters to customize the specific system
model. The final customized system model is verified.

The rest of this paper is organized as follows. Section II
presents the framework of our approach; Section III gives the
method for constructing the system model patterns and Section
IV clarifies pattern based system model generation method; a
case study is given in section V and the related work follows in
section VI. Finally, Section VII concludes the paper.

II. FRAMEWORK OF OUR APPROACH
The purpose of railway interlocking system is to control

points and signal lights to prevent trains from collisions and
derailments [8], while allowing its movement. The processing
flow of the interlocking system is on
https://github.com/wymgal/IS.git (for simplicity, we will refer it
as our website in the following). Generally speaking, the
physical domain of an interlocking system consists of 5 entities,
tracks, points, signal lights, routes, and interlocking table. The
tracks are divided into sections, and each section is associated
with a circuit for detecting whether it is occupied or not. Track
sections are joined by points which can guide trains into different
directions depending on the positions of the points. A point can
be in position normal or reverse, as well as unlocked to show
that the tracks are unconnected at the crossing. Signal lights are
placed between track sections and use red or green color to
indicate proceed or stop signal respectively. Routes are
established for authorizing a train to enter. It is often defined by
interlocking table, which includes the conditions for locking and
releasing the train route and for when the entry signals of the
route is set to show proceed or stop signal.

According to the above descriptions, we get a context
diagram of interlocking system, as shown in Figure 1. The
system contains six entities, Train, Signal Light, Point, Track,
Interlocking Table and the Controller. Except Controller, we
name the other five entities the environment of the interlocking
system. The environment interacts with the Controller. The
interactions are the shared message between the Controller and
the environment entities.

Based on the context diagram, we give a framework of our

292

https://github.com/wymgal/IS.git

Train

Signal Light

Track

Interlocking Table

Point

Controller

trainEnter
trainLeave

request

checkoccupied

occupied
unoccupied

checktable

result

dolock
dounlock

turnLock
turnUnlock

dogreen
dored

turnGreen
turnRed

turnGreen
turnRed

Fig.1 Context diagram of the interlocking system

approach as shown in Figure 2. Firstly, we extract the system
pattern from the domain knowledge of the interlocking system.
The system pattern consists of two parts: the environment
patterns and the controller patterns. Based on the extracted
system model, a system model is generated in combination with
a model parameter table. The generated system model is
simulated on the UPPAAL-SMC platform to verify the
properties of the system.

Center

System patterns

Controller patterns

Environment patterns

Train[i]

Point[i]

Track[i]Signal Light[i]

Interlocking table[i]

run on

System Model

Controller
control b monitora

Environment

UPPAAL-SMC

generate

Parameter List

Fig.2 Framework of our approach

The environment patterns include the models of each
environmental entity of the interlocking system, such as Train,
Point, Interlocking Table, Signal Light, and Track. The
controller patterns are also defined. Model parameter list is the
key to realize the reusability which is given by domain experts.
Using parameters in the parameter list, the extracted system
patterns can be instantiated to generate a specific system model.

III. INTERLOCKING SYSTEM MODEL PATTERNS

A. Constructing process

Firstly, we give a 3-step process to obtain the SHA of each
system entity. The three steps are constructing the basic
automata, modeling faults, and adding time constraints.
Step 1: Constructing the basic automata

The process description related to the entity is found
according to the system processing flow and system context
diagram, including all the behaviors related to the entity.

We give a guideline to get a basic automata of each entity.
Each time the entity sends or receives a message (action), the
entity's automata moves from one state to another state.

Therefore, an action of each entity is transformed into a state and
a transition in a basic automata. The transition is an action.
Step 2: Modeling faults

In the entities, it is possible that the occurrence of an
abnormal event can lead to a fault, and an abnormal event can be
represented by the probability. Therefore, we find all the
abnormal events, and use stochastic probability events to express
them. Different events are performed with different probabilities.
Based on the basic automata, stochastic probability events are
added to model faults.
Step 3: Adding time constraints

This step is to add time constraints on the results of step 2.
Firstly, the time constraints of entities are extracted from the
domain experts and expressed as <message1, message2, <=n
time unit>. Then, the corresponding clock variable x are defined.
The representation of the clock constraint in the automata is the
time between message1 and message2, that is, in the automata,
the initial value of clock variable x on the "update" of message1
is 0, and the inequality x<=n of the clock variable is defined in
the "guard" of the message2.

B. Environment entity patterns

a) Train Pattern
We obtain the processing flow of the train entity from the

system processing flow. When the train enters the track, it sends
a request signal to the controller and waits for the signals of
signal lights. If the train is accepted within the stipulated time, it
enters the track. If rejected, it stops and waits. According to the
guideline, a basic automata of the train entity is obtained.

A fault may occur during the train running, that is, between
sending "trainEnter" message and sending "trainLeave" message.
Add an error state to the automata. Message sent from
"trainEnter" is transferred to the error state with the probability
of m% and transferred to the starting point of "trainLeave"
message with the probability of n%, where, m + n = 100, m and
n are real numbers, and are decided by domain experts.

The time constraints are obtained from domain experts as
follows. The not-all-lights-green signal "notallgreen" is received
within specified time. The all-lights-green "allgreen" is received
within specified time. The clock variable x is defined to indicate
the waiting time for the signal light, that is, the time from
sending "request" message to receiving "notallgreen" message
or "allgreen" message. Therefore, the initial value of x on the
"update" of the "request" transition is 0, and the inequality "x<z"
(z is a constant) is used as the "guard" of transition "notallgreen"
or "allgreen". Therefore, the SHA pattern of the train is obtained,
as shown in Figure 3(a).

b) Signal Light Pattern
We divide the activities involved in Signal Light into two

parts. One is SSignalLight, which is responsible for setting the
status of the signal light. The other part is RSignalLight, which
is responsible for inquiring the status of the signal light.

Signal Light = SSignalLight||RSignalLight
SSignalLight: We get the processing flow of the SSignalLight

from the system processing flow. The initial state of the Signal

Light is red. After receiving the commands of the controller, the
signal light changes its state. According to the guideline, the

293

(e) Interlocking Table

(a) Train (c) Point

(b) SSignalLight (d) STrack

Fig.3 SHA patterns of environment entities

basic automata of the SSignalLight is obtained (see our website).
A fault may occur during the change of the signal lights’ states,
that is, between receiving "dogreen" message and sending
"turnGreen" message or between receiving "dored" message and
sending "turnRed" message. Add an error state to the automata.
Message sent from "dogreen" is transferred to the error state with
the probability of m% and transferred to the starting point of
"turnGreen" message with the probability of n%. Similarly, we
can model faults in the situation where the signal light changes
from green to red.

The time constraints are obtained are as follows. There is a
certain delay in the state change of Signal Light. A local clock a
is given to indicate the delay time of signal light changing from
red to green, and a clock b indicates the delay time of signal
changing from green to red. The initial value on the "update" of
the "dogreen" transition is 0, and the inequality "a>1" is used as
the "guard" of the transition. Similarly, we can define the clock
b in this automata. The SHA of the SSignalLight is thus obtained,
as shown in Figure 3(b).

RSignalLight: In order to get a set of single light states, we
first model one single light. According to the system processing
flow, we can get the processing flow of the RSignalLight.
According to the guideline, we build an automata for one signal
light as shown in Figure 4.

For a group of lights, the modeling process is based on the
situation of one signal light. Add the corresponding different
signal lights' green identifier isLightGreen and the red light
identifier isLightRed. For N signal lights, there should be n

Fig.4 SHA pattern of RSignalLight for querying single signal light

isLightGreen[0,1,...,n-1] and isLightRed[0,1,...,n-1]. Add n
transitions with the message of "turnGreen[n-1]?" from the
initial state to itself. Make isLightRed[n-1]=1. The judgement
condition of transition "allgreen!" is: isLightGreen[0]==1&&is-
LightGreen[1]==1&&...&&isLightGreen[n-1]==1. Similarly,
we change the judgement condition of transition "notallGreen",
transition "allred" and transition "notallred". The automata for a
group of signal lights is in our website. We do not consider the
error situation and the time constraints of RSignalLight.

c) Point Pattern
We can get the processing flow of the point entity from the

system processing flow. The initial state of the Point is unlocked.
When the point receives commands from the controller, the
point changes its state. There is a certain delay in the state change
of the point entity. According to the guideline, a basic automata
of the point is obtained as shown in our website.

294

https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues

A fault may occur during the point changing from the locked
state to the unlocked state or from the unlocked state to the
locked state, that is, between receiving "dolock" message and
sending "turnLock" message or between receiving "dounlock"
message and sending "turnUnlock" message. Add an error state
to the basic automata. Message sent from "dolock" is transferred
to the error state with the probability of m% and transferred to
the starting point of "turnLock" message with the probability of
n%. Similarly, we can model faults in the situation where the
point changing from locked state to the unlocked state.

The time constraint for point entity is that there is a certain
delay in the state change of the point. The local clock a is defined
to indicate that the delay time of the point changing from
unlocked state to locked state, and the local clock b indicates the
delay time of the point changing from locked state to unlocked
state. That is, clock a is the time from receiving "dolock"
message to the next state lock. Therefore, the initial value of a
on the "update" of the "dolock" transition is 0, and the inequality
"a>1" is used as the "guard" of the transition. Similarly, we can
define the clock b. The SHA of the point is thus obtained, as
shown in Figure 3 (c).

d) Track Pattern
We divide activities involved in Track into two parts. One is

STrack, which is responsible for setting the status of the Track.
The other part is RTrack, which is responsible for inquiring the
status of the Track. So we get: Track=STrack||RTrack

STrack: The processing flow of the STrack is extracted from
the system processing flow. After receiving commands from the
controller, the track check whether it is occupied and return the
results to the controller. According to the guideline, a basic
automata is obtained (see our website).

A fault may occur during the process of setting the track state,
that is, between receiving "trainEnter" message and receiving
"trainLeave" message. Add an error state to the automata.
Message sent from "trainEnter" is transferred to the error state
with the probability of m% and transferred to the starting point
of "trainLeave" message with the probability of n%.

The method of adding transition with a probability is similar
with the case of the train entity. Without taking the time
constraints of track entity into account, we do not extract time
constraints. The SHA of STrack is obtained by the above steps,
as shown in Figure 3 (d).

RTrack: It is finished in two steps. One is for one track. We
build an SHA model for one track, as shown in our website. The
other one is for a group of tracks. The processing is similar with
RSignalLight. We only need to change the judgment conditions
and transitional messages.
e) Interlocking Table Pattern

According to the system processing flow, the processing
flow of the Interlocking Table entity is obtained. After receiving
the query command from the controller, the interlocking table
queries the related information and returns results. According to
the guideline, the automata of the interlocking table is obtained
as shown in Figure 3(e). We do not consider the error situation
and time constraints of the interlocking table entity.

C. Controller Pattern

The controller is divided into two parts. One is the Center
which is responsible for controlling all the tracks, points, signal
lights, trains and the interlocking table. The other part called
Submodules, which is in charge of controlling each track, point,
signal light and train respectively. So we define:

Controller=Center||Submodules

Submodules=CTrack||CPoint||CSignalLight||Dispatcher

Center: The processing scenario of the Center is extracted
as expressed in our website. According to the guideline, the basic
automata of the Center is obtained as shown in Figure 5.

Fig.5 A Center Pattern
In the global declaration, we define 8 functions required by

Center to interact with each entity. They are send_routeID,
getRouteID, send_trackID, getTrackID, send_pointInfo,
getPointInfo, send_lightID, and getLightID. Their functions are
the meaning of their name. Due to limited space, the exact
definition is shown in our website.

CTrack, CPoint, and CSignalLight: The CTrack is
responsible for sending "checkoccupied" message to each track,
and checking the occupancy situation of each track. After
receiving the instruction of Center, the CPoint sends "dolock"
and "dounlock" message to each point. After receiving
instruction from Center, the CSignalLight sends "dogreen" and
"dored" message to each signal light. The construction process
of CTrack, CPoint, CSignalLight are similar to the construction
process of RSignalLight. Similarly, we can get the CTrack,
CPoint and CSignalLight (see our website).

Dispatcher: It is responsible for sending dispatching
instructions to control different trains entering the track at
different time. How many trains to be sent is decided by detailed
number. So we cannot give a graph pattern here. But the basic
sentence can be recording as: for each train i, we add a state with
the message of “send[i-1]!” and a transition with the massage of
“trainEnter[i-1]?”.

IV. A SYSTEM MODELING METHOD BASED ON PATTERNS
We give a 5-step process to model the system.
Step 1: Declaring all the models in the system Through

analysis, we define that the system is composed by 12 models,
so we make the following declaration:

system Train, Track, Light, Point, Center, Dispatcher, CSignalLight, CPoint,
CTrack, RSignalLight, RTrack, InterlockTable;

Step 2: Setting model instantiations Get the number of trains,
signals, tracks and points from the interlocking table. Suppose

295

https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS.git
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS.git.
https://github.com/wymgal/IS/issues

Nt, Nl, Nr and Np are the number of trains, signals, tracks and
points respectively. The models could be instantiated by the
following declarations:

const int TRAINS=Nt; typedef int[0,TRAINS-1] train_t;
const int LIGHTS =Nl; typedef int[0,LIGHTS-1] light_l;

const int TRACKS = Nr; typedef int[0,TRACKS-1] track_t;

const int POINTS=Np; typedef int[0,POINTS-1] point_p;

Step 3: Reusing patterns The parameters in each pattern can
be modified according to specific situations. According to the
number of entities, the RSignalLight and RTrack model can be
instantiated. Reuse the Center pattern, create the SHA model of
the Center, and instantiate the SHA models of the Controller
submodules.

Step 4: Defining the system interactions The interactions are
achieved by the communication between the entities in the
context diagram. So defining the system interactions is to define
all the messages in the communication between entities. Define
all messages in the global declaration. For example, Chan
green[Nt*Nl]. According to the interlocking table, we can know
that one train needs Nl signal lights, that is, needs Nl green
signals. So for Nt trains, there should be Nt*Nl green signals.
The other messages are declared in our website.

Step 5: Declaring system variables The global variables in
the system are actually shared information between models.
They should include the track occupancy identifier, and the
number of instantiations of each entity in the global declaration.
In addition, the variables used by the functions of Center should
be declared too. The exact declaration is as follows.
int y[Nt*Nr] ={0,0,...,0} // the track occupancy identifier
const int l_num=Nl, p_num=Np, tr_num=Nr, t_num=Nt;

// the number of instantiations of each entity
int route_id, trackID[Nr], PointInfo[Np][Np], lightID[Nl];

// the variables used by the functions

V. CASE STUDY
In this paper, we use a case which interlocking table is shown

in Table I. There are two routes, Route1 and Route2, 5 signal
lights S1, S2, S4, S5, and S7 on the Route1, and 5 lights S1, S2,
S3, S6, and S7 on the Route2. Two points SW1 and SW2, and five
tracks T1, T2, T3, T4, and T5 are included.

A. Defining the system

According to the process, we declare the 12 models as listed
in Section IV. From Table I, we get the numbers of the trains,
signal lights, tracks and points, which are 2, 5, 5, 2 respectively.
It means Nt=2, Nl=5, Nr=5, Np=2. Put them into the model
declaration to declare the models of the system:

const int TRAINS=2; const int LIGHTS =5;

const int TRACKS = 5; const int POINTS=2;
Reuse the patterns of Train, Signal Light, Point, Track and

Interlocking Table, and modify RSignalLight and RTrack

according to their numbers 5 and 5. We modify the number of
transitions and judging conditions, and get these two models.
RSignalLight model and RTrack model are in our website.
Finally the Controller model is constructed. We reuse the Center
pattern, and build CTrack, CPoint, CSignalLight according to
their numbers. Reuse the Dispatcher. We add two clock
variables to Dispatcher, clock variable m starts timing when the
train0 enter the track, and the clock variable n starts timing when
the train1 enter the track. The CTrack model is shown in our
website, and the rest of the Controller submodules are displayed
in our website. After this, put Nt=2, Nl=5, Nr=5, Np=2 into the
global declaration as follows. Finally the system is built.

B. Simulation and verification

UPPAAL uses BNF syntax to describe the security
requirements of the system, and the modeler can verify the
related properties of the system according to the different design
requirements. This paper only considers the part design
requirements, including the system model is not deadlock (1),
the Signal Light model can enter the green light state (2), and the
Monitor model can detect the error of the system into the
warning state (3). They are represented as follows:

A[] not deadlock (1)
E<> Light.GREEN (2)
E<> Monitor.warning (3)

The simulation model of the system in the UPPAAL
platform, after repeated simulation and observation, meet the
above three design requirements: the preliminary determination
of each state of the model is deadlock and reachable; signal light
can enter the green state; the monitor can determine the
corresponding error and enter warning state.

As a result, the model meets the requirements of the system,
the expected security requirements, and ensures the security and
correctness of the model. The following results are obtained, as
shown in Figure 6.

VI. RELATED WORK
In order to ensure the correctness and safety of the system,

there are many works for modeling the real time and fault
stochastic characteristics. Formal methods are widely used in
modelling and analysis [10,11], such as Timed Automata [12],
Petri net [13], Z language [14] and so on. For example, Wang
uses the time automata theory to model and verify the railway
station signal interlocking system and the interlocking route
control process [15]. Hei et al. use Petri net to model and verify
the distributed control interlocking system [16]. Tiejiang Wang
describes the security requirements of computer interlocking
software in Z language [17].

TABLE I. INTERLOCKING TABLE

Route Signals Points Track

ID From To Green Red
Open Close

 Up Down

R1 S1 S7 S1,S2,S4,S5,S7 S3,S6 SW1,SW2 T1,T2,T3,T5,T6

R2 S1 S7 S1,S2,S3,S6,S7 S4,S5 SW1,SW2 T1,T2,T4,T5,T6

int y[10] ={0,0,0,0,0,0,0,0,0,0};
const int l_num=5,p_num=2,tr_num=5, t_num=2;

int route_id, trackID[5], PointInfo[2][2], lightID[5];

296

https://github.com/wymgal/IS/issues
file:///I:/youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///I:/youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
https://github.com/wy/IS.git
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xinhong%20Hei.QT.&newsearch=true

Fig.6 Verification results

However, these formal methods have shortcomings for
modeling the interlocking system. Although timed automata
consider the time requirement of the system with real-time
characteristics, it has no stochastic and cannot model the
complex system's stochastic faults. The Petri net and Z
languages do not consider the time and stochasticity of the
system when modeling. Compared with these methods, our
approach of using stochastic hybrid automata can consider the
stochastic and real time characteristics of interlocking system,
which is more suitable for interlocking system modeling.

Another related work is pattern based modeling. Although
the UPPAAL-SMC provides the train gate example, but it does
not have patterns. There are many efforts in pattern based
modeling. For example, Wu et al. propose a traffic pattern
modeling approach for the urban intersection[18]. Zhang et al.
propose an observer-pattern modeling method to eliminate the
time-variance effect for two-stage boost inverter [19]. However,
these pattern-based system modeling work is rarely related to the
interlocking system. In addition, many modeling languages used
in them do not pay particular attention to time constraints and
stochasticity.

VII. CONCLUSION AND FUTURE WORK
As one of the core systems of rail transportation system, the

interlocking system ensures the safety of trains. Based on the
SHA, this paper presents the modeling of the interlocking system
using patterns. The modeled system could be analyzed using
simulation and verification technology. The main contributions
of this paper include:

(1) The 12 model patterns for interlocking systems are
extracted covering 6 entities consisting of train, signal
light, point, track, interlocking table and controller;

(2) An approach for reusing these patterns to construct an
exact interlocking system model is proposed. Using this
approach, novices of SHA could be quickly build a
system for further analysis.

The next step work is to consider more fault types and apply
this model to accident prediction.

ACKNOWLEDGMENTS
This work was supported by the Natural Science Foundation

of China (No. 61472140) and Defense Industrial Technology
Development Program (JCKY2016212B004-2).

REFERENCES
[1] "7.23" Yong Wen line special major railway traffic accident investigation

report [EB/0L].(2011-12-25) [2013-02-10].
http://www/gov.cn/gzdt/2011-12/29/content_2032986.html

[2] Baofeng Xie. Status and development of computer interlocking system of
station[J]. Transportation system engineering and information, 2004,
4(4):86-90.

[3] EN501 28C．Railway application-SoRware for railway control and
protectionsystem[J]．2000．

[4] Krishna,C ． M ． Real Time Systems[M] // Real-Time
Systems．McGraw-Hill Higher Education,1 996：3-5．

[5] Bortolussi L, Policriti A. Stochastic Programs and Hybrid Automata for
(Biological) Modeling[C]// Conference on Computability in Europe:
Mathematical Theory and Computational Practice. Springer-Verlag,
2009:37-48.

[6] Bemporad A, Cairano S D. Optimal Control of Discrete Hybrid Stochastic
Automata[J]. IEEE Transactions on Automatic Control, 2005,
56(6):1307-1321.

[7] Bulychev P, David A, Larsen K G, et al. UPPAAL-SMC: Statistical
Model Checking for Priced Timed Automata[J]. Electronic Proceedings
in Theoretical Computer Science, 2012, 85.

[8] Hartonas-Garmhausen V, Cimatti A, Clarke E, et al. Verification of a
safety-critical railway interlocking system with real-time constraints[J].
Science of Computer Programming, 2000, 36(1):53-64.

[9] Zengming Yu, Zhengdong Liu. The change of interlocking function in
communication based train control system[J]. Railway Operation
Technology,2011, 17(4):13-15.

[10] Amir Pnueli．Formal Verification: All Qucstiom and Some Answers.CS
Leading Teachers Course, WIS, May 9,1999.

[11] Wing J M．A specifier’S introduction to formal methods [J]． Computer,
1990, 23(23)：8-22．

[12] Alur R. Timed Automata[J]. Lecture Notes in Computer Science, 1999,
126(94):183--235.

[13] Yang yang, Ming Pan, Meifang He. Formal specification process of the
interlocking software with Petri nets[J]. China Railway
Sciences,2002,23(3):49-54.

[14] Tiantian Tang. Research on Application of Software Reliability Design
Method in Computer Interlocking System[D]. Hefei Polytechnic
University,2004.

[15] Guanning Wang. Modeling and Verification of Interlocking Route
Control Process Based on UPPAAL[D]. Beijing Jiaotong University,2009.

[16] Hei X, Takahashi S, Hideo N. Toward developing a Decentralized
Railway Signalling System Using Petri Nets[C]// Robotics, Automation
and Mechatronics, 2008 IEEE Conference on. IEEE, 2008:851-855.

[17] Tiejiang Wang, Meng Li. Z specification for computer interlocking
software [J]. ChinaRailway Society, 2003, 25(4):62-66.

[18] Wu C E, Yang W Y, Ting H C, et al. Traffic pattern modeling, trajectory
classification and vehicle tracking within urban intersections[C]//
International Smart Cities Conference. 2017:1-6.

[19] Zhang H, Li W, Ding H, et al. Observer-Pattern Modeling and Nonlinear
Modal Analysis of Two-stage Boost Inverter[J]. IEEE Transactions on
Power Electronics, 2017, PP(99):1-1.

297

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cheng-En%20Wu.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hao%20Zhang.QT.&newsearch=true

ComD2: Family of Techniques for Inspecting Defects
in Models that Affect Team Communication

Adriana Lopes, Ursula Campos and Tayana Conte
USES Research Group

Instituto de Computação, Universidade Federal do
Amazonas (UFAM)

Manaus, AM - Brazil
{adriana, usc, tayana}@icomp.ufam.edu.br

Clarisse Sieckenius de Souza
Semiotic Engineering Research Group

Departamento de Informática, PUC-Rio
Rio de Janeiro, RJ - Brazil

clarisse@inf.puc-rio.br

Abstract — Communication failures in software development

teams can compromise the software quality. Therefore,

identifying and mitigating risks for effective team communication

are important activities in software development. Software

models are one of the means of communication in development

teams, because it communicates other members of the

development team about the software. Thus, our research focuses

on inspection techniques for identifying defects that affect the

team communication through the software models. This paper

presents a family of techniques for inspecting defects that affect

team communication, called ComD2 (Communication between

Designers and Developers). The ComD2 family was developed

based on theories that investigate different ways of

communication. For the time being, the ComD2 family has three

specific inspection techniques for UML models, such as class

diagrams, activity diagrams, and state machine diagrams. We

performed a feasibility study and the results showed that the

ComD2 family was considered useful for the identification of

defects that affect the team communication through the software

models.

Keywords - inspection technique, communication artifact,

UML diagrams, human‑centered computing; software engineering;

I. INTRODUCTION
According to Reed and Knight [1], effective

communication is one of the most critical components of
working in software teams. In software development, the
communication is carried out through face-to-face discussions
in co-located or distributed teams [2], besides the support
offered by tools [3]. Software models are also used as means of
communication in software development teams [4]. In this
paper, we explore the communication of software development
teams through software models.

Software models that support the communication in
different domains can be considered boundary objects.
Boundary objects are used for different purposes and in
different domains while maintaining their authenticity [5]. The
term boundary object comes from the use of objects that
facilitate the sharing of information across linguistic, cultural,
or knowledge boundaries, such as the communication between
a software development team and its client.

Communication failures from software models can come
from information that is not clearly expressed by their
producers (people who created the models). Thus, other
members of the software development team (i.e. consumers,
who comprehend the models for the creation of other artifacts)
may have different interpretations of the ones intended by the
producers. Different interpretations can introduce defects
during the production of software; such as the omission of
some necessary information or the vague definition of
information, thus allowing multiple interpretations [6].

The propagation of defects associated with model
representations can be costly, especially in large or complex
system development projects. Can defects be detected and
remedied by model consumers down the communication line?
How do they affect communication in these and other
(undetected) cases? Is there a way to prevent or at least
minimize such defects? Our research aims to contribute to
answer these questions and starts with the following
interrogation: What defects in software models can affect the
communication of software development teams? To answer this
question, we have developed a family of techniques called
ComD2 (Communication between Designer and Developers).
The purpose of the ComD2 family is to support the
identification of defects that affect the team communication,
i.e. the communication of the designer1 to the developers at
development time. The collaboration between designer and
developers is one of the factors for the success of software
development [8]. We have initially developed three specific
inspection techniques for UML class diagrams, activity
diagrams, and state machine diagrams. The techniques were
developed for these models because they are among the most
frequently used in the industry [9].

The ComD2 family of techniques was developed based on
theories related to Human-Centered Computing (HCC), a field
of research that integrates theories and methodologies in
research on machines, human and application domains [10]. In
particular, the Semiotic Engineering, a theory originally
proposed for Human-Computer Interaction [11][12], which has

1 We use the term designer for the Software Designer, also
called Information Architect, i.e., the professionals involved in
designing the software solution. DOI reference number: 10.18293/SEKE2018-155

298

been extended to account for HCC, investigating different
forms of communication through and about software, both
during development (between producers and consumers of
software development artifacts) and at use time (between
software producers and end users, through systems interfaces).
De Souza et al. [12] propose that Grice’s Cooperative Principle
[13] can be used to assess the effectiveness and efficiency of
communication achieved through software products (or
representations thereof). Thus, we also adopted this Gricean
principle as a theoretical basis for the development of the
ComD2 family.

The verification items of the ComD2 family help
practitioners classify different defects that are found in
software models [14] and detect which dimension(s) of model
representation associated with the defect can lie at the origin of
potential miscommunication. The employed dimensions of
representation are Syntactic (relationship between model and
the modeling language), Semantic (relationship of the model
with the problem domain) and Pragmatic (relationship of the
model with the stakeholders) [15].

We conducted a feasibility study with the initial version of
the ComD2 family in an academic environment. This study
was performed with 30 participants who had knowledge on
class diagrams, activity diagrams and state machine diagrams.
The results showed that defects in the Semantic and Pragmatic
dimensions may affect the effective communication between
producers and consumers of the models. With the support of
ComD2 family, we have indications about the different defects
that impact the team communication. Therefore, Grice’s
Cooperative Principle and the different defects associated with
the dimensions of representation are important concepts for
reducing team communication failures using the models.

The remainder of this paper is organized as follows: Section
2 presents the theoretical background and related work. Section
3 presents the ComD2 family of techniques. Section 4 presents
the feasibility study. Section 5 presents the discussion of the
obtained results. Finally, Section 6 presents the final
considerations and future work perspectives.

II. BACKGROUND AND RELATED WORK
This section presents the concepts used in the definition of

the ComD2 family of techniques. We also present the main
works related to the concepts adopted in the techniques.

A. Grice’s Cooperative Principle

Grice’s Cooperative Principle assists in the expression of
essential characteristics of effective and efficient
communication [13]. According to Grice, productive
conversation (communication) depends on the observation of
reciprocal cooperation, which is established by four maxims:

 (i) Quantity - Make your contribution as informative as
necessary, and no more than necessary;

(ii) Quality - Try to make your contribution true. Do not
say what you believe to be false and do not say something that
you do not have adequate evidence of;

(iii) Relation - Be relevant, that is, do not introduce issues
that do not come to the case under discussion; and

(iv) Manner - Be clear, brief and organized with your
input. Avoid obscurity of expression, ambiguity.

Breaking one or more of these maxims may lead to
communication failure. However, an adequate use of Grice’s
maxims involves the concept of implicature, that is,
information that can be inferred from statements. Conventional
implicatures can be inferred from the conventional meaning of
word. There are also conversational implicatures, that is,
inferences that can be drawn from participants of a given
conversational context in order to fulfill certain gaps and
omissions to (re)establish coherence and consistency in
communication. Therefore, unlike conventional implicatures,
conversational implicatures cannot be resolved by invoking the
usual meaning of information represented in communication
and require different kinds of inferences.

Grice’s maxims have been previously used by Santana et al.
[16] to analyze interaction diagrams modeled with MoLIC
(Modeling Language for Interaction as a Conversation).
MoLIC diagrams, which are based on Semiotic Engineering,
allow us to represent the interaction of the user with the system
as a communication process. The results showed that Grice’s
maxims can indeed help detect human-computer interaction
problems in MoLIC diagrams. We thus extend the object of
inspection and use Grice’s maxims to assess effective
communication between producers and consumers of other
kinds of software models.

B. Defect Inspection in Software Models

Software defects may be related to an inappropriate
comprehension of the information within the models. Granda et
al. [14] present a classification for defects that are commonly
found in UML models, which are presented in Table 1.

TABLE I. TYPES OF DEFECTS, ADAPTED FROM [14].

Type Description

Omission The required information has been omitted.

Incorrect Fact
Some information in the model contradicts the list of
requirements or general knowledge of the system
domain.

Inconsistency
Information in one part of the model is inconsistent
with information in other parts in the model

Ambiguity
The information in the model is ambiguous. This can
lead to different interpretations of information.

Extraneous

Information

The information that is provided is not required in the
model.

Redundant Information is repeated in the model.

Inspection is a method used to identify defects with lower
cost during the development process [17]. According to Qazi et
al. [18], the main purpose of an inspection is to identify defects
to reduce costs and improve software quality.

Travassos et al. [19] developed a family of seven
techniques for inspection, called OORTs (Object Oriented
Reading Techniques). The techniques of the OORTS family
can be used to inspect object-oriented models with regards to:
(i) the different models used, such as use case diagrams and
class diagrams, ensuring consistency among such models; and
(ii) the requirements and models, ensuring traceability within a
domain in order to find defects between them. However, we

299

did not find inspection techniques with the purpose of
supporting the defects identification that affects the
communication of the team through the use of models. For this
reason, we proposed inspection techniques to identify defects
that impact the communication of the team through the use of
models. We have developed our techniques in the context of
HCC and related theories that study different ways of
communication.

III. THE COMD2 FAMILY
ComD2 offers specific techniques for inspecting defects

that affect the team communication through the software
models. The purpose of the ComD2 family is to assist
experienced and novice practitioners by checking for defects in
models that impair the communication of the team. The
theoretical basis of ComD2 family is presented in the following
paragraphs. From this theoretical basis, it is possible to develop
specific techniques for other software models.

Using Grice’s Cooperative Principle [13], ComD2 family
uses the four maxims. We created verification items to support
the identification of discrepancies (these discrepancies may be
defects or not) based on these four maxims. Based on the
maxim of Quantity, we developed verification items for the
necessary content (and no more than necessary), in the models
e.g., for the class diagram: “Are all necessary classes of the
problem domain in the diagram?”. Based on the maxim of
Quality, we developed verification items for the identification
of false information in the models, e.g. for the class diagram,
we have: “Do the classes have content that affects the quality
of the model?” Based on the maxim of Relation, we developed
verification items for the identification of information that is
not relevant to the models, e.g.: “Are classes relevant to system
modeling?”. Based on the maxim of Manner, we developed
verification items for the identification of information that is
not clear in the model, e.g.,: “Are there classes and
relationships with descriptions that are not clear?”.

We observed that when the maxims are not respected in the
models, they could cause defects in software. This occurs due
to the lack of understanding of the consumers on the intention
of the producers regarding the model. Thus, for each
verification item, we used the defect classification that is
presented by Granda et al. [14] (see Table 1). From the
verification items, it is possible to classify the defects. For
instance, for the verification item that is based on the maxim of
Quantity, we relate this item as follows: Are all necessary
classes of the problem domain are in the diagram? If not, this
may be an Omission discrepancy.

Each verification item presents the dimensions of
representation that was affected by the defects in the models,
being these Syntactic, Semantic and Pragmatic [15]. These
dimensions can help in comprehending the defects that cause
the communication failures from software models. Defects
related to the form of representation are associated with the
syntactic dimension, whereas the defects related to the content
of information are associated with the semantic and pragmatic
dimensions. We highlight in the verification items the different
dimensions of representation related to the defects. The
following verification item shows the dimension of
representation affected by the defect, which refers to the

content of system information in the modeling: Are all
necessary classes of the problem domain are in the diagram? If
not, this may be an Omission discrepancy (Semantic).

Verification items can be proposed for each one of the
models. At this initial state, we have developed specific
techniques for inspecting three UML models: class diagrams,
activities diagrams, and state machine diagrams. These three
models are commonly used in software development [9]. There
are verification items for unique elements in the models, such
as the following item for the Association element in the class
diagram: According to the problem domain, are all Association
relationships established among classes? If not, this may be an
Omission discrepancy (Semantic and Pragmatic). In some
cases, there are verification items for all elements of a model,
such as the following item for the class diagram: Are there
elements with descriptions that are not clear? If so, there are
probably Ambiguity discrepancy (Pragmatic).

The Fig.1 presents some verification items for class
diagrams. We use the following structure in the ComD2 family
techniques: verification items for the elements of the respective
models, which are related to the questions based on Grice’s
maxims. Each verification item suggests the identification of
one or more defects and support the classification of the
information representation dimension that such defects affect in
the models.

Figure 1. Extracts of the ComD2 techniques for class diagrams.

The verification items are divided into categories
corresponding to the Grice’s maxims (highlighted in gray in
Fig. 1.), such as: Is the necessary information, and no more
than necessary, present in the model? (verification items
related to the maxim of Quantity); Does the information in
the model contain statements that are not true? (verification
items related to the maxim of Quality); Is the information
relevant to system modeling? (verification items related to the
maxim of Relation); Is the information difficult to
understand in the model? (verification items related to the
maxim of Manner). Despite the structure used, we do not
define the order for the use of each category. The inspection
techniques for the activity and state machine diagrams use the
same structure presented in Fig.1. These techniques are
available in [20].

Class Diagrams Technique

Is the necessary information, and no more than necessary, present in the

model?

Class
Are all necessary classes of the problem domain are in the diagram?
If not, this may be an Omission discrepancy (Semantic).

... ...
Does the information in the model contain statements that are not true?

Class

Do the classes have content that affects the quality of the model? If
so, there are probably Inconsistency and/or Extraneous Information
discrepancies (Semantic).

... ...
Is the information relevant to system modeling?

Class
Are classes relevant to system modeling? If not, there are probably
Extraneous Information and/or Redundant discrepancies (Semantic).

... ...
Is the information difficult to understand in the model?

Class
Are there classes and relationships with descriptions that are not
clear? If so, there are probably Ambiguity discrepancy (Pragmatic).

... ...

300

IV. FEASIBILITY STUDY WITH THE COMD2 FAMILY
In order to evaluate the initial techniques of the ComD2

family, we conducted a feasibility study in an academic
environment. In this study, we analyzed the effectiveness (ratio
between the number of detected defects and the total number of
defects) and efficiency (ratio between the number of defects
per inspection time) of each participant for the different
techniques. The adopted measures of efficiency and
effectiveness are often used in studies investigating inspection
techniques [21] [22]. We also evaluated the participants’
perceptions on the techniques.

A. Planning and Execution of the Feasibility Study

In the planning stage, we selected 30 participants for the
study. The participants are undergraduate students and have a
basic dimension of knowledge about software modeling with
class diagrams, activity diagrams and state machine diagrams.
We selected the UML models of a real web and mobile
development project. In addition, we prepared all necessary
artifacts, such as forms for the participants to report the
identified discrepancies and post-study questionnaires. The
package with the artifacts used also available in [20].

In the execution stage, we first gave lectures on the
techniques of the ComD2 family. Then, the participants
performed the inspection of the UML models individually.
After the inspection, we applied the post-study questionnaires.
During the study, two of the researchers took notes for later
analysis.

B. Results of the Feasibility Study

After the execution of the study, we verified whether the
technique achieved the goal of detecting defects. The oracle of
defects contained a total of 25 defects in the three diagrams (10
defects in the class diagrams, 8 defects in the activity diagrams
and 7 defects in the state machine diagrams).

Table 2 presents the participants (column P#), number of
defects found by each participant (CD column for the class
diagram, AD column for the activity diagrams and SD column
for state machine diagrams), inspection time (in hours) and the
effectiveness of the participants (EfC column for the class
diagrams technique, EfA column for the activity diagrams
technique, EfS column for state machine diagrams technique)
and the average effectiveness of each technique (in the last line
in the Table 2). As the participants performed the inspection of
the created models at the same time, we did not evaluate the
individual efficiency of each participant with the techniques.

Analyzing the effectiveness indicator, we noticed that the
inspectors were able to identify an average of 53% of the
defects with the class diagrams technique, 35.8% with the
activity diagrams technique and 25.8% with the state machine.
This is a positive result in terms of effectiveness when
compared to the indicators achieved by other inspection
techniques for models [22]. The results showed that ComD2
can support the detection of defects. Regarding efficiency, as
the participants used three techniques in the inspection of the
models, we analyzed the efficiency of the entire ComD2
family. The participants found an average of 10.94 defects per
hour with the techniques. However, as the number of defects is
directly dependent on the inspected models, is not suitable to

compare the results of efficiency from this study with the
results of other techniques.

TABLE II. RESULTS PER PARTICIPANTS WITH THE COMD2 FAMILY.

P# CD AD SD
time

(hours)

EfC

(%)

EfA

(%)

EfS

(%)

EfT

(%)

P1 1 3 2 1,33 10 37,5 25 24,1
P2 6 4 3 1,21 60 50 37,5 49,1
P3 4 2 1 0,95 40 25 12,5 25,8
P4 5 3 1 0,81 50 37,5 12,5 33,3
P5 3 2 1 1,26 30 25 12,5 22,5
P6 4 3 4 1 40 37,5 50 42,5
P7 4 4 3 1,16 40 50 37,5 42,5
P8 8 2 3 0,63 80 25 37,5 47,5
P9 7 3 3 1,48 70 37,5 37,5 48,3

P10 7 1 1 0,83 70 12,5 12,5 31,6
P11 5 2 1 0,81 50 25 12,5 29,1
P12 9 2 1 0,81 90 25 12,5 42,5
P13 6 4 1 1,3 60 50 12,5 40,8
P14 9 3 3 0,95 90 37,5 37,5 55
P15 8 4 1 1 80 50 12,5 47,5
P16 4 4 2 1,01 40 50 25 38,3
P17 3 4 3 1,13 30 50 37,5 39,1
P18 4 4 4 0,96 40 50 50 46,6
P19 8 0 3 0,26 80 0 37,5 39,1
P20 5 2 1 1,16 50 25 12,5 29,1
P21 6 2 3 1,33 60 25 37,5 40,8
P22 2 3 1 1,06 20 37,5 12,5 23,3
P23 8 2 3 1,05 80 25 37,5 47,5
P24 4 1 2 1,06 40 12,5 25 25,8
P25 5 7 3 1,01 50 87,5 37,5 58,3
P26 4 3 2 1,05 40 37,5 25 34,1
P27 3 4 1 1,06 30 50 12,5 30,8
P28 7 2 2 1,21 70 25 25 40
P29 5 3 1 1,21 50 37,5 12,5 33,3
P30 5 3 2 1,21 50 37,5 25 37,5

Average Effectiveness 53 35,8 25,8 -

We analyzed the post-study questionnaires to understand
participants’ perceptions. The questionnaire had three open
questions, the first question being: What is your perception
with the use of the techniques? We analyzed the responses of
participants P2, P12 and P13, who had more than 40%
effectiveness in detecting defects with the ComD2 family
(considering the effectiveness of the three techniques):

“The techniques are very practical. The dimensions of
representation facilitate the review and help understand the
intent of the artifact's author. With this classification, it is also
possible to correct defects more easily” (P12)

 “The techniques show an intermediate dimension of
representation between the requirements and implementation.
Therefore, it is a great way to analyze the team’s
understanding of the requirements” (P21)

301

Other participants reported perceptions that could be used
to improve the techniques, such as joining some verification
items that were considered repetitive. Some quotations from
the participants were:

 “The techniques help to ensure the reliability of the
model, but some points are repetitive” (P12)

“The techniques can be more unified in the description of
the problems, since some errors are the same in different
models” (P22)

In spite of perceived issues, while answering the first
question our participants considered the information
representation dimensions useful, because they help gain better
understanding of information that the model communicates.
We believe this may improve the identification of defects that
undermine the consumers’ understanding of the intention of the
producers of the models.

The second question posed to participants was: Do the
information representation dimensions help to understand the
defects that could undermine the understanding of the model?
Some participants reported the following:

“Yes, especially the defects in the semantic and pragmatic
dimensions that can compromise software development” (P3)

 “Through the dimensions of representation, it is possible
to see if we should change only something in the syntax or
redesign parts of the system” (P13)

The participant’s utterances showed that the defects in the
semantic and pragmatic dimensions are the types of defects that
may most affect the understanding of a model; since the
syntactic dimension defects may not compromise both the
understanding of the model language.

To understand if participants had difficulties with the
ComD2 family, the post-study questionnaire included a third
question: What are the difficulties with using the techniques?
The following are excerpts from some of the answers.

“Although the techniques help in the classification of the
representation dimensions, I had doubts with the classification
of defects in Semantic and Pragmatic dimensions” (P6)

“Certain defects fall into more than one dimension, so it is
necessary to evaluate and interpret each case in order to avoid
misunderstanding” (P29)

Regarding the citations of participants P6 and P29, we
noticed that there are difficulties with understanding the
dimensions of representation and related defects. Although the
techniques help in the classification of the dimension of
representation associated to the defects, we can make
improvements in the techniques with regards to the examples
of the different dimensions of representation.

After the participants ended the study activities, we asked
them which types of information in models could affect team
communication. We noticed that some participants considered
that unnecessary, irrelevant, ambiguous and false information
affect the communication of the team when using these models.
This type of information violates Grice’s four maxims and

indicates that this theory is adequate for analyzing
communication between producers and consumers. Moreover,
based on the results of this feasibility study, we define a
prioritization of the categories in ComD2 family. The proposed
prioritization follows this order: (1st) Quality, (2nd) Quantity,
(3rd) Relation and (4th) Manner. This prioritization order
should be followed in the next applications of the ComD2
family.

V. DISCUSSION
The results of the study provided initial evidence to the
feasibility of ComD2 family to inspect defects that may impact
the communication between producers and consumers.
Regarding our research question - What defects in software
models can affect the communication of development teams? -
the results obtained with the techniques showed that the defects
in the Syntactic dimension do not always affect the consumers’
understanding, since they are related to the syntax of the
language used for modeling. Defects at the Semantic
(relationship of the model with the problem domain) and
Pragmatic (relationship of the model with the stakeholders)
dimensions can affect the communication of the team.
Regarding defects in the Semantic dimension, communication
failures occur because the consumers infer explicit content
inconsistent with the problem domain (conventional
implicature of the explicit content in the model). However, if
the consumers have knowledge about the problem domain,
these defects can be perceived and not propagated to other
artifacts (e.g. when the consumer uses the class diagram for
system coding and it perceives the lack of a domain class, then
this class could be added). Defects in the Pragmatic dimension
may not be perceived by the consumers due to lack of
information context (conversational implicature of the implied
content in the model). In this case, communication failures
occur because consumers may not understand the intention of
producers. However, the ComD2 family can help reduce risks
for effective team communication through models.

In the feasibility study of the ComD2 family, there are
limitations, such as the fact that the participants are
undergraduate students and that the study is conducted in an
academic environment. Regarding this limitation, Fernandez et
al. [8] state that undergraduate students who do not have
experience in the industry may have similar skills to less
experienced practitioners; and one of the goals of the
techniques is to assist practitioners with no experience in the
inspection process of models. Another limitation is that the
inspected models were from a development project, since it is
not possible to state that these models represent all types of
class diagrams, activity diagrams and state machine diagrams.
Therefore, we intend to carry out new studies with the set of
techniques for different models. Regarding the indicators of
effectiveness and efficiency that were adopted, they are often
used in studies investigating inspection techniques [22].

VI. CONCLUDING REMARKS AND FUTURE WORK
The purpose of this paper was to answer the following
research question: “What defects in software models can

impact the communication of development teams?”. To do so,
we developed a family of techniques called ComD2 that helps

302

practitioners identify defects that affect software team
communication. We initially proposed and evaluated specific
techniques of the ComD2 family for inspecting class
diagrams, activity diagrams, and state machine diagrams. The
results of the evaluation provided initial evidence to the
feasibility of ComD2 family.

As future work, we intend to improve the ComD2
techniques and perform an empirical study in comparison with
other specific techniques for inspecting class diagrams, activity
diagrams and state machine diagrams. Furthermore, we intend
to carry out a longitudinal study with the ComD2 family to
evaluate the identification of defects that affect the team
communication through the models employed during the
software development.

ACKNOWLEDGMENT
We thank the undergraduate students for their participation

in the feasibility study. We would like to thank the financial
support granted by UFAM, CNPq through processes numbers
423149/2016-4, 311494/2017-0 and 304224/2017-0, and
CAPES through process number 175956/2013.

REFERENCES
[1] A. H. Reed and L.V. Knight, “Effect of a virtual project team

environment on communication-related project risk”, International
Journal of Project Management, vol. 28 (5), 2010, pp. 422–427.

[2] E. Diel, S. Marczak, D. S. Cruzes, “Communication Challenges and
Strategies in Distributed DevOps”, Proceedings of the 11th International
Conference on Global Software Engineering (ICGSE 2016), 2016, pp.
24-28.

[3] V. Käfer, “Summarizing software engineering communication artifacts
from different sources”, Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017), 2017, pp.
1038-1041.

[4] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, J. Still, “The
impact of agile practices on communication in software development”,
Empirical Software Engineering, vol. 13 (3), 2008, pp. 303-337.

[5] P. Ralph, M. Chiasson and H. Kelley, “Social theory for software
engineering research”, Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering (EASE '16),
2016, pp. 44-55.

[6] R. M. de Mello, E. N. Teixeira, M. Schots, C. M. L. Werner and G. H.
Travassos, “Verification of software product line artefacts: a checklist to
support feature model inspections”, Journal of Universal Computer
Science, vol. 20(5), 2014, pp. 720-745.

[7] A. M. Qazi, S. Shahzadi and M. Humayun, “A comparative study of
software inspection techniques for quality perspective”, International
Journal of Modern Education and Computer Science, vol. 8 (10), 2016,
pp. 9-16.

[8] J. M. Brown, G. Lindgaard, and R. Biddle, “Collaborative events and
shared artefacts: Agile interaction designers and developers working
toward common aims,” Proceedings - 2011 Agile Conference, Agile
2011, pp. 87–96.

[9] G. Reggio, M. Leotta, F. Ricca, and D. Clerissi, “What are the used
activity diagram constructs? A survey”, Proceedings of the 2nd
International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2014), 2014, pp. 87–98.

[10] Sebe, N. Human-centered computing. In Nakashima, H., Aghajan, H., &
Augusto, J (Eds.), Handbook of ambient intelligence and smart
environments, pp. 349–370, 2010. DOI: 10.1007/978-0-387-93808-
0_13.

[11] C. S. De Souza, The Semiotic Engineering of Human-Computer
Interaction (Acting with Technology). The MIT Press, 2005.

[12] Clarisse Sieckenius de Souza, Renato Fontoura de Gusmão Cerqueira,
Luiz Marques Afonso, Rafael Rossi de Mello Brandão and Juliana
Soares Jansen Ferreira. 2016. Software Developers as Users: Semiotic
Investigations in Human-Centered Software Development. In Springer
International Publishing Switzerland. DOI 10.1007/978-3-319-42831-4.

[13] H. P. Grice, “Logic and conversation”. Syntax and Semantics 3: Speech
arts, ed. Peter Cole and Jerry Morgan, 1975, pp. 41–58.

[14] M. F Granda, N. Condori-fernández, T. E. J. Vos, O. Pastor, “What do
we know about the defect types detected in conceptual models?”,
Proceedings of the IEEE 9th Int. Conference on Research Challenges in
Information Science (RCIS 2015), 2015, pp. 96–107.

[15] M. Priyanka and R. Phalnikar, “Generating UML diagrams from natural
language specifications”, International Journal of Applied Information
Systems, vol. 1(8), 2012, pp. 19-23.

[16] B. S. Silva, V. C. O. Aureliano, S. D. J. Barbosa, “Extreme designing:
binding sketching to an interaction model in a streamlined HCI design
approach”, Proceedings of the VII Brazilian Symposium on Human
Factors in Computer Systems, 2006, pp. 101 – 109.

[17] P. C. Rigby and C. Bird., “Convergent contemporary software peer
review practices”, Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2013), 2013, pp. 202–212.

[18] A. M. Qazi, S. Shahzadi and M. A Humayun, “Comparative study of
software inspection techniques for quality perspective”, International
Journal of Modern Education and Computer Science, vol. 10 (8), 2016,
pp. 9-16, DOI: 10.5815/ijmecs.2016.10.02.

[19] G. Travassos, F. Shull, M. Fredericks, V. Basili, “Detecting defects in
object-oriented designs: using reading techniques to increase software
quality”, Proceedings of XIV ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, And Applications, 1999,
pp. 47-56.

[20] A. Lopes, T. Conte, C. S. de Souza. 2018. ComD2 (Communication
between Designer and Developers): A Family of Techniques for
Inspecting Defects that Affect Communication from Models. USES
Research Group Technical Report. TR-USES-2018-0003. Available:
http://uses.icomp.ufam.edu.br/wp-content/uploads/2018/03/TR-USES-
2018-0003.pdf

[21] A. Fernandez, S. Abrahão, E. Insfran, and M. Matera, “Further analysis
on the validation of a usability inspection method for model-driven web
development”, International Symposium on Empirical Software
Engineering and Measurement (ESEM 2012), 2012, pp. 153-156.

[22] N. M. C. Valentim, J. Rabelo, A. C. Oran, S. Marczak, T. Conte, “A
Controlled Experiment with Usability Inspection Techniques Applied to
Use Case Specifications: Comparing the MIT 1 and the UCE
Techniques”, Proceedings of the 18th International Conference on
Model Driven Engineering Languages and Systems, (MODELS 2015),
2015, pp. 206-215.

303

Effects of Model Composition Techniques on Effort
and Affective States: A Controlled Experiment

Mateus Manica, Kleinner Farias, Lucian
J. Gonçales, Vinícius Bischoff
PPGCA, Unisinos, RS, Brazil
mateusman@edu.unisinos.br
kleinnerfarias@unisinos.br,

{lucianj,viniciusbischof}@edu.unisinos.br

Bruno C. da Silva
Department of Computer Science,
Software Engineering, Cal Poly.

San Luis Obispo, USA
cbcdasilv@calpoly.edu

Everton Guimarães
Department of Computer Science

Drexel University, Philadelphia, USA
etg38@drexel.edu

Abstract—Even though existing heuristics and specification-based

techniques support composing design models, it is still considered

a time-consuming and highly intensive task. In addition, there is a

lack of studies exploring the effects of composition techniques on

software developers’ affective state and development effort. This

study reports a pilot study to investigate these effects while

developers apply composition techniques to detect and resolve

inconsistencies in output-composed models. In this sense, a widely

known wearable EEG headset, namely Emotiv EPOC, with 14

channels was used, while developers made use of heuristic-based

and specification-based composition techniques to evolve design

models. Our results suggest that using heuristic-based techniques

produced a higher effect on the developers’ affectivity, compared

to specification-based techniques. Moreover, the higher the effects

on the developers’ affectivity, the higher the odds to invest less

effort and produce correctly composed design models.

Keywords- UML; Cognitive Effort; Empirical Evaluation; EEG.

I. INTRODUCTION
Model composition has been used for supporting many

software-development activities, e.g., adding new features to
evolve design models. The term model composition may be
briefly seen as a set of tasks that should be realized over two (or
more) input models, MA and MB, so that an output-intended
model, MAB, can be produced [1]. Given the input model
elements of MA and MB may conflict with each other, developers
must often spend some effort to solve such conflicts before
producing, MAB. In recent years, researchers and practitioners
have focused on producing composition techniques [2][3] as
means to obtain MAB from MA and MB, by investing as little
effort as possible.

These techniques could be classified into two categories: (1)
specification-based techniques (e.g., Epsilon [2]), where
developers explicitly specify both correspondence and
composition relations between the elements of MA and MB to
produce MAB; and (2) heuristic-based techniques (e.g., override,
merge and union algorithms [4]), in which developers use a set
of predefined heuristics for “guessing” the correspondence and
composition relations between the elements of MA and MB.
However, in fact, both categories may lead composition conflict
problems. Composition conflicts consist of contradictions
between the values assigned to the properties of design models
[7][8]. For example, a UML class Researcher assigned as a
concrete class (i.e., Researcher.isAbstract = false), whereas in

the MB delta model the class Researcher is set as an abstract one
(i.e., Researcher.isAbstract = true). These contradicting values
assigned to isAbstract represent a conflict that must be solved by
developers. However, if this issue is not properly addressed,
inconsistencies are inserted into the output-composed model
MCM. For example, Researcher.isAbstract = false represents an
inconsistency as the expected value would be true. To sum up,
composition techniques cannot guarantee an optimal solution,
and usually developers produce an output-composed model,
MCM, with inconsistenciestypically after solving conflicts
between MA and MB improperly. That is, usually MCM and MAB
do not match (MCM ≠MAB) [1][5]. In this sense, developers
often need to invest some extra effort to detect and resolve such
inconsistencies.

For this reason, composing design models is still considered
as being an error-prone and time-consuming task [5]. Recent
studies have shown the relationship between development
practices and their effects on the developers’ cognitive activities
[13]. However, nothing has been done to reveal to what extent
the use of composition techniques might influence the
developers’ affective states, including frustration, excitement,
and meditation. Therefore, this paper seeks to apply
neuroscience methods to analyse and understand affective states,
while software developers perform compositions to support the
evolution of design models. This study is important to identify
cognitive factors that may affect the practice of software
modelling. Using too much effort to manipulate models may
explain the selective use of UML models [12]. For this, a pilot
controlled experiment was performed for grasping the effects of
composition techniques on the developers’ affective states by
monitoring their cognitive processes. We have used Emotiv
EPOC wireless EEG headset [6] with 14 channels to collect and
process affective states in 288 integration scenarios of model
elements of UML class diagrams [13] in the context of 18
evolution scenarios.

II. EXPERIMENTAL DESIGN

A. Objective and Research Questions

The goal of this study is to analyze compositional techniques
for the purpose of investigating their effects with respect to
effort, correctness and affectivity from the perspective of
software developers in the context of evolution of software

DOI reference number: 10.18293/SEKE2018-189
 304

design models. The goal of this work was formalized using the
GQM template [9]. Therefore, three Research Questions (RQ)
emerged from this objective:

• RQ1: What is the relative effort of composing two input
models using specification-based composition techniques
with respect to heuristic-based composition techniques?

• RQ2: Is the number of correctly composed models higher
using specification-based techniques with respect to
heuristic-based ones?

• RQ3: Does the use of heuristic-based technique cause a
higher effect on the developer's affectivity than technical
based Specification?

B. Hypotheses

These research questions seek to explore how cognitive
processes triggered to perform composition techniques may
influence (1) the effort invested by developers to integrate
design models, (2) the correctness of the compositions, and (3)
the affective states generated during composition tasks
respectively. For this, to answer these questions the following
null-hypothesis were formulated.

H1: Null Hypothesis 1, H1-0: the specification-based
composition technique requires less effort (or equal to) than
heuristic-based technique to produce MAB model from MA and
MB by the developer.

H2: Null Hypothesis 2, H2-0: The specification-based
composition technique produces a smaller or equal number of
models properly composed than the heuristic-based composition
technique.

H3: Null Hypothesis 3, H3-0: The use of the specification-
based composition technique causes a lower (or equal) impact
on the affectivity than the heuristic-based technique.

C. Study Variables

The dependent variables of H1 are associated with each part
of the model composition effort equation: effort(MA, MB),
representing the general effort for composing two models; f(MA,
MB), the effort to apply composition techniques; diff(MCM,
MAB), the effort required to detect inconsistencies; and g(MCM),
the effort required to resolve the inconsistencies. All these
variables are measured in minutes.

The dependent variable of H2 is the correctness (Cor) of the
output-composed models. If MCM = MAB, then the composition
was correct (Cor = 1); otherwise MCM ≠MAB, then the
composition was incorrect (Cor = 0). The hypothesis regarding
the correctness (H21) evaluates which technique produced more
correctly composed models.

The dependent variables of H3 are affective indicators: (i)
engagement (Engaj(MCM)) is the result of experience in the alert,
attention to the task status consciously. When its levels are
negative mean a high surveillance or even boredom; (ii)
meditation (Medit(MCM)) represents how much calm or relaxed
the user has been during the experimental task; (iii) excitement
(Excit(MCM)) determines a condition of sensorial alert and
response readiness; and (iv) frustration (Frust(MCM)) reflects the
reaction from the feedback obtained in practice, or can even
express stress. These variables are quantified using the Emotiv
EPOC. Finally, the independent variables of H1, H2, and H3 are

the heuristic-based and specification-based composition
techniques. We observed the use of these techniques in the
proposed scenarios to evaluate the impact on dependent
variables.

D. Context and Subject Selection

Our pilot study had three subjects, which used two
techniques (i.e., Epsilon and traditional algorithms) to perform
six evolution scenarios of design models. These models were
used because they were already validated in a previous empirical
study [1]. In this way, we can also reduce threats to validity of
the study results. All the subjects of this study have experience
on software modeling and programming. Each participant was
exposed to the same level of training about the modeling and
composition techniques so we can make sure they will share the
same knowledge related to model composition.

E. Experimental Process and Study Setup

The controlled experiment had been organized into 4
different activities as depicted in Figure 1. We assigned the
participants to treatments randomly and equally distributed
following the within-subjects design, in which all participants in
the study will run all activities related to the treatments [10]. In
each treatment, participants used a modeling composition
technique to perform the 6 experimental tasks.

Figure 1. Experimental process (A), Experimtenal setup (B), Emotiv

EPOC (C) and its electrode positions (D).

The activities performed by the participants are described as
follows: (1) training, each subject received training to assure that
all participants had familiarity with the composition techniques;
(2) apply the techniques, the subjects used the techniques
Epsilon and traditional algorithms to integrate two input models,
MA and MB; (3) detect inconsistencies, the next step was to read
the composed model produced to detect inconsistencies; (4)
resolve inconsistencies: Having identified inconsistencies, the
participants were encouraged to solve them, seeking to produce
the MAB; and (5) make interview and Answer questionnaire, the
authors inquired the participants to think aloud about their
experience throughout the experiment.

III. STUDY RESULTS

A. RQ1: Effort and Composition Techniques

Figure 5 highlights the effort invested in each required

305

activity to combine two input design models. We observed
developers tend to invest less effort to produce the output-
intended model (MAB) using heuristic-based techniques rather
than the specification-based technique. That is, when
participants used Epsilon language they ended up investing more
than twice effort to produce the output model. On average,
developers invested by about 28 min to run the experimental
tasks using a heuristic-based technique. Thus, they spent about
63 min to perform similar tasks using the specification-based
techniques. For example, the first participant (a) invested twice
more effort using the specification-based technique than using
the heuristic-based one.

Figure 2. The invested effort to compose design models.

This upward trend was also observed with the other
participants. In the second participant (b), the effort increased
from 36 min using the heuristic-based technique to 50 min,
representing a rise of 38%. Similarly, the third participant (c)
also spent a superior effort to compose design models using the
specification-based technique. The participant invested 16.5 min
using the heuristic-based technique, and 63 min using the
specification-based technique. When using heuristic-based
technique the participant invested 41% of the effort to compose
the design models, compared to the specification-based
technique. The results confirmed the findings reported in [6].

Finally, the general result of the H1 is that for all participants
applied more effort using the specification-based technique,
which suggests the rejection of the null hypothesis (H11-0), and
the possible confirmation of the alternative hypothesis (H11-1).
We also observed the specification-based technique required
more effort to detect and resolve inconsistencies (Figure 5), also
confirming the alternative hypothesis H1.

Figure 3. Effort invested in each step of the composition process.

Conclusion of RQ1: Developers tend to invest more effort to
combine two input models, detect and resolve inconsistencies using
a specification-based technique, compared to a heuristic-based
technique.

B. RQ2: Correctness and Composition Techniques

Figure 6 shows the obtained results. The general correctness,
i.e., the number of correctly composed model, was 5 using the
heuristic-based technique, while 2 using the specification-based
technique.

Figure 4. The correctness of the output-composed model (left), and the
general affectivity of subjects using heuristic- and specification-based

technique (right).

We observed the heuristic-based technique produced a
higher number of correctly composed model compared to the
specification-based one. As previously mentioned, when using a
specification-based technique, the expectation is that the number
of models produced correctly, MCM = MAB, is enhanced, given
its flexibility to elaborate the composition rules. However, the
results showed the opposite. The specification-based technique
has not produced a higher number of correctly composed
models, neither generated models with a lower inconsistency
rate. Thus, the result suggests the rejection of the null hypothesis
(H21-0) and confirmation of the alternative hypothesis (H21-1).

Conclusion of RQ2: Developers tend to produce a higher number
of correctly composed models using heuristic-based technique,
compared to specification-based technique.

C. RQ3: Affectivity and Composition Techniques

Figure 7 presents the results about the impact of the
composition techniques on the developers’ general affectivity.
The main finding is that the heuristic-based technique produced
a higher effect on the developers’ affectivity than the
specification-based technique. Thus, the result suggests the
rejection of the null hypothesis (H31-0) and confirmation of the
alternative hypothesis (H31-1).

To better explore this issue, we have examined five facets of
developers’ affective state, including frustration, engagement,
mediation, long-term excitement, and instantaneous excitement.
Figure 7 shows the measures the affectivity using heuristic-
based technique, while Figure 8 presents the results regarding
the specification-based technique. The results show developers’
affectivity using the heuristic-based technique outnumbers the
ones produced using the specification-based technique.

The results revealed a pattern regarding the measures of
affectivity, since the two participants (a and c) obtained very
similar indicators, and the participant (b) had different measures.
On the other hand, Figure 7 does not present the same pattern
regarding the use of the specification-based technique. However,
participant (b) had still the higher engagement and frustration
indicators. By examining the average engagement of the
participants, we observed the value is 5% higher using the
heuristic than specification-based technique.

Due to the results presented by the participant (b), we
questioned the influence of the frustration indicator on the

306

quality of the compositions. If the relationship between high
levels of frustration and engagement and low excitement would
not reflect the participant (b) was under pressure. We point out
the pressure can have many different causes, such as personal
competitiveness, time available for executing activities, social
pressure, among others. Based on the initial results, it is still
necessary to carry out further studies to improve knowledge,
understanding, as well as to translate it into more realistic results
about the influence of affectivity of the participants in the quality
of the compositions.

Figure 5. The impact on affectivity using heuristic-based technique.

The specification-based technique (Figure 8) had a minor
impact on developers’ affectivity compared heuristic-based
approach. Therefore, the data suggest that null hypothesis H3
(H31-0) is confirmed as the specification-based technique
showed a lower impact on affectivity. While the specification-
based technique requires a greater effort and composition
produces a lower amount of correctly composed model, it had a
minor impact on the variable affectivity of developers. We also
observed the participants had a higher engagement and less
frustration using the heuristic techniques.

Figure 6. The impact on affectivity using specification-based technique.

Conclusion of RQ3: Specification-based technique tends to cause a
lower impact on the affectivity of the developers, compared to
heuristic-based technique.

IV. RELATED WORK
A controlled experiment for exploring the benefits of UML

models on the comprehensibility of Java source-code deprived
of comments is presented in [14]. The authors concluded that an
additional effort was observed to read UML models, but this was
paid back in the form of an improved comprehension of source
code. In [11], the author mentions program comprehension as
the main activity of the software developers. They emphasize
that even though a huge amount of research to support the
programmer has been done, the high amount of time developers
has to grasp source code remained constant over thirty years.
The author mentions that the use of EEG could be a reliable way

to measure cognitive load of programmers. However, nothing is
presented in this sense. To the best of our knowledge, this work
is the first to (1) explore the influence of composition techniques
on the developers' effort, correctness, affective states in the
current literature, and (2) provide an initial discussion on the
interplay between composition techniques and affective states.

V. CONCLUSIONS AND FUTURE WORK
The results suggest the specification-based technique

required a higher composition effort, produce a lower amount of
output-intended model, as well as caused a lower impact on the
developers’ affectivity, compared to its counterpart. As future
work, we seek to replicate the study so that a larger sample of
data can be produced, allowing hypotheses testing using
statistical methods. Finally, this study showed that it is possible
to explore affective states to mitigate their impacts on the
correctness of composed models. Our expectation is that the
issues outlined throughout the paper can encourage other
researchers to replicate our study in the future under different
circumstances. Finally, we see this paper as a first step in a more
ambitious agenda to support empirical assessment of model
composition techniques, as well as understanding cognitive and
emotional aspects of software developers.

REFERENCES
[1] K. Farias, A. Garcia, J. Whittle, J., C. Chavez, C. Lucena. “Evaluating the

effort of composing design models: a controlled experiment”, Journal on
Software & Systems Modeling, vol. 14, n. 4, pp. 1349-1365, 2015.

[2] The Epsilon Book, http://www.eclipse.org/epsilon/doc/book/, Accessed
in 10 March 2018.

[3] S. Clarke. “Composition of Object-Oriented Software Design Models”,
PhD Thesis. Dublin City University, 2001.

[4] IBM Rational Software Architect,
https://www.ibm.com/developerworks/downloads/r/architect/, accessed
10 March 2018.

[5] M. La Rosa, M. Dumas, R. Uba, R. Dijkman. “Business Process Model
Merging: An Approach to Business Process Consolidation”, ACM
Transactions on Software Engineering Methodology, vol. 22, num. 2, pp.
1-42, 2013.

[6] EMOTIV user manual, http://emotiv.com/developer/SDK/User
Manual.pdf, accessed 16 March 2018.

[7] K. Farias. “Empirical evaluation of effort on composing design models”.
Ph.D. thesis, Department of Informatics, PUC-Rio, 2012.

[8] T. Mens “A State-of-the-Art Survey on Software Merging”, IEEE
Transactions on Software Engineering, vol. 28, num. 5, pp 449-562, 2002.

[9] V. Basili, G. Caldiera, H. Rombach. “The Goal Question Metric
Paradigm”, Encyclopedia of Software Engineering, vol. 2, (John Wiley
and Sons, 1994), pp. 528–532.

[10] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, A. Wesslén.
“Experimentation in software engineering”, Kluwer Academic
Publishers, 2012.

[11] J. Siegmund. “Program Comprehension: Past, Present, and Future”, IEEE
23rd Int. Conf. Software Analysis, Evolution, and Reengineering, Suita,
Japan, pp. 13-20, 2016.

[12] M. Petre. “UML in practice”. Int. Conf. Software Engineering, San
Francisco, USA , 2013, pp. 18–26.

[13] “UML: Infrastructure specification, version 2.5”,
http://www.omg.org/spec/UML/2.5/PDF, accessed 10 March 2018.

[14] G. Scanniello et al. “Do software models based on the UML aid in source-
code comprehensibility? Aggregating evidence from 12 controlled
experiments.” Empirical Software Engineering, pp 1-39, 2018.

307

Testing Android Applications Using Multi-Objective Evolutionary
Algorithms with a Stopping Criteria

Anshuman Rohella∗, Shingo Takada∗

∗Dept. of Information and Computer Science, Keio University, Yokohama, Japan

{anshuman.rohella, michigan}@doi.ics.keio.ac.jp

Abstract— The ever increasing usage of Android devices and
apps has created a demand for faster and reliable testing
techniques. While the quality of test cases can be summed
up based on the amount of code they cover, fault detection
in applications is one of the main objectives for testing. We
introduce an Android app testing approach which uses multi-
objective genetic algorithm with elitism which finds optimal test
cases by minimizing their length, maximizes the code coverage
and fault detection capability, and minimizes the whole test
suite for re-usability. In addition to that, we also incorporate a
progress indicator which checks for improvements in test suite
quality after subsequent generations and use it as a stopping
criterion. The effectiveness of our approach is shown in our
evaluation where it is able to perform better than the existing
state-of-the-art tools.

Keywords: Android Testing;Evolutionary Testing;Multi-
Objective Testing

I. INTRODUCTION

The boom in the use of smartphones in personal and
business related services has created a rapid increase in the
demand for fast delivery of quality software. This demand
has left Google Play Store with over 3.5 million apps, as of
December 2017 [5] and this number is increasing every day.
These apps are used by a huge number of people and to stay
in business, the providers have to make sure that the apps
are bug free and behave as planned.

Unlike a desktop application which runs as a single mono-
lithic process, Android apps have to be a lot more flexible
and a tightly coupled architecture among the components
with event based control flow may make automated testing
difficult and this causes heavy reliance on labour intensive
manual testing [24]. Several attempts have been made in the
past to automate Android Testing. Some of the techniques
include random testing, model-based testing, testing with
dynamic exploration etc.

Search-based software engineering techniques [15], [16]
have been used in the past for GUI [11], [12], [14], as well as
Android testing [10], [26] and have shown promising results.
Even though code coverage is used as the basis of most
of the testing tools, multiple objectives like fault detection,
code coverage, shorter optimized test sequences have to be
considered in order to generate optimal test suites.

DOI reference number: 10.18293/SEKE2018-084.

We propose an Android testing approach which uses an
elitist based multi-objective genetic algorithm which covers
all these objectives while exploring the application under
test (AUT) and creates optimal test suites. In addition to
that, since search-based testing requires execution of a large
number of tests, a stopping criteria is required to stop the
process with enough confidence to guarantee sub-optimal
solutions. Most of the existing tools set a pre-defined upper
bound on either the number of test cases executed or the
number of iterations (generations) for which the process will
run. This may result in either pre-mature convergence or
waste of CPU time. We use a progress indicator, MDR [25]
to calculate the improvement of every generation and stop
the process if no improvement, or degradation is found.

The remainder of this paper is organized as follows:
Section II provides related works on Android testing, Section
III describes the methodology as well as the architecture,
Section IV evaluates our approach, Section V outlines the
limitations of our approach, and Section VI concludes the
paper with the future work.

II. RELATED WORK

Google’s Android Monkey [1], a random input generator
for Android apps stress tests the app in order to achieve cov-
erage and detect faults. Due to its integration with Android
development toolkit, it is widely available, is easy to use and
is therefore considered the state-of-the-art testing software
for Android apps [8].

Dynodroid [30] is another state-of-the-art automated test-
ing tool [8] which uses heuristics to explore the application.
It is a bit “smarter” than Monkey since it uses frequency and
relevance of events to generate test sequences. In addition, it
allows the user to give input, for example login info, when
the search is stalled.

EvoDroid [10] is one of the first search-based testing tools
for Android and is closely related to our work. It uses a call
graph (obtained using MoDisco [5]) and an interface model
to generate a Population of test cases which achieve a fitness
score based on unique paths/line in the code they cover in
the call graph.

Sapienz [26] is another tool that combines fuzz testing
and search based exploration for testing. It uses NSGA-
II [34] to maximize coverage and fault revelation while
decreasing the sequence length. It considers multiple levels

308

of instrumentation and can be used for both white and black
box testing.

III. METHODOLOGY

We use app’s source code to generate two models. A
Screen Flow Graph model and a Widget-Screen Map model.
Details of these models are discussed later in this section.
These two models are then used to create a population of
Individuals (test cases). Finally, these test cases are then
executed using the multi-objective algorithm and the process
stops when the stopping criteria is met.

Fig. 1. The overall architecture

The overall architecture of our approach in shown in Fig.
1. Our approach can be divided into the following steps:

• Generate Screen Flow Graph to get the transition infor-
mation of various activities, dialogues, options menu,
etc.

• Generate Widget-Screen Map by obtaining the informa-
tion about all the widgets/components available for user
interaction on different screens.

• Generate test individuals based on the two models
obtained earlier.

• Execute the test cases generated using the multi-
objective algorithm.

A. Model Generation

In order to generate test cases, we generate the following
two models:

• Screen Flow Graph: We used GATOR [29], an open
source analysis toolkit which performs a static analysis
on the app to capture the possible control/data-flow
by tracking the event handling callbacks and window
(Activities, dialogue boxes, listviews, etc) life cycle
callbacks. This information is used to create a Screen
Flow Graph, as shown in Fig. 2 , which is then used to
create test cases with sections (discussed later) of events
valid for a particular screen.

• Widget-Screen Map: In an Android app, each Activity
is coupled with a layout XML file which contains
organized information about that activity’s components.
These components include the type of layout (e.g.,

Fig. 2. An example of a Screen Flow Graph for an Android app. The
nodes represent the various screens in the app and the edges represent the
events that cause a transition.

LinearLayout, RelativeLayout, etc.), and GUI interac-
tion widgets known as views (e.g., TextView, Button,
ImageView, etc.).
Each view has a unique ID which is used in the
application code’s context. We first parse the Android-
Manifest XML file to list all the activities in the app.
To create the Widget-Screen Map model, each layout
file attached to these activities/screens is parsed and
the obtained widgets information is mapped to their
respective screens. This information is used to create
events for a particular screen.

We now discuss how these two models are used to create
test individuals for the initial population.

B. Generating Test Individuals

Individual representation is an important aspect in evolu-
tionary algorithms as it depicts how a single solution on the
whole population is encoded. Prior researches like [11] and
[23] have used entire test suites as individuals wherein each
individual consists of a random number of test cases (genes).
This approach can be ideal for test suite minimization.
However, the overall quality of each gene (test case) remains
the same throughout the process because the crossover and
mutation takes place at test suite level and not the test case
level. Therefore, we use individual representation similar
to EvoDroid [10] where each test case represents a single
individual in the population.

Fig. 3 shows an example of the representation of a single
individual. To create an individual, the events for the launch
screen (first screen shown to the user when the app starts)
section are randomly selected from the Widget-Screen Map
and are checked against the Screen Flow Graph for any
transitions. If the selected event causes a transition to another
screen, a new section is created for that screen and events
are selected randomly for that screen. This process repeats
itself until the number of sections reach n sec, where n sec

309

Fig. 3. Representation of a single Individual used in our approach.

is chosen randomly for each individual before its creation.
If there is only one screen in the app, the test individuals
contain only one section with n ev random events, where
n ev is chosen randomly for each individual before its
creation.

C. Evolutionary Approach

A number of multi-objective evolutionary algorithms [18],
[19], [20], [21], [22], [34] have shown to be quite effective
in solving problems with multiple constraints/objectives. We
use CBGA-ES [22] genetic algorithm in our approach to
optimize test cases by selecting shorter individuals that have
high code coverage and high fault revelation capability. In
addition, the algorithm selects l elite solutions after the first
generation which further reduces the test suite as well as the
search space for subsequent generations. The main idea of
the approach is to cluster the individuals with similar fitness
into k clusters, sort the cluster based on cluster dominance
strategy, and then select the individuals(elite individuals) for
the best cluster as a population for next generation. The
details are as follows:

1) Clustering: After the execution of all the individuals
in the first population, each individual gets a fitness vector
containing its fitness value for each objective. For exam-
ple, an individual Ia will have a fitness vector F Ia =
{fval1, fval2, ..., fvaln}, where n is the number of ob-
jectives.

Next, k individuals are chosen randomly and their fitness
vectors are assigned as the centres of the corresponding
clusters. The CBGA-ES algorithm uses Lloyd’s algorithm
[31] to cluster all the individuals. The next step is to sort
these k clusters using cluster dominance strategy [22].

2) Cluster Dominance Strategy: Consider two clusters
Ca and Cb with centroids ma and mb, respectively. These
two clusters are checked for either dominance or partial
dominance:

• Cluster Dominance: Ca � Cb (i.e., Ca completely
dominates Cb) iff

∀i=1−nmai ≤ mbi ∧ ∃mai > mbi

where mai and mbi are the fitness values for the ith

objective in the two centroids, respectively.

• Cluster Partial Dominance: Ca � Cb(i.e., Ca partially
dominates Cb) if one of the two cases holds true.

Case 1.

n(∀i=1−nmai > mbi) > n(∀i=1−nmai < mbi)

where n(∀i=1−nmai > mbi) is the number of fitness
values of centroid ma which are better than those in mb.

Case 2.

If n(∀i=1−nmai > mbi) = n(∀i=1−nmai > mbi),(
Σn

i=1

mai −mbi

mai
× 100%

)
> 0

which means that for all the objectives, ma is able to
get higher percentage of centre values than mb.

Once the clusters have been sorted, an elite population
of size l is created by adding the individuals from the best
cluster. If the size of the best cluster is less than l, the
individuals from the next best cluster are added to the elite
population. This elite selection strategy reduces the search
space as compared to the initial population and helps create a
minimized test suite with optimal test cases. This population
then undergoes crossover and mutation and proceeds to the
next generation unless the stopping criteria is met.

Crossover

Crossover is a genetic operator used in Evolutionary Algo-
rithms to create individuals for the next generation. We use
a single-point random crossover where two random points
are chosen in the selected individuals and the crossover
operation is performed. Test case level crossover increases
the possibility of creating better test cases since the created
individual contains events from the parent individuals. Fig.
4 shows an example of a crossover.

Fig. 4. Examples of crossover (A) and mutation (B).

To preserve the validity of the produced test case,
crossover points are chosen in the sections which corre-
sponds to the same screen (refer section B). A similar
approach has been used in EvoDroid where they use multi-
point probabilistic crossover in segments [10] belonging to
the selected parent individuals.

310

Mutation

Mutation is another genetic operator used in Genetic
Algorithms which mutates/changes a gene of an offspring
with some probability to maintain genetic diversity in the
population and avoid getting stuck in a local minima. In
our case, we apply mutation at a gene (event) level by
randomly selecting a segment in the new individual created
and applying one of the following mutation operations.

• Adding/Removing: A new event valid for that segment
is added/removed at a randomly selected position in
the segment. Some screens may need a specific event
to be performed for a specific number of times. This
mutation may help an individual (test case) to cover
those cases and possibly explore a new state.

• Changing the order: This mutation operator changes
the sequence of events in a segment randomly. Events
performed in a specific order may trigger a transition
to a new state. For example, a game application may
need button clicks in a specific order to advance to the
next stage.

• Modifying gene properties: This specific mutation op-
eration is only valid for events which need some sort of
input (Text, Number inputs). For example, invalid/fuzzy
inputs like blank spaces, number zero and special char-
acters may not be handled properly by an app and may
throw an exception.

Stopping Criterion

A genetic algorithm requires some criteria for termination.
Some of the traditionally employed termination criteria in-
clude having an upper bound on the number of generations,
giving the process a pre-defined time limit, and stopping
the algorithm if there is no improvement in subsequent
generations.

In our case, the number of generations and the initial
population depends on the complexity of the problem. The
chosen parameters may lead to either pre-mature conver-
gence or CPU time wasted through executing redundant test
cases with no improvement [9]. In addition to that, Android
Emulators [2] are known to be slow and may further increase
the total execution overhead.

According to previous researches [25], [27], [28], finding
a stopping criteria for a multi-objective problem is a multi-
objective problem itself since the improvement has to be
considered for all the defined objectives. We use Mutual
Domination Rate indicator (MDR) [25], a progress indicator
that is specially designed for multi-objective evolutionary
algorithms to check the quality of solutions after each
generation. The details are as follows.

Consider PF ∗
t−1 and PF ∗

t as the non-dominated (elite)
solutions obtained at generation t-1 and t, respectively.
Imdr(t) ∈ [−1, 1] contrasts between the number of non-
dominated individuals of generation t that dominate the non-
dominated individuals of generation t-1 and vice-versa.

Consider a function C = d(A,B) that returns a set of
elements of A that are dominated by at least one element of
B, and |C| is the number of elements in the set, then,

Imdr(PF ∗
t , PF ∗

t−1) =
|d(PF ∗

t−1, PF ∗
t)|

|PF ∗
t−1|

−
|d(PF ∗

t , PF ∗
t−1)|

|PF ∗
t |

(1)
Imdr = 1 indicates that generation t is completely better than
t-1, Imdr = 0 indicates that there has been no improvement
since the last generation, and in the worst case, Imdr = −1
indicates that the quality of the generation has degraded.
If there is no improvement for a pre-defined number of
generations, the execution process stops with the last test
suite considered as the optimal test suite.

IV. EVALUATION

We establish and answer three research questions to com-
pare our evaluation results with the study conducted by
Choudhary et al. [8].

• RQ1 (Code Coverage): How does the code coverage
achieved by our approach compare to the state-of-
the-art existing approaches as mentioned in study by
Choudhary et al. [8]?

• RQ2 (Fault Detection): How effective is our approach
in finding faults?

• RQ3 (Multiple Objective Handling): How effective is
our approach in handling the trade-off between the three
objectives used for evaluation?

Creating a test oracle is another problem in the field of
automated testing and has been covered in various researches
[32], [33]. However, our main focus here is not the behaviour
of the application or validity of the test cases, but to increase
the code coverage, detect faults, reduce the test sequence
length and minimize the test suite.

A. Experimental Environment and Settings

All our experiments were done on Nexus 5’s emulator
with 1586 MB of RAM. The emulator was run on a 64-
bit MacOS 10.12.4 machine with 2.5 GHz Intel Core i5
processors and 8 GB of RAM. We ran the evalution on a
set of open source Android applications. We set the initial
population n to 100 test cases and the elite population l to 50
and the number of clusters k to 2. The mutation probability
was 0.2 with 50% of the elite solutions undergoing crossover
(25 solutions in our case). Since our test cases represents an
individual with varying number of events in it, they cannot be
compared directly to the event inputs used in DynoDroid and
Monkey in terms of number of test cases executed. Hence,
we evaluated our approach first, and the time spent on each
app using our approach was then given to DynoDroid and
Monkey to compare the performance. Since our approach is
non-deterministic, we ran the evaluation 10 times and took
an average of the results. We used JACOCO [4] to obtain
the code coverage and all the test cases were in Espresso [3]
and UI Automator [6] format.

311

TABLE I
ACCUMULATED CODE COVERAGE FOR OUR APPROACH (#COVE),

MONKEY(#COVM) AND DYNODROID(#COVD) WHERE LOC IS THE

LINES OF CODE IN THE APP AND THE EXECUTION TIME, TIME IS IN

MINUTES.

AUT LOC #CovE #CovM #CovD Time
Munchlife v1.4.2 163 93.86% 58% 76% 112
Munchlife v1.4.4 186 94.62% 63.55% 74.82% 101

BatteryCircle 251 82% 62% 79.38% 34
Triangle 281 91% 69% 81.23% 38
JustSit 276 75% 43% 66% 102

CalorieMate v1.0.0 132 84% 53% 81.22% 109
CalorieMate v1.1.0 197 87.30% 67.65% 80.27% 119

TippyTipper 996 88% 81.54% 51.33% 125
LearnMusicNotes 398 62% 50.7% 47% 117

Bats-HIIT 316 40% 24% 45% 89
BatteryDog 466 64% 51% 62.54% 34
SpriteText 1165 60.51% 58.21% 58.76% 48
SwiFTP 2160 22.8% 12.44% 16.22% 92

PasswordMaker 1436 42.96% 22% 32.22% 56
Translate 711 37.97% 19.44% 32% 78

TABLE II
FAULTS DETECTED DURING THE EVALUATION.

AUT Faults Exception
JustSit 1 java.lang.SecurityException

Bats-HIIT 1 java.lang.NullPointerException
CalorieMate v1.0.0 2 java.lang.IllegalArgumentException

java.lang.NumberFormatException

B. Evaluation Results and Discussion

We chose a set of 15 (2 of which were different versions
of the respective apps) open source apps to compare the line
coverage of our approach, Monkey, and DynoDroid.

RQ1(Code Coverage): As shown in Table I, our approach
is able to achieve a a higher coverage than Monkey and
DynoDroid for most of the apps.

Some of the reasons for not achieving higher code cov-
erage are due to dependence on external native apps (e.g.,
camera, contacts, messaging) and unavailability of external
services on an Emulator (e.g., the app SwiFTP requires a
WiFi connection to start a FTP server). Also, some apps
may have asynchronous behaviour based on timers/thread
events. For example, apps like Bats-HIIT (exercise timer) and
LearnMusicNotes have features where a new state is created
(register high score/personal best) only after the timer runs
out. These events cannot be handled unless a specific timeout
is defined, regardless of the technique used.

RQ2(Fault Detection): The fault finding capability of our
approach is shown in Table II

Our approach was able to find a total of four new excep-
tions which lead to app crashes. These issues were reported
to the app’s respective online repositories. These exceptions
were not detected by Monkey or DynoDroid during our
evaluation.

RQ3(Multiple Objective Handling): To answer the third
research question, we compared the first generation and the
last generation in terms of decrease in average length of the
fault revealing test cases for all the apps in Table II.

TABLE III
DECREASE IN THE LENGTH OF FAULT REVEALING TEST CASES.

AUT Decrease %
JustSit 74%

Bats-HIIT 82.21%
CalorieMate v1.0.0 64.12%

TABLE IV
EXECUTION TIME AND COVERAGE RESULTS FOR OPTIMAL TEST SUITES.

App Name Coverage% Time
JustSit 75% 16

Bats-HIIT 42% 15
CalorieMate v1.1.0 74.12% 24

The results are shown in Table III. This shows the effec-
tiveness of our approach in choosing test sequences of shorter
length if the same faults are found by multiple test cases.
In addition, to check the re-usability of the optimized test
suite, we ran the optimal test suites on newer versions/fixed
versions of the apps. The coverages obtained on a single run
are shown in Table IV.

The effectiveness of the optimal test suites on newer
versions of the apps depends on the type of changes made.
The test suites may have limited coverage if new features
like widgets/functions are added. For example, new views
were added in CalorieMate v1.1.0 and therefore the coverage
obtained is less than the coverage obtained when the app was
used for normal execution (Table I).

C. Threats to Validity

Two important threats to validity are the following:
• First, even though the evaluation apps were chose at

random, our results cannot be generalized since our
technique may not be applicable to all type of apps.

• Second would be the type of stopping criteria used.
Even though the MDR improvement index has been
found to be effective in our implementation, it still
checks the improvement of the search locally, i.e.,
comparing tth generation with t− 1th generation. This
may limit the whole search to a local optima.

V. LIMITATIONS OF OUR APPROACH

This section outlines the current limitations of our tool.

A. Static Analysis Limitations

Currently, our approach is limited to the scope of the static
analysis techniques available for Android. As discussed in
GATOR [29], modeling transitions caused by asynchronous
events (timers and sensors) is difficult and is yet to be
handled. This can lead to an incomplete model.

B. Limited Information in Layout

Depending on the way the app is written, complete infor-
mation about a View may not be obtainable. For example,
a developer may choose to have views without specifying

312

their resource ID, or, options in a ListView may be added
in through code (sometimes dynamically while the user
exercises the app) rather than defining them in resource XML
files. A dynamic modeling/assertion may handle these cases
in a better way.

VI. CONCLUSION AND FUTURE WORK

We proposed an approach to test Android applications
which uses CBGA-ES algorithm to maximize code coverage,
find short fault revealing test cases and minimize test suite for
possible re-usability. In addition, we incorporate a stopping
criterion to limit the testing time in case no improvement
is detected over the generations. Our approach was able to
achieve significantly higher coverage than current state-of-
the-art tools. Also, we were able to use the minimized test
suite for newer versions of three apps.

Future work includes incorporating better model genera-
tion to our approach to increase the variety of applications to
which our approach can be applied to. Also, it is possible to
check improvement on a global level rather than checking
for local improvements after every generation. This can
be done by analyzing the complexity of the application
and/or predicting a global pareto front by analyzing the local
improvements using MDR [25].

REFERENCES

[1] Android Monkey:
https://developer.android.com/studio/test/monkey.html

[2] Android Virtual Device:
https://developer.android.com/studio/run/managing-avds.html

[3] Android Espresso :
https://developer.android.com/training/testing/espresso/index.html

[4] JACOCO: http://www.eclemma.org/jacoco/
[5] Total Apps on Google Play:

https://www.statista.com/statistics/266210/number-of-
availableapplications-in-the-google-play-store/.

[6] UI Automator:
https://developer.android.com/training/testing/ui-automator.html

[7] MoDisco: https://www.eclipse.org/MoDisco/
[8] S. R. Choudhary, A. Gorla and A. Orso, ”Automated Test Input

Generation for Android: Are We There Yet?,” 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Lincoln, NE, 2015, pp. 429-440.

[9] Z. Li, M. Harman and R. M. Hierons, ”Search Algorithms for
Regression Test Case Prioritization,” IEEE Transactions on Software
Engineering, vol. 33, no. 4, pp. 225-237, April 2007.

[10] R. Mahmood, N. Mirzaei, and S. Malek. 2014. ”EvoDroid: seg-
mented evolutionary testing of Android apps,” Proc. of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014). ACM, New York, NY, USA, 599-609.

[11] F. Gross, G. Fraser, and A. Zeller. 2012. ”EXSYST: search-based
GUI testing,” Proc. of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 1423-
1426.

[12] F. Gross, G. Fraser, and A. Zeller. 2012. ”Search-based system testing:
high coverage, no false alarms,” Proc. of the 2012 International
Symposium on Software Testing and Analysis (ISSTA 2012). ACM,
New York, NY, USA, 67-77.

[13] K. Inkumsah and T. Xie, ”Improving Structural Testing of Object-
Oriented Programs via Integrating Evolutionary Testing and Symbolic
Execution,” 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, L’Aquila, 2008, pp. 297-306.

[14] S. Carino and J. H. Andrews, ”Dynamically Testing GUIs Using Ant
Colony Optimization,” 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), Lincoln, NE, 2015, pp.
138-148.

[15] M. Harman. 2007. ”The Current State and Future of Search Based
Software Engineering,” 2007 Future of Software Engineering (FOSE
’07). IEEE Computer Society, Washington, DC, USA, 342-357.

[16] M. Harman, S. Afshin Mansouri, and Y. Zhang. 2012. ”Search-based
software engineering: Trends, techniques and applications,” ACM
Comput. Surv. 45, 1, Article 11 (December 2012), 61 pages.

[17] M. Harman, S. Afshin Mansouri, and Y. Zhang. ”Search based
software engineering: A comprehensive analysis and review of trends
techniques and applications,” Department of Computer Science, King’s
College London, Tech. Rep. TR-09-03 (2009).

[18] E. Ziztler, M. Laumanns, and L. Thiele. ”SPEA2: Improving the
strength Pareto evolutionary algorithm for multiobjective optimiza-
tion,” Evolutionary Methods for Design, Optimization, and Control
(2002): 95-100.

[19] J. Knowles and D. Corne, ”The Pareto archived evolution strategy: a
new baseline algorithm for Pareto multiobjective optimisation,” Proc.
of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Washington, DC, 1999, pp. 105 Vol. 1.

[20] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. , ”MO-
Cell: A cellular genetic algorithm for multiobjective optimization,” Int.
J. Intell. Syst.(2009), 24: 726–746.

[21] E. Zitzler, K. Deb, and L. Thiele. ”Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary computation
8.2 (2000): 173-195.

[22] D. Pradhan, S. Wang, S. Ali, T. Yue and M. Liaaen, ”CBGA-ES: A
Cluster-Based Genetic Algorithm with Elitist Selection for Supporting
Multi-Objective Test Optimization,” 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST), Tokyo,
2017, pp. 367-378.

[23] G. Fraser and A. Arcuri. 2011. ”EvoSuite: automatic test suite gener-
ation for object-oriented software,” Proc. of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of
software engineering (ESEC/FSE ’11). ACM, New York, NY, USA,
416-419.

[24] M. E. Joorabchi, A. Mesbah and P. Kruchten, ”Real Challenges in Mo-
bile App Development,” 2013 ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement, Baltimore, MD,
2013, pp. 15-24.

[25] J. L. Guerrero, J. Garcia, L. Marti, J. Manuel Molina, and Antonio
Berlanga. 2009. ”A stopping criterion based on Kalman estimation
techniques with several progress indicators,” Proc. of the 11th Annual
conference on Genetic and evolutionary computation (GECCO ’09).
ACM, New York, NY, USA, 587-594.

[26] K. Mao, M. Harman, and Y. Jia. 2016. ”Sapienz: multi-objective
automated testing for Android applications,” Proc.s of the 25th Inter-
national Symposium on Software Testing and Analysis (ISSTA 2016).
ACM, New York, NY, USA, 94-105.

[27] H. Trautmann, T. Wagner, B. Naujoks, M. Preuss and J. Mehnen,
”Statistical Methods for Convergence Detection of Multi-Objective
Evolutionary Algorithms,” Evolutionary Computation, vol. 17, no. 4,
pp. 493-509, Dec. 2009.

[28] L. Martı́, J. Garcı́a, A. Berlanga and J. M. Molina, ”A progress
indicator for detecting success and failure in evolutionary multi-
objective optimization,” IEEE Congress on Evolutionary Computation,
Barcelona, 2010, pp. 1-8.

[29] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan and A. Rountev, ”Static
Window Transition Graphs for Android,” 2015 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE),
Lincoln, NE, 2015, pp. 658-668.

[30] A. Machiry, R. Tahiliani, and M. Naik. 2013. ”Dynodroid: an input
generation system for Android apps,” Proc. of the 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
ACM, New York, NY, USA, 224-234.

[31] S. Lloyd, ”Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129-137, March 1982.

[32] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz and S. Yoo, ”The
Oracle Problem in Software Testing: A Survey,” IEEE Transactions
on Software Engineering, vol. 41, no. 5, pp. 507-525, May 1 2015.

[33] G. Fraser and A. Zeller, ”Mutation-Driven Generation of Unit Tests
and Oracles,” IEEE Transactions on Software Engineering, vol. 38,
no. 2, pp. 278-292, March-April 2012.

[34] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, ”A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr 2002.

313

An Empirical Study on the Impact of Android Code Smells on Resource Usage

Johnatan Oliveira1, Markos Viggiato2, Mateus Santos1,
Eduardo Figueiredo2, Humberto Marques-Neto1

1Department of Computer Science, Pontifical Catholic University of Minas Gerais (PUC Minas)
2Department of Computer Science, Federal University of Minas Gerais (UFMG)

Belo Horizonte, Brazil
{johnatan.oliveira,mateus.freira}@sga.pucminas.br, {markosviggiato, figueiredo}@dcc.ufmg.br,

humberto@pucminas.br

Abstract

Code smells are symptoms that something may be wrong
with the app. Aiming at removing code smells and improv-
ing the maintainability and performance of the app, we may
apply the refactoring technique, which could reduce hard-
ware resource use, such as CPU and memory. However, a
few studies have evaluated the impacts of the refactoring in
Android. This paper presents a study to assess the effects of
smartphone resource use caused by refactoring of 3 classic
code smells: God Class, God Method, and Feature Envy. To
this purpose, we selected 9 apps from GitHub. The results
show that refactoring used in desktop software may not be
appropriate for Android apps. For example, the refactoring
of God Method had increased CPU consumption by more
than 47%, while the refactoring of the 3 code smells reduced
memory consumption in average 6.51%, 8.4%, and 6.37%,
respectively, in one app. Our results can support the com-
munity in conducting research and future implementation of
new tools. Also, it guides app developers in refactoring and
thus improving the quality of their apps.

keywords: Code Smells, Android Smells, and Consump-
tion of Smartphone Resources

1 Introduction
In recent years, mobile applications (apps) have become

one of the most popular and profitable software products in
society, especially context-aware apps that are pervasive in
people’s lives [10]. Applications developed for the Android
platform are mainstream [13]. This platform has around
80% of the market for mobile Operating Systems (OS), and
it has far surpassed its main competitor Apple [10]. One of
the critical factors for the success of this software segment
is related to the ease of rapidly developing and making the
apps available to millions of users with lower costs [12].

Mobile app development is different from desktop soft-
ware development since the mobile devices, like smart-
phones and tablets, have limited resources, such as CPU,
battery, and memory [10]. Furthermore, app development
is affected by deadlines even more restricted than those for
desktop, once apps are usually designed for many users that

get used to regular addition of new features and high speed
in the correction of flaws [1, 7]. Mobile apps of context-
aware can identify the context in which they are inserted and
adapt their behavior according to the environment [4, 12].

When these apps are erroneously programmed, they can
quickly drain device resources, such as the memory and
CPU [13]. The presence of code smells can lead to poor
software quality, which makes the evolution of features
harder, deteriorated quality, and therefore, causes a bad ex-
perience for the final user [9]. In the literature, the pres-
ence of these issues in Android apps is known as Android
smells [3].

Performance and optimization of the resources are cru-
cial factors for the success of mobile apps [10]. Users can
uninstall the app from the device if it starts to lock-in or
drains resources quickly [3, 10]. Therefore, correction of
Android smells can not only improve the performance of
the apps without affecting their behavior and also improve
user experience [3, 9, 10]. For this reason, applying refac-
toring techniques in Android smells could contribute to the
evolution and maintenance of these apps.

Previous works [1, 2, 10] investigated the impact of re-
sources usage, such as memory, battery, and CPU. However,
we still lack empirical study on the effect of fixing Android
smells through refactoring, mainly concerning memory and
CPU usage. Studies regarding automatic detection and anal-
ysis of the impact of the refactoring on the Android platform
are still premature [5].

This paper starts to fill this gap by analyzing the impacts
caused by the adoption of refactoring in the Android plat-
form. For this purpose, we selected 100 mobile apps from
GitHub and filtered this data set to choose the most rep-
resentative apps, because the focus this paper are context-
aware apps. After the filtering process, 9 apps remained to
be analyzed. To detect code smells in the Android platform,
we rely on JDeodorant tool, and 3 classic code smells for
analysis: God Class, God Method, and Feature Envy. We
believe our results might better support the community in
conducting researches about Android smells and also guide
app developers in refactoring activity, aiming to improve the
quality of the mobile apps.

DOI reference number: 10.18293/SEKE2018-157
314

2 Background
This section presents an overview of the main concepts

used in this paper. Section 2.1 introduces the 3 selected
code smells. Section 2.2 describes some the tools able de-
tect and refactor code smells.

2.1 Code Smells

A code smell is any symptom that may indicate a deeper
quality problem in the software [9]. The code smells doc-
umented by Fowler [9] are considered classic in object-
oriented software. In this study, we evaluated 3 types of
code smells, God Class, God Method and Feature Envy,
mainly because of two reasons. First, these code smells
are classic in software engineering. Second, several tools
are able to detect these code smells. However, a few tools
can detect and automatically apply refactoring. Next, we
present the selected code smells.

God Class occurs when a class has many attributes or
methods in its interface, and it does not use all of them [9].
Usually, in this kind of situation, it is possible to extract part
of these attributes or methods to another class, thus sepa-
rating responsibilities and leaving them more coherent [11].
God Method can be described as a long method or a method
that does more than a task. Therefore, it is not related only
to the size of the method itself [9]. This code smell might
get solved by creating smaller methods and moving code
from the main method to others, keeping the same behav-
ior [11]. Feature Envy is a code smell that occurs when a
method uses more attributes or methods from another class
than from its own class [9]. The suggested refactoring for
this code smell is to move the envy method, replacing then
a large number of calls to the other class by only one call to
the moved method [9].

2.2 Automated Code Smell Detection and Refactoring

Several tools have been developed to automate the pro-
cess of detecting code smells. For instance, PMD [8], which
is a general purpose tool for code smells detection in some
languages, such as Java and JavaScript. However, a few
tools are able to apply refactoring technique automatically.
Therefore, we selected JDeodorant tool because it is able to
detect and apply the refactoring technique automatically to
the 3 kinds of code smells selected.

Some tools are specific to Android platform, such as
aDoctor [14]. Rigid Alarm Manager, Durable Wake lock,
and Debuggable Release are some examples of code smells
detected by aDoctor. These code smells would not occur on
other platforms because they refer to Android-specific prob-
lems. We have not analyzed these Android-specific code
smells because our goal is to target well-known code smells
as discussed in Section 2.1. Besides, aDoctor cannot per-
form refactoring automatically.

3 Study Settings
This section describes the evaluation settings. Section

3.1 presents the study goal and the research questions. Sec-
tion 3.2 presents the evaluation steps. Section 3.3 presents
our data set.

3.1 Goal and Research Questions

The primary goal of this study is to evaluate whether
refactoring in Android improves the source code concern-
ing the use of mobile devices resources. In particular, we
aim to verify if this technique can reduce the consumption
of CPU and memory. Based on this goal, we also conceived
the following research questions (RQs) to guide our study.

RQ1. Does the refactoring of Android code smells im-
prove the CPU consumption of the Smartphone?

RQ2. Does the refactoring of Android code smells im-
prove the memory consumption of the Smartphone?

3.2 Evaluation Steps

We analyze the impacts of applying the refactoring in
Android from a set of 9 apps. To minimize the risk of bias
in our study, we executed each app 18 times, and we use
the arithmetic mean (and its standard deviation) to evaluate
the impact of refactoring. The executions were conducted
3 times for each code smell before applying the refactoring
(resulting in 3*3=9 executions) and 3 times for each code
smell after using the refactoring, i.e., a total of 18 perfor-
mances for each app. Since we ran each app 18 times and
given that we have 9 apps, we performed a total of 162 exe-
cutions. Due to the high number of executions and the fact
that all tests are performed manually, it would not be feasi-
ble to investigate a higher number of apps at this moment,
and therefore we kept our data set with the selected apps.

To performer our study, we used a smartphone running
Android OS version 5.1, model Moto G XT1032, equipped
with a quad-core CPU of 1.2 GHz. The smartphone consists
of 1 GB DDR3 of RAM and 16 GB of disk. The original
OS of this smartphone was Android 4.3, called Jelly Bean,
with later updates to 5.1. We considered this smartphone
suitable for our experiments, mainly because there is a lot
of apps compatible with it from Google Play Store1. We
used in our work a smartphone with only essentials apps of
the Android OS to avoid interference in the results of other
apps. Moreover, for each execution, the app was uninstalled
and installed again with the Android APK of the version un-
der analysis. By following this procedure, all user data were
erased at the beginning of a new test, and each execution of
the test had a similar initial state. In our study, we per-
formed five steps to analyze the adopted refactoring. These
steps are illustrated in Figure 1 and described as follows.

(1) Code smell detection – We run the selected tool
called JDeodorant to detect the 3 types of code smells. In

1https://play.google.com/store

315

Figure 1: Evaluation Steps

this step, each app was imported into Eclipse, because the
detection tool is a plug-in exclusive for this IDE. After im-
porting these apps, we identified the 3 types of code smells
in each app. We create a list of classes, methods, and code
smells of each analyzed app.

(2) Running apps with code smells in Android – From
the data obtained in the previous step, we run each app in-
dividually, 18 times on the smartphone. At the end of the
18 tests per app, we achieve the results of memory use and
CPU use through the mean of 3 executions in each app. We
collect the data about use of CPU and memory through an
app named AnotherMonitor, version 3.1.0. AnotherMonitor
was selected for several reasons. First, this app is compat-
ible with the Android version evaluated. Second, it has an
excellent reputation in Play Store with more than 4 stars.
Third, it is possible to export the results about CPU and
Memory usage to a CSV file.

(3) Refactoring using JDeodorant –After the previous
steps, we obtained the consumption of the apps in the smart-
phone, such as CPU and memory. In this step, we re-import
the apps to Eclipse, similar to Step 1, to apply the automated
refactoring with JDeodorant to the 3 selected code smells.

(4) Running of the Apps after of the Refactoring – Af-
ter applying the automated refactoring using the JDeodorant
tool, we evaluated whether the consumption of memory and
CPU improved or deteriorated. These characteristics of us-
age can be assessed based on the access provided by An-
droid. To this goal, we run again each app 18 times and
compute the average memory and CPU consumption.

(5) Result analysis – At the end of all the previous
steps, we obtained the data regarding the consumption of
resources in Android before and after refactoring. Through
these results, it is possible to compare the feasibility of this
technique in mobile devices.

3.3 Corpus of Android Apps

In order to investigate the impacts caused by Android
smells and refactoring techniques on resource consumption,
we chose only apps from the context-aware domain for sev-
eral reasons. First, there are many apps available for down-
load on GitHub. Second, these apps are actively used. Also,
the authors of this paper believed that it would be easy to
find code smells in this app domain. The reason might be
because this type of app can contain source code with high
complexity caused by the use of several sensors to identify
characteristics of the context [16]. Third, one of the features

of this type of app is the need to use various hardware re-
sources to identify the context, such as GPS and movement
sensors [6].

The apps that compose our data set were retrieved from
GitHub in November 2017. We searched for apps of
context-aware sorted by stars. To retrieve apps, we used the
following keywords related to the context-aware domain:
context-aware, context awareness, and pervasive computer.

To minimize the risk of biasing our results, we apply a
strict set of criteria for defining our data set as illustrated in
Figure 2 and described by the three phases as follows.

Figure 2: Phases for Collecting Apps from GitHub

Phase 1: Preliminary Search – We performed a pre-
liminary search in GitHub to evaluate the feasibility of col-
lecting these apps of the context-aware domain. We con-
ducted this phase manually to identify the diversity of apps
on GitHub. Also, this pre-evaluation was necessary to ob-
tain the domain variation names.

Phase 2: Automated Download – We implemented an
algorithm to clone the apps from GitHub automatically.
This phase is necessary because we know that several apps
it are hosted on GitHub, and manual cloning would be un-
feasible. In this phase, we obtained 100 apps.

Phase 3: Filtering – From the cloned apps, we used the
following exclusion criteria to filter these apps: i) non-Java
app, once the chosen tool requires apps developed in Java,
ii) apps with less than 1k lines of code (LOC), because we
considered that these apps might represent only toy apps,
iii) apps that are not compatible with Eclipse, since the se-
lected tool requires the use this IDE, and iv) all apps that
required login due to evaluation convenience. After apply-
ing all these filters, we obtained 9 apps able to be evaluated.

4 Results and Discussion
This section discusses the results obtained in this study.

Section 4.1 presents of amount of code smells detected in
each app. Section 4.2 focuses on answering each research
question. Section 4.3 presents some guidelines to support
future implementation of tools.

4.1 Detection of Code Smells

In this section, we present the results about code smells
detected by JDeodorant tool in our data set. Table 1 shows
the occurrences for each code smell investigated in this
study. In the last column of Table 1, we show the total num-
ber of code smells for each app, and the last line presents
the total number of occurrence of each code smell across all

316

the apps. By looking at the column Total, we note that Run-
nerUp was the app with the highest number of code smells.
Besides, in the line Total, it is possible to identify that the
code smells Feature Envy and God Class occurred most fre-
quently, with 102 and 94 occurrences, respectively. For in-
stance, Feature Envy appeared 34 times in RunnerUp and
27 times in Activity Tracker, while God Class showed up
50 times in RunnerUp and 15 times in Calendula.

Table 1: Code Smells Detected

App God Class God Method Feature Envy Total
Activity Tracker 4 0 27 31
Calendula 15 8 14 37
CycleStreets 13 2 8 23
Forecastie 3 0 1 4
NoiseApp 0 1 1 2
Pedometer 1 2 3 6
RunnerUp 50 16 34 100
Steptastic 5 2 3 10
Travel-Mate 3 1 11 15

Total 94 32 102

4.2 Answering the Research Questions

In a first moment, we present the results regarding the
CPU use. Therefore, we answer RQ1 as follows. Does the
refactoring technique of Android code smells improve the
CPU consumption of the Smartphone?

Tables 2 to 4 present some descriptive statistics of the ex-
periments results. The column Mean (x̄) presents the mean
of the analyzed data. A Standard Deviation is represented
by σ. Also, all columns have letter S or R. S means app
with code smells, and R stands refactored apps

Table 2 shows a particular case of the one app named
CycleStreets that before refactoring the average use of CPU
was 26.2% and it started to use 32.47% of CPU after the
refactoring. The consumption of CPU increased by more
than 6%. This number may seem somewhat small, but we
are investigating code smells on a platform that already has
limited resources, and any unnecessarily consume harm-
fully. It is also possible to observe that from 9 apps eval-
uated, the consumption of CPU increased in 7 apps and
drastically decreased in only one app (Steptastic). Also,
the standard deviation changed from 11.64 to 14.11 in Cy-
cleStreets, an increase of 2.47%.

Table 2: Descriptive Statistics for CPU (God Class)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 17.07 20.01 6.42 4.8
Calendula 16.35 17.44 7.74 9.2
CycleStreets 26.2 32.47 11.64 14.11
Forecastie 17.07 20.01 6.42 4.8
NoiseApp 22.55 23.65 12.66 12.54
Pedometer 19.47 21.17 9.75 10.43
RunnerUp 14.26 17.33 7.34 9.42
Steptastic 24.77 15.12 13.23 9.27
Travel-Mate 19.7 19.61 10.01 10.34

Regarding God Method, Table 3 shows the results
achieved. In this table, we may highlight the Forecastie app,

in which the consumption of CPU almost doubled. As we
can observe, the use of CPU in this app soared from 25.43%
to 47.14%. However, for the app Steptastic, it was possi-
ble to reduce CPU consumption by more than 12% through
the refactoring technique. Finally, refactoring God Method
caused an increase in CPU consumption in 5 apps and a de-
crease in 3 apps.

Table 3: Descriptive Statistics for CPU (God Method)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 26 30.93 14.68 16.82
Calendula 20.97 26.08 13.23 15.51
CycleStreets 25.29 34.01 14.23 20.35
Forecastie 25.43 47.14 15.72 12.87
NoiseApp 26.49 26.24 16.18 15
Pedometer 32.98 28.17 19.3 16.3
RunnerUp 19.32 26.42 10.37 15.9
Steptastic 30.87 18.16 18.09 12.11
Travel-Mate 22.35 17.77 12.64 11.08

Table 4 presents the results for Feature Envy. In all apps,
but Travel-Mate it was possible to improve source code
quality through refactoring technique. Overall, it was pos-
sible to improve the source code quality with an average
increase of less than 1% of use of resources.

Table 4: Descriptive Statistics for CPU (Feature Envy)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 16.82 16.88 8.11 8.14
Calendula 19.14 20.82 10.35 9.33
CycleStreets 21.52 23.09 10.94 11.61
Forecastie 23.24 24 12.28 11.6
NoiseApp 20.02 22.86 10.55 12.11
Pedometer 25.13 23.84 12.52 13.07
RunnerUp 21.29 21.56 11.89 11.89
Steptastic 21.55 21.68 11.54 12.04
Travel-Mate 16.35 17.44 7.74 9.2

We believe that the refactoring technique adopted by
JDeodorant tool and as indicated by Fowler [9] is not ap-
propriate to use in Android since most apps consumed
more CPU after we performed refactoring. A potential rea-
son for the increase can be found in the Android’s site of
the excellent programming practice2. For instance, when
there are several recursive calls, it is necessary to call the
onDestroy() method more times, which may increase CPU
usage since it will be required to destroy more objects.

The refactoring adopted to solve this problem is Ex-
tract Method. This refactoring consists in splitting the God
Method and creating a new method [9]. Therefore, applying
the refactoring Extract Method may cause the app to invoke
these resources several times, increasing CPU consumption.
After presenting the use of CPU of each app under analysis,
we show the results concerning the memory consumption.
Therefore, we answer RQ2 as follows. Does the refactor-
ing technique of Android code smells improve the memory
consumption of the Smartphone?

2https://developer.android.com/training/best-performance.html

317

In general, the adoption of the refactoring increased the
memory usage, but in some cases, it can help to avoid un-
necessary use of resources. We believe that the refactor-
ing technique in the case of the app Steptastic decreases the
memory usage because of two main reasons. First, Steptas-
tic, for example, is smaller regarding LOC and their meth-
ods are well distributed among classes. Second, this app
has only one developer, which may be a indicate that the
number of developers may be correlated with the number of
code smells. Tables 5 to 7 presents the same configurations
presented in RQ1.

Table 5 presents a similar result of Table 4, but this ta-
ble shows the results regarding the code smell God Class
and usage of memory. For 7 apps, namely: Calendula,
CycleStreets, Forecastie, NoiseApp, Pedometer, RunnerUp,
and Steptastic, it was possible to reduce the use of memory
by 26, 26, 58, 13, 13, 7, and 33, respectively. These values
were measured in megabyte (MB).

Table 5: Descriptive Statistics for Memory (God Class)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 9.54 67.6 2.29 41.01
Calendula 60.45 34.24 17.89 12.55
CycleStreets 73.8 47.08 9.28 9.23
Forecastie 9.54 67.6 2.29 41.01
NoiseApp 145.22 159.02 24.29 21.09
Pedometer 144.82 158.24 24.63 20.86
RunnerUp 88.53 80.66 17.48 8.5
Steptastic 61.99 28.53 13.71 14.72
Travel-Mate 80.65 83.86 39.64 39.21

Table 6 shows the results of the use of memory concern-
ing God Method. Overall, it is possible to observe that
the results demonstrate an increase in memory usage af-
ter refactoring. Also, in this table, there is a specific case
in which the app (Travel-Mate) used 98.39 MB before we
apply refactoring and started to consume 625.58 MB after
the refactoring. This number represents an increase of ap-
proximately 500 MB, i.e., the app began to use an alarming
quantity of memory. Also, the app Activity Tracker had a
hight disparity regarding the standard deviation.

Table 6: Descriptive Statistics for Memory (God Method)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 94.38 268.38 22.17 148.84
Calendula 51.95 48.43 9.44 13.19
CycleStreets 74.1 47.91 10.65 11.05
Forecastie 93.49 41.46 15.36 0.04
NoiseApp 144.73 158.2 24.67 21
Pedometer 74.95 171.91 17.65 21.61
RunnerUp 87.38 81.09 17.49 9.33
Steptastic 61.95 29.89 13.48 15.45
Travel-Mate 98.39 625.58 28.34 13.64

In general, all descriptive statistics for memory showed
that standard deviation varied too much, except for code
smell Feature Envy. Table 7 presents, in general, a lower
variation in relation to the standard deviation. A low stan-
dard deviation shows that the data are clustered tightly

around the mean. Besides, in general, all apps started to
use more memory after the refactoring, such as the Activity
Tracker app.

Table 7: Descriptive Statistics for Memory (Feature Envy)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 94.82 264.83 21.49 150.22
Calendula 77.5 98.59 21.35 38.26
CycleStreets 62.51 46.78 22.15 11.26
Forecastie 93.26 41.43 14.63 0.02
NoiseApp 143.39 158.69 23.85 20.93
Pedometer 74.33 171.7 17.92 22.2
RunnerUp 87.86 80.42 18.28 9.17
Steptastic 61.23 28.36 13.58 15.22
Travel-Mate 60.45 34.24 17.89 12.55

4.3 Guidelines for Android Smell Tools

From this study, we uncover 2 guidelines (G1 and G2) to
support future implementation of tools for Android.

G1. In order to support results analysis through statis-
tical methods, graphical visualization or at least numerical
indicator, such as percentage – We identified that the eval-
uated tool does not show statistical numbers related to the
code smells for each type. Also, when using the detection
and refactoring tool in apps, we should be able to determine
if the refactoring will lead to more methods calls. Then, if
more method calls will be necessary, applying the refactor-
ing will probably imply in increasing the consumption as
the OS adds more data in the Android memory stack.

G2. In order to combine different techniques (token,
tree, etc.) [14, 8, 15] for detecting several codes smells in
Android – It could be interesting to combine different tech-
niques that can be more useful to detect code smells. This
characteristic may increase the precision of the tool, mainly
in refactoring technique. A solution to this problem is to
identify the number of cycles of the clock that refactoring
can cause.

5 Related Work
Studies have investigated code smells in Android [1,

2, 10, 13]. For instance, Boussaa et al.[2] proposed an
automated approach to generate rules based on software
quality metrics and threshold to detect code smells in An-
droid. This work argues that identifying Android code
smells is extremely important, since the presence them may
lead to higher use of CPU, memory, and battery. We also
found other of papers related to refactoring and energy ef-
ficiency, considering a different type of refactoring. For
instance, Banerjee and Roychoudhury [1] present a light-
weight refactoring technique to assist app development re-
garding energy efficiency. Their results show that refactor-
ing the app can reduce the energy consumption up to 29%.

Existing studies investigate the identification of code
smells in Android and how they relate to energy efficiency.
However, works to identify positive and negative impacts
of refactoring on code smells regarding resources usage are

318

premature. Furthermore, there is no study investigating both
memory and CPU usage before and after applying the refac-
toring. In this context, our study investigates how the refac-
toring of code smells usually common on desktop systems
may impact resources usage in Android.

6 Threats to Validity
We based our study on related works to support our re-

search. However, some threats to validity may affect our re-
search findings. We conducted careful filtering of context-
aware apps from GitHub. Considering that the exclusion
criteria for app selection were applied in an automatic pro-
cess, we may have discarded compatible apps. In our view-
point, the selected apps are representative, given that they
are well-defined regarding the diversity of use of resources.

We used defaults configuration of JDeodorant to detect
code smells and apply refactoring techniques automatically.
Besides, another threat is concerning the use of the apps.
We decided not to emulate them through Android Studio
to achieve more trusted results. To test these apps, we have
adopted a rigorous manual test script, whereby all apps have
been tested. For example, if the app requires GPS position-
ing and the user walks with the smartphone, all other apps
with the same characteristics have passed by the same route
without any interference with the time or distance covered.

7 Conclusion and Future Work
The empirical study reported in this paper evaluated 9

different apps from the context-aware domain. These apps
were tested 162 times. In particular, we analyzed 3 types of
smells, namely God Class, God Method, and Feature Envy.
We aimed to verify the possibility of improving the quality
of the source code through refactoring technique and reduce
the use of resources, such as memory and CPU.

Our findings point that the refactoring technique, in gen-
eral, causes an increase in the use of resources. We also
observed that the JDeodorant is not able to adequately per-
form the refactoring in Android since techniques usually
adopted in desktop software are the opposite to the best-
practices indicated by Android developers site. The tool
used in this study was developed with the purpose of de-
tecting the code smells and apply refactoring in Java, the
same language used in the tested apps.

We believe that the results of this study will benefit
developers by helping them to avoid inappropriate use of
refactoring technique in the mobile device. Additionally,
we provide two guidelines for developing a new tool able to
detect code smells and apply refactoring. As future work,
we plan to extend our study to investigate other code smells
on Android. We also plan to develop an automated script
to test different apps in large-scale studies and implement a
tool based on the guidelines uncovered in this study.

8 Acknowledgments
This research was partially supported by Brazilian fund-

ing agencies: CAPES, CNPq (Grant 424340/2016-0),
FAPEMIG (Grant PPM-00651-17 and APQ-02924-16), and
FIP-PUC Minas.

References
[1] Abhijeet Banerjee and Abhik Roychoudhury. Automated refactoring

of Android apps to enhance energy-efficiency. In 38th Proc. of the
Int’l Conf. on Mobile Software Engineering and Systems (MOBILE-
Soft), 2016.

[2] Mohamed Boussaa, Wael Kessentini, Marouane Kessentini, Slim
Bechikh, and Soukeina Ben Chikha. Competitive Coevolutionary
Code-Smells Detection. Springer Berlin Heidelberg, 2013.

[3] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy.
Investigating the energy impact of Android smells. In 24th Proc. of
the Int’l Conf. on Software Analysis, Evolution and Reengineering
(SANER), 2017.

[4] L. Cruz and R. Abreu. Performance-based guidelines for energy ef-
ficient mobile applications. In 4th Proc. of the Int’l Conf. on Mobile
Software Engineering and Systems (MOBILESoft), 2017.

[5] L. Cruz, R. Abreu, and J. N. Rouvignac. Leafactor: Improving en-
ergy efficiency of Android apps via automatic refactoring. In 4th
Proc. of the Int’l Conf. on Mobile Software Engineering and Systems
(MOBILESoft), 2017.

[6] Quan Chau Dong Do, Guowei Yang, Meiru Che, Darren Hui, and
Jefferson Ridgeway. Mybatrecommender: Automated optimization
of energy consumption for android smartphones in software layer. In
13th Proc. of the Int’l Conf. on Software Engineering and Knowledge
Engineering (SEKE), 2016.

[7] Jacky Estublier. Software configuration management: A roadmap.
In 22nd Proc. of the Conf. on The Future of Software Engineering
(ICSE), 2000.

[8] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mntyl. Code smell
detection: Towards a machine learning-based approach. In 29th
Proc. of the Int’l Conf. on Software Maintenance (ICSM), 2013.

[9] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[10] Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. An empirical
study of the performance impacts of Android code smells. In 3th
Proc. of the Int’l Conf. on Mobile Software Engineering and Systems
(MOBILESoft), 2016.

[11] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in
Practice: Using Software Metrics to Characterize, Evaluate, and Im-
prove the Design of Object-Oriented Systems. Springer Publishing
Company, Incorporated, 2010.

[12] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and
C. Jensen. Understanding code smells in Android applications. In
4th Proc. of the Int’l Conf. on Mobile Software Engineering and Sys-
tems (MOBILESoft), 2016.

[13] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Anto-
niol. Anti-patterns and the energy efficiency of Android applications.
ArXiv e-prints, 2, 2016.

[14] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De
Lucia. Lightweight detection of android-specific code smells: The
adoctor project. In 24th Proc. of the Int’l Conf. on Software Analysis,
Evolution and Reengineering (SANER), 2017.

[15] Santiago A. Vidal, Claudia Marcos, and J. Andrés Dı́az-Pace. An ap-
proach to prioritize code smells for refactoring. Automated Software
Engineering, 23, 2016.

[16] H. Zhu, H. Xiong, Y. Ge, and E. Chen. Discovery of ranking fraud
for mobile apps. IEEE Trans. on Knowledge and Data Engineering,
27, 2015.

319

Mining Intentions to Improve Bug Report
Summarization

Beibei Huai,Wenbo Li,Qiansheng Wu,Meiling Wang
University of Chinese Academy of Sciences

Institute of Software, Chinese Academy of Sciences
National Engineering Research Center of Fundamental Software,Beijing, 100190, China

{beibei, wenbo, qiansheng, meiling}@nfs.iscas.ac.cn

Abstract—In recent years, various automatic summarization
techniques have been proposed to extract important information
from bug reports. However, existing techniques mainly focus on
common text features and ignore human intentions implied in
bug reports. In fact, each bug report generally contains multiple
intentions which are distributed in different sentences. Bug report
readers are usually more interested in content that contains
intentions of certain categories (e.g. fix solution, bug description).
Based on the above observation, we introduce an intention
taxonomy and implement the intention classification algorithm in
this paper. Furthermore, we propose a new Intention-based Bug
Report Summarization approach, namely IBRS, which leverages
intention taxonomy to enhance bug report summarization. We
evaluate our approach on Intention-BRC corpus and the exper-
imental result shows that IBRS outperforms the state-of-the-art
approaches in terms of precision, recall, F-score, and pyramid
precision.

Index Terms—Bug Report, Text Summarization, Intention
Taxonomy, Intention Mining

I. INTRODUCTION

A software project’s bug report repository provides a rich
source of information for a software developer working on the
project. A bug report is composed of a title, descriptions and
comments from several developers. We analyse 40,000 bug
reports from different open source projects and find that bug
reports are usually very long (more than 10 comments in one
bug report on average) and their content is mixed with code
and debugging information. An example bug report is shown in
Figure 1. It is part of the #434108 bug report of Eclipse which
contains 14 comments. In such a long bug report, it is time-
consuming for a reader to grasp the important information they
need.

One of the most effective ways to save bug report readers’
time is to provide them with summaries of bug reports. The
main idea of the state-of-the-art bug report summarization
techniques is to extract useful sentences in bug reports. Rastkar
et al. [1] first proposed BRC model. They marked 36 bug
reports (BRC corpus) and trained 3 classification models on
BRC corpus, meeting corpus and email corpus to score each
sentence in a bug report. Finally, they found that the result
is sensitive to the type of corpus. It suggests that the text of
bug reports has unique characteristics compared with other
common texts. Mani et al. [2] used an unsupervised method.

10.18293/SEKE2018-096

Fig. 1. A Bug Report Sample from Eclipse.

They classified the sentences roughly and dropped two kinds
of the sentences (Question and Code). Finally they applied sev-
eral unsupervised methods such as Grasshoppe, Diverse Rank
to get summaries of bug reports. The sentences classification
in their paper plays a role as a noise reduction mechanism.
Moreover, the concept of intention has been applied to various
software artifacts, e.g. app reviews [3], development emails
[4]. We observe that sentences posted in bug reports also
contain different purposes.

In this paper, we define 7 intention categories in bug
reports and then explore the connection between summaries
and sentence intentions in bug reports. Finally we improve
the bug report summarization approach by taking sentences
intentions into account. This paper mainly makes following 3
contributions:

1) We introduce an taxonomy of intentions in bug reports,

320

which classifies intentions into seven categories: Bug
Description, Fix Solution, Opinion Expressed, Infor-
mation Seeking, Information Giving, Meta/Code and
Emotion Expressed.

2) We propose a mixed model of linguistic patterns match-
ing and machine learning to classify the sentences of a
bug report by their intentions.

3) We propose an intention-based bug report summariza-
tion approach(IBRS), which takes advantage of the
informations that intentions implies.

The rest of this paper is organized as follows. Section II
describes the related work. Section III gives an overview of
IBRS approach. In Section IV, we describe the experiments
we conducted and the evaluation results. We present threats to
validity and future work in Section V. And we concludes our
work in Section VI.

II. RELATED WORK

Summarization techniques are mainly classified into two
categories: extractive [5] approach and abstractive approach
[6], [7]. In recent years, summarization researches began to ex-
pand to software artifacts such as user stories [8], source code
[9] and bug reports. For bug reports, sentence-level extractive
model is the main summarization technique, which extracts
the central sentences from the original text in accordance with
a certain compression ratio.

Rastka et al. [10] first proposed a model to extract sum-
maries automatically from bug reports and created a bug
report corpus called BRC corpus. They extracted more than
20 features from each sentence and trained Logistic Re-
gression models to select sentences from a bug report. He
Jiang et al. [11] found the relationship between the writing
style consistency and the quality of the written report by
mining authorship characteristics in bug repositories. And they
proposed a new summarization method named Authorship
Characteristics based Summarization (ACS). In addition, they
also proposed a PageRank-based Summarization Technique
(PRST) [12], which utilizes the textual information contained
in bug reports and additional information in associated dupli-
cate bug reports. Lotufo et al. [13] proposed an unsupervised
bug report summarization approach that estimates the attention
a user would hypothetically give to different sentences in a bug
report when pressed with time. In addition, Yeasmin et al. [14],
[15] applied the Lotufo’s model to practice and constructed a
visualized summarization model.

Previous researches have yielded good results by mining
different features of bug reports. Moreover, intentions of sen-
tences have been used in many other software artifacts except
for bug reports, providing us with a new perspective to explore
the characteristics of bug reports. Sorbo et al. [4] proposed a
novel, semi-supervised approach named DECA (Development
Emails Content Analyzer) that used Natural Language Parsing
to classify the sentences in development emails according
to their purpose. They said that their work can be used in
summarizing work and they have already generated app review
summary based on intention classification [3].

Fig. 2. IBRS Approach Overview

III. APPROACH

This section introduces the framework of IBRS as shown in
Figure 2. It consists of features extractor, intention classifier
and Intention-based Bug Report Summarization Model. Our
goals are to build a taxonomy for intentions in bug reports,
construct an automatic intention classifier to get sentences
intentions and take advantage of the sentences intentions to
improve the original bug report summarization approach.

A. Intention Taxonomy

In the work of Sorbo et al. [4], they divided the intention of
development email sentences to 6 categories, including feature
request, opinion asking, problem discovery, solution proposal,
information seeking and information giving. Through observa-
tion, we find that many of their intention categories are similar
to intentions in bug reports. For example, problem discovery
in development emails is closely related to bug description in
bug reports. Solution proposal in development emails is closely
related to fix method in bug reports. However, bug reporters
mainly focus on the discussion of bugs. Through reading bug
reports and referring to the intentions of development emails,
we define a total of 7 different intentions for bug reports as
shown below.
• Bug Description. To describe a bug (i.e. What is the

problem and how does it occur). E.g.“The problem here
is that nsSearch-Suggestions.js is passing the wrong pre-
vious Result to form history.”

• Fix Solution. To describe how to fix a bug. E.g. “The
simple fix it to just discard the service’s form history
result copy when startSearch() is called with a null
previous result.”

• Opinion Expressed. To Express the developers’ ideas.
E.g. “Yes, agreed the pref is not ideal for this purpose.”

• Information Seeking. Developers ask for information.
E.g. “Can I commit gtkshow.c to gtk+ when I remove
gtk show help?”

• Information Giving. Developers give their suggestions
or other information. e.g. “You could winding kde-
base/apps/konsole back a few revisions to see if the
problem disappears.”

321

• Meta/Code. A sentence that mainly consists of code,
stack information and other meta data. E.g. “CreateFile-
Operation op1 = new CreateFileOperation(file,...);”

• Emotion Expressed. Greeting words or feeling expressed
of something. E.g. “Good point.” “Hi Martin”

B. Intention-BRC Corpus

In order to mine the intentions in bug reports, we annotate
the intention of each sentence in the BRC corpus. BRC corpus
is created by Rastka et al [1]. There are 36 bug reports (2360
sentences) in it, which from 4 different open-source software
projects: Eclipse Platform, Gnome, Mozilla and KDE. They
assigned three annotators to each bug report to select sentences
that should occur in the summary of this report. For each bug
report, the set of sentences which be marked as summary by
more than one annotators is called the gold standard summary
(GSS). They also roughly classified each sentence and labelled
the categories. However, the categories annotations in the
corpus are not very accurate and some of the categories
annotations are missing. We re-annotate each sentence in
the corpus according to the intention taxonomy we defined.
Moreover, we correct some incorrect ID of sentences in BRC
corpus. After that, we call the modified corpus as Intention-
BRC Corpus in this paper and make it public1.

C. Intention Mining

The category information of intentions can be used as a
distinctive feature in bug reports. To prove this, in this section,
we analyse the Intention-BRC Corpus.

The annotation result shows that there are 374 sentences
labelled as Bug Description, 164 sentences labelled as Fix
Solution, 239 sentences labelled as Opinion Expressed, 85
sentences labelled as Information Seeking, 588 sentences
labelled as Information Giving, 744 sentences labelled as
Meta/code, 166 sentences labelled as Emotion expressed. We
wonder whether different categories of intentions are well-
differentiated from other features of a bug report. So we
analyse the following data:

The probability of a sentence that appears in the sum-
mary. In fact, when people reading a bug report, they always
pay different attention to sentences of different intentions. For
example, “Good point” and “The simple fix it to just discard
the service’s form history result copy when startSearch() is
called with a null previous result” are sentences with different
intentions. Obviously, the last sentence is more likely to appear
in summary. We counted the number of sentences with each
intention that appeared in summary in Intention-BRC Corpus
as c1, the number of sentences that not appeared in the
summary as c2. Figure 3 shows the result. The probabilities
for sentences with Bug Description and Fix solution intentions
to appear in summary are significantly higher than the others.

We define parameters Pi as the probability to be selected
as summary for intention category i. In our definition, Pi is
proportional to the ratio of the number of occurrences in the

1https://github.com/HuaiBeibei/IBRS-Corpus

Fig. 3. Sentence Count for Each Intention

summary and the total number of sentences of intention i.
Formally,

Pi =

∑
s∈seni

I(s ∈ sumary)∑
I(s ∈ seni)

=
c1

c1 + c2
(1)

seni represents the set of sentences with intention i.
Sentences length of each intention. In general, the length

of sentences with different intentions are different due to the
amount of information and information types involved are
different. For example, the Bug Description is to describe a
problem (e.g. how the problem occurs) and the sentences of
this intention is usually very long. We calculate the average
sentence length for each category, formally,

Li =

∑
length(s ∈ seni)∑

I(s ∈ seni)
(2)

Sentences position of each intention. We observe that there
is also a big difference in the location distribution of sentences
with different intentions. For example, problems are usually
described first in a bug report, therefore Bug Description sen-
tences usually appear at first comment. Similarly, we calculate
the average location of sentences for each category, formally,

Ci =

∑
comment position in report(s ∈ seni)∑

I(s ∈ seni)
(3)

Si =

∑
position in comment(s ∈ seni)∑

I(s ∈ seni)
(4)

Table I shows the calculation result of PLCS for each
intentions. Through the above data analysis, we can see that
the categories of intentions can show differences in multiple
feature dimensions. It shows that the intention implicitly
expresses several features of bug reports to some extent.

D. Intention Classification

In order to automatically obtain the intention of sentences
in bug reports, we train an intention classifier. Sorbo et
al. [4] proposed an approach called DECA to classify the

322

TABLE I
PLCS FOR EACH INTENTION

Intention category P L C S

Bug Description 0.594 16.660 3.786 5.805
Fix Solution 0.756 17.226 8.726 4.006

Opinion Expressed 0.310 16.272 8.732 3.967
Information Seeking 0.129 12.388 8.612 3.967
Information Giving 0.378 17.252 7.932 6.129

Meta/Code 0.114 9.212 6.056 23.659
Emotion expressed 0.095 4.723 6.837 5.753

sentences in development emails. They created 2312 heuristics
to detect common linguistic patterns in sentence to predict
their intention. However, finding linguistic patterns is a tedious
work and it is impossible to define all patterns. Therefore,
we create a mixed model which consists of linguistic patterns
matching and machine learning classifying. For each sentence
to classify, we first try to find the linguistic patterns matching
it to get the intention category. If no patterns matched we input
it to the trained machine learning classifier to get the intention
category.

Machine learning classifier. First, we pre-process the
textual content by applying stop-word removing, stemming
and lowering. Then we use bag-of-words model to construct
a Term-by-Documents Matrix M where Mi,j represents the
weight of the i-th term contained in the j-th sentence. We
weight word using the tf (term frequency), which weight each
word i in document j as:

tfi,j =
ni,j∑
k nk,j

(5)

where ni,j is the frequency of word i appear in document
j. We use tf instead of tf-idf indexing for the use of the
inverse document frequency (idf) penalizes too much on terms
appearing many times in documents. In our work, we need
these frequent words (such as “bug”, “think”) guide our
machine learning classifier.

Linguistic patterns. We define several regular expressions
and reuse part of the 231 heuristics (Some of the heuristics can
also apply to our intention taxonomy, e.g. problem discovery
could be regard as bug description, solution proposal could
be regard as fix solution). Following are some examples to
identify intentions using linguistic patterns. Each example
consists of a linguistic pattern and a matching sentence from
bug reports.
• Example 1: Identify Code Category.

- \w+\s\w+\s\(.+\)
- “int ftp connection (FtpConnection *conn, const

Ftp550Handler *handlers, const FtpFile *file)”.
• Example 2: Identify Information Seeking Category.

- [how|what|left|Do|Does|Is].+\?
- “Does this happen every time?”

• Example 3: Identify Information Giving Category.

2http://www.ifi.uzh.ch/seal/people/panichella/
DECA Implemented Heuristics.pdf

- [someone] could [verb]
- “You could winding kdebase/apps/konsole back a

few revisions to see if the problem disappears”

E. Improved Automatic Summarization of Bug Reports

Different from the previous methods, we combine the inten-
tion feature to the summarization model. The score of sentence
s can be expressed by the following formula:

Fs = (1− α) ∗BRSs + α ∗ Pintention(s) (6)

BRSs is the score output by the original BRC model.
intention(s) is the intention category of sentence s and
Pintention(s) is the probability weight for this intention cat-
egory. In fact, we can add the intention feature to machine
learning model to learn the α. Following are the features we
used to train IBRS model:

1) structural features are related to the structure of the bug
report (e.g., the position of the sentences).

2) participant features are directly related to the conversa-
tion participants (e.g., whether the sentence is made by
the same person who filed the bug report).

3) length features related to the length of the sentence
4) lexical features are related to the occurrence of unique

words in the sentence that we could use to calculate the
sentence similarity with bug report title.

5) Intention features are related to the weight of intention
category of the sentences.

IV. EXPERIMENTS

A. Research Questions

In this paper, we are interested in the following research
questions and conduct two experiments to evaluate our ap-
proach:

RQ1: How does our intention classifier perform? For this
question, we construct the intention classifier and evaluate it
on Intention-BRC corpus.

RQ2: Does the sentence intention feature improve the
result of bug report summary model? To answer this
question, we add the intention feature to the original summary
model to construct IBRS and evaluate it in experiment II.

RQ3: What is the impact of missclassification to IBRS?
To answer this question, we use labelled intentions in corpus
rather than the predicted intentions of the intention classifier
to construct IBRS and evaluate it in experiment II.

B. Experiment I on Intention classifier

Algorithm 1 show the main algorithm of our intention
classification approach. We choose Random Forest (RF) [16]
classifier and implement leave-on-out method on RF to make
sure the sentence to classify not appear in the train set.

To evaluate the result of the intention classification, For each
category, we calculate the precision, recall and F-score. The
result of the classifier is shown in Table II.

Answer for RQ1: Through experimental verification, we can
correctly identify the intention of 59% of the sentences from

323

Algorithm 1 Intention Classification
Split the BRC corpus by sentences
for each sentence s ∈ BRC corpus do

for each linguistic patterns defined do
if the sentence i match the pattern then

return the intention the pattern represent
end if

end for
return the sentence predicted by the trained RF classi-
fication

end for

TABLE II
EVALUATION MEASURES OF EXPERIMENT I

CLASS TP FP FN Precision Recall F-score

Bug Description 182 186 192 0.49 0.47 0.48
Fix Solution 19 63 145 0.23 0.12 0.16

Opinion Expressed 27 39 212 0.41 0.11 0.17
Information Seeking 60 36 25 0.63 0.71 0.67
Information Giving 364 375 224 0.49 0.62 0.55

Meta/Code 679 251 65 0.73 0.92 0.81
Emotion Expressed 52 27 114 0.66 0.31 0.42

Overall Performance 1383 977 977 0.59 0.59 0.59

bug reports. Especially, our intention classification approach
performs better at several categories, for example, Meta/Code,
Information Seeking, Information Giving. This is because the
sentences with these intentions have more obvious structural
features. For example, code sentences’ keywords have a strong
distinction, such as “public”, “static”, etc. Information Seek-
ing sentences are often in the form of questions and usually
contain obvious keywords such as “what”, “how’’, “why”,
etc. The worse performing results are from Fix Solution and
Opinion Expressed. There are two main reasons. One reason is
that the count of these two category samples is much smaller
than the others (7% Fix solution sentences and 10% Opinion
Expressed sentences). The other reason is that the diversity of
sentence structure of these two categories. In addition, since
bug report repository is a relatively open platform, developers
do not write a standardized language when reporting (for
example, they usually use abbreviated form).

C. Experiment II on IBRS

This experiment combines the intention classifier and BRC
model. Similar to the method in experiment I, we also use a
leave-one-out procedure (i.e. leave one bug report out). The
process of the IBRS experiment is as following:

1) Leave one bug report out of the training set. For every
sentence in bug report corpus, we get their intention
category using the intention classifier trained without
sentences in this bug report.

2) We use the remained set in intention-BRC corpus to train
the IBRS model. We map the intention label to get the
sentence intention feature(P) from Table I and add the
intention features so that our new summary model can
take the category of intention into account.

TABLE III
EVALUATION MEASURES OF EXPERIMENT II

Approach Precision Recall F-score Pyramid Precision

BRC 0.57 0.35 0.43 0.66
BRC* 0.54 0.34 0.42 0.64
IBRS 0.59 0.37 0.45 0.69

IBRS* 0.65 0.41 0.50 0.72

Fig. 4. Pyramid Precision For IBRS and BRC*

3) For the left bug report, we map the sentences to get the
sentence intention feature. Then use the IBRS to get the
sentence score. We sort the sentences by their scores and
select top 20% (for that 20% is approximately equal to
the proportion of GSS in the corpus) as summary.

To evaluate the result, we calculate the precision, recall,
F-score and pyramid precision [1] for the IBRS model. In
order to compare with original models, we also reproduce the
BRC experiment proposed by Rastkar et al. To answer RQ3,
we also change the experiment to use the labelled intentions
rather than the predicted intentions at step 1). The result is
shown in Table III.

In our reproduced experiment, we get precision of 54% and
recall of 34% (We correct several errors in the corpus of BRC
annotations that may have caused a slight difference between
the reproduced results and the experimental results of Rastkar
et al.) as showed in second row in Table III marked as BRC*.
The original result of BRC approach is shown in first row.
The result of IBRS is shown is third row. IBRS* shown in
last row is the result of IBRS model trained using correctly
labelled intentions.

We also calculate pyramid precision for every single bug
report. Figure 4 shows the values of pyramid precision for
the BRC* and IBRS approach. The bug reports have been
sorted based on the pyramid precision of IBRS. The figure
shows that 22 of 36 reports (61% of total reports) get better
summary using IBRS.

Answer for RQ2: Our IBRS out-performs the BRC* ap-
proach on precision (5% improved), recall (3% improved), F-
score (3% improved) and pyramid precision (5% improved).

324

61% of bug reports get summaries with better pyramid pre-
cision using IBRS. The only different between the BRC*
and IBRS is that IBRS takes the sentence intention category
feature into account. It proves that the intention feature indeed
improves the work of automatic summarization for bug reports.

Answer for RQ3: From the result of IBRS*, it shows that
IBRS* outperforms the IBRS 6% on precision. IBRS* is
trained with labelled intention while IBRS trained with the
intention classifier of 59% precision. Although IBRS improves
the summarization for bug reports, the misclassification limits
the promotion of summarization to some extent. It proves
that intentions can enhance the summarization work better.
Improving the accuracy of the intention classifier is one of
our future work.

V. DISCUSSION

A. Threats to Validity

In this paper, we use Intention-BRC corpus that consists
of 36 bug reports. This may bring threats to the validity
of intention taxonomy for the corpus are not larger enough.
However, the 36 bug reports are from 4 different popular
project and can represent the characteristics of most of bug
reports. The size of the corpus also bring threats to the
evaluation of the experiment. We apply the leave-one-out
method to ensure that the assessed samples do not participate
in training and make maximum use of corpus. In addition,
we select 20% sentences as summary of a bug report may
bring threats to the quality of the summary content. The state-
of-the-art researches usually count the average proportion of
sentences in summary to total sentences as an indicator of the
number of sentences to extracted. 20% is the proportion of
GSS to total sentences in corpus, so it is a relatively reasonable
extraction ratio.

B. Future Work

There is a lot of room to improve on intention classifier. In
our future work, we are interested in improving the accuracy
of the intention classifier by adding more heuristics and trying
new ways to characterize bug report text (e.g. DBRNN-A [17]
instead of our bag-of-words (BOW)).

Moreover, the intentions of sentences can be used in many
other ways. For example, we can rearrange or even reconstruct
the summary text of the bug report based on the intention
of the sentence. There are many redundant sentences with
similar meaning in the summary text, we can further abstract
the sentences with same intention into a abstract text. [18].

VI. CONCLUSION

In this paper, We achieve significant improvement to the au-
tomatic summarization for bug report by introducing intention
feature to original approach. We assume that bug report text
usually contains different intentions. We introduce the inten-
tion taxonomy and propose IBRS (Intention-based Bug Report
Summarization). To evaluate the performance of the intention
classifier and IBRS model, we design two experiments. The
result shows the precision rate of intention classifier is 59%.

Based on the intention classifier, we implement IBRS model,
which outperforms the original BRC model with precision
of 59% (5% improved), recall of 37% (3% improved) , f-
score of 45% (3% improved)and pyramid precision of 69%
(5% improved). The results of experiments show that mining
intentions indeed improves the bug reports summarization.

REFERENCES

[1] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Transactions on Software Engineering, vol. 40,
no. 4, pp. 366–380, 2014.

[2] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum: approach
for unsupervised bug report summarization,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, p. 11.

[3] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 499–510.

[4] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
and H. C. Gall, “Development emails content analyzer: Intention mining
in developer discussions (t),” in Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on. IEEE, 2015, pp.
12–23.

[5] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality
as salience in text summarization,” Journal of Artificial Intelligence
Research, vol. 22, pp. 457–479, 2004.

[6] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text
summarization using sequence-to-sequence rnns and beyond,” arXiv
preprint arXiv:1602.06023, 2016.

[7] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” arXiv preprint arXiv:1509.00685,
2015.

[8] R. Krasniqi, S. Jiang, and C. Mcmillan, “Tracelab components for
generating extractive summaries of user stories,” in IEEE International
Conference on Software Maintenance and Evolution, 2017, pp. 658–658.

[9] P. W. Mcburney and C. Mcmillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[10] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: a case study of bug reports,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1. ACM, 2010, pp. 505–514.

[11] H. Jiang, J. Zhang, H. Ma, N. Nazar, and Z. Ren, “Mining authorship
characteristics in bug repositories,” Science China Information Sciences,
vol. 60, no. 1, p. 012107, 2017.

[12] H. Jiang, N. Nazar, J. Zhang, T. Zhang, and Z. Ren, “Prst: A pagerank-
based summarization technique for summarizing bug reports with du-
plicates,” International Journal of Software Engineering and Knowledge
Engineering, vol. 27, no. 06, pp. 869–896, 2017.

[13] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ‘hurried’ bug
report reading process to summarize bug reports,” Empirical Software
Engineering, vol. 20, no. 2, pp. 516–548, 2015.

[14] S. Yeasmin, C. K. Roy, and K. A. Schneider, “Interactive visualization
of bug reports using topic evolution and extractive summaries,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 421–425.

[15] ——, “How should we read and analyze bug reports: an interactive visu-
alization using extractive summaries and topic evolution,” in Proceedings
of the 25th Annual International Conference on Computer Science and
Software Engineering. IBM Corp., 2015, pp. 171–180.

[16] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[17] S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring
the effectiveness of deep learning for bug triaging,” arXiv preprint
arXiv:1801.01275, 2018.

[18] G. Murray, G. Carenini, and R. Ng, “Generating and validating abstracts
of meeting conversations: a user study,” in Proceedings of the 6th
International Natural Language Generation Conference. Association
for Computational Linguistics, 2010, pp. 105–113.

325

Evaluating the Effort of Integrating Feature Models:
A Controlled Experiment

Vinicius Bischoff, Kleinner Farias, Lucian José Gonçales
Post Graduate Program on Applied Computing (PPGCA)

University of Vale do Rio dos Sinos (Unisinos)
São Leopoldo, Brazil

viniciusbischof@edu.unisnos.br, kleinnerfarias@unisinos.br, lucianj@edu.unisinos.br

Abstract—The integration of feature models plays a key role in

many tasks in software development, such as evolving Software

Product Lines (SPL) to add new features. However, based on our

experience in previous empirical studies, one of the main

shortcomings to the widespread adoption of integration techniques

is the lack of empirical knowledge about its effects on the effort of

analysts and developers. This problem applies to integration

techniques involving a set of operations (union and intersection) as

well as the relationships between features and their elements. This

article, therefore, reports on a controlled experiment that

investigated the effort of (1) applying the integration techniques of

feature models by professionals and students, and (2) detecting

and resolving inconsistencies in the output-integrated models. The

integration effort was evaluated through 10 evolution scenarios.

The main results suggest that there is no significant difference

regarding (1) the integration effort invested by professionals and

students to produce a desired integrated model, and (2) the

correctness rate of the integrations performed by professionals

and students.

Keywords - Feature Model; Integration; Experimental Study.

I. INTRODUCTION
Feature models (FM) can be seen as a “big-picture” of the

functionalities of a software system. The integration of feature
Models plays a pivotal role on software engineering tasks. For
this, each developer performs tasks, such as changing or adding
new features in a specific feature delta model, FMB. These
changes are often performed in parallel, and then each
developer accommodates these changes into a base feature
model, FMA. Developers need to integrate these modifications
to update the “big picture” of a software system. Specifically,
integration of feature models might be briefly defined as a set
of activities that should be performed over two input models,
FMA and FMB, to produce a desired output-composed feature
model, FMAB.

However, developers may end up not producing the FMAB.
Instead, developers often produce an output-composed model,
FMCM, with problems (i.e., FMCM FMAB) [1][11]. This
happens because developers are usually unable to properly
detect and resolving integration problems, such as conflicts and
inconsistencies, given the problem at hand. Hence, to produce
the FMAB they must invest effort to resolve such conflicts and
inconsistencies in the FMCM. Conflicts are contradicting
information found in FMA and FMB. In other words, conflicts
are different values assigned to the properties of feature models

(e.g., name). For example, the variability property of a given
feature Researcher defined as mandatory in FMA, while in FMB
its variability property is defined as optional. These
contradicting values assigned to these specific features
represent a conflict that developers must resolve. However, if
this issue is not properly resolved, inconsistencies are inserted
into the output-composed feature model, FMCM. For example,
Researcher variability property defined as optional denotes an
inconsistency as the expected value should be mandatory.
Model inconsistencies [10] can be briefly defined as a mismatch
between FMCM and FMAB.

Previous works already investigated the effects of
composition tasks on developers’ effort, and their experiences

[1][2]. In [1], the authors evaluated the effort invested to
compose UML models using specification-based and heuristic-
based techniques.; however, the integration of features models
was not explored. In [2], the authors evaluated the impact of
experience level on comprehension of C++ lambdas functions.
Integration of feature models was not also the focus of the
authors. To sum up, none of them investigated the effects of
integration tasks of feature models on developer’s effort. Also,

there is a lack of empirical evidence regarding the effort of
software developers on integrating feature models.

To account for this, this work conducts a controlled
experiment to analyze the effort that developers invest on
activities related to the integration of feature models. In
particular, we seek to explore the effort invested by two
categories of participants, including students and professionals.
This experiment was executed based on well-defined guidelines
[6]. In [1], the authors argue that this kind of study is important
because it provides scientific evidence about the developer’s

performance on software engineering tasks. This prevents the
development team’s decisions limited to only on opinion of
experts and evangelists, thus providing strong empirical
evidence.

II. STUDY METHODOLOGY

A. Objective and research questions

The objective of this work is to analyze the integration
techniques of feature models for the purpose of investigating
with regard to effort and correctness from the perspective of

students and professionals in the context of evolution of feature
models. This objective is based on the GQM template [5].

DOI reference number: 10.18293/SEKE2018-202

326

Based on this objective, two Research Questions (RQ) are
formulated:

• RQ1: What is the effort required to integrate FMs?

• RQ2: What is the rate of correctly integrated FMs?

B. Hypothesys formulation

This Section formulates the hypotheses that guide our
experiment to answer the respective two formulated research
questions. These hypotheses are described below:

H1. Null Hypothesis 1, (H1-0): Professionals apply less or
equal effort to integrate FMs (IE) manually than students.

H2. Hypothesis Null 2, (H2-0): The rate of correctly
integrated elements (CIR) performed by professionals is equal
or greater than one produced by students.

As in any experiment, the main objective is to reject these
null hypotheses. In the context of this work, we conjecture that
the professionals presented better results compared to the
students.

C. Study variables

The dependent variable of the first hypothesis (H1) is
Integration Effort (IE). The IE represents the time (in minutes)
spent to integrate two input-feature models, FMA and FMB, to
produce FMCM. The dependent variable in the second
hypothesis (H2) is the Rate of Correctly Integrated Features
(CIR). CIR is a correctness rate. The CIR formula is the result
of the number of participants who correctly answered the
investigated question (NPAC), divided by the total number of
participants (NPT), i.e., CIR = NPAC/TNP.

The independent variable of this experiment is the
experience level of participants, which can assume two values:
Students and Professionals. Professionals are active persons on
software industry, while students are persons that studies in
universities. Therefore, students are organized in tree groups,
i.e., technical, graduate and postgraduate.

D. Context and partipants

The context of this study is related to the evolution of feature
models. This means that, users must properly integrate the
changes on a delta model FMB into the base model FMA.
Therefore, the participants must choose the right answer among
five options. 10 Evolution Scenarios (ES) were developed to
evaluate the integrations.

A total of 25 participants attended this experiment. The
professionals group contains 07 persons. The student group
contains 05 undergraduate students; 03 graduate students, and
10 students from IT courses.

E. Experimental process

The experimental process consists of three steps: (1)
Training; (2) Execution of feature integration activities; and (3)

Participant Background and Data Collection. In the first step (1)
all participants were trained to ensure that they acquired the
necessary familiarity with model integration techniques. In the
next step (2), developers concerned on feature integration tasks,
i.e., participants analyze the input models (FMA and FMB) of
each scenario based on descriptions of changes. In this step,
they also resolved conflicts. Participants should resolve
conflicts according to the change requests listed in each
question to produce a composed model, FMCM. Finally, they
tried to produce the desired feature model. This activity consists
of integrating the models, i.e., producing the FMAB. In the last
step (3), the participants provided background information such
as their professional experience, graduate level, level of
experience on software modeling and development. Finally, all
produced data related to the experiment were collected.

F. Analysis procedures

Quantitative analysis. We performed descriptive statistics
to analyze their normal distribution and statistical inference to
test the hypotheses [6][7]. Our analysis was performed to test
the hypotheses in both groups in all experimental tasks. We
applied the Student's t-test to validate the hypotheses intrinsic
to this research to check the normality of the variables, the
Kolmogorov-Smirnov - (Lilliefors) test, which is a broad test of
the distribution function of at the same time [6][7]. Although
the data distribution is subdivided into treatment (groups), the
validity hypothesis refers only to the group (professionals and
students), however, an individual evaluation of the categories
will be presented.

III. STUDY RESULTS
This Section presents the results regarding the investigated

research questions. Section III.A presents the results in relation
to the RQ 1 that investigates the effort on integration techniques.
Section III.B presents the results in relation to the RQ2 that
investigates the influence of experience level on the rate of
correctly integrated feature models. Finally, Section III.C
presents some additional observations.

A. Effort and integration techniques

Descriptive statistics. This section discusses the
descriptive statistics regarding the impact of experience level
(professional and students) on the effort on integrating feature
models (IE). Table 1 shows the descriptive statistics of the
collected data. Group 1 shows that university students (GR and
PG) apply less effort to integrate feature models, i.e., on average
the effort is 1.88 minutes. Specifically, they applied 25.24%
less effort to integrate the FMs in relation to technical students.
In Group 2, University Students (Graduates and postgraduates)
also spent less effort compared to professionals to integrate
feature models. The effort is 1.88 min., which represents 2.09%
less than professionals to integrate the FMs. In Group 3,
professionals spent less effort to integrate features than
technical students. Specifically, industry professionals applied
average of 1.92 min. integrating features, i.e., 23.64%, less
effort to integrate the FMs in relation to technical students.
Finally, in Group 4, that is the general comparison between

H2-0: CIRprofessional (FMCM) ≥ CIRstudent (FMCM)

H1-0: IEprofessional (FMA, FMB) ≤ IEstudent (FMA, FMB)

327

professionals and students, shows that professionals spent on
average 1.92 min. to integrate feature models, i.e., 12.39% less
effort to integrate feature models in relation to students.
Therefore, professionals tend to invest less effort to produce
FMAB using manual integration techniques.

Testing hypotheses. We also performed statistical tests to
evaluate whether the measures of Effort(FMA, FMB), eff (FMA,
FMB), diff(FMCM, FMAB), and iff(FMCM) are statistically
significant. We hypothesize that professionals in relation to
students tend to require less effort than their counterparts.
According to the hypothesis test previously described H1-0, the
t-test failed to reject the null hypothesis, with the p-value is
0.95. Therefore, there is no significant difference between the
applied effort to integrate features between professionals and
students.

B. Correctness and integration techniques

Descriptive statistics. This section analyzes the collected
data regarding the impact of integration techniques on the
correctness rate (CIR). For this, we also calculated descriptive
statistics to understand the distribution of the data, see Table 2.
It was possible to verify in Group 1 that the CIR (rate of
correctness) is higher for GR and PR (undergraduate and
graduate students), which reached an average of 0.59 of correct
answers, i.e., 6.78% more successful than technical students
when integrating the FMs. In Group 2, professionals obtained a
higher rate of correct answers in relation to the graduated and
postgraduates students, i.e., an average of 0.59 correct answers,
representing that university students were 26.17% less precise to
integrate FMs. In Group 3, the correctness rate (CIR) is superior
for the technical students, who reached an average of 0.55

correct answers, i.e., professionals were 20.91% less precise
when integrating the FMs. Finally, in Group 4 we can verify that
the rate of correct answers is superior for the students, who
reached an average of 0.57 correct answers, i.e., professionals
were 22.81% less precise to integrating feature models.

Testing hypotheses. It evaluates the experience level in
relation to the CIR (rate of correctly integrated models). The
rows identified with CIR shows the statistic p-values for
comparisons between groups. The results show that t-test (T)
rejects the null hypothesis H2-0, with the p-value equal to 0.146.
This means the level of experience does not have correlation
with the rate of correctly integrated features. Specifically, the
hypothesis test failed to reject the null hypothesis.

 C. Additional observations

All participants in this research have previously submitted
to a small training with 15 minutes to explain what a feature is,
how it behaves, what existing relationships, and ultimately
examples of integration.

Academics tend to be more prepared than professionals with
respect to the application of modeling techniques. As
understood in the company surveyed professionals perform
short meetings with the tasks to be developed. They do not
follow models, only requirements described in their
documentation. This way, we can extend the interpretations if
they are going to undergo changes, since the documentation is
not usually updated.

Considering our results, the average effort applied is two
minutes per question, which implies in 20 minutes running the
10 questions. However, the degree of difficulty proposed for
this research for integration between the FMs (syntactic and

1

Table 1. Descriptive statistics and hypothesis tests.

Group 1

Technical

Students

vs

University

Students

Variables
Treatment

18 participants
SD Min 25th MD 75th Max Avg. % Diff

t-test

p-value

CIR TECH 0.18 0.30 0.40 0.60 0.70 0.80 0.55 6.78 0.0716 GR and PG 0.29 0.13 0.25 0.69 0.63 1 0.59

IE
TECH 0.58 1.61 2.33 2.65 2.67 3.57 2.51

25.24 0.015 GR and PG 0.48 1 1.40 1.94 1.67 2.50 1.88

Group 2

Professional

vs

University

Students

Variables
Treatment

15 participants
SD Min 25th MD 75th Max Avg. % Diff

t-test

p-value

CIR PRO 0.23 0.14 0.20 0.43 0.43 0.86 0.44 26.17 0.197 GR and PG 0.29 0.13 0.25 0.69 0.63 1 0.59

IE PRO 0.71 1 1.33 1.71 1.67 3.40 1.92 2.09 0.884
GR and PG 0.48 1 1,40 1.94 1.67 2.50 1.88

Group 3

Professional

vs

Technical

Students

Variables
Treatment

17 participants
SD Min 25th MD 75th Max Avg. % Diff

t-test

p-value

CIR PRO 0.23 0.14 0.20 0.43 0.43 0.86 0.44 20.91 0.276 TECH 0.18 0.30 0.40 0.60 0.70 0.80 0.55

IE PRO 0.71 1 1.33 1.71 1.67 3.40 1.92 23.64 0.054 TECH 0.58 1.61 2.33 2.65 2.67 3.57 2.51

Group 4

(General)

Professional

vs

Students

Variables
Treatment

25 participants
SD Min 25th MD 75th Max Avg. % Diff

t-test

p-value

CIR PRO 0.23 0.14 0.20 0.43 0.43 0.86 0.44 22.81 0.146 TECH, GR and PG 0.24 0.43 0.33 1.29 0.67 1.80 0.57

IE PRO 0.71 1 1.33 1.71 1.67 3.40 1.92 12.39 0.274 TECH, GR and PG 0.53 1.31 1.86 2.30 2.17 3.04 2.19
Legend: Standard Deviation (SD), Minimum (Min), First Quartile (25th), Median (MD), Third Quartile (75th), Maximum (Max), Average (Avg.),

Percentage Difference (% Diff), Correct integration rate (CIR), Integration effort (IE), Technician (TECH), Graduate (GR), Postgraduate (PG) and Professional
(PRO).

328

semantic) is small, considering what is applied in the industry.
This demonstrates the need for automation of integration
techniques, as well as the possibility of working collaboratively
between analysts and developers. To facilitate its visualization
and the possible set of updates that is necessary. Another
revealed fact refers to the corrected rate, which we believe can
be improved with the application of a semiautomatic technique.
In this way, indicating when any inconsistency occurs, so that
the developer can make the decision that suits him best applied
the Wilcoxon test and the t-test to check the H2-0.

IV. RELATED WORKS

The integration of feature models is a research field of
interest in academia. The integration of features is important for
composing software product lines [3]. Recently, the research
initiatives focused on proposing techniques for features
integration. However, there is a lack of experimental studies. In
[3], several composition operators can be defined, depending on
the combination strategies and semantic framework for
developers and researchers to plan and carry out qualitative and
quantitative research, as well as to reproduce and reproduce
empirical studies. In [9], authors demonstrate how FMs can be
reduced to propositional formulas or constraint satisfaction
problems. Benefits are tools that propagate constraints (so that
incorrect specifications can be detected automatically). Finally,
this expected in Feature Models.

V. THREATS TO VALIDITY

Statistical validity. The independent and dependent
variables were submitted to suitable statistical methods We
minimized this threat by checking whether. We test all
hypotheses considering the significance level at 0.05 level (p ≤
0.05). Construct validity. The measures applied in this study,
i.e., the effort and the correctness are widely applied on
controlled experiments on software engineering [1][8].
Internal validity. The dependent variables variated
appropriately according to corresponding independent
variables. External validity. Some aspects must be followed to
reproduce the results of this study such as: participants must
have the familiarity with feature integration models must have
similar sizes, and the same variables must be collected.

VI. CONCLUSIONS AND FUTURE WORKS

This article reported on a controlled experiment that
explored three points: application effort of integration
techniques of feature models by professionals and students, and
detection and resolution effort of inconsistencies found in
output-integrated models.

Both hypothesis tests failed rejecting the null hypothesis.
This means that has no significant difference on performance
on both groups on integration of Features Models. However,
overall results on descriptive statistics show that professionals

tend to invest less effort to integrate feature models, but they
produce integration with more errors than students. There are
few studies that evaluate the effort required to use model
integration techniques. Further empirical studies are still
required to better understand whether these findings are
confirmed or not in other contexts, considering other FMs,
encompassing different evolution scenarios, and evaluating
other integration techniques. Finally, we hope that the issues
outlined throughout the paper encourage other researchers to
replicate our study in the future under different circumstances
and that this work represents a first step in a more ambitious
agenda on better supporting feature model integration tasks.

ACKNOWLEDGMENT
Thank you to UNISINOS for the teaching and research

environment in which they provided to support this research.

REFERENCES
[1] K. Farias, A. Garcia, J. Whittle, C. v. F. G. Chavez and C. Lucena,

“Evaluating the effort of composing design models: a controlled
experiment,” Software & Systems Modeling, vol. 14, pp. 1349-1365,
2015.

[2] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and P. Daleiden.
“An empirical study on the impact of C++ lambdas and programmer
experience”. In Proceedings of the 38th International Conference on
Software Engineering (ICSE '16). ACM, New York, NY, USA, pp.
760-771, 2016.

[3] M. Acher, P. Collet, P. Lahire and R. France, “Composing feature
models,” em International Conference on Software Language
Engineering, 2009.

[4] M. M. Alam, A. I. Khan and A. Zafar, “A Comprehensive Study of
Software Product Line Frameworks,” International Journal of
Computer Applications, vol. 151, 2016.

[5] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical software
engineering, vol. 14, p. 131, 2009.

[6] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén. “Experimentation in software engineering”. Springer
Science & Business Media. 2012.

[7] B. W. Yap and C. H. Sim, “Comparisons of various types of normality
tests,” Journal of Statistical Computation and Simulation, vol. 81, pp.
2141-2155, 2011.

[8] A. Oliveira, V. Bischoff, L. J. Gonçales, K. Farias and M. Segalotto,
“BRCode: An interpretive model-driven engineering approach for
enterprise applications,” Computers in Industry, vol. 96, pp. 86-97,
2018

[9] D. Batory, D. Benavides e A. Ruiz-Cortes, “Automated analysis of
feature models: challenges ahead,” Communications of the ACM, vol.
49, pp. 45-47, 2006.

[10] K. Farias, A. Garcia, C. Lucena, “Evaluating the Impact of Aspects on
Inconsistency Detection Effort: A Controlled Experiment,” In: 5th Int.
Conf. on Model-Driven Eng. Languages and Systems, Vol. 7590,
pages 219-234, 2012.

[11] K. Farias, L. Gonçales, M. Scholl, T.C. Oliveira, M. Veronez..
“Toward an Architecture for Model Composition Techniques,”
In 27th Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE’15), pp. 656-659, 2015.

329

Modeling of software process families with
automated generation of variants

Andrea Delgado1 and Daniel Calegari2
Instituto de Commputación
Universidad de la República
11300 Montevideo, Uruguay

1adelgado@fing.edu.uy, 2dcalegar@fing.edu.uy

Félix García
Escuela Superior de Informática

Universidad de Castilla-La Mancha
13071 Ciudad Real, España

felix.garcia@uclm.es

Abstract—Modeling variability in software systems or
processes promotes reuse of core assets. In particular, variability
in software development processes allows customization of
activities, artifacts, roles and other elements to specific projects,
in what is called a process variant. Each process variant is
derived from a base common process, called process tailoring,
which is usually a tedious and error prone manual process. In
the last years, there has been a growing interest in supporting
the process variability approach, being v-SPEM a proposal that
integrates and advanced view of variability into the SPEM
standard. In this paper we present an extension of v-SPEM
support for final users, with automated generation of variants, to
help during process tailoring. The use of automatic mechanisms
reduces errors and simplifies the tailoring process by hiding the
details to the end users.

Keywords: software development processes, SPEM, process
variability, Software Process Lines, Model Driven Engineering.

I. INTRODUCTION

A Software Process is a specific type of business process
that focuses on the software development domain, as other
domains have their own typical processes such as banking,
health, or education. The Software Process Engineering Meta-
modeling language (SPEM 2.0 [1]), is commonly used as a
domain specific modeling language in this context.

Software processes may accept variants based on specific
requirements of an organization or project, leading to the
definition of a process family. A Software Process Line (SPrL)
[2], [3] aims to provide the techniques and mechanisms to
model the common (known as base process) and variable
parts (known as variation points) of a process family, as
well as to support the customization of each process variant
(known as process tailoring). The advantages of using the
SPrL paradigm to model software process families are well-
known, but although there are many proposals and some
tools to support them [4], the tailoring process is in general
carried out by final users with the aid of technical users,
following a not well defined, manual, error prone and complex
process. What is more, existing tools such as Eclipse Process
Framework (EPF) Composer1 which implements SPEM, are
mostly targeted to process modelers with process families
modeling skills, not to final users.

DOI reference number: 10.18293/SEKE2018-019
1EPF Composer, https://www.eclipse.org/epf/

With the aim of improving the automation of SPrL by
reducing technical complexity to final users, the Model-Driven
Engineering (MDE) [5] paradigm can be considered as a very
promising approach. Based on this, we identify the following
research question for our work: How the automated tailoring
of specific variants from a process family can be supported
using the MDE approach?

In this paper, we improve the v-SPEM [3] approach, a
proposal of our own that integrates an advanced view of
variability into the SPEM standard. The base approach does
not formalize the variability process, its tool support is not
user-friendly (vEPF2)for non-technical users, and the tailored
process is hard-coded. In this context, we extend v-SPEM by
defining a process composed by roles, activities and tool sup-
port for MDE-based process tailoring. Tailoring is performed
by means of an ATL [6] model transformation, based on user’s
selection. The main contributions of our work are: i) a web tool
targeted for final users in which a process family model can be
imported and tailored to generate variants; ii) guidance on how
to perform such tailoring; and iii) a set of ATL transformations
which automatically generate the selected variant.

The rest of this paper is structured as follows. In Section II
we briefly present the SPEM standard and v-SPEM extension.
In Section III we present related work regarding existing
process variability proposals. In Section IV we describe our
proposal to support process tailoring within v-SPEM, includ-
ing transformations for the automated generation of variants,
and in Section V we provide an example of application. Finally
in Section VI we present conclusions and future work.

II. SPEM AND V-SPEM

The SPEM [1] standard defines specific elements for soft-
ware process modeling, such as: tasks, activities, roles, work
product, and processes. It also provides a way for mod-
eling variability, defining several variability types between
two related elements, such as: ”replaces” which states that
the origin element substitutes the target element under some
assumptions, and ”extend” which states that the origin element
expands the target element definition, probably by overriding
attributes and associations.

2v-EPF,https://alarcos.esi.uclm.es/vepf/variant_rich_process_paradigm/
vepf.html

330

Fig. 1. Main v-SPEM concepts [3]

However, it has some limitations from the perspective of
a SPrL, e.g.: it is not clear how common and variable parts
interact, and it is difficult to visualize the base process with
the common elements [7]. In this context, the variability
extension for SPEM (v-SPEM) [3], [7] provides means for a
direct specification of the variability in a process. Variability
is modeled in two ways: single (or on-point) variations for
expressing variability with respect to specific elements of the
process model (e.g.: tasks), and crosscutting variations for
expressing variability with respect to several elements at once.
Both kinds allow full modeling of software process families.
In this work we focus on single variations.

A process engineer defines the variation points over the
common process, specifying which variants can occupy these
points (i.e.: a ”replaces” relation), and during process tailoring,
each variation point is substituted with exactly one variant.
v-SPEM extends the SPEM metamodel and defines a new
notation to represent variants and variation points for SPEM
elements, as shown in Figure 1, in which a base SPEM
element, e.g.: Activity, can be defined as a variation point
(VPActivity) or as a variant (VActivity).

It also provides tool support as an extension of the EPF
Composer, as mentioned, the v-EPF The tool allows modeling
a process family and the Java-based generation of process
variants. However, it is devised exclusively for technical users,
and hard-codes the generation of variants.

III. RELATED WORK

Some proposals are also based on SPEM 2.0 models. Smar-
tySPEM [8] adds variability over SPEM by adding stereotypes
to the metamodel. It provides guidelines for identifying and
representing process variability, and process tailoring by vari-
ability resolution. Tool support is using any UML editor, which
are as EPF, targeted to technical users. It was defined after v-
SPEM and provides similar elements, and no generation of
variants. In CASPER [9] the authors define two input models:
the base process with variability, and a context model for
a specific project, specifying things such as: project size,
schedule, team size, among others. The approach provides
automated support for process tailoring based on a ATL [6]
model transformation, which takes the context model for the
inference of variants. Then, variants are deduced from the
values entered by the final user, leading to a variant they

generate based on previous knowledge. In this approach, the
final user is not able to choose between variants for the
variation points.

Other works are based on feature models (FMs), which
is the common approach in software product lines. In [10]
the authors use FMs for expressing variability with respect to
roles, tasks and work products. One drawback is that features
and relations of different types cannot be distinguished. Also,
the control flow of the process is lost. In [11] the authors
use a SPEM model for identifying variation points, and an
Orthogonal Variability Model associates each variation point
with the defined variants (as with FMs).

The Common Variability Language (CVL)3 [12] is an ap-
proach for language independent variability modeling. Besides
that automated generation of variants is supported (but not
provided), models are hard to specify and maintain.

As a summary, all approaches provide support for variability
almost over the same type of elements. Most of them also
provide supporting tools, but not all are available. Also,
all approaches provide guides for process tailoring. Besides
CASPER, the generation of process variants in the other
approaches is carried out manually. Unlike CASPER, we let
the user choose each specific variant for each variation point.

IV. V-SPEM TAILORING SUPPORT

In what follows we describe the roles, activities, process
tailoring and tool support we propose for v-SPEM.

A. Roles

When managing process families, there are different stake-
holders involved, who participate in different activities and
are interested in different artifacts or work products, as in
the software development process itself. We have defined two
main roles within our proposal, the process engineer (technical
user) and the final user (non-technical user).

The Process engineer role, is in charge of modeling the
process family, thus it needs advanced software engineering
skills such as knowing about SPEM, v-SPEM, SPrL and
process families, being familiar with process modeling and
using tools such as v-EPF for doing it.

The Final user can be a software project manager who has
knowledge of software engineering and software development
processes but, not necessarily about SPrL and process families.
However, this user is the one who needs to tailor base
processes into a specific variant for each project he will lead.
Thus, for this kind of user, it is very valuable to have extra
support to carry out the tailoring process.

Based on these definitions we defined the main activities
each one must perform within the tailoring process with the
Use Cases shown in Figure 2. As it can be seen, the process
engineer is mostly involved with the technical activities to
define the base process, variability points and possible variants
to occupy them. The final user is the focus of the tailoring
process, for which we extended the v-SPEM existing sup-
port. Also, we add the possibility of working with a central

3CVL. http://www.omgwiki.org/variability/doku.php

331

Fig. 2. Use cases for the tailoring process

repository for models, both the base process and the generated
variants, such as GitHub4. The advantage of this is that the
organization can manage their models in a centralized and
consistent way, promoting the reuse of elements.

B. Process tailoring

The result of the process tailoring is a process variant,
defining a complete software development process, with no
variability, for the specific project we are customizing it to.
The process tailoring is part of the more general managing
process variability process, that is shown in Figure 3 modeled
with BPMN 2.0 as a business process.

As depicted in Figure 3, Model base process and Tailor
process are defined as sub-processes, meaning that several
tasks need to be carried out in order to obtain the base process
and then, from it, a process variant. We do not explicit the
Model base process sub-process since it is not the focus of
this paper, but we detail the Tailor process sub-process.

After obtaining the base process of the family (locally or
from the central repository) the final user has to derive the
specific variant from it, tailoring the base process. For doing
this, the final user has to select each variation point and, from
the possible variants, select the one that best fits the project at
hand. After this, an automated activity is performed to check
the restrictions associated with the selected variation point and
corresponding variant. An example of this can be if there was
a previous variation point that should have been filled with a
specific variant say A, to be able to select the variant B in
the following variation point. If the restrictions hold the final
user can continue selecting variation points and variants for it,
until there are no more variations point. When the restrictions
do not hold, the variant cannot be selected.

4GitHub. https://github.com/open-source

We enclose the import-export tasks in groups, to explicitly
show the interactions between the process engineer and the
final user via the base process and process variant generated.
This supports the use of a centralized repository, where all
base process and all generated variants can be stored and
reused within the organization. These tasks could have not
been shown in the process, since their corresponding work
products, i.e.: the process models, can also be seen as input
and output data from other activities. We explicitly model them
as tasks, since they show user tasks that the defined roles have
to carry out within the process.

Finally, after process tailoring is manually defined, we
execute an ATL [6] model transformations, automatically gen-
erating the corresponding process variant. This transformation
takes as an input the base process and the configuration model
with the information of the variants that the user selected to
occupy each variation point. For now, this variant has to be
imported in the EPF so the process engineer is able to publish
it as a web site using the facilities provided by the framework.
However, we are working on integrating these facilities in the
web site, so the generated process variant can be also published
by the final user.

C. Automated generation of variants

The automated generation of variants provides support for a
cleaner and repeatable tailoring process, with knowledge reuse
and less human errors. The ATL transformation takes as input
the base process which was modeled by the process engineer,
and the configuration model containing the information of the
variants selection made by the final user, when tailoring the
process. The transformation contains the knowledge regarding
which key elements of the variability modeling extension in
the vSPEM metamodel can be mapped to which key elements
of the SPEM metamodel, used to specify the generated process
variant, based on the information in the configuration model.

Since the base process of the process family also contains
elements that are common to all process variants of the family,
these elements with no variability have to be maintained in
the transformation, as they must be included in all process
variants. For this reason, we have separated the generation in
two main blocks: i) elements with no variability that have to
be copied as they are into the output process variant, and ii)
variation points (i.e.: elements with variability) whose selected
variant is defined in the configuration model, thus replacing
the variation point in the base process with the selected variant.

In Listing 1 we present an excerpt of an adaptation
rule to generate a variant from an Activity variation
point. The transformation takes a model conforming to the
v-SPEM metamodel (Vuma.ecore) and the configuration
model (Configuration.ecore) and produces another v-
SPEM model (the process variant). The rule takes an activity
variant point (vpActivity), selects the variant (by id in the
configuration model using and auxiliary function) that must
be used (VarActivity), and generates as output an activity
with the information provided by the selected variant.

332

Fig. 3. Managing process variability process

Listing 1. Example of a variant generation rule

-- @path MM=/Vuma.ecore
-- @path MM1=/Configuration.ecore
-- @path MM2=/Vuma.ecore

module vSpemYconf;
create OUT: MM2 from IN: MM, IN1: MM1;
......

//rule to adapt an Activity
rule AdaptActivity {

from
input_name: MM!vpActivity (
input_name->vpProcessElementVa()

)
using {

variant: MM!VarActivity = MM!VarActivity
-> allInstances() -> any(vt | vt.guid

= thisModule ->
getSelectedVariantOfVarPoint
(input_name.guid).id);

}
to

output_name: MM2!Activity (
name <- ’AdaptedActivity:’ +

variant.name,
guid <- input_name.guid,
presentation <- variant.presentation

)
}

D. Tool support

As mentioned before, we use as basis the v-EPF tool that
is an extension of EPF to support the v-SPEM proposal. It
adds a new folder named Process Lines in which Capability
pattern and Delivery process with variability are defined.
SPrLs are in this folder are structured as shown in Figure 4.
Folders Var Points and Variants contain the variation points
and variants defined, also holding the dependence relations

Fig. 4. vEPF tool supporting the vSPEM extension

between variants and variation points. In the Tailored process
folder, the process variants that can be derived are specified.
Although v-EPF already provides support for the process
tailoring, it is aimed at technical users with broadly knowledge
of EPF and SPEM. Also, process variability does not allow
nested variability, and publishing the process in the web is not
allowed for processes defined below the process line folder.

Based on the definitions we have presented in previous
sections, we also extended the v-EPF tool to support process
tailoring with focus on the non-technical final user. For this,
we have developed a web application shown in Figure 5.

The web application we have implemented can be used by
any final user in the organization and works together with the
central repository and the v-EPF used by the process engineer.
Figure 5 shows at the top the three main activities (tasks and
sub-process) to be performed by the final user as defined in
the BPMN 2.0 process shown in Figure 3: (1) import the base
process from the repository, (2) perform process tailoring by
resolving every variation point (once it is done, the application
runs the model transformation), and (3) export process variant.

333

Fig. 5. Screen-shot of the v-SPEM web tool

Fig. 6. BPSOM variability with v-SPEM: (a) phase, (b) activity, (c) task

V. EXAMPLE OF APPLICATION

In this section we present an example of application of
our proposal based on the BPSOM5 software development
process we have defined for implementing service-oriented
applications from business processes [13]. The process was
specified using EPF. It is based on the Unified Process and
customized with specific roles, disciplines, activities, work
products and a delivery process consisting of four phases.

The process engineer uses v-EPF, under the process line
category, to model the base process adding variability in the
elements that v-SPEM provides support for: phases, iterations,
activities, tasks and roles, as shown in Figure 6. In (a) a new
phase between the construction and transaction phases was
added, with variants that also have variability for one activity
and for one iteration (b); in (c) variability for a task was added,
which also has role variability in the corresponding variants.
Then, the process engineer exported the base process with
variability to a GitHub repository.

The web application allows a final user to perform process
tailoring in three steps. First, the base process is imported
from the repository. Second, process tailoring is performed as
shown in Figure 7. The process is graphically depicted, in this

5http://alarcos.esi.uclm.es/minerva/bpsom/published/

case: the phases of the BPSOM base process with the phase
variation point we added. The variation point has a link that,
when pressed, shows the defined variants that can be selected
to occupy its place. After selecting the varPhase1 variant
for the VPPhase variation point, the variant corresponding to
the nested VPActivity variation point must be also defined.
In this case, the VarActivity2 variant is selected, which
includes the task TaskVar2. This variant also requires to
select the role that will perform the TaskVar2 task, thus the
VarRole1 is selected. Third, the generated variant can be
exported to EPF and published as a web site, which facilities
its use as the software development process for the selected
project within the organization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a proposal that provides support
for process tailoring in SPrL based on v-SPEM. Although the
approach already provides support for managing variability
in SPrL, it does not provide guidance for final users (there
were no explicit process) and its tool support for carrying out
the process tailoring was hard-coded and within a technical
user environment. With this motivation, we specified the
activities to be performed for the defined roles and extended
the tool support with a new web application focused on process

334

Fig. 7. Web process tailoring: selection of a variant for a variation point

tailoring for final users. The tool provides guides and support
for each activity in the tailoring process. Besides it seems
that tool support was improved, since the web application is
friendlier for non-technical users than the Eclipse environment,
and also technical complexity is completely hidden for them,
we require further empirical studies with final users in order
to conclude. In particular, we expect to evaluate and improve
the approach by carry out a case study in a real organization.

The tool also provides organizations with a central repos-
itory for SPrL, laying the foundation for a systematic gover-
nance of their processes. Moreover, the automated generation
of variants provides support for a clearer and less error prone
process with respect to the traditional manual tailoring process.

We expect to improve the tool, as for example, publishing
generated process variants directly from the web application
without the round trip to v-EPF. Moreover, we expect to
improve our work for supporting crosscutting variations, as
defined in v-SPEM. Finally, although the paper focuses on
software processes, the generation of variants approach is quite
generic. In fact, we are currently working on applying the
approach in the context of BPMN 2.0 business processes [14].

ACKNOWLEDGEMENT

This work was partially funded by Comisión Sectorial de
Investigación Científica (CSIC), Uruguay. We would like to
thank undergraduate students Fabiana Roldán and Marcela
Viera, and CSIC grantees Emiliano Alonzo and Martín Prino
who worded with the tool and transformation.

REFERENCES

[1] OMG, “Software and Systems Process Engineering Metamodel (SPEM)
v2.0,” Object Management Group (OMG), Tech. Rep., 2008.

[2] D. Rombach, “Integrated software process and product lines,” in Uni-
fying the Software Process Spectrum: Intl. SW Process Works. 2005,
Revised Sel. Papers. Springer, 2006, pp. 83–90.

[3] T. Martínez-Ruiz, F. García, and M. Piattini, “Towards a spem v2.0
extension to define process lines variability mechanisms,” in SW Eng.
Research, Mgnt and Applications (SERA). Springer, 2008, pp. 115–130.

[4] T. Martínez-Ruiz, J. Münch, F. García, and M. Piattini, “Requirements
and constructors for tailoring software processes: a systematic literature
review,” Software Quality Journal, vol. 20, no. 1, pp. 229–260, 2012.

[5] S. Kent, “Model driven engineering,” in Integrated Formal Methods,
Third Intl. Conf., IFM 2002, Proceedings, ser. Lecture Notes in Com-
puter Science, vol. 2335. Springer, 2002, pp. 286–298.

[6] F. Jouault, F. Allilaire, J. Bezivin, and I. Kurtev, “Atl: A model
transformation tool,” Science of Computer Programming, vol. 72, no.
1–2, pp. 31 – 39, 2008.

[7] T. Martinez-Ruiz, F. Garcia, M. Piattini, and J. Munch, “Modelling
software process variability: an empirical study,” IET Software, vol. 5,
no. 2, pp. 172–187, 2011.

[8] E. Oliveira, M. Pazin, I. Gimenes, U. Kulesza, and F. Aleixo, SMar-
tySPEM: A SPEM-Based Approach for Variability Management in
Software Process Lines. Springer, 2013, pp. 169–183.

[9] J. Hurtado and M. Bastarrica, “Building software process lines with
casper,” in Intl. Conf. on Software and System Process. IEEE Press,
2012, pp. 170–179.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” Carnegie Mellon
University, Tech. Rep. CMU/SEI-90-TR-021, 1990.

[11] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering. Springer, 2005.

[12] E. Rouille, B. Combemale, O. Barais, D. Touzet, and J. Jezequel,
“Leveraging cvl to manage variability in software process lines,” in 2012
19th Asia-Pacific Software Engineering Conference, 2012, pp. 148–157.

[13] A. Delgado, F. Ruiz, I. García, and M. Piattini, “Business process so
methodology (BPSOM) with service generation in soaml,” in Advanced
Inf. Systems Eng. - 23rd Intl. Conf., CAiSE 2011, 2011, pp. 672–680.

[14] A. Delgado and D. Calegari, “BPMN 2.0 based modeling and customiza-
tion of variants in business process families,” in XLIII Latin American
Computer Conference, CLEI 2017. IEEE, 2017, pp. 1–9.

335

Tailored Quality Modeling and Analysis of
Software-intensive Systems

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Abstract—While developing and operating software-intensive
systems various concerns must be considered. Concerns like
quality properties, domain, and lifecycle phase may differ from
one project to another. Currently different languages and tools
are required for modeling and analyzing these concerns. This
results in enormous effort for model creation and maintenance.
In this paper, we present a vision of tailored quality modeling
and analysis by clearly separating several concerns using modular
metamodels and tooling.

Index Terms—domain-specific modeling language, metamodel,
simulation, analysis, quality, reference architecture

I. INTRODUCTION

Mobility, energy, and infrastructure strongly depend on
software which is not always of high quality. Critical per-
formance or security issues may arise from bad software
quality. During development and operations of a software-
intensive system, various concerns must be considered. Quality
properties are examples of concerns which may differ from
one project to another. For instance, performance is highly
relevant for a web shop whereas for a storage service security
may be more relevant. In the context of cloud computing
and data-intensive systems, quality properties like privacy can
only be assessed reasonably during operations which makes
development analysis widely unrewarding. Further, software
interacts with other domains (e.g., in Industry 4.0 scenarios),
like a business process or mechanics and electronics of an
automated production system, where only a subset of domains
may be relevant for a certain software project.

For representing a software-intensive system in form of a
model, a modeling language is required. Modeling languages
are often defined through a metamodel. A metamodel is a
model which defines the structure and characteristics of other
models. If a model conforms to a metamodel, the model is
considered an instance of the metamodel. Thus, a metamodel
is similar to a grammar, as it defines a language.

Currently, developers and operators apply different model-
ing and analysis tools for each of the concerns. Each tool re-
quires specific input models of different languages. Hence, the
input models are not integrated and require enormous manual
effort for creation and maintenance. Quality is mostly not rep-
resented in a domain-specific modeling language (DSML). The
commonly agreed DSML in software engineering, the Unified
Modeling Language (UML) [20], does not consider quality

DOI reference number: 10.18293/SEKE2018-020

properties. Even its extensions, for example MARTE [19] or
UMLSec [16], are restricted only to single quality properties.
Languages and tools that comprise all possible concerns would
be very large, unhandy, and hard to maintain.

The vision proposed in this paper targets more flexibility in
Model-Driven Engineering (MDE) by using MDE adaptation
capabilities to tailor DSMLs and related tooling to specific
concerns. The paper addresses the concerns quality property,
domain, and lifecycle phase. We aim for improving efficiency,
scalability and reuse of modeling and analysis approaches by
clear separation of concerns, focusing the modeling effort only
on the relevant concerns, and enabling easy tool customization.
Sec. II presents a motivating example before the state of the
art is discussed in Sec. III. Our vision of tailored modeling and
analysis of various concerns is proposed in Sec. IV and applied
prototypically in Sec. V. The paper concludes in Sec. VI.

II. MOTIVATING EXAMPLE

We introduce the Common Component Modeling Example
(CoCoME) as a typical software system to exemplify different
configurations that may result from several concerns. We
also introduce a DSML to demonstrate limitations in current
modeling approaches for various concerns. CoCoME is a
community case study for software architecture modeling [12],
[8]. It resembles a trading system of a supermarket chain.
A software system like CoCoME has to consider several
concerns. Several quality properties must be satisfied such as
performance, reliability, maintainability, security and privacy.
CoCoME interacts with other domains – a business process
and an automated production system. Software systems are
typically involved in one or more business processes to satisfy
business goals. In an Industry 4.0 scenario, software systems
interact with automated production systems to enable cus-
tomized production. An automated production system consists
of software, mechanical, and electrical components. Another
concern that must be considered is the system’s lifecycle
phases, i.e. development and operations [7]. Fig. 1 depicts
three different configurations of concerns for CoCoME.

For representing CoCoME and the associated concerns in
form of models we need a metamodel of a DSML. A promi-
nent example is the UML metamodel. Another historically
grown metamodel is the Palladio Component Model (PCM)
[23] which we choose for modeling and analyzing CoCoME.

336

PE

RL
SEC

MA

PR

SW
EL

ME

BP

OP

DE

Quality

Life-
cycle Domain

Fig. 1. Colors Represent Three Different Configurations of Concerns for
Software-intensive Systems. Concerns Depicted in the Figure are Performance
(PE), Reliability (RL), Maintainability (MA), Security (SEC), Privacy (PR),
Mechanics (ME), Electronics (EL), Business Processes (BP), Software (SW),
Operations (OP), and Development (DE)

In contrast to UML, the PCM comprises elements for reflect-
ing analysis configurations and results. However, the PCM
is limited to modeling and analyzing software systems. So
we cannot model business processes or automated production
systems with the original Palladio approach. Extensions of the
PCM to model business processes have been proposed in [9].
Extensions for modeling mechanics and electronics are not yet
planned.

Analyzing the various quality properties related to Co-
CoME currently requires several tools. They all need specific
input models in different languages. For example, Queuing
Petri Nets may be applied for performance analysis. Markov
chains are used for analyzing reliability. Logic programming
languages like Prolog may be used for privacy constraint
checking. Consequently, high effort is required to create the
different models while large parts of the models represent the
same structure and behavior in different languages. Moreover,
the single models are hard to compare which results in incon-
sistencies. The example shows existing modeling capabilities
are not sufficient for various concerns. Putting all concerns into
a large metamodel is just as little a solution. To prevent large
and blown metamodels and enable tailoring the models and
tools to specific concerns a more modular specification and
composition of metamodels and related tooling is required.

III. STATE OF THE ART

Our work has intersections with three research areas –
metamodel modularization, quality modeling, and runtime
modeling.

Existing approaches to metamodel modularization do not
consider architectural characteristics for modularization and
do not support the interrelation between metamodel modules
and tooling. The underlying model in [1] captures all concerns
into orthogonal dimensions which are accessed through views.
CORE [26] specifies flexible software modules for model-
based and concern-oriented software reuse. Melange [5] and
MontiCore [18] reuse and customize legacy modules for creat-
ing new languages. An open topic is to provide modularization
concepts for DSMLs in direct interplay with related tooling.
First attempts came up for modular transformations [22] and
generators [15].

Quality modeling currently considers only single quality
properties in metamodels and lack configurability. Literature
reviews give an overview of quality modeling approaches (e.g.,
[17], [4]) for software systems. Quality properties are also
addressed in other domains like business processes (e.g., [3])
and automated production systems (e.g., [30]). In our previous
work, we developed an approach for modeling and analyz-
ing maintainability [24]. This approach was first restricted
to software systems. The approach has been extended for
modeling and analyzing maintainability of business processes
[25] and automated production systems [30]. Finally, the
approach has been generalized by providing a methodology for
domain-spanning maintainability analysis [11]. The promising
potential of a generic approach for modeling and analyzing
quality has already been recognized in earlier publications
[21]. First approaches for generic quality modeling came
up decades ago (e.g., [6]). They lack predictive analysis as
formal specifications are missing. Formal specifications of
quality have been proposed e.g. in [31]. Context-independent
modeling of quality is described in [14]. An open topic is using
commonalities between quality properties to make quality-
related annotations in metamodels configurable.

Runtime modeling distinguishes approaches for reusing de-
velopment models as foundation for reflecting systems during
operations and approaches for model extraction from scratch
using observations [10]. A comprehensive review of runtime
modeling approaches is given in [29]. An open topic is
reconfiguring models to changing concerns during operations
while keeping all development decisions.

Further, configuration and reuse are central to software
product lines and eco systems. While this research is limited
to the instance level, our work refers to the metamodel level.

IV. A VISION OF TAILORED
QUALITY MODELING AND ANALYSIS

Our vision is to provide a reference architecture for meta-
models that enables clear separation of several concerns in
quality modeling and analysis. Beyond considering different
quality properties the reference architecture comprises mul-
tiple domains related to software (i.e., business processes,
mechanics, and electronics), and life-cycle phases (i.e., de-
velopment and operations). Modelers will be enabled to cus-
tomize their tooling by composing modular specifications for
each of the concerns as desired for their project and run

337

transformations to create model editors and solvers. Prior
publications (cf. Sec. III) already raised the need for a generic
approach to quality modeling and analysis. A reference archi-
tecture for metamodels for quality modeling and analysis is an
ambitious goal. In the past it was assumed to be unattainable as
quality properties were considered to be too different in their
relation to system’s architecture and context. Consequently, a
generic approach was assumed to be too abstract for adequate
predictive analysis. Recent advances, however, lead to the
conclusion that the challenges can now be overcome as: (i)
Research on formalization of single qualities (e.g., [2]) resulted
in much deeper understanding of similarities which we can
use for the reference architecture. (ii) Research on mutual
quality impact between different domains (e.g., [9]) provides
starting points for specification of quality-dependent inter-
domain relations. (iii) A first reference architecture for single
qualities in a DSML for software systems [27] is starting
point to more generic investigation for different concerns. (iv)
Research on simulation-based quality analysis (e.g., [23]) is
foundation for a general approach to generic tooling. The
vision requires innovation in several areas as detailed hereafter.

Metamodel Modularization and Composition: Foundation
to the reference architecture is a concept for composition of
modular metamodels. If modular metamodels are not already
available, we first need to identify a set of dimensions and
elaborate criteria along which metamodels can be modularized.
One way is to specify dimensions based on characteristics
of metamodels. As we focus on metamodels for quality
modeling and analysis in various domains, dimensions like
paradigm, domain, quality specification, and quality analysis
appear natural. Prior work on dimensions is given in [27].
Then, existing model extension mechanisms (e.g., inheritance,
profiles, stereotypes, and aspects) for composing metamodel
modules created along the dimensions can be investigated and
mapped to composition operators. The operators are used to
build composable tooling by running transformations. Finally,
we can construct the reference architecture by exploiting the
concepts for metamodel modularization and composition.

Extensible DSML: The reference architecture then enables
the structured extension of existing DSMLs (e.g., PCM [23])
by comprehensive specifications of quality properties. In a
software DSML, systems are typically described as composi-
tions of components by connectors made explicit through in-
terfaces. These generic modeling concepts can be extended to
support the specification of various quality properties and their
context dependencies. Using modularization and composition
capabilities eases the extension of a software DSML to the
domains business process and automated production system
by composing the corresponding modular metamodels. Further
investigation is necessary on how the fundamental concepts
of a DSML (i.e., composition and connectors) known from
software modeling can be applied to other domains.

Reconfiguration for Operational Concerns: While building
upon the extensible DSML we can reconfigure development
models to changing concerns during operations while keeping
all development decisions. Reconfiguration cannot be limited

to DSMLs and tools but also affects monitoring probes re-
quired to observe the quality properties in the changed focus
when running the system.

Modular Tooling: For providing tools tailored to specific
concerns, the notion of modular metamodels for several con-
cerns must be expanded to modular construction of modeling
and analysis tools. Aforementioned concepts for metamodel
modularization and composition are foundation for modular
tooling. Explicitly specified dependencies between quality
properties of several domains mark the points where different
analytical and simulative solvers need to interact. Compos-
able tools for modeling and analysis can be built using the
composition operators. Foundations already exist for coupling
simulative solvers [9].

V. PROTOTYPICAL APPLICATION

This section gives concrete examples for metamodel modu-
larization and composition to demonstrate the applicability of
the reference architecture and tool modularization.

Application of the Reference Architecture: The PCM in
its current form is focused on single quality properties yet
does not reflect the various concerns related to our motivating
example (cf. Fig. 1). For each concern we must provide
specific metamodels as extensions to the PCM. For tailoring
the DSML to specific concerns, the PCM and its extensions are
divided into four dimensions – paradigm, domain, quality, and
analysis – along which the metamodels can be modularized.
Previous work limited to metamodels of software systems is
given in [27] and [10].

The four dimensions have been chosen as (i) they represent
generic characteristics of a DSML for quality modeling and
analysis. (ii) Their hierarchical nature eases the composition of
metamodels assigned to the single dimensions. In the reference
architecture the modularization dimensions are represented as
layers ordered hierarchically with respect to their dependen-
cies. Metamodel modules of one layer may only depend on
modules of the same or more foundational layers.

The modularization of the PCM according to the reference
architecture is depicted prototypically for the domains soft-
ware system and business process as well as for the quality
properties maintainability and performance in Fig. 2. The
figure shows a very simplified representation of the modular
PCM for visualization in this paper. Each rectangle reflects a
modular metamodel that may extend another metamodel and
can itself be extended. Arrows depict general relationships
between metamodel modules. Within a certain module the
relationship is implemented by composition operators between
the metaclasses of one and another module.

The paradigm layer (Π) defines the foundational concepts
without any semantics, e.g. componentization. Here the com-
ponent module and the activity module specify the core entities
to describe structure and behavior. Composition by connectors
is specified for both in the component composition and activity
composition module respectively. The data module provides
foundational concepts for specifying data flows such as source
and sink.

338

Activity

ActorBehaviour Software
Component

SoftwareBehavior

BusinessProcess
Annotation

Annotation

BusinessProcess
ChangePropagation

Data

DataTypeDataObject

Component

BusinessProcess
ModificationRepository

SoftwareModification
Repository

SoftwareChange
Propagation

ModificationRepository

ChangePropagation

Software
Annotation

!
"

#

$ PerformanceConfiguration PerformanceResults

PerformanceMetricsPerformance

ActivityComposition Component
Composition

BusinessProcess
Performance

Software
Performance

BusinessProcess
Configuration

Software
Configuration

BusinessProcess
Results

Software
Results

BusinessProcess
Performance

Software
Performance

Fig. 2. Prototypical Modularization of the PCM for Different Domains and Quality Properties

The domain layer (∆) extends Π by domain-specific se-
mantics. Here the software components and their interfaces are
specified within the software component module. The software
behavior module extends the software component module by
a behavior abstraction for software similar to flow charts. A
business process on an atomic level comprises activities either
conducted by human actors or machines (here the software
system) [9]. To specify a business process, the software
behavior module and the actor behavior module extend the
activity module. Thus, the software behavior module serves
as the connecting link between business process modeling
and software modeling. Moreover, the data object and data
type modules extend the generic data module by specifications
of data used in business processes and software services.
The modules on ∆ layer are used in subsequent layers for
performance and maintainability modeling.

The quality layer (Ω) defines quality properties, primarily
in form of second class entities which enrich the first class
entities of ∆. Quality properties on Ω are not derived by
analysis [27]. Here, Ω comprises modular metamodels to
reflect performance (light grey) and maintainability (dark grey)
properties. The performance module comprises metamodeled
performance properties which are specialized for software and
business processes in the extending modules. For example, the
software performance module specifies resource demands of a
service while the business process performance module reflects
execution time of a human activity [9]. The same structure
applies to the performance metrics module which comprises
abstract metrics to be specialized for software and business
processes.

The annotation module contains abstract specifications of
artifacts annotated to first class entities on ∆. The extending
modules specialize these artifacts, e.g. test cases for software
components [24] or training material for human activities [25].
Maintainability analysis in a PCM instance is conducted as
change propagation analysis using the KAMP approach [24].
Once a component or activity changes the test cases or training
material may change, too. Starting with a seed modification

Base

Metamodel

Metamodel

Extension

Base

Editor

Editor

Extension

extends extends

vizualizes

vizualizes

Fig. 3. Modular Base Editor and its Extension

changes propagate through instances of the entities on ∆
which may change instances of the entities on Ω. Elements to
specify this change propagation are contained in the change
propagation module and specialized by the extending modules.

The analysis layer (Σ) is required if models are used
for analysis or simulation. It comprises metamodels for de-
rived performance properties in the results module and the
simulation configuration in the configuration module. The
modification repository module reflects the origin of a change
and the result of a change propagation analysis.

Modularizing the PCM according to the reference architec-
ture is key for modularizing the related tooling as discussed
hereafter. Again we use the example of software systems and
business processes for demonstration.

Application of Modular Tooling: The modularized PCM and
all its extensions form a directed acyclic graph. The tooling
and all its extensions must mirror this structure. Next, we
discuss how model editors, simulative and analytical solvers –
that are closely related to metamodels – can be implemented
for modular metamodels.

Model editors allow for visualizing and modifying model
elements and thus are obviously related to metamodels. For
exemplifying the implementation of modular editors we build

339

upon the eclipse modeling framework and the Sirius editor
framework. Details on the implementation of the editors for
the Palladio tooling are given in [28]. The implementation of
modular editors is depicted schematically in Fig. 3. Rectangles
represent modular metamodels and modular tools. Arrows
reflect relationships between the modules or instances of the
modules. The relationships are labeled to further specify the
sort of relationship. Sirius offers the possibility to extend
a diagram representation by further layers without altering
the implementation of the base diagram intrusively. Anal-
ogously to a modular base metamodel and its extensions,
editor extensions are packaged in their own Eclipse plugins.
Applying the reference architecture, modelers can customize
their tooling by selecting plug-ins for the specific metamodel
modules and corresponding editors. Base metamodel in our
example is those for software systems which is composed of
metamodel modules on the layers Π to ∆ of the reference
architecture. The base editor comprises all features required
for visualizing and modifying elements of software systems.
The base metamodel is extended by metamodel modules
on the layers Π to ∆ for representing business processes.
Furthermore, metamodel modules on Ω layer extend the base
metamodel by performance and maintainability properties.
Therefore, modular editors for business processes and the
quality properties performance and maintainability extend the
base editor.

More sophisticated solutions are required for modular sim-
ulations. For modular simulations we sketch an online co-
simulation of a software system and a business process in
Fig. 4. We conduct a simulation of performance properties
as common in Palladio [23]. A discussion on benefits and
limitations of online co-simulation is given in our previous
work [9]. We have instances of two metamodels – one for
the software system and one for the business process – that
are composed of metamodel modules on the layers Π to ∆.
Additionally, the metamodels contain metamodeled perfor-
mance properties and metrics on Ω. Each metamodel has its
specific modular tooling – the simulative solvers – which are
interlinked by a coordinator. The coordinator is responsible for
time management and model synchronization to coherently
integrate the modular simulations. Simulation configuration
and results are specified on Σ. The simulative solvers assure
technical interoperability by providing an interoperability layer
for enabling the coordinator to interact with the simulations.
There already exists approaches to couple simulations based
on a common runtime infrastructure, e.g. High-Level Archi-
tecture [13], which can be applied to build a coordinator.

Coupling modular maintainability analyzes for software
systems and business processes again requires modular meta-
models and analysis tools. In contrast to simulation coupling,
there is no coordinator needed for synchronization. Consistent
notion of time is not required in modular maintainability
analyzes. Fig. 5 shows a metamodel for software systems
composed of modules on layers Π to ∆. The metamodel also
contains modules for artifact annotations and change propaga-
tion on Ω as well as for analysis results [24] on Σ. Instances of

Software

Metamodel

Process

Metamodel

Software

Simulation

Process

Simulation

extends Coordinator

Interop. Layer

Interop. Layer

simulates

simulates

Fig. 4. Modular Performance Simulation of Software System and Business
Processes

Software

Metamodel

Process

Metamodel

Software

Analysis

Process

Analysis

extends extends

analyzes

analyzes

Fig. 5. Modular Maintainability Analyzes of Software Systems and Business
Processes

this metamodel are analyzed by the modular software analysis
tool. The metamodel for software systems may be extended
by another metamodel to reflect business processes on Π to ∆.
This again contains modules for annotations on Ω and analysis
results on Σ. Instances of the business process metamodel are
analyzed by the modular business process analysis tool which
extends the software analysis tool. Due to the modular nature
we can decide whether to include the metamodel modules
specific to business processes or not. This allows for tailoring
metamodels and tooling to specific purposes.

Reconfiguring development models to changing concerns
during operations is also part of our research vision. With the
iObserve approach [7] we provide first attempts for updating
development models by operational observations to construct
runtime models. iObserve bridges the divergent levels of
abstraction in architectural models used in development and
operations. An architectural model is combined with monitor-
ing probes and used for source code generation. Monitoring
data related to source code artifacts is gathered during system
operation and is associated with architectural runtime model
elements. Thus, iObserve allows for reusing development mod-
els during operation phase while preserving design decisions.

340

The iObserve approach is described in detail in [7]. Metamodel
modularization and composition in this context is sketched in
[10].

Findings: The prototypical application of our modulariza-
tion and composition concepts for metamodels and tooling re-
vealed several findings as summarized hereafter. Based on the
PCM it is easy to see that a modularized metamodel according
to our reference architecture provides many benefits compared
to a metamodel without modular structure. Modularization
offers a well specified base for extension as demonstrated
for business processes and quality properties. Due to the
hierarchical structure, modelers merely need to understand
the modules they directly or indirectly extend. Side effects
of changes to modules are minimized. Thus, clear separation
of concerns allows modelers to focus modeling effort only on
concerns relevant for a specific project. The greatest advantage
for our research is that metamodel modules can be reused in
different contexts. This allows for tailoring the metamodels to
specific concerns. Tools can be customized easily for specific
metamodels as exemplified for model editors, simulative and
analytical solvers. Thus, the concepts proposed in this paper
contribute to more efficient, scalable and reusable modeling
and analysis of various concerns.

VI. CONCLUSION

In order to enable clear separation of several concerns we
proposed a reference architecture for metamodels used for
quality modeling and analysis. We sketched modular tool-
ing for model editors, analytical and simulative solvers. We
demonstrated the applicability of the reference architecture
and modular tooling to a historically grown metamodel for
software systems. Our prototypical application comprised the
quality properties performance and maintainability for the two
domains. Advantages of modular metamodels and tooling are
a well structured base for metamodel extension, minimization
of side effects in case of modification, focus only on relevant
concerns, reuse of modular metamodels and tools as well as
project-specific configuration of metamodels and tools.

In the future, we will continue the modularization of existing
metamodels and related tooling in several case studies to eval-
uate, expand and sharpen our approach. This includes further
investigation of technologies for metamodel composition and
simulation coupling.

ACKNOWLEDGEMENT

This work was supported by the MWK (Ministry of Science,
Research and the Arts Baden-Württemberg, Germany) in the
funding line Research Seed Capital (RiSC). The author thanks
Kiana Busch, Misha Strittmatter and Sandro Koch for valuable
discussion and support for this paper.

REFERENCES

[1] C. Atkinson et al., “Orthographic software modeling: A practical ap-
proach to view-based development,” in Evaluation of Novel Approaches
to Software Engineering, vol. 69. Springer, 2010, pp. 206–219.

[2] S. Becker et al., “Towards a methodology driven by dependencies of
quality attributes for QoS-based analysis,” in ICPE. ACM, 2013, pp.
311–314.

[3] J. Cardoso et al., “Modeling quality of service for workflows and web
service processes,” Journal of Web Semantics, vol. 1, pp. 281–308, 2002.

[4] L. Dai and K. Cooper, “A survey of modeling and analysis approaches
for architecting secure software systems,” Journal of Network Security,
vol. 5, pp. 187–198, 2007.

[5] T. Degueule et al., “Melange: A meta-language for modular and reusable
development of DSLs,” in SLE. ACM, 2015, pp. 25–36.

[6] S. Frolund and J. Koistinen, “QML: A language for quality of service
specification,” Hewlett-Packard Software Technology Laboratory, Tech.
Rep. HPL-98-10, 1998.

[7] R. Heinrich, “Architectural run-time models for performance and privacy
analysis in dynamic cloud applications,” Perform. Eval. Rev., vol. 43,
no. 4, pp. 13–22, 2016.

[8] R. Heinrich et al., “A platform for empirical research on information
system evolution,” in SEKE, 2015, pp. 415–420.

[9] ——, “Integrating business process simulation and information system
simulation for performance prediction,” Software & Systems Modeling,
vol. 16, no. 1, pp. 257–277, 2017.

[10] ——, Software Architecture for Big Data and the Cloud. Elsevier, 2017,
ch. An Architectural Model-Based Approach to Quality-aware DevOps
in Cloud Applications.

[11] ——, “A methodology for domain-spanning change impact analysis,” in
SEAA. IEEE, 2018.

[12] S. Herold et al., “CoCoME – the common component modeling exam-
ple,” in The Common Component Modeling Example. Springer, 2008,
pp. 16–53.

[13] IEEE, “Standard for modeling and simulation High Level Architecture,”
2000.

[14] K. Jezek et al., “Towards context independent extra-functional properties
descriptor for components,” Electron. Notes Theor. Comput. Sci., vol.
264, no. 1, pp. 55–71, 2010.

[15] R. Jung et al., “GECO: A generator composition approach for aspect-
oriented DSLs,” in ICMT. Springer, 2016, pp. 141–156.

[16] J. Jürjens, “UMLsec: Extending uml for secure systems development,”
in UML. Springer, 2002, pp. 412–425.

[17] H. Koziolek, “Performance evaluation of component-based software
systems: A survey,” Perform. Eval., vol. 67, no. 8, pp. 634–658, 2010.

[18] H. Krahn et al., “MontiCore: Modular development of textual domain
specific languages,” in TOOLS EUROPE 2008. Springer, 2008, pp.
297–315.

[19] Object Management Group, UML Profile for MARTE, Object Manage-
ment Group Std., 2011.

[20] ——, Unified Modeling Language, Version 2.4.1, Object Management
Group Std., Rev. 2.4.1, 2011.

[21] D. C. Petriu, “Challenges in integrating the analysis of multiple non-
functional properties in model-driven software engineering,” in WOSP-
C. ACM, 2015, pp. 41–46.

[22] A. Rentschler, Model Transformation Languages with Modular Infor-
mation Hiding. KIT Scientific Publishing, 2015.

[23] R. H. Reussner et al., Modeling and Simulating Software Architectures
– The Palladio Approach. MIT Press, 2016.

[24] K. Rostami et al., “Architecture-based assessment and planning of
change requests,” in QoSA. ACM, 2015, pp. 21–30.

[25] ——, “Architecture-based change impact analysis in information sys-
tems and business processes,” in ICSA. IEEE, 2017, pp. 179–188.

[26] M. Schöttle et al., “On the modularization provided by concern-oriented
reuse,” in Modularity. ACM, 2016, pp. 184–189.

[27] M. Strittmatter et al., “A modular reference structure for component-
based architecture description languages,” in ModComp. CEUR, 2015,
pp. 36–41.

[28] ——, “Extensible graphical editors for palladio,” in 7th Symposium on
Software Performance, 2016.

[29] M. Szvetits and U. Zdun, “Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime,” Software &
Systems Modeling, vol. 15, no. 1, pp. 31–69, 2016.

[30] B. Vogel-Heuser et al., “Maintenance effort estimation with KAMP4aPS
for cross-disciplinary automated PLC-based production systems -
a collaborative approach,” in 20th IFAC World Congress, IFAC-
PapersOnLine, vol. 50, 2017, pp. 4360–4367.

[31] S. Zschaler, “Formal specification of non-functional properties of
component-based software systems,” Software & Systems Modeling,
vol. 9, no. 2, pp. 161–201, 2010.

341

Modeling and Verifying Leader Election Algorithm
in CSP

Yucheng Fang Huibiao Zhu∗ Huiwen Wang
Shanghai Key Laboratory of Trustworthy Computing,

School of Computer Science and Software Engineering, East China Normal University, China

Abstract—Leader election is a fundamental problem in dis-
tributed systems and has a variety of applications in wireless
networks, such as key distribution, routing coordination, and
general control. The main statement of the leader election
problem is to eventually elect a unique leader from a fixed
set of nodes. As the wireless network is becoming more and
more important in daily life, leader election algorithm plays
a vital important role in wireless network, which makes the
correctness and robustness of such algorithms become evermore
important and challenging to establish. In this paper, firstly, we
study an election algorithm LE for MANETs (Mobile Ad Hoc
Network) designed by Vasudevan et al. Then we present a formal
model for LE based on process algebra CSP (Communicating
Sequential Process). Modeling algorithm like LE sometimes pose
non-trivial challenges, time, geometry, communication delays and
failures, mobility and bi-directionality can interact in unforeseen
ways that are hard to model and analyze by automatic formal
methods, but we will take on these challenges. On that basis, we
use the model checker FDR (Failures Divergence Refinement) to
automatically simulate the developed model and verify whether
the model is consistent with the specification and exhibits relevant
secure properties. Our results show the correctness and safety of
LE in this respect.

Index Terms—leader election, formal methods, CSP, FDR

I. INTRODUCTION

In a network, leader election algorithm is to select a
unique leader of each node in a network. It is a fundamental
control problem in distributed systems and has a variety of
applications in wireless networks, such as key distribution [7],
routing coordination [2] and sensor coordination [8].

The purpose of electing a leader in an interconnected
network is to permit the control of the network by a unique
node in order to perform a specific action or activity with
the other members of the network. Several algorithms have
been proposed to solve this problem such as [5], [6]. Only a
few of the proposed algorithms can be applied to MANETs.
In this paper, we focus on the algorithm, which is called
LE, designed by Vasudevan et al. in [11]. It aims at electing
the most-valued node according to some measure, e.g., the
amount of remaining battery life in a network. In LE, several
spanning trees were established. Then, these spanning trees
were reduced to a unique spanning tree and the root to decide
which is the leader in the network. In this paper, we mainly
model LE in a context of static topology, under the assumption
that nodes with its neighbors are fixed the nodes number of the
network would not increase when LE is running. We give a

∗ Corresponding Author. Email: hbzhu@sei.ecnu.edu.cn

detailed explanation in next section. Our intention is to prove
that an abstraction of the LE works correctly.

There actually exist many research on leader election al-
gorithm [1], [13]. Most of them use model checking based
on a specific network such as ring [13] but seldom of them
consider to verify LE. In this paper we formalize LE based
on process algebra CSP and we concentrate on the status
changing of a node, modeling the operations of each node. Our
work build a baseline for verifying LE in CSP way. Based on
the formalized model, we use FDR to automatically simulate
the achieved model and verify whether it caters for some
significant properties such as deadlock freedom, divergence-
free and unique leader scheme.

CSP is a formal language for describing patterns of inter-
action in concurrent systems [9] and it has been practically
applied in industry as a tool for specifying and verifying the
concurrent aspects of a variety of different systems, such as
[12]. There are many model checkers for CSP, such as FDR
[3], Process Analysis Toolkit (PAT) [10] and so on. FDR has
the best performance among them because it includes a parallel
refinement-checking engine that achieves a linear speed-up as
the number of cores increase. It is able to check processes with
billions of states, and is able to make efficient use of on-disk
storage to complement memory.

The remainder of this paper is organized as follows. In
Section 2, we give a brief introduction to LE, and the process
algebra CSP. In Section 3, we model LE in CSP and In Section
4, we give three basic properties and verify that the LE model
respects them. In Section 5, we conclude and outline the future
work.

II. BACKGROUND

In this section, we give a brief introduction to LE algorithm
and give an example to illustrate. Further, we also present the
relevant introduction on CSP.

A. Brief Introduction to LE

When an election is triggered at a node, the node broadcasts
an election message to its immediate neighbors (one hop
neighbors). A node that receives an election message for the
first time, records the sender of the message as its parent
in the spanning tree under construction, and multicasts an
election message to its other immediate neighbors. When a
node receives an election message from a node that is not its
parent, it immediately responds with an ack message. When

DOI reference number: 10.18293/SEKE2018-067 342

a node has received ack messages from all of its children, it
sends an ack message to its parent. Each such ack message to a
parent includes the identity and value of the most-valued node
in the subtree rooted at the sender. Therefore, when the source
node has received an ack message from all of its children, it
can determine the most-valued node in the entire spanning
tree. The source node then broadcasts a leader message to all
of its immediate neighbors to announce a new leader. When a
node receives a leader message, it updates its own leader and
broadcasts it to its immediate neighbors.

Fig. 1 shows a run of LE under a static topology of
five nodes, with node 1 being the source and node 5 being
the most-valued node. In this figure, thin arrows indicate
the direction of flow of messages and thick arrows indicate
parent pointers. These parent pointers together represent the
constructed spanning tree. Node 1 starts its diffusing com-
putation by sending out election messages to its immediate
neighbors 2 and 3, shown in Fig. 1(a). As indicated in Fig.
1(b), nodes 2 and 3 set its parent pointer to point node 1 and
in turn propagate an election message to all their neighbors
except their parent nodes. Hence 2 and 3 send election to
each other, as we explain before, they will send ack to each
other immediately but not taken the other as its parent. In
Fig. 1(c), a complete spanning tree is built. In Fig. 1(d), nodes
4 and 5 send its value to its parent nodes, since they are
the leaves of the tree. Eventually, the source 1 hears pending
acknowledgments from both 2 and 3 in Fig. 1(e) and then
broadcasts the identity of the leader, 5, via leader message
shown in Fig. 1(f).

Multiple nodes can concurrently initiate multiple elections;
in this case, only one election should “survive”. This is done
by associating to each election a priority, so that a node
already in an election ignores incoming elections with lower
priority, but participates in an election with higher priority. In
some cases, a node maybe fail and will not send ack to its
parent. To handle the case like this, every node sets a expire
time T , when the time exceeds T , the node will be removed
from its parent’s waiting list. The report [11] gives a detailed
pseudo-code specification of LE.

B. Brief Introduction to CSP

The CSP method, abbreviation for Communicating Sequen-
tial Processes, is first proposed by C.A.R Hoare [4]. It is a
process algebra designed mainly for analyzing the behaviors of
concurrent processes. In CSP, a synchronous communication
mechanism holds when processes communicate with each
other to coordinate the parallel executions. The syntax of a
subset of the CSP language is given as follows.

P,Q =Skip | Stop | a→ P | c?x→ P | c!x→ P | P 2 Q

P‖Q | P ||| Q | Q \ M | P; Q | if b then P else Q

where:
• Stop represents that the process does nothing and its state

is deadlock.

Fig. 1. An LE run in a static topology

• Skip stands for a process which terminates successfully.
• a→ P first performs the event a then behaves like P.
• c!v → P sends message v through channel c, then

performs like P.
• c?x → P receives a message through channel c and

assigns it to a variable x, then does the subsequent
behaviors like P.

• P 2 Q acts like either P or Q and lets the environment
decide the selection.

• P‖Q shows the parallel composition between P and Q.
• Q \ M acts like Q, except all events from the set M are

hidden.
• P ||| Q indicates the process chooses to perform actions

in P and Q randomly.
• P; Q executes P and Q sequentially.
• if b then P else Q denotes the conditional choice. If the

value of b is true then it behaves like P else like Q.

III. MODELING LE

In this section, we present a CSP model of LE. The
formalization is carried out based on the introduction to LE
which has been described in Section 2. Firstly, we give the
whole structure of our model and then we model each precess
respectively.

A. Parameters in Model

To clarify the whole system, we give the channels and
messages used in LE. They are described as follows.
• election: message for a node to pass an election message
• ack: to acknowledge receipt of an election message
• leader: to announce the new leader
• probe: to determine if a node is still alive

343

• reply: sent in response to a probe message

In our model, every process has some variables to help
it make a decision when an action occurs. They are list as
follows.

• di: a binary variable indicating if i is currently in an
election or not

• pi: i’s parent node in the spanning tree
• Di: a binary variable indicating if i has sent an ack to pi

or not
• lidi: i’s leader
• Ni: i’s current neighbors
• Si: set of nodes from which i is yet to hear an ack from
• srci: i’s priority
• maxi: the most-valued node i has record so far

In our model the status of each node can be in one of eight
statuses: BeginElection, WaitFor, SendElection, AwaitAck,
AwaitLeader, SendInfo, SendLeader and Running. Their state
transition diagram is shown in Fig. 2. Node i can start an
election by sending message election. After sending message
to all of its immediate neighbors, it enters into state AwaitAck.
In this state, i sets a expire time T for each of node in its
waiting list. If a node has no answer in T units, i removes it
from its waiting list. After receiving all of the ack messages,
node i sends message ack to its parent and enters into state
SendInfo. In state SendInfo, if the election is start by its own,
it will enter into state SendLeader to send the leader message,
otherwise it will enter into state AwaitLeader to wait a leader
message from its parent. When a node finishes sending leader
message or receives a leader message, it will enter into state
Running. We will discuss each process respectively.

Fig. 2. State Transition Diagram

B. Modeling each Process

1) BeginElection: In process BeginElection, n denotes its
id number and N represents its neighbors.

BeginElection(n,N) =̂

SendElection(n,True, n, false,−1,N,N, n, n,N)

BeginElection starts an election by sending election messages
to its one-hop neighbors through process SendElection.

2) SendElection: Process SendElection is shown in Fig.
3. In process SendElection, n is the id number of process
SendElection. The eight variables between n and N′ have been
explained in previous section. N′ is a set that records all nodes
which have not been sent election message by the current
node. Action election.n!i : N′!src represents that node n sends
election message to its neighbor node i with election priority
src. When N′ is empty, it enters into process AwaitAck. During
its sending action, it may receive another election message
from its neighbor and it will compare the priority of these
two elections (i.e., s.p > src.p in Fig. 4) and decide which
election to take part in. If it receives an ack message from
its neighbor, it removes it from its waiting list S. The last
three statements, i.e., probe, fail and tock, describe three basic
actions of each process. A node can be tested whether it is
alive or not by its parent via channel probe. A node may fail
and enters into a state Fail or it just does nothing but wait the
time pass by via channel tock.

3) AwaitAck: Process AwaitAck, its main job is to wait ack
message from all neighbors in S. The process is shown in
Fig. 3. When it receives an ack message from its neighbor,
it removes the neighbor from its waiting list. AwaitAck tests
whether a node is still alive or not by sending message probe
and sets a expire time T then it enters into process WaitFor. If
it receives an election message, like process SendElection, it
compares the priority of these two elections and decides which
election to take part in. In our model, since every node can
start an election, so there may exist a local leader and therefore
when a node receives a leader message, it will compare the
priority of these two elections and decide to take part in which
election.

4) WaitFor: Process WaitFor will wait the reply message
from Nodepid until the time exceeds T or it receives a reply
message.

WaitFor(n, d, p,D, lid,N, S, src,max, pid,T) =̂

if T == 0

then AwaitAck(n, d, p,D, lid,N, S \ {pid}, src,max)

else tock→ WaitFor(n, d, p,D, lid,N, S, src,max, pid,T − 1)

2reply.n.pid → AwaitAck(n, d, p,D, lid,N, S, src,max)

5) SendInfo: It judges whether the election is start by its
own. If is, it enters into SendLeader. Otherwise, it sends ack

344

SendElection(n, d, p,D, lid,N, S, src,max,N′) =̂

if empty(N′) then AwaitAck(n, d, p,D, lid,N, S, src,max)

else election.n!i : N′!src→ SendElection(n, d, p,D, lid,N, S, src,max,N′ \ {i})
2election?c : N!n?s→ (if s.p > src.p then SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c}))

else ack!n!c!max→ SendElection(n, d, p,D, lid,N, S, src,max,N′))

2ack?c : S!n?v→ SendElection(n, d, p,D, lid,N, S \ {c}, src,Max(max, v),N′)

2leader?c : N!n?s→ (if s.p > src.p then SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c})
else SendElection(n, d, p,D, lid,N, S, src,max,N′))

2probe?c ∈ N!n→ reply!c!n→ SendElection(n, d, p,D, lid,N, S, src,max,N′)

2fail.n→ Faild(n,N)

2tock→ SendElection(n, d, p,D, lid,N, S, src,max,N′)

Fig. 3. Process SendElection

AwaitAck(n, d, p,D, lid,N, S, src,max) =̂

if empty(S) then SendInfo(n, d, p,D, lid,N, S, src,max)

else tock→ AwaitAck(n, d, p,D, lid,N, S, src,max)

2ack?c : S!n?v→ AwaitAck(n, d, p,D, lid,N, S \ {c}, src,Max(max, v))

2probe?c : N!n→ reply!c!n→ AwaitAck(n, d, p,D, lid,N, S, src,max)

2probe!n?j : S→ WaitFor(n, d, p,D, lid,N, S, src,max, j,T)

2tock→ AwaitAck(n, d, p,D, lid,N, S, src,max)

2fail.n→ Faild(n,N)

2election?c : N!n?s→ (ifs.p > src.p

then SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c})
else(if s == src then ack!n!c!max→ AwaitAck(n, d, p,D, lid,N,N \ {c}, src,max)

else AwaitAck(n, d, p,D, lid,N, S, src,max)))

2leader?c : N!n?s→ (if s.p > src.p

then SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c})
else election.n!c!src→ AwaitAck(n, d, p,D, lid,N, S, src,max))

Fig. 4. Process AwaitAck

message to its parent and enters into process AwaitLeader.

SendInfo(n, d, p,D, lid,N, S, src,max) =̂

if src == n

then SendLeader(n, d, p,D,max,N, S, src,max,N)

else ack!n!p!max→
AwaitLeader(n, d, p,True,max,N, S, src,max)

2tock→ SendInfo(n, d, p,D, lid,N, S, src,max)

2fail.n→ Faild(n,N)

2probe.p.n→ reply.p.n→
SendInfo(n, d, p,D, lid,N, S, src,max)

2election?c : N!n?s→ (if s.p > src.p then

SendElection(n, d, c,False,−1,N,

N \ {c}, s,max,N \ {c})
else SendInfo(n, d, p,D, lid,N, S, src,max))

6) Fail: At any time, one node may enter into state Fail. In
this process, it absorbs all messages. It is shown as follows.

Faild(n,N) =̂tock→ Faild′(n,N)

2probe?c : N!n→ Faild(n,N)

2election?c : N!n?v→ Faild(n,N)

2ack?c : N!n?v→ Faild(n,N)

2leader?c : N!n?s→ Faild(n,N)

Faild′(n,N) =̂tock→ Faild′(n,N)

2probe?c : N!n→ Faild(n,N)

2election?c : N!n?v→ Faild(n,N)

2ack?c : N!n?v→ Faild(n,N)

2leader?c : N!n?s→ Faild(n,N)

2revive.n→ BeginElection(n,N)

345

A process enters into Fail at least one unit then it can enter
into process Fail′. In this state, it also absorbs all the actions
but it can revive as well.

7) SendLeader: Process SendLeader sends the leader mes-
sage to all of its one-hop neighbors and then enters into process
Running. If it receives an election message, it compares the
priority of the two elections and decides whether to take part
in the new election or to ignore this the message.

SendLeader(n, d, p,D, lid,N, S, src,max,N′) =̂

if empty(N′)

then Running(n, false, n,D, lid,N, S, src,max)

else leader.n!i : N′!max→
SendLeader(n, d, p,D, lid,N, S, src,max,N′ \ {i})

2tock→ SendLeader(n, d, p,D, lid,N, S, src,max,N′)

2fail.n→ Faild(n,N)

2election?c : N!n?s→ if s.p > src.p then

SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c})
else SendLeader(n, d, p,D, lid,N, S, src,max,N′)

8) AwaitLeader: Process AwaitLeader just waits for leader
message from its parent. When it receives the leader informa-
tion, it will enter into process SendLeader to pass this message
to its neighbors.

AwaitLeader(n, d, p,D, lid,N, S, src,max) =̂

leader.p.n?v→
SendLeader(n, d, p,D, v,N, S, src, v,N \ {p})

2tock→ AwaitLeader(n, d, p,True, lid,N, S, src,max)

2fail.n→ Faild(n,N)

2probe.p.n→ reply.p.n→
AwaitLeader(n, d, p,D, lid,N, S, src,max)

2election?c : N!n?s→ if s.p > src.p then

SendElection(n, d, c,False,−1,N,N \ {c}), s,max,N \ {c})
else if s == src then ack!n!c!max→

AwaitLeader(n, d, p,D, lid,N, S, src,max)

else AwaitLeader(n, d, p,D, lid,N, S, src,max)

9) Running: Process Running represents a normal state of
a node. The CSP code is shown as follows.

Running(n, d, p,D, lid,N, S, src,max) =̂

2election?c : N!n?v→ (p(v) > p(lid)or ¬d)&

SendElection(n, d, c,False,−1,N,

N \ {c}, v,max,N \ {c, v}))
2tock→ Running(n, d, p,D, lid,N, S, src,max)

2fail.n→ Faild(n,N)

2probe?c : N!n→ reply!c!n→
Running(n, d, p,D, lid,N, S, src,max)

When it receives an election message, if it has no leader (it
has not taken in any election) or the priority of the node which

starts this election is greater than its leader, it will take part
in this election by entering into state SendElection.

IV. VERIFICATION

In this section, we implement CSP model and verify some
important properties in FDR. Before we do the verification,
we should construct our network. To illustrate our model is
correct. We choose a topology Fig. 1 in Section 2 to do
verification.

Proc = {1..5}
NEIGHBORS =̂ {(1, 2), (1, 3), (2, 3), (2, 5), (3, 4), (4, 5)}
Neighbors(x) =̂ {k | k← Proc,member((x, k),NEIGHBORS)

or member((k, x),NEIGHBORS)}

Proc is a set which contains five numbers. We stores all the
edges in set NEIGHBORS and Neighbors(x) is a function
which returns a set of all neighbors of x. We formalize a node
as follows.

Node(x) =̂ if x == 1 then BeginElection(x,Neighbors(x)) else

Running(x, false, x, false, x,Neighbors(x),Neighbors(x), x, x)

Therefore, we build our network as follows. Alpha(n) de-
notes the synchronized action set of node n. For instance
Alpha(1) = {ack.1.2, ack.2.1, . . . , tock} where “. . .” indicates
some channels like reply, probe and actions between 1 and 3.

Network =̂‖ n : Proc • [Alpha(n)]Node(n)

(1) DeakLock Freedom
In LE, deadlock freedom means process network can move

on at any time. In FDR, we use statement below to do that.

assert Network : [deadlock free [F]]

The verification result is shown in Fig. 5. The first statement
in the Assertions block is for deadlock freedom and the green
dot on the left side shows that this assertion is passed, which
means our system is deadlock free. The block under the
Assertions is the Tasks block, in which the actual checking
steps lay here.
(2) Divergence Freedom

A divergence of a process is that any trace of the process has
a point after which the process behaves chaotically. Divergence
freedom assures our model is well-defined without ambiguous-
ness. We use statement below to complete the verification.

assert Network : [divergence free [F]]

The checking result is shown in Fig. 5., the second statement
in Assertion block.
(3) Unique Leader

The main goal of LE is that it will eventually select a unique
leader, which is the most-valued-node among the nodes in the
component. In our model, leader information is sent by leader
message, and therefore we only concentrate on message leader
and hide the other channels.

network =̂ Network \ {| probe, fail, ack,

election, tock, reply, revive |}

346

In the topology which we prepare to verify, we know that
the most-valued-node is 5 and its value is 5 so we formalize
the property as follows.

UniLeader =̂ leader?c : Proc?d : Proc!5→ UniLeader

Process UniLeader means if there exists a leader message the
id which it sends must be 5. Process UniLeader contains all
the traces which elect node 5 as the leader. We use refinement
to complete this check. If A[= B is true (where [= represents
refinement) then the behaviours of B are contained within the
behaviours of A. By showing UniLeader[T = network, we can
conclude that our model satisfies the unique leader scheme.
The verification result is shown in Fig. 5.

Fig. 5. Verification Results

V. CONCLUSION

In this paper, we have constructed the formal models for
LE, modeled the operations of each state of LE in CSP. We

also verified the LE model using FDR. We constructed the
specific models based on three properties including deadlock
freedom, divergence freedom and unique leader scheme. The
results show that our model satisfies all those properties,
indicating the LE get a strong robustness and consisting with
the specification.

In mobile ad hoc network, node can transfer from one
position to another which results that a node will connect to
a new network and disconnect from the old one. Therefore,
in the future, we will modify the model to fit the situation
like this and based on the new model we do other checks to
verify LE.

Acknowledgement. This work was supported by Shanghai
Collaborative Innovation Center of Trustworthy Software for
Internet of Things (No. ZF1213).

REFERENCES

[1] A. Ansari. Verification of Peterson’s Algorithm for Leader Elec-
tion in a Unidirectional Asynchronous Ring Using NuSMV. CoRR,
abs/0808.0962, 2008.

[2] S. Bhattacharya, J. Kulkarni, and V. S. Mirrokni. Coordination mecha-
nisms for selfish routing over time on a tree. In Automata, Languages,
and Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 186–197,
2014.

[3] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe. FDR3
— A Modern Refinement Checker for CSP. In E. Abraham and
K. Havelund, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 8413 of Lecture Notes in Computer Science,
pages 187–201, 2014.

[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[5] S. Kim, V. Vasireddy, and K. Harfoush. Scalable coordination for sensor
networks in challenging environments. In Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC), Seoul, Korea, March 11-15,
2007, pages 214–221, 2007.

[6] A. Mazeev, A. Semenov, and A. Simonov. A Distributed Parallel Al-
gorithm for Minimum Spanning Tree Problem. CoRR, abs/1610.04660,
2016.

[7] A. Mehmood, M. M. Umar, and H. Song. ICMDS: secure inter-cluster
multiple-key distribution scheme for wireless sensor networks. Ad Hoc
Networks, 55:97–106, 2017.

[8] Y. Nakamura, M. Louvel, and H. Nishi. Coordination middleware
for secure wireless sensor networks. In IECON 2016 - 42nd Annual
Conference of the IEEE Industrial Electronics Society, Florence, Italy,
October 23-26, 2016, pages 6931–6936, 2016.

[9] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer
Science. Springer, 2010.

[10] J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Revisited:
Introducing a Process Analysis Toolkit. In Leveraging Applications
of Formal Methods, Verification and Validation, Third International
Symposium, ISoLA 2008, Porto Sani, Greece, October 13-15, 2008.
Proceedings, pages 307–322, 2008.

[11] S. Vasudevan, J. F. Kurose, and D. F. Towsley. Design and Analysis
of a Leader Election Algorithm for Mobile Ad Hoc Networks. In 12th
IEEE International Conference on Network Protocols (ICNP 2004), 5-8
October 2004, Berlin, Germany, pages 350–360, 2004.

[12] L. Wang, F. Sui, Y. Huang, and H. Zhu. Modeling and Verifying the
Ballooning in Xen with CSP. In 16th IEEE International Symposium
on High Assurance Systems Engineering, HASE 2015, Daytona Beach,
FL, USA, January 8-10, 2015, pages 18–25, 2015.

[13] L. Xu and P. Jeavons. Simple algorithms for distributed leader election
in anonymous synchronous rings and complete networks inspired by
neural development in fruit flies. Int. J. Neural Syst., 25(7), 2015.

347

A Formal Approach for Distributed Computing of
Maximal Cliques in Dynamic Networks

Faten Fakhfakh1, Mohamed Tounsi1, Mohamed Mosbah2, and Ahmed Hadj Kacem1

1 ReDCAD Laboratory, University of Sfax, FSEGS, Tunisia
2 LaBRI Laboratory, University of Bordeaux, France

faten.fakhfakh@redcad.org, mohamed.tounsi@redcad.org,
ahmed.hadjkacem@fsegs.rnu.tn, mohamed.mosbah@labri.fr

Abstract—The aim of this work is to propose a distributed
algorithm, encoded by the local computations model, for comput-
ing maximal cliques in dynamic networks. This model provides
an abstraction which simplifies the design and the proof of
distributed algorithms. To guarantee the correctness of our
algorithm, we use the Event-B formal method, which supports
a refinement based incremental development using the RODIN
platform.
Keywords—Distributed algorithm, Local computations, Dynamic
networks, Maximal cliques , Event-B method.

I. INTRODUCTION

A. Motivation

Computing maximal cliques is a challenging problem in
computer science which has found applications in several fields
such as robotics, bioinformatics, etc. Many efforts have been
dedicated to solve the problem of detecting maximal cliques.
Most of the proposed approaches have used centralized algo-
rithms and only few of them [6] [2] are based on distributed
algorithms [7]. In the context of dynamic networks, the nodes
are dynamically connected in an arbitrary manner without any
established infrastructure or centralized administration. So, the
topology of the network may change rapidly and unpredictably.
Considering the complexity of distributed algorithms and the
highly dynamic behavior, it is interesting to ensure the correct-
ness of these algorithms to give us confidence that distributed
systems perform as designed and do not behave harmfully.

According to our study, we notice that the majority of the
existing works [2] [8] [6] for detecting maximal cliques rely
on simulation to evaluate the performance of these solutions.
Some works [2] [6] have proved the correctness of their
algorithms based on formal proofs. Nevertheless, the proofs
which have been presented are done manually. Also, these
proofs are long and tedious specially in the case of complex
algorithms and a minor error can have serious consequences
on the system operation. To the best of our knowledge, only
the solution of Xu et al. [8] dealt with dynamic networks.
However, it has an exponential complexity.

B. Contribution

We propose in this paper a distributed algorithm for
computing maximal cliques in dynamic networks inspired by
the work of Luo et al. [6] which has a linear complexity. Our
algorithm is based on the local computations model [5] that

DOI reference number: 10.18293/SEKE2018-109

provides an abstraction for the design of distributed algorithms.
To model dynamic networks, we use the evolving graph model
[3] which consists in recording the evolution of the network
topology as a discrete sequence of static graphs. Each static
graph represents a snapshot of the dynamic network at a
given date. In order to prove the correctness of the proposed
algorithm, we use a formal method which offers a real help for
expressing correctness with respect to safety properties in the
design of distributed algorithms. The correct-by-construction
approach [4] offers a simple way to specify and prove
algorithms. It consists in developing distributed algorithms
following a top/down approach controlled by the refinement
of models. This process allows to simplify the proofs
and validate the integration of requirements. The Event-B
modeling language [1] can support this methodological
proposal by suggesting proof based-guidelines.

C. Organization of the paper

The remainder of this paper is structured as follows:
Section II introduces our proposed algorithm. In Section III,
we specify this algorithm with the Event-B method. Finally, the
last section concludes and provides insights for future work.

II. ALGORITHM FOR COMPUTING MAXIMAL CLIQUES IN
DYNAMIC NETWORKS : CMCDN

A network can be modeled as a simple and undirected
graph g=(V,E) where V is the set of nodes and E is the set
of edges. In this work, we suppose that every node in the
graph knows its neighbours. A “clique” is a fully connected
(or complete) subgraph of the graph g and a “maximal clique”
is a clique that is not a subset of any other clique in the same
graph. The proposed algorithm may be encoded by the graph
relabeling system R = (L, I ′, P). For a given node x, L =
{State, Clique,N,Event}, I ′ = {Init,∅, N(x), False},
and P = {R1, R2, R3, R4, R5, R6}. State and Clique are two
functions. The node x has the following four labels:
• State(x) ∈{Init, C, I, W, A} is the state of the node x. It can
take one of these labels: i) Init : the node x is in the initial
state, ii) C : we call the node which detects a maximal clique
“the center” of this clique, iii) I : the node x belongs to a
maximal clique and it is different to the center of this clique,
iv) W : the node x is in the waiting state. It has not been
assigned to a maximal clique yet, v) A : the node x does not
belong to any maximal clique. It is called “isolated node”.
• N(x) : It stores the node x and all its neighbours. The set
N(x) will be updated when an incident edge is removed.

348

• Clique(x) : The node x belongs to the maximal clique
“Clique(x)”. Initially, each node x of the graph has
Clique(x) = ∅.
• Event(x) ∈ {False, Alert} : It determines whether the node
x belongs to an edge that has undergone a topological change
or not. Initially, all nodes are in the state “False”. If an
edge u 7→ x of a maximal clique has disappeared, then
Event(u) and Event(x) take the state “Alert” to transmit
a reconstruction order of the concerned clique.

I’ is the set of initial labels and (R1, R2, R3, R4, R5
and R6) are the relabeling rules. For each node x ∈ V ,
we define S(x) =

⋂
k∈N(x)

N(k) the set of nodes that stores

the intersection of all N(k) (k ∈ N(x)). We note R(x) all
the nodes of S(x) which have not been assigned to maximal
cliques yet. Therefore, these nodes are labeled “Init” or “W”.

To handle the disappearance of an edge during the con-
struction of maximal cliques in a graph, we distinguish two
cases :
Case 1 : Deleting an edge of the graph (an edge that does not
belong to any maximal clique) has no effect on the maximal
cliques already detected. This case requires applying the rule
R4 (see Section II-D).
Case 2 : Deleting an edge belonging to a maximal clique can
cause the destruction of this clique or the possibility of creating
a new maximal clique.

A. The first rule: R1

The first rule aims to construct a maximal clique in the
graph. Let x be a node in the initial state and R(x) including
at least three nodes. As a result, the nodes of R(x) form a
maximal clique having x as center. Formally, the rule R1 is
written as follows:
Precondition :

• State(x) = Init

• card(R(x)) > 3

Relabeling :

• State(x) := C and Clique(x) := R(x)

• ∀a·a ∈ R(x) \ {x} =⇒ State(a) := I and
Clique(a) := R(x)

B. The second rule: R2

The goal of the rule R2 is to attribute to a node that
is unable to form a maximal clique the waiting state. This
rule requires the presence of a node x in the initial state and
R(x) containing less than three nodes. Formally, the rule R2
is written as follows:
Precondition :

• State(x) = Init

• card(R(x)) < 3

• ∃k ·k ∈ N(x) \ {x} et State(k) = Init

Relabeling :

• State(x) := W

C. The third rule: R3

The purpose of the rule R3 is to identify an isolated node
which does not belong to any maximal clique. Let x be a node
in the initial or the waiting state and all the neighbouring nodes
of x are not in the initial state. By applying R3, the label of
the node x becomes “A” and Clique(x) contains only the
node x. Formally, the rule R3 is written as follows:
Precondition :

• State(x) ∈ {Init,W}

• ∀a·a 7→ x ∈ g =⇒ State(a) 6= Init

Relabeling :

• State(x) := A and Clique(x) := {x}

D. The fourth rule: R4

The purpose of this rule is to express the modification made
when deleting an edge of the graph. It requires the presence of
an edge (u 7→ v) that does not belong to any detected clique.
The application of the rule R4 causes the deletion of the edge
u 7→ v from the graph as well as the updating of the sets N(u)
and N(v). Formally, the rule R4 is written as follows:
Precondition :

• u 7→ v ∈ g

• ¬ ((Clique(u) = Clique(v)) and (u ∈ Clique(u) and
v ∈ Clique(u)))

• Event(v) = False and Event(u) = False

Relabeling :

• g := g \ {u 7→ v}

• N(u) := N(u) \ {v} and N(v) := N(v) \ {u}

E. The fifth rule: R5

The role of this rule is to reflect the preliminary influence
of the deletion of an edge belonging to a maximal clique.
Let u and v be two nodes of the same maximal clique.
While applying the rule R5, the edge u 7→ v disappears and
Event(u) and Event(v) take the state “Alert”. In addition,
the sets N(u) and N(v) are updated. Formally, this rule is
written as follows:
Precondition :

• u 7→ v ∈ g

• Clique(v) = Clique(u)

• State(v) ∈ {C, I} and State(u) ∈ {C, I}

• Event(v) = False and Event(u) = False

Relabeling :

• g := g \ {u 7→ v}

• N(u) := N(u) \ {v} and N(v) := N(v) \ {u}

• Event(v) := Alert and Event(u) := Alert

349

F. The sixth rule: R6

The rule R6 is used to reset the nodes states of a maximal
clique. It requires the presence of a node (noted u) belonging
to the maximal clique {u, a, ..., v} and having “Event(u) =
Alert”.
• If there is a neighbour node of u (noted h) having the state
A, then it resets the initial state. In fact, it can be a member
of a maximal clique after resetting the states of nodes of the
clique {u, a, ..., v}.
• If a node (noted b) which belongs to another maximal clique
is the neighbour of the node u and can form a maximal clique
(after destroying the clique {u, a, ..., v}) with the node u and
other neighbours, then the node b takes the state Alert. Indeed,
it must reset the states of the clique nodes by applying again
the rule R6, to form a larger maximal clique. Formally, the
rule R6 is written as follows:
Precondition :

• Clique(u) = {u, a, ..., v} and card(Clique(u)) ≥ 3

• Event(u) = Alert and (∀k ·u 7→ k ∈ g and k ∈
Clique(u) =⇒ Event(k) = False)

Relabeling :

• ∀k ·k ∈ Clique(u) =⇒ State(k) := Init

• ∀k ·k ∈ Clique(u) =⇒ Clique(k) := ∅

• ∀k ·k ∈ Clique(u) =⇒ Event(k) := False

• ∃h·
(

u 7→ h ∈ g ∧ State(h) = A
∧Clique(h) = {h}

)
=⇒

State(h) := Init ∧ Clique(h) := ∅

• ∃b·

(
u 7→ b ∈ g ∧ card(Clique(b)) > 3
∧Clique(b) 6= Clique(u)
∧(∀r·r ∈ Clique(b) =⇒ u 7→ r ∈ g)

)
=⇒

Event(b) := Alert

The propose rules of the algorithm CMCDN are applied
asynchronously and non-deterministically until no rule is appli-
cable. This means that many different runs are possible. In the
final configuration, every node (x) has State(x) ∈ {C, I,A},
Clique(x) 6= ∅ and Event(x) = False:

• If x is an isolated node, it will have State(x) = A
and Clique(x) = {x}.

• If x belongs to a maximal clique, it will have
State(x) ∈ {C, I} and card(Clique(x)) ≥ 3.

III. FORMAL SPECIFICATION OF THE ALGORITHM
CMCDN USING THE EVENT-B METHOD

We introduce in this section our Event-B formal model
of the algorithm CMCDN. It is based on four abstraction
levels as shown in Fig. 1. The first machine M0 abstractly
specifies the goal of the proposed algorithm which aims to
compute maximal cliques problem in dynamic networks. It
utilizes properties defined in the context “Graph”. The second
machine M1 refines M0. It contains some events which specify
how nodes are making a choice to detect maximal cliques.
Moreover, it globally specifies the consequences of deleting an
edge. The machine M2 refines M1. It provides more details to
detect the set of nodes of each maximal clique and maintain

the set of the detected cliques when deleting an edge. Finally,
the machine M3 refines M2 and sees the context “Labels”.
It includes a set of events corresponding to the six relabeling
rules.

Refines

Sees Sees

RefinesRefines
M0 M1 M2

Extends
LabelsGraph

2

J’ai diminue la taille
de la figure

M3

Fig. 1: The refinement strategy of the algorithm CMCDN

A. Formal specification of the contexts

1) The context “Graph” : This context specifies static
properties of the network. Formally, a graph is modeled by
a set of nodes called V . In our work, we suppose that a
dynamic graph is composed of stable nodes. So, we define V
in the context as an abstract set. We specify that the number
of nodes in the network is finite (axm1 : finite(V)). Also,
we introduce a constant, called “tn”, that represents the final
system date (axm2 : tn ∈ N1).

2) The context “Labels” : This context extends the context
“Graph” by adding the labels of nodes to our model. Indeed,
we introduce two sets called “labels” and “event labels”.
“labels” contains the labels : Init, C, I, W and A (axm1 and
axm2). The label allows nodes to perform an elementary step
of computation according to some relabeling rules.
axm1 : partition(labels, {Init}, {C}, {I}, {W}, {A})
“event labels” includes the labels Alert and False.
axm2 : partition(event labels, Alert, False)

B. Formal specification of the machines

1) The first level : The first machine M0 specifies the goal
of the distributed algorithm, without describing the process of
computing the solution (see Listing 1).

Listing 1: Machine M0 invariants
inv1 : g ∈ 0 .. t→ P(V × V)
inv2 : ∀ti·ti ∈ dom(g)⇒ g(ti) = (g(ti))−1

inv3 : ∀ti·ti ∈ dom(g)⇒ (V C id) ∩ (g(ti)) = ∅
inv4 : t ∈ N ∧ t ≤ tn
inv5 : change ∈ {0, 1}
inv6 : t ≥ 1 ∧ change = 0⇒ g(t) = g(t− 1)
inv7 : cliques = {V 1, g1·V 1 ⊆ V ∧ finite(V 1) ∧ card(V 1) ≥ 3∧
g1 ⊆ g(t) ∧ g1 = (V 1× V 1) \ (V C id) ∧ g1 = g1−1|V 1}
inv8 : combination ⊆ P(cliques)
inv9 : combination = {X, x1, x2·X ⊆ cliques ∧ x1 ∈ X ∧ x2 ∈ X∧
x1 6= x2 ∧ x1 ∩ x2 = ∅ ∧ (∀Y, a·Y ∈ X ∧ a ∈ cliques⇒ Y ∩ a = ∅)|X}
inv10 : solution ∈ 0 .. t→ P(P(V))
inv11 : final ∈ {0, 1}

A network can be modeled as a simple and undirected graph
g. It is defined as a function to be the graph at the current date
t (inv1 and inv4). An undirected graph means that there is
no distinction between two nodes associated with each edge
(inv2). A graph is simple if it has zero or one edge between
any two nodes and no edge starts and ends at the same node
(inv3). Moreover, we introduce a variable called “change”
(inv5). If one topological event has been produced, “change”
is equal to “1”, otherwise “change” is equal to “0”. In the
invariant inv6, we indicate that if the date t is strictly greater
than “0” and change is equal to “0”, the graph does not
undergo any topological event. We define “cliques” as the
set of all possible cliques in the graph g (inv7). Any pair
of nodes can never form a clique, then all cliques contain

350

at least three nodes. We add inv8 and inv9 to specify all
possible combinations of maximal and disjoint cliques in the
graph g called “combination”. Also, we introduce the variable
“solution” which contains the result of the algorithm at the
date t (inv10). The variable “final” allows to check if the
Oneshot event (will be explained later) has been triggered.
The machine M0 includes three events :
• Event “Oneshot” (see Listing 2) : It specifies the result of
the algorithm in one step. The analogy of someone closing
and opening their eyes. In a given graph, there are many
combinations of maximal cliques. The event Oneshot assigns
in a non-deterministic way an element from “combination” to
the variable “solution” at the date t.

Listing 2: Event Oneshot, in M0
EVENT Oneshot
ANY c
WHERE
grd1 : solution(t) = ∅
grd2 : c ∈ combination
grd3 : final = 0 ∧ t 6= tn

THEN
act1 : solution(t) := c
act2 : final := 1

END

• Event “Remove Edge” (see Listing 3) : An edge has
been removed at the date t if it is present at the date “t”
(grd1) and “t” is different from the final date “tn” (grd2).
Then, we update the graph g(t) and the sets “cliques” and
“combination”. Also, the variable “change” takes the value
“1” (act2).

Listing 3: Event Remove Edge, in M0
EVENT Remove Edge
ANY x, y
WHERE
grd1 : x 7→ y ∈ g(t)
grd2 : final = 0 ∧ t 6= tn

THEN
act1 : g(t) := g(t) \ {x 7→ y, y 7→ x}
act2 : change := 1
act3 : cliques, combination : |cliques′ = {V 1, g1·V 1 ⊆ V ∧
finite(V 1) ∧ card(V 1) ≥ 3 ∧ g1 ⊆ (g(t) \ {x 7→ y, y 7→ x})∧
g1 = (V 1× V 1) \ (V C id) ∧ g1 = g1−1|V 1}
∧combination′ = {X, x1, x2·X ⊆ cliques′ ∧ x1 ∈ X∧
x2 ∈ X ∧ x1 6= x2 ∧ x1 ∩ x2 = ∅∧
(∀Y, a·Y ∈ X ∧ a ∈ cliques′⇒ Y ∩ a = ∅)|X}

END

• Event “Increment Time” (see Listing 4) : This event can
be activated if the current date t is strictly lower than the final
system date tn (grd1), the result of the algorithm is verified
(grd3) and at least one topological event is performed in the
network (grd2). In the action component of this event, we
increment the time to t +1 (act1) and we set the graph at
the date t+1 to the graph g(t) (act2). In addition, we reset the
variables change, final and solution. Therefore, we have no
topological change at the date t+1.

Listing 4: Event Increment T ime, in M0
EVENT Increment T ime
WHERE
grd1 : t < tn
grd2 : change = 1
grd3 : final = 1

THEN
act1 : t := t + 1
act2 : g(t + 1) := g(t)
act3 : solution(t + 1) := ∅
act4 : change := 0
act5 : final := 0

END

2) The second level : In the machine M1, we start by
introducing details to calculate globally the maximal cliques.
To do so, we add some variables to the invariant component
as shown in Listing 5:
◦ “cliques in” contains the nodes which belong to the de-
tected cliques (inv1).
◦ “cliques out” defines the set of nodes which do not belong
to these cliques (inv2).
◦ “cliques new” is the set of nodes of the detected maximal
and disjoint cliques (inv5 and inv6).
◦ “adjacents” gives the set of adjacent nodes to each node at
the current date t (inv9 and inv10).
◦ “nodes alert” contains the nodes of the clique edge that
has undergone a topological event (inv11).
Initially, cliques out contains all the graph nodes “V”,
whereas cliques in and cliques new are empty.

Listing 5: Machine M1 invariants
inv1 : cliques in ⊆ V
inv2 : cliques out ⊆ V
inv3 : cliques in ∩ cliques out = ∅
inv4 : cliques in ∪ cliques out = V
inv5 : cliques new ⊆ P(cliques in)
inv6 : ∀a, b·a ∈ cliques new ∧ b ∈ cliques new ∧ a 6= b⇒ a ∩ b = ∅
inv7 : ∀x·x ∈ cliques new ∧ finite(x)⇒ card(x) ≥ 3
inv8 : ∀x·x ∈ cliques new⇒ x ∈ cliques
inv9 : adjacents ∈ V × (0 .. t)→ P(V)
inv10 : ∀ti, x·ti ∈ (0 .. t) ∧ x ∈ V ⇒ adjacents(x 7→ ti) =
{y·x 7→ y ∈ g(ti) ∨ y 7→ x ∈ g(ti)|y}
inv11 : nodes alert ⊆ V
inv12 : ∀x·x ∈ cliques out⇒ x /∈ nodes alert

The definition of these variables requires the addition of new
properties:
(inv3) The nodes of cliques in are different from those of
cliques out.
(inv4) The total of these nodes is equal to the set of nodes V.
(inv7) All the detected cliques contain at least three nodes.
(inv8) The set of the detected cliques is a subset of “cliques”.
(inv11) The nodes of cliques out can not belong to the set
nodes alert.
At this level, we refine the events defined in M0 and we add
some new events:
• Event “Clique+” : This event aims to compute maximal
cliques in the graph g (see Listing 6). It can be activated if we
have a ball “B” including at least three nodes (grd3 and grd6).
We note “x” the center of the ball B (grd2 and grd3). All the
nodes of B are connected (grd4) and belong to cliques out
(grd1). Using the grd5, we express that the ball B can not be
extended by one or more adjacent nodes. At every computation
step, the nodes of the detected ball are eventually added to the
set cliques in (act2) and removed from cliques out (act1).
Moreover, we add the set of ball nodes to cliques new (act3).

Listing 6: Event Clique+, in M1
EVENT Clique+
ANY B, x
WHERE
grd1 : B ⊆ cliques out
grd2 : x ∈ B
grd3 : B ⊆ (adjacents(x 7→ t) ∪ {x})
grd4 : ∀y, z ·y ∈ B ∧ z ∈ B ∧ y 6= z⇒ y 7→ z ∈ g(t)
grd5 : (∀r·r ∈ cliques out ∧ r ∈ adjacents(x 7→ t)∧
{r} × (B \ {r}) ⊆ g(t)⇒ r ∈ B)
grd6 : card(B) ≥ 3
grd7 : final = 0 ∧ t 6= tn

THEN
act1 : cliques out := cliques out \ B
act2 : cliques in := cliques in ∪ B
act3 : cliques new := cliques new ∪ {{a·a ∈ B|a}}

END

351

• Event “Clique-” : The purpose of this event is to detect a
node (noted “x”) which can not belong to any maximal clique.
If this node belongs to a connected ball B1, B1 should contain
less than three nodes. Also, all the neighbours of “x”, which
have not been affected to a maximal clique yet, have a ball
including at most two nodes.
•Event “Oneshot” : This event refines the Oneshot presented
in M0 to verify that the final value of cliques new represents
the result of the algorithm (see Listing 7). To do so, we
reinforce the guard component by specifying that all maximal
cliques in the graph g have been detected (grd2). By means
of the theorem Th4, we verify that the set cliques new repre-
sents the detected maximal and disjoint cliques. The abstract
parameter “c”, defined in M0, is replaced with a concrete value
(cliques new) by means of a witness. A witness designates a
simple equality predicate involving the abstract parameters.

Listing 7: Event Oneshot, in M1
EVENT Oneshot
REFINES Oneshot
WHERE
grd1 : solution(t) = ∅
grd2 : ∀y·y ⊆ g(t) ∧ y /∈ cliques new =⇒ y /∈ cliques
grd3 : final = 0 ∧ t 6= tn
Th4 : cliques new ∈ combination
grd4 : ∀x·x ∈ V ⇒ x /∈ nodes alert

WITH c : c = cliques new
THEN
act1 : solution(t) := cliques new

END

At this level, we refine the event Remove Edge in two events:
• Event “Remove Graph Edge” : It specifies the case of
deletion of a graph edge. To do so, we add a condition (grd4)
to indicate that the edge x 7→ y does not belong to a maximal
clique (noted n):
∀n·n ∈ cliques new⇒¬(x ∈ n ∧ y ∈ n)
• Event “Remove Clique Edge” : This event, depicted in
Listing 8, specifies the preliminary influence of the deletion of
an edge belonging to a maximal clique. Formally, we reinforce
the guard component to express that the edge x 7→ y belongs to
a maximal clique noted “k” (grd3). Also, no topological event
affects the clique (grd4). In the clause “THEN”, we introduce
two actions to update the sets of adjacent nodes of x and y
(act4). In addition, we add x and y to the set nodes alert
(act5).

Listing 8: Event Remove Clique Edge, in M1
EVENT Remove Clique Edge
REFINES Remove Edge
ANY x, y, k
WHERE

. . .
grd3 : k ∈ cliques new ∧ x ∈ k ∧ y ∈ k
grd4 : x /∈ nodes alert ∧ y /∈ nodes alert

THEN
. . .
act4 : adjacents := adjacents C− {(x 7→ t) 7→ adjacents(x 7→ t)
\{y}, (y 7→ t) 7→ adjacents(y 7→ t) \ {x}}
act5 : nodes alert := nodes alert ∪ {x, y}

END

To specify the different situations of reinitialization of the
neighbours (of the concerned maximal clique) of a node (noted
u) belonging to the set nodes alert, we distinguish four
cases. Because of space limitation, we only detail the informal
description of these cases:
Case 1: It specifies the simplest case which consists in
resetting the nodes states of u and its neighbours of the
maximal clique. This case is specified by a new event called
Initialize1.

Case 2: If there is a neighbour node of u (noted h) which
can not belong to any maximal clique, we also reset the state
of h. Indeed, the node h can be a member of a maximal clique
after resetting the nodes states of the clique containing u. This
situation is specified using a new event Initialize2.
Case 3: If a neighbour node of u (noted b) which belongs
to another detected clique can form a maximal clique with the
node b and other neighbours of the clique, then we introduce
b to the set nodes alert. We specify this case by means of an
event called Initialize3.
Case 4: The presence of the cases (2) and (3) requires the
application of an event called Initialize4.

3) The third level : The refinement of M1 called M2
introduces more details about the algorithm CMCDN. In
fact, we introduce the variable “Clique” as a function which
assigns to each node the set of nodes of its maximal clique
(inv1 : Clique ∈ V × (0 .. t)→P(V)). Initially, the Clique of
each node is empty. To link the states between the machines
M1 and M2, we define some gluing invariants:
◦ Each node of cliques in belongs to a detected maximal
clique.
(inv2) ∀x, ti·x ∈ cliques in⇒ Clique(x 7→ ti) 6= ∅ ∧ x ∈
Clique(x 7→ ti)
◦ Each node of cliques out has not computed its maximal
clique yet.
(inv3) ∀x, ti·x ∈ cliques out⇒ Clique(x 7→ ti) = ∅
◦ Each node which has not been assigned to a maximal clique
yet belongs to the set out cliques.
(inv4) ∀x, ti·Clique(x 7→ ti) = ∅⇒ x ∈ cliques out
◦ A node “x”, which does not belong to a maximal clique, is
not part of the set nodes alert.
(inv5) ∀x, ti·Clique(x 7→ ti) = ∅ ∨ Clique(x 7→ ti) = {x}
⇒ x /∈ nodes alert

At this refinement level, the events of the previous level still
exist but they become more concrete. We restrict to detail in
what follows some events :
• Event “Remove Graph Edge” : We refine the event
Remove Graph Edge by reinforcing the guard component.
In fact, we replace the guard grd4 using the variable
Clique that the removed edge does not belong to any
maximal clique: grd4 : ¬(Clique(x 7→ t) = Clique(y 7→
t) ∧ card(Clique(x 7→ t)) ≥ 3)
• Event “Clique+”: The goal of this event is to detect
maximal and disjoint cliques and assign to each node its
corresponding clique (see Listing 9).

Listing 9: Event Clique+, in M2
EVENT Clique+
REFINES Clique+
ANY B, x
WHERE
grd1 :Clique(x 7→ t) = ∅ ∧ B ∩ {k·Clique(k 7→ t) 6= ∅|k} = ∅
. . .
grd5 : ∀r·Clique(r 7→ t) = ∅∧
r ∈ adjacents(x 7→ t) ∧ {r} × (B \ {r}) ⊆ g(t)⇒ r ∈ B
grd6 : card(inter({a·a ∈ B|adjacents(a 7→ t) ∪ {a}})\
{k·Clique(k 7→ t) 6= ∅|k}) ≥ 3 ∧ finite(inter({a·a ∈ B|
adjacents(a 7→ t) ∪ {a}}) \ {k·Clique(k 7→ t) 6= ∅|k})
grd7 : final = 0 ∧ t 6= tn

THEN
act1 : Clique := Clique C− {a·a ∈ B|(a 7→ t) 7→ B}

END

In fact, we reinforce the guard component by using the new
variable Clique. The guard (grd1) specifies that the center x

352

of the ball B and its neighbours from B do not belong to any
detected clique. The grd5 states that B can not be extended by
other nodes which have not been assigned to maximal cliques
yet. We indicate in the guard grd6 that the intersection of all
the elements of N(a), which do not belong to maximal cliques,
contains at least three nodes. We note “a” as each node of the
ball B. In the action component, we set the maximal clique of
each node of the ball to “B” (act1).
• Event “Oneshot”: This event refines the “Oneshot” pre-
sented in the machine M1. It uses the concrete variable Clique
to check that each node of the graph has computed the maximal
clique to which it belongs. In fact, the result of the algorithm
represents the set containing the maximal clique of each node
x (if Clique(x 7→ t) 6= {x}).

4) The fourth level : Once the machine of the third level
has been specified and proven, it can be refined for describing
the local label modification and encoding the relabeling rules
proposed in Section II. In order to reach this goal, we introduce
a new variable “State” (inv1 : State ∈ V × (0 .. t)→ labels)
which assigns to each node a label from the set “labels”
that encodes the state of a process. Initially, all the nodes are
labeled “Init”. The addition of the variable “State” involves
adding new properties which link the abstract state variables
to the concrete ones. We have formalized these properties in
the form of Event-B invariants:
◦ A node x, which has Clique(x 7→ ti) not empty, belongs
to a maximal clique or it is an isolated node at the date ti.
(inv2) ∀x, ti·Clique(x 7→ ti) 6= ∅⇒
x ∈ State−1[{C, I,A}]
◦ A node which has not been assigned to a maximal clique
yet is in the initial or the waiting state.
(inv3) ∀x, ti·Clique(x 7→ ti) = ∅⇒
x ∈ State−1[{Init,W}]
◦ If a node is labeled C, its maximal clique contains itself
and a set of its neighbours.
(inv4) ∀x, ti·State(x 7→ ti) = C ⇒ Clique(x 7→ ti) ⊆
{x} ∪ adjacents(x 7→ ti) ∧ x ∈ Clique(x 7→ ti)
◦ Each maximal clique contains one center node labeled C
and the other nodes are labeled I .
(inv5) ∀x, y, ti·y ∈ Clique(x 7→ ti) \ {x} ∧ State(x 7→ ti) =
C⇒State(y 7→ ti) = I ∧Clique(y 7→ ti) = Clique(x 7→ ti)
◦ If a node y is labeled I, it has a neighbouring node which
belongs to the same maximal clique and it is the center of
this clique.
(inv6) ∀y, ti·State(y 7→ ti) = I ⇒ (∃x·x ∈
adjacents(y 7→ ti) ∧ State(x 7→ ti) = C∧
Clique(y 7→ ti) = Clique(x 7→ ti))
◦ An isolated node does not belong to any maximal clique,
then its maximal clique is the identity.
(inv7) ∀x, ti·State(x 7→ ti) = A⇒ Clique(x 7→ ti) = {x}
◦ Each node x labeled C or I belongs to a maximal clique,
then the set of elements of its clique is not empty.
(inv8) ∀x, ti·State(x 7→ ti) ∈ {C, I}⇒ Clique(x 7→ ti) 6= ∅
◦ Each node in the initial or the waiting state has not been
assigned to a maximal clique yet.
(inv9) ∀x, ti·State(x 7→ ti) ∈ {W, Init}⇒
Clique(x 7→ ti) = ∅

At this level, we refine the event “Oneshot” and we
specify the six relabeling rules of our algorithm:
◦ The event “Rule1” refines the event “Clique + ” defined

in M2 to specify the rule R1.
◦ We introduce a new event called “Rule2” to specify the
rule R2.
◦ The event “Rule3” specifies the rule R3 and refines the
event Clique− of the machine M2.
◦ The event “Rule4” refines the event Remove Graph Edge
to express the modification made when deleting an edge of
the graph.
◦ The event “Rule5” refines the event Remove Clique Edge
to specify the preliminary influence of the removal of an edge
belonging to a maximal clique.
◦ The events (Rule6,Rule6′,Rule6′′,Rule6′′′) refine
respectively the events (Initialize1,..., Initialize4) to
express the different cases of the rule R6.
◦ The event “Oneshot” verifies that, at the end of the
algorithm execution, no node is in the initial (labeled “Init”)
or the waiting state (labeled “W”).

C. Proof statistics

To prove the correctness of our formal model, a number
of proof obligations (POs) generated by the Rodin platform
should be discharged. The algorithm development results in
405 POs, in which 226 (56%) POs are proved automatically
and 179 (44%) are proved interactively using the RODIN
prover. An Event-B model is correct when all POs have been
discharged. Formal definitions of all POs are given in [1].

IV. CONCLUSION

We have presented in this paper a new distributed algorithm
for enumerating maximal cliques in dynamic networks. Our
algorithm combines local computations model and refinement
to prove its correctness. The proposed algorithm is based on
six relabeling rules which allow to detect maximal cliques and
react correctly in case of edge deletion.

REFERENCES

[1] J.-R. Abrial, Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

[2] A. Conte, R. D. Virgilio, A. Maccioni, M. Patrignani, and R. Torlone,
“Finding all maximal cliques in very large social networks,” in the
International conference Extending Database Technology (EDBT), 2016,
pp. 173–184.

[3] A. Ferreira, “On models and algorithms for dynamic communication
networks: The case for evolving graphs,” in the conference ALGOTEL,
2002.

[4] G. T. Leavens, J.-R. Abrial, D. Batory, M. Butler, A. Coglio, K. Fisler,
E. Hehner, C. Jones, D. Miller, S. Peyton-Jones, M. Sitaraman, D. R.
Smith, and A. Stump, “Roadmap for enhanced languages and methods to
aid verification,” in the International Conference Generative Program-
ming and Component Engineering (GPCE). ACM, 2006, pp. 221–236.

[5] I. Litovsky, Y. Métivier, and E. Sopena, “Handbook of graph grammars
and computing by graph transformation.” World Scientific, 1999, ch.
Graph Relabelling Systems and Distributed Algorithms, pp. 1–56.

[6] C. Luo, J. Yu, D. Yu, and X. Cheng, “Distributed algorithms for
maximum clique in wireless networks,” in the International conference
Mobile Ad-hoc and Sensor Networks (MSN). IEEE, 2015, pp. 222–226.

[7] N. A. Lynch, Distributed algorithms. Elsevier, 1996.
[8] Y. Xu, J. Cheng, and A. W.-C. Fu, “Distributed maximal clique com-

putation and management,” IEEE Transactions on Services Computing,
vol. 9, no. 1, pp. 110–122, 2016.

.

353

DCCD: An Efficient and Scalable Distributed Code
Clone Detection Technique for Big Code

Junaid Akram∗(Member, IEEE), Zhendong Shi∗, Majid Mumtaz∗ and Luo Ping∗
∗State Key Laboratory of Information Security, School of Software Engineering, Tsinghua University China.

Email: [znd15, szd15, maji16]@mails.tsinghua.edu.cn
Email: luop@mail.tsinghua.edu.cn

Abstract—Code clone detection is a very hot topic in the
field of software maintenance, reuseability and security. There
is still a lack of techniques to detect near-miss clones at different
level of granularities, especially in big code. This paper presents
Distributed Code Clone Detection (DCCD) technique, which
detects clones from big code bases based on feature extraction.
We performed preprocessing, indexing and clone detection for
almost 27 TB of source code (324 billion LOC), DCCD is quite
faster and efficient as compared to existing distributed indexing
and clone detection techniques, i.e. 36 times faster than Benjamin
technique, which is 86 times faster than CCFinder. These two
techniques are also distributed and just detect Type-1 and Type-
2 clones, but our technique DCCD even detects Type-3 clones,
efficiently. Our approach is faster, flexible, scalable and provides
87% accurate results with authenticity, ease of accessibility,
upgradeability and maintainability.

keyword Clone detection, Software maintenance, Software
reuse, Big code, Similarity/Plagiarism detection

I. INTRODUCTION

When a programmer copies code fragments and tries to
reuse them by pasting in other code sections with or without
making minor modifications, this type of code reuse approach
is called code cloning, and the pasted code fragment called a
clone of the original. It is a very adapting process in software
development activities. However, during detection of clones,
it is hard to say that which code fragment is original and
which code fragment is copied. Code clones bring troubles
in software security and maintenance and they lead to bug
propagation. Roy describes that a very significant range (7% -
23%) of code is cloned in large scale systems [1]. Code clone
detection techniques are very helpful for code maintainability,
code plagiarism detection [2] [3], code verification, copyright
detection, security flaws detection, detection of bugs and
malicious software detection.

Our developed platform provides an index-based hybrid
solution (semantic approach) by combining different clone de-
tection techniques for large scale systems which is distributed,
scalable and incrementable. It detects Type-1, Type-2, Type-3
code clones in real time environment on the basis of big code.
Our system is based on Hadoop environment, which extends
a practical applicability of index based clone detection for
very large code bases and it demonstrates the response time
sufficiently fast. Our technique has been developed and tested
to detect code clones in 15 different programming languages
i.e. Java, JavaScript, C, C++, C#, Xml, Python, Php, Sql, Vb,

Cobol, Text, Ruby, Ada, Matlab. In this paper, we will discuss
and display results of 3 programming languages on large scale
level, which are Java, JavaScript and C/C++. The downloaded
source code was about 40 TB (20 TB C & C++, 10 TB
Java, 10 TB JavaScript), but the experiment of preprocessing,
indexing and feature extraction was performed on almost 27
TB (C & C++: 16 TB, JavaScript: 11 TB, Java: 1 TB) source
code. The main purpose of our research was to deal with the
big code on a large-scale level and detect near-miss clones
accurately, which is not only challenging but computationally
expensive. We preprocess source code using different mining
techniques/filters, extracting main features and store the index
information into a database for further inspection process of
clone detection. Preprocessing, normalization, feature extrac-
tion and indexing process were performed in a pipeline, so
index creation is actually fully depended on the output of
preprocessing of source code. The top level view of whole
system has been shown in Fig 1. Index based [4] and CCFinder
[5] are two token-based distributed clone detection techniques
but they just only detect Type-1 & Type-2 clones, and even not
support big code indexing and detection process. Our approach
detects Type-1, Type-2, Type-3 clones with high accuracy rate,
meanwhile it’s incremental, scalable and fast.

II. DCCD ARCHITECTURE

In this section, we briefly describe all the steps and phases
of the proposed DCCD clone detection architecture. The
proposed work is the hybrid technique of clone detection for
large-scale systems, in which we have applied many screening
filters to retrieve exact clone files from big code bases. Clone
detection process comprises of many phases, where each
next phase depends on the previous phase and builds on the
outcome of the previous phase. There are four main phases
in our clone detection approach as shown in Fig 1. Fig 2
shows the technical view of preprocessing and normalization
process. The left side of Fig 2, correspondence between an
original code fragment and the preprocessed and normalized
code fragment is visualized. On the right side of Fig 2, the
indexing entities and chunk properties have been shown, where
MD5 are the hash values of the prefix and suffix sequence
of statements, of the source code file. The reason we used a
sequence of statement during indexing instead of individual
statement is that the sequence of statements are more unique
and identical. FNV values are the 10 hash values per division

DOI reference number: 10.18293/SEKE2018-117 1

354

Fig. 1: DCCD System top level view

Fig. 2: The original source code (left), its normalization
(middle) and indexing info (right)

of a file. The Chunk properties are the feature, which we use
for comparison of two files.

A. DCCD Preprocessing and Normalization

This is the first phase, which removes uninteresting and
unwanted pieces of codes from source files. There are three
major processes of this phase. (a) It reads source code files
from disk and splits the code into tokens. (b) Remove all
uninteresting pieces of code from the source code files. (c)
Normalization is performed on these tokens. These tasks have
been explained below in detail.
Loading: It reads the selected project files from the hard disk
and load into RAM for further processing.
Transformation: In this task, we select the language type of
project and consider the related source code files of that project
and ignore all unwanted files.
Tokenization: After full transformation of source code into a

byte stream, we start tokenizing the code sequence. The main
purpose of this process is to organize source code in tokenized
form line by line. Then lexical analyzer uses each traversal at
the same time to tokenize. Finally, the corresponding token
sequences are generated and stored in memory.
Normalization: During normalization, we delete the unwanted
tokens, comments, spaces, import libraries and the tokens
which do not have any effect on the source code.
Chunk Formation: After token normalization, we initialize
an empty entity set (chunk), each attribute in the entity set
initialized as null. We use this formation to make chunk ready
to store Elements (feature), meanwhile, we identify the size
of the chunk. After performing this task, we able to have
preprocessed code, in which identifiers replaced with ID plus
numbers (starts from 0); a string replaced by an empty string;
fixed string with some identified characters; floating types with
0, and boolean values into true as shown in Fig 2.

B. Feature Extraction

This phase is the core part of our clone detection technique
because these extracted features help us to detect code clones.
Feature extraction basically involves reducing the amount of
code to describe a big code base by extracting features from
it. This phase consists of many steps, some of them performed
in parallel and some of them performed in pipeline. The left
side of Fig 3 shows the flow of each process into 5 steps,
the right side displays the HBase entities, which we extract
and store into HBase, i.e. Row_key, Origin_id, Elements,
Units and All.

Step 1:This step actually gets the source code project files
from code repository in pipeline. The source code of these
files further converted into bytecode by using preprocessing
and normalization phase.
Step 2: In this step, we use MD5 hashing algorithm as a
feature extraction from the source file to differentiate the
uniqueness of every file. MD5 encrypt the prefix 15 token
statements and suffix 15 token statements of every source code

355

Fig. 3: Feature extraction from source code files

file. The reason to use 15 tokens of prefix and suffix is to define
a unique signature set of every source file.
Step 3: In this step, we extract another feature from the source
code files by using FNV (Fowler-Noll-Vo)1 hashing algorithm.
The reason we use FNV is that it quickly hashes the large
amounts of data with a small conflict. The FNV hash has
been generated for every token of the source file.
Step 4: In this case, we collect 100 hash values in total
then add all of these values into one single value (long
integer). These FNV hash values actually represent the overall
characteristics of a file.
Step 5: The final step of feature extraction is to creating
chunks on the basis of extracted features in previous steps.

C. Feature-Based Index Creation

Indexing allow to find all clones against a single file or for
an entire system. Meanwhile it allows to update index info,
when files are removed, modified, or added. Indexing based
on feature extraction is the main data structure in our code
clone detection technique. The index creation process is very
flexible, fast, accurate, easy to maintain and upgradeable. We
can update, delete or edit index information from HBase of
any file at any time. Meanwhile, we can keep track and retrieve
the index information of any file in less than a microsecond.
The indexing data consists of following a list of labels, which
describes the entities of HBase.
Row_key: It is MD5 hash value of the prefix (H1) and suffix
(H2) statements of the source code files.
Origin_id: It is the file path or location of a file.
Element: It is 100 FNV hash values of a file.
Units: It is the total size of tokens inside the concerned file.
All: It is the sum of 100 FNV hash values.

To build an index of big code, we used Hadoop distributed
framework. There are 7 systems in the cluster, one Master
(Intel i7, 32GB) and six Slaves (Intel i5, 16GB). To perform
experiment, we built an index of almost 27 TB of source

1http://www.isthe.com/chongo/tech/comp/fnv/index.html

Fig. 4: MapReduce view for clone retrievals

code (16 TB C/C++, 10 TB JavaScript and 1TB of Java).
This collection of source code for indexing was consisting of
1,039,260 projects, 885 million files and 324 billion of LOC.

D. Code Clone Detection and Retrieval

This is the final phase, in which we retrieve and display the
similarity between systems at different level of granularities,
i.e. method level, chunk level, file level and project level.
During detection, we filter, extract and retrieve all cloning
objects, which meets the defined cloning filter conditions
(Filter-1,2,3,4) as shown in Fig 4. The mapper (map reduce)
retrieves all code clones and calculates the fraction of all files
in the index, which at least contained one clone. We extract
all clones against every single file of the test project.

In the first filter, the detector detects all the cloning files
from big code repository by comparing indexes, which have
the same Row_key (M1 hash $ M2 hash) values, where M1
is the hash value of prefix token statements and M2 is the hash
value of suffix token statements. Then, we apply another filter
to get more abstract cloning files from large scale code. In this
process, we compare the sum of 100 FNV hash values (All)
in the index database, which were stored in HBase during the
building of index of big code. We continue applying filters to
get abstract scale code base from big code. In next filter, we
compare the 100 FNV hash values (Elements) of the test file
in the index and retrieve the resulted clone files. This Element
entity of index consists of the 100 FNV hash values. Finally,
after getting the abstract cloning files, we further evaluate them
for exact clones by using Minhash algorithm. According to the
idea of Minhash algorithm, the similarity can be calculated by
the following formula. Similarity (A, B) = (A ∩B / A U B).
Where A ∩B is the number of code fragments, which are
same in file A and in file B, A U B represents the total
number of different code fragments in file A and in file B.
In last step of detection and retrieval of code clone files.
The detector uses SSH (Secure Shell) protocol to send, to
be tested files in distributed environment to every attached
node in the cluster. These files divided into chunks, generating
the md5 hash values of defined chunks size (adjustable) and
perform the further comparisons to detect exact clones. After
getting same code fragments the detector evaluates the results,
combined them and display to the users.

356

TABLE I: Building Index Results

Language Size Time (hours) No of Projects No of Files (millions) LOC (billions) Query Response per file (sec)

C & C++ 16 TB 135 548,150 493 207 1.30
Java 1 TB 6 17,822 14 4 0.75

JavaScript 10 TB 65 473,228 378 113 0.95

Configurable Threshold Value: The threshold value is fully
configurable by the user. It is also possible to detect clone
fragments at different level of granularities, i.e. chunk level,
method level, file level and project level. We note that we
found the precision and recall to be optimum at 70% threshold.
If we set threshold value high than 70%, the retrieved results
will be more of Type-3, but it will be very less effect on Type-1
and Type-2 clones.

III. CASE STUDIES AND RESULTS

In this section, we summarize the implementation and
results of our proposed technique (DCCD) for batch clone
detection and distributed clone detection in big code. Here
are different case studies and RQs (research questions) on
collection of big code, indexing, response time, detection of
clones and their results comparison. Here are the main RQs,
we formulated in our study:

• RQ1: How is the speed of index creation and how much
storage space does it occupy in memory?

• RQ2: In what semantics DCCD produce better results as
compare to previous state-of-the-art methods?

• RQ3: Does DCCD support partial level and full level
similarities detection?

• RQ4: Is the DCCD technique scalable and efficient as
compared to other clone detection techniques?

A. Collection of Source Code

To perform the assessment test on DCCD, the big code was
required for our source repository. We collected almost 40 TB
(C & C++: 20TB, Java: 10 TB, JavaScript: 10 TB) of source
code. Our big code collection was consisting on thousands of
projects, millions of project files and billions of LOC.

B. RQ1: Indexing Speed and Storage

Hadoop distributed environment is used to build an index
of large scale system in a fast and efficient way. There were 7
machines (1: Intel i7, 32GB and 6: Intel i5, 16GB) in Hadoop
environment. But only 5 Machines used for performing pre-
processing and building index simultaneously. Table I shows
the indexing results of 27 TB source code. The total indexed
information size is almost 3 TB of 27 TB source code, which
is quite small in size as compare to Benjamin [4] technique
(3 times of original system).

C. RQ2: DCCD vs State-of-the-art Methods

In a comparison of old preprocessing, indexing and clone
detection techniques, our approach is much faster as shown
in Table II. In Benjamin [4] technique, they used 100 Google
machines to build 73 million LOC source code in 3 hours on

Intel Xeon processor with 3GB RAM, which was 86 times
faster than CCFinder [5] technique. In our approach, we just
spend about 45 minutes to build the same amount of source
code (73 million LOC) using 5 distributed systems (Intel
i5, 16GB). CCFinder processed 400 MLOC on 80 machines
(Pentium-4:3Ghz, 1GB RAM) in 51 hours, in our case we
processed 400 MLOC in almost 5 hours on a single machine
(Intel i5, 16GB). CCFinder [5] and Benjamin [4] just detected
Type-1 and Type-2 clones. The most important achievement is
that while they only detect Type-1, Type-2 clones. We detect
all three types of clones in less time with big code, even though
it was very challenging.

TABLE II: Build Index Speed Comparison

Technique Machines LOC(Million) Time(Hours) Clone Types

CCFinder 80 400 51 T-1, T-2
Benjamin 10 73 3 T-1, T-2
DCCD 5 3300 6 T-1, T-2, T-3

D. Batch Clone Detection

This case study shows that our feature extraction approach
in the case of batch clone detection produces very good results.
We used two open source projects of C and Java language as
test projects. In the comparison of our technique (DCCD) with
others techniques, i.e. Suffix-tree and Benjamin, the execution
time of our approach is quite fast as shown in Table III. For
each of the testing systems, DCCD is fast and meanwhile, it
detects 3 types of clones, which is not possible in other 2
techniques.

TABLE III: Clone Detection Execution Time Comparison

Techniques Jabref Linux-Kernel Clone Types

Suffix-tree 7.3 sec 166 min 13 sec T-1, T-2
Benjamin 6.7 sec 47 min 29 sec T-1, T-2
DCCD 5.2 sec 20 min 40 sec T-1, T-2, T-3

E. DCCD (Distributed Code Clone Detection)

For the scalability and performance evaluation of our plat-
form & algorithm to a large code base. Clone detection was
performed through MapReduce, which retrieves all clones and
calculates clone coverage for all project files in the index.
In addition, to evaluate the scalability for ultra large code
scale systems, we selected some subject systems including,
e.g. Linux 2.6.33, Harvey, Cinder, PostgreSQL, OpenCV and
Arduino. The detection processed 16.5 MLOC of C /C++
code of 37,398 files. In our experiment, we applied different
filters of code clone detection method on every test project,
the graphical representation have been shown in Fig 5.

357

TABLE IV: Detection Results Against their Files, LOC, Time and Clone Types

Test Projects Total Files LOC Detection Time Type-1 Clones Type-2 Clones Type-3 Clones

Linux 2.6.33 25,717 11,267,973 3 hours 20 min 1867 1443 3031
Harvey 3,761 1,307,197 22 min 37 sec 1460 546 917
Cinder 2,955 1,180,935 14 min 25 sec 1127 157 307

PostgreSQL 1,906 1,332,103 17 min 15 sec 889 356 373
OpenCV 2,379 1,141,501 13 min 48 sec 273 63 88
Arduino 680 277,710 9 min 33 sec 62 25 69

TABLE V: Retrieved Results Against Each Filter

C&C++ repository info: (Code: 16 TB, Files: 493 Million,
LOC:207 billion)

Test Projects Filter-1 Filter-2 Filter-3 Filter-4

Linux 2.6.33 99,031 95,471 78,570 66,034
Harvey 82,013 51,492 35,301 31,101
Cinder 57,788 37,031 25,701 13,876
PostgreSQL 40,371 27,096 19,811 14,503
OpenCV 17,359 10,782 8,703 5,609
Arduino 10,093 7,182 3,935 1,808

Fig. 5: Graphical representation of Table V

Table IV shows the test projects against their total number
of project files, LOC, detection time and a number of clones
of Type-1, Type-2, Type-3 in each testing project.

F. RQ3: Detection of Full Level and Partial Level Similarities

During full application similarity detection, we detected
almost all cloning files from our big code base repository
against our subject system entitled Linux-Kernel as the results
have been shown Table IV. In the case of partial similarity
detection, our approach successfully found the systems from
code base, which are sharing some source files or part of their
source codes. Both full and partial level of similarity detection
basically requires finding the similar code fragments in source
code.

G. RQ4: System Scalability and Efficiency

The execution time actually scales with the size of processed
code (LOC) by a tool. As we used MapReduce model for
parallel and distributing processing in a cluster, which increase
the scalability and efficiency of our approach, meanwhile it
is very cost effective and affordable solution. The DCCD

approach is able to scale 324 billion LOC, as it has been
tested. The DCCD execution time of indexing and detection is
quite faster than other techniques [6]. It is the only technique
which has detected Type-1, Type-2 and Type-3 clones from
big code source repositories of 27 TB. As the cluster was also
used for other purposes, so we measured the time based on its
overall load. The results from these case studies show that our
proposed approach is very capable of supporting distributed
code clone detection and batch clone detection in real time
environment for big code bases.

IV. RELATED WORK

Recently, many clone detection approaches have been de-
veloped for small scale and large scale systems [7] [6] [8]
[9] [10] [11] [12] [13] [14] [15] [16] [17] [18], which detects
clones on different level of granularities. Bundle of code clone
detection techniques even for Java Bytecode [19] already have
been proposed and implemented [20] [21] [22]. Their results
and method have been employed by code clone management
tools [23]. Some methods were implemented and embedded in
programming platforms, for example, SimEclipse (clone detec-
tor plugin), Visual Studio and so on [24]. NICAD [25] by Roy
is also considered as hybrid approch. NICAD technique uses
Longest Common Subsequence algorithm to compare lines of
source code [26]. The lexical approaches include CCFinder
[5] by Kamiya, CP-Miner by Zhenmin, Boreas by Yong and
Yao, FRISC by Murakami, and CDSW by Murakami [20] [27].
The token matching suffix tree based algorithm was used by
CCFinder to find out all similar token sequences. Recently
there is a tool SourcererCC [24], which performs code clone
detection to big code but data set is not big as compared
to DCCD, and it is not distributed. Meanwhile we explored
different syntactical approaches, i.e CloneDr et al., Wahler
et al., Koschke et al. [27], Jiang et al. Hotta et al. Mayrand
et al, Kontogiannis, Kodhai, et al. Abdul-El-Hafiz, Kanika et
al. [20] [2]. Metric-based [28] need parser to obtain values
of metrics, and even it is possible that two code fragments
having same metric values maybe not similar code fragments.
CONQAT [29] [30] considered as hybrid, clones are detected
in main three phases. During our review study in this field, we
explored some important semantic techniques, i.e. Komondoor
and Horwitz (PDGs using CodeSurfer), Duplix (PDGs) by
Krinke et al., GPLAG (PDGs using CodeSurfer) by Liu et
al, Higo and Kusumoto (PDGs using CodeSurfer), ConQAT
(Suffix-tree-based, Token) [4], Funaro (AST) and Agrawal
(Tokens) [20]. PDG based techniques are not scalable for large

358

scale systems [23] [29], because it needs a PDG generator and
graph matching, which is little bit expensive.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a Distributed Code Clone Detec-
tion (DCCD) technique for token-based code clone detection,
which retrieves clones in an efficient way. It exploits an index
of source code to achieve the scalability and maintenance of
large scale project repositories for big code. The index of 27
TB source code (C, C++, Java, JavaScript) has been built in
less than a month. To the best of our knowledge, this is the
first approach which has been implemented for large scale
systems, which is have been experimented on 27 TB of source
code, meanwhile it detects all 3 types of clones very efficiently,
especially Type-3 which was very challenging in large scale
system. DCCD has been achieved a high accuracy (87%) rate
in clone detection for large scale system. DCCD can be adopt
at industry level for the detection of clones in big code, which
is easily extendible and cost effective. For future concerns, our
next target is to extend the current work and continue building
a big index for other programming languages i.e. Python, Php,
Xml, C#, Vb, Cobol, Text, Sql, Matlab, Ruby, Ada. Meanwhile
we are considering to add additional functionalities related to
vulnerabilities detection in systems.

VI. ACKNOWLEDGMENT

This research was supported by Beijing National Research
Center for Information Science and Technology (BNRist), and
National Natural Science Foundation of China under Grant
Nos. 90818021, 9071803.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “An empirical study of function clones in
open source software,” in Reverse Engineering, 2008. WCRE’08. 15th
Working Conference on. IEEE, 2008, pp. 81–90.

[2] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, “Extracting
code clones for refactoring using combinations of clone metrics,” in
Proceedings of the 5th International Workshop on Software Clones.
ACM, 2011, pp. 7–13.

[3] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 476–480.

[4] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on. IEEE,
2010, pp. 1–9.

[5] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[6] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on.
IEEE, 2016, pp. 1157–1168.

[7] J. Svajlenko and C. K. Roy, “A machine learning based approach for
evaluating clone detection tools for a generalized and accurate preci-
sion,” International Journal of Software Engineering and Knowledge
Engineering, vol. 26, no. 09n10, pp. 1399–1429, 2016.

[8] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“Assessing code smell interest probability: A case study,” 2017.

[9] J. Svajlenko and C. K. Roy, “Fast and flexible large-scale clone detection
with cloneworks,” in Proceedings of the 39th International Conference
on Software Engineering Companion. IEEE Press, 2017, pp. 27–30.

[10] T. Hatano and A. Matsuo, “Removing code clones from industrial sys-
tems using compiler directives,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), May 2017, pp. 336–
345.

[11] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi, “Droidnative:
Automating and optimizing detection of android native code malware
variants,” computers & security, vol. 65, pp. 230–246, 2017.

[12] Y. Yuki, Y. Higo, and S. Kusumoto, “A technique to detect multi-grained
code clones,” in Software Clones (IWSC), 2017 IEEE 11th International
Workshop on. IEEE, 2017, pp. 1–7.

[13] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in Security and Privacy (SP), 2017
IEEE Symposium on. IEEE, 2017.

[14] F. Lyu, Y. Lin, J. Yang, and J. Zhou, “Suidroid: An efficient
hardening-resilient approach to android app clone detection,” in Trust-
com/BigDataSE/I SPA, 2016 IEEE. IEEE, 2016, pp. 511–518.

[15] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on. IEEE, 2015, pp. 131–140.

[16] Y. Dang, D. Zhang, S. Ge, R. Huang, C. Chu, and T. Xie, “Transfer-
ring code-clone detection and analysis to practice,” in Proceedings of
the 39th International Conference on Software Engineering: Software
Engineering in Practice Track. IEEE Press, 2017, pp. 53–62.

[17] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection across
architectures and compiling configurations,” in Proceedings of the 25th
International Conference on Program Comprehension. IEEE Press,
2017, pp. 88–98.

[18] C. Ragkhitwetsagul and J. Krinke, “Using compilation/decompilation to
enhance clone detection,” in Software Clones (IWSC), 2017 IEEE 11th
International Workshop on. IEEE, 2017, pp. 1–7.

[19] D. Yu, J. Wang, Q. Wu, J. Yang, J. Wang, W. Yang, and W. Yan,
“Detecting java code clones with multi-granularities based on bytecode,”
in 2017 IEEE 41st Annual Computer Software and Applications Con-
ference (COMPSAC), vol. 01, July 2017, pp. 317–326.

[20] A. Sheneamer and J. Kalita, “A survey of software clone detection
techniques,” International Journal of Computer Applications, pp. 0975–
8887, 2016.

[21] T. Zhang and M. Kim, “Automated transplantation and differential
testing for clones,” in Proceedings of the 39th International Conference
on Software Engineering. IEEE Press, 2017, pp. 665–676.

[22] H. Sajnani, V. Saini, and C. Lopes, “A parallel and efficient approach to
large scale clone detection,” Journal of Software: Evolution and Process,
vol. 27, no. 6, pp. 402–429, 2015.

[23] X. Cheng, H. Zhong, Y. Chen, Z. Hu, and J. Zhao, “Rule-directed code
clone synchronization,” in Program Comprehension (ICPC), 2016 IEEE
24th International Conference on. IEEE, 2016, pp. 1–10.

[24] V. Saini, H. Sajnani, J. Kim, and C. Lopes, “Sourcerercc and
sourcerercc-i: tools to detect clones in batch mode and during software
development,” in Proceedings of the 38th International Conference on
Software Engineering Companion. ACM, 2016, pp. 597–600.

[25] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in Program Comprehension, 2008. ICPC 2008. The 16th IEEE Interna-
tional Conference on. IEEE, 2008, pp. 172–181.

[26] J. R. Cordy and C. K. Roy, “The nicad clone detector,” in Program
Comprehension (ICPC), 2011 IEEE 19th International Conference on.
IEEE, 2011, pp. 219–220.

[27] A. Walenstein, R. Koschke, and E. Merlo, “Duplication, redundancy, and
similarity in software: Summary of dagstuhl seminar 06301,” Dagstuhl,
Germany, Dagstuhl, 2006.

[28] M. S. Aktas and M. Kapdan, “Structural code clone detection method-
ology using software metrics,” International Journal of Software En-
gineering and Knowledge Engineering, vol. 26, no. 02, pp. 307–332,
2016.

[29] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, “Gemini: Maintenance
support environment based on code clone analysis,” in Software Metrics,
2002. Proceedings. Eighth IEEE Symposium on. IEEE, 2002, pp. 67–
76.

[30] M. S. Uddin, V. Gaur, C. Gutwin, and C. K. Roy, “On the comprehension
of code clone visualizations: A controlled study using eye tracking,”
in Source Code Analysis and Manipulation (SCAM), 2015 IEEE 15th
International Working Conference on. IEEE, 2015, pp. 161–170.

359

A Hybrid System for Detection of Implied
Scenarios in Distributed Software Systems

Anja Slama
Department of Electrical and

Computer Engineering
University of Calgary

Calgary, Canada
anja.slama@ucalgary.ca

Fatemeh Hendijani Fard
Department of Computer Science

University of Calgary
Calgary, Canada

fhendija@ucalgary.ca

Behrouz Far
Department of Electrical and

Computer Engineering
University of Calgary

Calgary, Canada
far@ucalgary.ca

Abstract—Distributed software systems (DSS) are usually
open-ended systems used in different domains such as robotics,
energy, health, etc. Multi-agent system (MAS) are a sub-class
of DSS. In DSS, maintaining consistency between the system
iterations is a complex and expensive task that requires coping
with requirements changes and systems upgrading. The inter-
actions, complexity and decentralized communication between
components of the DSS may emerge an unwanted behavior.
An unwanted behavior, known as Emergent Behavior (EB) or
Implied Scenario (IS), could lead to irreversible damages. Thus,
detecting IS at an early stage of the system development is
needed to decrease the cost of maintaining the system. This work
focuses on verification of DSS that its requirements modeled using
Message Sequence Chart (MSC). The system verification focuses
on the detection of IS using two already proposed different
approaches. This article presents the combination of the two
approaches by improving the usability of the tool presented in
the first approach and the catalogue presented in the second
approach. This combination allows the detection of new implied
scenarios not detected using the cited approaches separately.

Index Terms—Distributed Systems, Multi-agent systems, Im-
plied Scenarios, Message Sequence Chart

I. INTRODUCTION

Distributed Software Systems (DSS) and Multi-Agent Sys-
tem (MAS) are used in a wide spectrum of domains. MAS
are a sub-class of DSS. The size of DSS as well as the lack
of central control together contribute to complexity of DSS’
behavior.
Scenario-based specification is used to model the interaction
between the DSS components that provide the overall system
functionality. As each scenario presents a partial specification
of the system, the identification of unexpected interaction
patterns may not be obvious. These unexpected patterns ex-
hibit system behaviors that do not conform to the system
requirement and design. These patterns are known as Implied
Scenarios (IS) or Emergent Behavior (EB) [1].
The detection of presence of implied scenarios will usually
lead to detect potential system failures at run-time that may
prevent irreversible damages to the system and reduce the
overall system development and maintenance cost. Thus, there
is a need for an analysis tool to inspect the interactions of the
components and their impact on the overall behavior of the

DOI reference number: 10.18293/SEKE2018-195.

system.
In this paper, we present a technique that combines two already
existing methodologies, which are based on the analysis of
Message Sequence Charts (MSC). This work aims to detect
potential ISs and alert the developer to address the issue
that does not conform to the concurrent nature of distributed
systems. The advantage of the combination of the two method-
ologies is to get benefit from the automatic analysis of the
MSCs using the LTSA tool [2], in order to detect the classical
types of IS and also those defined in the catalogue of implied
scenarios developed in our research group [3]. Unfortunately,
the two techniques in their current form are incompatible. In
this work, we compare both methodologies and we propose a
technique to exploit the results of the extension of the LTSA
tool considering the catalogue of implied scenarios.

II. BACKGROUND AND RELATED WORK

A. Preliminaries

In this section, we explain the different types of implied
scenarios and we review the concepts used in this work.

a) Implied Scenarios (IS): An implied scenario is a
behavior of the distributed system that does not conform to the
system requirements. We can investigate the system behavior
in two levels: component level, and system level [3]. For the
component level, the implied scenarios can be categorized into
four main classes:

• CLEB-I (Shared states)
The existence of a shared state of one component
in different scenarios. The states occurring after these
shared states make the behavior of the component non-
deterministic.

• CLEB-II (Respond to different components)
When a component receives the same message from
two other different components, bringing it to the same
state, an implied scenario could occur if the component
receiving the messages loses track of the senders or
receivers’ information. In this case, the component could
be confused in which MSC to proceed.

• CLEB-III (Local branching)
This could occur when the component is active, i.e. can

360

initiate sending a message, in one of the MSCs included
in the branch of its high level MSc (hMSC) and where
no condition is specified to trigger its functionality in the
next MSC.

• CLEB-IV (Race conditions)
The race condition occurs when the behavior of the
component depends on the order of receiving messages
from other components.
b) Message Sequence Chart (MSC): Message Sequence

Charts (MSCs) are usually used to formalize and model
the requirements of distributed software systems. MSCs are
standardized by telecommunication standardization of the In-
ternational Telecommunication Union (ITU). It models the
interaction between the system components [4].

c) Labelled Transition System Analyser (LTSA): LTSA
is a tool used to automatically check and analyze models in
order to confirm the expected behavior from the designer and
implementer’s viewpoint [5].
LTSA can translate the MSC chart to Finite State Processes
(FSP) definition, a form of state machine description, used
to draw the correspondent states machine. This tool offers
different features to support verification of properties including
safety and progress check [6].

B. Related Work

Among the model-based analysis approach, many re-
searches have been performed so far. Process divergence and
non-local branching choice were identified as under specifi-
cation in MSC that could cause IS [11]. This research has
been extended by generating state machines from the scenario
specification in order to detect implied scenarios [12]. The for-
mal methods tool, Spin, has been introduced to verify models
for distributed software design [13]. Another approach aimed
to detect implied scenarios considering the order between the
events specified in the scenario specification [14]. In another
work causality among events and using ontology to detect IS
has been studied [15], [16].
Fard proposed a catalogue to categorize IS according to their
reason of occurrence and devise the solution repositories
accordingly. This methodology was based on state machines
and social network analysis [3].

III. METHODOLOGY

In this work, we use the LTSA [2] and the catalog of
implied scenarios [3] together. In the following, we compare
the effectiveness of each as well as our approach that combines
both, to find out implied scenarios.

A. Modeling System behavior using MSCs

The first step is modeling system interaction in the form
of MSCs. The MSCs are translated to Finite State Processes
(FSP) in order to model the required behavior and then
compiled in the form of Labelled Transition System (LTS). For
each component, the state machine of the parallel execution of
the component FSPs is generated. The approach behind this
phase is fully described in [2].

B. Detection of Implied Scenarios
Based on the generated FSMs, a verification of the existence

of implied scenario is realized based on the LTSA tool. More-
over, to detect further type of implied scenarios, we analyze
the traces generated by the LTSA taking into consideration the
catalogue of IS. The method used to detect IS in this latter
is based on extracting identical states for each agent from the
send matrices obtained from the MSCs [10].
To detect the different type of ISs, explained in section II.A,
we start by analyzing the set of shared states of the process
detected by the LTSA tool. Performing a progress and a
safety check on a selected component of the system, the
tool generates the related trace based on the MSC modeling
messages. The analysis consists of fetching the pattern defined
by the catalogue to detect the IS.

IV. EXPERIMENT
A. Objectives and research questions

In this work, we seek to answer the following questions:
• RQ: How effective are these approaches to detect Implied

Scenarios? We apply the approach on three case studies
and we compare the number and the type of ISs detected
based on the same case studies. The type of ISs corre-
sponds to the classes of IS presented previously in the
section II.A.

B. Case studies specification
To answer the research question, we use and evaluate the

three case studies presented below;
a) Fleet Management System: The requirements of the

Fleet Management System are locating drivers, considering
different itineraries and approximately calculating the depar-
ture or arrival time for a minimum commute time [8]. The
requirements are demonstrated in Fig. 1 to 4

b) Greenhouse System: This case represents the interac-
tion between the agents of the Greenhouse Multi Agent System
to control the greenhouse’s environment by managing the
available resources. The modeling of this system is composed
by two MCSs as presented in [8].

c) Online Auction System: This case study represents
interaction between the six agents (Controller, Auctioneer,
Registrar, Seller, Buyer and Credit Associate) in order to
assure the sell and the buy of books online according the rules
defined by the auction hosting authority [9].
Table 1 is a recapitulative table of the case studies considered
in this work.

TABLE I
SUMMARY TABLE OF THE CONSIDERED CASE STUDIES

Case Study # MSCs # Transitions # Processes
Feet Management 4 37 8

Greenhouse 2 20 8
Online Auction 6 100 6

C. Evaluation measurement
We use two evaluation measurements which are the type of

implied scenarios according to the catalogue and the number
of implied scenarios detected.

361

Fig. 1. MSC M1-Schedule management

Fig. 2. MSC M2-Prediction and time estimation

Fig. 3. MSC M3-Reschedule request by Agent

Fig. 4. MSC M4-Reschedule request by Processor

D. Procedure

The experiments conducted in this study consist of the
detection of implied scenarios from the system modeling.
Fig. 5 shows the different components of the system used
during this process.

The verification process of the system consists of modeling
graphically the system in the form of MSC using LTSA-MSC
[17]. MSCs are converted to an FSP specification. LTSA tool
checks the system for implied scenarios and safety violation
based on this latter. The next step consists in analyzing the
traces produced by the LTSA tool to detect further implied
scenarios.

Fig. 5. Different components of the LTSA tool used during the process of
detection of IS

E. Results

To answer the research question, we compare the number
and the type of IS detected. Table II shows the results.

TABLE II
THE DETECTED ISS IN FLEET MANAGEMENT SYSTEM

Type/Approach Uchitel Fard Combined approach
CLEBI No IS found No Yes
CLEBII No IS found Yes Yes
CLEBIII No IS found No No
CLEBIV No IS found No No
Deadlock No deadlocks/errors N/A Yes

We apply the same procedures on the other case studies
presented in Sect.IV.B to get the number of IS detected in
each use case as shows the Table III.

TABLE III
THE NUMBER OF IMPLIED SCENARIOS DETECTED IN EACH CASE STUDY

Type/Approach Uchitel Fard Combined approach
Feet Management System 1 1 3

Greenhouse System 1 1 3
Online Auction System 1 N/A 4

Fig. 6 shows the relation between the number of IS detected
and the number of communication messages between the
different processes. According to [18], there are a strong
correlation between the number of detected IS and the number
of messages. Whereas, there are a negative correlation between
the number of implied scenarios detected and the number of
processes. The probability of emergence of ISs is related to
the grow of systems in complexity.

F. Discussion

Table III summarizes the number of detected ISs in the
considered case studies. The efficiency of our work to detect

362

Fig. 6. Correlation between the results and the input data

ISs is based on a hybrid ensemble of the two previous
approaches. We show that this method has the ability to detect
more IS than Uchitel’s and Fard’s approaches in the three
case studies. The reasons are that we take advantage of the
automatic detection of shared states generated by the LTSA
tool in order to facilitate the detection of EBs defined by
Fard’s work and that the approach of this latter do not detect
deadlocks. Additional case studies may be needed to build a
stronger database of the anti-patterns. By combining the two
methodologies through the case studies, we have shown that
we can achieve more efficiency in term of the number and
type of Implied Scenarios detected.

G. Threats to the validity of the study

The approach proposed in this work is based on the LTSA
tool. The traces generated by the LTSA tool directly impact the
number and the type of IS detected. Testing the LTSA tool, we
found out that the number of states generated is reduced and
limited to a maximum number set by the tool itself to avoid
the explosion of states. In future work, we have to further
investigate the effect of reducing the states on possibly missing
some of the implied scenarios. Moreover, the differentiation
between asynchronous and synchronous communications is
not considered.

V. CONCLUSION AND FUTURE WORK

The detection of implied scenarios in requirement and
design phase is important for several reasons such as reduction
of the project cost, time as well as the prevention of the
occurring of unwanted behavior that could have irreversible
damages to the systems environment and/or users. Assuring
conformity of the system behavior to its requirements is not
a trivial task in open ended systems. Therefore, a tool to
maximize the detection of IS before the implementation is
an immediate need. In this work, we targeted the detection of
a greater number of ISs by combining two existing method-
ologies. The first challenge, was the fact that the explosion
of states generated by the LTSA while defining different
relation between the MSCs composing the system. The second
challenge was to prove that the detected ISs form the system
modeling really exist when monitoring the software if the
system is developed and we are keen to work further on this
challenge in future. Our overall goal is to automatically detect
implied scenario at the requirement level using various forms

of communication diagrams. Our technique was a combination
of the two existing approaches. We are currently working on
a platform for verification, testing and monitoring multi-agent
systems using the JADE platform. We plan to extend this work
by integrating the generation of the MSCs of the system from
the execution trace or from the code within this tool. Moreover,
we target the implementation of a plugin for Eclipse IDE that
graphically shows the implied scenarios on top of the MSC
diagrams.

VI. ACKNOWLEDGMENT

This work is partially supported by a grant from NSERC,
Canada.

REFERENCES

[1] J. Chakraborty, D. D’Souza, and K. N. Kumar, ”Analysing message
sequence graph specifications,” in Lecture Notes in Computer Science,
2010, vol. 6415 LNCS, no. PART 1, pp. 549-563.

[2] S. Uchitel, ”Incremental Elaboration of Scenario-Based Specifications
and Behavior Models Using Implied Scenarios,” 2003.

[3] F. H. Fard, ”Detecting and Fixing Emergent Behaviors in Distributed
Software Systems Using a Message Content Independent Method,”
UNIVERSITY OF CALGARY, 2016.

[4] S. A. Chernenok and V. A. Nepomniaschy, ”Analysis and verification of
message sequence charts of distributed systems with the help of coloured
Petri nets,” Autom. Control Comput. Sci., vol. 49, no. 7, pp. 484-492,
2015.

[5] G. N. Rodrigues, D. Rosenblum, and J. Wolf, ”Reliability Analysis of
Concurrent Systems Using LTSA,” in ACM/IEEE International Confer-
ence on Software Engineering (ICSE) Companion, 2007, pp. 63-64.

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer, ”LTSA-WS: A Tool for
Model-Based Verification of Web Service Compositions and Choreog-
raphy,” 28th Int. Conf. Softw. Eng. (ICSE 06), pp. 771-774, 2006.

[7] F. H. Fard and B. H. Far, ”Detection of implied scenarios in multiagent
systems with clustering agents’ communications,” Proc. 2014 IEEE 15th
Int. Conf. Inf. Reuse Integr. IEEE IRI 2014, pp. 237-244, 2014.

[8] F. H. Fard and B. H. Far, ”Detection and verification of a new
type of emergent behavior in multiagent systems,” in INES 2013 -
IEEE 17th International Conference on Intelligent Engineering Systems,
Proceedings, 2013.

[9] F. H. Fard and B. H. Far, ”A method for detecting agents that will
not cause emergent behavior in agent based systems - A case study
in agent based auction systems,” in Proceedings of the 2012 IEEE
13th International Conference on Information Reuse and Integration,
IRI 2012, 2012.

[10] F. H. Fard and B. H. Far, ”Detecting a certain kind of emergent behavior
in multi agent systems applied on MaSE methodology,” Can. Conf.
Electr. Comput. Eng., pp. 03, 2013.

[11] H. Ben-Abdallah and S. Leue, ”Syntactic detection of process diver-
gence and non-local choice in message sequence charts,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 1217, pp. 259-274, 1997.

[12] H. Muccini, ”Detecting Implied Scenarios Analyzing Non-local Branch-
ing Choices,” in International Conference on Fundamental Approaches
to Software Engineering, 2003, pp. 372-386.

[13] G. J. Holzmann, ”The Model Checker SPIN,” Ieee Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279-295, 1997.

[14] I. G. Song, S. U. Jeon, A. R. Han, and D. H. Bae, ”An approach to
identifying causes of implied scenarios using unenforceable orders,” Inf.
Softw. Technol., vol. 53, no. 6, pp. 666-681, 2011.

[15] Mousavi Abdelmajid, ”Inference of emergent behaviours of scenario-
based specifications,” University of Calgary, 2009.

[16] M. Moshirpour, ”Model-based Analysis of Software Requirements for
Distributed Software Systems,” 2016.

[17] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, LTSA-MSC: Tool
support for behaviour model elaboration using implied scenarios, vol.
2619. 2003.

[18] R. Richard Taylor, EDD, ”Interpretation of the Correlation Coefficient:
A Basic Review.” JDMS, 1990.

363

A structured stochastic model for software project estimation in Waterfall models

Ildo Massitela ∗, Joaquim Assunção †, Alan R. Santos ∗, Paulo Fernandes ∗

∗ PUCRS, School of Technology, Porto Alegre, Brazil
† UFSM - Department of Applied Computing - Santa Maria, Brazil

∗ {ildo.massitela, alan.ricardo}@acad.pucrs.br, † joaquim@inf.ufsm.br, ∗paulo.fernandes@pucrs.br

Abstract
Evaluate team’s performance on long-duration projects can be a
challenge. It relies on human expertise to perform estimations,
which can generate uncertainty and dependency of experienced spe-
cialists. Statistical techniques, such as modeling and simulations,
are suitable options as tools to support projects estimations. Our
goal in this paper is a formal mapping of the main Waterfall model
characteristics to stochastic model to predict performance indices
of teams such as the real working time.

1 Introduction
Simulations of teams’ performance can help in solving a se-
ries of issues concerning software development, yet estima-
tions and analysis for non-short projects can be a challenge
[8]. Considering all the project phases, from extracting re-
quirements to deliver and maintain a product, involves care-
ful planning and resources management. Thus, estimations
for a project, play an important role in any medium or big
project [7, 10].

Traditional software development methodologies, also
known as prescriptive approaches (such as Waterfall), claim
their support to comprehensive planning, detailed documen-
tation, and expansive design. Agile approaches have gained
significant attention from the software engineering commu-
nity in the last few years. Unlike traditional methods, Agile
methodologies employ short iterative cycles and rely on tacit
knowledge within a team as opposed to documentation [1].
In this context, traditional software development approaches
will still have their need in large, long-lived projects that
have particular safety, reliability or security requirements
[1]. Also, Waterfall projects tend to have much longer re-
leases than Agile methods, which makes the estimation of
resources even more important.

Performance evaluation for software development
projects has become a challenge for both industry and
academia. Theoretical models can be adopted as a tool to
analyze and to understand different dynamics on software
development process to help project leaders to perform a
better assessment on issues related to the development con-
text [6, 11, 7].

∗DOI reference number: 10.18293/SEKE2018-033

Characteristics, such as mixed teams, different levels of
expertise, different knowledge about the project etc., make
it difficult for accurate predictions [13, 5, 3, 12]. In such
cases, we may rely on stochastic techniques to represent such
apparently random situation. More specifically, a model that
uses known data as parameters and known behavior as its
structure. Such models should be able to simulate a team’s
activity, laying on probabilities to estimate its performance.

Although our model does not intend to be a complete so-
lution, we can well cover some of these key points by achiev-
ing probabilities through a structured stochastic model. Our
model relies on stochastic methods based on a structured for-
malism, which allows us to perform simulations efficiently,
adapt its parameters and scales the model itself depending on
the number of team members. This compact and adaptable
model can be used both to estimate and evaluate teams’ per-
formance. Moreover, we demonstrate the benefits of using
the Stochastic Automata Networks (SAN) formalism for the
modeling and evaluation of Waterfall development teams.

2 Estimation through stochastic models
A stochastic model is a structure which represents a
dynamic, and non-deterministic, system or phenomenon
through the use of statistical techniques. In our case, a struc-
tured modular model, which allows us to manipulate and up-
date the model for different scenarios easily. Such models
have a low cost to gain insights compared to the cost, risk or
logistics of manipulating a real system.

Our model relies on the stochastic description of the
events. With a structure representing a given team, we use
parameters caring information concerning the time effec-
tively spent by Junior, Standard, and Senior members. SAN
is a structured formalism which describes a complete system
as a collection of subsystems that interact with each other [9].
Its behavior is similar to a Markov formalism, except that it
is internally represented by a Kronecker descriptor and it al-
lows modular representations, which can be especially use-
ful to create compact representations. SAN models can be
solved using specialized tools such as PEPS [2].

364

3 The Model
Our model parameters data was collected through interviews
with a project manager at an IT company, a Waterfall project,
here in this work, named as project X . We used the data col-
lected to feed our model parameters. We use the expression
team members to describe the roles of developers and testers.

The model is composed of n automata representing n
team members; also, we use an abstraction of five different
states to describe the team, Working (W), Seeking solution
(S), Collaborating (C), Helping others (H) and Reworking
(R). Table 1 describes each state.

Table 1: Model states
State Description

(W)orking Execution of a given task by each member.

(S)eeking solution A team member trying to find a solution.

(C)ollaborating A synchronous contribution between 2 team
members, a member receive help or a mutual
collaboration is established.

(H)elping A synchronous contribution with benefit
only for another member, j.

(R)eworking A given team member reworking to solve a
problem in a given task.

We assume that a team member can be working (W) and
then stop due to the need of information or some necessary
condition for a task, we call this state Seeking solution (S).
Yet, when this team member is not working, sometimes
he/she is available to help others, be helped or exchange
knowledge about the problem; thus, the states Collaborating
and Helping are used to represent synchronous task between
two team members.

Helping (H) is a state that is achieved only when a
member i is helping another member without any benefit for
its own problem. Collaborating (C) is a state that represents
a member i being helped by another team member. When an
H activity ends, a member returns to seek a solution for its
problem. A C activity ends into two different possibilities,
which are: 1, a team member i can resume working on a new
task (going to W). 2, a team member i must return to fix an
already started task (R), i.e., to rework on a known problem.

For each automaton, five states are linked by a transition
associated with events that fire according to specific rates.
Those rates are assigned according to flexible parameters
based on the average working hours achieved, described by
the members of project X . For instance, as the event a is
related to an average rate indicating a member that stops
working to seek a solution. A frequency of once per day
is represented as 1/9, six times per day as 6/9, and so on
(Table 2). The event q is the opposite and has different taxes
due to the fact that a member can stop to seek a solution for
its problems or to help others.

Table 2: Collected average working hours per team member
Event Expertise Rate

ai

Senior τai = 1/9
Plain τai = 3/9
Junior τai = 6/9

qi

Senior τqi = 6/9
Plain τqi = 4/9
Junior τqi = 2/9

ri

Senior τri = 1/9
Plain τri = 1/9
Junior τri = 1/9

We evaluated the model using the project X data to
set the parameters, however the model parameters can be
adjusted and assigned according to different scenarios. For
instance, a Junior developer seeks a solution or support
more often than a Senior developer, and the combination of
professionals with different levels of expertise can be taken
into account to accurately describe each specific project
behavior. A team, formed by n members, is formed by a joint
network of n automata, each as illustrated on Figure 1. The
events that trigger transitions among the states are presented
in Table 3.

sij(1-γ)

W

R S

HC

dji
sij(γ)

ri ai

qi(1-γ)

dij
sji

q(γ)

Figure 1: Automaton A(i) describing possible activities of the
ith member in a team of n members, 0 > i, j ≤ n | i 6= j.

Each automaton is described by a set of states (W, S,
C, H, R) and a set of events associated with its transitions.
For the analysis task, we focus on the state W to get
probabilities concerning the estimated useful working hours.
More clearly, we consider the probability of a state W as the
productivity of each team member.

In this sense, to determine the rate of the synchronizing
events, we started with the following functions, which is
given by the expertise of a member, in conjunction with the
level of expertise of the other member seeking collaboration
(Table 5). So, the better a member is, the fewer this member
will be available at state S. However, once in S, the more
likely this member will help the others (Event di j). Also,
these members tend to solve problems faster, i.e., they leave
the collaboration state faster than those with lower expertise

365

Table 3: Model events
Event Description Rate

ai Team member i is stop working to seek for
the solution for a problem.

τai

qi Team member i has found a solution by
itself and is either resume working (with
probability γ), since its problem was not an
issue, or he/she is going to re-work (with
probability 1− γ) to fix his/her problem.

τqi

di j Team member i is either going to help team
member j (di j), or he/she is going to be
helped by team member j (d ji).

τdi j

si j A collaboration between team members i
and j is ended and, since i is being helped
by j, team member i is going to work or
re-work in his/her problem (si j), while team
member j is going back to seek his/her own
solution. Probability 1−γ defines if member
i will need to re-work.

τsi j

ri A team member i going to work after re-
work on a task.

τri

(Event si j). We first use temporary variables (β) to find the
rate set for these events:

β (si j) = τqi +(1− τq j) ... β (s ji) = τq j +(1− τqi)

β (di j) = τqi +(1− τq j) ... β (d ji) = τq j +(1− τqi)

These temporary variables are needed due to the exper-
tise level’s dependency on each team member pair of team
member concerned by each synchronous event. Imagine two
members, one that has half an hour per day to cooperate and
the other has three hours. Between these two members, the
cooperation time will be just half hour, which is the available
time concerning the busier member. Nevertheless, consider-
ing another member of the team, the odds of productive col-
laboration among members increases as the number of pos-
sible member pairs to collaborate increases. Therefore, we
use the cumulative sum of all β rates for starting these events.
Now, concerning a team with n members, and a member rep-
resented by an automaton A(i) with 0 > i, j < n | i 6= j, the
final values for the rates of synchronizing events d and s are
given by a cumulative sum of the β values:

τdi j = ∑
∀ j | j 6=i

β (di j) ... τd ji = ∑
∀ j | j 6=i

β (d ji)

τsi j = ∑
∀ j | j 6=i

β (si j) ... τs ji = ∑
∀ j | j 6=i

β (s ji)

Thus, the cumulative rate for all output events from S to-
wards C or H is given by: ∑∀ j | j 6=i τd ji . The same applies
for the synchronizing events departing from C. The cumu-
lative rate for events from C towards R and W is given by:
∑∀ j | j 6=i τsi j . Note that from H there is only one possible

transition that leads back to S. Once we have a team with n
members, we can define a model composed by n automata.
In such model, it is clear that each event with the member
indication j must represent all team members, but itself (i).
As for the probability to return to work (γ) or to re-work
(1− γ), the more senior a member is the higher will be γ .
For project X a Senior member has γ = 0.67, a Plain mem-
ber has γ = 0.44 and a Junior member has γ = 0.22.

4 Results
Our model target is the state W since it represents when
a team member is performing useful work. Thus, a total
working time, Ω, is multiplied by the probability of the
stationary probabilities of W . We previously have the real
project time and the estimated time, which were given by the
project members. Example, for the Requirements phase, the
estimated total time was 179.7 hours and the real, observed,
time was 192.8 hours. Our goal is to achieve a precision
as good as the original estimations made by the senior
members of the project. Thus, we calculate, for each phase
and for each member, the stationary probabilities; which
should retrieve a probability of a team member be effectively
working. Each of these probabilities is then used to get the
calculated working time of phase k (CWTk). The current
parameter makes a simple equation. Given:

• Ω, team members daily absolute working time;

• P(W (i)), the calculated probability of the ith team mem-
ber be actually working;

• D, the total days in the project;

• n, the total number of team members.

CWTk =
n

∑
i=1

Ω∗P(W (i))∗D

Our numerical analysis is obtained by the calculated
working time previously described. This is performed for
each project phase and for each team member. The model
results retrieves the calculated probability for each member.
The project phases are: Requirements, Prototype, Specifica-
tions, Development and Deployment.

Table 4: Probabilities achieved to the Requirements phase.
Analyst State Probability Analyst State Probability

Senior

W 66.4089

Junior

W 20.9505
S 10.6419 S 56.1932
C 2.6546 C 17.9955
H 17.9955 H 2.6546
R 2.2988 R 2.2060

Considering Table 4, the total time spent to this phase
is given by: Ω ∗P(W (i)) ∗D. Being Ω is a constant for the
project, 9 hours; and D is a constant for each phase. In the

366

first phase, 21 days were spent. Thus, one Senior and one
Junior Analyst is respectively:

Ω∗P(W (1))∗D = 9∗0.66∗21 = 124.7

Ω∗P(W (2))∗D = 9∗0.2∗21 = 37.8

The total time is the sum of all team members in
the phase, which makes 162.5 hours. Table 5 shows our
calculated estimations in hours compared with the actual
time and the project manager estimation.

Table 5: Project X , estimated versus calculated differences.
Project Phases Estimated Actual Calculated

Requirements 189 192.8 162.5
Prototype 63 61.5 61.1
Prog. specifications 144 138 168.4
Development 912 1069 1285.2
Documentation 171 213 213.7
Deployment 63 51 81.9

Despite a relatively poor performance for the deploy-
ment phase, we achieved a precision quite similar to the ac-
tual time, and sometimes better than the estimated values by
the project manager. These results indicate that this type of
approach can be used to support project leads and project
managers to evaluate waterfall projects before their execu-
tion.

5 Final Remarks
Given specific project data, this model can be extended to
more sites with different working hours, reworking probabil-
ities and average time spent in activities. The modeler needs
to understand more deeply the project and the participants’
profile to collect significant data from interviews, surveys or
historical data in companies databases. Indeed, we do not ex-
plore characteristics such as; the team expertise for a specific
task, the historical performance for each phase, the complex-
ity of the tasks and requirements, etc. Yet, these characteris-
tics can be added to adjust the model according to different
situations, therefore leading to constant quality and, possi-
bly, improving the accuracy. Nonetheless, the main contri-
bution of this work is a conceptual model for the analysis of
effectively working time in Waterfall software development
context.

Our model main parameter can be set according to the
scenario and previous experiences concerning the targeted
team. Despite limitations, our model is structured using
Stochastic Automata Network (SAN), which allows new
system compositions and behaviors by appending new states
and relationships among previously defined entities. As a
future work, we will identify characteristics in companies
with different sizes and different project types for tests with
our model and further research to improve it, which can lead
to a more detailed model for various projects.

References

[1] M. AWAD, A comparison between agile and traditional soft-
ware development methodologies, University of Western Aus-
tralia, (2005).

[2] L. BRENNER, P. FERNANDES, B. PLATEAU, AND I. SBE-
ITY, PEPS 2007 - Stochastic Automata Networks Software
Tool, in Proceedings of the Fourth International Conference on
Quantitative Evaluation of Systems (QEST ’07), Washington,
DC, USA, September 2007, IEEE Computer Society, pp. 163–
164.

[3] E. CARMEL, Global software teams: collaborating across
borders and time zones, Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1999.

[4] R. M. CZEKSTER, P. FERNANDES, AND T. WEBBER, GTA
express - A Software Package to Handle Kronecker Descrip-
tors, in Proceedings of the 6th International Conference on
Quantitative Evaluation of SysTems (QEST 2009), Budapest,
Hungary, September 2009, IEEE Computer Society, pp. 281–
282.

[5] S. FARAJ AND L. SPROULL, Coordinating expertise in soft-
ware development teams, Management Science, 46 (2000),
pp. 1554–1568.

[6] S. FERREIRA, J. COLLOFELLO, D. SHUNK, AND G. MACK-
ULAK, Understanding the effects of requirements volatility in
software engineering by using analytical modeling and soft-
ware process simulation, Journal of Systems and Software, 82
(2009), pp. 1568 – 1577. SI: YAU.

[7] M. I. KELLNER, R. J. MADACHY, AND D. M. RAFFO,
Software process simulation modeling: why? what? how?,
The Journal of Systems & Software, 46 (1999), pp. 91–105.

[8] A. MAYRHAUSER, Experimental Software Engineering Is-
sues: Critical Assessment and Future Directions: Interna-
tional Workshop Dagstuhl Castle, Germany, September 14–
18, 1992 Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1993, ch. The role of simulation in software engi-
neering experimentation, pp. 177–179.

[9] B. PLATEAU, On the stochastic structure of parallelism and
synchronization models for distributed algorithms, SIGMET-
RICS Perform. Eval. Rev., 13 (1985), pp. 147–154.

[10] R. SANGWAN, M. BASS, N. MULLICK, D. J. PAULISH,
AND J. KAZMEIER, Global Software Development Handbook
(Auerbach Series on Applied Software Engineering Series),
Auerbach Publications, Boston, MA, USA, 2006.

[11] S. SETAMANIT, W. WAKELAND, AND D. M. RAFFO, Using
simulation to evaluate global software development task allo-
cation strategies: Research Sections, Software Process: Im-
provement and Practice, 12 (2007), pp. 491–503.

[12] C. U. SMITH AND L. G. WILLIAMS, Software performance
engineering: a case study including performance comparison
with design alternatives, Software Engineering, IEEE Trans-
actions on, 19 (1993), pp. 720–741.

[13] A. TAWEEL AND P. BRERETON, Modelling software devel-
opment across time zones, Information and Software Technol-
ogy, 48 (2006), pp. 1–11.

367

Revisiting the Conclusion Instability Issue in
Software Effort Estimation

Michael Franklin Bosu1, Solomon Mensah2, Kwabena Bennin2 and Diab Abuaiadah1

1Centre for Business, Information Technology and Enterprise, Wintec, Hamilton, New Zealand

2Department of Computer Science, City University of Hong Kong, Hong Kong
{michael.bosu, diab.abuaiadah}@wintec.ac.nz, {smensah2-c, kebennin2-c}@my.cityu.edu.hk

Abstract—Conclusion instability is the absence of observing the

same effect under varying experimental conditions. Deep Neural
Network (DNN) and ElasticNet software effort estimation (SEE)
models were applied to two SEE datasets with the view of resolving
the conclusion instability issue and assessing the suitability of
ElasticNet as a viable SEE benchmark model. Results were mixed
as both model types attain conclusion stability for the Kitchenham
dataset whilst conclusion instability existed in the Desharnais
dataset. ElasticNet was outperformed by DNN and as such it is not
recommended to be used as a SEE benchmark model.

Keywords - Conclusion Instability; Software Effort Estimation;
Prediction model; ElasticNet; Deep Neural Network

I. INTRODUCTION

Software effort estimation (SEE) is part of the broader
discipline of empirical software engineering (EMSE) that rely
on evidence to make predictions about the estimated effort
required to complete software projects. The importance of
predicting software effort cannot be overemphasized as it has
effect on the estimated budget for software projects. Both the
research community and software engineering practitioners have
not been able to identify a frontrunner algorithm as several
factors such as datasets, experimental team, pre-processing
techniques, etc [1] are known to affect the outcome of these
algorithms. The challenge therefore is the ability to consistently
and uniformly present the results of empirical software
engineering models. The current research evidence indicates
several conflicting and confusing results especially with regard
to the validity of results as it changes with the aforementioned
factors. This phenomenon is known as conclusion instability.
Conclusion instability refers to the lack of consistent results
observed from software engineering experiments [1]. The cause
of this effect is attributed to multiple factors such as
preprocessing, different datasets, researcher bias, inadequate
reporting of research protocol and so on.

 The conclusion instability problem in empirical software
engineering unfortunately defeats or it is at variance to the goal
of science in general which is the ability of an effect to be
observed in multiple experimental conditions [1]. This has
affected the generalization of results leading to the discovery of
the “best” effort estimation algorithm being elusive.

There are two objectives for this study. First is to assess the
viability of an approach introduced in this paper to address “the
result interpretation issue” which is an aspect of the conclusion
instability problem. This will be done by assessing whether the
use of different prediction algorithms on a given dataset will
yield the same results. The second objective is to evaluate
ElasticNet as a benchmark SEE algorithm. Two classical SEE

datasets have been used in the development of effort prediction
models in this paper. We will adopt the same procedure
employed in our previous paper [2] by generating three effort
classes using the density quantile function.

This study applies two SEE modelling techniques on each
dataset to assess whether the results are classified into the same
classification band. The intention is to assess whether results
from multiple estimation models using the same dataset can be
classified as generating the same “good” or “bad” results. The
advantage of this is that, there will be no need to apply effect
size on the models, thus making it easier to interpret and
removing one layer of computation because effect size in itself
can also lead to conclusion instability when the modelling
technique is changed [1]. It is worth noting that we are not
comparing estimation models, rather we seek to investigate
whether the estimation results of multiple prediction algorithms
can be classified into the same band under the same
experimental condition (only the dataset changes). We will
subsequently assess ElasticNet as a potential benchmarking
SEE algorithm with the popular and highly efficient Deep
Neural Network (DNN) algorithm.

The rest of the paper is as follows. Section II presents the
literature review. Section III is about the method employed in
conducting the experiments. Section IV is the analysis of the
result and Section V is the discussion and conclusion.

II. LITERATURE REVIEW

Menzies and Shepperd [1] gave prominence to the
conclusion instability issue in an editorial of a Special Edition
of the EMSE journal in 2012. The authors explained conclusion
instability as the inability of software engineering experiments
to discover a certain effect which can be reproduced under
multiple experimental conditions such as the use of different
datasets, algorithms, researchers, accuracy measures and so on.
They [1] identified two major sources of conclusion instability
as bias and variance. Bias is said to measure the deviation
between predicted values and actual values. Variance on the
other hand is measured by the deviation between different
predictions of the estimators.

Turhan [3] outlined characteristics of SEE data that could
result in conclusion instability. Covariate shift is where the
distribution of the training set is different from the validation or
test sets and as such the model that was generated by the training
data is not able to predict the test data effectively as well as any
future project. Prior probability shift is where the distribution of
the explanatory variable of the training data and test data are

DOI reference number: 10.18293/SEKE2018-126

368

different. Other types of data shift problems are sample
selection bias, imbalanced data, domain shift and source
component shift

Menzies et al. [4] conducted a study using 158 SEE methods
based on COCOMO dataset features. It was realized that
“different datasets sources, different evaluation methods and
different random selection of data” led to different results at
each occasion which confirm the conclusion instability in SEE
methods. They however found four methods that consistently
provided better results than the others.

Mair and Shepperd [5] reviewed the result of studies that
compared regression techniques with analogy techniques for
software cost prediction. They discovered inconsistencies in the
result. They found no clear favourite technique as an equal
number of studies favoured either approach. They also observed
results being inconsistent in cases where even the same datasets
were used. This is one of the issues this study is attempting to
explain, whether the results were actually inconsistent or there
should be a new approach in interpreting the result.

Two research questions (RQ) are used to address the
objectives of this study:

RQ1: Do SEE models of different learning algorithms result in
the same effort class?
RQ2: How does the performance of Deep Neural Network SEE
models differ from ElasticNet SEE models?

III. METHODOLOGY

A. Dataset Description
Two classical datasets from the tera-PROMISE repository

(http://openscience.us/repo/) have been used in the development
of the SEE models. Though these datasets are old, we employed
them because they have become the benchmark datasets for SEE
studies. A brief description of these datasets is provided.

The Desharnais dataset was collected by Jean-Marc
Desharnais from ten organizations in Canada. The projects in
this dataset were undertaken between 1983 and 1988. The
dataset consists of 81 records and 12 attributes, with size
measured in function points. We used the 77 version of the
dataset as a result of 4 missing records. Summary statistics for
relevant features of the dataset are provided in Table 1.

Table 1. Descriptive statistics for Desharnais dataset

Feature N Min Max Mean Std.Dev Skew Kurt
TeamExp 79 0 4 2.27 1.34 -.042 -1.26

ManagerExp 78 0 7 2.67 1.52 .20 .07

Transactions 81 9 886 179.90 143.32 2.36 7.73

Entities 81 7 387 122.33 84.88 1.34 1.48

Envergure 81 5 52 27.63 10.59 -.11 -.28

PointsNonAjust 81 62 1116 287.05 185.11 1.67 4.16

Effort 81 546 23940 5046.31 4418.77 2.01 4.72

 The Kitchenham dataset was collected from American-
based multinational Computer Sciences Corporation (CSC).
This dataset contains information related to 145 software
development and maintenance projects that CSC undertook for
several clients.

The projects were undertaken between 1994 and 1999 with
10 attributes including the start date and estimated completion

dates. Summary statistics of the relevant features of the
Kitchenham dataset are provided in Table 2.

Table 2. Descriptive statistics for Kitchenham dataset

Feature Min Max Mean Std.Dev Skew Kurt
Actual_duration 37 946 206.45 134.09 1.93 6.12

AFP 15.36 18137.48 527.67 1521.99 10.92 126.70

Actual_effort 219 113930 3113.12 9598.01 10.87 125.64

B. Data Preprocessing

In order to ameliorate the problem of data quality such as
missing data, outliers and inferential data, the two datasets were
preprocessed in the following ways for effective and efficient
model construction.
 We observed all the instances per each dataset to eliminate
missing values. Only a handful of missing entries (4 instances)
were observed in the Desharnais dataset. Out of the 145 projects
in the Kitchenham, three projects were removed as they were
found to have missing entries. With the use of kernel density
plots and data trimming technique [6], outliers were identified
and removed. Cook’s distance was used in the identification and
treatment of influential data points during the model
construction. In this study, we realized that, these influential
data points identified yielded no negative effects on the models
when the datasets were normalized using the z-score
normalization technique as done in our previous study [2].
 We selected prior features/variables which are known prior
to the development of a new software project. Thus, with regard
to the Kitchenham dataset, we made use of the adjusted function
points (AFP) and project type as the independent variables and
actual effort as the dependent variable. With regard to the
Desharnais dataset, the independent variables selected are team
experience (teamExp), manager’s experience (managerExp),
programming language, number of entities, number of
unadjusted function points (pointsNonAdjust), number of
transactions and development environment (envergure). The
dependent variable from the Deshairnais is the development
effort variable measured in person-hours.

C. Effort Estimation Models

Two prediction models have been applied to the two studied
datasets. Deep Neural Network (DNN) and the ElasticNet
(ENR) algorithms have been used in the development of the SEE
models. ENR was found in our previous study [2] as a viable
benchmarking model. The ElasticNet proposed by Zou and
Hastie [7] is a regularization and variable selection technique
which helps in eliminating highly correlated predictor variables
from the estimation model.

We benchmarked the prediction results from the ElasticNet
model to a complex and robust prediction model, namely a Deep
learning model which yielded better prediction accuracy in a
previous study [8]. We constructed a DNN which makes use of
multiple hidden layers and an output layer with their respective
neurons to automatically learn from a set of project cases and
gives the resulting prediction for the target (in our case, the
software effort of new projects). The Levenberg-Marquardt
backpropagation optimization training function is employed to
update the weights of the neurons in the hidden and output layers

369

respectively. The hyperbolic tangent activation function is used
in each of the neurons for giving the respective outputs. We
followed the same experimental setup as done in previous study
[2] by using the leave-one-out cross validation for setting up
each of the prediction models.

In order to facilitate self-guidance in the interpretation of the
level of effort expended, we made use of the classification
scheme defined in Mensah et al. [2] to classify the results of
our modelling to the appropriate effort class. Software effort
classification is the process of categorizing estimated software
effort into its respective class. The scheme is based on historical
project datasets (historical data being the same as training set in
this study). A goal of the classification scheme is to facilitate
easy interpretation of the estimated software effort (YR) in the
context of existing organization data. In order to achieve these
levels of classification, we discretize the actual efforts of the
datasets into three classes (low, moderate and high) based on
the density quantile theory. This density quantile theory was
utilized because it gives rise to an optimal spacing selection
threshold values for categorizing the effort into their respective
classes [2].

The selected independent variables together with the
software effort (dependent variable) are used to setup the
prediction models. We denote the estimated effort values from
the models as Output (YR). The Output (YR) from the predictive
model is then classified into its respective class. The estimated
effort, Output (YR) are categorized into their respective effort
classifications. Thus, estimated effort values less than Ql are
classified as Low Effort and estimated effort values more than
Qh are classified as High Effort. Lastly, estimated effort values
falling within the thresholds [Ql Qh] are classified as Moderate.

D. Accuracy Measures

In order to evaluate the effectiveness of the SEE models,
Mean Absolute Error (MAE) and Logarithmic Standard
Deviation (LSD) accuracy measures have been employed.

MAE is a risk function that measures the average absolute
deviation of the estimated effort values from the actual or true
effort values. LSD is defined as the root of the average squared
sum of the deviations and the variances between the estimated
effort and the true effort. LSD uses the residual in the log-scale,
which is independent of size (i.e., homoscedastic). The LSD
measure of impurity was applied to the datasets. This index is
computed as the within-node variance, adjusted for frequency
or case weights (if any). MAE and LSD have been
recommended by Foss et al. [9] as a robust and reliable
performance measures in setting up SEE models.

Aside of the MAE and LSD evaluation measures, we also
considered the Yuen’s test and the Cliff’s delta (δ) effect size
measures as statistical and robust evaluation measures [6]. The
statistical test was done at 5% significance level. Even though
the Yuen’s test is a robust test statistic for assessing statistical
significance, it is not enough to make accurate assessment of a
tested hypothesis [6]. The Cliff’s δ effect size is chosen in
addition to the Yuen’s test since it yields an effective
computation measure irrespective of both the experimental and
control groups having different sample sizes. Again, it is not
affected by outliers and does not assume the sampling data to
follow any distribution. The rationale behind the Cliff’s δ effect

size is that, given two groups of observations without necessarily
following the same distribution, this effect size is able to
determine the amount of overlap between these two groups.

IV. RESULTS

We discuss the results of the SEE models built in this section.
We provide the classification of the software effort values using
the density-quantile function for the normalized/un-normalized
datasets in Table 3. Three classes (low, moderate and high) have
been created.

Table 3. Software effort classification based on Density-
quantile function

Dataset
Normalized data

Low Moderate High
Kitchenham 0 - 0.1295 0.1296 - 0.2628 > 0.2628

Desharnais 0 - 0.2995 0.2996 - 0.8870 > 0.8871

 Un-normalized data
 Low Moderate High
Kitchenham 0 - 846.2 846.3 - 2.9122 > 2.9122

Desharnais 0 – 2346.8 2346.9 – 6042.8 > 6042.8

RQ1: Do SEE models of different learning algorithms result in
the same effort class?

Table 4 presents the recorded losses of the estimated and
classified effort from the two learners across each
normalized/un-normalized dataset. Here, a ‘1’ denotes a correct
classification of the estimated effort and a ‘0’ denotes a wrong
classification. It was observed that the estimated effort from the
DNN model resulted in correct classification of the effort in both
cases of the normalized/un-normalized datasets (Table 4).

Table 4. Classification performance of predicted effort wrt to
number of losses

Dataset
Normalized data Un-normalized data

ENR DNN ENR DNN
Kitchenham 1 1 1 1

Desharnais 0 1 0 1

Thus, irrespective of applying data normalization technique,
we realized that the DNN resulted in correct classification of the
estimated effort values. Table 5 denotes the predicted effort from
the two learners for each dataset against the actual effort
benchmark.

Table 5. Actual vs. Predicted effort and their respective effort
classes

Dataset

Normalized data Un-normalized data

Actual
effort

Predicted effort Actual
effort

Predicted effort

ENR DNN ENR DNN

Kitchenham
0.2918

(H)
0.5048

(H)
0.3403

(H)
3113.1

(M)
2214.411

(M)
3128.0

(M)

Desharnais
0.7183

(M)
0.9305

(H)
0.8099

(M)
4833.9

(M)
2203.6

(L)
4494.8

(M)

We found that the DNN resulted in improved prediction

accuracy against the ElasticNet regression approach.

370

For the Kitchenham dataset, both normalized and un-
normalized, the two learners, ElasticNet and DNN modeling
results were correctly classified into the same respective effort
class as shown in Table 5. Only the DNN made accurate
classification of the estimated effort into the correct classes for
the Desharnais dataset whilst the ElasticNet did not. Thus, the
Desharnais dataset can be said to exhibit traits of conclusion
instability with respect to the ElasticNet prediction model.

RQ2: How does the performance of Deep Neural Network SEE
models differ from ElasticNet SEE models?

We compared the prediction performance of the Elastic and

DNN models using MAE and LSD as shown in Table 6. Note
that the shaded cells denote the best performance (minimum
values) for either the ElasticNet or the DNN in each case of the
normalized/un-normalized dataset. For example, with regard to
the normalized Desharnais dataset, we found that the DNN
yielded improved prediction accuracy on average irrespective of
using the MAE or LSD for evaluation. The results from the
statistical test in Table 7 show that the p-values from the Yuen’s
test resulted in significant differences between the DNN and the
ElasticNet irrespective of the application of data normalization.
We found from the Cliff’s δ effect size that there exists
significant differences between using the DNN and ElasticNet
for estimating the software effort in all cases with the exception
of the normalized Kitchenham dataset (where δ was
0.255<0.276).

Table 6. Performance Evaluation of Learners using MAE and
LSD

Dataset

Learner
Normalized data Un-normalized data

MAE LSD MAE LSD
Kitchenham ENR 0.2502 0.5531 3096.7 9598.0

DNN 0.2177 0.9562 2350.9 7310.6

Desharnais ENR 0.9922 1.1470 4829.7 4187.8

DNN 0.5148 0.6908 3136.0 4186.2

Table 7. Statistical significant differences of predicted effort
across learners

Learner

Normalized data Un-normalized data

Yuen’s test Cliff’s
δ

Yuen’s test Cliff’s
δ t-value p-value t-value p-value

Kitchenham Dataset
DNN vs.

ENR
6.37 2.2e-08* 0.255 -9.19 9.9e-14* 0.763**

Desharnais Dataset
DNN vs.

ENR
4.54 2.7e-05* 0.363** -23.95 4.4e-32* 0.410**

Statistical Significance: *p<0.05; Practical Significance: **δ≥0.276

V. DISCUSSION AND CONCLUSION

In this paper, we built two SEE models, ElasticNet and DNN
and applied them to two SEE datasets. The SEE models were
executed using both normalized and un-normalized data. The
following questions were addressed by the models:

RQ1: Do SEE models of different learning algorithms result in
the same effort class?

For the Kitchenham dataset, when normalized and un-
normalized data were used, both ElasticNet and Deep Neural
Network (DNN) modeling results were classified into the correct
effort class as the actual classes of the software effort. Correct
effort class classification was however, not achieved by
ElasticNet models when applied to the Desharnais dataset. This
result is particularly interesting as it demonstrates that by using
the classification of efforts values it is possible to address the
conclusion instability problem as has been achieved for the
Kitchenham dataset. Thus, DNN and ElasticNet can achieve
conclusion stability irrespective of whether the data is
normalized or not.

RQ2: How does the performance of Deep Neural Network SEE
models differ from ElasticNet SEE models?

Although the ElasticNet models proved superior against

other linear regression based SEE models [2], it has performed
abysmally against the DNN SEE models and as such it cannot
be considered for use as a benchmark model for SEE models.
Though this is negative result, we report it in alluding to some
of the reasons offered by Kocaguneli et al. [10] in reporting
negative scientific results. The result reported in this paper
should inform researchers of future studies not to benchmark the
ElasticNet SEE models against DNN SEE models. It also offers
positive knowledge as it establishes the certainty of the result
due to the rigorous experimental approach followed in
developing the SEE models in this paper.

Future work will apply DNN and other learners to multiple
industrial datasets to determine the existence or otherwise of the
conclusion instability issue.

REFERENCES

[1] T. Menzies and M. Shepperd, “Special issue on repeatable results in
software engineering prediction,” Empir. Softw. Eng., vol. 17, no. 1–2, pp.
1–17, 2012.

[2] S. Mensah, J. Keung, M. F. Bosu, and K. E. Bennin, “Duplex output
software effort estimation model with self-guided interpretation,” Inf.
Softw. Technol., vol. 94, pp. 1–13, 2018.

[3] B. Turhan, “On the dataset shift problem in software engineering
prediction models,” Empir. Softw. Eng., vol. 17, no. 1, pp. 62–74, 2012.

[4] T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum, “Stable rankings for
different effort models,” Autom. Softw. Eng., vol. 17, no. 4, pp. 409–437,
2010.

[5] C. Mair and M. Shepperd, “The consistency of empirical comparisons of
regression and analogy-based software project cost prediction,” 2005 Int.
Symp. Empir. Softw. Eng. ISESE 2005, pp. 509–518, 2005.

[6] B. Kitchenham et al., “Robust Statistical Methods for Empirical Software
Engineering,” Empir. Softw. Eng., vol. 22, no. 2, pp. 579–630, 2017.

[7] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” J. R. Stat. Soc. Ser. B (Statistical Methodol., vol. 67, no. 2, pp. 301–
320, 2005.

[8] S. Mensah, J. Keung, S. G. MacDonell, M. F. Bosu, and K. E. Bennin,
“Investigating the significance of bellwether effect to improve software
effort estimation,” Proc. - 2017 IEEE Int. Conf. Softw. Qual. Reliab.
Secur. QRS 2017, pp. 340–351, 2017.

[9] T. Foss, E. Stensrud, B. Kitchenham, I. C. Society, and I. Myrtveit, “A
Simulation Study of the Model Evaluation Criterion MMRE,” IEEE
Trans. Softw. Eng vol. 29, no. 11, pp. 985–995, 2003.

[10] E. Kocaguneli, T. Menzies, and J. W. Keung, “Kernel methods for
software effort estimation. Effects of different kernel functions and
bandwidths on estimation accuracy,” Empir. Softw. Eng., vol. 18, no. 1,
pp. 1–24, 2013.

371

On the UML use in the Brazilian industry:
A state of the practice survey

Kleinner Farias, Lucian Gonçales, Vinicius Bischoff
Graduate Program on Applied Computing (PPGCA)

Univ. of Vale do Rio dos Sinos, São Leopoldo, Brazil
kleinnerfarias@unisinos.br,{lucianj, viniciusbischof}

@edu.unisinos.br

Bruno da Silva1, Everton Guimarães2, Jacob Nogle1

1Dept. of Computer Science & Software Engineering
California Polytechnic State University,

San Luis Obispo, USA
{bcdasilv, jnogle}@calpoly.edu

2Department of Computer Science, Drexel University,
Philadelphia, USA
etg38@drexel.edu

Abstract— Context: The Unified Modeling Language (UML) has

become the standard for modeling software. Several surveys on the

UML usage have been proposed in recent years. However, none of

them explores the UML use in specific regional scope, and thus

little is known about the practices and perceptions of UML use

from the perspective of practitioners in the Brazilian industry.

Objective: This paper reports on a survey focused on identifying

the state-of-the-practice of the Brazilian industry for what

concerns the UML usage in real-world settings. Method: In total,

222 practitioners from 140 different Information Technology

companies have answered an on-line (or printed) questionnaire

concerning their UML use experiences, the difficulty in adopting

UML and what should be done to increase the UML adoption in

practice. Result: The results show that: (1) 60 participants (28.2%)

have used UML in their daily work, while 73.2% have not; (2)

55.41% of the surveyed participants did not disagree with the

statement that UML is the “lingua franca” in software modeling;

(3) 61.26% reported to find that the automatic creation of UML

diagrams to represent a big picture of the system under

development would be useful to boost UML use. Conclusion: The

UML is not often used in the work life of participants. In addition,

no relationship was identified between the use of UML and the

participant company being a software factory.

Unified Modeling Language; UML; Practice; Industry

I. INTRODUCTION
The Unified Model Language (UML) [1] is a unification

generated from the main methods of software modeling and
provides a common notation design covering software analysis
to software deployment. Everything in software can be detailed
when providing and maintaining software for costumers,
resulting in a vast set of diagrams. In the context of the
development process, UML assumes that its adoption implies a
series of benefits, such as providing a common understanding
between team members, comprehension of development details,
and increased efficacy in software development. Some studies
argue that these benefits are consequences of a full and formal
application, where the UML must be applied during the whole
software project, and the practitioners have a firm grasp on the
usage of this language. As this reality is uncertain, several
surveys on the UML usage have been proposed in recent years
with the purpose to investigate how the UML is used in practice.

However, there is still a lack of understanding regarding
practices and perceptions of UML usage from the perspective of
practitioners. In fact, the state-of-the-art UML use in industry
diverged on how software industry applies it as well as how
practitioners use UML in practice. In addition, the current
literature about the UML use in industry was not yet capable of
concluding if UML is the de facto standard of modeling
languages. Specifically, existing surveys have focused on
collecting opinions from participants from different parts of the
world. This turns a problem because it assumes that perceptions
and fragments from participants opinions spread worldwide are
valid on a local and regional scope.

To account for this, this paper focuses on identifying the
state-of-the-practice of the Brazilian industry for what concerns
the UML usage in world-wide companies. Specifically, this
work seeks to investigate how UML is being used in practice, in
relation to the relevance of the UML in software projects, i.e.
whether the use of UML in software projects and applications is
frequent, finding a convergence among developers on the status
of UML as a lingua franca, and suggestions for possible
improvements in the UML. Exploring these issues is important
because we have learned from empirical studies (e.g., [14]) that
UML usage has a significantly positive impact on the functional
correctness of realized changes in source code in the context of
maintenance and evolution tasks.

To achieve these objectives, this study reports on a survey
with practitioners of the Brazilian industry. This survey consists
of three research questions, and was developed following well-
defined guidelines and previous studies, such as [3][4][5][6].
Specifically, a search was conducted on the literature to pinpoint
gaps, and to grasp how other studies designed their
questionnaires and collected their data. Moreover, we carefully
selected a representative set of participants. Thus, all
practitioners work or have already acted professionally in
several companies in the last years. In total, 222 practitioners
from 140 Information Technology companies have answered an
on-line (or printed) questionnaire concerning their UML usage
experiences, the difficulty in adopting UML, and what should be
done to increase the UML usage. In particular, we collected the
opinions from practitioners about their practices and perception
regarding UML.

DOI reference number: 10.18293/SEKE2018-183
 372

II. RELATED WORK
The literature developed deep discussions on reasons for

using UML or not [2][8][10]. However, they did not focus on a
particular geographic delimitation. Petre [2] reported an
interview-based qualitative investigation involving 50 software
engineers in 50 companies over a period of 2 years. The
participants were primarily in North America and Europe, but
some were from Brazil, India, and Japan. Based on a survey
collected from these geographical regions the author found that
among the 50 interviewed engineers, 35 reported that they do not
use UML. This group reported several reasons for this, including
corporate-wide decisions, notation-related issues, and high cost
of keeping models synchronized and consistent. This work had
an extended version published in [8] which confirmed the
previous results of [2]. In a similar manner, the results presented
in the study of Gorschek, Temepro, and Angelis [10] pointed out
that design models are not used very extensively in industry, and
when they are used, the use is informal, with minimal or no tool
support, and the notation is not necessarily UML. In addition,
they observed that the use of models decreased with an increase
in experience and increased with higher level of qualification.

Some studies are optimistic in relation to potential benefits
that UML provides during the collaboration and
communications between team members [11][12][16]. In [16],
the authors collected evidences that UML benefits the
collaboration and communication on organizations globally
distributed. However, Störrle [12] pointed in his study that there
is a possible association between cultural differences and
modeling usage, which was considered worth exploring in the
future. Finally, the survey conducted by Ho-Quang et al. [11] not
target UML practice on industrial closed source projects, but the
only the open sources ones.

III. METHODOLOGY

A. Goal and Research Questions

The Goals (G) of this study are to (G1) understand the
diffusion and relevance of UML use in the Brazilian companies;
and (G2) identify improvement points to increase the UML
adoption in real-world projects. Based on these goals, the survey
aims at addressing three Research Questions (RQ). The two first
research questions (RQ 1 and RQ2) address the first goal (G1),
while the third question addresses the second goal (G2). The
research questions are formulated as follows:

• RQ1: What is the frequency of UML use in
practice?

• RQ2: Is UML the “lingua franca” for software
modeling?

• RQ3: What might improvement points increase
the UML use?

B. Target Population and Data collection

Population selection. According to Kitchenham, the
sampling frame of a target population is represented as the finite
set of all its members [4]. Thus, a framing population consists of
Brazilian software professionals—including developers,
software architects, and project managers. These participants
represent ones who are in a position to answer the questions and

to whom the results of the survey apply [4]. The participants
were selected based on two key criteria: the level of theoretical
knowledge and practical experience related to software
modeling and programming in mainstream projects.

Data collection. In order to enable the data collection, a
process of three steps was followed. First, we designed a survey
followed well-established guidelines such as [3][4], thereby
reducing threats to internal validity. For this, the questionnaire
questions concerned on focusing on scrutinizing the research
gaps of previous studies; grasp the structures of previously
developed questionnaire. In addition, the questionnaire design
was based on some of the findings contained on Petre research
[2]. In the second step, we concerned in inviting the
practitioners. Some practitioners from our industrial contact
networks were invited to participate of our research. These
participants were from four cities in the southern region of
Brazil, including Porto Alegre, São Leopoldo, Canoas, and
Novo Hamburgo. Also, working students within six graduate
courses at the University of Vale do Rio dos Sinos were invited
to respond the questionnaire. Finally, in the last step, data was
collected through an on-line questionnaire created by means of
Google Docs. We chose this strategy because the questionnaire
could be administered quickly, and could also easily collect data
from a large number of subjects in geographically diverse
locations.

IV. STUDY RESULTS

A. RQ1: The frequency of UML use

Figure 1 presents the collected data. Among the 213
participants that answered this question in our study, 60 (28.2%)
have used UML in their work day, while 73.2% have not. This
result reinforces the finding reported by Petre [2], in which the
author reports that 35 out of 50 subjects in her study do not use
UML in practice. In order to advance knowledge about the use
of UML, we investigated whether the use of UML could be
influenced by the type of company. For this, we classify the
companies of 113 participants as software factory and not
software factory. Table 6 summarizes categorical data about the
UML use and company type to create a contingency table. For
this, we have applied a series of statistics for checking if there is
a relationship between these variables, including Chi-Square and
Cramer’s V. We highlight that a chi-square test assumes that
observations are independent of one another and that each
observation can be assigned to one and only one category.

Figure 1. The level of practical experience of participants.

The chi-squared distribution with 1 degree of freedom was
0.115 with p-value = 0.734. Considering the Fisher’s exact test,
the p-value produced was 0.445. These small p-values (<0.05)
indicates that there is not an association between the UML use
and company type. Moreover, the Cramr’s V was also calculated
to eliminate any threat related to statistical conclusion validity.

373

This test is a measure of association between two nominal
variables and varies from 0, indicating no association between
the variables, to 1, representing a complete association. The
value 1 means that the two variables are equal to each other. The
low value of the Cramr’s V collected (0.032) also confirmed the
previous conclusion.

TABLE I. 2-WAY CONTINGENCY TABLE

 Factory No Factory Total

UML use 19 17 36

No UML use 38 39 77

Total 55 56 113

 50.4 49.6 100

Conclusion of RQ1: The UML is not often used in the work life of
participants. In addition, no relationship was identified between the
use of UML and the participant company being a software factory.

B. RQ2:UML as “lingua franca”

Among the 222 participants, we obtained 217 (about
97.75%) complete questionnaires considering the UML as
“lingua franca” in software modeling and model-driven
development. Figure 3 presents the obtained data regarding the
RQ1. The data indicate that 55.41% of the surveyed did not
disagree with the statement that UML is “the lingua franca” in
software modeling. On the other hand, 42.34% agreed that UML
is not the “de facto standard” in software modeling, indicating
the use of other forms for representing design models, such as
drawing or sketching freehand shapes in whiteboard. More
specifically, we have recorded that 10% strongly agree, 32%
agree, 14% are neutral, 23% disagree, and 19% strongly
disagree.

Furthermore, when asked whether the UML would be the
“lingua franca” in model-driven development projects, the
number of participants that did not disagree with this statement
increased from 55.41% to 68.02%—a growth of 22.76%. In
addition, following an inverse trend, the amount of surveyed that
disagreed also decreased from 42.34% to 29.73%—a drop of
29.79%. In particular, the collected questionnaires indicated
11.71% strongly agree with this statement, 36.94% agree,
19.37% are neutral, 21.17% disagree, and 8.56% strongly
disagree.

Figure 2. The improvements suggested by participants.
We have learned from previous experimental studies, such

as [2][11][13] that there are a set of issues that challenge the

effectiveness of UML as a lingua franca. Nevertheless,
practitioners have elaborated ad hoc practices that employ UML
effectively in reasoning about and communicating about design,
both individually and in collaborative dialogues. For this reason,
we believe that such practices have favored the tailored use
UML use in companies, justifying the high number of
participants who agreed that UML is widely used in real-world
settings.

Conclusion of RQ2: Although there is no unanimity regarding the
adoption of UML as standard modeling language in companies and
in MDD projects, the participants see the UML use as broad in
companies.

C. RQ3: Critical Improvements for UML tools

Figure 4 presents the answers from 217 participants about
four suggested improvement points for UML to promote the
UML use. These results do not only reveal some existing gaps
that prevent the wider use of UML within project teams in real-
world settings, but also can be seen as drivers to make the UML
a richer and production-ready modeling language. The results
show that the UML use could increase if the creation of diagrams
representing global aspects of the system could be done
automatically, if there were tools that would automatically create
function-oriented diagrams rather than generic diagrams, if a
round-trip engineering mechanism were a reality, if automatic
update of UML diagrams and source code in response to
automatically detected inconsistencies between them were
allowed, and if there were tools that could provide effective
support for collaborative modeling among distributed teams,
allowing developers to be aware of changes that developers are
making at runtime, something like Google Docs.

In particular, among 222 participants that suggested
improvements to UML use, 136 people (61.26%) reported to
find that the automatic creation of UML diagrams to represent a
big picture of the system under development would be useful to
boost UML use. The number of participants who did not
disagree is even greater. In total, 210 (94.59%) do not disagree
with the use of a Big Picture view as a mechanism to favor the
use of the UML. This result is also found considering the other
improvement points, i.e., feature-oriented diagrams, round-trip
engineering, and collaborative modeling tools.

Figure 4. The improvements suggested by participants.

The participants reported the lack of modelling tools, which
could support collaboration between teams. For example, this
would allow developers to be aware of changes that developers
are making at runtime, something that is already supported by

374

Google Docs. In addition, upcoming modeling tools need to
support round-trip engineering for synchronizing related UML
diagrams and source code. Given that modeling all structural and
behavioral aspects of a software system within a single model is
not a trivial task, the UML has proposed a set of diagrams to
support a multi-view modeling approach. Thus, different aspects
of a system under development are represented by several
models, the views. The key challenge identified by the
participants is to maintain such different views and their source
code consistent and synchronized. According to Chaudron,
software development teams use UML during communication
and planning of joint implementation efforts [11]. The need for
round-trip engineering emerges when project teams need to
modify source code and UML diagrams have to be updated to
reflect such changes (or vice versa). If UML diagrams are not
properly updated, some critical inconsistency may occur.

Conclusion of RQ3: The collected data suggest that creating a “Big
Picture” view of the system under development automatically, using
functional-oriented diagrams, supporting round-trip engineering,
and having more effective collaboration resource would be
important improvements to be incorporated into upcoming modeling
tools.

D. Discussion

1) UML usage and Company Issues. Although the study
participants believe, for the most part, that the UML is a “franca

lingua” in companies, and that they have theoretical knowledge

about UML modeling, they do not use UML frequently. This
suggests that there may be some culture issue in the companies,
or even in relation to the type of development process adopted,
that does not favor the wider use of UML.

2) Improviment points for Modeling Tools: We have
learned from previous studies, such as [2][8][10][13][15], that
UML has been used within teams in the industry for
communicating and coordinating their work. Despite this, the
results of previous studies, such as [2][8], confirmed in this
study, demonstrate that UML has not been widely adopted. The
insights from this paper indicate that if the suggested
improvement points are implemented by the next modeling
tools, UML usage could undergo a positive reversal.

V. CONCLUSIONS AND FUTURE WORKS
This paper reported on a survey aimed at identifying the state-

of-the-practice of the Brazilian industry for what concerns the
UML usage in world-wide companies. The main results show
that: (1) 60 (28.2%) have used UML in their work day, while
73.2% have not; (2) 55.41% of the surveyed did not disagree
with the statement that UML is the “lingua franca” in software
modeling; (3) 61.26% reported to find that the automatic
creation of UML diagrams to represent a big picture of the
system under development would be useful to boost UML use.
Moreover, we might also point out some important
improvements to be incorporated into upcoming modeling tools,
including the creation of a “Big Picture” view of the system
under development automatically, the support to functional-
oriented diagrams and round-trip engineering, and more
effective collaboration. The results of this research reinforced
some evidences already found on state-of-the-art literature about
UML in practice, specifically concerning the UML use, which is

barely applied on software projects. In overall, great part of
participants know about UML, but they had not used UML in
their projects. This work is an initial effort of our research
agenda to explore and analyze the UML adoption in industry.
Future works will concentrate effort to investigate more aspects
regarding the practice of UML in industry such as the benefits
and issues that hinder the UML use in practice.

ACKNOWLEDGMENT
Thank you to UNISINOS for the teaching and research

environment in which they provided to support this research.

REFERENCES
[1] OMG, “UML: Infrastructure specification,” version 2.4.

https://www.omg.org/spec/UML/2.4.1/Superstructure/PDF, acessed 13
March 2018.

[2] M. Petre, “UML in practice,” International Conference on Software
Engineering (ICSE’ 2013), 2013, pp. 722–731

[3] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslen,
“Experimentation in Software Engineering,” Springer, 2012.

[4] B. Kitchenham, S. Pfleeger, “Personal opinion surveys, Guide to
Advanced Empirical Software Engineering,” Springer London, 2008, pp.
63–92.

[5] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, G. Reggio, “Relevance,
benefits, and problems of software modelling and model driven
techniques—a survey in the italian industry,” Journal of Systems and
Software, vol. 86, num. 8, 2013, pp. 2110–2126.

[6] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, R. Pretorius,
“Empirical evidence about the UML: a Systematic Literature Review,”
Software: Practice and Experience, vol. 41, num. 4, 2011, pp. 363–392.

[7] M. R. Chaudron, W. Heijstek, A. Nugroho, “How e
ective is UML modeling?,” Software & Systems Modeling, vol. 11, num
4, 2012, pp. 571–580.

[8] M. Petre, “ ‘no shit’ or ‘oh, shit!’: responses to observations on the use of
uml in professional practice,” Software & Systems Modeling, vol. 13,
num. 4, 2014, pp. 1225–1235.

[9] J. Singer, S. E. Sim, T. C. Lethbridge, “Software engineering data
collection for field studies,” Guide to Advanced Empirical Software
Engineering, Springer, 2008, pp. 9–24.

[10] T. Gorschek, E. Tempero, and L. Angelis, “On the use of software design
models in software development practice: An empirical
investigation,” Journal of Systems and Software, vol. 95, 2014, pp. 176-
193.

[11] T. Ho-Quang, R. Hebig, G. Robles, M. R. Chaudron, and M. A.
Fernandez, “Practices and perceptions of UML use in open source
projects,” In International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE 2017), 2017, pp. 203-212.

[12] H. Störrle, “How are Conceptual Models used in Industrial Software
Development?: A Descriptive Survey,” In Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering (EASE 2017), 2017, pp. 160-169.

[13] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, and G. Tortora,
“On the impact of UML analysis models on source-code
comprehensibility and modifiability,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 23, num. 2, 2014, pp. 1-13.

[14] W. Dzidek, E. Arisholm, L. C. Briand, “A realistic empirical evaluation
of the costs and benefits of UML in software maintenance,” IEEE
Transactions on Software Engineering, 34(3), pp.407-432.

[15] C. F. J. Lange, M. R. V. Chaudron and J. Muskens. “In practice: UML
software architecture and design description,” IEEE Software, vol. 23, no.
2, pp. 40-46, March-April 2006.

[16] A.M. Fernández-Sáez, M.R. V. Chaudron and M. Genero. “An industrial
case study on the use of UML in software maintenance and its perceived
benefits and hurdles”. Empirical Software Engineering, pp. 1-65, 2018.

375

https://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

Using IFML for user interface modeling: an empirical
study

Randerson Queiroz, Tayana Conte
Computer Institute - IComp

Federal University of Amazonas - UFAM
Manaus, AM

(rsq, tayana)@icomp.ufam.edu.br

Anna Beatriz Marques

Federal University of Ceará - UFC

Russas, CE
beatriz.marques@ufc.br

Abstract — Front-end interface and user-system interaction are

factors that must be carefully considered in software development

due to their influence in quality of use. On some occasions, it is the

first concern addressed by developers, as it comes naturally from

the requirements analysis performed with stakeholders. IFML is a

standard language of OMG that supports the abstract description

of these front-end interfaces, for software applications on different

devices. IFML has been used in the context of Model-Driven

Development (MDD) and Model-Driven Architecture (MDA) to

describe the elements and behavior of interfaces, aiming to

generate code for those interfaces. However, it is necessary to

investigate the use of IFML in traditional software development,

in order to better understand how it is used for modeling front-end

interfaces. This article presents an empirical study that aimed to

verify the quality of IFML models created based on a subset of

requirements of software two web applications. The quality was

defined in terms of models’ correctness and completeness. The

results showed that the correctness of the models was low, varying

from 51% to 55%, while the completeness varied from 66% to

69%. In order to better understand the results, we analyzed

syntactic and semantic defects found.

Keywords-component: IFML, User Interface, Software

development, Empirical Study.

I. INTRODUCTION
 The Unified Modeling Language (UML) is widely used to

model the system in different stages of traditional software
development [6]. However, UML does not present a specific
model to describe specifications of front-end interface and user
interaction through this interface [9]. To cover this gap, the
OMG (Object Management Group) proposed the adoption of
Interaction Flow Modeling Language (IFML) [11]. IFML
supports the abstract description of front-ends for devices such
as computers, laptops, mobile phones and tablets. The objective
of IFML is to express the content of these front-end interfaces
and the data flows between the front-end components of the
application [3].

The IFML uses a single diagram, in which developers can
specify the user interface organization, the content displayed for
the users and the effect of interface events produced by user
interaction or by system notifications [1]. Since IFML is an
extension of UML, the artifacts generated by UML notation are
usually used as the basis for modeling with IFML [1][11][5].

IFML has often been used in the context of Model Driven
Development (MDD) Model Driven Architecture (MDA) [10]
to describe the elements and behavior of front-end interfaces,
aiming to generate codes of these interfaces [1] [2][8]. However,
the concern with the quality of the user interface is not present
only in MDD and MDA development contexts. Can the user
interface be modeled in a complete way using IFML in
traditional software development? What is the correctness of the
IFML diagrams created to represent the user interface?

 To answer these questions, we conducted an empirical
study in which graduate students (with experience in software
industry) modeled the front-end interface using IFML, based on
requirements of two web applications. The study aimed to verify
whether the subjects can model using IFML correctly and
completely in the traditional development context (not MDD or
MDA). In order to better understand the results, we analyzed the
syntactic and semantic defects of the models.

In order to analyze the completeness of a IFML model, we
verified whether the elements used by the subjects were
sufficient to represent the system requirements. In the analysis
of the correctness of a IFML model, we verified whether the
elements used by the subjects to represent the requirements were
used correctly according to IFML syntax. It is important to
conduct empirical studies in order to investigate the models and
languages suitable for supporting software development teams
in UI design.

The remainder of this paper is organized as follows: Section
II presents the basic elements of IFML. Section III shows how
we planned and executed the empirical study. Section IV shows
the analysis of the results. Finally, Section V presents a
discussion and final considerations.

II. INTERACTION FLOW MODELING LANGUAGE (IFML)
In this section we present a more detailed view of IFML and

its elements. For a better understanding, we present a simple
example of an IFML diagram.

The Interaction Flow Modeling Language (IFML) is a
platform-independent model (PIM) used to express interaction
design decisions regardless of the deployment platform [8].
Brambilla et al. [4] claim that IFML is designed to express the
content, the user interaction and the control behavior of front-
end software applications. Figure 1 shows the basic elements of
IFML. DOI reference number:10.18293/SEKE2018-103

376

Figure 1. Basic Elements of IFML.

The basic elements of IFML are described below: 1)
ViewContainer is an interface element that comprises elements
displaying content and supporting the interaction and/or other
ViewContainers; 2) ViewComponent is an interface element that
displays content, i.e., content and data entry elements contained
in ViewContainers; 3) Event is an occurrence that affects the
state of the application. Events can be produced by user
interaction, by the application or by an external system; 4)
Navigation Flow is an update of the interface elements in view
or triggering of an action caused by the occurrence of an event.
Data may be associated with the flow through parameter
bindings; 5) Parameter Binding is a specification in which an
input parameter of a source is associated with an output
parameter of a target; 6) Action is a piece of business logic
triggered by an event; it can be server-side (default) or client-
side, denoted as (Client).

Figure 2 shows an example of an IFML diagram, describing
a user interface where the user can search for a product by
entering some search criteria in the Product Search form. The
model consists of a Product view container (depicting a screen
or Web page) that contains two view components (visual widgets
placed on the screen), i.e., the Product Search form, where the
user can enter the search criteria, and the Search Result list,
which displays the search results. In addition, a product
exclusion action can be triggered when the user selects the
Exclusion Event associated with the Search Result.

Figure 2. Example of IFML diagram.

III. EMPIRICAL STUDY
In this section we present the empirical study, the details of

the study planning and the execution based on [13]. The
artifacts used in the empirical study are available in a technical
report [12].

A. Study Planning

The empirical study aimed to analyze the use of IFML in the
modeling of interfaces in order to analyze the quality of the
models in terms of correctness and completeness. Based on the
we defined the following research questions: Can the user
interface be modeled in a complete way using IFML in
traditional software development? What is the correctness of the
IFML diagrams created to represent the user interface?

We defined the necessary resources for its execution during
the planning of the study, as detailed below:

1) Context: we carried out the study in academic context
with graduate students.

2) Subjects: 16 graduate students participated in the study.
All subjects had experience in software industry. However, they
had not previously used IFML. We divided the subjects into two
groups for modeling different scenarios.

3) Artifacts used: we prepared a consent form, in which the
subjects could agree or not agree to make their data available
for analysis in this research. In order to assist the subjects during
modeling, we developed a guide of IFML elements.

4) Scenarios: the subjects used functional requirements of
a system as the basis for modeling the interface. The
requirements were described as scenarios. The scenario that
group A received described a system of an airline company,
which could be used to track flights to its destination. The
scenario that group B received described a website that
provided tips of restaurants by area of the city. Both scenarios
had the same number of requirements (four requirements).

a) Group A Scenario: the scenario of group A contained
the following requirements: 1) to access the system with login
and password; 2) to track previously registered flights; 3) to
register flights to be tracked; and 4) to configure notifications
with flight route updates.

b) Group B Scenario: this scenario contained the following
requirements: 1) to search for restaurant per area; 2) to bookmark
a chosen restaurant as favorite; 3) to view tips about the park nest
to a favorite restaurant; and 4) to confirm a restaurant booking.

B. Study Execution

The study was conducted in a single day lasting 2 hours and
30 minutes. We divided the activity into training, preparation of
the activity with receipt of the scenarios and modeling with
IFML. The study started with the training. In the training, the
subjects received training on all the elements of IFML. The
training contained examples and two practical exercises and
lasted about 1 hour and 30 minutes. After the training, the
subjects received and signed the consent form. The subjects
were randomly organized in two groups (A and B). Each subject
received a requirements scenario, according to the group he was
assigned to.

 After receiving the scenarios, the subjects started the
modeling step using IFML. After concluding the modeling task,
we carried out a discussion with the subjects about the activity
they developed. In the discussion, each subject talked a little
about their perceptions of the IFML. The discussion was
recorded via audio and video. Thus, the audio was transcribed
and analyzed.

IV. DATA ANALYSIS
This section presents the analysis of the results, through

which we aimed to identify the completeness and correctness of
the modeling. We also performed an analysis in order to identify
the syntactic and semantic defects of each model. The subjects’

perception about IFML was also analyzed. To perform this

377

analysis, a researcher inspected the models developed by both
groups and a second researcher validated the identified defects.
Data from subject S1 were excluded from the analysis because
he did not participate in all activity.

A. Completeness and Correctness

To achieve the completeness and correctness of each model,
we elaborated oracles in order to support the analysis. The
oracle corresponds to a possible solution for the scenarios
modeling and defines a set of IFML elements that can be used
in the solution. In the analysis, we used the oracles as basis for
analyzing the elements used by the subjects, the elements not
used and the elements that they could use in the model. Each
oracle has specific requirements for each scenario. For each
requirement, we listed which elements were necessary to model
the front-end related to the requirement described. Table I
shows part of the oracle, with the required elements for the
front-end related to the modeling of the Access System

requirement.

TABLE I. ORACLE GROUP A

Group A – Scenario A
Access System
ViewContainer

ViewComponent Form
Submit event
Type of Data

Action
Parameter Binding

In order to define the completeness of each model, we
proceeded with the sum of the number of elements used in the
requirements divided by the number of elements necessary to
represent the requirements according to the oracle. To obtain
the correctness of each model, we also performed a calculation
of the number of elements correctly used in the requirements
divided by the number of elements defined in the oracle. Table
II shows the mean of completeness and correctness of each
subject and its respective group.

TABLE II. COMPLETENESS AND CORRECTNESS RESULTS.

Group A
 S3 S5 S7 S8 S10 S11 S13 S15 Mean

Comple. 81% 67% 46% 86% 31% 82% 70% 89% 69%

Correct. 57% 52% 26% 74% 30% 70% 52% 83% 55%

Group B
 S2 S4 S6 S9 S12 S14 S16 S17 Mean

Comple. 50% 55% 86% 90% 57% 72% 50% 70% 66%

Correct. 41% 23% 64% 73% 27% 68% 45% 68% 51%

 The mean for completeness of the diagrams created by
group A and group B were close to 69% and 66%, respectively.
This shows that the subjects had difficulty to completely model
the requirements. The ViewComponent and Event elements were
not used. In addition, the mean for correctness of the diagrams
created by groups A and B were 55% and 51%, respectively.
This result shows that even though the elements have been used,

they were used incorrectly, thus decreasing the quality of the
diagram created.

Since the subjects from group A and B used different
scenarios, the results could have been influenced by the
difference between these scenarios. The level of difficulty for
modeling a requirement of one scenario could be greater than the
requirement of the other scenario. In order to verify whether the
scenarios had influenced the results, we applied a statistical
hypothesis test. Table III shows the null and alternative
hypotheses. The null hypotheses states that: “H01 - There is no
difference in terms of completeness in modeling with IFML
based on scenario A or B”, and “H02 - There is no difference in
terms of correctness in modeling with IFML based on scenario
A or B”.

TABLE III. NULL AND ALTERNATIVE HYPOTHESES

Null Hypotheses
H01 – There is no difference in terms of completeness in modeling with
IFML based on scenario A or B
H02 - There is no difference in terms of correctness in modeling with IFML
based on scenario A or B

Alternative Hypotheses

HA1 – There is a difference in terms of completeness in modeling based on
Scenario A in relation to Scenario B
HA2 – There is a difference in terms of correctness in the modeling based
on Scenario A in relation to Scenario B

We used the statistical Mann-Whitney non-parametric
method. We used α = 0.05 due to the sample size [5]. To perform
the tests, we used the SPSS tool v20.0.0. The obtained results
support the null hypotheses H01 and H02, indicating that there is
no significant difference in the completeness indicator (p =
0.878) nor in the correctness indicator (p = 0.574) when
modeling using IFML with scenario A or B. Therefore, the fact
that a group modeled using scenario A or B did not influence in
the way the subjects modeled. It means that the scenarios did not
influence the results of completeness and correctness, not
affecting the results reliability.

B. Syntactic and semantic defects

We decided to classify the defects in syntactic or semantic
for a better understanding about the defects and their impact.
We also explored the possible difficulties in using the elements
to model in a correct and understandable way. The concepts of
syntactic and semantic properties have been adapted to the
context of this study [8]. The definitions we used are: Syntactic,
defect characterized by the incorrect use of IFML elements;
Semantic, defect characterized by the incorrect modeling of the
problem domain. Figure 3 shows the total number of syntactic
and semantic defects, distributed into each group.

Figure 3. Total number of defect occurrences.

378

We identified 101 occurrences of defects, being 73 syntactic
and 28 semantic, considering all the diagrams created by the
subjects. When we did not consider repeated defects, we
obtained a list of 24 unique defects. Figure 3 shows that we
identified 41 occurrences of syntactic defects and 13 occurrences
of semantic defects in diagrams created based on “scenario A”.
On the other hand, we identified 32 occurrences of syntactic
defects and 15 of semantic defects in diagrams modeled based
on “scenario B”. For a better view, we listed the most common
defects in Table IV, mentioning the type and number of
occurrences for each defect. The list shows only the defects that
have been repeated more than once. The other defects that
occurred only once are not presented in the list.

TABLE IV. MOST COMMON DEFECTS

Defect Type of defect Number of
Occurrences

Does not specify the data type Syntactic 27
Uses the wrong event Syntactic 15
Does not inform the data that is being
passed

Syntactic 14

Uses the wrong ViewComponent Syntactic 6
Uses Default ViewContainer outside
of XOR ViewContainer

Syntactic 5

Did not model the interaction of
notification settings

Semantic 5

Did not model the actions cancel and
confirm

Semantic 4

Did not model the requirement
confirmation View

Semantic 4

The action to choose the View
Booking feature was not modeled

Semantic 3

We also listed the number of defects per element, but this
was only possible for syntactic defects. Making up a list for
semantic defects was not possible because 16 out of the total 28
semantic defects are related to the complete omission of a
requirement. These semantic defects are related to the omission
of all the elements that subjects could apply in the modeling, so
it is not possible to make the exact count of the elements
involved in each defect. Figure 4 shows all the syntactic defects
found in both scenarios, considering each possible element
involved in the defect.

1) Syntactic defects
Figure 4 shows the number of occurrences of defects in each

element of the IFML. The major number of defects is related to
the Parameter Binding component, with 16 defects. Although
the subjects used this element correctly in order to inform the
data related to the interactions modeled, they did not correctly
apply the standard specified by the language. There were also 14
occurrences of defects involving the select event. The subjects

preferred to only indicate that there was an event, without
specifying the element type. There was a large number of defect
involving the ViewComponent List and ViewComponent Details.
We identified 34 defects in total. Some of these occurrences are
related to the misuse of the ViewComponent type used to model
the requirement. This may indicate that the subjects did not
understand the difference among the types of view components.

As shown in Table IV, the most frequently defect “Does not
specify the data type” is related to the ViewComponent, in which
the subjects did not demonstrate the data of the components by
following the standard proposed by the language. The definition
of the type of data is typically represented in UML diagrams,
such as the class diagram. However, since the only artifact
elaborated in this study was the IFML diagram, the omission of
this type of information may reduce the understanding of the
content of the interface. The “Uses the wrong event” defect is
directly related to changes in the state of the modeled system.
These changes are initiated through the events and the subjects
did not use the correct events for each requirement. In some
cases, the subjects did not specify the type of event. This shows
that they did not understand the difference between event types.

The defect “Does not inform the data that is being passed” is
related to non-compliance with the standard language in the use
of the Parameter Binding element. In the particular context of
this study, this defect did not impair the comprehension of these
data. On the other hand, this defect may be harmful in systems
where the data stream is essential for the full operation of the
system itself. The defect “Uses Default ViewContainer outside
of XOR ViewContainer” refers to the non-organization of the
containers in the models. This shows that the subjects who
modeled with this defect had difficulty in understanding the
organization rule of the containers. Considering systems with a
large number of tabs and navigations among windows, this
defect would be potentially harmful.

2) Semantic defects
Among the 28 semantic defects we identified in the diagrams

created, 16 of them are complete omissions of a requirement or
part of a requirement. We noted that these defects are related to
the omission of the elements necessary to adequately model the
requirement. The reasons for this phenomenon of omission may
be the misunderstanding of the elements involved or the
tiresome that the subjects may have felt during the final part of
the modeling. However, the semantic defects of omission are
related to the requirements that can be considered as the most
difficult ones for modeling. For example, in Group A, the
semantic defects of omission are related to the requirement “to
configure notifications with flight route updates”. This

Figure 4. Number of syntactic defects per element

379

requirement requires a wider combination of elements to model
the interaction that the user needed to complete their goal. In
Group B, the requirement “to confirm a restaurant booking”
requires that the subject models the system feedback for the user.
For this requirement, we identified the major number of
semantic defects.

The action element was related to all semantic defects, so
there is a possibility that the major cause of this defect is the
misunderstanding about the way that elements should be used.
The quantitative data related to semantic defects indicates that
the subjects found to be more difficult to use correctly the action
element. Other semantic defects were repeated only once, e.g.
the defect "Wrong Organization of Containers" and "Wrong
Flow Sequence between containers". Both of them are semantic
defects and impair the understanding of the model as a whole.

3) Perception of the subjects
The results of the correctness indicated a high number of

occurrences of syntactic defects, pointed out a subjects'
difficulty in correctly using some of the elements of IFML.
Some subjects spontaneously commented something about this
difficulty, further reinforcing the results of the study.

Subject S4, for example, reported that “it is very challenging
in the form of representing the screens, even getting tiring
because of its many containers and types”. Subject S15 also
reported the same difficulty “it is difficult to use [the IFML] due
to the numerous containers, it ends up leaving the diagram a
little messy, making it difficult to visualize and have an idea of
the requirements which are being put there”.

We observed that some subjects considered difficult the
IFML elements with similar features. For example, elements like
ViewComponent and Event have several types to be used in
different situations in modeling. That difficulty was also
reported by subject S3 “it is difficult to use because it may have
many similar components, making it a little confusing when it
comes to choosing. There are too many elements, it's very
confusing when it comes to doing it”.

V. DISCUSSION AND FINAL CONSIDERATIONS
This study aimed to verify how graduate students model the

user interface using IFML. The overall results of this study
showed that the subjects had difficulties in modeling correctly
the front-end based on a scenario describing a set of
requirements. Furthermore, the elements of IFML were misused.
Syntactic defects showed that the subjects had major difficulties
in using the events and view component elements correctly.
Regarding semantic defects, 16 out of the 28 defects were of
total omissions of the requirements, which indicate models that
do not specify all the requirements described in the scenarios.

In the context of this study, the subjects were able to model
the requirements contained in the scenario with a completeness
of 69% and 66% (Groups A and B respectively). The correctness
of the models was even lower, with a mean of 55% and 51%
respectively. The low number of the correctness can be related
to the difficulties that the subjects have faced in using the
elements of IFML.

With the results of this study, we expect that this research
provides a better direction for professionals interested in using

IFML in the user interface design. The results explore how the
IFML diagram can be used in the interface design and possible
difficulties the professionals can face when using some IFML
elements. It is necessary to investigate the use of IFML in
different contexts, with subjects from different levels of
experience. The results of this research show that it is possible
to comprehensively model the front-end interface of a web
application using the IFML language. However, some
difficulties regarding the elements of the IFML language can
affects the correctness of the front-end interfaces.

Finally, as the study was applied in a small sample in an
academic environment, it should be replicated with a more
representative and heterogeneous sample.

ACKNOWLEDGMENTS
We would like to thank the financial support granted by

UFAM, CNPq through processes numbers 423149/2016-4 and
311494/2017-0, and CAPES through process number
175956/2013.

REFERENCES
[1] C. Bernaschina, S. Comai and P. Fraternali, “Formal semantics of OMG’s

Interaction Flow Modeling Language (IFML) for mobile and rich-client
application model driven development”, Journal of Systems and Software,
137, 239-260, 2018.

[2] C. Bernaschina, S. Comai and P. Fraternali, “IFMLEdit. org: model driven
rapid prototyping of mobile apps”, In Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems p. 207-208,
IEEE Press, 2017.

[3] M. Brambilla and P. Fraternali, “Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps with IFML”,
Morgan Kaufmann, 2014.

[4] M. Brambilla, E. Umuhoza and R. Acerbis, “Model-driven development
of user interfaces for IoT systems via domain-specific components and
patterns”, Journal of Internet Services and Applications, 8(1), 14, 2017.

[5] T. Dyba, V. Kampenes and D. Sjoberg, “A systematic review of statistical
power in software engineering experiments”, Information and Software
Technology, Volume 48, Issue 8, 2006.

[6] K. Frajták, M. Bureš and I. Jelínek, “Transformation of IFML schemas to
automated tests”, In Proceedings of the 2015 Conference on research in
adaptive and converggent systems p. 509-511, ACM. 2015.

[7] P. Kamthan, “A framework for understanding and addressing the semiotic
quality of use case models” Model-driven software development:
Integrating quality assurance. Hershey, PA: IGI Global, 2008

[8] N. Laaz and S. Mbarki, “A model-driven approach for generating RIA
interfaces using IFML and ontologies”, In Information Science and
Technology (CiSt), 2016 4th IEEE International Colloquium on p. 83-88,
IEEE, 2016.

[9] N. Moreno, P. Fraternali and A. Vallecillo, “WebML modelling in UML”,
IET software, 1(3), p. 67-80,2007

[10] J. R. P. Moreira and R. S. P. Maciel, “Towards a Models Traceability and
Synchronization Approach of an Enterprise Architecture” In The 29th
International Conference on Software Engineering & Knowledge
Engineering (SEKE), 2017.

[11] OMG, 2015. Interaction flow modeling language (IFML), version 1.0.
http://www. omg.org/spec/IFML/1.0/ .

[12] R. Queiroz, A. Marques and T. Conte, “USES Technical Report TR-
USES-2018-005. Using IFML for user interface modeling”. Technical
Report of Usability and Software Engineering Group (USES), 2018.
Available in http://uses.icomp.ufam.edu.br/relatorios-tecnicos/

[13] C. Wohlin, P. Runeson, and M. Höst, “Experimentation in Software
Engineering: An Introduction, Kluwer International Series in Software
Engineering, 2000.

380

Modeling mobility and communication in a
unified way

Jian-Min Jiang, Xiaofei Yu and Zhong Hong
Department of Software Engineering, Fujian Normal University, Fuzhou 350007, China

Abstract—Traditional formalisms model communication
and mobility in a separate way. This may cause complex
name management and complex analysis for a communicat-
ing and mobile system. In this paper, following the ambient
calculus [2], we first propose two types of special events,
entering and exiting an ambient, as movement events and
discuss the relationship of ambients based on mobility. Then
a communication model is introduced based on message
movement, which can represent synchronous communica-
tion, asynchronous communication and broadcasting com-
munication in a unified way. Finally, we show that such a
communication model is contained in a general event-based
formal model called a dependency structure [4], [5].

I. Introduction

Communication and mobility are two essential aspect-
s of complex mobile systems including mobile cyber-
physical systems. Most existing formal models and lan-
guages have not unified communication and mobility
modeling and analysis yet. It is difficult to model and
analyze complex mobile systems using formal methods.
In the communication aspect, most work assumed a
synchronous communication model (e.g., [7]), regarded
synchronous communication as special asynchronous
communication (e.g., [3]) or independently considered
broadcast communication (e.g., [8]). In the mobility as-
pect, different formal methods have different mecha-
nisms. Mobile Petri nets [1] express process mobility
by using variables and colored tokens in an otherwise
static net, while dynamic Petri nets [11] extend mobile
Petri nets with mechanisms for modifying the structure
of a Petri net. The π-calculus [7] is a process alge-
bra where the movement of processes is represented
as the movement of channels that refer to processes.
One of the most outstanding methods is a calculus of
mobile agents called ambient calculus [2]. Ambients are
administrative domains and can enter and leave other
ambients and perform computations. However, in the
ambient calculus, the non-deterministic choice control of
processes cannot be expressed like CCS [6]. Moreover,
communication needs to use special primitives. More
detail refers readers to the literature [5].

Event-based models such as event structures [10] and
dependency structures [4], [5] model synchronous com-
munication, asynchronous communication and broad-
cast communication in a unified way. Movement events
are also used to represent mobility [5]. In this paper, we

present a unified approach for modeling communication
and mobility.

II. Event and movement event

Event is the primitive notion of event-based formal
models [9], [5]. Generally, an event refers to an occur-
rence of an activity or action. It implicitly contains space
and time information.

As defined in the ambient calculus [2], an ambient is a
closed and bounded place where computation happens.
It can be nested in other ambients and can be moved as
a whole [2]. To model mobility, we use the two types
of special events: entering and exiting an ambient. The
name of an ambient is contained in the two types of
events. When a mobile object enters or exits an ambient,
the entering or exiting event itself can contain such an
ambient. Such consideration can avoid complex name
management. For convenience, M and A denote the
sets of mobile objects (agents) and ambients, respectively.

Definition II.1 Let M ∈M and A ∈ A.
(1) The event ofM for entering A is called an entering

event, denoted by enM
A

, and the event of M for exiting
A is called an exiting event, denoted by exM

A
.

We define that M passes through A iff the two events
enM
A

and exM
A

occur in sequence.
(2) An event e is called a movement event inM iff there

exists an ambient A ∈ A such that (e = enMA)∨ (e = exMA).
E(M) denotes the set of all movement events in M.

In the definition, the two events of entering and
exiting an ambient are called movement events. Note that
our framework will not involve other movement events
because the two events are sufficiently used to model
mobility. According to the definition, movement events
in fact contain mobile objects and the ambients involved
in the events. For simplicity, non-movement events do
not consider these information in our framework. Let E
denote the domain (set) of events including movement
and non-movement events. Let e1, e2 ∈ E. The notation
e1 → e2 is called a dependency that denotes that the
occurrence of the event e2 depends on the previous
occurrence of the event e1.

DOI reference number: 10.18293/SEKE 2018-015 381

III. The relationship of ambients
The ambient calculus [2] of Cardelli and Gordon fo-

cuses on the handling of administrative domains where
mobile objects may enter a domain or exit from a domain
and in this way may change the topology of the network.
Since an ambient is a closed and bounded place, any
movement step is that a mobile object moves from an
ambient to one of its adjacent sibling ambients or from
a parent ambient to a child ambient, or vice versa.
Therefore, there only exists one of the two kinds of
relationships between any two ambients in a mobile sys-
tem: parent-child and adjacency (see Figure 1). The parent-
child relationship is the inclusion relationship while the
adjacency relationship is the sibling relationship.

When a mobile object M moves from an ambient X
to its adjacent sibling ambient Y, it needs to first exit X
and then enter Y. We can use the two events exM

X
, enM
Y

to model this situation. When a mobile object M moves
from a parent ambient X′ to its child ambient Y′, since
X
′ contains Y′ and M is located in X′, M only need to

enter Y′, that is, only one entry movement event enM
Y′

occurs. Similarly, when a mobile object M′ moves from
a child ambient Y′ to its parent ambient X′, only one
exit movement event exM

′

Y′
occurs. Therefore, we give

the following definition.

Fig. 1. The relationship of two ambients

Definition III.1 Let A1,A2 ∈ A.
(1) (Parent-child) A2 is called a child ambient of A1,

denoted by A2 b A1 or A1 c A2, iff for all M ∈ M:
(i) if M moves from A1 to A2, there exists only one
movement event enM

A2
, and (ii) if M moves from A2

to A1, there exists only one movement event exM
A2

. The
notation A2 > A1 denotes that A2 is not a child ambient
of A1.

(2) (Adjacency) A1 is said to be adjacent to A2, denoted
by A1 V A2, iff for all M ∈M, if M moves from A1 to
A2, there only exist two movement events exM

A1
and enM

A2
that occur in sequence. The notation A1 6V A2 denotes
that A1 is not adjacent to A2.

(3) (connectivity) A1 is said to be connected
to A2, denoted by A1 � A2, iff there exists
a sequence B1 · · · Bn(B1, · · · ,Bn ∈ A) such that
∀i ∈ {1, · · · ,n − 1},Bi b Bi+1 ∨ Bi+1 b Bi ∨ Bi V Bi+1. The
notation A1 4 A2 denotes that A1 is not connected to
A2.

The parent-child relationship is bidirectional, that
is, mobile objects can move between the parent-child
ambients. The adjacency relationship is unidirectional
because one ambient is adjacent to another and
the reverse adjacency relationship between the two
ambients does not necessarily hold. The isolation
between ambients means that there does not exist
a mobile object that moves between the ambients
while the connectivity indicates that any mobile object
can move between ambients, but is very possibly
unidirectional (because the adjacency relationship as a
part of the connectivity is unidirectional).

Proposition III.1 Let A,B,C ∈ A.
(1) A b B =⇒A� B∧B � A.
(2) AV B =⇒A� B.
(3) A b B b C =⇒A� C∧ C � A.
(4) AV BV C =⇒A� C.
(5) A� B � C =⇒A� C.
Proof This proof is straightforward. �

Proposition III.1 shows that there exists the following
properties of the relationship between ambients: (1) if
one ambient is a child of another, the two ambients
are connected to each other; (2) adjacent ambients
have unidirectional connectivity; (3) the transitivity of
parent-child relations implies bidirectional connectivity;
(4) the transitivity of adjacency relations indicates
unidirectional connectivity; (5) the connectivity relation
is transitive; and the isolation relation is symmetric.

Theorem III.1 Let A,B ∈ A.
(1) If A b B, then ∀X b A,∀Y b B,X � Y ∧Y � X.
(2) If AV B, then ∀X b A,∀Y b B,X � Y.
(3) If A� B, then ∀X b A,∀Y b B,X � Y.
(4) If there exist X b A,Y b B such that X � Y, then
A� B.

Proof
(1) By Proposition III.1(1), ∀X b A⇒ X � A∧A � X,
∀Y b B ⇒ Y � B ∧ B � Y, and A b B ⇒ A �

B ∧ B � A. Since X b A and A b B, X b A b B.
Then, according to Proposition III.1(3), X � B∧B � X.
Since Y � B ∧ B � Y, X � B � Y and Y � B � X.
Therefore, by Proposition III.1(5), X � Y ∧Y � X.

(2) By Proposition III.1(1), ∀X b A ⇒ X � A and
∀Y b B ⇒ B � Y. Since AV B, by Proposition III.1(2),
A � B. Therefore, X � A � B � Y. According to
Proposition III.1(5), X � Y.

(3) Since X b A,Y b B, by Definition III.1(3), X �
A ∧ B � Y. Also, since A � B, X � A � B � Y. By
Proposition III.1(5), X � Y.

(4) Since X b A,Y b B, by Definition III.1(3),
A� X∧Y � B. Also, since X � Y, A� X � Y � B.
By Proposition III.1(5), A� B. �

382

Theorem III.1 states that (1) if one ambient is a
child of another, then their children are connected
together, (2) if two parent ambients are adjacent to each
other, then their children are connected together, (3)
if two parent ambients are connected together, their
children are all connected together, and (4) if there
exist child ambients of two ambients are connected
together, then such two ambients are connected together.

IV. Communication model

At a high abstract level, the exchanged information
on communication is generally called messages. Different
communication mechanisms and media form different
types of communication such as asynchronous commu-
nication, synchronous communication and broadcasting
communication. Synchronous communication requires
that the sender should wait until the receiver is ready
for the message exchange, and then they synchronize by
executing the sending and the receiving activity simul-
taneously. Thus, since a message is directly sent to the
receiver by a sender under synchronous communication,
we may consider that a message directly moves from
the sender into the receiver. By contrast, asynchronous
communication requires specific communication medi-
a (queues or channels) which store messages. In this
setting, a message leaves the sender, and then enters a
communication medium. If the receiver needs the mes-
sage, then the message exits the communication medium
and enters the receiver. The broadcasting communication
model means that one message can be cloned and trans-
mitted from one sender to multiple receivers.

In a mobile system, mobile objects and ambients
may communicate with each other. They are generally
composed together by the communication devices
(media) and these communication media are also
ambients. Messages are mobile objects, and the
senders and receivers of messages are mobile objects
or ambients in a mobile system. Moreover, there
exist many communication media, for example, any
communication node on any network. We sometimes
need to model all the communication media in order
to model and reason about networks and their protocols.

Definition IV.1 A communication model is a tuple
CM = 〈Mm,Am,Em,Rd〉 where
•Mm ⊆M is the set of mobile messages,
•Am ⊆ A is the set of ambients participating in the

movement of messages,
•Em ⊆ {e | m ∈ Mm,A ∈ Am, e = exm

A ∨ e = enm
A} is the

set of movement events of messages, and
•Rd is the dependency relation on the set Em such

that for all m ∈Mm,
(1) if ∃A,B ∈ Am : A b B and m moves between A and
B, then exm

A , enm
B ∈ Em,

(2) if ∃A,B ∈ Am : (AV B)∨ (∃C : A b C∧ B b C) and m
moves from A to B, then exm

A , enm
B ∈ Em∧exm

A → enm
B ∈ Rd,

(3) if ∃A,B,C ∈ Am : A b B b C and m moves between A
and C, then exm

A , exm
B , enm

A , enm
B ∈ Em ∧ (exm

A → exm
B , enm

B →

enm
A ∈ Rd), and

(4) if ∃A ∈ Am: m passes through A, then
enm

A → exm
A ∈ Rd.

The communication model considers not only message
exchanges between general senders and receivers, but
also can handle message migration from a parent
ambient to a child, or vice versa.

Proposition IV.1 Let CM = 〈Mm,Am,Em,Rd〉 be a
communication model. If ∃A,B ∈ Am : A � B, then
there exists a message m ∈Mm such that m moves from
A to B.

Next, we discuss the relationship of synchronous
communication, asynchronous communication and
broadcasting communication.

Definition IV.2 Let CM = 〈Mm,Am,Em,Rd〉 be a
communication model.

(1)CM is said to be synchronous if ∀(e1, e2) ∈ Rd,∀e, e′ ∈
Em : (e, e1) < Rd ∧ (e2, e′) < Rd.

(2) CM is said to be asynchronous if ∀(e1, e2) ∈
Rd,∃e, e′ ∈ Em : (e, e1) ∈ Rd ∨ (e2, e′) ∈ Rd.

(3) CM is said to be broadcasting if ∃e ∈ Em : |e•| > 1
where e• = {e′ ∈ Em | (e, e′) ∈ Rd}.

In a synchronous communication model, messages
only move between two ambients and there does not
exist an ambient between sender and receiver ambients.
In a asynchronous communication model messages
may move from sender ambients to receiver ambients
and pass through the ambients between senders and
receivers. A broadcasting communication model means
that there exist multiple message movement events
depending on the same movement events.

Proposition IV.2 If a communication model is
broadcasting, it is synchronous or asynchronous.

This propostion shows that broadcast communication
is synchronous or asynchronous communication.

V. Dependency structure

An event is an occurrence of an activity or action. If
an event occurs, such an event is said to be available;
otherwise it is unavailable. A dependency structure uses
an event set (a set of events) as a basic element. If all
events in an event set are available, such an event set is
said to be available; otherwise it is said to be unavailable.
For convenience, we first give some notations. Given a
set E, |E| and P′(E) respectively denote the size and the

383

power set of E, and P(E)=P′(E) \ {∅}. E denotes the set
of events.

Definition V.1 A dependency structure (DS) is a tuple
〈E, I,T, S,C,P,F〉 with
– E ⊆ E, a finite set of events,
– I ⊆ P′(E), the set of initially available event sets,
– T ⊆ P(E) × P(E), the (asymmetric) transformation
relation,
– S ⊆ P(E), the synchronism relation such that
∀A ∈ S : |A| > 1,
– C ⊆ P(E), the choice relation such that ∀A ∈ C : |A| > 1,
–P ⊆ P(E) × P(E) \ T, the (irreflexive and asymmetric)
priority relation, and
– F ⊆ P′(E), the set of finally available event sets.

Here, for all A,B ⊆ E, (A,B) ∈ T (resp. P) is called a
transformation (resp. priority) dependency, denoted as A→
B (resp. A(B), all read as B depending on A.

When the occurrences of some events completely de-
pend on those of other events, the two groups of events
form a (causal) transformation relationship. Transforma-
tion is a binary relation between event sets where the
intuitive interpretation of a transformation (A,B)((A,B) ∈
T) is that the availability of all events in B depends on
the occurrences of all events in A. A set A ∈ S is called
a synchronism set, and a set B ∈ C is called a choice set.
Definition V.1 requires that any synchronism or choice
set should have at least two events. The synchronism
relation is not a binary relation. Any set A ∈ S means
that all events in A synchronize with each other. Only
if all events in A have occurred, the events that depend
on them will occur. Any set B ∈ C means that all events
in B are mutually exclusive, that is, if one event occurs,
the others cannot occur.

Priorities only control the transformation relation and
are not related to synchronism and choice. Actually,
the synchronism and choice relations also control the
transformation relation. The initially available event
set means that the events in such an event set have
been available before a system starts to run. The finally
available event set means that when the execution of a
system makes the events in such an event set available,
the system or its subsystems stop running.

Theorem III.1 If CM = 〈Mm,Am,Em,Rd〉 is a com-
munication model of a communicating and mobile sys-
tem, then there exists a dependency structure DS =
〈E, I,T, S,C,P,F〉 such that ∀(e, e′) ∈ Rd, ({e}, {e′}) ∈ T.

Proof Let CMS be a communicating and
mobile system. Let CM = 〈Mm,Am,Em,Rd〉,
DS = 〈E, I,T, S,C,P,F〉 be the communication model
and the behaviour model of CMS, respectively. Then,
since CM represent the communication behavior of
CMS, by Definition IV.1, we can obtain the dependency
relation Rd of message movement. Obviously, since

the communication behavior of CMS is part of the
whole behavior of CMS, and a dependency structure
can model the whole behavior of CMS (including event
dependency, synchronism, choice, priority and loop),
the dependency structure can model the communication
behavior of CMS. According to Definition IV.1, for all
(e, e′) ∈ Rd, we can guarantee ({e}, {e′}) ∈ T. �

This theorem shows that the dependency structure
model contains the communication model of unifying
mobility and communication, that is to say, a dependen-
cy structure can model not only behavior of a communi-
cating and mobility system, but also represent mobility
and communication of such a system in a unified way.

VI. Conclusion
We have discussed the relationship of ambients based

on mobility and presented an event-based communi-
cation model. We have also shown that a dependency
structure can not only unify synchronous, asynchronous
and broadcasting communication, but also specify mo-
bility and communication in a unified way. As a general
event-based formal model, a dependency structure is
easily used to model and reason about mobile cyber-
physical systems.

ACKNOWLEDGMENTS
This work is supported by National Natural Science

Foundation of China (No. 61772004) and the Natural
Science Foundation of Fujian province (No. 2018J01777).

References
[1] Andrea Asperti and Nadia Busi. Mobile petri nets. Mathematical

Structures in Computer Science, 19(06):1265–1278, 2009.
[2] Luca Cardelli and Andrew D Gordon. Mobile ambients. In

International Conference on Foundations of Software Science and Com-
putation Structure, pages 140–155. Springer, 1998.

[3] Florent Chevrou, Aurelie Hurault, and Philippe Queinnec. On
the diversity of asynchronous communication. Formal Aspects of
Computing, 28(5):847–879, 2016.

[4] Jian-Min Jiang, Huibiao Zhu, Qin Li, Yongxin Zhao, Lin Zhao,
Shi Zhang, Ping Gong, and Zhong Hong. Analyzing event-based
scheduling in concurrent reactive systems. ACM Transactions on
Embedded Computing Systems (TECS), 14(4):86, 2015.

[5] Jian-Min Jiang, Huibiao Zhu, Qin Li, Yongxin Zhao, Lin Zhao,
Shi Zhang, Ping Gong, Zhong Hong, and Donghuo Chen. Event-
based mobility modeling and analysis. ACM Transactions on Cyber-
Physical Systems, 1(2):9:1–9:32, February 2017.

[6] Robin Milner. A Calculus of Communicating Systems. Springer-
Verlag, New York, NY, 1982.

[7] Robin Milner, Joachim Parrow, and David Walker. A calculus
of mobile processes. Information and Computation, 100(1):1–40,
September 1992.

[8] Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson. Stat-
ic analysis of topology-dependent broadcast networks. Information
and Computation, 208(2):117–139, 2010.

[9] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets,
event structures and domains, part i. Theoretical Computer Science,
13(1):85–108, 1981.

[10] Glynn Winskel and Mogens Nielsen. Models for Concurrency.
Handbook of Logic in Computer Science, Semantic Modelling.
Oxford Science Publications, Oxford, 1995.

[11] Dianxiang Xu, Jianwen Yin, Yi Deng, and Junhua Ding. A formal
architectural model for logical agent mobility. IEEE Transactions
on Software Engineering, 29(1):31–45, 2003.

384

Towards Formal Modeling and Verification of
Probabilistic Connectors in Coq

Xiyue Zhang and Meng Sun
LMAM & DI, School of Mathematical Sciences, Peking University, Beijing, China

{zhangxiyue, sunm}@pku.edu.cn

Abstract—The coordination language Reo has played an
important role in organizing the interactions among different
components in large-scale distributed applications. A probabilistic
extension on classical Reo is necessary to deal with the uncertainty
of the real world. In this paper we developed a framework in Coq
for formalizing probabilistic connectors and reasoning about their
probabilistic properties. Different types of probabilistic channels
are characterized by the relations on their input and output timed
data distribution streams. More complex probabilistic connectors
can be further constructed based on the probabilistic channels
and composition operators. Within such a framework, properties
under analysis and refinement / equivalence relations between
probabilistic connectors can be naturally established as theorems
and proved using tactics in Coq.
Keywords: Reo, Probabilistic Connector, Coq, Modeling, Verifi-
cation

I. INTRODUCTION

The coordination of interactions among large numbers
of concurrent entities in large-scale distributed applications
cannot be easily dealt with and has become a challenge
for software technology. Coordination models and languages
provide a mechanism to meet this challenge by introducing
a formalization of connectors that integrate a number of
heterogeneous components together and organize the mutual
interaction among them in a distributed environment. There
are many coordination models and languages that have been
proposed in the past decades, such as Reo [2], Linda [21],
BIP [10], [13] and Orc [12]. Almost all of these coordination
models enhance modularity and reuse of existing components
and portability. However, they still differ in many dimensions:
the entities being coordinated, the mechanism of coordination,
the coordination medium architecture, and so on.

Reo [2], [8], as a famous coordination model, forms a
paradigm for coordination of software components based on
the concept of channel. Such channel-based models have some
inherent advantages over other coordination models, especially
when it comes to concurrent systems that are distributed,
mobile and whose communication topologies may dynamically
evolve. Channels in Reo are in fact the simplest connectors and
they can be composed to construct more complex connectors
that are used as the glue code to organize the interaction and
communication of components in distributed applications.

The reliability of large-scale distributed applications highly
depends on the correctness of coordination models, which
makes the formal analysis and verification of connectors much
more crucial. There are several works that have been done in

DOI reference number: 10.18293/SEKE2018-023.

the formalization and verification of connectors in the past
years: A coalgebraic semantics for Reo was developed in
[5] in which connectors are interpreted as relations on timed
data streams. And constraint automata (CA) was proposed
as an operational model for connectors in [8]. A scheme
to determine the behavior of connectors by resolving the
synchronization and exclusion constraints based on connector
coloring was introduced in [11]. The symbolic model checker
Vereofy was developed in [7] which can be used to verify
CTL-like properties for connectors. Kokash et al. presented a
mapping from Reo to the specification language mCRL2 based
on process algebra, where the models can be further verified
conveniently using the model checker for mCRL2 in [15].

Complex distributed applications usually involve important
features like real-time, probability, resource consumption, and
so on. Various proposals on extending Reo to deal with such
features have been reported, for example, in [3], [4], [6], [9],
[17]. In this paper, we use Coq [19] to provide a formalization
of Reo connectors with probabilistic behavior and show how
the refinement / equivalence relations and properties of such
probabilistic connectors can be further verified based on the
formalization. This is a further extension to our previous work
of the formalization of Reo and its timed extension in Coq
[14], [22] on the probabilistic dimension, which is still based
on the UTP (Unifying Theories of Programming) semantic
framework for Reo that has been developed in [1], [18].
Probabilistic connectors are constituted by channels that can
behave probabilistically, such as the probabilistic variant of
LossySync channel or randomized Sync channel.

This is certainly not the first work to investigate probabilis-
tic connectors. For example, probabilistic constraint automata
(PCA) [6], which is a variant of CA, characterize the behavior
of probabilistic connectors. However, the formalization by
means of CA (and its extensions) is generally constrained
by the memory limitation problem since infinite behavior is
usually considered for Reo connectors. Modeling and veri-
fying unbounded primitives or even bounded primitives with
unbounded data domains, which always leads to the state space
explosion problem, cannot be achieved with such finite CA-
like models. But they can be specified and verified efficiently
in theorem provers like Coq. The previous work in [22],
[14] can certainly model a wide range of scenarios, but it is
not good at dealing with the uncertainty of the real world.
With this formalization for the probabilistic extension of Reo
provided, more scenarios with uncertainty can be captured,
and various properties under analysis or relations between such
probabilistic connectors can be further verified in Coq.

The paper is organized as follows. After this general

385

introduction, we briefly review some main concepts of the
coordination language Reo in Section II. In Section III, we
present the basic specification for timed data distribution se-
quences and some auxiliary functions and predicates for more
concise modeling. Section IV introduces the formal modeling
of basic probabilistic channels and an adaptive deformation
of the specification for other primitive untimed and timed
channels, as well as the composition operators. Section V
shows how to reason about refinement / equivalence relations
between probabilistic connectors in our framework. Finally,
Section VI concludes the paper and discusses some future
work. The complete implementation in Coq can be found at
[20].

II. PRELIMINARY

In this section, we briefly introduce some basic concepts of
the coordination language Reo. Complex coordinators, called
connectors in Reo, are compositionally built out of simpler
ones. We only review the primary concepts of Reo here. More
details can be found in [2], [8].

Fig. 1. Basic channels in Reo

The focus in Reo is on connectors and their composition,
not the different entities being connected by the connectors. It
works very well in practice for controlling and organizing the
communication, synchronization and cooperation among the
distributed components. Each channel in Reo has exactly two
channel ends with their own identifiers. There are two types of
channel ends: source end and sink end. Data items are accepted
into a channel through its source end and dispensed out of the
channel through its sink end. It is not necessary for a channel
to have both source end and sink end, i.e., a channel can have
two source ends or two sink ends. Each channel end can be
connected to at most one component instance at any given
time. Reo allows an open-ended set of user-defined channel
types as primitives for constructing connectors. Figure 1 shows
some widely-used channel types in Reo which are interpreted
as follows:

Sync: The synchronous channel has one source end and one
sink end. A channel is called synchronous because it accepts
a data item if and only if the dispensation of the data item
through the sink end can simultaneously occur.

LossySync: The lossy synchronous channel is similar to the
Sync channel except that it always accepts all data items
through its source end, but it can only deliver some of the
data items that it accepts, and lose the rest. Data items are
transferred successfully only when the write operation on the
source end and the take operation on the sink end occur
simultaneously, otherwise the data items are lost.

FIFO1: A FIFO1 channel is an asynchronous channel with a
buffer whose capacity is bounded with 1. Initially, the buffer
is empty. After accepting a data item through the source end,
the data item will be kept in the buffer before being dispensed
out of the channel. The next data item can only be accepted
into the buffer after the data item in the buffer is dispensed.

SyncDrain: The synchronous drain has two source ends and
no sink end. The pair of write operations on its two ends to
accept data items can succeed only simultaneously, and all the
data items written to this channel are lost.

t-Timer: The t-Timer channel is used to capture more time-
related behavior. It accepts any data item through its source
end and produces a timeout signal after a delay of t time units
on its sink end.

Apart from these channel types, more well-defined exotic
channels can be found in [2], [3], [18]. Users can also define
new channels according to their own demands and interaction
policies. For example, several probabilistic and stochastic
extensions of Reo have been proposed in [6], [9], [16].

Fig. 2. Operators for channel composition

A connector is actually a set of channel ends together
with the connecting channels, organized in a graph of nodes
and edges, in which different channel ends coincide on each
node and each edge captures the type of channel linking its
two nodes. Nodes are categorized into source, sink and mixed
nodes depending on whether all channel ends that coincide on
a node are source ends, sink ends or a combination of the two
types. According to the node types, we have three types of
operators for channel / connector composition: flow-through,
replicate and merge, as shown in Figure 2.

A source node corresponds to the replicate operator. Data
items flowing through the source node are replicated and
written into all the channels /connectors that are associated
with the the source node. A sink node acts as the merge
operator. A take / read operation on the sink node succeeds
only when at least one of the channel ends coincident on
the sink node offers a data item. If more than one channel
ends offer data items, then one of them is selected non-
deterministically. The flow-through operator simply allows the
data item to flow through the mixed node without any change.
When there are more than one sink ends and source ends
coincident on the mixed node, the merge operator acts first,
takes a data item offered by one of the sink ends, and then
the selected data item flows through the mixed node, then the
data item is replicated and the copies are written into all of its
source ends.

III. BASIC DEFINITIONS

An obvious way to represent a connector is to model
it as a relation on its inputs and outputs, which take place
through the source and sink nodes of the connector. Taking
probabilistic behavior into consideration, sequences of data
distributions in which the data pass through a node together
with the moments in time when the data items are observed
emerge as the key building blocks for describing connectors.
Therefore, we can naturally specify the observations as timed
data distribution sequences on nodes, which are used to char-
acterize probabilistic connectors. Some auxiliary functions and
predicates are introduced for concise modeling and reasoning
about probabilistic connectors in Coq.

386

The main libraries of Coq being used here are the Stream
library, the Reals library, and the Utheory library. The Stream
library provides an appropriate co-inductive definition of infi-
nite sequences on the input and output nodes of connectors.
However, unlike the specification we used to describe the
behavior of primitive channels in [14], [22], the observation
sequences are adjusted here to timed data distribution streams
instead of timed data streams. The Reals library is mainly used
to support continuous time behavior; as a result, various oper-
ations and axioms on real numbers can be adopted directly for
the modeling and reasoning. The Utheory library axiomatizes
the properties required on the abstract type U representing
the real interval [0, 1], which facilitates the description of
probabilistic behavior. The definition of the infinite data flow
can be specified as follows, with the help of these libraries.

Definition Time := R.
Definition Data := nat.
Definition DataDist := Data * U.
Definition TDD := Time * DataDist.

In this framework, time is specified as real numbers,
which is very natural and expressive enough for the modeling
approach. Data, for simplicity, is defined as the set of natu-
ral numbers. Generally, probability functions that map from
natural numbers to the corresponding probabilities are very
common and other abstract sets of data can be processed first
by mapping them to a set of natural numbers in an appro-
priate way. Moreover, the definition of data can be expanded
easily in accordance with concrete application domains. The
representation of the data distribution, denoted as DataDist, is
the Cartesian product of the type Data and the abstract type
U, namely the real interval [0, 1]. The timed data distribution
TDD can be further defined as the Cartesian product of time
and data distribution. Stream TDD represents the timed data
distribution sequences efficiently via the Stream module.

Several auxiliary functions and predicates are used to facil-
itate the representation of channels and composition operators,
and can be exploited and extended for further reasoning.

Functions PrL and PrR take an instance (a, b) of the
Cartesian product type as the argument and return the first or
second element of the pair, respectively. If b in this instance
is still a Cartesian product (c, d), functions LPrR and DPrR
can be applied on (a, (c, d)) and return the elements c and d,
respectively.

The following axiom which specifies that the elements of
all time streams should be in a strictly monotonous increasing
order is a general requirement. More requirements that some
streams should satisfy can be specified in a similar way,
and some of them are provided in the definitions of specific
channels.

Axiom Inc_T:forall (T:Stream TDD)(n:nat),
PrL(Str_nth n T) < PrL(Str_nth n (tl T)).

Several predicates about time and data are defined for a
more clear and concise formalization of the connectors. For
example, Tlt (Tgt) represents that each element of the first time
stream is strictly less (greater) than the second stream. For the
modeling and verification of probabilistic connectors including
timer channels, some predicates about time but with an extra

parameter t are defined in a similar way. Each element of the
first time stream is added by a delay of t time units which can
be customized. Therefore, Tltt (Tgtt) represents that the time
of the first stream with an addition of t is less (greater) than
the second stream accordingly. Complete definitions of such
auxiliary functions and predicates can be found at [20].

IV. PROBABILISTIC CHANNELS AND OPERATORS

Modeling of basic probabilistic channels and composition
operators serves as the basis of the whole modeling and
reasoning framework.

A. Probabilistic Channels

Constraints on input and output timed data distribution
streams are used in Coq to specify primitive channels’ be-
havior. The specification of channels with probabilistic be-
havior can be captured by the disjunction or conjunction of
different predicates about time and data distributions as well.
In this section we consider four types of probabilistic chan-
nels: message-corrupting synchronous channel, randomized
synchronous channel, probabilistic lossy synchronous channel
and faulty FIFO1 channel. Specifications of other primitive
channels are omitted here and can be found at [20].

CptSync: The message-corrupting synchronous channel
−−p→ is a synchronous channel which has an extra parameter
p compared with the primitive synchronous channel. The
delivered message can be corrupted with probability p. Hence,
if a data item flows into the channel through the source end,
then the correct data value will be obtained at the sink end with
probability 1−p and a corrupted data value ⊥ will be obtained
with probability p. The corrupted data value is represented by
the initial letter c in the Coq specification.

Parameter CptSync:
Stream TDD -> Stream TDD -> U -> Prop.

Axiom CptSync_coind:
forall (Input Output:Stream TDD) (p:U),
CptSync Input Output p ->
(PrL(hd Output) = PrL (hd Input)
/\

(
PrR(hd Output) =
(c, p*(DPrR(hd Input)))
\/
PrR(hd Output) =
(LPrR(hd Input),([1-]p)*(DPrR(hd Input)))
)

/\
CptSync (tl Input) (tl Output) p

).

The CptSync channel is defined recursively here. The first
predicate of the conjunction is the constraint on the equality
of time reflecting the synchronous behavior. The disjunction
formula in the middle captures the probabilistic behavior. The
data of the output can be the exact value of the input with the
updated probability, i.e., the original companied probability
multiplied by 1− p or the corrupted value with probability p.

RdmSync: The randomized synchronous channel
rand(0,1)
−−−−→ can

generate a random number b ∈ {0, 1} with equal probability

387

when it is activated through an arbitrary write operation on its
source end, and this random number will be taken on the sink
end synchronously.

Definition RdmSync(Input Output:Stream TDD)
:Prop :=
(forall n:nat,
PrR (Str_nth n Output)=(1%nat, [1/]1+1)
\/
PrR (Str_nth n Output)=(O, [1/]1+1))
/\ Teq Input Output.

The formula in the first disjunction branch with the uni-
versal quantifier properly describes the probabilistic behavior
observed on output streams. Each element of the output data
distribution stream can be 1 or 0 both with the probability 1

2 .
As for the constraint about time, the predicate Teq is used here
to indicate that the time dimension of input and output streams
are equal, conforming to the synchronous behavior.

ProbLossy: The message transmitted by the probabilistic
lossy synchronous channel

q
−−→ can get lost with a certain

probability q. It can also act like a Sync channel and the
message will be delivered successfully with probability 1− q.

Parameter ProbLossy:
Stream TDD -> Stream TDD -> U -> Prop.

Axiom ProbLossy_coind:
forall (Input Output:Stream TDD) (q:U),
ProbLossy Input Output q ->
(
(PrL(hd Output) = PrL(hd Input)
/\
PrR(hd Output) =
(LPrR(hd Input), DPrR(hd Input)*([1-]q))
/\
ProbLossy (tl Input) (tl Output) q)

\/
ProbLossy (tl Input) Output q

).

The ProbLossy channel is defined recursively but may take
two different courses in each step. The data can be totally lost
when going through the channel, which leads to the recursive
behavior that the last formula reflects in the specification. If
the data item is successfully delivered, then there are three
constraints that need to be satisfied. These constraints are
represented by the conjunction of three formulas. The first
formula is specified for the equality of time in accordance
with the synchronous delivery. The second formula reflects that
the current data item is transmitted successfully with an extra
multiplication 1 − q to the original probability of the input.
The third formula is the second course that the recursion takes
when last data item has a successful transmission.

FtyFIFO1: The messages flowing into a faulty FIFO1 channel
r· · ·⊏⊐→ can get lost with probability r when it is inserted into

the buffer. In this case, the buffer remains empty. It can also
behave as a normal FIFO1 channel when the insertion of data
into the buffer is successful with probability 1− r.

Parameter FtyFIFO1:
Stream TDD -> Stream TDD -> U -> Prop.

Axiom FtyFIFO1_coind:

forall (Input Output:Stream TDD) (r:U),
FtyFIFO1 Input Output r ->
(

(PrL(hd Output) > PrL(hd Input)
/\
PrL(hd Output) < PrL(hd (tl Input))
/\
PrR(hd Output) =
(LPrR(hd Input), DPrR(hd Input)*([1-]r))
/\
FtyFIFO1 (tl Input) (tl Output) r)

\/
FtyFIFO1 (tl Input) Output r

).

The FtyFIFO1 channel is also defined recursively here
but can take two different ways of recursion in each step.
The data written into the channel on the source end can be
lost before being inserted into the buffer, which leads to the
first way of recursion represented by the last formula. If the
data item is successfully written into the buffer, then there
are four constraints that need to be satisfied, represented by
the conjunction of four formulas. The first and the second
formula are used to constrain the behavior on time dimension.
The time delay from input to output is captured by the first
formula. Since the buffer capacity is 1, next data item cannot
be written into the buffer unless the data item currently in the
buffer is taken on the sink end first, which is reflected by the
second formula. The third formula indicates that the current
data item is transmitted successfully through the buffer with an
extra 1− r being multiplied to the original probability of the
input. The fourth formula reflects the second way of recursion
when last data item is written into the buffer successfully.

Another kind of faulty FIFO1 channel −−⊏⊐ r99K works
perfectly on the insertion of data item into its buffer but may
loose messages from the buffer before being taken on the sink
end. The difference between this channel and FtyFIFO1 is that
the loss of data items happens in different steps. Loss behavior
in this channel arises in the process of being taken from the
buffer, while loss behavior in FtyFIFO1 arises in the process of
storage into the buffer. But in our modeling framework, chan-
nels are specified only by the relations between observations
on input and output channel ends. As a result, the specifications
of these two faulty FIFO1 channels in Coq are exactly same.

The specification of primitive untimed and timed channels
in [22], [14] are properly adjusted in this modeling framework.
Moreover, this new formalization is still consistent with the
untimed / timed version by means of assigning the value 1 to
the companied probability of the data in the definitions of chan-
nels with no probabilistic behavior. Hence, the observations on
input and output are all specified by timed data distribution
streams, and connectors composed by primitive untimed /
timed channels and probabilistic channels can be constructed
without a hitch. Once there is a probabilistic channel in a
connector, it will be taken as a probabilistic connector.

B. Composition Operators

Composition operators are the other essential factor for the
construction of complex connectors. As described in Section II,
there are three kinds of composition operators: flow-through,
replicate and merge.

388

The flow-through and replicate operators do not need to
be adjusted. The specification for these operators in [22],
[14] can be adopted here without any change, since the
behavior of these two operators are independent of the form
or content of the data flow. Both of them can still be speci-
fied implicitly by means of renaming. For example, for two
channels ProbLossy(A, B) and FIFO1(C, D), the replicate
operator has been implemented directly by renaming C with
A for the FIFO1 channel. The flow-through operator can be
implemented in a similar way. For example, when we illustrate
channels ProbLossy(A, B) and FIFO1(B, C), the flow-through
operator that acts on node B has already been implemented.

The merge operator seems to depend on the content of the
data flow. However, it is easy to understand that the comparison
of time in the original specification of the operator does not
need any change, since the time dimension is exactly same
between the timed data streams and timed data distribution
streams. As for the data dimension, the equality also does not
need to change with the aid of the Utheory library. But in
this framework, the equality relation for data is changed to
the equality relation on data distribution. Therefore, both data
items and their companied probabilities should be equal.

Parameter merge:
Stream TDD->Stream TDD->Stream TDD->Prop.
Axiom merge_coind:
forall s1 s2 s3:Stream TDD,
merge s1 s2 s3->
˜(PrL(hd s1) = PrL(hd s2)) /\
((PrL(hd s1) < PrL(hd s2)) ->
(hd s3=hd s1)/\merge (tl s1) s2 (tl s3))
/\
((PrL(hd s1) > PrL(hd s2)) ->
(hd s3=hd s2)/\merge s1 (tl s2) (tl s3)).

V. REASONING ABOUT RELATIONS

The formalization of all types of basic channels and
composition operators completes the ground modeling frame-
work, which serves well to construct different probabilistic
connectors that users are interested in. Complex connectors
can be constructed according to their topological orders. As
soon as the construction is done, connector properties and
refinement / equivalence relations between connectors can be
further specified and reasoned about in Coq.

The concept of refinement has been widely used in different
system descriptions. The refinement relation for connectors
is defined in [18], in which the refinement order over con-
nectors is established based on the implication relation of
predicates. Connector C2 is a refinement of connector C1, both
represented by a set of predicates, if and only if C2 → C1,
i.e., the behavioral properties of C1 can be derived from the
properties of C2. In this case, the properties of connector C2

are regarded as the hypothesis and the properties of connector
C1 as the conclusion. The refinement relation between C1

and C2 is denoted as C1 ⊑ C2 and the equivalence relation
is defined typically by mutual refinement, i.e., C1 ≡ C2 iff
C1 ⊑ C2 ∧ C2 ⊑ C1. Thus the equivalence relation can be
represented by the implications in both directions C2 ↔ C1.

Fig.3 shows two probabilistic connectors both are built
from the same set of five channels RdmSync, FIFO1, t-Timer,

SyncDrain and Sync, but in different topological orders. In
fact, the four channels FIFO1, t-Timer, SyncDrain and Sync
make up a timed connector tFIFO1 that we have studied in
[14]. Different from the primitive FIFO1 channel whose output
timed data distribution streams will be of the same data distri-
bution as the input, but with an arbitrary time delay, the time
delay of tFIFO1 channel is fixed by the parameter t, apart from
the same data distribution between input and output streams.
Therefore, connectors R1 and R2 are actually constituted by
the same two subconnectors RdmSync and tFIFO1 but with
interchanged positions. In general, two connectors composed
with same set of subconnectors as we call, in commutative
orders are not equivalent, i.e., the construction of connectors
does not satisfy the commutative law. But in this case R1

and R2 are equal. The equivalence relation between these two
connectors has been proved in Coq.

Fig. 3. Equivalence between connectors

The configurations of both R1 and R2 can be reduced
to the constitution of a RdmSync channel and a tFIFO1
subconnector with interchanged topological orders. Therefore,
the equivalence relations between the construction from basic
channels and the reduced method of construction from a
RdmSync channel and a tFIFO1 subconnector are proved first
as lemmas in Coq, to make the subsequent proof process
simplified and easier to understand.

Lemma RSync_tFIFO_eq:
forall (A B:Stream TDD) (t:Time),
exists E: Stream TDD,
(RdmSync A E) /\ (t_FIFO1 E B t)
<->
(RdmSync A E) /\ (exists (D C:Stream TDD),
(FIFO1 E D) /\ (SyncDrain D C)
/\ (Timert E C t) /\ (Sync D B)).

The above lemma shows the equivalence relation between
the reduced construction and the construction from basic
channels for R1. Another lemma is defined for R2 in Coq
similarly. As a result, the goal of equivalence relation between
connectors R1 and R2 boils down to the following theorem:

Theorem equivalence:
forall (A B:Stream TDD) (t:Time),
(exists E,(RdmSync A E)/\(t_FIFO1 E B t))
<->
(exists R,(t_FIFO1 A R t)/\(RdmSync R B)).

Intuitively, the core of the proof for the goal is to find
the corresponding mediated timed data distribution stream to
complete the construction, given the construction method of
the other connector. However, a matched timed data distri-
bution stream cannot be found directly. Therefore, we need
to construct two timed data distribution streams first and then
prove that they serve well as precise matches for the refinement
relations in both directions, respectively. The two streams A t
and B t are constructed to satisfy the following properties
which act as hypotheses in Coq:

389

Hypothesis A_R_t: Deq A A_t/\Teqt A A_t t.
Hypothesis B_R_t: Deq B_t B/\Teqt B_t B t.

There are other hypotheses being used directly in the proof,
such as transfer eqt which has been proved in [14]. Some
new properties that aid in proving the current goal but not
proved before are formalized as lemmas and get proved first.
For example, the following lemma demonstrates a property
that two streams which are both greater than a same stream
by t are equal in the time dimension. It is simple to formalize
and prove this property using some commonly-used tactics like
intro, destruct and rewrite.

Lemma trans_t_eq:
forall (s1 s2 s3:Stream TDD)(t:Time),
(Teqt s1 s2 t) /\ (Teqt s1 s3 t) ->
(Teq s2 s3).

All these lemmas and hypotheses make the main proof
more concise. The proof of the theorem actually has two
steps. The original goal is split first into two subgoals that
represent refinement relations in both directions. For the first
subgoal, the antecedent or the precondition of the implication
serves as another hypothesis. After asserting that the matched
timed data distribution stream R is A t, the current subgoal
is reduced to t FIFO1 A A t t ∧ RdmSync A t B, which
can be split again and proved using specific tactics based
on the lemmas and hypotheses, especially the fact that exists
E:Stream TDD, RdmSync A E ∧ t FIFO1 E B t. The subgoal
of the refinement relation in the other direction can be proved
similarly. A complete proof process can be found at [20].

VI. CONCLUSION

This paper proposes a method of modeling and reasoning
about probabilistic connectors in Coq, which is also compatible
with the formalization for the primitive untimed / timed
connectors. Basic probabilistic channels and composition oper-
ators are formalized as the ground framework. After adjusting
timed data streams to timed data distribution streams, all the
channels can be specified by a set of predicates capturing
the relations between inputs and outputs. The formaliza-
tion of composition operators makes it possible to construct
more complex connectors. Properties related to probability
distributions and refinement / equivalence relations between
probabilistic connectors can be specified easily and further
presented with machine-checked proofs. Compared to LTL or
CTL formulas, Coq expressions are more powerful to depict
properties and we can be free from worrying about the state
space explosion problems in other verification approaches like
model checking. Moreover, this architecture is promising to
capture the uncertainty of different applications in real world.

In the future, we plan to investigate some more scenarios
related to coordination in real world based on this architecture.
In particular, we would like to deal with more probabilistic
properties users care about among different applications or
services. The modeling and verification of hybrid behavior of
connectors in Coq is in our scope as well.

ACKNOWLEDGEMENTS

The work is partially supported by NSFC under grant no.
61772038, 61532019, 61202069 and 61272160.

REFERENCES

[1] B. K. Aichernig, F. Arbab, L. Astefanoaei, F. S. de Boer, S. Meng, and
J. Rutten. Fault-based test case generation for component connectors.
In Proceedings of TASE 2009, pages 147–154. IEEE Computer Society,
2009.

[2] F. Arbab. Reo: A Channel-based Coordination Model for Compo-
nent Composition. Mathematical Structures in Computer Science,
14(3):329–366, 2004.

[3] F. Arbab, C. Baier, F. S. de Boer, and J. J. M. M. Rutten. Models
and temporal logical specifications for timed component connectors.
Software and System Modeling, 6(1):59–82, 2007.

[4] F. Arbab, T. Chothia, R. van der Mei, S. Meng, Y.-J. Moon, and
C. Verhoef. From Coordination to Stochastic Models of QoS. In J. Field
and V. T. Vasconcelos, editors, Proceedings of Coordination’09, volume
5521 of LNCS, pages 268–287. Springer, 2009.

[5] F. Arbab and J. Rutten. A coinductive calculus of component connec-
tors. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, WADT
2002, volume 2755 of LNCS, pages 34–55. Springer-Verlag, 2003.

[6] C. Baier. Probabilistic Models for Reo Connector Circuits. Journal of
Universal Computer Science, 11(10):1718–1748, 2005.

[7] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, and W. Leister. Design
and verification of systems with exogenous coordination using vereofy.
In Proceedings of ISoLA 2010, volume 6416 of LNCS, pages 97–111.
Springer, 2010.

[8] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component
connectors in Reo by constraint automata. Science of Computer
Programming, 61:75–113, 2006.

[9] C. Baier and V. Wolf. Stochastic Reasoning About Channel-Based
Component Connectors. In P. Ciancarini and H. Wiklicky, editor,
COORDINATION 2006, volume 4038 of LNCS, pages 1–15. Springer-
Verlag, 2006.

[10] S. Bliudze and J. Sifakis. The algebra of connectors - structuring
interaction in BIP. IEEE Trans. Computers, 57(10):1315–1330, 2008.

[11] D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchro-
nisation and context dependency. Science of Computer Programming,
66:205–225, 2007.

[12] W. R. Cook, S. Patwardhan, and J. Misra. Workflow Patterns in Orc. In
Proceedings of COORDINATION 2006, volume 4038 of LNCS, pages
82–96. Springer, 2006.

[13] R. Edelmann, S. Bliudze, and J. Sifakis. Functional BIP: embedding
connectors in functional programming languages. Journal of Logical
and Algebraic Methods in Programming, 92:19–44, 2017.

[14] W. Hong, S. Nawaz, X. Zhang, Y. Li, and M. Sun. Using Coq for
Formal Modeling and Verification of Timed Connectors. In Software
Engineering and Formal Methods: SEFM 2017 Collocated Workshops,
Revised Selected Papers, volume 10729 of LNCS, pages 558–573.
Springer, 2018.

[15] N. Kokash, C. Krause, and E. de Vink. Reo+mCRL2: A framework
for model-checking dataflow in service compositions. Formal Aspects
of Computing, 24:187–216, 2012.

[16] Y. Li, X. Zhang, Y. Ji, and M. Sun. Capturing Stochastic and Real-time
Behavior in Reo Connectors. In Proceedings of SBMF 2017, volume
10623 of LNCS, pages 287–304. Springer, 2017.

[17] M. Sun and F. Arbab. On resource-sensitive timed component connec-
tors. In Proceedings of FMOODS 2007, volume 4468 of LNCS, pages
301–316. Springer, 2007.

[18] M. Sun, F. Arbab, B. K. Aichernig, L. Astefanoaei, F. S. de Boer, and
J. Rutten. Connectors as designs: Modeling, refinement and test case
generation. Science of Computer Programming, 77(7-8):799–822, 2012.

[19] The Coq Proof Assiatant. https://coq.inria.fr/.
[20] The source code. https://github.com/Xiyue-Selina/Prob-Reo.
[21] M. Viroli, D. Pianini, and J. Beal. Linda in space-time: An adaptive

coordination model for mobile ad-hoc environments. In Proceedings
of COORDINATION 2012, volume 7274 of LNCS, pages 212–229.
Springer, 2012.

[22] X. Zhang, W. Hong, Y. Li, and M. Sun. Reasoning about Connectors
in Coq. In Proceedings of FACS 2016, volume 10231 of LNCS, pages
172–190. Springer, 2017.

390

Reo2PVS: Formal Specification and Verification of
Component Connectors

M. Saqib Nawaz and Meng Sun
LMAM & Department of Informatics, School of Mathematical Sciences, Peking University, Beijing, China

{msaqibnawaz, sunm}@pku.edu.cn

Abstract—Compositional coordination models such as Reo
provide powerful support for the development of large-scale
distributed systems by allowing construction of complex con-
nectors that coordinate behavior among different components.
The reliability of such distributed systems highly depends on the
correctness of connectors. In this paper, we use the proof assistant
PVS for formal modeling, analysis and verification of component
connectors. We first present the modeling of primitive channels
and the composition operators that are used to combine channels
for building complex connectors. Furthermore, we show how to
model and analyze connector’s behavior in PVS and prove some
interesting connector properties. The model reflects the original
topological structure of connectors simply and clearly. With the
provided approach, different kinds of connector properties can
be naturally formalized and proved in PVS.

Index Terms—Reo, Connector, PVS, UTP, Design

I. INTRODUCTION

Nowadays, most modern software systems are distributed
over large networks of computing devices. However, software
components that comprise the whole system usually do not fit
together exactly and leave significant interfacing gaps among
them. Such gaps are generally filled with additional “glue
code”. Compositional coordination languages offer such a glue
code among components and facilitate the mutual interactions
between components in a distributed environment. Reo [2] and
Linda [11] are two popular examples of such compositional
coordination languages, which have played an important role
in the success of component-based systems in the past decades.

Reo is a channel-based exogenous coordination language
where complex component connectors are orchestrated from
channels via certain composition operators. Exogenous co-
ordination [1] means coordination from outside, where the
primitives that support the coordination of an entity with
others reside outside of that entity. Connectors in Reo provide
the protocols that control and organize the communication,
synchronization and cooperation among the components that
they interconnect. Despite its simplicity, Reo has been used
successfully in various application domains, such as service-
oriented computing [10], [21], [22], business processes [25]
or biological systems [8].

The reliability of component-based systems highly depend
on the correctness of connectors. Formal analysis and verifica-
tion of connectors is gaining more interest in recent years with
the evolution of software systems and advancements in Cloud

DOI reference number: 10.18293/SEKE2018-024

and Grid computing technologies. Furthermore, the increasing
growth in size and complexity of computing infrastructure has
made the modeling and verification of connector properties
a more difficult and challenging task. From the modeling
and analysis context, the formal semantics for Reo allows us
to specify and analyze the behavior of connectors precisely.
In literature, different formal semantics have been proposed
for Reo [13], such as the co-algebraic semantics in terms of
relations on infinite timed data streams [3], operational se-
mantics using constraint automata [6], the coloring semantics
by coloring a connector with possible data flows [9] in order
to resolve synchronization and exclusion constraints, and the
UTP (Unified Theories of Programming) semantics [20], [23].

In the past decade, a lot of work has been done towards
formal verification and analysis of Reo connectors. A symbolic
model checker “Vereofy” has been developed in [5] to check
the CTL-like properties of systems with exogenous coordi-
nation. Another approach is to take advantage of existing
verification tools by translating Reo model to other formal
models such as Alloy [14], mCRL2 [15], etc. Since infinite
behavior is usually taken into consideration for connectors,
the modeling and analysis of connectors are expected to be
achieved efficiently in theorem provers. In [16], a method for
formal modeling and verification of Reo connectors in Coq is
provided. Reo connectors were represented in a constructive
way and verification was based on the simulation of the
behavior and output of Reo connectors. A different modeling
and analysis framework in Coq was proposed in [24], which
adopted the UTP design model for Reo connectors developed
in [20], [23], i.e., a pair of predicates P ` Q where the
predicate P specifies what the designer can rely on when the
communicating operation is initiated by input to the connector,
and Q is the condition on output that must be true when the
communicating operation terminates. Work done in [24] was
extended in [12] to cover the modeling and verification of
timed channels and connectors in Coq.

In this paper, the aim is to provide an approach for formal
modeling and reasoning about Reo connectors constructed
from primitive (both untimed and timed) channels under the
UTP semantic framework using the proof assistant PVS [17].
We first provide the modeling for a family of primitive
channels and compositional operators in PVS. Then we show
how to model and reason about more complex connectors. The
basic idea is to model the observable behavior of a connector
as a relation on the timed data sequences being observed

391

at its input and output nodes. In PVS, this is achieved by
representing a connector as a logical predicate that describes
the relation among the timed data sequences on its input and
output nodes. The model makes it possible to prove complex
and generic connectors’ properties easily in PVS. The PVS
dump file for this work can be found at [19].

The rest of this paper is organized as follows: Reo and
PVS are briefly introduced in Section II. PVS specifications
for basic definitions being used in the modeling of primitive
channels are presented in Section III. In Section IV, formal
modeling of primitive channels is described, followed by the
modeling of compositional operators. Section V shows how
to verify and reason about connector properties in PVS by
several examples. Finally, Section VI concludes the paper.

II. PRELIMINARIES

In this section, a brief introduction to the coordination
language Reo and the PVS system is provided.

A. Reo

Reo is a channel-based exogenous coordination language
where complex connectors are compositionally constructed out
of simpler ones. Further details on Reo can be found in [2],
[6]. Connectors provide the protocol to control and organize
the communication, synchronization and cooperation among
different components. The simplest connectors are channels
with well-defined behavior. Each Reo channel has two channel
ends, which can be of type source or sink. A source channel
end accepts data into the channel and a sink channel end
dispenses data out of the channel. Few primitive channel types
in Reo are shown in Figure 1.

Sync
Channel

LossySync
Channel

FIFO1
Channel

SyncDrain
Channel

t-Timer
Channel

t

Figure 1. Some primitive channels in Reo

A synchronous (Sync) channel has one source and one sink
end. I/O operations can succeed only if the writing operation
at source end is synchronized with the read operation at
its sink end. A lossy synchronous (LossySync) channel is a
variant of synchronous channel that accepts all data through
its source end. The written data is lost immediately if no
corresponding read operation is available at its sink end. A
FIFO1 channel is an asynchronous channel with one buffer
cell, one source end and one sink end. The channel accepts
a data item whenever the buffer is empty. The data item is
kept in the buffer and dispensed to the sink end later in the
FIFO order. A synchronous drain (SyncDrain) channel has two
source ends and no sink end, which means that no data can
be obtained from such channels. The write operation on both
source ends should happen simultaneously and the data items
written to this channel are irrelevant. A t-timer channel accepts
any data item at its source end and produces a timeout signal
on its sink end after a delay of t time units.

Complex connectors are constructed by composition of
different channels with join and hiding operations. The result

can be represented visually as a graph where a node represents
a set of channel ends that are combined together through
the join operation, while the edges in the graph represent
the channels between the corresponding nodes. Nodes are
categorized into source, sink or mixed nodes, depending on
whether the node contains only source channel ends, sink
channel ends, or both. Source nodes are analogous to input
ports, sink nodes to output ports and mixed nodes are internal
details of a connector that are hidden. The internal topology
of any connector can be hidden from outside by applying the
hiding operation. The behavior of a connector can be captured
by the data-flow on its source and sink nodes. The hidden
nodes can not be accessed or observed from outside.

B. PVS

PVS (Prototype Verification System) offers a formal speci-
fication language and a mechanical theorem proving environ-
ment. The PVS system consists of a specification language,
a parser, a type-checker, a prover, specification libraries, and
various browsing tools. Specification language of PVS is build
on a higher order logic and type system of PVS supports
predicate sub-typing and other type dependencies. The type
system of PVS is not algorithmically decidable and theorem
proving may be required to establish the type-consistency of a
PVS specification. Theorems that need to be proved are called
type-correctness conditions (TCC’s). Here, we give a simple
example for factorial function that is defined recursively in
PVS.

factorial(n:nat): RECURSIVE posnat =
IF n = 0 THEN 1 ELSE factorial(n-1)*n ENDIF
MEASURE n

the: THEOREM FORALL(k:nat): factorial(k) >= k

In PVS, recursive definitions are treated as constant decla-
rations and it must be total, so that the function is defined for
every value of its domain. In order to ensure this, recursive
functions must be specified with a measure (n in the factorial
function). Theorem the in this example shows that factorial
of a number should be greater than or equal to that number.
PVS offers inference rules, proof commands and decision
procedures that can be used to prove theorems. PVS prover is
based on sequent calculus where each proof goal is a sequent
consisting of a sequence of formulas called antecedents and
a sequence of formulas called consequents. The intuitive
interpretation of a sequent is that the conjunction of the
antecedents implies the disjunction of the consequents. During
proof construction, PVS builds a graphical proof tree in which
remaining proof obligations are at the leaves of tree. If a proof
gets stuck, then this tree helps to see where the proof goes
wrong. Further details on PVS can be found in [18].

III. BASIC DEFINITIONS IN PVS

The behavior of a connector can be formalized by means of
data-flows on its sink and source nodes which are essentially
infinite sequences. In PVS, record structure is used to represent
timed data (TD) sequences on the sink and source nodes,

392

where time is defined as positive real numbers (R+) and data
is defined as a positive type. The advantage of using the record
structure for representing a TD sequence is that it offers names
for both time and data of the sequence, which makes the
specification more convenient and understandable.

Time: Type = posreal
Data: TYPE+
TD: TYPE = [# T: sequence[Time],

D: sequence[Data] #]
Input, Output: VAR TD

A TD is a record structure type that has two components:
T and D. The D component is a sequence of data items.
The T component is a sequence of time points being used
to represent the time when the data items in the D component
being observed. Input and Output are declared as variables
of type TD. The following predicates are used for primitive
channels specification later:

Teq(Input,Output):bool = T(Input) = T(Output)
Tle(Input,Output):bool = T(Input) < T(Output)
Tgt(Input,Output):bool = T(Input) > T(Output)
Deq(Input,Output):bool = D(Input) = D(Output)

Teq takes two TD sequences and returns true if the time of
two sequences are exactly equal to each other. Tle represents
that time of the first sequence is strictly less than the second
sequence and Tgt means that the time of the first sequence
is strictly greater than the second sequence. Deq shows the
equality of data: data sequence at Input is equal to data
sequence at Output. Teq, Tle and Tgt only checks the time
component of the record structure, whereas, Deq checks the
data field. Since the type of component T in TD is defined as
sequence[Time], we have to define the operators “<” and “>”
for sequences of times. A strict order (that is both transitive
and irreflexive) is assumed for “<” and “>”.

<: (strict_order?[sequence[Time]])
>: (strict_order?[sequence[Time]]) =

LAMBDA (s1, s2: sequence[Time]): s2 < s1

Defining "<,>" for sequence of time generated two TCC’s.
Proof steps for these two TCC’s can be found at [19].

For timed channels, three new predicate formulas are in-
troduced, which are similar as the previous definitions for
primitive untimed channels with one of the time sequences
is added by a t time delay. An extra t is appended to the
names of these new predicates to distinguish them from the
ones for untimed channels. Definitions Teq, T le and Tgt can
also be specified with the terms used in the Teqt, T ltt and
Tgtt.

Teqt(T1,T2)(t:Time): bool = FORALL (n:nat):
FrS(str_nth(n,T1)) + t = FrS(str_nth(n,T2))

Tltt(T1,T2)(t:Time): bool = FORALL (n:nat):
FrS(str_nth(n,T1)) + t < FrS(str_nth(n,T2))

Tgtt(T1,T2)(t:Time): bool = FORALL (n:nat):
FrS(str_nth(n,T1)) + t > FrS(str_nth(n,T2))

IV. REO CHANNELS AND OPERATORS

The modeling of primitive untimed / timed channels and
operators for connectors composition is presented in this
section. These channels and operators are used later in the
modeling and analysis of complex connectors.

A. Primitive Channels

For the Sync channel, the time and data of a sequence that
flows into the channel are exactly the same as those of the
sequence flowing out. The channel is modeled as follows in
PVS:

Sync(Input,Output):bool = Teq(Input,Output) &
Deq(Input,Output)

The SyncDrain channel has two source ends and no sink
end. It works as a synchronous channel that allows pairs of
write operations pending on its two ends to succeed simulta-
neously. In this channel, all written data items are consumed
and lost. Thus, this channel is used just for synchronizing two
TD sequences being observed on its two ends. This channel
is specified in PVS as follows:

SyncD(Input1,Input2):bool= Teq(Input1,Input2)

A LossySync channel is analogous to the Sync channel,
except that the write operation on the source end always
succeeds immediately. If a corresponding read operation is
already pending on the sink end, then the written data item is
transferred to the sink end and both operations succeed. Other-
wise, only the write operation on the source end succeeds and
the data item is lost. LossySnc channel is defined inductively
as follows: ∗

Lossysync(Input,Output)(n:nat):INDUCTIVE bool
= (nth(Output,n)= nth(Input,n)

& Lossysync(next(Input),next(Output))(n)
OR Lossysync(next(Input),Output)(n))

Another important channel in Reo is the asynchronous one
with buffering capacity 1, known as FIFO1 channel (−<=→).
The time when a FIFO1 channel takes a data item at its source
end is earlier than the time when the data item is delivered at
its sink end. Furthermore, the time of the next data item that
flows in at the source end should be later than the time when
the data in the buffer is delivered at the sink end. The buffer
is empty if no data item is in the buffer, and it contains a data
element d after d is written through the source end and before
d is taken out through the sink end.

Fifo1(Input,Output):bool= Tle(Input,Output) &
Tle(Output,next(Input)) & Deq(Input,Output)

A FIFO1e channel is a variant of FIFO1 where the buffer
already contains a data element “e”. The communication can
only be initiated when e is taken out through the sink end.
So the data sequence that flows out of the channel always get
an extra element e settled at the beginning of the sequence.

∗In PVS, inductive definitions are similar to recursive definitions, in that
both involve induction and must satisfy additional constraints to guarantee
that they are total.

393

Moreover, the time of the sequence that flows into the channel
should be earlier than time of the tail of the sequence that flows
out. As the buffer contains e, new data can be written into the
channel only after the element e has been taken. Therefore,
time of the sequence that flows out is earlier than time of the
sequence that flows in.

Fifo1e(Input,Output)(e:Data)(n:nat): bool =
Tgt(Input,Output) & Tle(Input,next(Output)

& e?(nth(Output,n))(e) &
Deq(Input,(next(Output)))

The t-timer channel accepts input data through its source
end and returns a timeout signal on its sink end exactly after
a duration of t time units. It is specified in PVS as follows:

Timert(Input,Output)(t:Time)(d:Data): bool =
FORALL(n:nat): FrS(str_nth(n,Input)) + t <

FrS(str_nth(n,(next(Input))))
& Teqt(Input,Output)(t)
& SrF(str_nth(n,Output)) = timeout(d))

The definitions of more channels can be found at [19].
Defining primitive channels by intersection and disjunction of
predicates in PVS makes the modeling of channels more con-
cise, easy to understand as each predicate describes a simple
order relation (requirement) on time or data. Furthermore, we
can easily split the predicates for proofs of different properties
which can make the reasoning and proving process simpler.

B. Operators Modeling in PVS

Three main composition operators (shown in Figure 2) are
used in Reo for connector construction, which are (i) flow-
through, (ii) replicate and (iii) merge.

Figure 2. Operators for channel composition

The flow-through operator simply allows data items to
pass the mixed node. It can be achieved explicitly without
specifying it in PVS. This is explained with the simple
example in Figure 3, which represents a flow-trough operator
that connects two channels Sync(A,B) and FIFO1(B,C)
at node B. Such a flow-through operation at node B can
be implicitly implemented by just writing the connector as
"Sync(A,B) ∧ FIFO1(B,C)".

A CB

Figure 3. A connector composed of a Sync and a FIFO1 channel

The replicate operator puts the source ends of different
channels together into one source node. Write operation on
this node succeeds only if all the channels are capable of con-
suming a copy of the written data. Similar to the flow-through
operator, it can be implicitly represented by the structure of
connectors. For example, If we put one Sync(A,B) channel

and one FIFO1(C,D) channel together, we can simply write
Sync(A,B) ∧ FIFO1(A,D) in PVS instead of defining a
recursive or inductive function, and the replicate operator is
achieved directly by renaming C with A for the FIFO1
channel. The use of conjunction and node renaming for flow-
through and replicate operator allows us to define connectors
directly in lemmas and theorems.

The modeling of merge operator is a bit more complicated.
When the merge operator acts on two channels, it leads to
a choice of taking the data item from one of them. The
merge operator is defined inductively as the intersection of
two predicates.

Merge(s1,s2,s3)(n:nat): INDUCTIVE bool =
(NOT (FrS(nth(s1,n))) = (FrS(nth(s2,n)))
AND (((FrS(nth(s1,n)) < (FrS(nth(s2,n))))

IMPLIES nth(s3,n) = nth(s1,n))
& Merge(next(s1), s2, next(s3))(n))

AND (((FrS(nth(s1,n)) > (FrS(nth(s2,n))))
IMPLIES nth(s3,n) = nth(s2,n))
& Merge(s1, next(s2), next(s3))(n)))

V. REASONING ABOUT CONNECTORS

In this section, we investigate and prove some interesting
properties for connectors in PVS.

Example 1. We first consider the connector shown in Figure 3.
Let a, b, c denote the time sequences when the corresponding
data sequence flows through nodes A, B and C. According
to the semantics of Sync and FIFO1 channels, we know
that a = b < c. Let α, β represent the data sequence
being observed at the source node (A) and the sink node (C)
respectively, we have α = β. In PVS, these results are proved
with the following theorem.

Theorem 1. Sync(A,B) ∧ Fifo1(B,C) ⇒ Tle(A,C) ∧ Teq(A,B)
∧ Deq(A,C)

Proof. When the PVS proof checker is run on this theorem,
it gives the following sequent (proof goal) which consists of
no antecedent and one consequent formula:

|-------
{1} FORALL (A,B,C:TD):

Sync(A,B) & Fifo1(B,C) => Tle(A,C)
& Teq(A,B) & Deq(A,C)

The “skolem!” command is used first that creates a fresh
free skolem variable for the universal quantifier (∀) in conse-
quent. Then the “flatten” command is used to simplify the
proof goal by removing => from consequent. This changes
the formula to:

{-1} Sync(A!1, B!1)
{-2} Fifo1(B!1, C!1)
|-------

{1} Tle(A!1,C!1) & Teq(A!1,B!1) & Deq((A!1,C!1)

It now consists of two antecedent formulas and one con-
sequent formula. In next steps, the definitions of Sync and
FIFO1 channels, as well as predicates T le, Teq, Deq and

394

next are expanded with the command (expand “id”). Con-
junction (&) in the antecedents are removed with the command
“flatten” . The formula now simplifies to:

{-1} T(A!1) = T(B!1)
{-2} D(A!1) = D(B!1)
{-3} T(B!1) < T(C!1)
{-4} T(C!1) < (suffix(B!1‘T, 1))
{-5} D(B!1) = D(C!1)
|-------
[1] T(A!1)<T(C!1) & T(A!1)=T(B!1) & D(A!1)=D(C!1)

The sequent is then divided (with “split” command) into
three sub-sequents (sub-goals), which are all proved with
decision procedure command “assert”. †

Example 2. We now consider the Lower Bounded FIFO1
connector as given in Figure 4. This connector has one source
node A and one sink node B. It ensures the lower bound "> t"
for the take operation on node B. Every data item received by
this connector need to stay in its buffer for more than t time
units. Let α, β represents the data sequences being observed
at nodes A and B, and a, b represents the time sequences
corresponding to α and β, i.e., the i-th element a(i) in a (and
b(i) in b) denotes exactly the time moment of the occurrence
of α(i) (and β(i)). For this connector, it is proved in theorem
2 that α = β and a+ t < b.

A BD

C E

t

Figure 4. Lower Bounded FIFO1 Connector

Theorem 2. ∀ A,B,C,D,E ∈ TD, t ∈ Time, d ∈ Data:

Timert(A,C)(t)(d) ∧ Fifo1(A,D) ∧ SyncD(D,E) ∧ Fifo1(C,E)
∧ Sync(D,B) ⇒ Deq(A,B) ∧ Tltt(A,B)(t)

Proof. After applying skolemization, expansion and
flattening, the main goal is split into two sub-goals. The
first sub-goal is for the data dimension, i.e., the data sequence
being received at A should be equal to the data sequence being
taken at B. The Fifo1(A,D) channel satisfies the predicate
Deq(A,D) and the Sync(D,B) channel satisfies Deq(D,B).
The conjunction of both predicates results in Deq(A,B).
For the time dimension, we have predicates Teqt(A,C, t),
T lt(C,E), Teq(E,D) and Teq(D,B), which can be obtained
from the definitions of Timert, Fifo1, SyncD and Sync
channels respectively. These four predicates introduce the
constraints A+ t = C, C < E, E = D, D = B for time. The
combination of these predicates results in T ltt(A,B, t), such
that A+ t < B holds for time.
Example 3. Figure 5 shows an expiring FIFO1 connector
that can be constructed with a normal FIFO1 channel and a
t-timer (and some other channels). In this connector, a data
item received through the source node A is dropped from the

†Note that a theorem in PVS can be proved in different ways that depends
on the proof commands, inference rules and decision procedures being used.

A BC D E

F G H

t

Figure 5. Expiring FIFOn channel

buffer if it is not taken out through the sink node B within t
time units.

Theorem 3. ∀ A,B,C,D,E,F,G,H ∈ TD, t ∈Time, d ∈ Data, n
∈ nat:
Sync(A,C) ∧ Sync(C,F) ∧ Fifo1(C,D) ∧ Timert(F,G)(t)(d) ∧
Lossysync(G,H)(n) ∧ SyncD(D,H) ∧ Lossysync(D,E)(n) ∧

Sync(E,H) ∧ Sync(E,B) ⇒ Teqt(A,B)(t) ∧ Tgt(B,A)

Proof. The PVS proof process of this theorem is presented as
following:
(induct “n”) (The proof starts by applying induction on n)
Main goal is split into two sub-goals. For the first sub-goal
(the base case):
(skosimp) (expand Fifo -3) (expand “Lossysync")
(expand “Sync") (expand “SyncD") (expand “Timert")
(expand “Teq") (expand “Teqt") (expand “Tgt") (assert)
(split)
The first sub-goal is split into two more sub-goals. For the
first sub-sub-goal:
(skosimp) (inst? -10) (skosimp) (assert).
This proves the first sub-sub-goal.
For the second sub-sub-goal:
(assert)(inst? -5) (skosimp) (assert).
This proves the second sub-sub-goal and the proof of the first
sub-goal is complete.
For the second sub-goal:
(skosimp∗) (inst? -1) (expand “Fifo1") (assert) (expand
"Teqt") (expand "Tgt") (skosimp) (assert) (split)
The second sub-goal is divided into two more sub-goals. For
the first sub-sub-goal:
(skosimp)(typepred “t!1") (inst? -3) (assert) (grind).
This proves the first sub-sub-goal.
For the second sub-sub-goal:
(assert) (typepred “>") (expand "strict_order") (flatten)
(expand “transitive") (assert) (grind).
This proves the second sub-sub-goal and the proof of the
second sub-goal is complete.
This completes the proof of the theorem.

A
B

G

E

F

I

C

D

C1

D1

t

t

Figure 6. 2× t Timer Connector

Example 4. A timed connector
n×t
−−•−→ can be built by using

n t-timer channels and an exclusive router (with n sink nodes).

395

Such a connector produces a timeout signal after a delay t
for every input it receives. The duration between the arrival
time for the i-th input and that for the (i + j)-th input for
j < n can be less than t whereas the duration between the
arrival time for the i-th input and that for the (i+n)-th input
should be at least t. Figure 6 shows the topology structure of

2×t
−−•−→.

Let a, b represent the time sequences corresponding to the
data sequences flowing into A and out of B, respectively.
Theorem 4 states the property that a + t = b for the 2 × t
timed connector.

Theorem 4. ∀ A,B,C,D,E,F,G,I,C1,D1 ∈ TD, t ∈Time, d ∈
Data, n ∈ nat:

Sync(A,G) ∧ Lossysync(G,E)(n) ∧ Lossysync(G,F)(n) ∧
Sync(E,I) ∧ Sync(F,I) ∧ SyncD(G,I) ∧ Merge(E,F,I)(n) ∧

Sync(E,C) ∧ Sync(F,D) ∧ Timert(C,C1)(t)(d) ∧
Timert(D,D1)(t)(d) ∧ Merge(C1,D1,B)(n) ⇒ Teqt(A,B)(t)

Since the Lossysync channel and the composition operator
merge are both defined inductively, this theorem is proved by
induction on the parameter n. The main goal is divided into
two sub-goals. The first sub-goal is for the base case and the
second subgoal is for the inductive step. The details of the
proof process is similar to the proofs for previous theorems in
this section, and we omit it here due to the length limitation.

VI. CONCLUSION

This paper presents a method for formal modeling of
Reo connectors and reasoning about Reo connectors in PVS.
The formalization is based on the UTP design semantics
for Reo and preserves the original structure and behavior
semantics of Reo channels and composition operators, which
makes their description in PVS reasonably readable. Connector
properties are specified with predicates which offer an ap-
propriate description of the relations between different timed
data sequences being observed on the nodes of a connector.
The proofs of connector properties are completed with the
help of PVS proof-commands, inference rules and decision
procedures. Generalized property for connectors for arbitrary
n, which cannot be verified explicitly with model checkers,
can be proved here as well.

The main problem of this approach is that the analysis
and proof process of complex connector properties in PVS
always requires heavy interactions between users and the proof
assistant, and thus consumes a lot of time. Even for simple
properties, the proof process can become hard and requires
the users to have good knowledge on PVS to make the proof
successfully. In the future, efforts will be made to encapsulate
frequently-used proof patterns as PVS strategies in order to
make the proof process easier and reduce repetitive work.
Machine learning techniques are also expected to provide some
help to automate the proof process and reduce the amount of
human efforts. On the other hand, extension of the approach
to deal with probabilistic [4] or stochastic [7] behavior of
connectors is in our plan for future work as well.

Acknowledgement. The work was partially supported by the
National Natural Science Foundation of China under grant no.
61772038, 61532019, 61202069 and 61272160.

REFERENCES

[1] F. Arbab. The IWIM Model for Coordination of Concurrent Activities.
In Proceedings of COORDINATION 1996, pages 34–56, 1996.

[2] F. Arbab. Reo: A Channel-based Coordination Model for Component
Composition. Mathematical Structures in Computer Science, 14(3):329–
366, 2004.

[3] F. Arbab and J. Rutten. A Coinductive Calculus of Component
Connectors. In Proceedings of WADT 2002, volume 2755 of LNCS,
pages 34–55. Springer-Verlag, 2002.

[4] C. Baier. Probabilistic Models for Reo Connector Circuits. Journal of
Universal Computer Science, 11(10):1718–1748, 2005.

[5] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, and W. Leister. Design
and Verification of Systems with Exogenous Coordination using Vereofy.
In Proceedings of ISoLA 2010, volume 6416 of LNCS, pages 97–111.
Springer, 2010.

[6] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling Component
Connectors in Reo by Constraint Automata. Science of Computer
Programming, 61:75–113, 2006.

[7] C. Baier and V. Wolf. Stochastic Reasoning about Channel-Based
Component Connectors. In Proceedings of COORDINATION 2006,
volume 4038 of LNCS, pages 1–15. Springer-Verlag, 2006.

[8] D. Clarke, D. Costa, and F. Arbab. Modelling Coordination in Biological
Systems. In Proceedings of ISoLA’04, volume 4313 of LNCS, pages 9–
25. Springer, 2004.

[9] D. Clarke, D. Costa, and F. Arbab. Connector Coloring I: Synchro-
nization and Context Dependency. Science of Computer Programming,
66(3):205–225, 2007.

[10] N. Diakov and F. Arbab. Compositional Construction of Web Services
using Reo. In Proceedings of ICEIS 2004, pages 13–14, 2004.

[11] D. Gelernter and N. Carriero. Coordination Languages and their
Significance. Communications of the ACM, 35(2):96, 1992.

[12] W. Hong, M. S. Nawaz, X. Zhang, Y. Li, and M. Sun. Using Coq for
Formal Modeling and Verification of Timed Connectors. In Proceedings
of SEFM 2017, volume 10729 of LNCS, pages 558–573. Springer, 2017.

[13] S. T. Q. Jongmans and F. Arbab. Overview of Thirty Semantic
Formalisms for Reo. Scientific Annals of Computer Science, 22(1):201–
251, 2012.

[14] R. Khosravi, M. Sirjani, N. Asoudeh, S. Sahebi, and H. Iravanchi.
Modeling and Analysis of Reo Connectors using Alloy. In Proceedings
of COORDINATION 2008, volume 5052 of LNCS, pages 169–183.
Springer, 2008.

[15] N. Kokash, C. Krause, and E. de Vink. Reo+mCRL2: A Framework for
Model-checking Dataflow in Service Compositions. Formal Aspects of
Computing, 24:187–216, 2012.

[16] Y. Li and M. Sun. Modeling and Verification of Component Connectors
in Coq. Science of Computer Programming, 113(3):285–301, 2015.

[17] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In Proceedings of CADE 1992, pages 748–752. Springer, 1992.

[18] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
System Guide, PVS Prover Guide, PVS Language Reference. Technical
report, NASA, November 2001.

[19] PVS dump files. Available at: https://github.com/saqibdola/Reo-in-PVS.
[20] M. Sun. Connectors as Designs: The Time Dimension. In Proceedings

of TASE 2012, pages 201–208. IEEE Computer Society, 2012.
[21] M. Sun and F. Arbab. Web Services Choreography and Orchestration in

Reo and Constraint Automata. In Proceedings of SAC’07, pages 346–
353. ACM, 2007.

[22] M. Sun and F. Arbab. A Model for Web Service Coordination in Long-
Running Transactions. In Proceedings of SOSE’10, pages 121–128.
IEEE Computer Society, 2010.

[23] M. Sun, F. Arbab, B. K. Aichernig, L. Astefanoaei, F. S. de Boer, and
J. Rutten. Connectors as Designs: Modeling, Refinement and Test Case
Generation. Science of Computer Programming, 77(7-8):799–822, 2012.

[24] X. Zhang, W. Hong, Y. Li, and M. Sun. Reasoning about Connectors
in Coq. In Proceedings of FACS 2016, volume 10231 of LNCS, pages
172–190. Springer, 2016.

[25] Z. Zlatev, N. Diakov, and S. Porkaev. Construction of Negotiation
Protocols for E-Commerce Applications. ACM SIGecom Exchanges,
5(2):12–22, 2004.

396

Modeling and Analyzing Hybrid Systems Using
Hybrid Predicate Transition Nets

Dewan Mohammad Moksedul Alam
Xudong He

School of Computing and Information Sciences
Florida International University

Miami, Florida 33199, USA
dalam004@fiu.edu, hex@cis.fiu.edu

William (Cheng-Chung) Chu
Department of Computer Science

TungHai University, Taichung, Taiwan
cchu@thu.edu.tw

Abstract— Hybrid systems, especially in the form of cyber
physical systems, have become ubiquitous and are playing critical
roles in the functioning of society, however their design and
implementation are extremely difficulty, especially regarding
their dependability. In this paper, we propose a hybrid high level
Petri net formalism, hybrid predicate transition nets (HPrTNs),
for modeling and analyzing hybrid systems. We discuss some
critical concepts and features of HPrTNs. We demonstrate the
applicability of HPrTNs through several well-known benchmark
hybrid systems and compare our results with other relevant
methods. HPrTNs are fully supported in the tool environment
PIPE+.

Keywords— formal methods; high-level Petri nets; hybrid Petri
nets, differential Petri nets

I. INTRODUCTION

Hybrid systems refer to the systems that arise out of the
interaction of continuous dynamics and discrete dynamics.
Many modern embedded systems, especially cyber physical
systems are hybrid systems that contain physical devices having
continuous dynamics and computational control processes with
discrete behaviors. Hybrid systems have become ubiquitous and
are playing critical roles in the functioning of society, however
their design and implementation are extremely difficulty,
especially regarding their dependability.

Hybrid systems have been the focus of intense research in
the past few decades since they provide a convenient framework
to accurately model a wide range of engineering systems and
provide the flexibility to abstract complex physical behaviors
away and to model dynamics having varying scales. Following
the early works on the verification of digital circuits, many
formalisms, methods and tools have been proposed to model and
verify more complex embedded systems such as air traffic
control systems, automotive control, bioengineering, process
control, real-time communication protocols, manufacturing
control, etc. One early prominent work is the hybrid automata
[1] that provided a concrete mathematical framework for the
analysis and verification of hybrid systems. Hybrid automata
integrate diverse models such as differential equations and state
machines in a single formalism with a uniform mathematical
semantics and novel algorithms for multi-modal control
synthesis and for safety and real-time performance analysis [2].
However, despite providing powerful methods to analyze hybrid

systems, the major inconvenience of hybrid automata is the
dramatical increase of model dimensions for complex systems
due to the intrinsic global state configurations and sequential
behaviors of automata.

Petri nets, a concurrent and distributed formal models,
provide a great flexibility to model complex systems. Petri nets
have evolved in the past half century in many directions:
including continuous Petri nets [3], fluid stochastic Petri nets
[4]. Continuous Petri nets have further been extended to hybrid
Petri nets [5] for modeling hybrid systems. Hybrid Petri nets
inherit all the advantages of the Petri net model such as the
ability to capture distributed behaviors, concurrency,
synchronization and conflicts. Similar concepts have also been
extended to high-level Petri nets [6, 7, 8] to model data
dependent hybrid systems.

In this paper, we present our results in introducing
continuous features into predicate transition nets (PrTNs) [9] for
modeling hybrid systems. Specifically, we introduce two
different kinds of places and transitions namely continuous
places and continuous transitions with differential and
difference equations. Our approach has a well defined priority
rule to resolve the conflict of firing enabled discrete and
continuous transitions. We have implemented the whole hybrid
PrTN framework in our modeling tool PIPE+ [9]. We
demonstrate how to model some classic examples of hybrid
systems using PIPE+ and compare the modeling and simulation
experience and performance with some existing and well known
hybrid Petri net modeling tools.

II. RELATED WORK

The concept of extending Petri net formalism to provide
means to model continuous and hybrid systems was first
presented in [10]. Based on this concept, several other extended
Petri net formalisms were proposed. In the following
subsections some of related formalisms and their applications
and supporting tools are discussed.

A. Hybrid Petri net Formalism

In [10], the authors combined a continuous Petri net
representing continuous dynamics with a discrete Petri net
capturing discrete behaviors. Subsequently, the authors
extended their formalism to provide distinction between

397

hex
Typewritten Text
DOI reference number: 10.18293/SEKE2018-158

autonomous and timed hybrid Petri nets and provided rules to
resolve conflicts between continuous and discrete part [5, 11].
Hybrid Petri nets are based on low level Petri nets where tokens
in continuous places are numerals and change rates associated
with continuous transitions are simple difference equations. A
slightly different approach was introduced in [12]. Here new
kind of places and transitions were introduced, namely
differential places and differential transitions. Differential
places constitute the continuous state of the system being
modeled. Differential transitions are always enabled and
associated with a firing frequency, where first-order ordinary
differential equations are used to represent the evolution rules.
Another class of hybrid Petri nets is fluid stochastic Petri nets
introduced in [4], which extended stochastic Petri nets to model
hybrid stochastic systems. Apart from these, several other
prominent works were published to extend other classes of Petri
nets, batch Petri nets, hybrid flow nets, etc., to support modeling
of hybrid systems.

Along with the research on the extension of the low-level
Petri nets, several classes of high-level Petri nets have also been
extended for modeling hybrid systems. One of such early
approaches was proposed in [8], where a method was presented
to extend timed hierarchical object-related nets (THORNs). In
this extension, the author introduced real data type to THORNs
to represent the continuously changing state variable and
continuous transitions to capture the continuous evolution. In
this approach, a continuous transition was enabled or disabled
by inhibitor arcs and the evolution was specified using ordinary
differential equations. However, this approach was not fully
developed and supported by any tool. Among other classes of
high-level Petri nets, Colored Petri nets were studied extensively
and several approaches for extending them to model hybrid
systems were proposed in [6, 7, 8, 13].

B. Modeling and Analysis Tools

Although, both low-level and high-level Petri nets have been
undergone rigorous studies and many extensions are proposed
to model hybrid systems, not many efforts are made to provide
proper tool support. Among low-level hybrid Petri net tools
HYPENS [14], SimHPN [15] and HISim [16] are worth
mentioning. Both HYPENS and SimHPN are not native Petri
net tool, and are based on MATLAB and Simulink. They do not
provide proper net editing capabilities. A user needs to use
MATLAB/Simulink components to specify the semantics of the
Petri net model of the system being modeled. HISim on the other
hand integrates modeling and simulation in a unified tool but is
functionally incomplete. In [7], the authors proposed a different
approach to create a model using MATLAB components for
simulation and provided a methodology to translate that into
CPN for analysis. Among the tools in this context, Snoopy [13,
17] provides a unified experience of creating graphical model,
simulation and analysis; but focuses on modeling biological
systems. This tool supports several hybrid low-level and high-
level Petri nets.

Our work provides a unified framework for system modeling
and analysis using Hybrid high-level Petri nets leveraging our
tool environment PIPE+.

III. HYBRID PREDICATE TRANSITION NETS

In the following sections, we provide a formal definition of
hybrid predicate transition nets (HPrTNs) by extending the
definitions of PrTNs [18].

Definition 1. A HPrTN is a tuple 𝑁𝑁 =
(𝑃𝑃, 𝑇𝑇, 𝐹𝐹,Σ, 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝑀𝑀0), where

(1) 𝑃𝑃 = 𝑃𝑃𝑑𝑑 ∪ 𝑃𝑃𝑐𝑐 is a non-empty finite set of discrete places 𝑃𝑃𝑑𝑑
and continuous places 𝑃𝑃𝑐𝑐 (graphically represented by
circles and double circles respectively);

(2) 𝑇𝑇 = 𝑇𝑇𝑑𝑑 ∪ 𝑇𝑇𝑐𝑐 is a non-empty finite set of discrete transitions
𝑇𝑇𝑑𝑑 and continuous transitions 𝑇𝑇𝑐𝑐 (graphically represented
by bars and boxed bars respectively), which disjoins 𝑃𝑃, i.e.
𝑃𝑃 ∩ 𝑇𝑇 = ∅;

(3) 𝐹𝐹 ⊆ 𝑃𝑃 × 𝑇𝑇 ∪ 𝑇𝑇 × 𝑃𝑃 is a flow relation (the arcs of N) such
that ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑 . ((𝑝𝑝, 𝑡𝑡) ∈ 𝐹𝐹⇔(𝑡𝑡, 𝑝𝑝) ∈ 𝐹𝐹);

(4) Σ = (𝑆𝑆𝑡𝑡, 𝑂𝑂𝑝𝑝, 𝐸𝐸𝐸𝐸) is the underlying algebraic specification
with sorts 𝑆𝑆𝑡𝑡, operations 𝑂𝑂𝑝𝑝, and equations 𝐸𝐸𝐸𝐸. Σ defines
the set Token of tokens, the set Label of labels, and the set
Constraint of constraints of N. In our tool environment, the
Σ-algebra is instantiated with a subset of Java data types and
their associated operations and laws;

(5) 𝛼𝛼: 𝑃𝑃 → ℘(𝑆𝑆𝑡𝑡) associates each place p in P with a subset
of sorts in 𝑆𝑆𝑡𝑡 such that 𝑝𝑝 ∈ 𝑃𝑃𝑑𝑑 ⇒ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∉𝛼𝛼(𝑝𝑝) and 𝑝𝑝 ∈
𝑃𝑃𝑐𝑐 ⇒ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝛼𝛼(𝑝𝑝). The above constraints refer to projected
component when 𝛼𝛼(𝑝𝑝) is a composite type;

(6) 𝛽𝛽: 𝑇𝑇 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶𝑡𝑡 associates each transition t in T with a
first order logic formula that defines the enabling condition
(precondition) and the processing result (post-condition) of
t;

(7) 𝛾𝛾: 𝐹𝐹 → 𝐿𝐿𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟 associates each flow relationship f in F with
a label denoting the data flow of a relevant transition
satisfying ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑 . (𝛾𝛾(𝑝𝑝, 𝑡𝑡) = 𝛾𝛾(𝑡𝑡, 𝑝𝑝)) and ∀𝑝𝑝 ∈
𝑃𝑃𝑑𝑑 , 𝑡𝑡 ∈ 𝑇𝑇𝑐𝑐 . (𝛾𝛾(𝑝𝑝, 𝑡𝑡) = 𝛾𝛾(𝑡𝑡, 𝑝𝑝)) , i.e. discrete transition can
only read but not change continuous place, and continuous
transition cannot change discrete place. Thus, this
restriction corresponds to the concept of elementary hybrid
Petri nets in [11], which does not allow the conversion
between discrete and continuous markings;

(8) 𝑀𝑀0: 𝑃𝑃 → ℘(𝑇𝑇𝐶𝐶𝑇𝑇𝑟𝑟𝐶𝐶) is a sort-respecting initial marking
such that ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 . (𝑀𝑀0(𝑝𝑝) ≠ ∅∧|𝑀𝑀0(𝑝𝑝)| = 1) , i.e. each
continuous place contains one and only one token.

The dynamic semantics of HPrTNs are defined on the
concept of markings (states) 𝑀𝑀: 𝑃𝑃 → ℘(𝑇𝑇𝐶𝐶𝑇𝑇𝑟𝑟𝐶𝐶) that are
mappings from places to tokens.

Definition 2. A transition t in T is enabled in a marking M if
∀𝑝𝑝 ∈ 𝑃𝑃. (�̅�𝛾(𝑝𝑝, 𝑡𝑡): 𝜃𝜃⊆𝑀𝑀(𝑝𝑝)∧𝛽𝛽(𝑡𝑡): 𝜃𝜃) , where �̅�𝛾(𝑝𝑝, 𝑡𝑡) is a
generalization of 𝛾𝛾 such that (𝑝𝑝, 𝑡𝑡)∉𝐹𝐹⇒�̅�𝛾(𝑝𝑝, 𝑡𝑡) = ∅. 𝑟𝑟: 𝜃𝜃 is the
result of instantiating all arc variables with tokens in p according
to substitution 𝜃𝜃.

The enabling condition of a continuous transition here is
similar to the strongly enabled concept in [11].

398

Definition 3. An enabled transition t in marking M with
substitution 𝜃𝜃 can fire and results in a new marking 𝑀𝑀′ defined
by: ∀𝑝𝑝 ∈ 𝑃𝑃. (𝑀𝑀′(𝑝𝑝) = 𝑀𝑀(𝑝𝑝) ∪ �̅�𝛾(𝑡𝑡, 𝑝𝑝): 𝜃𝜃 − �̅�𝛾(𝑝𝑝, 𝑡𝑡): 𝜃𝜃).

Two enabled transitions may fire at the same time as long as
they are not in conflict, i.e. the firing of one them disables the
other. Furthermore, a discrete transition has priority over a
continuous transition if they are in conflict. All enabled
continuous transitions are fired in a single round to reflect a
snapshot of the time passage. The dynamic semantics (behavior)
of a HPrTN is the set of all possible transition firing sequences
starting from the initial marking. Various conflict situations
involving continuous transitions are further discussed in the
following sections.

IV. MODELING HYBRID SYSTEMS

In this section, we present new features implemented in
PIPE+ to model hybrid systems. PIPE+ provides full support to
model, simulate, and model check (using external dedicated
model checkers) discrete event systems [9]. In the following
sub-sections, we discuss only the features related to modeling
continuous and hybrid systems.

A. Modeling Continuous Components

To provide support for modeling continuous components,
two different elements, continuous places and continuous
transitions, are introduced, which are significant different from
their discrete counterparts in terms of both structure and
dynamic semantics.

1) Continuous Places
As in [5], continuous places represent the continuous part of

the state space of the hybrid system being modeled. However, it
is possible to design these places to represent more than one
continuous attributes in HPrTNs. In other words, during
modeling the continuous dynamics, the modeler can design
these places to represent as many continuous dynamics as
needed as long as they satisfy the constraints imposed on the
dynamic semantics of the continuous components. This
capability is quite useful to group together related dynamics
instead of scattering those across multiple continuous places.
We provide more insights on this in section V.

Continuous places share similar behavior as discrete places.
The only differences between these are their data types. The data
type of a continuous place (1) must be a singleton (or not a
power set in our implementation), and (2) must have at least one
number element. Thus, a continuous place can hold only one
token and at least one element of this token is a numeral
capturing the dynamic changing value of the system. A useful
guideline is that a continuous place is modified by only one
continuous transition. This helps to avoid (1) conflict between
continuous transitions, and (2) inconsistent behavior. This
restriction may be overcome by using more efficient scheduling
mechanism of continuous transitions. Finally, continuous places
are represented by double circle in PIPE+.

2) Continuous Transition
Continuous transitions are used to model the continuously

changing behavior of the hybrid system being modeled. Unlike
other hybrid Petri nets, the behavior of continuous transitions in

HPrTNs is strategically different in many ways, including (1)
continuous transitions are always enabled unless the discrete
parts are a part of their preconditions, (2) the continuous
transitions can modify discrete places, (3) the marking of the
continuous places can control the speed of changes made by the
continuous transitions. These strategies offer several benefits.
The first strategy allows us to map the behavior of the
continuous transitions analogous to the semantics of the hybrid
systems, where the continuous part continuously changes the
state of the system and the discrete part only controls the speed
of the change. For example, when a car is stopped, the engine is
running and consumes fuel and produces power; but its speed
and acceleration remain zero since the transmission is detached.
Thus, depending on the discrete control, some part produces
positive/negative changes while other parts do not change. The
second strategy provides modeling flexibility and the third
allows us to model feedback mechanism. As an example,
consider the movement of a pendulum. At every point, the
dynamics (acceleration and speed) of the next depends on the
dynamics of the current.

 In HPrTNs, the constraints of continuous transitions are
defined the same way as discrete transitions, and consist of
preconditions and post-conditions specified in a first order logic
formula. Generally, the preconditions of the continuous
transitions consist of the data flow of the discrete input places
attached to the transition in question. However, there is no
restriction to use tokens from continuous places in the
precondition, which is needed to model conditional branches
(emulating if-else conditions) to compute new marking. This
flexibility keeps the overall net size smaller.

The post-conditions of continuous transitions are similar to
those of discrete transitions. However, some new concepts are
introduced. First order ordinary differential equations can be
used to compute continuous dynamics. These equations are used
as part of integral operator. Listing A shows the format of ODE
used with integral operation. One example of integral equation
is shown there with changing variable q. The lower and upper
limits of the equation is specified using the tokens of some place.

Table 1 – (A) Example of using differential equations

Format ∫(ode, lower_limit, upper_limit) ∂change_var

Example ∫(q/0.98,d1[1],d[1])∂q)

Post-conditions can be made dependent on time. An
approximation of logical time is introduced for this purpose
which is discussed in sub-section IV.C. A special operator, τ
(tau), is used to represent the current logical time. The following
expression shows an example of using logical time.

y=x+∫(5,τ-1,τ)∂τ

3) Dynamic Semantics

Historically, PrTN is assumed to be autonomous without
explicit timing information. HPrTNs follow the same concept.
The evolution of its discrete components is the same as that of
PrTNs. To compute the evolution of the continuous part, a
slightly different approach is adopted. Since the evolution of the
continuous part may depend on the time and/or other continually

399

changing components. Hence, some representation of time is
needed. We discuss the modeling of time in HPrTNs in the next
sub-section (IV.B).

 All the continuous transitions are assumed to be always
ready and to have equal firing speed. Thus, in each execution
step, all the continuous transitions are evaluated to test whether
they are enabled or not. All enabled continuous transitions are
fired in every execution step. However, this strategy may result
in conflict if two continuous transitions have the same input
places but have different enabling conditions. The resolution of
such conflict is discussed in sub-subsections (IV-C). The
evaluation of the preconditions and post-conditions are the same
as the discrete part as discussed in our earlier works [9].

Another interesting aspect of the dynamic behavior is the
execution order of discrete and continuous parts. The discrete
component takes the precedence. After all enabled discrete
transitions fire once, the enabled continuous transitions start
firing.

B. Modeling Time

The continuous dynamics of hybrid systems is generally
specified using differential or difference equations. To evaluate
these equations, a reference clock is needed. Continuous
dynamics is computed with respect to this reference clock. In
PIPE+ there are several ways to specify this reference clock.
This may be a random number, a function or a set of values
specified in a place. This can be achieved by adding a pair of
continuous place and a continuous transition. The place would
hold the reference clock value and the transition would be
responsible for the coherent evolution of the reference clock
value. One can choose whatever one needs as the basis of
change. Alternatively, a convenient and simple way is also
provided for the basis of change, which approximates a logical
clock. The clock simply counts the number of steps the
execution performed so far. The step size should be assumed by
the modeler, which can be an hour, one second, one milli-second
or even one Nano-second. The current time provided by the
clock can be accessed using the operator τ.

C. Conflict Resolution

In the context of Petri nets, a conflict arises when multiple
transitions are enabled and firing one of them disables others.
Conflicts can be categorized according to three common causes:
(1) between two discrete transitions, (2) between one discrete
and one continuous transitions and (3) between two continuous
transitions. The conflict between discrete transitions is resolved
using non-determinism. In this case, one of the enabled
transitions is chosen non-deterministically to be fired and it is
ensured that only one discrete transition is fired. This type of
conflicts is already discussed in our prior work. The other two
categories are interesting in the context of hybrid Petri net and
are discussed below.

1) Conflict Between Discrete and Continuous Transitions
This type of conflict arises when a discrete and a continuous

transition are connected to the same input place, either discrete
or continuous. In our approach, both discrete part and
continuous part have their own separate methods of execution
and we allow the execution of both these two parts in the same

step. We have a well-defined precedence between these two
components that ensures that these two components do not
modify the same place at the same time, which nicely resolves
this type conflict.

2) Between Continuous Transitions
There are three different ways that can lead to this type of

conflict: (1) the transitions have the same input discrete place,
(2) the transitions have the same input continuous place, and (3)
they both have same output place. In the first case, there is
conflict when any of the following conditions is true – (a) the
satisfiability of the preconditions depends on the token from the
common input place, and (b) the common place is a power set
and the token satisfying the preconditions of the conflicting
transitions is the same. To resolve this conflict, a token from a
discrete place used in the evaluation of the precondition of a
continuous transition must be returned to the place unaltered.
This means that continuous transitions cannot modify such
places. In the second case, since continuous places can hold only
one token, the removal of that token in the process of execution
of one of the conflicting transitions makes other transitions
disabled. To resolve this, a different method of executing
continuous transition is used. The output places of continuous
transitions are updated once the preconditions are evaluated and
post-conditions are computed for all the continuous transitions.
The third case is an undesired situation, and should be avoided.
It is the modeler’s responsibility to ensure that no unexpected
results can be produced. Although, the above is an undesired
situation, no restriction is implemented for simplicity.
Furthermore, it is very convenient when one continuous place is
designed to store multiple continuous attributes with separate
continuous transitions are used to access those attributes.

D. Analysis

In PIPE+, only simulation and evolution graph are supported
to analyze a hybrid system model. Model checking is not
supported yet due to complexity of numerical functions used in
modeling hybrid states. The simulator executes the net following
the dynamic semantics of HPrTNs, and stores the state
sequences of the system during the execution that can be used
later to analyze the evolution. Simulation can be done using one
step at a time for better understanding of the evolution or
multiple steps in a single run to quickly have an overall picture
of the system behavior. However, both these two-execution
methods support (1) configuring the evolution graphs, and (2)
exporting of the snapshots of the states for statistical analysis
using other sophisticated tools.

1) Evolution Graph
Evolution graphs show the evolution of the continuous

attributes over time. Before starting simulation, a chart
configuration UI is provided to select the attributes for evolution
to be shown in charts. For each of these attributes a separate
chart window is created. It is also possible to configure multiple
attributes to be shown in the same chart window for better
comparison. By default, the evolution of the attributes over time
is shown in the charts. It is also possible to configure the charts
to plot the evolution of one attribute again another.

2) Export of Results

400

Evolution graph provides simple means to show how the
value of some continuous attributes changes over time. It does
not provide support to generate any other insight. To address this
problem, simulation results can be exported for more
sophisticated analysis. Generally, after each simulation step the
state of the whole net along with the inputs and generated
outputs are stored in a file. These can be exported to some
external data analysis tools to better understand the behavior of
the system.

V. CASE STUDY

 We have applied HPrTNs to model and analyze several
well-known benchmark hybrid systems [19], including
bouncing ball, thermostat, robotic motion controller, and
obstacle avoidance. Due to space limit, we only show two
systems here.

A. Bouncing ball

In this model, the physics of a bouncing ball, i.e. its motion
before, during and after the impact against another surface is
modeled. In this model, the state of the ball is captured when it
falls freely from a place 10 meters above the surface assuming
0.75 coefficient of restitution. Here, only the effect of gravity is
considered. Figure 1 shows a pictorial diagram of the hybrid
Petri net model. Table 2 lists the inscriptions of the net. Here,
the continuous place Dynamics is used to store the velocity and
height, real valued numbers as reflected in its datatype definition
shown in Table 2. The continuous transition Compute computes
these dynamics by following the basic laws of motion of freely
falling objects as shown by 𝛽𝛽(Compute) in Table 2. The discrete
transition Change simply changes the direction of the motion by
negating the velocity whenever the height falls below zero.

Figure 1 – Pictorial diagram of the bouncing ball model

Table 2 – Net inscription of the model in Figure 1

𝛼𝛼(Dynamics) = ⟨number, number⟩
𝛽𝛽(Change) = d[2]≤0 ∧ d1[2]=0 ∧ d1[1]= -d[1]*0.75
𝛽𝛽(Compute) = d1[1]=d[1]-0.98*τ ∧ d1[2]=d[1]*τ - 0.49*τ*τ +
d[2]

This model is simulated with various initial conditions, i.e.
initial speed and height. Figure 2 shows the result of a simulation
run when a ball is dropped from a height of 10m. Initial marking
for this case is M0(Dynamics)= ⟨0, 10⟩. The left chart in the
figure shows the evolution of the velocity of the ball and the
right chart shows the evolution of height with respect to time.

Figure 2 – Simulation result of the model in Figure 1

B. Air Traffic Collision Avoidance

In air traffic control, collision avoidance maneuvers are used
to resolve conflicting flight paths that arise during free flight
[20]. These are very important and complex applications. A
great number of different successful maneuvers are proposed
and verified in the literature, many of them are also used in
practice. As a case study, we model one of these maneuvers –
straight line maneuver with instant turn. This maneuver involves
a series of linear movement of the aircrafts. These movements
can be controlled either from a central command center or from
the approaching aircrafts’ local control system. In our model, a
central control system is used. Figure 3(a) shows the required
movements of the aircrafts participating the straight-line
collision avoidance maneuver, and Figure 3(b) shows the
pictorial diagram of the hybrid PrTN model.

Figure 3 –(a) The movement of the aircrafts in straight line maneuver
with instant turn. (b) A pictorial diagram of the hybrid PrTN model

In this model, two aircrafts A and B are participating the
straight line with instant turn collision avoidance maneuver.
Here, the place Controller stores the parameters to control the
directions of the aircrafts participating the maneuver. The
transition Control generates these control parameters depending
on the state. The control parameter here is basically an angle that
dictates the direction of the aircrafts. The place ParameterA
stores the velocity and the angle of direction of the aircraft A.
LocationA stores the location of A. The transition ComputeA
computes the location of A using its parameters and the control
parameter. ParameterB, LocationB and ComputeB do the same
for aircraft B. The place Parameter defines the safe horizontal
and vertical distances. Due to space limit, the detailed net
inscription is omitted here. We have simulated this model with
different sets of initial conditions, i.e. initial locations, velocity
and directions of the aircrafts, different safe distances. Figure 4

(a) (b)

401

shows the result of a simulation run where the aircraft A starts
from the location (0,0) along X-axis and aircraft B starts from
(18, 0) towards the opposite direction of A. Both have equal
ground speed of 200 m/s. The safe horizontal and vertical
distances are 12 and 2 kms respectively. In Figure 4, the charts
(a) and (b) show the entrance and exit of the collision avoidance
maneuver of the aircrafts A and B respectively. Initially both A
and B move towards each other, when A reaches just after 3 and
B reaches 15, the vertical distance falls below the safe distance.
Both planes turn left and follow that direction until they reach
the safe vertical distance. When the safe distance is reached, they
turn right and follow their own course. An error of 200m from
the original course is allowed as shown according to the
constraint of transition Controller.

Figure 4 – Simulation results of the model in Figure 3(b).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented hybrid predicate transition nets
(HPrTNs) to model and analyze hybrid systems. The whole
framework is implemented in our tool environment PIPE+. We
have shown how the new features of PIPE+ can be utilized to
model and analyze hybrid systems through several well-known
hybrid systems. We have studied several other tools providing
modeling and analyzing capability of hybrid Petri nets. Most of
these tools are tailored to specific applications such as bio-
medicine. Some of these tools use other modeling languages,
like MATLAB, to generate Petri net models. PIPE+ provides a
unified environment for modeling and analyzing high-level Petri
nets including HPrTNs.

This work is an initial attempt to extend PrTN towards
hybrid system modeling and analysis. We will study the explicit
time representation as in timed Petri nets. We will investigate
new and improved scheduling algorithms of discrete and
continuous transitions to cover more realistic and sophisticated
applications.

ACKNOWLEDGEMENT

Alam and He were partially supported by AFRL under FA8750-15-2-0106.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

REFERENCES
[1] Henzinger T.A., The Theory of Hybrid Automata. In: Inan M.K., Kurshan

R.P. (eds) Verification of Digital and Hybrid Systems. NATO ASI Series
(Series F: Computer and Systems Sciences), vol 170. Springer, Berlin,
Heidelberg, 2000.

[2] J. Lygeros, C. Tomlin, and S. Sastry, “Hybrid Systems: Modeling,
Analysis and Control”, December 2008, retrieved from http://www-
inst.cs.berkeley.edu/~ee291e/sp09/handouts/book.pdf

[3] H. Alla and R. David, “A modeling and analysis tool for discrete events
systems: continuous Petri net”, Performance Evaluation, 33(3), pp. 175-
199, August 1998.

[4] Trivedi, K. S. and Kulkarni, V. G. 1993. FSPNs: Fluid stochastic Petri
nets. 14th International Conference on Application and Theory of Petri
Nets, Chicago.

[5] R. David and H. Alla, “Discrete, Continuous, and Hybrid Petri Nets”,
Springer Berlin Heidelberg, Springer, 2010.

[6] M. Herajy, F. Liu and C. Rohr, “Coloured hybrid Petri nets for systems
biology”, Biological Process and Petri Nets, 1159, pp. 60-76, June 2014.

[7] D. Bera, K. van Hee and H. Nijmeijer (2015), ”Modeling Hybrid Systems
with Petri Nets”, In: Obaidat M., Ören T., Kacprzyk J., Filipe J. (eds)
Simulation and Modeling Methodologies, Technologies and Applications.
Advances in Intelligent Systems and Computing, vol 402. Springer, Cham

[8] R. Wieting, "Modeling and Simulation of Hybrid Systems Using Hybrid
High-level Nets", In: Proceedings of the 8th European Simulation
Symposium (ESS'96), Vol. II, pages 158-162, October 1996, Genoa, Italy.

[9] D. Alam and X. He, “A method to analyze high level Petri nets using
SPIN model checker”, in Proceedings of the 29th International
Conference on Software Engineering & Knowledge Engineering, pp. 161-
166, July 2017.

[10] R. David, H. Alla, Continuous Petri nets, in: Proc. 8th European
Workshop on Application and Theory of Petri Nets, Zaragoza, Spain,
1987.

[11] R. David and H. Alla, "On Hybrid Petri Nets", Discrete Event Dynamic
Systems, 11, pp. 9-40. January 2001, doi: 10.1023/A:1008330914786

[12] I. Demongodin, N.T. Koussoulas, Differential Petri nets: Representing
continuous systems in a discrete-event world, IEEE Trans. Automat.
Control (1998).

[13] M. Heiner, M. Herajy, F. Liu, C. Rohr, M. Schwarick, "Snoopy – A
Unifying Petri Net Tool", Application and Theory of Petri Nets. PETRI
NETS 2012. Lecture Notes in Computer Science, vol 7347. Springer,
Berlin, Heidelberg, 2012.

[14] F. Sessego, A. Giua, C. Seatzu, ”Simulation and Analysis of Hybrid Petri
Nets using the Matlab Tool HYPENS”, SMC08: 2008 IEEE Int. Conf. on
Systems, Man, and Cybernetics (Singapore), October 2008.

[15] J. Júlvez, C. Mahulea, and C. R. Vázquez, "SimHPN: A MATLAB
toolbox for simulation, analysis, and design with hybrid Petri nets",
Nonlinear Analysis: Hybrid Systems, 6(2), pp. 806-817, March 2012.

[16] A. Amengual, “A Specification of a Hybrid Petri Net Semantics for the
HISim Simulator”, accessed from
http://www.icsi.berkeley.edu/pubs/techreports/TR-09-003.pdf, 2009.

[17] M. Herajy, F. Liu, C. Rohr and M. Heiner, "Snoopy’s hybrid simulator: a
tool to construct and simulate hybrid biological models", BMC Systems
Biology, 11:71, July 2017.

[18] X. He: “A Comprehensive Survey of Petri Net Modeling in Software
Engineering”, International Journal of Software Engineering and
Knowledge Engineering - IJSEKE, vol. 23, no. 5, 2013, 589-626

[19] R. Alur: “Principles of Cyber-Physical Systems”, The MIT Press, 2015.

[20] A. Platzer, “Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics”, Springer-Verlag Berlin Heidelberg 2010

(a)

(b)

402

http://www-inst.cs.berkeley.edu/%7Eee291e/sp09/handouts/book.pdf
http://www-inst.cs.berkeley.edu/%7Eee291e/sp09/handouts/book.pdf
http://www.icsi.berkeley.edu/pubs/techreports/TR-09-003.pdf

Visualizing Interactions in AngularJS-based
Single Page Web Applications∗

Gefei Zhang†

Hochschule für Technik und Wirtschaft Berlin
gefei.zhang@htw-berlin.de

Jianjun Zhao
Kyushu University

zhao@ait.kyushu-u.ac.jp

Abstract

AngularJS is a popular framework for single page
web applications. In AngularJS applications, the pro-
gramming logic is implemented in Javascript, while the
layout is defined separately in HTML files. Due to
this separation, data and control flow is usually hard
to track. We propose a method to visualize the data
and control flow in AngularJS-based single page web
applications and separate interactions from each other.
Our method helps to get a better understanding of the
application’s work flow, to realize the boundaries of the
interactions, and to know what is updated in an inter-
action and what is not.

1 Introduction

AngularJS [2] is one of the modern frontend-
frameworks which support the Model-View-ViewModel
architecture (MVVM) [8]: the models provide data to
the application, the views define the graphical presen-
tation of the data, and the view-models (also called
controllers) define the business logic (data and control
flows) of the application. Usually, views are defined in
HTML, models and controllers in Javascript.

AngularJS is widely used in single page web appli-
cations (SPA). In an SPA, the application has only one
HTML page, containing an array of widgets. When
the user gives some input in one widget, the applica-
tion reacts and updates some other widgets. Between
the widgets of the page there may or may not exist data
and control flow, and a widget may or may not be in-
fluenced by another one. Since data and control flow is
defined in the controller, separately from the widgets,
potential interactions may be obscure; understanding
of the program may be hard.

We present a method to visualize data and control
flow of AngularJS-based SPA. We create an Interac-
tion Diagram by translating HTML widgets, as well
as functions and variables in the controller to nodes,

∗DOI reference number 10.18293/SEKE2018-066
†Partially supported by the EU project cAPITs and the Ger-

man BMBF project deep.TEACHING (01IS17056).

and the invocation, reading and writing relationships
between them as edges. The interaction diagram not
only visualizes possible workflows of the application,
but is also a staring point for more static analysis. In
this paper, we show how to calculate “slices” of inter-
actions, that is, to isolate the widgets involved in an
interaction from those that are not.

The rest of this paper is organized as follows: In the
following Sect. 2, we give a brief introduction to Angu-
larJS, and also present our running example. Section 3
introduces interaction diagrams. In Sect. 4 we show
how to analyse workflows of the application and define
test cases using the interaction diagram. Related work
is discussed in Sect. 5. Finally, in Sect. 6, we conclude
and outline some future work.

2 AngularJS

We first give a brief introduction to AngularJS by
means of a simple example, and then define an abstract
syntax for AngularJS applications. Due to space lim-
itation, we focus on a small subset of AngularJS; it is
relatively straight-forward to extend our approach to
cover other features of the framework.

2.1 Running Example
Figure 1 shows an AngularJS application to teach

kids addition. In the upper part an addition problem is
presented, the lower part shows statistics of how many
right and wrong answers the user has given. When a
new problem is shown, the user can enter her answer
in an input field (Fig. 1(a)), the system then shows if
the answer is right or wrong. Meanwhile, a new button
appears. When the user clicks on it, a new problem is
generated (Fig. 1(b)). In the lower part of the browser,
a statistics is shown of how many right and wrong an-
swers the user has given. In Fig. 1(b), the user has
answered four questions in total, where three of the
answers were correct, and one was wrong.

2.2 Data binding
In AngularJS, the program logic is implemented in

a so-called controller in Javascript, and the graphical

403

(a) The system waiting for the user to enter an
answer

(b) The system gives a verdict, updates statistics,
and shows a button to generate a new problem

Figure 1. Example: Math exercises with statistics

layout of the application is defined in a template in the
HTML syntax, with some special attributes of HTML
tags, which are defined by AngularJS and called direc-
tives. The template of the running example is shown
in Fig. 2,1 where we removed styles of the HTML ele-
ments from the listing for simplicity. The controller is
written in Javascript, and provides data and event han-
dlers for the application. The controller of the running
example is listed in Fig. 3.

The communication between template and con-
troller takes place in the controller’s variable $scope.
Just like every other object in Javascript (cf. [5]), $scope

is also a collection of key-value pairs. In Javascript, the
keys are called properties. The value of a key can be
any object, and in particular, any function. For ex-
ample, in lines 4 and 5, Fig. 3, $scope is extended by
two properties count right and count wrong with initial
value 0. In lines 17, the property may check is assigned
a function. In Javascript, function properties are usu-
ally not changed after initial assignment, while other
properties are often overwritten and used as variables.
We therefore call the latter variable properties.

The Javascript object $scope is the controller’s
interface to the interface: its properties (e.g.,
$scope.count right in line 4 and $scope.check answer defined
in lines 21 to 25) are visible to the template, and may
be bound to HTML elements to provide data or event
handlers. Other top-level functions and variables of the
controller (e.g., c in line 7 and add problem defined in
lines 8 to 15), which are not properties of $scope, are
only for “private” use in the controller and not visible
to the template.

Data flow between template and controller is defined
by data binding : an HTML element in the template
may be bound to a property of the object $scope of the
controller, and gets updated automatically when the
value of the property changes. Data binding is defined
in so-called directives; directives are included in the
template as attributes of HTML elements.

1The whole project is available under https://bitbucket.
org/gefei/angularjs-example

AngularJS supports both one-way and two-way
data binding. The directive ng-bind or double
braces {{}} define one-way data binding, that is, the
HTML element automatically presents the up-to-date
value of the bound property of $scope, whilst changes
of the value presented by the HTML element, if any,
would not be propagated from the GUI back to the
from the controller (the $scope).2 For instance, in
Fig. 2, line 5, {{a}} and {{b}} will be replaced by the
values of the variables $scope.a and $scope.b at runtime,
respectively. The values of the two variables are as-
signed in function add problem of the controller (Fig. 3,
lines 11 and 12). A little more examination of the con-
troller reveals that this function is called to generate a
new addition problem, and $scope.a and $scope.b hold
the values of the two summands.

Other directives defining one-way data binding in-
clude ng-if and ng-disabled. In ng-if, the value of the
bound property is not shown; instead it regulates the
visibility of the HTML element: if and only if the
Javascript expression bound to ng-if is valued to true

is the HTML element visible in the GUI. For exam-
ple, both of the two buttons defined in lines 8 and 9 of
Fig. 2 are guarded with ng-if. The conditions for the
buttons being visible are the variable $scope.right being
true and false, respectively. Figure 3 shows that the
variable is set in line 22, in function $scope.check answer,
and is true iff the value of variable c equals to the value
of $scope.answer parsed as an integer.

Directive ng-disabled is used to set HTML widgets
disabled (i.e., the user cannot enter her input). In line 6
of Fig. 2, the button is disabled when the negation of
the result of function $scope.may check(), which is de-
fined in the lines 17–19 of Fig. 3. The function returns
true iff the input field is not empty (!!$scope.answer) and
$scope.right is still undefined (i.e., the button Check has
not been clicked yet, see Sect. 2.3). When this is the

2There is some subtle difference between the semantics of
ng-bind and double braces, see https://stackoverflow.com/a/
16126174. However, the difference is not relevant for our dis-
cussion. In this paper, we consider ng-bind and double braces as
equivalent.

404

1 <html>
2 <body ng-app="app">
3 <div ng-controller="controller">
4 <form>
5 {{a}} + {{b}} = <input ng-model="answer">
6 <button ng-disabled="!may_check()"
7 ng-click="check_answer()">Check</button>
8 <button ng-if="right===true">Right</button>
9 <button ng-if="right===false">Wrong</button>

10 <button ng-click="new_problem()">New Problem</button>
11 </form>
12 <hr>
13

14 <table>
15 <tr>
16 <th>Statistics</th>
17 <th>Right</th>
18 <th>Wrong</th>
19 </tr>
20 <tr>
21 <td></td>
22 <td></td>
23 <td></td>
24 </tr>
25 </table>
26 </div>
27 </body>
28 </html>

Figure 2. HTML template

case, the function returns true, ng-disabled receives the
value false, then the button is disabled, and vice versa.

We call the property of $scope that an HTML ele-
ment is bound to the target of the data binding, and
the HTML element the source. While ng-bind and {{}}
show the value of the target in the GUI, ng-if and
ng-disabled do not output the value in the textual form.
It rather influences the appearance of the source by set-
ting its visibility or enabled/disabled status. In both
cases, we say the source of a data binding presents the
value of the target.

The directive ng-model defines two-way data bind-
ing, that is, the widget automatically updates when the
value of its bound property changes, and any change of
the widget’s value will be propagated to the bound vari-
able. Therefore, a bi-directional data flow is defined.
For instance, in line 5 of Fig. 2, the input element has an
attribute ng-model=answer. The input field is therefore
bound to the variable $scope.answer: the value of the in-
put field is hold in $scope.answer, changes are propagated
automatically in both directions. In Fig. 3, the correct
answer of the current problem is stored in variable c

(line 10), and $scope.right is calculated by a comparison
with $scope.answer in line 22.

The target of a one-way data binding may be a vari-
able property or a function property of $scope. If it
is a variable property, the source presents the target’s
value. If it is a function property, the widget presents
the return value of the function. On the other hand,
the target of a two-way data binding must be a vari-
able property, since the target must store the value of
the user input, and only a variable, as opposed to a

1 var app = angular.module(’app’, []);
2

3 app.controller(’controller’, function($scope){
4 $scope.count_right = 0;
5 $scope.count_wrong = 0;
6

7 var c;
8 function add_problem() {
9 var max = 100;

10 c = Math.floor(Math.random() * (max - 1)) + 1;
11 $scope.a = Math.floor(Math.random() * (c - 2)) + 1;
12 $scope.b = c - $scope.a;
13 $scope.answer = undefined;
14 $scope.right = undefined;
15 }
16

17 $scope.may_check = function() {
18 return !!$scope.answer && $scope.right === undefined;
19 }
20

21 $scope.check_answer = function() {
22 $scope.right = c === parseInt($scope.answer);
23 $scope.count_right += ($scope.right) ? 1 : 0;
24 $scope.count_wrong += ($scope.right) ? 0 : 1;
25 };
26

27 $scope.new_problem = function() {
28 add_problem();
29 }
30

31 add_problem();
32 })

Figure 3. Controller

function, can be assigned a value.
The template of the statistics is defined in an HTML

table (lines 14 to 25 in Fig. 2), where two td cells
(lines 22 and 23) present the values of $scope.count right

and $scope.count wrong by one-way data binding.

2.3 Event Handling
HTML elements may also be provided with event

handlers. Upon the given event, the specified function
is executed. For example, in line 7 of Fig. 2, the di-
rective ng-click binds the function $scope.check answer to
the button. Therefore, the function is invoked when the
user clicks the button. The function is defined in Fig. 3,
lines 21 to 25. When invoked, it first (line 22) checks if
c has the same value as $scope.answer (which we know is
the current value of the user input in the text field, see
Sect. 2.2), parsed as an integer, and assigns the result
to $scope.right. Then, depending on if $scope.right is true

or not, the value $scope.count right or $scope.count wrong

is incremented by one. Therefore, the statistics gets
updated when the user clicks the Check button (Fig. 2,
lines 22 and 23).

The button New Problem also has an event handler:
in Fig. 2, line 10, the directive ng-click=“new problem()”

binds the function $scope.new problem to handle the
event of the button being clicked. The function calls
another function add problem to generate a new prob-
lem by updating the values of $scope.a, $scope.b, setting
c, to be undefined to clear the field for the user to in-

405

put her answer (recall: this field has a two-way data
binding, as defined in line 5 of Fig. 2), setting both
$scope.right and $scope.answer to be undefined. Therefore,
when New Problem is clicked, $scope.may check will re-
turn true, and the button Check will get enabled (Fig. 2,
line 6).

Variable c and function new problem are not defined
as $scope’s properties. Therefore, they are local to the
controller, and not exposed to the template.

2.4 Abstract Syntax
An AngularJS-based SPA is a tuple (T,C,D,E). T

is a template, written in HTML and consisting of a set
of HTML tags (T = {h}) which define HTML widgets,3

C is the definition of a controller, written in Javascript,
D is a set of data bindings, and E is a set of event
handler bindings.

The controller definition C is modeled as a tuple
(V, F, $scope), where V is a set of top-level variables,
F is a set of top-level functions, and $scope ∈ V is
a distinguished element of V . We write V($scope) for
the set of $scope’s variable properties, and F($scope) for
the set of $scope’s function properties. We also define
W = V \ {$scope} to be the set of top-level variables
defined in the controller other than $scope.

D is the set of data binding relations between
HTML tags and variable properties of $scope: D ⊂
{(h,V($scope) ∪ F($scope)}. Given d = (n, o) ∈ D, we
define source(d) = n and target(d) = o. Two-way data
bindings build a subset D′ ⊂ D, and ∀d ∈ D′, it holds
that target(d) ∈ V($scope).

E is the set of event handler bindings between
HTML tags and function properties of $scope: E ⊂
{(h,F($scope))}.

Additionally, for each f ∈ F ∪ F($scope), we define
R(f) ⊆ V ∪ V($scope) and W(f) ⊆ V ∪ V($scope) to
be the set of the variables f reads from and writes
to, respectively. We also define Inv(f) ⊂ F to be the
functions invoked by f .4 In this paper, we take these
sets for granted. Since Javascript is an “extremely dy-
namic” [7] language, this is in general not always the
case. However, in modern software development, read-
ability first is considered best practice, and it is reason-
able to assume that at least reading, writing, and invo-
cation relationships can be obtained by simple analysis.

3 Interaction Diagram
In order to understand the workflow of the applica-

tion, it is necessary to study both its HTML and its

3Precisely, HTML tags may be nested, thus the HTML tem-
plate is a tree. In this paper, we do not consider nesting tags,
and just view the template as a set.

4Although it is also possible for a $scope function to call an-
other $scope function, it is usually not necessary and not a good
idea.

Javascript code, as well as their interactions. We now
present Interaction Diagrams to visualize the overall
behavior, combining the logic defined in HTML and
Javascript. Figure 4 shows the interaction diagram for
our running example.

An Interaction Diagram ID is a directed graph
(N,E). The set of nodes is defined as the union of three
sets: N = NH ∪N$scope ∪Njs, where, using the notations
introduced in Sect.2.4,

• for each (h, v) ∈ D, we generate a node nh, and
NH = {nh | (h, v) ∈ D}. Graphically, we label
nh with the label of h, or, if h does not have a
label, the name of the target of the data binding
(without $scope), extended by the position of the
definition of h in the template;

• for each (h, v) ∈ D, we create a node nv, and
for each (h, e) ∈ E, we create a node ne. N$scope

is then defined as N$scope = {nv | (h, v) ∈ D} ∪
{ne | (h, e) ∈ E}. Graphically, we label each nf ∈
N$scope with the name of the f (with $scope), but
do not include the position of f ’s appearances in
the controller.

• for each v ∈ W , we create a node nv; for each
f ∈ F , we create a node nf , and Njs = {nv | v ∈
W} ∪ {nf | f ∈ F}. Graphically, we label these
nodes with the name of the variable or function.

For example, Fig. 4 shows the interaction diagram
for our running example. The upper compartment
shows NH, which contains a node for each of the text
fields a, b (which show the two summands to the user),
$scope.answer (where the user may enter her answer), the
buttons Check (which the user may click to check if the
answer is correct), the labels Right and Wrong (which
show the result of the check to the user), the labels
count right and count wrong (which show the current suc-
cess statistics of the user), and the button New Problem

(which the user may click to generate a new problem).
The lower compartment models components of the

controller. It contains the elements of N$scope and
Njs. That is, it contains a node for each of the vari-
ables $scope.a, $scope.b (which hold the values of the
summands), $scope.answer (which holds the answer in-
putted by the user), $scope.right (which holds the value
$scope.check answer returns, see below), $scope.count right

and $scope.count wrong (which hold the current number
of right and wrong answers the user has given), and the
functions $scope.check answer (which checks if the answer
inputted by the user is correct), and $scope.new problem

(which generates the summands and key of a new prob-
lem). The lower compartment also contains a node for
c, which holds the key of the new problem.

The edges E of the interaction diagram are used to
model data and control flow. We define E as the union
of six subsets: E = Edata∪E′

data∪Eevent∪EW∪ER∪EInv,
where

406

c

h: 5
answer

h: 6−−7
Check

h: 23
count_wrong

h: 22
count_right

h: 9
Wrong

h: 8
Right

h: 5
a

h: 5
b

h: 10
New Problem

$scope.answer$scope.b

$scope.may_check()

$scope.check_answer()

$scope.count_right

$scope.count_wrong

$scope.right

$scope.a

add_problem()

$scope.new_problem()

Figure 4. Interaction diagram

• for each d ∈ D, we create an edge ed =
(target(d), source(d)). The set of all data-flow
edges from the controller to HTML widgets is then
modeled as Edata = {ed | d ∈ D}. If d ∈ D′, we ad-
ditionally create an edge e′t = (source(t), target(t))
to model the HTML widget reading value from its
bound variable. The set of all data-flow edges from
HTML widgets to the controller is then modeled
as E′

data = {ed | d ∈ D′}
• for each (h, f) ∈ E, we define an event-handling

edge eh = (nh, nf). The set of all event-handling
control flow is then modeled as Eevent = {eh |
(h, f) ∈ E}
• for each pair (f, v), f ∈ F ∪ F($scope), v ∈ W(f),

we create an edge ef,v. The set of writing relations
is then modeled as EW =

⋃
f∈F∪F($scope){ef,v | v ∈

W(f)}. For each pair (v, f), f ∈ F ∪ F($scope),
v ∈ R(f), we create an edge ev,f . The set
of reading relations is then modeled as ER =⋃

f∈F∪F($scope){ev,f | v ∈ R(f)}
• for each f ∈ F ∪ F($scope) and each v ∈ Inv(f),

we create an edge ef,v. The relations of a func-
tion writing a variable is then modeled by EInv =⋃

f∈F∪F($scope){ev,f | v ∈ Inv(f)}.

Graphically, we use a dashed-line arrow to represent
each e ∈ Edata ∪ E′

data ∪ EW ∪ ER ∪ EInv, and a solid-
line arrow to represent each e ∈ Eevent. Note for event
handling, the exact event is not modeled, and it does
not need to be modeled in an Interaction Diagram.

In our example (see Fig. 4), the elements of Edata

model one-way data binding: ($scope.a, a), ($scope.b,
b), ($scope.count right, count right), ($scope.count wrong,
count wrong), ($scope.right, Right), ($scope.wrong, Wrong),
and ($scope.may check(), Check). E′

data contains the two

edges between $scope.answer and answer, modeling the
only two-way data binding in the example. Eevent con-
tains the two edges (Check, $scope.check answer()) and
(New Problem, $scope.new problem()).

Furthermore, EW contains the four edges
leaving add problem(), and the edges leaving
$scope.check answer(). ER contains the edges from
c to $scope.check answer(), and from $scope.answer

to $scope.may check(). EInv contains the edge from
$scope.new problem() to add problem().

4 Interactions between Widgets
SPAs are interactive: the user makes some input, the

system reacts and makes updates to some widgets, then
the user makes another input, and so on. We define an
interaction to be a round of user giving input, and the
system updating widgets accordingly. An interaction
can be triggered explicitly by the user invoking an event
handler, or implicitly while the user is updating data,
which is bound by ng-model. Starting from interaction
diagrams, it is easy to “slice” interactions, i.e, to find
out the widgets that get updated upon a certain piece
of user input.

A widget t reacts to another widget s iff in the inter-
action diagram t’s representation nt is reachable from
s’s presentation ns, and the only event-handling edge,
if any, on the path from ns to nt event-handling edge is
the very first edge (leaving ns) on the path. This edge
models the interaction being explicitly triggered.

Formally, given a node n ∈ NH, we say a node m ∈
NH reacts to n iff

1. ∃n0, n1, n2, . . . nk ∈ N, n0 = n, nk = m such that
for each 0 ≤ i < k, (ni, ni+1) ∈ E, and

2. ∀np, 1 < p ≤ k and ∀e ∈ E, target(e) = np it holds
that e /∈ Eevent.

407

We write I(n) for the set of all nodes representing
the widgets that react to n. This set contains the wid-
gets that are automatically updated upon user input,
and thus constitute an interaction. To analyze inter-
actions in the SPA, we calculate for each input widget,
i.e., widget with an edge leaving it in the interaction di-
agram. Based on Fig. 4, we can calculate the following
three interactions for our running example:

• I(answer) = {Check, answer}, which means when
the user is entering her answer, answer (which
is trivial) and Check (enabled) are updated.
Note that updating the answer does not trigger
$scope.check answer(), since this function needs ex-
plicit triggering via Check,
• I(Check) = {Check, Right, Wrong, count right,

count wrong}, which means when the user clicks on
Check, these widgets get an update: the button
itself (disabled), one of Right and Wrong is dis-
played, indicating whether the user-inputted an-
swer is correct, and one of the counts also gets
updated.
• I(New Problem) = {a, b, answer, Check, Right, Wrong},

which means when the user clicks New Problem,
the widgets a, b (showing the summands of the
new problem), answer (emptied), Check (enabled),
as well as Right and Wrong (both made invisible),
are updated.

This analysis shows us the boundary of the inter-
actions. For instance, according to the analysis, when
the user is updating an answer, the label Right or Wrong

is not shown, nor does the statistics get updated. In-
stead, these widgets are only updated when the user
clicks Check.

5 Related Work
Analysis of Javascript programs is a very dynamic

research field. Due to the very dynamic nature of the
language, its analysis is not an easy task, see [7] for
an overview of recent publications. One of the chal-
lenges is the interactions between browser, DOM and
Javascript. In [6, 3], a unified API is given to formalise
the browser behavior. However, large-scale libraries are
still difficult to analyze, and therefore their function-
alities are often modeled manually. Our work is also
along this line in that we also take the semantics of
AngularJS for granted.

For the analysis of such frameworks, it is essential to
understand their interactions [7]. This is exactly where
our work is positioned. Other interesting publications
in this area include [4], which provides a method of
checking name and type consistency between template
and controller, and [1], where the authors present a
hybrid method for change impact analysis, and its fo-
cused on plain Javascript, without frameworks. Com-
pared with these approaches, our focus is on the visu-

alization and analysis of boundaries of interactions in
applications based on a complex framework.

6 Conclusions and Future Work

We presented a method for visualization and ana-
lyzing AngularJS-based single page web applications.
Based on the interaction diagrams, it is easy to calcu-
late the interactions, and to understand which widgets
react to certain user input and which do not. Our
approach is helpful for understanding AngularJS pro-
grams, and thus for more powerful analysis.

In the future, we plan to automate this approach,
to extend the analysis by more AngularJS directives,
and based on this work, to investigate techniques for
automatic test generation for AnguarJS programs.

References

[1] Saba Alimadadi, Ali Mesbah, and Karthik Pat-
tabiraman. Hybrid DOM-Sensitive Change Im-
pact Analysis for JavaScript. In Proc. 29th

Eur. Conf. Object-Oriented Programming (ECOOP
2015), pages 321–345, 2015.

[2] Google. AngularJS. https://angularjs.org/.

[3] Simon Holm Jensen, Magnus Madsen, and Anders
Møller. Modeling the HTML DOM and Browser
API in Static Analysis of JavaScript Web Applica-
tions. In Proc. 19th ACM SIGSOFT Symp. Foun-
dations of Software Engineering and 13th Eur. Soft-
ware Engineering Conf. (FSE/ESEC 2011), pages
59–69, 2011.

[4] Frolin S. Ocariza Jr., Karthik Pattabiraman, and
Ali Mesbah. Detecting Inconsistencies in JavaScript
MVC Applications. In Proc. 37th Int. Conf. Soft-
ware Engineering (ICSE 2015), Volume 1, pages
325–335, 2015.

[5] Mozilla. JavaScript object basics. https:
//developer.mozilla.org/en-US/docs/Learn/
JavaScript/Objects/Basics, 2018.

[6] Changhee Park, Sooncheol Won, Joonho Jin, and
Sukyoung Ryu. Static Analysis of JavaScript Web
Applications in the Wild via Practical DOM Mod-
eling. In Proc. 30th Int. Conf. Automated Software
Engineering (ASE 2015), pages 552–562, 2015.

[7] Kwangwon Sun and Sukyoung Ryu. Analysis of
JavaScript Programs: Challenges and Research
Trends. ACM Comput. Surv., 50(4):59:1–59:34,
2017.

[8] Wikipedia. Model View ViewModel. https:
//en.wikipedia.org/w/index.php?title=
Model_View_ViewModel&oldid=675433955, 2015.

408

Software Visualization Using Topic Models

Sandeep Reddivari
School of Computing

University of North Florida
Jacksonville, FL, USA 32224

William Hackney
School of Computing

University of North Florida
Jacksonville, FL, USA 32224

ABSTRACT
Latent Direchlet Allocation (LDA) is a statistical topic mod-
eling approach that has been used to support several soft-
ware engineering activities. The main assumption is that
LDA offers a unique insight into the semantic content of
software systems, thus revealing otherwise unseen relations
between software artifacts. However, a main problem when
dealing with LDA is the complexity of its output. In par-
ticular, the numerical probabilistic distributions produced
by LDA to represent topics and documents are not intuitive
to understand and rationalize. To address this problem, in
this paper we present a topic modeling based approach to
visualize software systems based on LDA. We also present
several visualizations to represent the basic elements of LDA
including words, topics, and documents. These different ba-
sic views are combined through a set of integration links to
enable users to effectively explore software systems by sup-
porting knowledge discovery at different levels of abstrac-
tion. We also demonstrate how the topic modeling based
visualization approach can provide support to several soft-
ware engineering activities such as program comprehension,
software clustering, and code evolution analysis.

Keywords
Software visualization, program comprehension, topic mod-
eling

1. INTRODUCTION
Software visualization can be defined as the mapping from

software artifacts to graphical representations [16]. The
main assumption is that using graphical representations of
code structures reduces the cognitive effort required for un-
derstanding and navigating large and complex software sys-
tems [22]. However, extracting and visualizing meaningful
information from source code is a non-trivial task [14, 18].
This can be explained based on the fact that the lexicons
and syntax of programming languages is inherently more
constrained than natural language [21]. Therefore, to be
effectively visualized, the complex textual content of soft-
ware systems has to be first reduced down to lower dimen-
sional representations, while retaining as much of the origi-
nal meaning of the text as possible [25]. These reduced rep-
resentations can then be mapped into basic graphical objects
to produce views of the system at higher levels of abstrac-
tion. A reductive transformation that has gained a con-
siderable attention in Natural Language Processing (NLP)

DOI reference number: 10.18293/SEKE2018-194

related tasks is Latent Dirichlet Allocation (LDA) [5]. Us-
ing LDA, the dimensionality of a large text corpus can be
reduced down into a set of meaningful latent topics, where
each topic consists of a group of words collectively repre-
senting a cohesive domain concept. In particular, LDA is an
unsupervised probabilistic approach for estimating a topic
distribution over a text corpus. The main assumption is
that documents in the text collection are generated using
a certain statistical generative model as random mixtures
over latent topics. LDA has been successfully applied to
several software engineering activities. However, a main
problem when dealing with LDA is the complexity of its
output. In particular, the numerical probabilistic distribu-
tions produced by LDA are not intuitive to understand and
rationalize. This has motivated researchers to start looking
for alternative ways to represent LDA’s output [6, 13, 24].

Motivated by these observations, in this paper we pro-
pose a collection of visualization techniques, which are often
used to represent topic models in NLP, to visualize software
systems. These visualizations include combinations of basic
and integrated views that facilitate effective navigation and
comprehension of software systems. The rest of the paper is
organized as follows. Section 2 briefly introduces LDA and
our preprocessing analysis. Section 3 the various suggested
visualization techniques of LDA. Section 4 presents visual-
ization supports for clustering evaluation and code evolution
analysis. Finally, Section 5 presents the conclusion and fu-
ture work.

2. LATENT DIRICHLET ALLOCATION
LDA takes the documents collectionD, the number of top-

icsK, and α and β as inputs. Each document in the corpus is
represented as a bag of words d =< w1, w2, . . . , wn >. Since
these words are observed data, Bayesian probability can be
used to invert the generative model and automatically learn
φ values for each topic ti, and θ values for each document di.
In particular, using algorithms such as Gibbs sampling [23],
an LDA model can be extracted. This model contains for
each t the matrix φ = {φ1, φ2, . . . , φn}, representing the
distribution of t over the set of words < w1, w2, . . . , wn >,
and for each document d the matrix θ = {θ1, θ2, . . . , θn},
representing the distribution of d over the set of topics <
t1, t2, . . . , tn >.

3. CODE VISUALIZATION USING LDA
This section describes the various visualization techniques

used to represent the different aspects of the latent topic
structure of software systems produced by LDA. We start

409

Table 1: Experimental Datasets

Dataset ver. no. class lang. loc comments

iTrust 15.0 299 Java 20.7K 9.6K

Apache Ivy 2.3.0 451 Java 49.9K 16.7K

WDS 3.5.1 521 Java 44.6K 10.7K

abloader schedule physical doctor clear

pend general req conflict accept

checkup hold appointment time builder

start minute duration bin test

Figure 1: Tag cloud for a sample topic from the
iTrust system

by describing basic views used for representing the basic
units of LDA including words, topics, and documents. We
then describe more sophisticated views where multiple basic
views are integrated to represent the whole system at higher
levels of abstraction.

3.1 Datasets
To start our analysis, we used three software systems from

different application domains. Table 1 describes the charac-
teristics of these systems including: the size of the system
in terms of lines of source code (sloc), lines of comments
(cloc), implementation language (lang.) version (ver.)
and number of classes (cls).

3.2 The Topic View
This view emphasizes topics as the main unit of visualiza-

tion. The topic view allows users to visually explore a topic
as a collection of weighted words organized in a tag cloud.
Tag clouds are visually-weighted renditions of collections of
words (tags), extracted from a certain corpus, where more
important words are depicted in a larger font size than less
important words [17]. Importance can be quantified based
on different schemes such as words counts, or the TFIDF
weights of words. Tag clouds are widely used as an effective
method to quickly find relevant information on the Web [3].

In our analysis, each topic is represented as a separate
tag cloud. Each tag in the cloud represents a word from
the topic-word distribution matrix. In particular, the size
of the word in the cloud is proportional to its probability
in the topic word matrix P(wi, t) i.e,. words with higher
probability are shown in larger font. Fig. 1 shows a tag
cloud generated for a topic from the iTrust dataset. The
topic is represented by 20 terms. The size of the different
words <appointment, schedule, duration, ..., etc.> in the
tag cloud in Fig. 1 shows that this particular topic describes
the domain concept of scheduling a patient appointment.

3.3 The Document View
This view emphasizes artifacts as the main unit of visu-

alization. In particular, each artifact (d) in the system is
represented using a combination of graphical and textual
components including:

• Topics chart: A standard pie chart which shows the
topic distribution of each document. In particular,

AddDrugListAction.java

txtCollections.Text = string.Empty;
 for (int i = 0; i < copy.Count; i++)
 {
 entry = new
ListViewItem(copy[i].id.ToString());

entry.SubItems.Add(copy[i].propability.ToString
());

 txtCollections.Text +=
copy[i].propability.ToString() +
Environment.NewLine;

 //if (
Math.Round(copy[i].propability,2) <= .01)
 //{
 // foundTopTopics1++;

 //}

 //else if (copy[i].propability >
.01 && copy[i].propability < .1)
 //{
 // foundTopTopics2++;

Related Documents

AddDrugLitsActionTest.java

ImportNDCodesTest.java

AddNDTylenolTest.java

MedicationBean.java

AptBeanValidator.java

AddHCPAction.java

ErrorList.java

{drug, home, prescribe}

{visit, home, schedule}

{data, report, doctor}

{room, date, time}

{calendar, cal, year}

Figure 2: Document view of AddDrugListAction.java

each sector of the pie represents a topic in the document-
topic matrix. The size of the sector is proportional to
the P(ti, d) of that topic. A unique color is used to
represent each topic [6].

• Topics list: A list of color-coded topics arranged in a
descending order based on their P(ti, d) value. The top
three words of each topic are used as representatives
of the topic; 3-5 terms were found to decently convey
the main theme of the topic [7].

• Document text: A main window that shows the actual
artifact (i.e., the actual source code of the class).

• Related artifacts: A list of other artifacts in the sys-
tem ranked in a descending order based on their top-
ical similarity to the main document. In particular,
The similarity between documents d1 and d2 can be
measured by the similarity between their correspond-
ing topic distributions, using techniques such as the
cosine similarity, or approaches such as the Kullback-
Leibler (KL) divergence measure [26].

Fig. 2 shows a document view window for the class Ad-

dDrugListAction.java from the iTrust dataset. The view
shows that the topic <drug, home, prescribe> is the dom-
inant topic in this class. It also shows that the class Ad-

dDrugListActionTest.java is the most topically similar class
to AddDrugListAction.java.

3.4 The Document-Topic View
This visualization provides an in-depth look into the topic

distribution of each artifact in the system. In particular,
stacked charts are used to represent the document-topic ma-
trix of each document. Using stacked charts, the contribu-
tion of several data items into a total are represented as bars
stacked one on top of, or next to, each other. In LDA, the
width/height and color of each bar represents the P(ti, d)
of each topic representing the document d. Stacked charts
are known to be effective and intuitive for comparing data
distributions [11]. In our analysis, the main objective of
this particular view is to enable the comparison of the doc-
uments at topic level. Comparing the topic distribution of
documents is essential in several software engineering ac-
tivities such as code evolution analysis [2] and traceability
recovery [27].

3.5 The System-Topic View
This view is used to represent the whole system in a single

view. We adopt distribution maps as the main visualization

410

Figure 3: A topic distribution map of Apachi Ivy

for this view [10]. This visualization is composed of large
rectangles containing small squares. Each rectangle repre-
sents a system folder or a package, and each square repre-
sents an artifact within that folder. The color of the square
represents the dominant topic of the artifact. Distribution
maps are suitable for showing the conceptual content of a
corpus. In particular, they are good for visually represent-
ing metrics as such focus, or how well-encapsulated or cross-
cutting a topic is, and spread, or the parts of the system in
which this topic is present as a dominant topic [10].

Fig. 3 shows a partial distribution map for the Apachy Ivy
dataset. In particular, the map shows how some topics are
spread over multiple folders, dominating multiple artifacts in
each folder. It also shows how some other topics are focused
(well-encapsulated) within one folder only.

3.6 The Integrated View
The integrated view combines several basic views to pro-

duce a full picture of the system, or one integrated visu-
alization experience that allows users to navigate through
the system’s multiple views at different levels of abstrac-
tion. This view is enabled through a number of integration
links that connect the different basic views of the system.
Technically, such links could refer to a mouse click; in other
implementations such as Web platforms, hyperlinks could
be adopted. To integrate our views, several links have been
added to the system. These links are shown in Fig 4. Such
links include:

• In the system-topic views (i.e, distribution map), there
is a link between each artifact’s graphical object (square)
and the document view of that artifact. An additional
secondary link (right-click) is also available to show
the tag cloud of the artifact’s dominant topic.

• In the document view, a click on a topic in the list of
document’s topics lunches the tag cloud of the topic.
Also, a click on any of the artifacts in the list of topi-
cally similar documents will lunch that artifact’s doc-
ument view.

• Links have also been added to the stacked charts views,
where there is a link between each bar in the chart and
the tag cloud of the topic represented by that bar.

The main objective of the integrated view is to facili-
tate effective program comprehension by enabling different
comprehension strategies including top-down and bottom-
up comprehension [19]. In particular, under the top-down
strategy, software developers utilize their knowledge about
the domain to build a set of expectations that are mapped
onto the source code [19]. The top-down comprehension
process starts from the distribution map view of the system,
where developers who are usually familiar with the domain,

 Document View System View

Comparative View Topic View

abloader schedule physical doctor clear

pend general req conflict accept

check hold appointment time builder

start minute duration bin test

Figure 4: Integrated View

can explore the system as one unit. Such knowledge can then
be propagated through the integration links down to the ba-
sic views of individual artifacts and topics, where users can
investigate the source code of individual classes in the doc-
ument view and the word distribution of each topic through
the topic’s tag cloud.

On the other hand, a bottom-up comprehension approach
adopts a divide and conquer strategy. In particular, the
comprehension process starts from the source code, where
developers who are often unfamiliar with the domain can
then gradually build a full understanding of the system.
This process is also enabled by moving to higher abstrac-
tion levels through the integration links, starting from basic
document’s and topic’s views, up to the system’s distribu-
tion map to produce a full understanding of the system from
the bottom-up.

4. VISUALIZATION SUPPORT

4.1 Clustering Evaluation
LDA has been intensively used as a mechanism for cluster-

ing software systems. In particular, the topic distributions
of artifacts are used as main features to group topically re-
lated artifacts into smaller, more conceptually cohesive, and
thus, easier to understand subsystems [12, 21]. However,
finding best LDA clustering settings (e.g., number of topics,
α, φ, clustering algorithm to use, number of clusters, and
the distance function) that best fit a certain task is often
described as an NP-complete problem [28].

Several internal and external methods have been proposed
in the literature to estimate optimal clustering parameters.
Internal methods use a fitness function that captures the
twin objectives of high cohesion and low coupling to help
determine the boundaries between clusters [8]. On the other
hand, external measures (e.g., MoJo [29]) use an authorita-
tive decomposition as a reference point to assess the quality
of generated clusters. However, such methods reduce the
overall evaluation into a single number, hiding valuable in-
formation about the nature of the problem. To that end,
visualizing clustering results can help to assimilate such in-
formation, providing insights into the operation of the differ-
ent clustering algorithms, and their sensitivity to different
clustering parameters, such as number of clusters, member-
ship, and boundaries. [9]

In the following example, we demonstrate how topic mod-
eling based visualizations can be used to visually compare
clustering algorithms. In particular, we experiment with
Complete Linkage (CL) and Single Linkage (SL), two Hi-
erarchical Agglomerative Clustering (HAC) algorithms that
have been showing consistent performance in several soft-

411

Single Linkage Complete Linkage

Figure 5: Visually comparing the clustering results of SL and CL algorithms on iTrust

ware engineering activities [1]. Technically, both SL and
CL start from individual items in the cluster space, where
each item is treated as a separate cluster, iteratively merging
items based on a certain update rule, until the whole system
is grouped into a single cluster. This process produces a hi-
erarchy of clusters, or a dendrograph, of the whole process.
Formally, SL and CL can be defined as follows:

SL = min{d(a, b) : a ∈ A, b ∈ B}. (1)

CL = max{d(a, b) : a ∈ A, b ∈ B}. (2)

In these equations, d(a, b) is the distance between data
objects a and b, defining the linkage (merging) criteria for
clusters A and B. For instance, SL merges the two clus-
ters with the smallest minimum pairwise distance, and CL
merges the two clusters with the smallest maximum pairwise
distance. Cosine similarity is used to measure the topical
distance between the different artifacts.

We apply LDA using K = 20 to our iTrust dataset. We
then cluster the system’s artifacts using both CL and SL
algorithms. We set both algorithms to produce 20 clus-
ters. We then use MoJoFM to assess the performance of
both algorithms by comparing their output to the optimal
decomposition [29]. An optimal decomposition is the one
that groups documents that match in their dominant topics
into separate clusters. Since we produced 20 topics for the
system, the optimal decomposition consists of 20 clusters.

MoJo measures the distance between two decompositions
of a software system by computing the number of Move and
Join operations to transform one to the other. MoJoFM
is basically a normalized MoJo that produces a number in
the interval [0, 1]. MoJoFM value of 1 means that the al-
gorithm is optimal. Applying MoJoFM on our clustering
output returns values of < 87.71%, 43.1% > for CL and SL
respectively, giving a clear indication of the superiority of
CL over SL; however, no other information is provided. To
reveal such information, we refer to our distribution maps to
visually compare the output of the two algorithms. Results
are shown in Fig. 5. Each map shows how each cluster-
ing algorithm divided the 299 artifacts of the iTrust system
among the 20 clusters.

Fig. 5 shows that SL produced unbalanced clusters, scat-
tering some of the topically related artifacts all over the clus-
tering space. This behavior of SL can be explained based
on its update rule, SL uses the smallest minimum pairwise

Table 2: Clustering Results

Algorithm MoJo Avg. Spread Avg. focus

Complete Linkage 87.71% 1.35 82%

Single Linkage 43.1% 2.35 48%

distance between cluster items as the new distance in the
newly formed clusters. Therefore, when SL is used, bigger
clusters tend to be grouped together rather than incorporat-
ing singletons (clusters with only one element). As a result,
SL tends to create a small number of large, isolated clusters,
in addition to a number of singletons. In constant, CL uses
the smallest pairwise maximum distance to merge clusters,
thus pushes clusters apart, creating smaller, more balanced,
and highly cohesive clusters.

To confirm our visual assessment, we refer to the focus
and spread metrics associated with distribution maps. Such
values, averaged over all the topics in iTrust, are shown in
Table 2. The spread values show that using SL, artifacts
sharing same dominant topic are spread over an average of
2.35 clusters, while in CL, the average spread is 1.35, giving
an indication of the high encapsulation of topically related
artifacts in CL clusters. Similarly, we calculate the focus
values of both algorithms using the following formula:

focus(t, P) =
∑

touch(t, pi) ∗ touch(pi, t) (3)

where touch(t, pi) is the ratio of the number of artifacts in
pi with dominant topic t to the total number of artifacts in
pi, and touch(pi, t) is the ratio of the number of artifacts
in pi with dominant topic t to the total number of artifacts
in the system with a dominant topic t [10]. Focus values
show that SL was less successful in producing cohesive clus-
ters (focus = 48%), producing larger clusters that contain
multiple sets of topically related artifacts. In contrast, CL
produced more cross-cutting clusters (focus = 82%).

In general, using our distribution map view, it can be visu-
ally concluded that CL was more effective than SL in divid-
ing the system’s artifacts into more topically cohesive and
more balanced clusters. In particular, visualization helps
users to visualize the different metrics and the meaning of
these numbers, providing an effective alternative for illus-
trating the impact of the various clustering parameters, and
facilitating a real-time comparison of different clustering re-

412

reporters-1.0

controllers

devtools

reporters-3.0

controllers

devtools

dataUtil

PublicJobController.Java 1.0

PublicJobController.Java 3.0

import contract end secure insta

pend test job control accept

check hold transact uid builder

start analysis edit bin test

abloader bean transact system clear

pend general req control accept

check hold data server build

start test job bin text

Topic {Bean, Job, data, control}

Topic {Job, contact, edit, transact}

Topic {Data, Server, Control, transaction}

Figure 6: Visually analyzing the change in one of the WDS system’s folders

sults. For instance, the concentration of colors inside boxes
gives an indication of high encapsulation and clear cross-
cutting. In addition using the integrating links, the user can
get a better understanding of the results, for example why
certain artifacts with different dominant topics tend to be
grouped together.

4.2 Code Evolution Analysis
Several studies have reported that topic models can be

effectively used for the purposes of describing software evo-
lution [20]. The main assumption is that the changes in the
latent topic structure of a software system are reflective of
actual changes made by developers, for example feature in-
tegration or refactoring milestones [27]. In particular, such
events can be detected by applying LDA to different releases
of the system and monitoring the changes in a system’s topic
structure over time.

For instance, the sensitivity of LDA to software evolu-
tion can be quantified through matching individual artifacts
based on their document-topic distribution, or comparing
how the topic-word matrices of the different topics in the
system have changed over time using well-defined evolu-
tion metrics [27]. However, similar to software clustering,
such analysis can reveal only a little about the nature of the
change [15]. For instance, other evolution-related informa-
tion such as what specific types of change took place, and
which artifacts have been affected, is often invisible to such
metrics. To that end, visualization can help developers and
software engineers to uncover such information by providing
a more in-depth look into the different releases of the sys-
tem overtime. In particular, to visualize a software change,
a time dimension is integrated into the different views of the
software system [15]. For example, to visualize system arti-
facts’ evolution, we add a time dimension to our document-
topic view. Similarly, a time dimension is integrated into
the system-topic view of the system to visualize changes in
the system as a whole.

To demonstrate this process we run LDA over two releases
of the WDS dataset. In particular, we work with releases
1.0 and 3.0 of the system as milestone changes have been
reported between these two particular releases. In order to
keep a consistent color assignment, if two topics generated
for different releases of the system share the top five domi-
nant words, then the same color is used. Using our zooming
feature, we produce distribution maps of one the system’s
sub-folders (reporting) in both releases of the system. In

release 1.0, this particular folder contains two sub folders in-
cluding controllers and devtools. In release 3.0 the same
folder now includes the additional folder dataUtilities.

Distribution maps, shown in Fig. 6, show that artifacts in
folder devtools remain unchanged between releases. How-
ever, a drastic change in a portion of the artifacts in folder
controllers has happened. To understand this change we
take a look at the stacked chart of the system class Pub-

licJobController.Java in both releases. The charts show
that in release 1.0 the topic <bean, job, data, control> was
dominating this class. This topic describes functionalities
related to job requirements and database connections. How-
ever, in release 3.0 this class is now dominated by the topic
< job, contact, edit, transact >, and the data related terms
are no longer present. In an attempt to understand this
change we inspect the new folder dataUtlities that has
emerged in the folder reporting in release 3.0. All arti-
facts in this folder are dominated by the same topic. It
can be inferred from the word distribution of this topic
< data, server, control, transaction > that this folder basi-
cally contains database related functionalists. This suggests
that probably Extract Class [4] refactoring has taken
place somewhere between releases 1.0 and 3.0, where most of
the database related features have been moved and encapsu-
lated into the new folder dataUtlities, leaving artifacts in
folder controllers with only job-controlling related func-
tions.

This example demonstrates how a change in the system
was made immediately obvious by our views, allowing users
to not only identify the change, but also provide insight into
the nature of the change.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a set of visualization techniques

to represent source code using topic models. The main as-
sumption is that using graphical representations to represent
complex source code structures helps to reduce the cognitive
load when comprehending a software system. In particular,
we used LDA as an effective dimentionality reduction tech-
nique to reduce the inherently complex textual content of
source code into a set of semantically cohesive topics that
can be effectively visualized. Such topics are represented
through several views that have been used in a wide range
of NLP applications. These views provide graphical repre-
sentations for the different numerical distributions produced
by LDA including words, topics, and documents. These dif-

413

ferent basic views are integrated through a set of links to
enable users to quickly browse through the system modules,
exploring relationships between artifacts that might other-
wise go unnoticed. In addition, we presented how the topic
modeling based visualization can provide support to soft-
ware engineering scenarios such as program comprehension,
code clustering, and evolution analysis. In the future we plan
to implement our proposed visualizations through a work-
ing prototype which provides several options to adjust the
visualization settings and to navigate through the different
views of the system.

6. REFERENCES
[1] N. Anquetil, C. Fourrier, and T. Lethbridge.

Experiments with clustering as a software
remodularization method. In Working Conference on
Reverse Engineering, pages 235–255, 1999.

[2] H. Asuncion, A. Asuncion, and R. Taylor. Software
traceability with topic modeling. In International
Conference on Software Engineering, pages 95–104,
2010.

[3] S. Bateman, C. Gutwin, and M. Nacenta. Seeing
things in the clouds: The effect of visual features on
tag cloud selections. In ACM Conference on Hypertext
and Hypermedia, pages 193–202, 2008.

[4] G. Bavota, A. D. Lucia, and R. Oliveto. Identifying
extract class refactoring opportunities using structural
and semantic cohesion measures. Journal of Systems
and Software, 84(3):397–414, 2011.

[5] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[6] A. Chaney and D. Blei. Visualizing topic models. In
AAAI Conference on Social Media and Weblogs, 2012.

[7] J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, and
D. Blei. Reading tea leaves: How humans interpret
topic models, pages 288–296. Curran Associates, 2009.

[8] J. Davey and E. Burd. Evaluating the suitability of
data clustering for software remodularization. In
Working Conference on Reverse Engineering, pages
268–277, 2000.

[9] I. Davidson. Visualizing clustering results. In SIAM
International Conference on Data Mining, 2002.

[10] S. Ducasse, T. Gı́rba, and A. Kuhn. Distribution map.
In International Conference on Software Maintenance,
pages 203–212, 2006.

[11] S. Eick. Visualizing software changes. IEEE
Transactions on Software Engineering, 28(4):396–412,
2002.

[12] S. Grant and J. Cordy. Estimating the optimal
number of latent concepts in source code analysis. In
International Working Conference on Source Code
Analysis and Manipulation, pages 65–74, 2010.

[13] B. Gretarsson, J. OD́onovan, S. Bostandjiev,
T. Höllerer, A. Asuncion, D. Newman, and P. Smyth.
Topicnets: Visual analysis of large text corpora with
topic modeling. Journal of Visual Languages and
Computing, 3(2):2157–6904, 2012.

[14] M. Hearst. Tilebars: Visualization of term distribution
information in full text information access. In SIGCHI
Conference on Human Factors in Computing Systems,
pages 59–66, 1995.

[15] R. Holt and J. Pak. GASE: Visualizing software
evolution-in-the-large. In Working Conference on
Reverse Engineering, pages 163–167, 1996.

[16] R. Koschke. Software visualization in software
maintenance, reverse engineering, and re-engineering:
A research survey. Journal of Software Maintenance,
15(2):87–109, 2003.

[17] B. Kuo, T. Hentrich, B. Good, and M. Wilkinson. Tag
clouds for summarizing web search results. In
International Conference on World Wide Web, pages
1203–1204, 2007.

[18] R. Laramee. Using visualization to debug visualization
software. IEEE Computer Graphics and Applications,
30(6):67–73, 2003.

[19] S. Letovsky. Cognitive processes in program
comprehension. In workshop on empirical studies of
programmers on Empirical studies of programmers,
pages 58–79, 2011.

[20] E. Linstead, C. Lopes, and P. Baldi. An application of
Latent Dirichlet Allocation to analyzing software
evolution. In International Conference on Machine
Learning and Applications, pages 813–818, 2008.

[21] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and
P. Baldi. Mining concepts from code with probabilistic
topic models. In International Conference on
Automated Software Engineering, pages 461–464, 2007.

[22] J. Maletic, A. Marcus, and M. Collard. A task
oriented view of software visualization. In
International Workshop on Visualizing Software for
Understanding and Analysis, pages 32–40, 2002.

[23] I. Porteous, D. Newman, A. Ihler, A. Asuncion,
P. Smyth, and M. Welling. Fast collapsed gibbs
sampling for Latent Dirichlet Allocation. In ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 569–577, 2008.

[24] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk.
TopicXP: Exploring topics in source code using latent
dirichlet allocation. In IEEE International Conference
on Software Maintenance, pages 1–6, 2010.

[25] K. Sparck-Jones. Automatic summarising: Factors
and directions. In Advances in Automatic Text
Summarization, pages 1–12, 1998.

[26] M. Steyvers and T. Griffiths. Probabilistic topic
models, pages 427–448. Psychology Press, 2007.

[27] S. Thomas, B. Adams, A. Hassan, and D. Blostein.
Validating the use of topic models for software
evolution. In IEEE Working Conference on Source
Code Analysis and Manipulation, pages 55–64, 2010.

[28] K. Tian, M. Revelle, and D. Poshyvanyk. Using Latent
Dirichlet Allocation for automatic categorization of
software. In International Working Conference on
Mining Software Repositories, pages 163–166, 2009.

[29] Z. Wen and V. Tzerpos. An effectiveness measure for
software clustering algorithms. In International
Workshop on Program Comprehension, pages 194–203,
2004.

414

How Many Versions Does A Bug Live in?
An Empirical Study on Text Features for

Bug Lifecycle Prediction
Chuanqi Wang1,2, Yanhui Li1,2,∗, Baowen Xu1,2,∗

1. State Key Laboratory for Novel Software Technology, Nanjing University, China
2. Department of Computer Science and Technology, Nanjing University, China

* Corresponding authors: {yanhuili, bwxu}@nju.edu.cn

Abstract—During the software system’s maintenance and evo-
lution, finding and removing software bugs is a very important
part that consumes a large amount of money and effort. To
analyze different bugs’ character, it is very essential to know
how long or which period of versions does the bug live in.

In this study, we define version-based bug lifecycle and propose
a text features based classification model to predict the version-
length of bug lifecycle. We collect 57000+ bugs from 10 well-know
Apache Software Foundation projects to construct our dataset,
and use the tf-idf method to collect our text features from bug
report’s summary and description.

Our experimental results show that the text feature based
method performs better than other baseline methods on 10
projects. The text feature based Naive Bayes classifiers outper-
forms all other methods with different features and classifiers.

I. INTRODUCTION

Finding and removing Software bugs is a very important
part of software evolution and maintenance that consumes a
large amount of money and effort [1]. An extensive body
of bug-related studies [2]–[6] have been proposed to help
programmers to predict, detect and fix bugs. In all bug-related
research areas, the bug lifecycle (the time difference between
bug introduced time and bug fixed time) is an important
time indicator, which is useful for many applications, such
as predicting fault-proneness of code region [7] or identifying
the origins of bugs [8]. The recent empirical study shows that
some long-lifecycle bugs may remain alive for a very long
time and in multiple versions [9], [10].

Some researchers have paid attention to bug lifecycle and
their studies could be divided into two parts: Fixing Period,
(the righthand side of bug lifecycle, from reported time to
fixed time) and Dormant Period (the lefthand side, from
introduced time to reported time). In Fixing Period part, the
lengths of Fixing Period are usually considered as the bug
fixing effort (BFE). To investigate which factor impacts the
BFE, the correlation analysis was conducted [11]. Zhang et
al. focused on the correlation of different factors and BFE
by logistic regression models [12]. Furthermore, based on
different datasets and classifiers, researchers have proposed
prediction models to predict the BFE when the bug was
reported. Song et al. proposed the association mining rules to

DOI reference number: 10.18293/SEKE2018-176

build BFE prediction model on NASA’s data sets [13]. Zhang
et al. proposed k-Nearest Neighbors based method to construct
the BFE prediction model on commercial projects [14]. In
Dormant Period part, Chen et al. introduced affected version
as an indicator for bug introduced time, then calculated the
dormant period from introduced time to reported time [9].

Our work differs from existing studies in three important
ways. Firstly, we consider the bug lifecycle as a whole in
our study. Previous studies usually focus on the righthand or
lefthand side of lifecycle. Secondly, we define version-based
bug lifecycle and predict the version-length of bug lifecycle.
Previous studies are mainly based on real time interval. We
observe that in most projects, interval time between versions
are different, so we believe that version could be considered
an effect time units of measurement. Thirdly, we focus on
text features from the summary and description in bug reports
and construct the bug lifecycle prediction model. Our model
aims to help the project manages and bug fixers trace the bug
fixing back to the bug introducing commit.

Our main contribution consists of the following steps:
• We collect the datasets with 57000+ bugs on 10 Apache

Software Foundation Projects from Jira and Github. Each
projects have more than 2000 bugs.

• We use tf-idf [15], a statistic method to calculate a single
word’s importance, to construct our text features.

• Our evaluation results show that our text features sig-
nificantly improves the performance of the version-based
bug lifecycle prediction model.

The rest of this paper is organized as follows. Section II
defines bug lifecycle. Section III shows our prediction experi-
ment setups. Section IV evaluates the performance of our text
features and prediction models. Threats to validity is presented
in Section V. Section VI concludes our work.

II. VERSION-BASED BUG LIFECYCLE

This section describes our data collection approach, the
studied projects, and defines bug lifecycle.

A. Linking Jira and Github

Our study mainly focuses on data from two sources: bug
related data from Jira and code evolution data from Github.
What makes Jira becomes our bug reports database is not only

415

TABLE I: An Overview of 10 Studied Apache Projects.

Project Description All AV AV%

CXF Web services framework. 6431 1423 22.13%
Flink Stream processing framework. 6783 895 13.19%
Flume Service for efficiently dealing log data. 3167 834 26.33%
Groovy Object-oriented programming language

for Java.
8100 3697 45.64%

Hadoop Software framework for distributed s-
torage.

12723 6766 53.18%

NiFi Enables data flow between systems. 4446 959 21.57%
OpenJPA Implementation of the Java Persistence

API specification.
2718 1654 60.85%

PDFBox Pure-Java library. 2952 2055 69.61%
Tuscany Developing and running software appli-

cations.
4,082 1420 34.79%

Wicket A lightweight component-based web
application framework.

6458 2169 33.59%

Totals 57860 21872 37.80%

the popular it is, but also it provides the affect-version field.
It is filled by the bug fixing developers and is an indicator of
bug introducing time estimated by the development team [16].
Github is a web-based Git and Version Control System(VCS).
We can get several collaboration features such as bug tracking,
feature requests and task management from it [17].

To synchronize the bug reports from Jira and commits from
Github, bug id with some key words such as “bug”, “fix”,
“defect” are regarded as the link between a bug reports and
commits [18], [19]. Although there are many new technique
to link the bug reports with commits such as ReLink [20] and
MLink [21], in this paper, a bug report can be linked with
a commit only when their bug id is same which ensured the
correctness of our data.

B. The Studied Projects

We choose 10 Apache Software Foundation (ASF) projects
as our studied projects. First, they are well-known ASF
projects available in Jira and Github. Second, these projects
have enough proportion and number of bug reports with affect
version. Third, these projects have the enough number of bug
reports matching from Jira to Github.

Table I summarizes these 10 ASF projects with their de-
scription and the numbers of bug reports. The third column
(ALL) is the number of all the bug reports recorded in Jira. The
forth column (AV) is the bug reports that have affect version
item filled in by developers and the last column (AV%) is the
percentage of them comparing to all bug reports.

C. Definition of bug lifetime

As discussed in Introduction, we define the version-based
life cycle LC(x) of bugs x, as the version sequence from the
introducing version Vi to the fixing version Vf :

LC(x) = Vi, Vi+1, · · · , Vf

and the version-length of life cycle LLC(x) as version differ-
ence from Vi to Vf .

In our experiment, we use the affect version in Jira as
the the introducing version of bugs. Costa et al. [16] applied
the affect version on evaluating the approach of identifying

●●●●●●●●●●●●

●
●
●
●●

●

●●●●●
●●●●●●●●●
●●●●●●
●●●
●●
●

●●●●●●
●●●●
●●
●
●●

●

1

10

100

CXF
Flink

Flume
Groovy

Hadoop
NiFi

OpenJPA

PDFBox

Tuscany
Wicket

Fig. 1: The boxplots of 10 Projects distribution of the version-
length from the affect version to the fixing version.

bug-introducing changes. If a bug has multiple affect versions
filled in, we use the earliest affect version as bug introducing
version. Jira also provides the fixing version in most bug
reports, thus we use the fixing version as the endpoint version
of bug lifecycle. Correspondingly, if a bug has multiple fixing
versions, we use the latest one.

The AV% column in Table I shows that about 38% bugs
have complete lifecycle information (affected version and
fixing version). We use these 38% bugs as the studied dataset
to construct and evaluate our prediction models. Figure 1
presents the bug’s lifetime statistic in the chosen 10 projects.
We observe that:

• in all projects, many bugs live in lifecycle with multiple
version-length (LLC(x) > 1).

• the boxplots have much difference from project to project,
and the quartile are also different which could be used to
define the cutoff points in sectionIII.

III. PREDICTION METHODOLOGY

In this section, we will discuss the approach and evaluation
metrics used in the following experiment.

A. Text Feature Extraction

It is three reasons that we use the text features in the bug
lifecycle prediction scenario. First, text features are included
in bug reports descriptions or summary and most of the bug
reports have these items filled in. Second, there are numerous
information that exists in bug report descriptions written by
developers. We can extracted features from it to build the
prediction model. Third, text feature based approaches have
been used in many former researches [22]–[24] in other
fields such as defect fixing effort prediction and software
constructive cost prediction. Kikas et al. used the number of
text comments or size of text comments as text features to
predict when a bug will be closed in the future [25].

Text Feature. In our work, to generate text features from
text descriptions of historical defect reports. We utilize tf-idf
(short for term frequency-inverse document frequency) api of
Scikit-learn package in Python language to extract word tokens
from the textual descriptions.

416

The tf-idf method consists of two parts tf and idf. The full
name of tf is term frequency which is the number of times a
term appears in a document. The n word tokens we extract
from a text descriptions can be defined as w[0, ..., n], where
wi means the i-th word in the text. tf can be defined as:

tfi,j =
ni,j∑
k nk,j

,

where the ni,j means the number of the word wi appears in
document j. The

∑
k nk,j means the summation of document

j’s words.
The full name of idf is inverse document frequency, which

gives us the word’s frequency across the documents. The
formula of idf can be defined as:

idfi = log
|D|

|{j : wi ∈ dj}|
,

where the |D| means the number of documents included in the
corpus. The |{j : wi ∈ dj}| means the number of documents
the wi appears in the corpus.

Finally, the value of tf-idf can be calculated as:

tf − idf = tfi,j × idfi

In information retrieval, tf-idf is a statistic method that is
intended to perform a single word’s importance of a certain
document in a corpus [15]. It is also widely used in informa-
tion retrieval or text mining as a weighting factor.

Basic Feature. We also use the basic metrics from Jira’s
bug reports as our baseline prediction features. There are many
items that Jira provides for developers to fill in. But some of
the items most developers (over 99%) did not fill in when they
reported a bug, such as Components, Time Spent, Work Ratio,
and Security Level. And there are also some items that can
not be directly used as features, such as Assignee, Reporter,
Creator and Environment. Thus, from our investigation, there
are Priority, Votes and Watchers items that can be directly used
as features to build the basic feature prediction model.

B. Prediction Settings

Two Classification Problem Definition. Numerous re-
searchers have used the classification model in bug fixing
effort prediction [5], [26], [27], which inspires us to build a
classification prediction model for verson-based bug lifecycle.

In the view of every project’s distribution of length of
bug lifecycle (LLC) in Figure 1, the boxplots have much
difference from project to project, and the three cutoff points
(25%,50%,75%) of boxplots are also different. By the cutoff
point, we transfer the bug lifecycle prediction to a two
classification problem. Figure 2 shows how the transformation
executes. In Figure 1, the boxplots of project CXF have three
cutoff points: 4(25%), 6(50%), 9(75%). For 4 as 25% cutoff
point, we group the bugs whose LLC less than 4 into a class
(< cutoff class) and greater equal than 4 into another class
(≥ cutoff class), then we do the two classification. For each
projects, we will do the two classification at different three
cutoff points (25%,50%,75%). There are two special cases in
Figure 1 that Flink and Tuscany’s cutoff points have some

Two
Classification
at each cutoff

point

25% cutoff
point: 4
two classification:
<4 vs ≥4

75% cutoff
point: 9
two classification:
<9 vs ≥9

50% cutoff
point: 6
two classification:
<6 vs ≥6

1

2

3

Fig. 2: An example of CXF Project’s two classification at 3
Cutoff Points: 75%(9), 50%(6) and 25%(4).

19.54%
<4LLC

80.46%
≥4LLC

CXF 25%

Dummy Recent
(all test set predict
as <4 recent class)

Dummy Major
(all test set predict
as ≥4 major class)

Train Set Test Set

CXF 25%

<4LLC ≥4LLC

CXF 25%

Test Set

Fig. 3: An example of dummy recent and dummy major
classifiers at CXF 25% cutoff point.

overlaps. Thus, if a project’s cutoff point 25% equals to 50%
or cutoff point 50% equals to 75%, we plus 1 LLC for the
latter cutoff point.

Cross Validation. Two-fold cross validation is used to train
and test the prediction model in the 10 studied projects. For a
certain project, we break its data into two folds, one for train
set and another for test set. In this experiment, we run two-
fold cross validation for 50 times and totally get 100 prediction
results for each cutoff point of each project.

Prediction Classifiers. To build our bug lifecycle pre-
diction model, we adopt the following four commonly-
used supervised classifiers: Naive Bayes(NB), Support Vec-
tor Machine(SVM), Logistic Regression(LR), and Random
Forest(RF). In our experiments. we use the implementations
of these classifiers in scikit-learn, a free software machine
learning library for the Python programming language [28].

Dummy Classifiers. The dummy classifiers are used as
the baseline classifiers in this experiment. A dummy random
classifier is that all prediction classes are randomly guessed,
which can also achieve a certain prediction accuracy. Another
two dummy classifiers are the dummy recent classifier for
predicting all bug introduced in recent version class, and
the dummy major classifier for predicting all bug reports
introduced in the major class of train set. Figure 3 presents
an example of dummy recent and dummy major classifiers
at CXF 25% cutoff point. For the dummy recent classifier, it
predict all the test set as LLC<4 because the recent class is
LLC<4. For the major recent classifier, it predict all the test
set as LLC≥4 because the major class of train set is LLC≥4.

417

●●

●

●●
●

●

●

●

●
●●●
●

●

●●
●

●

●●

●

●

●

●
●●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●
●
●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●●

●

●
●

●

●●●
●●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●●●
●

●

●

0.2

0.4

0.6

0.8

Text_NB

Text_SVM
Text_RF

Text_LR

Basic_RF

Dummy_Random

Basic_LR

Dummy_Major

Basic_NB

Basic_SVM

Dummy_Recent

(a) Cutoff=0.25

●

●●

●

●

●●

●
●

●

●

●

●
●
●
●

●
●
●
●●●●●●
●
●
●●●

●
●●

●

●●

●
●●

●

●
●
●●
●●●
●

●
●
●●
●●●
●

●
●

●●●●
●
●
●●●●●●●
●●
●
●
●
●
●●
●
●
●
●
●●
●●

●

●
●
●
●●
●
●

●●

●
●
●
●

●
●●●
●●

●

●

●●

●

●

●

●

●

●●

●
●

●●●●

●●

●●

●

●

●
●
●

●
●●

●●
●

●

●

●

●
●

●
●●●●
●
●●

●●
●
●
●

●
●●

●
●●●

●●

●

●
●

●

●

●●

●●

●
●

●●

●

●
●
●

●●

●

●
●●●
●●

●

●

●

●●
●

●

●

●

●

●
●●

●●

●

●

●●●

●
●

●●

●●

●

●
●

●

●

●●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●
●

●
●●●●

●
●●

●●

●

●
●
●

●

●

●

●

●

●
●●●

0.2

0.4

0.6

0.8

Text_NB

Text_SVM
Text_RF

Text_LR

Basic_RF

Basic_LR

Dummy_Random

Basic_NB

Basic_SVM

Dummy_Major

Dummy_Recent

(b) Cutoff=0.50

●

●
●●
●
●●●
●

●
●
●
●●

●

●

●

●

●

●●
●

●

●●
●
●●
●
●
●

●●

●

●
●●
●
●●
●●

●●
●
●
●

●●
●

●●

●

●

●
●●●
●
●

●●

●●●
●
●
●

●

●●●●

●

●

●
●●
●

●

●
●

●
●
●
●
●
●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●●●

●

●

●

●

●

●●
●●●
●
●●
●

●

●

●

●
●●
●
●●
●
●

●

●
●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●
●●
●

●

●
●
●
●●●

●

●

●

●

●
●
●
●
●

●
●
●
●
●
●●●
●

●

●
●
●

●

●●●

●
●

●

●
●
●
●●●

●

●●
●

●

●

●

●

●

●●
●●
●●
●●
●

●

●

●

●
●●●
●●●●

●

●●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●
●●●
●
●

●●●●●●●
●●●●●●

0.2

0.4

0.6

0.8

Text_NB

Text_SVM
Text_RF

Text_LR

Basic_RF

Basic_LR

Dummy_Random

Basic_NB

Basic_SVM

Dummy_Major

Dummy_Recent

(c) Cutoff=0.75

Fig. 4: The boxplots of Weighted Average F-measure values of all studied combination of features and classifiers. Different
colors represents different ranks (red>yellow>green>blue>purple) calculated from double Scott-Knott Tests.

Combination of Features and Classifiers. Here we
make a brief conclusion of different features and classifiers
mentioned above: there are 11 combinations of features and
classifiers we will use in the following experiment. First, 3
dummy prediction models: Dummy Random for randomly
guess predict class, Dummy Recent for guess all predict class
as recent class, Dummy Major for guess all predict class
as major class. Moreover, using basic metrics as prediction
features, there are 4 basic feature based prediction models:
Basic NB, Basic SVM, Basic LR, Basic RF. Finally, using
textual metrics as prediction features, there are 4 text based
prediction models: Text NB, Text SVM, Text LR, Text RF.

C. Evaluation

F-measure. To evaluate the performance, we use the macro-
average measurement [14], [29]. It is also commonly known
as the metric weighted average F-measure. The F-measure can
be calculated by the Precision and the Recall. For project j,
the F-measure of m-th class Fm,j can be defined as:

Fm,j = 2× precisionm,j × reccallm,j

precisionm,j + reccallm,j
.

Considering the class size, the weighted average F-measure
of project j can be calculated as:

Fj =

∑
m Fm,j ×Mm,j∑

mMm,j
.

where Mm,j is the whole number of bug reports in m-th class
and the m equals to the class number.

Scott-Knott Test. To compare the performance of dummy,
basic feature and text feature bug lifecycle prediction models,
we use the Scott-Knott test [30]. The Scott-Knott test uses
hierarchical cluster analysis to recursively group classification
techniques into statistically distinct ranks. In this paper, we
use weighted F-measure as the performance measure. If two

groups have statistically significant difference of weighted F-
measure, the Scott-Knott will execute again to further divide
the ranks. The test terminates when there is no statistically
distinct groups can be created [30].

Cliffs Delta δ. To quantify the improvement of performance
on our textual feature bug lifecycle prediction model compared
with the baseline models (dummy model and basic feature
model), we introduce Cliff’s delta δ [31]. The improvement
magnitude is usually assessed by the thresholds: |δ| < 0.147
negligible, 0.147 6 |δ| < 0.330 small, 0.330 6 |δ| < 0.474
medium, |δ| > 0.474 large.

IV. PREDICTION RESULT

This section gives the result of our proposed textual feature
based bug lifecycle prediction model comparing with the basic
feature prediction model and dummy prediction model. First,
we do a Scott-Knott test to show the performance of different
prediction models in 3 cutoff points 25%, 50% and 75%.
Moreover, we give the detail table of the result and calculate
the Cliffs delta δ to compare the performance of the best
method (from SK test it is text Naive Bayes method) with
the others in each run of 50 times cross-validation.

Scott-Knott Test Result. To address our prediction result,
Figure 4 presents an overview of our Scott-Knott test ap-
proach in dummy, basic feature and text feature bug lifecycle
prediction models in 3 cutoff points 25%, 50% and 75%.
We performed a double Scott-Knott test [32] to achieve the
goal of generating statistically distinct groups. In the first run,
the Scott-Knott test is run over each project and get a rank
value for each project of 50 times cross-validation runs. In the
second run, we put the Scott-Knott ranks of each project into
another Scott-Knott test to get the final statistically distinct
ranks of different prediction models.

Figure 4 shows that in each cutoff point, our proposed
4 text feature prediction models (Text NB, Text SVM, Tex-
t LR, Text RF) performs better than other baseline models.

418

TABLE II: F-measure means and Effect Sizes for each cutoff point in different projects. Numbers without parentheses are
means and those with parentheses are Cliff’s Delta δ comparative to Text Naive Bayes Method.

Project Dummy SVM LR RF NB
Random Recent Major Basic Text Basic Text Basic Text Basic Text

25%

CXF 0.688(-1.00) 0.063(-1.00) 0.721(-1.00) 0.714(-1.00) 0.735(-1.00) 0.714(-1.00) 0.722(-1.00) 0.714(-1.00) 0.753(-0.95) 0.714(-1.00) 0.779
Flink 0.535(-1.00) 0.199(-1.00) 0.488(-1.00) 0.450(-1.00) 0.626(-0.93) 0.497(-1.00) 0.569(-0.99) 0.544(-1.00) 0.602(-1.00) 0.453(-1.00) 0.674
Flume 0.539(-1.00) 0.499(-1.00) 0.499(-1.00) 0.630(-0.98) 0.655(-0.93) 0.651(-0.97) 0.581(-1.00) 0.615(-1.00) 0.622(-0.99) 0.610(-0.99) 0.722
Groovy 0.560(-1.00) 0.161(-1.00) 0.542(-1.00) 0.542(-1.00) 0.653(-1.00) 0.560(-1.00) 0.648(-1.00) 0.584(-1.00) 0.664(-1.00) 0.558(-1.00) 0.696
Hadoop 0.572(-1.00) 0.147(-1.00) 0.563(-1.00) 0.480(-1.00) 0.644(-0.88) 0.597(-0.99) 0.594(-1.00) 0.624(-0.99) 0.634(-0.97) 0.618(-0.99) 0.693

NiFi 0.690(-1.00) 0.062(-1.00) 0.723(-0.99) 0.635(-1.00) 0.740(-0.88) 0.643(-1.00) 0.723(-0.99) 0.652(-1.00) 0.754(-0.63) 0.635(-1.00) 0.773
OpenJPA 0.626(-1.00) 0.100(-1.00) 0.644(-1.00) 0.527(-1.00) 0.691(-1.00) 0.529(-1.00) 0.656(-1.00) 0.542(-1.00) 0.700(-1.00) 0.533(-1.00) 0.753
PDFBox 0.507(-1.00) 0.272(-1.00) 0.399(-1.00) 0.607(-0.98) 0.625(-0.92) 0.614(-0.97) 0.616(-0.96) 0.597(-1.00) 0.580(-1.00) 0.570(-1.00) 0.650
Tuscany 0.616(-1.00) 0.107(-1.00) 0.631(-1.00) 0.496(-1.00) 0.728(-0.98) 0.541(-1.00) 0.681(-1.00) 0.556(-1.00) 0.723(-0.99) 0.485(-1.00) 0.778
Wicket 0.633(-1.00) 0.095(-1.00) 0.653(-1.00) 0.565(-1.00) 0.675(-0.99) 0.570(-1.00) 0.662(-1.00) 0.585(-1.00) 0.689(-0.97) 0.565(-1.00) 0.722

Ave. 0.597 0.170 0.586 0.565 0.677 0.592 0.645 0.601 0.672 0.574 0.724

50%

CXF 0.542(-1.00) 0.186(-1.00) 0.506(-1.00) 0.490(-1.00) 0.607(-1.00) 0.490(-1.00) 0.578(-1.00) 0.545(-1.00) 0.597(-1.00) 0.491(-1.00) 0.661
Flink 0.523(-1.00) 0.223(-1.00) 0.457(-1.00) 0.452(-1.00) 0.610(-0.91) 0.503(-1.00) 0.566(-0.99) 0.550(-1.00) 0.587(-1.00) 0.455(-1.00) 0.655
Flume 0.672(-1.00) 0.701(-0.99) 0.701(-0.99) 0.673(-1.00) 0.728(-0.90) 0.712(-0.95) 0.702(-0.99) 0.704(-0.98) 0.732(-0.89) 0.705(-0.99) 0.787
Groovy 0.501(-1.00) 0.357(-1.00) 0.357(-1.00) 0.547(-1.00) 0.610(-1.00) 0.586(-1.00) 0.607(-1.00) 0.572(-1.00) 0.574(-1.00) 0.553(-1.00) 0.643
Hadoop 0.507(-1.00) 0.274(-1.00) 0.397(-1.00) 0.585(-0.99) 0.618(-0.84) 0.593(-0.99) 0.595(-0.94) 0.577(-1.00) 0.565(-1.00) 0.580(-1.00) 0.653

NiFi 0.650(-1.00) 0.084(-1.00) 0.675(-0.99) 0.635(-1.00) 0.696(-0.89) 0.641(-1.00) 0.675(-0.99) 0.650(-1.00) 0.709(-0.75) 0.635(-1.00) 0.737
OpenJPA 0.548(-1.00) 0.177(-1.00) 0.519(-1.00) 0.447(-1.00) 0.622(-1.00) 0.544(-1.00) 0.576(-1.00) 0.560(-1.00) 0.617(-1.00) 0.546(-1.00) 0.694
PDFBox 0.501(-1.00) 0.312(-1.00) 0.355(-1.00) 0.628(-0.74) 0.631(-0.84) 0.634(-0.69) 0.628(-0.89) 0.609(-0.98) 0.576(-1.00) 0.572(-1.00) 0.649
Tuscany 0.565(-1.00) 0.156(-1.00) 0.550(-1.00) 0.486(-1.00) 0.699(-0.98) 0.536(-1.00) 0.655(-1.00) 0.552(-1.00) 0.677(-1.00) 0.478(-1.00) 0.747
Wicket 0.504(-1.00) 0.286(-1.00) 0.383(-1.00) 0.428(-1.00) 0.601(-0.99) 0.482(-1.00) 0.590(-1.00) 0.540(-1.00) 0.557(-1.00) 0.442(-1.00) 0.637

Ave. 0.551 0.276 0.490 0.537 0.642 0.572 0.617 0.586 0.619 0.546 0.686

75%

CXF 0.502(-1.00) 0.303(-1.00) 0.365(-1.00) 0.380(-1.00) 0.591(-1.00) 0.424(-1.00) 0.587(-1.00) 0.587(-1.00) 0.550(-1.00) 0.394(-1.00) 0.633
Flink 0.501(-1.00) 0.349(-1.00) 0.350(-1.00) 0.443(-1.00) 0.604(-0.90) 0.498(-1.00) 0.593(-0.93) 0.508(-1.00) 0.549(-1.00) 0.419(-1.00) 0.641
Flume 0.721(-1.00) 0.756(-0.96) 0.756(-0.96) 0.751(-0.96) 0.767(-0.90) 0.760(-0.94) 0.756(-0.96) 0.753(-0.96) 0.775(-0.85) 0.772(-0.90) 0.825
Groovy 0.612(-1.00) 0.624(-1.00) 0.624(-1.00) 0.655(-1.00) 0.648(-1.00) 0.675(-0.98) 0.639(-1.00) 0.683(-0.96) 0.683(-1.00) 0.707(-0.19) 0.710
Hadoop 0.513(-1.00) 0.426(-1.00) 0.426(-1.00) 0.444(-1.00) 0.592(-0.98) 0.497(-1.00) 0.549(-1.00) 0.564(-1.00) 0.562(-1.00) 0.515(-1.00) 0.652

NiFi 0.554(-1.00) 0.169(-1.00) 0.530(-1.00) 0.457(-1.00) 0.624(-0.99) 0.474(-1.00) 0.563(-1.00) 0.523(-1.00) 0.613(-1.00) 0.457(-1.00) 0.687
OpenJPA 0.530(-1.00) 0.477(-1.00) 0.477(-1.00) 0.530(-1.00) 0.623(-0.99) 0.543(-1.00) 0.586(-1.00) 0.565(-1.00) 0.602(-1.00) 0.579(-1.00) 0.677
PDFBox 0.512(-1.00) 0.423(-1.00) 0.423(-1.00) 0.539(-0.99) 0.623(-0.94) 0.601(-0.99) 0.603(-1.00) 0.595(-0.99) 0.576(-1.00) 0.564(-1.00) 0.652
Tuscany 0.553(-1.00) 0.170(-1.00) 0.529(-1.00) 0.440(-1.00) 0.693(-0.99) 0.482(-1.00) 0.656(-1.00) 0.495(-1.00) 0.668(-1.00) 0.423(-1.00) 0.747
Wicket 0.605(-1.00) 0.615(-1.00) 0.615(-1.00) 0.674(-0.70) 0.640(-1.00) 0.690(-0.29) 0.628(-1.00) 0.686(-0.41) 0.664(-0.95) 0.692(-0.19) 0.697

Ave. 0.560 0.431 0.509 0.531 0.641 0.564 0.616 0.596 0.624 0.552 0.692

Moreover, the text Naive Bayes classifier performs the best
across every cutoff point. In cutoff points 25% and 75%, text
Naive Bayes method has been divided into a single class (the
best class) by double Scott-Knott test. Although in 50% cutoff
point, text Naive Bayes method is not grouped into a class
individually, but it also performs best comparing to the other
methods. Thus, in the following table, we use text Naive Bayes
method as the chosen method in Cliffs delta δ calculation.

Detail Result with Cliffs Delta δ. The detail result of
weighted F-measure is presented in table II, which is calcu-
lated by 50 times 2-fold cross-validation. The first column is
the class cutoff point. The second column is the 10 projects
we used in this experiment. The rest columns present the
performance of the bug lifecycle prediction model in 3 dummy
classifiers and 4 traditional classifiers (text and basic features).

In general, all text feature based classifiers can lead a
weighted F-measure higher than 0.6. The text Naive Bayes
method outperforms the related methods in every project and
average value. For example, for predicting if the bug lifecycle
is greater or less than 25% cutoff point of CXF’s LLC, our
text based Naive Bayes method achieves the weighted F-
measure 0.779, which is higher than the other methods’ results.
In the view of all average results of 3 cutoff points, text
based methods are all better than correlated basic methods
and dummy methods. Although the basic feature methods
perform better than other classifiers with text features in some
projects, they can not exceed the text Naive Bayes method.
In the view of Cliffs delta δ, most of the methods performs
large magnitude (|δ| > 0.474) compared to text Naive Bayes
method, which means the text Naive Bayes method performs

significantly better than other methods in each run of 50 times
cross-validation of each project.

We observe that the text based methods perform better
than basic methods and dummy methods in average of 10
studied projects. The text based Naive Bayes bug lifecycle
prediction model outperforms all other prediction models.

V. THREATS TO VALIDITY

This study provides a text feature based prediction model
to predict the bug lifecycle. However, there are some threats
to validity that should be taken into consideration.

Internal validity. All the ten data sets used in our ex-
periments are well-known open source projects of Apache
Software Foundation in Jira. The performance of bug lifecycle
prediction in commercial projects may be different from the
open source projects. Moreover, the ten open source projects
are all Java projects where other programming language may
have some differences in the character of text feature. We will
study more projects in the future, including the commercial
projects and the projects in other languages.

External validity. Our bug lifecycle prediction model re-
quires that the projects have sufficient historical bug reports
with affect version to train the prediction model. However,
these information could be limited in some projects. Another
external validity of our experiment is that the bug reports
provide is the affect version not the exact bug introducing
time. The commercial data sets may be more accurate in this
bug introducing time compared to the open source projects.

Reliability validity. All the ten projects are publicly avail-
able in Apache Software Foundation of Jira. Any researchers
who intend to replicate this study can get the data sets in

419

Apache Software Foundation of Jira. Moreover, the python
implementation of our experiment will be provided online.

VI. CONCLUSION

Bug lifecycle prediction aims to know how long does a
bug exists in software during it first be introduced and finally
be fixed. It can help developers to efficiently revisit the bug
introducing code. The former work mainly focus on fixing
period or dormant period, and use features obtained from
defect ranking, source code and CVS log to do the analysis.
In this study, we consider the bug lifecycle as a whole and
focus on text features (summary and description of bugs) in
bug reports to construct prediction model.

Our evaluation on 10 well-know Apache Software Founda-
tion projects with 57000+ bugs shows that our model achieves
a good performance in predicting the bug lifecycle. We ex-
amine the results with 3 evaluation measurements: Weighted
F-measure, Scott-Knott test, and Cliffs Delta δ. The Scott-
Knott test and Cliffs Delta δ present that the text Naive Bayes
method outperforms all the rest methods. In general, all text
feature based classifiers can lead a weighted F-measure higher
than 0.6. In the future, we intend to extend our text feature
based model to more projects in bug lifecycle prediction and
introduce more methods to train the prediction model.

ACKNOWLEDGEMENT

This work was supported by the Natural Science Founda-
tion of Jiangsu Province of China (Grant No. BK20140611),
the National Natural Science Foundation of China (Grant
No. 61403187, 61772259, 61472175, 61472178, 61772263,
61472077).

REFERENCES

[1] L. Erlikh, “Leveraging legacy system dollars for e-business,” It Profes-
sional, vol. 2, no. 3, pp. 17–23, 2000.

[2] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller, “Predicting faults
from cached history,” in Proceedings of the 1st Annual India Software
Engineering Conference, 2008, pp. 15–16.

[3] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro Interaction Metrics
for Defect Prediction,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, Szeged, Hungary, 2011, pp. 311–321.

[4] J. Wang, B. Shen, and Y. Chen, “Compressed C4.5 models for software
defect prediction,” in Proceedings of 12th International Conference on
Quality Software, 2012, pp. 13–16.

[5] W. Abdelmoez, M. Kholief, and F. M. Elsalmy, “Bug fix-time prediction
model using naive bayes classifier,” in International Conference on
Computer Theory and Applications, 2012, pp. 167–172.

[6] Y. Liu, Y. Li, J. Guo, Y. Zhou, and B. Xu, “Connecting software metrics
across versions to predict defects,” in 25th IEEE International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
2018, pp. 232–243.

[7] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Using developer
information as a factor for fault prediction,” in Third International
Workshop on Predictor Models in Software Engineering, 2007, pp. 8–8.

[8] V. S. Sinha, S. Sinha, and S. Rao, “Buginnings: identifying the origins
of a bug,” in India Software Engineering Conference, 2010, pp. 3–12.

[9] T. H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An empirical
study of dormant bugs,” in Working Conference on Mining Software
Repositories, 2014, pp. 82–91.

[10] R. K. Saha, S. Khurshid, and D. E. Perry, “An empirical study of long
lived bugs,” in Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering, 2014, pp. 144–
153.

[11] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: Can
we do better?” in Working Conference on Mining Software Repositories,
2011, pp. 207–210.

[12] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study
on factors impacting bug fixing time,” in 19th Working Conference on
Reverse Engineering, 2012, pp. 225–234.

[13] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software defect
association mining and defect correction effort prediction,” IEEE Trans-
actions on Software Engineering, vol. 32, no. 2, pp. 69–82, 2006.

[14] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time:
An empirical study of commercial software projects,” in International
Conference on Software Engineering, 2013, pp. 1042–1051.

[15] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge
University Press, 2012.

[16] D. A. D. Costa, S. Mcintosh, W. Shang, U. Kulesza, R. Coelho,
and A. Hassan, “A framework for evaluating the results of the szz
approach for identifying bug-introducing changes,” IEEE Transactions
on Software Engineering, vol. 43, no. 7, pp. 641–657, 2017.

[17] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
ghtorrent: Github data on demand,” in Working Conference on Mining
Software Repositories, 2014, pp. 384–387.

[18] T. Zimmermann and A. Zeller, “When do changes induce fixes?” in
International Workshop on Mining Software Repositories, 2005, pp. 1–
5.

[19] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead, “Automatic
identification of bug-introducing changes,” in IEEE/ACM International
Conference on Automated Software Engineering, 2006, pp. 81–90.

[20] R. Wu, H. Zhang, S. Kim, and S. C. Cheung, “Relink: recovering links
between bugs and changes,” in ACM Sigsoft International Symposium
on the Foundations of Software Engineering, 2011, pp. 15–25.

[21] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes,” in
ACM Sigsoft International Symposium on the Foundations of Software
Engineering, 2012, pp. 1–11.

[22] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in International Workshop on Mining Software
Repositories, 2007, pp. 1–1.

[23] U. Raja, “All complaints are not created equal: text analysis of open
source software defect reports,” Empirical Software Engineering, vol. 18,
no. 1, pp. 117–138, 2012.

[24] A. Said, M. Borg, and D. Pfahl, “Using text clustering to predict defect
resolution time: a conceptual replication and an evaluation of prediction
accuracy,” Empirical Software Engineering, vol. 21, no. 4, pp. 1437–
1475, 2016.

[25] R. Kikas, M. Dumas, and D. Pfahl, “Using dynamic and contextual
features to predict issue lifetime in github projects,” in Mining Software
Repositories, 2016, pp. 291–302.

[26] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in International Workshop on Recommendation Systems for Software
Engineering, 2010, pp. 52–56.

[27] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for bugs in
large open source projects,” in International Conference on Predictive
MODELS in Software Engineering, 2011, pp. 1–8.

[28] F. Pedregosa, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas, “Scikit-learn:
Machine learning in python,” Journal of Machine Learning Research,
vol. 12, no. 10, pp. 2825–2830, 2012.

[29] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques (Third Edition). Morgan Kaufmann
Publishers Inc., 2011.

[30] E. Jelihovschi, J. Faria, and I. Allaman, “Scottknott: a package for
performing the scott-knott clustering algorithm in r,” Tema, vol. 15, no. 1,
pp. 3–17, 2014.

[31] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine,
“Exploring methods for evaluating group differences on the nsse and
other surveys: Are the t-test and cohen’s d indices the most appropriate
choices?” in Annual meeting of the Southern Association for Institutional
Research, 2006, pp. 1–24.

[32] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of
classification techniques on the performance of defect prediction mod-
els,” in Proceedings of the 37th International Conference on Software
Engineering-Volume 1, 2015, pp. 789–800.

420

Bayesian Logistic Regression for software defect prediction
Jinu M Sunil

BITS Pilani Hyderabad Campus
Hyderabad, India

f20130423@hyderabad.bits-pilani.ac.in

Lov Kumar
BITS Pilani Hyderabad Campus

Hyderabad, India
lovkumar@hyderabad.bits-pilani.ac.in

N L Bhanu Murthy
BITS Pilani Hyderabad Campus

Hyderabad, India
bhanu@hyderabad.bits-pilani.ac.in

Abstract—Timely identification of bugs plays an important role in
delivering quality software. Defect prediction models help to detect or
rank the defect prone files so that the project management team can
allocate resources diligently or may seek help from external sources to
enable rigorous quality assurance activities on defect prone files. Though
defect prediction models have been built using several machine learning
algorithms, Bayesian approach of these models is not explored. We pro-
pose Bayesian logistic regression with non-informative and informative
priors to build defect prediction models. We seek to study if there are any
advantages of using Bayesian logistic regression over logistic regression
and the role of priors in the performance of Bayesian logistic regression.
A comparative study of the performance of Bayesian logistic regression
with other widely known classifies is also presented.

Index Terms—Bayesian regression, Informative priors

I. INTRODUCTION

Delivering quality software is one of the most important goals of
any IT vendor to survive in the highly competitive market. Bugs1 or
defects surfaced during any time in the evolution of a software, espe-
cially in the post-production phase, will be detrimental to the software
quality. In practice, defects get uncovered during post-production
phase in spite of expending good number of man hours for quality
assurance activities like different kinds of testing and code reviews.
Researchers and practitioners proposed the methodologies to curtail
these defects. Software Defect Prediction is one such technique to
predict defects, preferably before rolling to production environment,
where in the deeper assurance activities like code reviews and testing
by Subject Matter Experts (SMEs) can be performed on these defect
prone files. The defect prediction models have been developed using
machine learning algorithms like logistic regression, Naive Bayes
classifier and Random forest etc.
Logistic Regression is a probabilistic discriminative model where in
probabilities of positive and negative class are modeled by sigmoid
function.

P (Y = 1|w, x) = 1/(1 + e−w
T x) (1)

It gives the probability that a class/file is defective, given the feature
vector of a file x and parameter vector w. Suppose there are n obser-
vations where the ith observation is a tuple (xi, yi) , xi is a m dimen-
sional feature vector and yi is boolean valued representing wether the
file is defective (1) or not (0). D = {(x1, y1), (x2, y2)..(xn, yn)} is
the set of all training instances.
The following equality is obtained from bayes theorem.

P (w|D) = P (D|w)P (w)/P (D) (2)

where P (w|D) is posterior distribution, P (D|w) is likelihood and
P (w) is the prior distribution.
P (D) is a constant for a given D and hence

P (w|D) ∝ P (D|w)P (w) (3)

1bug and defect are used synonymously throughout this paper

In logistic regression, it is assumed that w follows uniform
distribution and hence any tuple in Rm+1 (m is the size of input
vector) is a candidate solution and hence

P (w|D) ∝ P (D|w) (4)

y′is are conditonally independent hence we can write equation 4 as:

P (w|D) ∝
n∏
1

P (yi|xi, w) (5)

Let pi = P (yi = 1|xi, w) = 1

1+e−wT xi

∴ P (w|D) ∝
n∏
1

P (yi|xi, w) =
n∏
1

pyii ∗ (1− pi)
1−yi (6)

The optimal w for logistic regression is determined as the maxi-
mum likelihood estimator (MLE) of the given training data.

wMLE = argmaxw(

n∏
1

pyii ∗ (1− pi)
1−yi) (7)

There are some drawbacks of logistic regression when applied to
defect prediction problem and they are listed below.

1) MLE’s are asymptotically unbiased. i.e E(wmle) ≈ wtrue as
n (number of instances/samples) becomes very large. It has
been shown that regression coefficients are biased for small
and moderate sample sizes [1]. Long et al. [2] offers a rough
heuristic about appropriate sample sizes: it is risky to use MLE
with samples smaller than 100, while samples larger than 600
seem adequate. For 44 datasets that are used in our study, the
average number of files in a project are 400.

2) Logistic regression works well when both non-event (no
bug) and event (bug) occur in the same ratio and the bias
is substantial for small and medium samples with skewed
ratio [3]. For defect prediction problem, generally the files
are skewed towards non-event (non-defective) and the number
of files in each of the project considered in our study is not high.

Logistic regression as stated above assumes uniform priors, but
in practice priors can follow any distribution. In Bayesian Logistic
regression a prior for w is ascertained from previous data or expert
opnion. Consider the case where the prior is a normal distribution
w ≈ N(µ,C) with mean µ and covariance C. The posterior
distribution is.

P (w|D) ∝ P (D|w) ∗ P (w) (8)

P (w|D) ∝ (

n∏
1

pyii ∗ (1−pi)
1−yi)∗

exp(−(w−u)TC−1(w−u)
2

)√
det (2πC)

(9)

It has been shown that Bayesian Logistic Regression improvises
prediction accuracy of learning models [4], [5]. Though there are

DOI reference number: 10.18293/SEKE2018-181

421

several learning models developed to predict defects, the Bayesian
perspective of the models have not been studied so far. We study
Bayesian Logistic Regression and attempt to answer the following
research questions:

• RQ1: Is there any significant difference between Logistic Re-
gression and Bayesian Logistic Regression?

• RQ2: Study informative and non-informative priors of w and test
whether there is any significant difference between the posterior
probabilities of the classifiers developed using these different
priors?

• RQ3: Is there significant difference between the Bayesian Lo-
gistic Regression and other widely used classifiers for defect
prediction problem?

The rest of the paper is organized as follows. In section II related
work is discussed. The metrics and datasets used in this study
are discussed in section III. A description of the bayesian logistic
regression model is given in section IV. The experimental setup
is described in section V. The results are discussed in section VI.
Threats to validity of the experiments are discussed in section VII.
Conclusions are presented at the end.

II. RELATED WORK

Bug Prediction models have been built using various metrics of
a software. Chidamber and Kermer (CK), Halstead metrics are well
known metrics used in defect prediction. However it has been shown
that lines of code (LOC) have strong correlation with proneness to
defect. Zhang et al. [6] concluded that LOC increases bug proneness.
CK metrics have been useful in detecting bugs ([7], [8]). Thomas et
al. [9] explored the relationship between code complexity and defect
proneness and arrived at the conclusion that complexity metrics are
very useful in defect prediction and also code bases that undergo
a lot of evolution are prone to defects. These metrics are used in
classification algorithms.
Bug detection algorithms are well studied. L. Guo et al. [10] applied
random forests to predict fault prone modules and found that random
forests were better when applied to large datasets. Neural networks
for bug prediction was explored by Rajni Jindal et al. [11] they
used ROC to interpret the results obtained. Czibula et al. [12] used
unsupervised algorithms for bug prediction and their rule mining
based approach resulted in as good results as other algorithms.
Relevant to this study Rakesh et al. [13] experimented with a bayesian
approach to predict number of bugs in a software and showed that
incorporating prior information gave beter results.
A study of benchmarking various algorithms was done by Stefan et
al. [14]. They conducted a freidman neymni with AUC-ROC as their
measure and showed that random forest outperformed all other mod-
els but not significantly. Also around 17 models including random
forest, logistic regression, naive bayes and multi layer perceptron
were shown to have no significant difference.

III. METRICS AND DATASET

TABLE II gives a description of software projects considered.
Only software projects with three or more versions are considered.
The data of these 12 projects is extracted from the Promise repository
[15]. The average number of classes over all projects and versions
is 400. The metrics considered for this study are given in TABLE
I. Jurecko and Madeyski [21] give a detailed description of all the
metrics.

TABLE I
METRICS

Author Metric
Chidamber and Kemerer [16] Weighted methods per class (WMC)

Depth of Inheritance Tree (DIT)
Depth of Inheritance Tree (DIT)
Coupling between object classes (CBO)
Response for a Class (RFC)
Lack of cohesion in methods (LCOM)

Bansiy and Davis [17] Number of Public Methods (NPM)
Data Access Metric (DAM)
Measure of Aggregation (MOA)
Measure of Functional Abstraction (MFA)
Cohesion Among Methods of Class (CAM)

Tang et al. [18] Inheritance Coupling (IC)
Coupling Between Methods (CBM)
Average Method Complexity (AMC)

Martin [19] Afferent couplings (Ca)
Efferent couplings (Ce)

McCabe [20] cyclomatic complexity (CC)

IV. METHODOLOGY

As discussed in the first section the prior p(w) need not necessarily
be a unifrom distribution but can be any distribution. There are two
kinds of priors informative and non-informative priors. Informative
priors can be derived from historical data or domain expertise whereas
Non-informative priors do not rely on previous data but can be
approximated by making use of training data.
In this study we make use of a Non-informative prior−Jeffery
prior and also propose couple of informative priors that follow a
multivariate normal distribution.

A. Choice of Priors

• Bayes-1 prior - This is an informative prior. The prior of
the current version is the posterior of the previous version of
the same software. For example consider the project ivy as
described in table II. Ivy has 3 versions, initially assume an
isotropic normal distribution w ≈ N(0, α−1I) as prior, and
obtain posterior with ivy 1.1 as the data

p(w|Divy1.1) = p(Divy1.1|w) ∗N(0, α−1I)

. A normal approximation of the above posterior distribution
will be used as prior for ivy 1.4

p(w|Divy1.4) = p(Divy1.4|w) ∗ p(w|Divy1.1)

.
• Bayes-2 prior - This is also an informative prior and is best

explained with an example. Consider again ivy described in
TABLE II,

1) Choose 66% instances of ivy 1.1 randomly let it be
Divy1.1 = 66% of ivy1.1. Train a logistic regres-
sion with this data, the resulting parameters are w1 =
argmaxw(P (Divy1.1|w))

2) Choose 66% instances of ivy 1.4 randomly let it be
Divy1.4 = 66% of ivy1.4. Train a logistic regres-
sion with this data, the resulting parameters are w2 =
argmaxw(P (Divy1.4|w))

422

TABLE II
12 PROMISE PROJECTS

Project Version No. of clases % of Bugs
Ant 1.3 125 16

1.4 178 22.4
1.5 293 10.9
1.6 351 26.2
1.7 745 22.2

Camel 1 339 3.8
1.2 608 35.5
1.4 872 16.6
1.6 965 19.48

Ivy 1.1 111 56.7
1.4 241 6.6
2 352 11.3

Jedit 3.2 272 33.09
4 306 24.53
4.1 312 25.31
4.2 367 13.08
4.3 492 2.23

Log-4j 1 135 25.18
1.1 109 33.94
1.2 205 92.19

Lucene 2 195 46.67
2.2 247 58.3
2.4 340 59.7

Poi 1.5 237 59.49
2 314 11.78
2.5 385 64.41
3 442 63.57

Synapse 1 157 10.19
1.1 222 27.03
1.2 256 33.59

Velocity 1.4 196 77
1.5 214 66.35
1.6 229 34.06

Xalan 2.4 723 15.21
2.5 803 48.19
2.6 885 46.44
2.7 909 98.79

Xerces 1.2 440 16.14
1.3 453 15.23
1.4 588 74.32

PC 1 735 8.3
2 1493 1.2
3 1099 12.5
4 1379 12.9

3) Repeat the above 2 steps around 30 times, giving 60
parameter vectors−30 from ivy 1.1 and 30 from ivy 1.4.

4) Find the best fit multivariate normal for these 60 points
5) Use this multivariate normal as prior for ivy 2.0

• Jefferey Prior-The jefferey prior is a ’non-informative’ prior
(uniform priors are also non-informative). p(w) ∝

√
det(I(w)),

where I(w) is the fisher information matrix. The fisher infor-
mation matrix in the case of logistic regression is
Ii,j(w) = −E[δ

2ln(Likelihood)
δwiδwj

] (wi and wj are the ith, jth

component of vector w. E[] is expected value). The posterior
distribution becomes.

P (w|D) ∝ P (D|w)
√
det(I(w)) (10)

It was shown by Firth [22] that this choice of prior reduces first
order bias in the case of logistic regression.

B. Sampling from the Posterior

In logistic regression we get a point estimate wMLE and in the
bayesian approach a set of samples are drawn from the posterior

P (w|D). For any testing example, average of all probabilities would
be taken into consideration to classify the testing instance. Suppose
k samples are drawn w1, w2...wk from P (w|D) then the probability
that a file with attribute x is defective would be.

P (y = 1|x,D) =
1

k

k∑
1

1/(1 + e−w
T
i x) (11)

We discuss below the two ways of drawing samples from posterior
p(w|D).
Laplace Approximation: The posterior is approximated to a
multivariate normal distribution with mean wmax and covariance
matrix K where wmax = argmaxw(p(w|D)) and K = H−1, H
is the hessian of p(w|D) computed at wmax. Samples are drawn
from this approximation. Laplace approximation works well when
the pdf is unimodal otherwise it might be a bad approximation [23]
and hence we have not used it in this study.

MCMC: The other way of drawing samples from the posterior
is the famous Markov Chain Monte Carlo (MCMC) which involves
constructing a markov chain with desired distribution as its
equilibrium distribution. In this study we use gibbs sampling which
is a MCMC method, to draw samples from the posterior.

Among these prior choices using jeffrey priors did not improve
performance the other two priors improved performance over simple
logistic regression significantly.

V. EXPERIMENTS

A. Cost Model

Normalized Expected Misclassification Cost (NEMC) is used to
compare performance of the models. Type 1 error is predicting a non-
defective file as defective and Type 2 error is predicting a defective
file as non-defective. For the defect prediction problem it is evident
that type 2 errors are costlier than type 1 errors. The cost ratio β is
defined as.

β =
cost of Type 2 error

cost of Type 1 error
(12)

False Positive Rate and False Negative Rate are defined as.

E1 =
FP

TN + FP
(13)

E2 =
FN

TP + FN
(14)

where FP-false positive, TN-true negative, FN-false negative and TP-
true positive

NEMC = β ∗ (E2 ∗ Pdf) + (E1 ∗ Pndf) (15)

Where Pdf and Pndf are prior probabilities of defective and non-
defective files in the dataset respectively. We refer the reader to
Khoshgoftaar et al. [24] for a detailed derivation of NEMC.

B. Implementaion settings

To answer RQ1 and RQ2, we implement logistic regression,
Bayesian logistic regression with Bayes-1 Prior, Bayes-2 Prior and
Jeffery Prior. We also implement Random Forest, Nave Bayes and
SVM for comparative study of these classifiers with Bayesian logistic
regression to answer RQ3. All models are implemented in R-
programming [25] and details are discussed below:
• Bayes 1 and Bayes 2: Logit function of the Bayes Logit

package [26] is used to implement both the bayesian logistic
regression methods. The function requires Data, prior mean and

423

prior variance as input. Logit function returns samples from the
posterior − 1000 points were sampled after a burn-in of 1000.

• Jeffrey Prior (JP): logistf [27] package is used to implement
logistic regression with jeffrey prior. The package computes the
fisher matrix and also retuns a set of samples from the posterior.

• Random forest (RF): randomforest [28] function is used to
implement random forest, the ntree variable was set to 100 after
experimentation.

• Naive bayes (NB): naiveBayes [28] function is used to imple-
ment naive bayes algorithm, this function requires data to be
un-normalized.

• Logistic regression (LR): glmnet [29] is used to implement
logistic regression algorithm, the regularization parameter was
computed using cross-validation.

• svm, l-svm: svm [28] function is used to implement both the
svm’s. l-svm kernel is linear whereas the kernel for svm is radial.

C. Training and Testing

Each model is trained on 66% of the last version of each of the
software projects mentioned in TABLE II and tested on the remaining
34% of the same project. For the bayesian methods the priors come
from the previous version of a project. Consider the ivy project for
elaboration of the training-testing process.

• Train RF, LR, NB, svm and l-svm on 66% of ivy 2.0 (last version
of ivy)

• Train JP, Bayes 1 and Bayes 2 on 66% of ivy 2.0 and the priors
are approximated from ivy 1.1 and ivy 1.4.

• Test all the models on the remaining 34% of ivy 2.0, Compute
NEMC on the testing data of ivy 2.0 for all models.

NEMC is used to compare performance of classifiers as discussed
in the previous section. NEMC for each model is averaged over
several runs (R). For example consider random forest (RF) and ivy
2.0

for i in 1→ R do
Dtrain = 66% of ivy2.0
Dtest = ivy2.0 −Dtrain
train RF on Dtrain
compute NEMC for RF over Dtest, let it be npi

end for
avg NEMC for RF = npRF =

∑R
1 npi
R

The above algorithm is used to compute average NEMC for all 8
models.

D. Statistical Tests for comparing classifiers

Classifiers are compared based on average NEMC and statistical
tests used in our study are discussed below:

• Two sample test − Wilcoxon signed rank test and rank test
In both cases the null hypothesis is

H0 : The two models have the same performance

and the alternative

Ha : The two models have different performance

H0 is rejected if pvalue < 0.05. For example, consider TABLE
III to compare Bayes 2 and Logistic Regression (LR) at β = 5.
Here two samples are NEMC values of Bayes-2 (column 2) and
LR (column 3)

• K sample test − Friedman test
Here the null hypothesis is

H0 : all classifiers perform alike

and the alternative

H1 : atleast 2 classifiers differ in performance

Friedman test assigns a mean rank to each classifier. And if the
null hypothesis is rejected a Nemenyi test is used to compare
all classifiers. The mean rank of two classifiers have to differ by
a critical difference (CD) for them to be considered significantly
different.

CD = qa;∞;L

√
L(L+ 1)

12K
(16)

where L is the number of classifiers and K is the number of
projects.

VI. RESULTS AND DISCUSSION

Type 2 error is much costlier than Type 1 Error for defect prediction
problem and the ratio of two costs (β) is an important parameter in
the performance measure NEMC. The cost ratio (β) varies with the
type of project and organization. We consider the cost ratio to be 5,
10, 20, 40 and conduct experiments to answer RQ1 through RQ3.
For each of the project and cost ratio, learning models are developed
using logistic regression and Bayesian logistic regression with Bayes-
1 Prior, Bayes-2 Prior and Jeffery prior. The average NEMC over
1000 runs for each of the project are tabulated in Table III, IV, V and
VI respectively. Wilcoxon signed rank test and rank test is performed
to check whether there is any significant difference between logistic
regression and Bayesian logistic regression (RQ1).
For Bayesian logistic regression with Bayes-1 prior and Bayes-2
prior, the null hypothesis for Wilcoxon signed rank test (WSR) and
rank test (RT) is rejected as pvalues are considerably less than 0.05.
Hence the Bayesian logistic regression with informative priors is
significantly better than logistic regression. The pvalues for different
values of β are tabulated in Table VIII. The average number of
data points, 400 for our study, is low and could lead to biased
estimates and this might be one reason for lower performance of
logistic regression. Also, the imbalance of defective files and non-
defective files could be another reason.
However it is found out that there is no significant difference between
the logistic regression and Bayesian logistic regression with Jeffery
prior. Jeffery prior is non-informative prior like uniform prior and it
is not generated from historical data and this could be one of the
reasons for downplay of Bayesian logistic regression with Jeffery
prior. Supporting the argument, it is also observed that there is a
significant difference between the performances of Bayesian logistic
regression with informative priors and that of non-informative priors
(RQ2).
After observing significantly better performance of Bayesian Logistic
regression (with informative priors) as compared to logistic regres-
sion, the obvious next step is to rank its performance with other
widely used classifiers like Random Forest, Nave Bayes, SVM etc
(RQ3). We have not considered Bayesian logistic regression with Jef-
fery prior in this comparative study as it is not significantly different
from Logistic Regression (LR). We have conducted Freedman test
to check whether there is any significant difference between these
classifiers - Bayes 1, Bayes 2, RF, LR, NB, L-SVM, SVM. It is
observed that there is significant difference between the performances
of these classifiers. Neymni test has been conducted to rank these
classifiers and the results are reported in Table VII. Random Forest

424

is ranked higher than all classifiers and this result is in tune with
other comparative studies [14], [30], [31]. The random forest (RF)
is an ensemble classifier and for reasons mentioned in [14], it ranks
higher than other classifiers. Bayesian logistic regression with Bayes-
2 prior and Bayes-1 prior rank 2nd and 3rd respectively but with no
significant difference from Random Forest (RF).

TABLE III
NORMALIZED PENALTY AT β = 5

β = 5 Bayes1 Bayes2 LR L-SVM NB RF SVM
POI 0.6505 0.7140 0.8952 0.7919 1.9743 0.597 0.6954
ANT 0.7197 0.6946 0.8072 0.7737 0.609 0.6569 0.8243

CAMEL 0.9143 0.8947 0.9551 0.9962 0.8192 0.8540 0.9916
XALAN 0.0268 0.0360 0.0560 0.0114 0.9149 0.0102 0.0110
JEDIT 0.1403 0.1423 0.1525 0.1308 0.2900 0.1301 0.1276

PC 0.0050 0.0047 0.0055 0.0057 0.0056 0.0058 0.0070
IVY 0.7132 0.7169 0.7107 0.7310 0.6004 0.7160 0.8256

LOG4J 0.2809 0.4614 0.5059 0.1459 2.3786 0.0971 0.0732
LUCENE 0.9301 0.7724 1.1920 1.0087 1.8144 0.7732 0.9008

SYANAPSE 0.9720 0.9738 1.1104 1.0479 0.9182 0.812 1.0251
VELOCITY 0.9461 0.9618 1.1267 1.0334 1.2760 0.8941 1.2530

XERCES 0.3294 0.3415 0.5492 0.3436 1.5594 0.1671 0.4893

TABLE IV
NORMALIZED PENALTY AT β = 10

β = 10 Bayes1 Bayes2 LR L-SVM NB RF SVM
POI 1.1383 1.3174 1.6982 1.4682 3.9051 1.0939 1.2691
ANT 1.3936 1.3215 1.5855 1.5138 1.12 1.2534 1.6114

CAMEL 1.8034 1.7376 1.8962 1.9867 1.5753 1.6650 1.9760
XALAN 0.0451 0.0654 0.1027 0.0118 1.8270 0.0151 0.011
JEDIT 0.2590 0.2625 0.2732 0.2553 0.3729 0.2532 0.2551

PC 0.0099 0.0093 0.0110 0.0114 0.0111 0.0116 0.0140
IVY 1.3894 1.3707 1.3932 1.4399 1.1048 1.4087 1.6490

LOG4J 0.4954 0.8631 0.9555 0.2199 4.7415 0.1307 0.0732
LUCENE 1.6974 1.3707 2.2785 1.8765 3.5797 1.3730 1.6320

SYANAPSE 1.8489 1.8511 2.1542 2.0187 1.7318 1.5253 1.9739
VELOCITY 1.7829 1.8181 2.1713 1.9712 2.4785 1.6755 2.4385

XERCES 0.6008 0.6251 1.0521 0.6393 3.0898 0.2866 0.9008

TABLE V
NORMALIZED PENALTY AT β = 20

β = 20 Bayes1 Bayes2 LR L-SVM NB RF SVM
POI 2.1137 2.5242 3.3042 2.8209 7.7667 2.0876 2.4164
ANT 2.7414 2.5753 3.1420 2.9941 2.1419 2.4464 3.1856

CAMEL 3.5816 3.4233 3.7783 3.9676 3.0873 3.2871 3.9448
XALAN 0.0819 0.1243 0.1963 0.0127 3.6511 0.0250 0.011
JEDIT 0.4964 0.5028 0.5146 0.5043 0.5388 0.4994 0.5102

PC 0.0197 0.0186 0.0219 0.0229 0.0220 0.0231 0.0281
IVY 2.7418 2.6782 2.7581 2.8575 2.1136 2.7941 3.2958

LOG4J 0.9246 1.6665 1.8548 0.3678 9.4673 0.1981 0.0732
LUCENE 3.2318 2.5673 4.4516 3.6120 7.1101 2.5724 3.0943

SYANAPSE 3.6026 3.6058 4.2419 3.9603 3.3592 2.9517 3.8717
VELOCITY 3.4565 3.5309 4.2605 3.8468 4.8836 3.2383 4.8097

XERCES 1.1436 1.1924 2.0578 1.2307 6.1507 0.5256 1.7239

VII. THREATS TO VALIDITY

The various threats to validity that may impact the analysis of
the proposed approach, the experimental study and conclusions are
presented here.

A. Internal Validity

NEMC as performance measure has been adopted by previous
studies. Performance measures of similar kind which give more
weightage to one kind of error is common in defect prediction [30],

TABLE VI
NORMALIZED PENALTY AT β = 40

β = 40 Bayes1 Bayes2 LR L-SVM NB RF SVM
POI 4.0646 4.9378 6.5161 5.5262 15.4899 4.0750 4.7109
ANT 5.4371 5.0829 6.2550 5.9547 4.1858 4.8324 6.3339

CAMEL 7.1380 6.7948 7.5424 7.9295 6.1114 6.5313 7.8823
XALAN 0.1553 0.2419 0.3834 0.0143 7.2993 0.0448 0.011
JEDIT 0.9713 0.9835 0.9974 1.0021 0.8706 0.9917 1.0204

PC 0.0394 0.0371 0.0437 0.0457 0.0439 0.0462 0.0561
IVY 5.4465 5.2932 5.4879 5.6929 4.1313 5.5648 6.5895

LOG4J 1.7829 3.2732 3.6534 0.6637 18.9188 0.3327 0.0732
LUCENE 6.3008 4.9606 8.7976 7.0829 14.1711 4.9713 6.0189

SYANAPSE 7.1101 7.1153 8.4172 7.8437 6.6138 5.8047 7.6672
VELOCITY 6.8036 6.9563 8.4389 7.5979 9.6938 6.3639 9.5520

XERCES 2.2292 2.3269 4.0693 2.4136 12.2726 1.0037 3.3701

TABLE VII
FRIEDMAN NEMENYI CD=2.62

β = 5 Mean rank
RF 2.083
Bayes2 3.167
Bayes1 3.500
SVM 4.417
L-SVM 4.667
NB 4.833
LR 5.333
β = 10 Mean rank
RF 2.250
Bayes2 3.167
Bayes1 3.250
SVM 4.417
L-SVM 4.583
NB 4.833
LR 5.500
β = 20 Mean rank
RF 2.333
Bayes2 2.917
Bayes1 3.083
L-SVM 4.667
SVM 4.667
NB 4.833
LR 5.500
β = 40 Mean rank
RF 2.583
Bayes2 2.917
Bayes1 3.083
NB 4.333
L-SVM 4.833
SVM 4.833
LR 5.417

TABLE VIII
WILCOXON SIGNED RANK TEST

(WSR) AND RANK TEST (RT)

β = 5 RT WSR
Bayes2-LR 0.006 0.001
β = 10 RT WSR
Bayes2-LR 0.0004 0.0005
β = 20 RT WSR
Bayes2- LR 0.0004 0.0005
β = 40 RT WSR
Bayes2-LR 0.0003 0.00004

β = 5 RT WSR
Bayes1-LR 0.005 0.001
β = 10 RT WSR
Bayes1-LR 0.0005 0.0005
β = 20 RT WSR
Bayes1- LR 0.0005 0.0005
β = 40 RT WSR
Bayes1-LR 0.0004 0.00004

425

[32]. The choice of the cost factor β was made under the assumption
that a defect uncovered in production is more costly than testing for
bugs in a defect free class. Different choices of cost factor β could
yield different results, it is up to the project team to set a suitable
value for β based on available resources and time constraints.

B. External Validity

The results presented holds good for the 12 Promise projects.
The experiment may lead to different results if another dataset is
used. Further the metrics used are a combination of several metrics
proposed by different authors, these metrics have been adopted in
several defect prediction studies. Different set of metrics could lead
to different results.

VIII. CONCLUSION

In this paper, we have formulated the Bayesian logistic regression
with three different priors for defect prediction problem. We study the
performance of Bayesian approach for logistic regression by making
use of several versions of 12 promise projects. The performance of
Bayesian logistic Regression with informative priors is significantly
better than logistic regression. The performance of Bayesian logistic
regression is very much dependent on the choice of prior. Bayesian
logistic regression with informative priors outperform their counter-
part, Bayesian logistic regression with non-informative prior. The
comparative study of all classifiers reveal that Random Forest ranks
first and Bayesian logistic regression with Bayes-2 prior, Bayesian
logistic regression with Bayes-1 prior ranks second and third as
compared with other widely used classifiers.

REFERENCES

[1] J. Van Houwelingen and S. Le Cessie, “Predictive value of statistical
models,” Statistics in medicine, vol. 9, no. 11, pp. 1303–1325, 1990.

[2] J. Scott Long, “Regression models for categorical and limited dependent
variables,” Advanced quantitative techniques in the social sciences,
vol. 7, 1997.

[3] G. King and L. Zeng, “Logistic regression in rare events data,” Political
analysis, vol. 9, no. 2, pp. 137–163, 2001.

[4] E. M. Schulz, D. Betebenner, and M. Ahn, “Hierarchical logistic
regression in course placement,” Journal of Educational Measurement,
vol. 41, no. 3, pp. 271–286, 2004.

[5] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale bayesian
logistic regression for text categorization,” Technometrics, vol. 49, no. 3,
pp. 291–304, 2007.

[6] A. G. Koru, D. Zhang, K. El Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Transactions on Software Engineering, vol. 35, no. 2, pp. 293–304,
2009.

[7] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics
for object-oriented design complexity: Implications for software defects,”
IEEE Transactions on software engineering, vol. 29, no. 4, pp. 297–310,
2003.

[8] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
software engineering, vol. 22, no. 10, pp. 751–761, 1996.

[9] T. Zimmermann, N. Nagappan, and A. Zeller, “Predicting bugs from
history.,” Software Evolution, vol. 4, no. 1, pp. 69–88, 2008.

[10] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-
proneness by random forests,” in Software Reliability Engineering, 2004.
ISSRE 2004. 15th International Symposium on, pp. 417–428, IEEE,
2004.

[11] R. Jindal, R. Malhotra, and A. Jain, “Software defect prediction using
neural networks,” in Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2014 3rd International Con-
ference on, pp. 1–6, IEEE, 2014.

[12] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction
using relational association rule mining,” Information Sciences, vol. 264,
pp. 260–278, 2014.

[13] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding,
“Analyzing defect inflow distribution and applying bayesian inference
method for software defect prediction in large software projects,” Journal
of Systems and Software, vol. 117, pp. 229–244, 2016.

[14] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, 2008.

[15] “The promise repository of empirical software engineering data,” 2015.
[16] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Transactions on software engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[17] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[18] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on object-
oriented metrics,” in Software Metrics Symposium, 1999. Proceedings.
Sixth International, pp. 242–249, IEEE, 1999.

[19] R. Martin, “Oo design quality metrics,” An analysis of dependencies,
vol. 12, pp. 151–170, 1994.

[20] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[21] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
p. 9, ACM, 2010.

[22] D. Firth, “Bias reduction of maximum likelihood estimates,” Biometrika,
vol. 80, no. 1, pp. 27–38, 1993.

[23] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[24] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of software
quality classification techniques: An empirical case study,” Empirical
Software Engineering, vol. 9, no. 3, pp. 229–257, 2004.

[25] R Core Team, R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2013.

[26] N. G. Polson, J. G. Scott, and J. Windle, “Bayesian inference for logistic
models using polya-gamma latent variables.” Most recent version: Feb.
2013., 2013.

[27] G. Heinze and M. Ploner, logistf: Firth’s Bias-Reduced Logistic Regres-
sion, 2016. R package version 1.22.

[28] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch,
e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien, 2017. R package version
1.6-8.

[29] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” Journal of Statistical
Software, vol. 33, no. 1, pp. 1–22, 2010.

[30] K. Muthukumaran, A. Dasgupta, S. Abhidnya, and L. B. M. Neti, “On
the effectiveness of cost sensitive neural networks for software defect
prediction,” in International Conference on Soft Computing and Pattern
Recognition, pp. 557–570, Springer, 2016.

[31] K. Dejaeger, T. Verbraken, and B. Baesens, “Toward comprehensible
software fault prediction models using bayesian network classifiers,”
IEEE Transactions on Software Engineering, vol. 39, no. 2, pp. 237–257,
2013.

[32] K. Muthukumaran, A. Choudhary, and N. B. Murthy, “Mining github
for novel change metrics to predict buggy files in software systems,”
in Computational Intelligence and Networks (CINE), 2015 International
Conference on, pp. 15–20, IEEE, 2015.

426

Revisting the Impact of Regression Models for
Predicting the Number of Defects

Man Wu1,2, Sizhe Ye4, Chunhua Li1*, Ziyi Ma3, Zhongwang Fu2

1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
2School of Computer Science and Information Engineering, Hubei University, Wuhan, China

 3School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

4State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China
*Corresponding author email: li.chunhua@hust.edu.cn

Abstract— Predicting the number of faults in software

modules can be more helpful instead of predicting the modules

being faulty or non-faulty. Chen et al. (SEKE 397-402, 2015) and

Rathore et al. (Soft Computing 21: 7417-7434, 2017) empirically

investigate the feasibility of some regression algorithms for

predicting the number of defects. The experimental results

showed that the decision tree regression algorithm performed

best in terms of average absolute error (AAE), average relative

error (ARE) and root mean square error (RMSE). However, they

did not consider the imbalanced data distribution problem in

defect datasets and employed improper performance measures

for evaluating the regression models to evaluate the performance

of models for predicting the number of defects. Hence, we revisit

the impact of different regression algorithms for predicting the

number of defects using Fault-Percentile-Average (FPA) as the

performance measure. The experiments on 31 datasets from

PROMISE repository show that the prediction performance of

models for predicting the number of defects built by different

regression algorithms are various, and the gradient boosting

regression algorithm and the Bayesian ridge regression algorithm

can achieve better performance．

Keywords—predicting the number of defects; regression

algorithm; data imbalance; Fault-Percentile-Average;

I. INTRODUCTION
Software defect prediction is one of the most important

software quality assurance techniques. Based on the
investigation of historical metrics, defect prediction aims to
detect the defect proneness of new software modules.
Therefore, defect prediction is often used to help to reasonably
allocate limited development and maintenance resources [1].
So far, many efficient software defect prediction methods using
statistical methods or machine learning techniques have been
proposed [2-4], but they are usually confined to predicting a
given software module being faulty or non-faulty by means of
some binary classification techniques.1

However, predicting the defect-prone of a given software
module does not provide enough logistics to software testing in
practice [5-6]. Some of the faulty software modules may have
comparatively vast quantities of faults compared to other

1 DOI reference number: 10.18293/SEKE2018-068

modules and hence require some additional maintenance
resources to fix them. So, it may result in a waste of limited
maintenance resources if simply predicting the defect-prone of
a given software module and allocating the limited
maintenance resources solely based on faulty and non-faulty
information. If we are able to predict the accurate number of
faults, software testers will pay particular attention to those
software modules that have more number of faults, which
makes testing processes more efficient in the case of limited
development and maintenance resources. Thus, predicting the
number of faults in software modules can be more helpful
instead of predicting the modules being faulty or non-faulty [6].

A. Motivation

A number of prior studies have investigated regression
models on predicting the number of faults. Some researchers
[7-12] have investigated genetic programming, decision tree
regression, and multilayer perceptron in the context of
predicting the number of defect, and found that these models
achieved good performance. Chen et al. [11] performed an
empirical study on predicting the number of faults using six
regression algorithms and found that the prediction model built
with decision tree regression had the highest prediction
accuracy in terms of precision and root mean square error
(RMSE). In another similar study, Rathore et al. [12] presented
an experimental study to evaluate and compare six regression
algorithms for predicting the number of defects. The results
found that decision tree regression, multilayer perceptron, and
linear regression achieved better performance in terms of
average absolute error (AAE) and average relative error (ARE),
measure of completeness, and prediction at level l measures.

However, the software defect datasets are imbalanced. In
other words, the number of defects in the majority of modules
is zero, and the minority of modules have one or more defects.
Using imbalanced defect data to derive a regression model and
then estimate the error value of the resulting learned model can
result in misleading over-optimistic estimates due to over-
specialization of the learning algorithm to the imbalanced
defect data [6]. Suppose that we have trained a regression
model to predict the number of defects in the project Ant 1.3
(see Table I), which contains 124 instances and 33 defects. An
AAE value of, say, 0.264 (=33/124) may make the regression
model seem quite accurate. But, an AAE value of 0.264 may

427

not be acceptable—the regression model could predict the
number of defects of all instances to be zero.

In addition, Yang et al. [13] pointed out that predicting the
precise number of defects of a module is hard to do due to the
lack of good quality data in practice. Actually, for those
existing approaches that tried to predict explicitly the number
of defects in a software module, they used these predicted
numbers to rank the modules anyway, to direct the software
quality assurance team in targeting the most faulty modules
first [14], [15]. Actually, for software defect prediction for the
ranking task, models with higher prediction accuracy (smaller
AAE or ARE) might give a worse ranking. For example,
assuming that there are three software modules M1, M2, and M3,
which have 2, 3, and 4 defects respectively, model A predicts
that M1, M2, and M3 have 2, 1, and 4 defects respectively,
while model B predicts that M1, M2, and M3 have 0, 1, and 2
defects respectively. Although model A has a better prediction
accuracy (according to AAE and ARE), model B gives tester
better ranking of these three software modules and can guide
the assignment of testing resources correctly. Hence, Weyuker
et al. [15] proposed FPA to reflect the effectiveness of the
different prediction models for predicting the number of
defects.

B. Our work

Considering on the issue that the existing studies [11-12]
employed improper performance measures (e.g., RMSE, AAE
and ARE) to evaluate the performance of models for
predicting the number of defects, thus resulting in wrong
conclusion, we revisit the impact of seven regression
algorithms for predicting the number of defects by using FPA
as the performance measure. These seven regression
algorithms are Bayesian Ridge Regression (BRR), Decision
Tree Regression (DTR), Gradient Boosting Regression (GBR),
Linear Regression (LR), Nearest Neighbors Regression (NNR),
Multilayer Perceptron Regression (MPR), and Support Vector
Regression (SVR). The experimental study is performed on 9
software projects collected from the PROMISE repository.
The FPA performances of the seven algorithms are analyzed
by the one-way ANOVA test and the multiple comparison test.
The experimental results show that the performance difference
of seven regression algorithms for predicting the number of
defects are statistically significant, and the model for
predicting the number of defects built by Gradient Boosting
Regression algorithm and Bayesian Ridge Regression
algorithm achieve better performance．

C. Organization

The remainder of this paper is organized as follows. Section
2 presents the related work. Section 3 describes the seven
regression algorithms for predicting the number of defects.
Section 4 introduces the experiment setup. Section 5
demonstrates the experimental results. Finally, Section 6
addresses the conclusion.

II. RELATED WORK
Many researchers have proposed various models for

predicting the module being faulty or non-faulty. Support
vector machine [16-17], neural networks [18], decision trees

[19] and Bayesian methods [20] paved the way for
classification-based methods in the flied of defect prediction.
These methods used software metrics to properly predict
whether a module is defect-prone or not. However, these
methods are confined with predicting a given software module
being faulty or non-faulty.

A number of prior studies have investigated regression
models on predicting the number of software faults. Graves et
al. [21] presented a generalized linear regression based method
for predicting the number of defects by using various change
metrics datasets collected from a large telecommunication
system, and found that modules age, changes made to module
and the age of the changes were significantly correlated with
the defect-prone. Afzal et al. [8] used genetic programming for
modeling software reliability growth to help in deciding project
release time and managing project resources. Rathore et al. [7]
proposed an approach to predict the number of faults in the
software system and developed defect prediction model using
neural network and genetic programming. In the subsequent
study [9], they proposed an approach to predict the number of
faults in the given software system using the Genetic
Programming (GP). The results showed that GP based models
could produce the significant results for the number of faults
prediction. In another paper [10], they explored the capability
of decision tree regression (DTR) for the number of faults
prediction in two different scenarios, intra-release prediction
and inter-releases prediction for the given software system. The
experimental results indicated that intra-project prediction
produced better accuracy.

Chen et al. [11] performed an empirical study on predicting
the number of faults using six regression algorithms and found
that the prediction model built with decision tree regression had
the highest prediction accuracy in terms of precision and
RMSE in most cases. In another similar study, Rathore et al.
[12] presented an experimental study to evaluate and compare
six regression algorithms for the number of faults prediction.
The results found that decision tree regression, genetic
programming, multilayer perceptron, and linear regression
achieved better performance in terms of AAE, ARE, measure
of completeness, and prediction at level l measures in many
cases. However, the two empirical studies employed improper
performance measures (e.g., RMSE, AAE and ARE) to
evaluate the performance of models for predicting the number
of defects, thus resulting in wrong conclusion.

III. REGRESSION ALGORITHMS
Figure 1 shows a typical process of predicting the number

of defects, which can be divided into four stages. In the first
stage, different from labeling a module defective or not for
predicting a given software module being faulty or non-faulty,
the number of defects in software modules is extracted. In the
second stage, the features for each software module are
extracted. Common features include complexity metrics,
changes, or structural dependencies. Therefore, we can
construct a training dataset for predicting the number of defects.
In the third stage, we can build a model for predicting the
number of defects with the help of some regression algorithms.
In the last stage, after extracting the same features from a new

428

software module, we can use the model to predict the number
of defects in the module.

Software
Archives

Instances Metrics Training
Instances

Instance

The number of defects

Regression techiques

(2) Feature
extraction

(3) Building
A prediction model

(4) Prediction&
evaluation

(1) Extracting the
number of defects

Fig. 1. The flow chart of predicting the number of defects

 In this paper, we select seven regression algorithms, i.e.,
Bayesian Ridge Regression (BRR), Decision Tree Regression
(DTR), Gradient Boosting Regression (GBR), Linear
Regression (LR), Nearest Neighbors Regression (NNR),
Multilayer Perceptron Regression (MPR), and Support Vector
Regression (SVR). We implement these regression algorithms
based on the python machine learning library sklearn. Unless
otherwise specified, the default parameter settings for different
regression models used in our experiments are specified by
sklearn. That is, we do not perform additional optimization for
each regression model. The brief introductions of the seven
regression algorithms are described as follows:

 (1) Bayesian Ridge Regression (BRR). It estimates a
probabilistic model of the regression problem by introducing
uninformative priors over the hyper parameters of the model.
The prior for the parameter ω is given by a spherical Gaussian:

𝑝(𝜔|𝜆) = 𝑁(𝜔|0, 𝜆−1𝐼𝑝) (1)

The priors over α and λ are chosen to be gamma
distributions, the conjugate prior for the precision of the
Gaussian. The resulting model is called Bayesian Ridge
Regression, and is similar to the classical Ridge. The
parameters ω, α and λ are estimated jointly during the fit of the
model. The remaining hyperparameters are the parameters of
the gamma priors over α and λ. These are usually chosen to be
non-informative. The parameters are estimated by maximizing
the marginal log likelihood.

(2) Decision Tree Regression (DTR). It predicts the value
of a target variable by learning simple decision trees inferred
from the data features. A decision tree is built top-down from a
root node and uses a splitting criterion to partition the data into
subsets that contain instances with similar values. The attribute
which maximizes the expected error reduction is chosen as the
root node. The process is run recursively on the non-leaf
branches, until all data is processed.

(3) Gradient Boosting Regression (GBR). It produces a
prediction model in the form of an ensemble of weak
prediction models, typically decision trees. It builds the model
in a stage-wise fashion like other boosting methods do. It
allows for the optimization of arbitrary differentiable loss
functions. In each stage a regression tree is fit on the negative
gradient of the given loss function.

(4) Linear Regression (LR). It is a statistical approach for
modeling the linear relationship between a dependent variable
y and one or more independent variables. A linear regression
model can be described according to Eq.(2).

Y=b0+b1 x1+b2 x2+…+ bn xn (2)

where Y is the dependent variable, x1, x2,…,and xn are the
independent variables, b1,b2,…,and bn are the regression
coefficients of the independent variables and b0 is the error
term.

(5) Nearest Neighbors Regression (NNR). It is based on the
k-nearest neighbors algorithm, and the regression value of an
instance is computed based the mean of the labels of its nearest
neighbors. The basic nearest neighbors regression uses uniform
weights: that is, each point in the local neighborhood
contributes uniformly to the classification of a query point.
Under some circumstances, it can be advantageous to weight
points such that nearby points contribute more to the regression
than faraway points.

(6) Multilayer Perceptron Regression (MPR). It consists of
a series of processing elements interconnected through the
connection weights in the form of layers. A multilayer
perceptron regression model can be described according to Eq.
(3) and Eq. (4).

𝑛𝑒𝑡𝑘 = 𝑤1𝑘𝑥1 + 𝑤2𝑘𝑥2 +⋯+ 𝑤𝑛𝑘𝑥𝑛 + 𝑏𝑘 (3)
𝑂𝑘 = 𝑓(𝑛𝑒𝑡𝑘) (4)

where Ok is the dependent variable, x1, x2,…,xn are the
independent variables, w1k,w2k,…,wnk are the weights
associated with each input layer, and function f(.) is a
activation function.

 (7) Support Vector Regression (SVR). It uses the same
principles as the SVM for classification, with only a few minor
differences. The main idea is always the same: to minimize
error, individualizing the hyperplane which maximizes the
margin, keeping in mind that part of the error is tolerated.

Training the original SVR means solving:

minimize1
2
‖𝑤‖2 (5)

subject to{
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝜀
〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀

 (6)

where 𝑥𝑖 is a training sample with target value 𝑦𝑖 . The inner
product plus intercept 〈𝑤, 𝑥𝑖〉 + 𝑏 is the prediction for that
sample, and 𝜀 is a free parameter that serves as a threshold: all
predictions have to be within an 𝜀 range of the true predictions.
Slack variables are usually added into the above to allow for
errors and to allow approximation in the case the above
problem is infeasible.

IV. EXPERIMENT SETUP

A. Data set

In this experiment, we employ 31 available and commonly
used datasets which can be obtained from PROMISE [22].
Table I tabulates the details about the datasets. The 31 datasets
have the same 20 features. For the complete details of the
software features, please refer to [14].

B. Performance measures

Considering k modules listed in increasing order of
predicted defect number as f1, f2, f3 ,…, fk, and assuming that ni
is the actual defect number in the module i, n=n1+n2+…+nk is

429

the total number of defects, and the top predicted modules
should have ∑ 𝑛𝑖

𝑘
𝑖=𝑘−𝑚+1 defects. The proportion of the actual

defects in the top m predicted modules to the whole defects is
1

𝑛
∑ 𝑛𝑖
𝑘
𝑖=𝑘−𝑚+1 . (7)

Then the FPA is define as
 1

𝑘
∑

1

𝑛

𝑘
𝑚=1 ∑ 𝑛𝑖

𝑘
𝑖=𝑘−𝑚+1 . (8)

FPA is actually the average of the proportions of actual
defects in the top modules to the whole defects. A higher FPA
means a better ranking, where the modules with most defects
come first.

TABLE I. DETAILS OF EXPERIMENT DATASET

Project Release #Instance #Defects %Defects Max Avg

Ant

1.3 125 33 16 3 1.65
1.4 178 47 22.5 3 1.18
1.5 293 35 10.9 2 1.09
1.6 351 184 26.2 10 2.00
1.7 745 338 22.3 10 2.04

Camel

1.0 339 14 3.8 2 1.08
1.2 608 522 35.5 28 2.42
1.4 872 335 16.6 17 2.31
1.6 965 500 19.5 28 2.66

Forest 0.7 29 15 17.2 8 3.0
0.8 32 6 6.2 4 3.0

Jedit

3.2 272 382 33.1 45 4.24
4.0 306 226 24.5 23 3.01
4.1 312 217 25.3 17 2.75
4.2 367 106 13.1 10 2.21
4.3 492 12 2.2 2 1.09

Log4j 1.0 135 61 25.2 9 1.79
1.1 109 86 33.9 9 2.32

Prop

1 18471 5293 14.8 37 2.01
2 23014 4096 10.6 27 1.68
3 10274 1640 11.5 11 1.39
4 8718 1362 9.6 22 1.62
5 8516 1930 15.3 19 1.49
6 660 79 10 4 1.2

Synaps
1.0 157 21 10.2 4 1.31
1.1 222 99 27 7 1.65
1.2 256 145 33.6 9 1.69

Xalan 2.4 723 156 15.2 7 1.42
2.5 803 531 48.2 9 1.37

Xerces 1.3 453 193 15.2 30 2.8
1.4 588 1596 74.3 62 3.65

C. Experimental procdure

Tantithamthavorn et al. [23] investigated some model
validation techniques in the domain of defect prediction and
recommended out-of-sample bootstrap validation. Therefore,
we employ out-of-sample bootstrap validation to perform the
experiment. The out-of-sample bootstrap process is made up
of two steps:

(Step 1) A bootstrap sample of size N is randomly drawn
with replacement from an original dataset that is also of size N.

(Step 2) A model is trained using the bootstrap sample and
tested using the rows of the original sample that do not appear
in the bootstrap sample.

We repeat the out-of-sample bootstrap 10 times and the
average out-of-sample performance is reported as the
performance estimate.

D. Reasearch questions

In order to provide the guidance for the choice of various
regression algorithms for predicting the number of defects, we
address the following two research questions.

RQ1：Which regression algorithm can achieve the best
performance for predicting the number of defects among the
seven algorithms?

RQ2：Are the performances of models for predicting the
number of defects built with different regression algorithms
different?

V. EXPERIMENT RESULTS

A. Results for RQ1

The results (in terms of FPA) of the seven regression
algorithms for each dataset are reported in Table II.
Experimental results show that BRR and GBR produce the
higher FPA values on most of the datasets compared to other
considered regression algorithms for predicting the number of
defects. GBR outperforms other regression algorithms on 9
datasets and achieves the highest average FPA value (0.656).
LR, NNR and DTR are the third, fourth and fifth best defect
prediction algorithms in terms of the average FPA value,
respectively, while MPR and SVR produce relatively lower
FPA values compared to other regression algorithms.

TABLE II. FPA VALUES ON 31 DATASETS USING THE SEVEN
REGRESSION ALGORITHMS

Release BRR DTR GBR NNR LR MPR SVR
Ant-1.3 0.708 0.698 0.675 0.639 0.618 0.733 0.680
Ant-1.4 0.551 0.610 0.673 0.590 0.601 0.479 0.551
Ant-1.5 0.742 0.543 0.580 0.656 0.684 0.366 0.440
Ant-1.6 0.721 0.695 0.768 0.721 0.715 0.207 0.449
Ant-1.7 0.811 0.711 0.798 0.771 0.809 0.385 0.475

Camel-1.0 0.608 0.603 0.600 0.597 0.608 0.351 0.608

Camel-1.2 0.645 0.571 0.602 0.574 0.642 0.533 0.570
Camel-1.4 0.691 0.620 0.714 0.652 0.736 0.615 0.453
Camel-1.6 0.704 0.635 0.693 0.486 0.728 0.660 0.513
Forrest-0.7 0.801 0.468 0.718 0.827 0.801 0.641 0.494
Forrest-0.8 0.700 0.800 0.900 0.700 0.700 0.500 0.800
Jedit-3.2 0.846 0.562 0.853 0.789 0.835 0.383 0.503
Jedit-4.0 0.787 0.710 0.803 0.750 0.795 0.723 0.608
Jedit-4.1 0.738 0.619 0.689 0.628 0.738 0.469 0.463
Jedit-4.2 0.787 0.690 0.787 0.743 0.795 0.633 0.716
Jedit-4.3 0.286 0.267 0.267 0.286 0.286 0.955 0.286

Log4j-1.0 0.456 0.715 0.703 0.784 0.457 0.891 0.695
Log4j-1.1 0.735 0.659 0.640 0.642 0.472 0.722 0.547
Prop-1.0 0.588 0.539 0.595 0.555 0.584 0.498 0.392
Prop-2.0 0.542 0.506 0.533 0.497 0.543 0.461 0.447
Prop-3.0 0.488 0.451 0.472 0.466 0.486 0.539 0.426
Prop-4.0 0.631 0.566 0.618 0.597 0.632 0.609 0.508
Prop-5.0 0.552 0.444 0.540 0.508 0.550 0.561 0.430
Prop-6.0 0.588 0.479 0.547 0.567 0.584 0.607 0.501

Synaps-1.0 0.282 0.517 0.562 0.311 0.266 0.271 0.282
Synaps-1.1 0.755 0.753 0.702 0.538 0.740 0.750 0.589
Synaps-1.2 0.648 0.535 0.596 0.650 0.623 0.428 0.567
Xalan-2.4 0.545 0.543 0.541 0.595 0.584 0.537 0.533
Xalan-2.5 0.631 0.597 0.658 0.615 0.616 0.442 0.556
Xerces1-.3 0.769 0.740 0.754 0.762 0.804 0.230 0.442
Xerces-1.4 0.724 0.655 0.752 0.680 0.720 0.689 0.632
Average 0.647 0.597 0.656 0.619 0.637 0.544 0.521

430

Figure 2 shows the box-plot diagrams of FPA measure. X-
axis indicates the regression algorithms under consideration,
and Y-axis indicates the values of FPA measure produced by
the used regression algorithms. The different parts of box-plot
show the minimum, maximum, median, first quartile, and third
quartile of the samples. The line in the middle of the box shows
the median of the samples. SVR and MPR produce the lowest
median value, DTR, LR and NNR produce moderate median
FPA values, whereas BRR and GBR produce the highest
median FPA values. MPR produces the lowest minimum FPA
values, DTR, LR, BRR and SVR produce moderate minimum
FPA values, GBR and NNR produce the highest minimum
FPA values. For maximum value, SVR produces the lowest
FPA values, DTR, NNR, LR and MPR produce moderate FPA
values, and BRR and GBR produce the highest FPA values.
For first quartile value, SVR produces the lowest value, DTR,
NNR, LR and MPR produce moderate values, and BRR and
GBR produce the highest values. For the third quartile, MPR
and SVR produce the lowest value, DTR and NNR produce
moderate values, and BRR, GBR and LR produce the highest
values.

Fig. 2. Box-plot analysis for FPA measure for all the datasets

In total, Table II and Figure 2 illustrate that BRR and GBR
outperform other considered regression algorithms. DTR, NNR
and LR perform moderately, while MPR and SVR perform
relatively poor in compared to other used regression algorithms.
To answer the first question, Bayesian Ridge Regression and
Gradient Boosting Regression algorithms can achieve the best
performance for predicting the number of defects among the
seven algorithms.

B. Results for RQ2

To answer the second question, we carry out one-way
ANOVA test on the seven regression algorithms to examine if
the algorithms are statistically different or not. Analysis of
variance (ANOVA) is a collection of statistical models and
their associated procedures used to analyze the differences
among group means. Since the two-group case can be covered
by a t-test, the main idea of one-way ANOVA is to compare
means of two or more groups by using the F distribution. It is
more conservative than the t-test and performs well in terms of

comparing groups for statistical significance. The null
hypothesis for the one-way ANOVA test is that all the group
population means are the same, while the alternate hypothesis
is that at least one pair of means is different. Table III shows
the one-way ANOVA results.

The first row of the Table III lists five parameters, i.e.,
sums of squares, degrees of freedom, mean square, F and p-
value. Since F=4.59> 3.68, the results are significant at the 5%
significance level. In addition, it is clearly that the p-value
(0.0002) for this test is less than the typical cutoff 0.05. We
would reject the null hypothesis, concluding that there is strong
evidence that at least two regression algorithms are
significantly different from each other.

TABLE III. ANOVA FOR THE DATASETS

In the study, we further performed the multiple comparison
test using Tukey’s honestly significant difference criterion.
Figure 3 shows the multiple comparison result for the seven
regression algorithms. The figure displays graphs with each
group mean represented by a symbol (◦) and 95% confidence
interval as a line around the symbol. There are two situations in
the figure: two means are significantly different, if their
intervals disjoint. On the contrary, two means are not
significantly different, if their intervals overlap. From Figure 3,
we can summarize the following points:

(1) MPR and SVR algorithms have significantly worse
prediction performance than other algorithms.

(2) Although the other five algorithms show similar
performance (no significant difference), BRR and GBR
performs slightly better than DTR, NNR and LR.

Fig. 3. Multiple comparison for seven algorithms

As seen in Table III and Figure 3, we can conclude that the
models built by different regression algorithms for predicting
the number of defects have different performance.

Source Sum Sq. d.f. Mean Sq. F p-value
Approach 0.507 6 0.0845 4.59 0.0002

Error 3.865 210 0.0184
Total 4.37 216

431

C. Threats to Validity

In this subsection, we discuss several validity threats that
may have an impact on the results of our studies. (1) Although
the 31 datasets in our experiment have been widely used in
many software defect prediction studies, we still cannot claim
that our conclusion can be generalized to other datasets. (2) We
only study the seven regression algorithms without additional
optimization for a given dataset. (3) We only employ FPA as
the evaluation measure. Nonetheless, other evaluation
measures such as cost effectiveness graph [24] can also be
considered.

VI. CONCLUSION
The existing studies [11-12] employed improper

performance measures (e.g., RMSE, AAE and ARE) to
evaluate the performance of models for predicting the number
of defects. Therefore, in this paper, we evaluated and compared
the performance of seven regression algorithms (i.e., BRR,
DTR, GBR, LR, NNR, MPR, and SVR) for predicting the
number of defects in given software modules by using FPA as
the performance measure. The experiments were performed on
31 datasets from the PROMISE repository. In addition, the
one-way ANOVA test and the multiple comparison test are
performed to assess the relative performance of the seven
algorithms. The experimental results show that the
performance difference of seven regression algorithms for
predicting the number of defects are statistically significant,
and Gradient Boosting Regression algorithm and Bayesian
Ridge Regression algorithm achieve better performance for
predicting the number of defects．

ACKNOWLEDGMENT
This work is supported by the National Key R&D Program

of China (2016YFB0800402), partially supported by the
National Natural Science Foundation of China under Grant
No.61232004 and the Fundamental Research Funds for the
Central Universities(2016YXMS020).

REFERENCES
[1] F. Rahman, D. Posnett, P. Devanbu , Recalling the imprecision of cross-

project defect prediction, Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering,2012, 61.

[2] X. Yu, M. Wu, Y. Jian, et al, Cross-company defect prediction via semi-
supervised clustering-based data filtering and MSTrA-based transfer
learning, Soft Computing, 2018: 1-12.

[3] X. Yu, J. Liu, W. Peng, et al, Improving Cross-Company Defect
Prediction with Data Filtering, International Journal of Software
Engineering and Knowledge Engineering, 2017, 27(09n10): 1427-1438.

[4] X. Yu, J. Liu, M. Fu, et al, A Multi-Source TrAdaBoost Approach for
Cross-Company Defect Prediction, SEKE, 2016: 237-242.

[5] X. Yu, J. Liu, Z. Yang, et al, The Bayesian Network based program
dependence graph and its application to fault localization, Journal of
Systems and Software, 2017, 134: 44-53.

[6] Yu X, Liu J, Yang Z, et al. Learning from Imbalanced Data for
Predicting the Number of Software Defects, 2017 IEEE 28th
International Symposium on Software Reliability Engineering (ISSRE),
IEEE, 2017: 78-89.

[7] Rathore S S, Kuamr S, Comparative analysis of neural network and
genetic programming for number of software faults prediction, 2015
National Conference on Recent Advances in Electronics & Computer
Engineering (RAECE), 2015: 328-332.

[8] W. Afzal, R. Torkar, R.Feldt, Prediction of fault count data using genetic
programming, Multitopic Conference, 2008. INMIC 2008. IEEE
International. IEEE, 2008: 349-356.

[9] S. S. Rathore, S. Kumar , Predicting number of faults in software system
using genetic programming, Procedia Computer Science, 2015, 62: 303-
311.

[10] S. S. Rathore, S.Kumar, A Decision Tree Regression based Approach
for the Number of Software Faults Prediction, ACM SIGSOFT Software
Engineering Notes, 2016, 41(1): 1-6.

[11] M. Chen, Y. Ma, An empirical study on predicting defect numbers, 28th
International Conference on Software Engineering and Knowledge
Engineering, 2015: 397-402.

[12] S. S. Rathore, S. Kumar, An empirical study of some software fault
prediction techniques for the number of faults prediction, Soft
Computing, 2016: 1-18.

[13] Yang, Xiaoxing, K. Tang, and X. Yao, A learning-to-rank approach to
software defect prediction, IEEE Transactions on Reliability, 2015,
64(1): 234-246.

[14] K. Gao and T. M. Khoshgoftaar, A comprehensive empirical study of
count models for software fault prediction, IEEE Transactions on
Reliability, 2007, 56(2): 223-236.

[15] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, Comparing the
effectiveness of several modeling methods for fault prediction,
Empirical Software Engineering, 2010, 15(3): 277-295.

[16] D. Gray, D. Bowes, N. Davey, et al, Using the support vector machine
as a classification method for software defect prediction with static code
metrics, International Conference on Engineering Applications of Neural
Networks, Springer Berlin Heidelberg, 2009: 223-234.

[17] Z. Yan, X. Chen, P. Guo, Software defect prediction using fuzzy support
vector regression, International Symposium on Neural Networks,
Springer Berlin Heidelberg, 2010: 17-24.

[18] M. M. T. Thwin, T. S.Quah, Application of neural networks for software
quality prediction using object-oriented metrics, Journal of systems and
software, 2005, 76(2): 147-156.

[19] J. Wang, B. Shen, Y.Chen, Compressed C4. 5 models for software
defect prediction, 2012 12th International Conference on Quality
Software. IEEE, 2012: 13-16.

[20] T. Wang, W. Li, Naive bayes software defect prediction model,
Computational Intelligence and Software Engineering (CiSE), 2010
International Conference on IEEE, 2010: 1-4.

[21] T. L. Graves, A. F. Karr, J. S. Marron, et al, Predicting fault incidence
using software change history, IEEE Transactions on software
engineering, 2000, 26(7): 653-661.

[22] G. Boetticher, T. Menzies, T. Ostrand, The PROMISE Repository of
Empirical Software Engineering Data, 2007
<http://promisedata.org/repository>.

[23] C. Tantithamthavorn, S. Mcintosh, A. E. Hassan, et al, An Empirical
Comparison of Model Validation Techniques for Defect Prediction
Models, IEEE Transactions on Software Engineering, 2017, 43(1):1-18.

[24] T. Jiang, L. Tan, S. Kim, Personalized defect prediction, Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. IEEE, 2013.

432

A Gated Hierarchical LSTMs for
Target-based Sentiment Analysis
Xiaofang Zhang†∗, Bin Liang∗, Qian Zhou∗, Hao Wang∗, Baowen Xu†

†State Key Laboratory for Novel Software Technology, Nanjing University Nanjing, China
∗School of Computer Science and Technology, Soochow University Suzhou, China

Email: xfzhang@suda.edu.cn

Abstract—The deep neural model combining attention mech-
anism has achieved remarkable success in the task of target-
based sentiment analysis. In current research, the attention
mechanism is more broadly combined with LSTM(Long Short-
Term Memory) networks, however, such neural network-based
architectures generally rely on complex computation and only
focus on the single target. We propose a gated hierarchical
LSTMs(GH-LSTM) model of combining regional LSTM and
sentence-level LSTM via a gated operation for the task of target-
based sentiment analysis. This approach can distinguish different
polarities of sentiment of different targets in the same sentence
through a regional LSTM, and is able to concentrate on the long
dependency of target in the whole sentence via a sentence-level
LSTM. The experimental results on multi-domain datasets of
two languages from SemEval2016 indicate that, our approach
yields better performance than SVM(Support Vector Machine)
and several typical neural network models.

I. INTRODUCTION

As a more fundamental task in the field of sentiment
analysis, target-based sentiment analysis is capable of digging
for subtler descriptions of polarity in terms of different targets
in the sentence. It has become one of the hot areas of NLP
(Natural Language Processing) during the recent years [1, 2].
Different from the conventional sentiment analysis, target-
based sentiment analysis needs to identify the sentiment po-
larities of different targets in the sentence, which depends on
the sentiment information of different targets in the text rather
than the context [3]. For example, in sentence “Good food
but dreadful service at that restaurant”, the sentiment polarity
of target “food” is positive while the sentiment polarity of
target “service” is negative. This means that even in the
same sentence different targets may have completely opposite
sentiment polarities.

In the past research, most of the methods based on tradi-
tional machine learning had to rely on complicated artificial
rules and feature engineering in spite of their remarkable suc-
cess in tasks of traditional sentiment analysis [4]. Additionally,
it is difficult for this kind of methods to do feature extraction
and learning for different target words efficiently, so it tended
to predict that different targets from the same sentence have
the same sentiment polarity.

In recent years, deep learning methods have achieved great
progress in many fields. More and more researchers started to

DOI reference number:10.18293/SEKE2018-093

apply deep learning methods in NLP tasks [5, 6]. Deep neural
network models combined with LSTM get better results than
the traditional machine learning methods in NLP tasks with
target attached such as target-based relation classification [7],
target-based modeling of sentence pairs [8], target-based ma-
chine translation [9] and target-based sentiment analysis [10].
This kind of deep network models combined with attention
mechanism can highly focus on specific feature information
of target and can adjust the parameters of the network for dif-
ferent targets to dig for more hidden feature information. In the
task of attention-based sentiment analysis, the network model
combined with LSTM can effectively save the dependency
relationships between different words by receiving the input of
the text sequentially. Meanwhile, through using different target
attention matrixes as the input of the network, we could enable
the network to pay high attention to the sentiment information
of different targets during the training process.

However, LSTM network requires a sequential input of the
text. The computation of every word needs to be connected
with the information of previous words and the attention
matrix and the input word vector need the support from weight
matrix, which leads to the complexity of the model’s parameter
computation [11]. On the other hand, when a sentence contains
more targets with complicated dependency relationships, it is
hard for the models combined with only the specific attention
mechanism for target to identify the sentimental polarities of
different targets.

In order to address these problems, in this paper, a gated
hierarchical LSTMs model, namely GH-LSTM, for target-
based sentiment analysis is proposed. This model could be
able to extract both targets(pre-defined by the dataset) and
sentence information in the given text. The sole gated hier-
archical LSTMs aims to discriminate different polarities of
different targets in the same sentence and capture the feature
information of the whole sentence. The regional LSTMs
receive a regional sequential input including a target, aiming
to concentrate on the specific target in the sentence we are
considering. The sentence-level LSTMs receive the sequential
input of the whole sentence, which can explicitly reveal the
important relations between the specific target and the whole
sentence. After that regional LSTMs will receive the feature
extracted from sentence-level LSTMs modulated by a gated
operation.

433

Regional

LSTM LSTM LSTM LSTM

...

...

...

...

...

...

...

...

...

LSTM LSTM LSTM LSTM

OUTMerge

Word embed

Target embed
Regional LSTM

Sentence- level LSTM
V

Word embed

Target embed

Fig. 1. The illustration of our gated hierarchical LSTMs (GH-LSTM). Regional LSTM receive a region of the sentence divided based on specific target.
Sentence-level LSTM receive the whole sentence sequential input. The output of sentence-level LSTM that modulated by a gated operation and the final
output of regional LSTM are fed into a merge layer to output a probability distribution of sentiment.

II. RELATED WORK

In this section, we will introduce some related works
including target-based sentiment analysis and LSTMs.

A. Target-based sentiment analysis

Target-based sentiment analysis is sentiment analysis on
a deeper level and a fine-grained text classification task,
which has achieved much attention from researchers since
its emergence [12]. Qiu et al. [13] propose a bidirectional
back propagation algorithm to determine the sentiment polarity
of target by the specific relationship between the sentiment
word and the target word. Through the extension of this
dictionary, the approach uses the updated dictionary and
extracts the relationship between the target words to predict
the dependency between the target and the sentiment words.
Finally, the sentiment polarity of the target can be obtained.
Kiritchenko et al. [14] use a SVM classifier which is combined
with multiple features for aspect-level sentiment analysis. This
method adds unigram, bigram, sentiment dictionary and other
features to the libSVM model to exploit multiple types of
sentiment information in the text, making the classifier capable
of identifying sentiment polarities in different aspects.

As for the deep learning-based methods, Nguyen and Shi-
rai [15] proposed a target-based sentiment analysis model

based on RNN(Recursive Neural Network) and dependency
tree. This model works on a binary phrase dependency tree
containing the element structure and dependency relationship
tree of sentence, increasing the correct rate of target-based
sentiment analysis considerably and reducing a large amount
of feature projects during the task. Dong et al. [16] used
an AdaRNN(Adaptive Recursive Neural Network) model to
handle target-based sentiment analysis. This model makes
use of an adjustable neural network model to learn the
connection between the target and the words as well as the
syntacticstructure of the sentence. Then the model extends the
sentiment information by the relation between the target and
the other words to identify the sentiment polarity of the target
effectively.

B. Hierarchical model

In recent years, hierarchical models of neural networks
have obtained much attention in the field of NLP. Lin et
al. [17] propose a hierarchical recurrent neural network lan-
guage model (HRNNLM) for document modeling by capturing
relations between sentences. Li et al. [18] use a hierarchical
LSTM auto-encoder to preserve and reconstruct multi-sentence
paragraphs and a hierarchical LSTM is used for learning rep-
resentations of text spans based on attention mechanism [19].

434

For the task of aspect-based sentiment classification, Ruder
et al. [20] introduce a hierarchical bidirectional LSTM (HP-
LSTM), which is able to leverage both intra-sentence and
inter-sentence relations. This modal inspires us to use a gated
hierarchical LSTMs model to leverage both the target and the
sentence-level sentiment information.

III. GATED HIERARCHICAL LSTMS MODEL

As is shown in Figure 1, our GH-LSTM model contains
following components:

• Regional LSTM: receive a regional sequential input of
sentence divided based on specific target, each LSTM
unit receives a target embedding amalgamated with word
embedding to focus on the specific target information in
the process of training.

• Sentence-level LSTM: receive sequential input of sen-
tence including word and target embeddings to extract
long dependency of the specific target in the whole
sentence.

• Gated merge layer: combine the output of regional LSTM
and sentence-level LSTM through a gated operation.

• Fully connected layer: get the sentiment distribution of
the specific target in the given sentence.

The targets in the sentence are pre-defined by the dataset. In
this section, we will introduce the above components in detail.

A. Task Definition and Aspect Representation

Given a sentence s = {w1, w2, . . . , ti, . . . , tj , . . . , wn},
where ti and tj are two different targets in the sentence, the
task of target-based sentiment analysis is to discriminate the
sentiment polarities of different targets in the same sentence.
For example, the sentence “Good food but dreadful service at
that restaurant”, the sentiment polarity of the target “food” is
positive, while for the target “service” it is negative, so even in
the same sentence, the opposite polarities can still appear since
they belong to different targets. For each word in the sentence,
we generate a m-dimensional embedding x ∈ Rm to represent
the word and target. Let xi ∈ Rm be the m-dimensional word
vector corresponding to the i-th word, a sentence of length n
concatenated with an aspect embedding can be represented as:

Es = x1 ⊕ x2 ⊕ . . .⊕ xn (1)

where ⊕ is the concatenation operation.

B. Region division

Regional LSTM is an improvement of LSTM for handing
the tasks with a long text input. We divide each sentence
into one or more regions based on targets.1 The regional
LSTM in our work is primarily inspired by a regional
CNN(Convolutional Neural Network)-LSTM model for long

1Unlike using an individual sentence as a region, dividing sentences based
on the targets can focus on the most important words of different targets and
distinguish the sentence with multiple targets effectively in prediction process.

text sentiment analysis [21]. We divide sentences into spe-
cific regions based on specific target, which not only pre-
serves the important feature of specific target in the sen-
tence, but also distinguishes the sentiment information of
different targets in sentences availably. Given a sentence
s = {w1, w2, . . . , ti, . . . , tj , . . . , wn}, we focus on the targets
and the words around the target in the sentence, and divide the
sentence into different regions based on different targets. For
example, in sentence s = {w1, w2, . . . , ti, . . . , tj , . . . , wn},
where ti and tj are two different targets in the sen-
tence, we divide the sentence into two independent re-
gions r1 = {wi−l/2, wi−l/2+1, . . . , ti, . . . , wi+l/2} and r2 =
{wj−l/2, wj−l/2+1, . . . , tj , . . . , wj+l/2}, where l is the length
of a region.

C. Regional LSTM

In this part, we introduce the novel regional LSTM in our
approach. As Figure 1 illustrates, the regional LSTM receives
a region sequential input matrix of a sentence to focus on the
most important information of the specific target. The input of
each LSTM unit is composed of the previous output of hidden
layer and the current word and target embeddings, defined as:

Es = Wh · hi−1 ⊕Wt · ti ⊕Wx · xi (2)

where hi−1 is the last hidden output, Wh is the weight matrix
of hidden output. ti is the i-th target embedding, Wt is
the weight matrix of target embedding. xi is the i-th word
embedding, Wx is the weight matrix of word embedding.

D. Sentence-level LSTM

In order to capture in-depth sentiment information of the
sentence, and extract the long-distance dependency of the
target across a sentence, sequential inputs composed of word
and target embedding are fed into the sentence-level LSTM,
as is demonstrated in Figure 1. The input of each LSTM unit
is calculated in the same way as regional LSTM, as is shown
in formula (2).

E. Gated merge layer

We attempt to combine the information extracted by re-
gional LSTM and sentence-level LSTM to leverage the specific
sentiment features in the sentence.The final output of regional
LSTM and sentence-level are fed as input to the merge layer
controlled by a gated operation:

H = hr ⊗ σ(Wshs + b) (3)

where hr is the final output of regional LSTM, hs is the
final output of sentence-level LSTM, Ws and b are learned
parameters. σ is the sigmoid function and ⊗ is the element-
wise product between matrices.

F. Model training

Finally, the output Hm of merge layer is fed into a softmax
layer to predict the probability distribution of sentiment.

y = softmax(WHm + b) (4)

435

TABLE I
STATISTICS OF THE DATASETS. DOMAIN OF PHONES AND CAMERAS HAVE

NO NEUTRAL SENTENCE.

Dataset #Positive #Negative #Neutral

REST-Train 1640 736 98
REST-Test 582 178 37
LAPT-Train 1631 1070 180
LAPT-Test 432 261 40

PHNS-Train 748 566 0
PHNS-Test 302 204 0
CAME-Train 802 442 0
CAME-Test 328 124 0

TABLE II
DETAILS OF HYPER-PARAMETER IN OUR EXPERIMENTS.

Hyper-parameter Value

l2 constrain 3
Mini-batch 32
Dropout 0.5
Length of region 11

Where W and b are the parameters for softmax layer. We use
the back propagation algorithm to train the model and optimize
the model by minimizing the cross entropy error of sentiment
classification:

loss = −
∑
i∈D

∑
j∈C

ŷji log y
j
i + λ‖θ‖2 (5)

where D means all training instances, C is the number of
sentiment categories, ŷ is the correct distribution of sentiment,
y is the predicted sentiment distribution, and λ‖θ‖2 is l2
regularization.

IV. EXPERIMENTS

A. Datasets and training

We conduct experiments on four datasets of two languages2

from Semeval2016 Task 5 [22]. Statistics of the datasets are
shown in Table 1. We remove sentences with no target which
are out of the scope of our task.

We use Glove3 [23] to initialize word vectors for English
and Leipzig Corpora Collection4 for Chinese. We use 300-
dimensional word vectors in our experiments. We train all
models with a mini-batch size of 32, dropout rate of 0.5,
l2 regularization weight of 0.001, and the update rule of
AdaGrad. The length of regions is 11 words, and we segment
Chinese data first. The details of experiments hyper-parameters
are shown in Table 2.

2The four domain datasets including restaurants, laptops, phones, and
cameras, and the languages are English and Chinese. Sentiment classes of
restaurants and laptops are positive, negative, and neutral, and domain of
phones and cameras are positive and negative.

3http://nlp.stanford.edu/projects/glove/
4http://corpora2.informatik.uni-leipzig.

de/download.html/

TABLE III
BINARY PREDICTION ACCURACY OF OUR RLSTM AND GH-LSTM FOR

TARGET-BASED SENTIMENT CLASSIFICATION ON DIFFERENT DOMAIN
DATASETS IN COMPARISON TO COMPARATIVE MODELS. BEST SCORES ARE

IN BOLD.

Models REST LAPT PHNS CAME

SVM 81.97 75.90 70.36 76.33
LSTM 81.58 76.62 69.57 76.11
ATT-CNN 82.89 78.64 71.15 76.99
ATT-LSTM 84.87 80.81 72.53 78.98

RLSTM 81.97 75.61 70.36 75.22
GH-LSTM 85.53 80.66 73.91 79.65

B. Comparison models
We compare our gated hierarchical LSTMs with several

typical and state-of-the-art models, including SVM [14],
LSTM [24], ATT-CNN [8], ATT-LSTM [10].

RLSTM: Region LSTM model. This model is part of
the layered network model proposed in this paper, RLSTM
model only use the region LSTM and is capable to exploit
sentiment information for different targets. But it cannot get
enough sentiment information of the whole sentence.

GH-LSTM: The complete model of our work, which is
able to distinguish different targets information in the same
sentence and capture the long dependency of target across the
review.

SVM: A feature-based SVM classification model. This
model got a better result in experiment of target-based cus-
tomer reviews classification than the previous researches, but
it needs some extra features.

LSTM: Standard LSTM without any attention of target
that cannot infer the sentiment polarity of different targets in
the same sentence exactly.

ATT-CNN: An attention-based CNN model that achieves
state-of-the-art performance on sentence pairs modeling. We
use a similar model for receiving the word embedding and
target embedding in the experiment that is able to highly focus
on the target in the process of training. But the structure of the
model is relatively complex and the effect is quite dependent
on the attention matrix.

ATT-LSTM: An attention-based LSTM that can concen-
trate on different parts of a sentence for different targets. This
model achieves state-of-the-art performance on aspect-level
sentiment classification. But the model needs a high training
time cost.

C. Comparative results
The binary prediction (positive and negative) results are

shown in Table 3. Our models achieve the second best result
on laptops dataset (ATT-LSTM achieve the best result) and
achieve the best results on other 3 domain datasets. In addition,
the results of experiment including neutral polarity category
are presented in Table 4. We can find that, similar to the results
of binary prediction, our models achieve better performance
than other comparative models on all domain datasets, indi-
cating that our model can discriminate the sentiment polarity

436

TABLE IV
PREDICTION ACCURACY INCLUDING NEUTRAL CATEGORY OF OUR

MODELS AGAINST OTHER MODELS. BEST SCORES ARE IN BOLD.

Models REST LAPT

SVM 77.85 70.94
LSTM 78.80 71.62
ATT-CNN 81.18 74.49
ATT-LSTM 82.69 76.26

RLSTM 79.29 71.49
GH-LSTM 83.35 76.81

of different targets and capture sufficient feature information
in more complex sentiment categories via a gated hierarchical
network. Another phenomenon is that the GH-LSTM which
using hierarchical input layer and gated operation can improve
the accuracy in contrast to RLSTM on all experiments, reveal-
ing that the hierarchical input layer of sentence-level LSTM
and gated merge layer are valid in our approach.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

5 7 11 15 19 25

A
cc

ur
ac

y

Length of region

RLSTM-B GH-LSTM-B

RLSTM GH-LSTM

Fig. 2. Classification accuracy of our RLSTM and GH-LSTM with different
length of region on restaurants dataset. “-B” represents binary prediction.

D. Effects of the length of region

In order to validate the effectiveness of dividing regions
based on targets and the effects of using gated hierarchical
LSTMs, we implement different lengths of region in GH-
LSTM and RLSTM on restaurants dataset. As shown in Figure
2, before the length is 11, both GH-LSTM and RLSTM
achieve better performance when the length of region is
increased. But the results fluctuated when the length of the
region is greater than 11. So the value of the length of the
region is 11 in our experiment. We can also find that when the
length is very small, GH-LSTM can also get a good prediction
results, while RLSTM does bad when the length is 5, so that
the gated hierarchical LSTM can improve the classification
when the model lacks regional information.

E. Runtime analysis

We study the runtime of our approach and comparative
models. We implement all these approaches based on the same

TABLE V
RUNTIME (SECONDS) OF EACH TRAINING EPOCH ON THE RESTAURANTS

DATASET.

Method Time cost

LSTM 108
ATT-CNN 62
ATT-LSTM 324
RLSTM 84
GH-LSTM 167

neural network infrastructure, and run them on the same CPU
and GPU server. As shown in Table 5, LSTM combining
attention mechanism is indeed computationally expensive,
the ATT-LSTM costs 324s during each training epoch. Our
RLSTM is almost 4 times faster than ATT-LSTM and faster
than basic LSTM, our GH-LSTM is also save half of the time
contrast to ATT-LSTM.

V. CONCLUSION

We propose a novel deep gated hierarchical LSTMs model
for target-based sentiment analysis. Our model not only can
effectively identify the sentiment polarity of different targets,
but also can obtain long distance dependencies of specific
targets in the whole input sentence and extract more hidden
information of specific targets. Finally, the experiment results
on the 4 datasets of two languages illustrated the validity of
our model by comparing with the excellent models in previous
studies.

ACKNOWLEDGMENT

This work is partially supported by the National Natural Sci-
ence Foundation of China (61772263, 61772014, 61572375).

REFERENCES

[1] M. Pontiki, D. Galanis, J. Pavlopoulos et al., “Semeval-
2014 task 4: Aspect based sentiment analysis,” in Pro-
ceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014). Dublin, Ireland: Asso-
ciation for Computational Linguistics and Dublin City
University, August 2014, pp. 27–35.

[2] B. Pang, L. Lee et al., “Opinion mining and sentiment
analysis,” Foundations and Trends R© in Information Re-
trieval, vol. 2, no. 1–2, pp. 1–135, 2008.

[3] T. Nasukawa and J. Yi, “Sentiment analysis: Capturing
favorability using natural language processing,” in Pro-
ceedings of the 2nd international conference on Knowl-
edge capture. ACM, 2003, pp. 70–77.

[4] E. Boiy and M.-F. Moens, “A machine learning approach
to sentiment analysis in multilingual web texts,” Informa-
tion retrieval, vol. 12, no. 5, pp. 526–558, 2009.

[5] Y. Kim, “Convolutional neural networks for sentence
classification,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational
Linguistics, October 2014, pp. 1746–1751.

437

[6] P. Liu, X. Qiu, and X. Huang, “Adversarial multi-task
learning for text classification,” in Proceedings of the
55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Vancouver,
Canada: Association for Computational Linguistics, July
2017, pp. 1–10.

[7] P. Zhou, W. Shi, J. Tian et al., “Attention-based bidirec-
tional long short-term memory networks for relation clas-
sification,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
2: Short Papers). Berlin, Germany: Association for
Computational Linguistics, August 2016, pp. 207–212.

[8] W. Yin, H. Schütze, B. Xiang et al., “Abcnn: Attention-
based convolutional neural network for modeling sen-
tence pairs,” Transactions of the Association of Compu-
tational Linguistics, vol. 4, no. 1, pp. 259–272, 2016.

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[10] Y. Wang, M. Huang, X. Zhu et al., “Attention-based lstm
for aspect-level sentiment classification,” in Proceedings
of the 2016 Conference on Empirical Methods in Natural
Language Processing. Austin, Texas: Association for
Computational Linguistics, November 2016, pp. 606–
615.

[11] D. Tang, B. Qin, and T. Liu, “Aspect level sentiment clas-
sification with deep memory network,” in Proceedings of
the 2016 Conference on Empirical Methods in Natural
Language Processing. Austin, Texas: Association for
Computational Linguistics, November 2016, pp. 214–
224.

[12] B. Liu, “Sentiment analysis and opinion mining,” Syn-
thesis lectures on human language technologies, vol. 5,
no. 1, pp. 1–167, 2012.

[13] G. Qiu, B. Liu, J. Bu et al., “Opinion word expansion
and target extraction through double propagation,” Com-
putational linguistics, vol. 37, no. 1, pp. 9–27, 2011.

[14] S. Kiritchenko, X. Zhu, C. Cherry et al., “Nrc-canada-
2014: Detecting aspects and sentiment in customer re-
views,” in Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014), 2014, pp. 437–
442.

[15] T. H. Nguyen and K. Shirai, “Phrasernn: Phrase recursive
neural network for aspect-based sentiment analysis,” in
Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, September
2015, pp. 2509–2514.

[16] L. Dong, F. Wei, C. Tan et al., “Adaptive recursive neural
network for target-dependent twitter sentiment classifi-
cation,” in Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume
2: Short Papers). Baltimore, Maryland: Association for
Computational Linguistics, June 2014, pp. 49–54.

[17] R. Lin, S. Liu, M. Yang et al., “Hierarchical recurrent
neural network for document modeling,” in Proceedings

of the 2015 Conference on Empirical Methods in Natural
Language Processing. Lisbon, Portugal: Association
for Computational Linguistics, September 2015, pp. 899–
907.

[18] J. Li, T. Luong, and D. Jurafsky, “A hierarchical neural
autoencoder for paragraphs and documents,” in Proceed-
ings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers). Beijing, China: Association for
Computational Linguistics, July 2015, pp. 1106–1115.

[19] Q. Li, T. Li, and B. Chang, “Discourse parsing with
attention-based hierarchical neural networks,” in Pro-
ceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. Austin, Texas: Asso-
ciation for Computational Linguistics, November 2016,
pp. 362–371.

[20] S. Ruder, P. Ghaffari, and J. G. Breslin, “A hierarchical
model of reviews for aspect-based sentiment analysis,” in
Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Austin, Texas:
Association for Computational Linguistics, November
2016, pp. 999–1005.

[21] J. Wang, L.-C. Yu, K. R. Lai et al., “Dimensional
sentiment analysis using a regional cnn-lstm model,” in
Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Pa-
pers). Berlin, Germany: Association for Computational
Linguistics, August 2016, pp. 225–230.

[22] M. Pontiki, D. Galanis, H. Papageorgiou et al., “Semeval-
2016 task 5: Aspect based sentiment analysis,” in Pro-
ceedings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016). San Diego, California:
Association for Computational Linguistics, June 2016,
pp. 19–30.

[23] J. Pennington, R. Socher, and C. Manning, “Glove:
Global vectors for word representation,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar: Associ-
ation for Computational Linguistics, October 2014, pp.
1532–1543.

[24] X. Wang, Y. Liu, C. Sun et al., “Predicting polarities
of tweets by composing word embeddings with long
short-term memory,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing,
China: Association for Computational Linguistics, July
2015, pp. 1343–1353.

438

 Caihong Sun, Meina Zhang, Meiyun Zuo*
 Key Laboratory of Data Engineering and Knowledge Engineering,
 School of Information, Renmin University of China

 Beijing,China
 chsun@ruc.edu.cn zhangmeina@ruc.edu.cn zuomy@ruc.edu.cn

Abstract—In this paper, we focus on examining the effects of
Ad-context on the click-through rate (CTR) for the online
advertising. Many researches have shown that ad–context
congruity is a key factor to CTR, but the features of ad-context are
rarely introduced in CTR prediction algorithms. By leveraging
data from various sources, and using text mining and sentiment
analysis techniques, our proposed approach extracts three types of
features (i.e. users, advertisements and ad-context features) to
predict CTR. User features describe “Who” is browsing the
webpage, advertisement features depict “How” an ad serving is,
and ad-context features include “What” the product is, “Where”
an ad displays, as well as the “Mood” of the context. Experiment
results show that our proposed approach outperforms the
benchmark models by introducing ad-context features. Novel
ad-context features we proposed make good contributions to the
prediction of CTR. The research highlights the power of
ad-context in online advertising CTR prediction. Moreover it gives
an insight into supporting effective advertising and improving
users’ satisfaction.

Keywords—Click-Through-Rate, Ad-Context, Sentiment Analysis,
Feature Engineering, Online Advertising

I. INTRODUCTION
With the increasing of Internet users, online advertising

becomes a marketing gold mine and generates huge advertising
revenues. For example, the Interactive Advertising Bureau (IAB)
announced on December 20th 2017 that digital advertising
revenues in the US for the first half of 2017 surged to $40.1
billion, a 23 percent year-over-year rise from the $32.7 billion
reported during the same timeframe in 2016. The huge
commercial value of online advertisement in some extent
depends on whether users click on the advertisement or not. The
click-through rate (CTR), as a major measurement of online
advertising, can be used to improve users’ satisfaction and
support effective advertising. It plays an important role in online
advertising. Academia and industry have also invested a lot of
effort in the CTRs prediction model of advertising.

The features used to predict CTR in the existing literatures
generally could be classified into three kinds: advertisement
features, users’ features and ad-context features. Many
researchers use the advertisement features, such as the size, the
position of an advertisement, and users’ features such as
demography, the equipment type and user’s behavior history for
CTR prediction. But few researchers introduce ad-context
features into CTR prediction algorithms since they are not easy
to be obtained. There are two contrasting theories to explain the
relationship between ad–context congruity and memory for ad
content, where Ad–context congruity is defined as the degree to
which advertising material is thematically similar to adjacent
editorial content [1]. Priming theory leads to increased memory
of ads that are similar to their context, but interference theory is
prone to decrease memory when ads resemble their context.
Although contrasting, both priming and interference theories
show that ad-context matters in advertisement effectiveness
[1-3]. In the study of contextual advertising, Chakrabarti et al.
measured the ad–context congruity by using the cosine distance
between the keywords of the advertisement and the webpage the
ads placed [4]. By adding this information into CTR prediction,
it gained 25% prediction accuracy improvement. But what the
ad-context features are and how to extract them?

In this paper, our main research question is to extract
ad-context features and introduce them into the state-of-art
prediction algorithms to enhance the performance of CTR
prediction. The main contributions of this study are in two areas:

First, this work demonstrates a prediction framework in
which the different sources of data could be collected, fused and
analyzed to train CTR prediction algorithms, such as Logistic
Regression (LR), Gradient Boosting Decision Tree (GBDT) and
Factorization Machine (FM). In this study, we collected a SUV
automobile advertisement dataset and crawled the webpages
that the ads placed to demonstrate the process and the
effectiveness of our prediction framework.

 Second, our study proposed several novel ad-context
features: “What”, representing the attributes of a product on a
web page (i.e. price, the origin of production and product type
etc.), “Where”, ad serving channels and the “Mood” of the web
contents. Although many features have already been studied and
introduced in CTR prediction for better performance in many
aspects, the effect of ad-context features is rarely considered
into CTR prediction until now, especially the features in product
and mood dimensions. We showed that these features make

Does Ad-Context Matter on the Effectiveness of
Online Advertising?

DOI reference number: 10.18293/SEKE2018-144

439

great contributions to the system’s performance and help to
explain that the ad-context is a key factor to the effectiveness of
online advertising.

Accuracy, logLoss and AUC (the Area under Receiver
Operating Characteristics (ROC) Curve), will be employed as
the evaluation criteria for the performance in our comparison
study.

The paper proceeds as follows. Section 2 reviews the research
literatures. Section 3 outlines the system framework and
presents the process of feature engineering. Section 4 describes
the data collection and shows the experiment studies. Section 5
concludes the paper with future remarks.

II. LITERATURE REVIEW
In this study, we draw mainly on three streams of researches

in online advertising: (i) CTR prediction models, (ii) features
used in CTR prediction, and (iii) ad-context.

A. CTR Prediction Models
Many researchers and advertisers to predict CTR use logistic

Regression. The major difference of these studies is the features
they used for prediction. Robinson et al. studied how 7 features
of banner ad affect the online advertising effectiveness by using
LR, and they found that in network game domain, the size of ad,
promotion and game information were good for clicking, but the
dynamic banners, the corporate brands or flags had no effect on
clicking [5]. Chakrabarti et al. used LR and studied how the
congruity between ad and web contents influences the CTR in
contextual advertising [4]. Besides the classic LR model, Dave
and Varma applied GBDT to estimate CTR [6], while the main
idea of GBDT is inspired by probably approximately correct
learning model proposed by Valiant. The GBDT algorithms are
prone to over-fitting, since they ignore the correlations among
features. FM algorithm proposed by Rendle [7] overcomes this
drawback, and FM can handle the dependent features well.
Zhang et al. used RNN (Recurrent Neural networks) to predict
the CTR in search advertisements [8]. RNN outperforms LR
when data volume is large. Moreover, to improve the accuracy
of CTR prediction, one strategy is to fuse several models
together. The simple one is to weighted add the results of each
models, or stacking these models. Tian et al. use FM+GBDT,
LR+GBDT to evaluate the effectiveness of feature selections
[9].

B. Features in CTR Prediction
The features used by CTR prediction could be classified into

three kinds: the features of advertisement, the features of users
and ad-context features. These three kinds of features constitute
the feature triple<advertisement, user, context>. The
advertisement features, such as the size, position and dynamics
of an advertisement, are often used to predict CTR prediction
[5]. The features of users i.e. the demography of users, the
equipment type, user behavioral data and user ID, are
introduced into CTR prediction models to improve the accuracy
of CTR prediction [10]. Ad-context features are rarely used in

literatures since they are not easy to be acquired. Richardson et
al. [11] introduce the degree of congruity between the search
keywords and an advertisement to estimate the CTR of a new
advertisement. Chakrabarti et al. [4] improve the prediction
effectiveness with 25% by introducing the content congruity
between an advertisement and the web page it placed. In
addition, many CTR prediction literatures try to introduce more
features to improve the prediction accuracy [12-13]. To sum up,
the ad-context features are not well explored in CTR prediction
yet.

C. Ad-context
Although ad-context is considered to be important in CTR

prediction, to the best of our knowledge, there are few
literatures discussed about ad-context features engineering. In
the studies of ad-context in online advertisement, many
researchers focus on exploring the effects of ad-context
congruity which is defined as the degree to which advertising
material is similar to adjacent editorial content [1]. The research
on the ad-context congruity is mainly focus on the following
perspectives: structure e.g. background color [14], mood [16],
semantic e.g. whether deliver an automobile ad to the auto,
finance or sport website [17]. All these contextual factors will
influence the effectiveness of advertising. However, articles that
study contextual factors from the web product dimension are
basically not available. Especially on some vertical website, the
semantic and structural factors are completely the same with
those of the target advertising. Since the product features such
as price have impact on advertisement effects, the product
information on the web page for a vertical advertising could
possible affect users’ click. Psychological research shows that
congruity of the attitude related, has important impact on the
individual cognition and attitude formation [14-15]. Mood has
impact on the audience’s attitude to an advertisement and does
influence the effectiveness of an advertisement [16]. Some
studies [4, 11] demonstrate that semantic or thematically
contents influence the effectiveness of an advertisement a lot.
To sum up, ad-context does have impact on advertisement effect.
Since ad-context features are rarely discussed from the feature
engineering aspects, in this study we try to extract ad-context
features from web contents and utilize them to improve the CTR
prediction.

III. CTR PREDICTION FRAMEWORK AND FEATURE
ENGINEERING

A. CTR Prediction Framework
Figure 1 illustrates the framework of our CTR prediction. The

first phase is data acquisition. We picked two complementary
data sources—log data from an advertising agency and their ad
serving websites. We can acquire the features of ads, the
impression and click data and some user features from the log
data. And the ad serving website provides the ad-context
features such as serving channels, product features on the
website and mood of a webpage. As for data collection methods,
the two sources are different as well. We use API to extract data

440

from the log data provided by the advertising agency, while
crawl the contents of the website via python.

In the second phase, data from both sources are cleaned,
transformed, consolidated, and stored in a database. In
particular, we use text mining and sentiment analysis techniques
to get the mood feature of the web contents and then stored them
in database.

The third phase, “feature engineering”, involves using the
acquired data to construct features that will ultimately be used to
train a CTR predictive model. Specifically, we classify various
features into three groups, which will be described in detail
later.

In the fourth phase, a predictive model can be trained. The
Experimental Result Analysis section will discuss our
experiments and research questions in detail.

Figure 1. The Framework of CTR Prediction Feature Engineering

B. Feature Engineering
In our study, we derived three groups of features: “who”

features, “how” features, and ad-context features. Ad-context
features consist of ad serving channels (Where), and product
features (What) and mood features.

“Who” features consist of the features describing users who
could view the ads: UserID, the number of visited pages, the
number of browsed auto types, city, the number of visited
channels, and type of the equipment a user used.
“How” features describe how an advertisement displays:

AdID, Ad’s size, position, the number of impressions, the
number of impression days and so on.

“Ad-context” features consist of ad serving channel (Where),
product features (What) and mood feature. The serving channel
captures the channel targeting aspect, where the ad was served
in a web site. Since our study focuses on serving ads on the
vertical media, different channels provide consumers with
different types of information, and consumers may browse
different channels at different consumption stages. Therefore,
the click through rate of ads will also vary in different channels.
While product features describe the semantic aspect of web
contents by adding the product dimension which the ad
described. The difference of product features between the

advertising target and the webpage has impact on the consumers.
Here the product features are described as product ID, price, the
origin of production and product type since some studies show
that the price, the original site, and the automobile type are the
three main factors that affect the car purchase decision [18].
Furthermore, the mood feature describes the mood of a webpage
via the negative or positive attitude, which captures the emotion
of the web contents.

IV. EXPERIMENTAL DESIGN AND ANALYSIS
In this section, we conduct several experiments to validate the

effects of ad-context features based on LR, GBDT and FM
models. We do the experiments by adding ad-context features or
not to demonstrate the effectiveness of our proposed method.

A. Data Description
There are two data sources in our research. One is the log data

provided by advertising agency. They provide us the features of
advertisements, some feature of users and the log data. The
other data is crawled by us from the websites where the ads
delivered to access the ad-context features. In our study, we
focus on a new SUV auto ads activity. The ad-serving period is
two weeks, from December 23rd 2014 to Jan 5th 2015.
Xcar.com is the ad-serving website, an auto vertical media
where the serving channels include 4 channels: information,
shopping guide, test-driving and car usage.

We extract user and advertisement features from the data
provide by the advertising agency, and the ad-context features
from the web contents we crawled. Serving channel feature
(“Where”) has 4 categorical values according to the channels
the advertisement displayed on. These four channels provide
information consumers they sought for at different stages of
their purchase decision. The information channel provides some
basic information about cars, which satisfied the information
need of consumers in the early stages of purchase decisions. The
shopping guide channel provides consumers with specific
information on a topic, such as price, auto type, for comparison.
Test-driving channel delivers some driving experience of a
certain car type. The car usage channel provides maintenance
information after purchase. The source of mood factors is from
the textual context of the web pages. We apply the
dictionary-based sentimental word analysis algorithm to the text
content of the webpages we crawled. In our experiments, we
adopt the sentimental lexicon from the information retrieval
laboratory of Dalian University of Technology for sentimental
analysis. The mood feature is a numeric type, while a negative
or positive value represents negative or positive mood
respectively. The product features (“What”) consist of price,
the origin of production and product type.

The price of SUV, the target product of advertising activity,
in the ad activity is about 129.9-169.9 thousand RMB. The total
impression of the ad is 440812，the number of clicks is 586.
There are 251199 users, and 501 users click the ads, as shown in
Table 1.

441

TABLE I. STATISTICS OF THE DATASETS

Number of Impression 440812

Number of Clicks 586

Number of users 251199

Number of clicked users 501

B. Evaluation Metrics
For CTR prediction, we tried 3 algorithms: LR, GBDT and

FM. We evaluate the overall performance based on 3 metrics:
1) Classification accuracy, which is the percentage of

correctly predicted instances;
2) Logloss, a measure defined as the negative log-likelihood

of the true labels given a probabilistic classifier’s predictions,
the smaller the value is, the better the prediction;

3) AUC, the curve plots the true positive rate against the
false positive rate. An AUC of 1 means a perfect classification
whereas 0.5 refers to a random guess. Being more robust against
prior distributions, AUC is considered by many researchers to
be one of the best indicators of a classifier’s performance.

C. Three State-of-art CTR Prediction Algorithms
To illustrate the effectiveness of our proposed method, we

choose the following three state-of-the-art CTR prediction
algorithms for comparisons.

• LR (Logistic Regression): It is a widely used method for
CTR prediction, especially used as the baseline model
for comparisons with other prediction methods [4][6].

• GBDT (Gradient Boosting Decision Tree):It is a
non-linear model, an ensemble decision tree inspired by
boosting. It has the advantages to discover the raw
features and cross features. GBDT usually used in CTR
prediction fused with other methods such as LR and FM
[9][18].

• FM (Factorization Machine): Factorization machines
(FMs) are a generic approach that allows mimicking
most factorization models by feature engineering [7].
FM is able to perform a regression model whose task is
to estimate a function y:Rn→Τ from a real valued vector
x ∈ ℝ$ to a target domain Τ and it could model all
single and pairwise interactions between the input
variables by using factorized interaction parameters.

D. Experimental Design and Analysis
To evaluate the effectiveness of ad-context features, we apply

the features with and without ad-context features to three
algorithms respectively: LR, GBDT and FM. Since the click
rate is very low, i.e. the positive and negative samples are
extremely misbalanced. In our experiments, we sample the ratio
of positive and negative from 1:1 to 1:9, and we found the
sampling ratio of positive and negative samples mattered just a
little bit in all three algorithms, When the ratio is 1:5, the
performance is better. As shown in Figure 2, with the ratio of
sampling in positive and negative data from 1:1 to 1:9, the
performance of LR varied a little (we can find the similar results
in both GBDT and FM). In the following experiments, we set

the positive and negative sampling ratio as 1:5.

Figure 2. Performance with and without ad-context features by using LR in

different sampling ratio

Experiments are designed to answer the following two
research questions.

RQ1: Does Ad-context matter in CTR prediction of online
advertising?

We design comparison experiments by adding ad-context
features or not. The baseline is to use features of advertisement
and users to predict CTR, without any ad-context features.

As shown in Figure 3, by introducing ad-context features, all
the three evaluation metrics get better in LR, GBDT and FM.
The accuracy improves a lot (shown in Figure 3 (a)), the logloss
decreases (shown in Figure 3(b)) and the AUC increases (shown
in Figure 3(c)) in all three algorithms. In our experiments,
GBDT outperforms LR and FM.

442

Figure 3. Comparisons in (a) Accuracy (b)LogLoss and (c) AUC with and

without ad-context features

To sum up, ad-context features do matter in the prediction of
CTR in our experiments.

RQ2: Are all dimensions of ad-context we proposed
valuable?

To illustrate the effect of “Where”, “What” and “Mood”
dimensions in ad-context, we design experiments by adding
each of them into baseline in LR algorithm, and we find (shown
in Figure 4) that “Where” and “What” features improve all three
evaluation metrics individually, but the “Mood” feature does
not. Furthermore, by introducing all three kinds of ad-context
(Where, What and Mood), the algorithm gets better
performance.

Figure 4. The Effects of “Where”, “What” and “Mood” Features in LR

algorithms

As shown in Figure 4, we can see that “What” features, i.e.
the features of products in our experiments, contribute a lot in
CTR prediction. By adding all three kinds of ad-context features,
the algorithm gets much better performance. The similar
findings are found in GBDT and FM. The experiments
demonstrate that our proposed ad-context features are very
effective on CTR prediction.

V. CONCLUSIONS AND FUTURE WORK
In this study, we proposed a CTR prediction framework by

collecting data from different sources. By employing text
mining and sentiment analyzing, we extract ad-context features
including “Where” the ads displayed, “What” is the product and

“mood” of the web contents. CTR prediction improves a lot
with the novel ad context features we proposed in LR, GBDT
and FM algorithms. Different from the application of context
factors in search advertising mentioned in the previous literature
review, this article attempts to apply context factors in general
banner ads. Existing studies aim to explore how ad-context
congruity affects the effective of online advertising. Here, we
are not considering congruity but introducing context attributes
to the CTR prediction algorithm. Our study demonstrates that
ad-context is valuable to CTR prediction and gives out a
practical way of ad-context feature engineering. Our work gives
an insight on ad-serving channels decision-making and users’
satisfaction improvement. There are also several directions for
future research. Our future work includes testing our method on
more datasets and CTR prediction algorithms. More ad-context
features could be extracted and drawn into further study.

ACKNOWLEDGEMENT
This work was supported in part by the Fundamental

Research Funds for the Central Universities under Grant
10XNJ065, part by the National Natural Science Foundation of
China under Grant 71771210, part by the Beijing Natural
Science Foundation under Grant 9182008, part by National
Social Science Foundation of China Major Program under
Grant 13&ZD184. Meiyun Zuo is the corresponding author of
this paper.

REFERENCES
[1] Gunter, B., et al., Children's memory for television advertising: effects of

programme–advertisement congruency. Applied Cognitive Psychology,
2010. 16(2): p. 171-190.

[2] Kamins, M.A., L.J. Marks, and D. Skinner, Television Commercial
Evaluation in the Context of Program Induced Mood: Congruency versus
Consistency Effects. Journal of Advertising, 1991. 20(2): p. 1-14.

[3] Yinon, Y. and M.O. Landau, On the reinforcing value of helping behavior
in a positive mood. Motivation & Emotion, 1987. 11(1): p. 83-93.

[4] Chakrabarti, D., D. Agarwal, and V. Josifovski. Contextual advertising by
combining relevance with click feedback. in International Conference on
World Wide Web. 2008.

[5] Robinson, H.R., A. Wysocka, and C. Hand, Internet advertising
effectiveness: The effect of design on click-through rates for banner ads.
International Journal of Advertising, 2007. 26(4): p. 527-541.

[6] Dave K S, Varma V. Learning the click-through rate for rare/new ads from
similar ads[C]// International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 2010:897-898.

[7] Rendle, S. Factorization Machines. in IEEE International Conference on
Data Mining. 2010.

[8] Zhang, Y., et al., Sequential Click Prediction for Sponsored Search with
Recurrent Neural Networks. 2014: p. 1369-1375.

[9] Tian, C., et al., Research and implementation of feature extraction
methods of Internet CTR prediction model. Computer Application
Research, 2017. 34(2): p. 334-338. (in Chinese)

[10] Zhu, Z.A., et al., A novel click model and its applications to online
advertising. 2010: p. 321-330.

[11] Richardson, M., E. Dominowska, and R. Ragno. Predicting
clicks:estimating the click-through rate for new ads. in International
Conference on World Wide Web. 2007.

[12] Ta, A.P. Factorization machines with follow-the-regularized-leader for
CTR prediction in display advertising. in IEEE International Conference
on Big Data. 2015.

443

[13] Zhang, S.,Q.Fu, and W.Xiao, Advertisement Click-Through Rate
Prediction Based on the Weighted-ELM and Adaboost Algorithm. 2017.
2017(1): 1-8.

[14] Chaiken, S., E.M. Pomerantz, and R. Giner-Sorolla, Structural consistency
and attitude strength. Attitude Strength Antecedents & Consequences,
1995.

[15] Berkowitz, L., Mood, Self-Awareness, and Willingness to Help. Journal of
Personality & Social Psychology, 1987. 52(4): p. 721-729.

[16] Faseur, T. and M. Geuens, Different Positive Feelings Leading to
Different Ad Evaluations: The Case of Coziness, Excitement, and
Romance. Journal of Advertising, 2006. 35(4): p. 129-142.

[17] Gunter, B., et al., Children's memory for television advertising: effects of
programme–advertisement congruency. Applied Cognitive Psychology,
2010. 16(2): p. 171-190.

[18] Engel, J.F., R.D. Blackwell, and P.W. Miniard, Consumer Behavior (8th
Eds.). 1995.

[19] Chapelle O, Manavoglu E, Rosales R. Simple and scalable response
prediction for display advertising [J]. ACM Transactions on Intelligent
Systems &Technology, 2013, 5 (4): 1-3

444

Analyzing The Impact Of Feedback In GitHub
On The Software Developer’s Mood

Mateus Freira, Josemar Caetano, Johnatan Oliveira, Humberto Marques-Neto

Department of Computer Science
Pontifical Catholic University of Minas Gerais (PUC Minas)

Belo Horizonte, Brazil
{mateus.freira, josemar.caetano, johnatan.oliveira}@sga.pucminas.br,

humberto@pucminas.br

Abstract

Software development depends on cooperation between
people, and the way it works can define the future of the
software project. Developers emotions affect their produc-
tivity and way they work, yet there is little information about
how developers can influence the mood of each other. As a
first step toward understanding how feedback may affect the
developers’ sentiment, this paper analyzes the mood varia-
tions on more than 78k pull requests and 268k pull com-
ments on GitHub. We found that in 31.16% of the cases the
developers presented a significant mood variation within
one hour when receiving feedback on their pull requests.
The variation reduces to 18.16% when evaluating one day
before and after the commentary. In software projects with
less than 34k lines of code, the number of developers that
never contribute again after receiving a negative comment
on the first pull request is 10.97%; this number more than
doubles to 24.02% when evaluating projects with more than
197k lines of code.

Keywords: Developers emotions, Developers mood,
GitHub, Open source, Subjective well-being.

1 Introduction
Humans are one of the most valuable resources in soft-

ware projects. Besides the technical knowledge needed
for a successful project, it is essential to have good
teamwork[7]. Staats [15] shows that increasing the teams
familiarity decreases the number of defects, reduces budget
deviation, and yields a 10% in performance improvement
from the clients’ perspective. Regarding the importance
of keeping the team’s members, Voices [17] warned that
unhappiness could lead the developers to quit their com-
pany/project endeavors. Additionally, emotions can affect
positively or negatively, the developers’ productivity, cre-
ativity, and task quality[4, 6]. Understanding the mood vari-
ations of the developers on a software project, as well as the
effects of feedback on the team members, is relevant to help
the projects leaders to take proactive actions in increasing
their team engagement and familiarity and, therefore, im-
proving productivity.

GitHub is a social network and code hosting provider

that hosts more than 71 million projects1 at present. The
main GitHub feature is not only the code hosting but also
project manager features, such as issues and pull request
controls. These features promote discussions among the
users, which is related to the reported bug and the requested
feature or even connected to a code path that a developer
wants to merge in a repository. We collected pull requests,
their comments, and the profile of the developers, related to
any of those interactions, to perform our research.

Recently, researchers have published several pa-
pers, regarding developer sentiment analysis, on GitHub
interactions[5, 7, 8, 9, 12, 14]. However, what causes pos-
itive or negative variances in the developers sentiment, as
well as the duration of the variation, is not entirely under-
stood yet; many external influencing factors remain unex-
plored.

Our study contributes to a better understanding of devel-
opers’ mood variations by analyzing the developers at the
time they are submitting pull requests to a repository, and
how other developers’ comments may influence their mood.
We highlight that we cannot establish a strong causal rela-
tionship between a comment and a developers’ mood varia-
tion, as events outside of our data set might have influenced
such variation. We empirically analyzed the 100 most popu-
lar java projects on GitHub and their more than 226k pull re-
quest comments. We applied SentiStrength [16] to calculate
the sentiment expressed in each pull request and comment,
and we then calculated the subjective well-being (SWB) [3]
to obtain the mood variations before and after receiving a
feedback from another developer. Finally, we analyzed the
SWB to understand how the feedback may affect the devel-
opers’ mood.

The rest of this paper is outlined as follows. We first
present the techniques we used to perform the sentiment
analysis and to calculate the sentiment influences in Sec-
tion 2. We show the experiment design in Section 3. In
Section 4 we present the results of our analysis, We present
the related work in the Section 5. and finally, we conclude
and present the plans for future works in Section 6.

1https://github.com/about

DOI reference number: 10.18293/SEKE2018-153
445

2 Background
Reminding that our present goal is to investigate devel-

opers’ mood variation when receiving feedback from oth-
ers, we present an overview of the central concepts we have
used to hit our goals. We first introduce the GitHub con-
cepts, then we present the sentiment analysis approach we
have used, then we show the changes we have made on
the tool’s dictionary to better address software engineering
texts, and finally, we present the sentiment state and change
measurement metrics we have used.

GitHub: Here we present some GitHub concepts that
will help gain a better understanding of the paper. Next, we
pick the features that relate the most to the present work.

The Repository represents the project itself; it contains
the code, documentation, and also aggregates all the project
interactions (issues, pull requests and commits). Reposito-
ries can be private or public; however, in this paper, all the
repositories we have used are public, and therefore, all their
information is available on the GitHub API [2].

A pull request is a proposed code change to a repository
submitted by a developer. Once a pull request is open the
project members can comment and either accept or reject
it. If the pull request is accepted, the code integrates them
into the repository code; if it is rejected, it is discarded. Pull
requests have their discussion forum where the developers
can comment on the changes or ask for improvements or
changes before merging it. A pull request can contain one
or many commits [2].

A commit consists of a change in one or many files,
enabling developers to track the changes they have made.
Commits usually contain a message with a short explana-
tion about the change that it contains [2].

Author association is the association between the devel-
opers who are commenting or opening a pull request, and it
represents the role of the developer in the repository. The
author association’s possible values are: collaborator (has
been invited to the repository but has not commited any-
thing yet), contributor(has been invited and has at least one
commit), member (is a part of organization that owns the
repository on GitHub), none(has no relationship with the
repository), and owner (owner of the repository), we lim-
ited this list to the values that are present in our data set
[1].

GitHub pull request flow consists of some developer
(any GitHub user) with or without a relationship with the
repository, who wants to integrate a code change to the code
base. Let’s suppose there is a bug and a developer wants
to fix it, he/she needs to: 1) clone the project, 2) create a
branch locally, 3) commit the changes to solve the bug, and
4) submit a pull request to the central repository. Figure 1
presents this process. After opening the pull request, other
developers can comment on it, asking for changes or en-
dorsing the changes made. That is why these comments

Figure 1: GitHub Pull request flow.

often become discussions among developers relating to the
code change submitted. For that matter, the most critical in-
teractions for us are after opening the pull request, when the
discussions start. At this point, we compare the developer
comments, before and after another developer’s comment,
to understand if the comment caused any mood variation on
the developer who wanted to integrate his/hers code to the
repository.

Sentiment analysis: Sentiment analysis is a common
task when evaluating social network interactions. Ribeiro
et al. [11] presented benchmark testing 24 sentiment analy-
sis tools in 18 labeled tweet data sets. Their results showed
that the SentiStrength tool [16] presented the best results
in most of the datasets. Additionally, the previous work
[7, 8, 14] have successfully used SentiStrength [16] to per-
form sentiment analysis of software engineering interac-
tions, such as commits, issues, and pull requests. Therefore,
in this paper, we decided to use SentiStrength to perform the
sentiment analysis.

SentiStrength uses a lexicon approach based on a dic-
tionary or words and idiomatic expressions to detect two
sentiment polarizations, negative (from -1 slightly negative
to -5 very negative) and positive (from 1 slightly positive to
5 very positive). By that, it provides the overall sentiment
of the sentence(scale), subtracting the negative sentiment
from the positive sentiment [16]. We used SentiStrength to
extract the sentiment of each pull request and comment.

However, Novielli et al. [10] warned that using any sen-
timent tool to evaluate sentiment on software engineering
artifacts without any change might result in an inadequate
analysis because some terms considered as negative in other
social networks are natural when analyzing technical texts.
For example, the word ’static,’ which in the SentiStrength
default dictionary is considered as -2 negative, is used most
of the time by developers to reference a method or field of a
class. Additionally ‘static‘ is a common term in some pro-
gramming languages such as Java. Based on the Novielli
et al. [10] suggestion, and in the previous work [14, 8], we
decided to change the default SentiStrength dictionary to
evaluate our data set better.

446

Sentiment Analysis in Software Engineering: Using
any sentiment analysis tool without any change will, as we
had introduced, result in an inadequate analysis. For that
matter, we decided to change the default SentiStrenth dic-
tionary to address the software developer field better. We
performed this process by checking the results of the clas-
sification manually and removing the common terms from
the dictionary, classified as negative or positive.The Table
1 shows the modifications we have made in the dictionary;
the words in the first column, Words, are the words that we
have modified; the second column, Original Value, shows
the value that the words have in the original SentiStrength
dictionary; the third column shows the new values that we
had set to the words, and the last column shows a short ex-
planation why we had changed that group of words.

Words Original Value Change Reason
broke*, fail -2 0 Usually is a reference to the build

status and has no sentiment
bug, defect, error,
missing, mock,

-2 0 No sentiment related just reference
fact

constrain*, drop,
kill, static

-2 0 Common term in development with
no sentiment expressed

Default, exit -2 0 A common term in development
with no sentiment expressed

garbage, vagrant,
storm

-3 0 A common term in java projects
with no sentiment expressed

revert -2 0 Common term across GitHub social
network

not working -4 0 Idiomatic expression that most of
the times have no sentiment ex-
pressed

Table 1: SentiStrength dictionary changes

Mood Variation: To evaluate the influences of others in
the developer mood, we decided to use a metric called sub-
jective well-being initially presented by Bollen et al. [3] and
used in the Twitter social network to measure mood propa-
gation. We used the technique to calculate the state of devel-
oper sentiment by analyzing a window of time. The subjec-
tive well-being (S(d)) of a developer is given by subtracting
the number of positive comments from the number of nega-
tive comments, divided by the number of positive comments
plus the number of negative comments. This way, the S(d)
value variates from -1 to 1; Equation 1 shows the S(d) equa-
tion. Once S(d) gives the developer sentiment on a specific
window of time, we use the metric to evaluate the senti-
ment change by calculating the difference between before
(Sb(d)) and after (Sa(d)) another developer comment on a
pull request. The metric of mood variation(SC(d)) variates
between -2 and 2, and Equation 2 presents its equation. As
previously mentioned, we cannot establish a strong causal
relationship between a comment and the developer mood
variation, given the possibility of external influences. How-
ever, by analyzing different windows of time (1, 2, 4, 8
hours and one day) we intend to reduce or mitigate such
a problem.

S(d) = Np(d)−Nn(d)

Np(d) +Nn(d)
(1)

SC(d) = Sb(d)− Sa(d) (2)

3 Experiment Design
This section presents the steps taken in our experiment,

starting with a short presentation of our research questions,
followed by data set and finally the sentiment mining.

Goal and research questions: As we previously men-
tioned the primary goal of this paper is to analyze the im-
pact of feedback on GitHub in developers mood and how
the influence behaves in time. Therefore, we formulate the
following research questions (RQ):

RQ1: Can a developer change the sentiment of another
developer with a pull request comment?

RQ2: Does the role of the developer in the project
change the intensity of influence he/she has on the senti-
ment of another developer?

RQ3: How does the influence behave over time? Does
the behavior change depending on the comment sentiment?

RQ4: Do negative comments on the first pull request
lead to quitting the project?

Data Set: We collected the data from the GitHub API.
We first obtained the most popular java projects from the
API 2. GitHub limits the search to the first 1,000 results. To
get the most popular projects, we sorted the results by stars.
We decided to remove all the projects with less than 1,000
lines of java code because they were probably documenta-
tion or experimental projects. After filtering out projects
smaller than 1,000 lines of code, 930 projects remained on
the data set. After filtering the projects, we collected the
project interactions, pull requests, pull request comments,
pull request reviews and commits from the GitHub API.
Then we filtered the 100 most popular projects among the
930 filtered in the first filter to investigate more deeply. At
the end of the data collection, our data set contained 100
projects, 555,665 commits, 78,475 pull requests, 226,446
reviews, 240,060 pull comments and 15,865 developers.

Sentiment mining: After collecting the data, we applied
the SentiStrenth [16] with the changes in the dictionary we
presented previously, in all the interactions. We noted that
the developers express less sentiment on the commits inter-
actions, (15.52% of the commits have some sentiment ex-
pressed), on the other hand, 54.32% of the pull comments
express some emotion Figure 2 shows the percentage for all
the kinds of interactions. In all the cases the rate of positive
sentiment is more significant than the rate of negative, on
pull comments 40.5% are positive against 13.82% negative,
and in the commits, the difference is small (7.86% positive,

2https://developer.github.com/v3/projects/

447

Figure 2: Sentiment distributions in different interactions.

Figure 3: Sentiment by interaction.

and 7.66% negative). Figure 3 shows the percentage for all
the interactions.

We noted that the most sentimental interaction is the
pulls comments because this is where the users express their
sentiments the most (54.32%). We expected this result,
given the nature of the interaction once it represents a com-
mentary from a developer on another developers patch of
code. The commenter can agree or disagree with the change
and can also request changes which sometimes starts a dis-
cussion. We believe this interaction can be a trigger for
changing the humor of the developer submitting the code
to integrate and we explore this hypothesis in the section 4.

4 Results
This section presents the results of the experiment each

result is related to an RQ.
Mood Variation : To answer the RQ1 and RQ2, we ana-

lyzed the subjective well-being change that was previously
present in the equation, for 1, 2, 4, 8 hours and one day,
using a comment in a developer’s pull request as a refer-
ence; this way, we can evaluate whether or not the comment

Role %
ANY 31.16%
COLLABORATOR 30.51%
CONTRIBUTOR 31.50%
MEMBER 32.06%
NONE 29.77%
OWNER 31.62%

Table 2: Relevant sentiment change One hour time window

Figure 4: Sentiment variation before and after interaction
with ANY developer, in the one-hour time window.

had an influence and how the influence will behave in time.
Next, we discussed the results.

In a 1 hours time window, we noted 31.15% of signifi-
cant mood change (abs(SC(d)) > 1) in general. We also
explored this sentiment change with the role of the com-
menter, but the role of the commenter does not change the
influence significantly, where the smaller influence is from
the role none (commenter no association with the reposi-
tory) 29.77% and the highest is from member (commenter
is a member of the organization that owns the repository)
32.06%. Table 2 shows the values for all the roles. We
also analyzed how the sentiment changed based on the sen-
timent expressed by the commenter. This time, we analysed
the positive and negative sentiments expressed before and
after a comment. Figure 4 shows that receiving a positive
comment the increased the percentage of positive interac-
tion from 37.85% to 41.55% and receiving a negative com-
ment increased the percentage of negative interaction from
11.94% to 14.35% ignoring the role of the commenter.

To answer RQ3, we studied how the influences behaved
over time. We noted that as time passed, the notable pos-
sible influence reduced, as we show in Figure 5. The blue
line shows the relevant mood variation (abs(SC(d)) > 1)
for each time window when receiving a neutral comment,
the red shows the same when receiving negative comments,
and the green line when receiving positive comments. We
found that as time passed, the influence reduced in all the
cases. The negative comments had the bigger influence in
all analyzed time windows, with an average of 2,93 percent-
age points bigger than general.

To address RQ4, we explored the consequences of a
negative comment on the first pull request of a developer.

448

Figure 5: Relevant sentiment change by time since com-
ment.

Figure 6: Percent of Once Contributor, with negative com-
ment on the first Pull Request by KLoc

On average, 70% of the pull requests came from a con-
tributor who would never contribute again to the repos-
itory (once-contributors). We related this to receiving a
negative comment on the first contribution (pull request)
and also to the project characteristics, KLoc, number of
contributors, and stargazers. We found that as the project
grew in KLoc(Thousand lines of code) the number on once-
contributors with negative comments on the first pull re-
quest grew, from 10.97% on projects with less than 30.57
KLoc to 24.02% on projects bigger than 197.78 KLoc, we
present the progression in Figure 6 in the bars, and the line
shows the percent of projects in the respective KLoc range,
we did not find a relationship between number of contribu-
tors or stargazers with the percentage of once-contributors.

Research Questions: In this paper, we addressed the
following research questions:

RQ1: Can a developer change the sentiment of an-
other developer with a pull request comment? The se-
lected metric presented 31.16% of significant sentiment
change when considering one hour before and after a com-
ment.

RQ2: Does the role of the commenter in the project
change the intensity of influence he/she has on the senti-
ment of another developer?

The role of the commenter had not had a significant im-
pact on the sentiment influence, with a difference of only
1.83 percentage points between the most influencer when
the commenter was the owner of the project and the least

influencer when the commenter has no relationship with the
project.

RQ3: How does the influence behave over time? Does
the behavior change depending on the comment senti-
ment?

In general, the influence reduces as the time pass, from
31.15% in one hour to 18.16% in one day. The behav-
ior does not change, depending on the sentiment of the
comment, but we noted the biggest influence from negative
comments in all the analyzed time windows.

RQ4: Do negative comments on the first Pull Request
lead to quitting the project?

Only 14.85% of the developers with a single Pull request
received at least one negative comment on the pull request.
On the other hand, we found a weak correlation with the
size of the project in lines of code and the number of de-
veloper with only one contribution that received at least one
negative comment, where the percentage grew from 10.97%
on projects with less then 34.57k lines of code, to 24.02%
on projects bigger than 197.78k lines of code.

5 Related Work
This section describes previous works regarding senti-

ment analysis on software development interactions and a
short comparison with the current paper.

Robinson et al. [12] performed data analysis on open
source projects looking to understand how behavior change
can change developers sentiment, and they analyzed 2
points, behavior change and routine change and their re-
lationship with sentiment change. They used a regres-
sion model to search for the relations ship between de-
veloper sentiment change and developer behavior change.
They hypothesized that routine change would change de-
veloper sentiment positively or negatively. They evalu-
ated 124 GitHub projects also performing intra-project and
multi-project analysis and their results shown that routine
change had a positive impact on the developer sentiment
when evaluation multi-project approach and negative senti-
ment change were related to behavior change.

Islam and Zibran [8] performed an analysis of 50
projects with more than 490 thousand commits messages,
searching for sentiment variations over the commits mes-
sages. They searched for a relationship between, weekday,
day hour, commits message length, and task type related
to the developer sentiment variation, they used hierarchi-
cal algorithm clustering to perform clustering and used a
statistical approach to support their findings. They found
relationships between the task type and the developer sen-
timent variation; bug fix commits have more positive senti-
ment than refactoring tasks. Also more significant commits
message express more sentiment than small commit mes-
sages, weekdays and hours of that day did not show any sig-
nificant relationship with developer sentiment. Souza and

449

Silva [14] studied the sentiment related to building status,
evaluated 1,262 projects from GitHub, and more than 609k
builds, they found that the commit message following bro-
ken builds has a week correlation with negative sentiment.

Sinha et al. [13] analyzed the sentiments of the developer
in the commits messages; their research focuses on finding
the sentiments variations only into commits and relate this
with the day of the week and the size of the commit. They
found that a low percentage of commits has sentiment ex-
pressed, and there are more negative than positive sentiment
expressed (5% positive and 14% negative), they also found
the worst day in sentiment level (higher volume of negative
sentiment) on Tuesday.

None of the related works explored the sentiment con-
tagion studying the influence of other developers in the de-
velopers’ mood; also, few papers analyzed the sentiment
over the Pull Request comments, which is the proper place
to promote discussion related to code. Therefore, in this
paper, we take the challenge of investigating how other de-
velopers’ comments may influence the developers’ mood.

6 Conclusions and Future Work
This paper analyzed the impact of feedback on devel-

opers’ mood when submitting pull requests. Our results
showed that developers feedback might influence another
developers’ mood; negative comments have bigger impacts
on mood variation; and as project grows in lines of code, the
bigger is the impact of negative comments on the first con-
tribution, and it might result in not contributing again with
the same repository. We believe our results will help project
leaders and companies create conduct codes to guide devel-
oper feedback constructively.

In future works, we intend to explore deeper the con-
sequences of politeness and impoliteness in the success of
open source projects and communities’ growth or decline
and its relationship with the maintainer’s sentiment expres-
sion. We also intend to use the relevance of developers in
a community instead of the rule they have in the project
they are commenting or contributing. We believe that de-
veloper relevance has a relationship with the impact it can
cause, independent of the rule they have in the project they
are contributing.

Acknowledgments
This research was partially supported by CAPES,

CNPq, FAPEMIG, and FIP-PUC Minas

References
[1] Comment author association — github developer guide. URL

https://developer.github.com/v4/reference/enum/
commentauthorassociation/.

[2] Github glossary - user documentation. URL
https://help.github.com/articles/github-glossary/.

[3] Johan Bollen, Bruno Gonçalves, Guangchen Ruan, and Huina

Mao. Happiness is assortative in online social networks. CoRR,
abs/1103.0784, 2011.

[4] Munmun De Choudhury and Scott Counts. Understanding affect in
the workplace via social media. In Proceedings of the 2013 Confer-
ence on Computer Supported Cooperative Work, CSCW ’13, pages
303–316, 2013. ISBN 978-1-4503-1331-5.

[5] A. Fountaine and B. Sharif. Emotional awareness in software devel-
opment: Theory and measurement. In 2017 IEEE/ACM 2nd Inter-
national Workshop on Emotion Awareness in Software Engineering
(SEmotion), pages 28–31, 2017.

[6] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. Happy
software developers solve problems better: psychological measure-
ments in empirical software engineering. PeerJ, 2:e289, March 2014.
ISSN 2167-8359.

[7] Emitza Guzman and Bernd Bruegge. Towards emotional awareness
in software development teams. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 671–674, 2013. ISBN 978-1-4503-2237-9.

[8] M. R. Islam and M. F. Zibran. Towards understanding and exploit-
ing developers’ emotional variations in software engineering. In
2016 IEEE 14th International Conference on Software Engineering
Research, Management and Applications (SERA), pages 185–192,
2016.

[9] Mika Mäntylä, Bram Adams, Giuseppe Destefanis, Daniel Graziotin,
and Marco Ortu. Mining valence, arousal, and dominance: Possi-
bilities for detecting burnout and productivity? In Proceedings of
the 13th International Conference on Mining Software Repositories,
MSR ’16, pages 247–258, 2016. ISBN 978-1-4503-4186-8.

[10] Nicole Novielli, Fabio Calefato, and Filippo Lanubile. The chal-
lenges of sentiment detection in the social programmer ecosystem.
In Proc. of the 7th International Workshop on Social Software Engi-
neering, SSE 2015, pages 33–40, 2015. ISBN 978-1-4503-3818-9.

[11] Filipe Nunes Ribeiro, Matheus Araújo, Pollyanna Gonçalves,
Fabrı́cio Benevenuto, and Marcos André Gonçalves. A bench-
mark comparison of state-of-the-practice sentiment analysis meth-
ods. CoRR, abs/1512.01818, 2015.

[12] W. N. Robinson, T. Deng, and Z. Qi. Developer behavior and sen-
timent from data mining open source repositories. In 2016 49th
Hawaii International Conference on System Sciences (HICSS), pages
3729–3738, 2016.

[13] V. Sinha, A. Lazar, and B. Sharif. Analyzing developer sentiment in
commit logs. In 2016 IEEE/ACM 13th Working Conference on Min-
ing Software Repositories (MSR), pages 520–523, May 2016. doi:
10.1109/MSR.2016.069.

[14] R. Souza and B. Silva. Sentiment analysis of travis ci builds. In
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pages 459–462, 2017.

[15] Robert S. HuckmanBradley Staats. The hidden ben-
efits of keeping teams intact, Aug 2014. URL
https://hbr.org/2013/12/the-hidden-benefits-of-keeping
-teams-intact.

[16] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and
Arvid Kappas. Sentiment in short strength detection informal text.
J. Am. Soc. Inf. Sci. Technol., 61(12):2544–2558, December 2010.
ISSN 1532-2882.

[17] Valley Voices. Developers don’t care how
much you pay them, Feb 2017. URL
https://www.forbes.com/sites/valleyvoices/2017/02/09/de
velopers-dont-care-how-much-you-pay-them/.

450

Do Scale Type Techniques Identify Problems that
Affect User eXperience?

User Experience Evaluation of a Mobile Application

Leonardo Marques, Walter Nakamura, Natasha Valentim, Luis Rivero and Tayana Conte
Institute of Computing

Federal University of Amazonas, UFAM
Manaus, Brazil

{lcm, walter, natashavalentim, luisrivero, tayana}@icomp.ufam.edu.br

Abstract—User experience (UX) is a quality aspect of an

application that considers the emotions evoked by the system.

There are several types of UX evaluation methods, such as scales,

interviews, user monitoring, among others methods. However,

there is still not enough information regarding if and in which

contexts these methods are more suitable. This paper focuses on

finding more information about the feasibility of applying scale-

type methods for the UX evaluation in interactive systems. Thus,

we carried out a UX evaluation on the Edmodo educational mobile

application employing two scale-type methods: AttrakDiff and

Hedonic Utility Scale. These methods were chosen after a selection

process applying inclusion and exclusion criteria. The results

indicate that it is possible to evaluate the quality of an application

at a low cost. However, it is necessary to adapt these methods to

provide a more complete report of the UX, allowing users to

subjectively report their experiences and, consequently, identify

the issues that affected the UX.

Keywords-User Experience; UX; AttrakDiff; Hedonic Utility

Scale; Edmodo; comparative study;

I. INTRODUCTION
Technological evolution has enabled the emergence of new

interaction paradigms, new technologies and new types of
software [1]. This evolution has changed the way users interact
and perceive interactive products. Hassenzahl and Tractinsky [2]
have identified that pragmatic factors such as functionality and
usability are not enough to satisfy the desire of customers
seeking innovative products and products that meet their
expectations. According to Bargas-Avila and Hornbæk [3],
usability is too focused on the efficiency and the
accomplishment of tasks, with a need for more comprehensive
notions of quality. As a result, User eXperience has emerged as
a concept of quality of use that, besides involving the aspects
mentioned above, covers hedonic qualities or emotional aspects
resulting from the use of an application [3].

Several UX evaluation methods have been proposed in the
literature. Vermeeren et al. [4] carried out a survey on the UX
evaluation methods used in the academy and in industry and
identified 96 methods. Despite the large number of methods,
there is a need to verify their applicability with regards to the
resources, required skills to apply them, and the perceived ease
of use of these methods [3].

This paper presents a comparison between two scale-type
methods and the indications of their feasibility in the context of
evaluating a mobile educational application called Edmodo. The
UX evaluation of Edmodo was suggested by a University that
was analyzing the possibility of using educational technologies
in the classroom. Considering that UX is one of the aspects that
can impact the acceptance of adopting teaching and learning
technologies [5], we decided to carry out a UX evaluation to
verify if Edmodo evoked a positive UX in its mobile version.

In order to select the UX evaluation methods, we carried out
a selection process by means of inclusion and exclusion criteria,
which resulted in two scale-type techniques: AttrakDiff [7][16]
and the reduced form of the Hedonic Utility Scale (HED/UT)
[8]. We compared these methods in terms of usefulness and ease
of use, raising information to verify their feasibility for assessing
mobile applications. The results allowed us to identify the
positive and negative aspects of the methods employed, besides
presenting opportunities for improvement in the application.

The remainder of this paper is organized as follows. Section
II presents concepts related to UX. Section III describes the use
of UX evaluation methods presenting the evaluated application,
the selection process and the study carried out. Section IV
presents the results obtained in this study and the discussions.
Finally, Section V concludes the paper.

II. BACKGROUND
ISO 9241-210 [9] defines UX as "person's perceptions and

responses that result from the use and/or anticipated use of a
product, system or service." Hassenzahl and Tractinsky [2]
suggest that UX is a consequence of the user’s internal state
(predispositions, expectations, needs, etc.), the characteristics of
the projected system (complexity, usability) and the context
where the interaction occurs (organization, users, among others).

UX evaluation plays an important role in the development of
interactive applications. Through the UX evaluation it is
possible to identify how users apply, perceive and learn these
applications, allowing the applications to evolve and adapt to
user’s expectations [10]. Thus, it is possible to identify potential
problems in the use of applications and their causes, as well as
to obtain suggestions for their improvement. There are several
methods for evaluating UX, which can be categorized into three

DOI reference number: 10.18293/SEKE2018-161

451

types [11]: (i) written report, which consists of the evaluation of
the experience through scales, forms and questionnaires; (ii) oral
report, in which participants report their experiences through
interviews or verbal methods; and (iii) observation/monitoring,
in which participants are observed or use sensors to monitor their
responses while perform activities related to the use of the
system.

Written reporting methods, such as scale-type methods, have
been widely used due to their low cost, ease of use, and the
possibility of collecting data from both positive and negative
experiences [12]. Examples of this type of method are
questionnaires that use scales with semantic differentials, i.e.,
scales composed of pairs of words that are opposing adjectives,
such as "simple/complicated" and "pleasant/unpleasant".
However, there is little information regarding the positive and
negative aspects of these methods. Thus, we selected methods
within this category to: (a) analyze what type of outcomes are
produced by these methods; (b) analyze if scales are sufficient
to identify problems that have affected the UX; and (c) verify the
feasibility of these methods to evaluate a mobile application.

III. APPLYING USER EXPERIENCE ASSESSMENT METHODS

A. Goals and Metrics

Table 1 presents the goal of the study according to the GQM
(Goal Question Metric) paradigm, which allows to define and
evaluate objectives in the stage of goal setting [13].

TABLE 1. GOAL OF THE STUDY ACCORDING TO THE GQM PARADIGM.

Analyze The AttrakDiff and Hedonic Utility Scale
UX evaluation methods

For the purpose of characterizing.
With respect to participants’ perception in terms of

Usefulness, Ease of Use and intention to use
each method.

From the point of view of users and researchers.
In the Context of a UX evaluation of a real application in a

Computer Science Introduction class.

The UX problems were verified through the number of tasks
performed successfully in Edmodo as well as through
difficulties experienced by the participants. The utility, ease of
use and intention to use the methods were obtained through the
TAM3 (Technology Acceptance Model) [14].

B. UX Method Selection Process

We applied the selection process on the UX evaluation
methods list identified by Rivero and Conte [11], seeking to
identify UX evaluation methods for mobile applications. This
selection process consisted of two refinement steps.

The first refinement was based on the criteria described in
Table 2. For each criterion, there is a description of what was
considered for the exclusion. First, we considered only the
methods available for consultation (EC2). After, we applied the
other exclusion criteria, resulting in a set of 18 UX evaluation
methods. The detailed specification of the criteria used for
exclusion can be found in the technical report [6]

1 http://www.allaboutux.org/all-methods

TABLE 2. CRITERIA FOR FILTERING THE UX EVALUATION METHODS.

Criteria Description

EC1 (Type of method) Methods characterized only as tools.
EC2 (Availability) Methods not available for free or unavailable.
EC3 (Data source) Methods whose data sources are not provided

by users.
EC4 (Location) Methods whose application is not possible in

controlled environments.
EC5 (Type of Assessed

Product)
Methods that cannot be applied to mobile app
evaluation.

EC6 (Type of Assessed

Artifact)
Methods whose evaluated artifact are not
functional prototypes or final applications.

EC7 (Assessed Period

of Experience)
Methods whose UX evaluation occurs before
or during the use of the system.

Among the 18 selected methods, we queried each method in
the AllAboutUX 1 Website in order to carry out the second
refinement. This website presents, for each method, their
characteristics and what is needed to use them. Some methods,
such as the "Group-based expert walkthrough" [15] requires
UX experts to be applied. Given that the UX of Edmodo would
be assessed by users and not experts, we discarded methods that
require experts to evaluate. We also discarded those developed
for specific contexts, such as the "Attrak-Work Questionnaire"
method [16], which was developed for the context of news and
journalism. At the end of the second refinement, we selected
three methods: AttrakDiff [7][16], Hedonic Utility Scale
(HED/UT) [8] and Self-Assessment Manikin (SAM) [17].

We carried out a pilot study using the three selected methods
to verify the data collected by each method and the outcomes
that each one generated. The results indicated that SAM is a
method that evaluates only the hedonic aspects of the
experience, thus it would be unfair to compare it with
AttrakDiff or HED/UT, which assess both pragmatic and
hedonic aspects of the user experience. Thus, at the end of this
process, we selected the AttrakDiff and HED/UT methods.

The AttrakDiff method consists of 28 pairs of words that
evaluate pragmatic, hedonic and attractiveness aspects, whereas
the HED/UT method, in its reduced form, consists of 12 pairs
of words that evaluate the pragmatic and hedonic aspects.
Regarding HED/UT, we applied its reduced version because the
results obtained in [8] showed that its 12 pairs of words are
sufficient to verify the quality, making it viable to measure the
UX. The pairs of words of both methods are organized on a
seven-point scale, in which the participant performs the UX
evaluation by marking the closest point to the adjective that best
characterizes his experience of use (see Figure 1).

C. Evaluated Mobile Application

We decided to evaluate the Edmodo application due to the
university's suggestion to address its feasibility, while no studies
related to the UX evaluation of this application were found.
Edmodo is a Learning Management System (LMS) created in
2008 to manage learning activities. Its popularity among
educational institutions has risen and it has more than 80 million
users and more than 50 million downloads in its mobile version.

The evaluation of LMSs is a critical issue, as it can affect
students' performance, making them spend more time trying to

452

understand how to use these environments than learning the
educational content [18][19].

Figure 1. (A) AttrakDiff Questionnaire, (B) HED/UT Questionnaire.

D. Execution

We conducted the study with 38 volunteer students from the
Federal University of Amazonas, who participated in an
Introduction to Computing class. This class was partially online
and used an LMS in the teaching/learning process.

For the execution of the study, we accommodated the
participants in a laboratory and divided them into two groups,
balanced according to their previous experience with the
Edmodo app. One group used the AttrakDiff and the other
group used HED/UT (details in the technical report [6]).

Initially, participants received a Consent Form, and then,
they received: (a) a form for reporting their difficulties when
using Edmodo, (b) the AttrakDiff and HED/UT, (c) the TAM3
questionnaire, and (d) a questionnaire with open questions
related to the use of the UX evaluation methods.

Before performing the UX evaluation, we made a brief
explanation about Edmodo and its functionalities. After, we
asked the participants to download the application. All the
participants used Android or iOS devices, in which a prior
check was made to ensure that the execution flow of the
activities in the application would not be changed.

After explaining the application, the participants received a
schedule of activities. According to Nielsen [20], the basic rule
for selecting a set of activities is that it must be chosen in such
a way that they are as representative as possible. Thus, this
script consisted of the following activities: (i) create a student
account in Edmodo and enter the group through the access code,
made available by the moderators during the study, (ii) update
the profile photo, (iii) access the group library and download a
file for reading, (iv) answer an activity containing two questions
related to the text of the downloaded file and (v) attach a file
and send it to the teacher.

At the end of the activities, the participants received a form
about the difficulties encountered during the interaction with
Edmodo in order to better understand the quantitative results of
the UX evaluation. Then, each group received a UX evaluation
method, in which each participant was instructed on how to
perform the evaluation. The form about the difficulties and the
number of tasks performed successfully in Edmodo was
verified in order to identify the UX problems.

As the participants finished evaluating the application, they
received the questionnaire based on the TAM3. The TAM3 is a
model used to verify the acceptance of a technology that, among
other dimensions, considers utility, ease of use and intention to

use. Participants were instructed to use this questionnaire to
evaluate the UX evaluation method they used. We also attached
to the TAM3-based questionnaire, a questionnaire containing
five open questions related to their experiences with the UX
evaluation method in order to better understand the aspects that
made each method easy or difficult to use.

IV. RESULTS AND DISCUSSIONS
In order to make the comparison possible, we tried to equate

both methods, since they evaluate the UX in different
dimensions. AttrakDiff evaluates UX in four dimensions:
Pragmatic Quality (PQ), Hedonic Quality/Stimulus (HQ/S),
Hedonic Quality/Identity (HQ/I) and Attractiveness (ATT),
while HED/UT evaluates two dimensions: Utility, which
corresponds to the Pragmatic dimension, and Hedonic.

Given that the pragmatic dimensions of both methods are
equivalent (evaluate the same experiences), we searched for
definitions that qualified what was evaluated in the hedonic
dimension of each method to verify if they were equivalent.
According to Voss et al. [21], the hedonic dimension of
HED/UT is the result of sensations derived from the experience
of using products. According to Väätäjä et al. [16], the HQ/S
dimension of AttrakDiff is related to personal development, that
is, curiosity, personal growth, skill development, and the
proliferation of knowledge, i.e., feelings and sensations caused
by the use of the application. Thus, the AttrakDiff HQ/S was
considered equivalent to the HED/UT hedonic dimension. Thus,
we considered only the Pragmatic and QH/E dimensions of
AttrakDiff, and the Utility and Hedonic dimensions of HED/UT.

To compare the methods, we organized the data by factors.
Factor 1 relates to the pragmatic dimension, while Factor 2
represents the hedonic dimension. The following subsections
describe the results of the UX evaluation of Edmodo and the
results regarding the methods used to evaluate the its UX.

A. Results and Analysis of the UX Evaluation on Edmodo

Table 3 presents the score for each Factor per method.
According to Distefano et al. [22], when Factors are not defined
by the same number of items, which is the case of the Factors of
both methods, it is recommended to calculate the mean, making
it possible to compare them with each other. The mean is also
recommended by Sullivan and Artino Jr [23] when measuring
less concrete concepts, such as satisfaction, where a single
research item is not likely to capture the assessed concept
completely. In order to obtain the Factor's scores, first we
calculated the mean of each participant's scores per Factor. This
mean was based on the score given by each participant in each
item of the method's dimension. Then, we obtained the score of
each Factor through the mean of the scores of each previously
calculated participant.

Regarding Factor 1, the scores indicate that participants who
evaluated UX using the HED/UT evaluated more positively the
experience regarding the ease of use of Edmodo compared to
those using AttrakDiff. Given that the scale ranges from 1 to 7,
the UX would be positive if the scores were greater than or equal
to 5. Thus, the results indicated that the participants considered
that Edmodo provides a positive UX, since the lowest score was
close to 5. Regarding Factor 2, the group that used AttrakDiff

453

felt it neutral, i.e., Edmodo was not considered bad, but it did not
stimulate users so much. It indicates that Edmodo needs to
implement improvements to stimulate and captivate users. The
group that used HED/UT considered Edmodo’s UX positive.

TABLE 3. FACTORS’ SCORE ASSESSED BY THE ATTRAKDIFF AND HED/UT.

Factor 1 (Pragmatic) Factor 2 (Hedonic)

Method AttrakDiff HED/UT AttrakDiff HED/UT

Score 4,8 5,9 4,4 5,5
The responses provided by the participants in the form about

the difficulties faced when using Edmodo reflected these scores.
From a total of 38 participants, 18 reported having had difficulty
finding the group's Library in Edmodo. This is a problem that
affects the use of the application, being reflected in the UX
evaluation, where most participants considered that Edmodo is
very technical (AttrakDiff) and impractical (HED/UT). Other
problems were also pointed out, such as the mix of words in
Portuguese and English on the interface. These problems were
only possible to be identified through the form on the difficulties
faced in Edmodo, because the scales do not allow to identify the
problems that affected the UX in this level of specification.

B. Results Regarding the UX Evaluation Methods

In order to verify the participants’ perception regarding the
usefulness, ease of use and intention to use, we applied the
TAM3-based questionnaire. We used the median as a
statistically significant measure for ordinal scales [24] with the
same number of items. Table 4 shows the description of the
items that compose each of the dimensions evaluated by TAM3.

TABLE 4. TAM3-BASED QUESTIONNAIRE ITEMS.

Description of the items on “Perceived Usefulness” (PU)
PU1 Using the method improves my performance by reporting my

experience with the application.
PU2 Using the method improves my productivity by reporting my

experience with the application.
PU3 Using the method allows me to fully report the aspects of my

experience.
PU4 I find the method useful for reporting my experience with the

application.
Description of the items on “Perceived Ease of Use” (PEOU)

PEOU1 The method was clear and easy to understand.
PEOU2 Using the method did not require much mental effort.
PEOU3 I think the method is easy to use.

PEOU4
I find it easy to report my experience with the application using
the method.

Description of the items on “Intention to Use” (IU)

IU1
Assuming I have access to the method, I plan to use it to evaluate
my experience with an application.

IU2
Given that I have access to the method, I predict that I would use
it to evaluate my experience with an application.

IU3
I plan to use the method to evaluate my experience with an app
next month.

Table 5 shows the median values for each TAM3 item. Based
on these data, we verified the items that had some variation,
since these indicate which of the methods was better.

The items that had variations were PU2, PEOU1, PEOU4
and IU2. These items show that HED/UT had a better perception
regarding AttrakDiff by the participants, indicating that short
methods improve productivity (PU2), methods that use less
formal terms are easier to use (PEOU1 and PEOU4), and these
aspects influence intention to use (IU2).

TABLE 5. MEDIAN OF EACH ITEM PER METHOD.

 AttrakDiff HED/UT

Perceived Usefulness (PU)

PU1 5 5
PU2 5 6
PU3 5 5
PU4 5 and 6 6

Perceived Ease of Use (PEOU)

PEOU1 5 6
PEOU2 6 6
PEOU3 6 6
PEOU4 5 and 6 7

Intention to Use (IU)

IU1 5 5
IU2 5 6
IU3 4 4

The results of the questionnaire with open questions about
the UX evaluation methods indicated some opportunities for
improving them. In both methods, some participants reported
that they were not able to express their experiences of use only
through the scales. The methods do not allow them to write the
problem that affected the UX, or in which part of the application
they consider that there should be improvements, which
indicates a limitation of the methods evaluated. One possibility
of improvement would be, for example, the addition of a field so
that the participant can report the difficulties that were not
possible to be described only with the scales.

 “I cannot describe the experience I had” – P08 (HED/UT).

“Not being able to express [the experience] in a more
justified way” – P05 (AttrakDiff).

Regarding AttrakDiff, the participants reported the difficulty
in understanding some terms, considering them formal (see
quote from P12). This may impact the UX report, since the
participant can point out in any way when evaluating. The results
of Table 5 showed that HED/UT had a better perception of users
than AttrakDiff, because it used less formal terms. This could be
an indication that terms that are used daily by users must be used
instead.

"[There were] some formal words that I did not know what
they meant” – P12

Regarding HED/UT, some participants indicated that the
available options were insufficient to evaluate the experience
satisfactorily (see quote from P02). Others reported that just
having to point out an "X" makes the method simple and easy
(see quote from P03).

“Only more options to point out” – P02

“It's simple and easy” – P03

Thus, there are some gaps with regards to the methods used
in the study. Based on the reports, scale methods should be
complemented with questionnaires or a comment field, allowing
the evaluator to describe the difficulties faced and what aspects
were enjoyable when using the application. The lack of these
fields makes it difficult to implement improvements in the
evaluated application, since it is possible only to know that the
application needs improvements, but not which problems users
have faced. In addition, it is recommended to use less formal

454

terms, in order to make the method more comprehensible, as
shown in Table 5.

V. CONCLUSIONS
Performing a UX assessment is important for gaining end-

user insight about a particular application. In this paper, we
showed that the use of scale-type methods allows to perform the
UX evaluation quickly, not making the evaluation process tiring
for the user. In addition, few resources are required to evaluate
the quality of an application, reducing the cost of evaluation,
which makes the use of these methods attractive.

However, this type of method has the limitation of not
collecting qualitative data of the evaluation, i.e. the subjective
information that describes the difficulties encountered by the
users and that could point out the problems of the evaluated
application. This may indicate that only using scale-type
methods may not produce such detailed results, making it
difficult to precisely identify which aspects affected the UX
during the use of the application. For a holistic assessment,
complementation of the scales with the open questions was
positive, making it possible to obtain the positive aspects and the
aspects that need to be improved in the application.

The results of the UX evaluation showed that Edmodo has a
positive UX and that it can be used by teachers as a tool to
support the teaching/learning process. However, some
improvements are needed, such as facilitating the access to the
library and fixing the mix of languages on the interface. By
doing this, the application can have a greater acceptance and
become easier and more enjoyable to use, important aspects to
have a competitive advantage over other applications.

We hope that the results from this study contribute to the
development of UX evaluation techniques that make use of the
positive aspects found in the scale-type methods and that provide
the negative aspects, such as the lack of a field where the
participants can detail their experiences, to obtain a more
complete and detailed UX report. In addition, we hope that
suggestions for improvements can contribute to the
improvement of the Edmodo application.

ACKNOWLEDGMENT
We would like to thank the financial support granted by

UFAM, CNPq through processes numbers 423149/2016-4 and
311494/2017-0, and CAPES through process number
175956/2013.

REFERENCES
[1] C. Rusu, V. Rusu, S. Roncagliolo and C. Gonzaléz, “Usability and User

Experience: What should we care about?”, International Journal of
Information Technologies and Systems Approach, v.8, n.2, p.1-12, 2015.

[2] M. Hassenzahl and N. Tractinsky, “User experience-a research agenda”,
Behaviour & information technology, v.25(2), p.91-97, 2006.

[3] J. A. Bargas-avila and K. Hornbæk, “Old wine in new bottles or novel
challenges: a critical analysis of empirical studies of user experience”,
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, p. 2689-2698, 2011.

[4] A. P. Vermeeren, E. L. C. Law, V. Roto, M. Obrist, J. Hoonhout and K.
Väänänen-Vainio-Mattila, “User experience evaluation methods: current

state and development needs”, In Proc. of the 6th Nordic Conference on
Human-Computer Interaction: Extending Boundaries, p. 521-530, 2010.

[5] N. Harrati, I. Bouchrika, A. Tari and A. Ladjailia, “Exploring user
satisfaction for e-learning systems via usage-based metrics and system
usability scale analysis”, Computers in Human Behavior, 61, 463-471,
2016.

[6] L. Marques, W. T. Nakamura, L. Rivero, N. Valentim and T. Conte, “TR-
USES-2017-0012. Supporting Material for Evaluating User Experience in
a Mobile Education Application". Technical Report of Usability and
Software Engineering Group (USES), 2017 Available in
http://uses.icomp.ufam.edu.br/relatorios-tecnicos.

[7] M. Hassenzahl, M. Burmester and F. Koller, “AttrakDiff: Ein Fragebogen
zur Messung wahrgenommener hedonischer und pragmatischer Qualität”,
In Mensch & Computer, p. 187-196, 2003.

[8] H. Van Der Heijden and L. S. Sørensen, “Measuring attitudes towards
mobile information services: An empirical validation of the HED/UT
scale”, In Proceedings of the European Conference on Information
Systems (ECIS), p. 765-777, 2003.

[9] ISO DIS 9241-210:2010. “Ergonomics of human system interaction -Part
210: Human-centred design for interactive systems”. International
Standardization Organization (ISO). Switzerland.

[10] A. Moreno, A. Seffah, R. Capilla and M. Sanchez-Segura, “HCI practices
for building usable software”, IEEE Computer, (4), p. 100-102, 2013.

[11] L. Rivero and T. Conte, “A systematic mapping study on research
contributions on UX evaluation technologies”, In Proc. of the 16th
Brazilian Symposium on Human Factors in Computing Systems (IHC),
Joinville, Brazil, 2017.

[12] P. Desmet, “Measuring emotion: Development and application of an
instrument to measure emotional responses to products”, In Funology,
Springer Netherlands, p. 111-123, 2005.

[13] V. Basili, G. Caldiera and H. Rombach, “Goal question metric
paradigma”, Encyclopedia of Software Engineering (1), John Wiley &
Sons, New York, p. 528-532, 1994.

[14] V. Venkatesh and H. Bala, “Technology acceptance model 3 and a
research agenda on interventions”. Decision sciences, 39(2), 273-315,
2008.

[15] A. Foelstad, “Group-based Expert Walkthrough”, In R³UEMs: Review,
Report and Refine Usability Evaluation Methods, edited by Scapin, D.
and Law, E., p. 58-60, 2007.

[16] H. Väätäjä, T. Koponen and V. Roto, “Developing practical tools for user
experience evaluation: a case from mobile news journalism”, In European
Conference on Cognitive Ergonomics: Designing beyond the Product-
Understanding Activity and User Experience in Ubiquitous
Environments, p. 23, 2009.

[17] M. M. Bradley and P. J. Lang, “Measuring emotion: the self-assessment
manikin and the semantic differential”. Journal of behavior therapy and
experimental psychiatry, 25(1), p. 49-59, 1994.

[18] R. Lanzilotti, C. Ardito and M. F. Costabile, “eLSE methodology: A
systematic approach to the eLearning systems evaluation”, In Educational
Technology & Society, v. 9, n. 24, p. 42-53, 2006.

[19] H. B. Santoso, M. Schrepp, R. Isal, A. Y. Utomo and B. Priyogi,
“Measuring User Experience of the Student-Centered e-Learning
Environment”, In Journal of Educators Online, v. 13, n. 1, p. 58-79, 2016.

[20] J. Nielsen, “Usability Engineering”, In Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA, 1993.

[21] K. E. Voss, E. R. Spangenberg and B. Grohmann, “Measuring the hedonic
and utilitarian dimensions of consumer attitude”, In Journal of marketing
research, v. 40 (3), p. 310-320, 2003.

[22] C. Distefano, M. Zhu and D. Mindrila, “Understanding and using factor
scores: Considerations for the applied researcher”, In Practical
Assessment, Research & Evaluation, v. 14 (20), p. 1-11, 2009.

[23] G. M. Sullivan and A. R. Artino Jr, “Analyzing and interpreting data from
Likert-type scales”, In Journal of Graduate Medical Education, v. 5, n. 4,
p. 541-542, 2013.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A.
Wesslén, “Experimentation in software engineering”, Springer Science &
Business Media, 1st edition, 2012.

455

A Systematic Approach for Developing Cyber Physical Systems

Xudong He
Florida International University, Miami, USA

Zhijiang Dong
Middle Tennessee State University, Murfreesboro, USA

Yujian Fu
Alabama A & M University, Huntsville, USA

Abstract— Cyber physical systems (CPSs) are pervasive in our
daily life from mobile phones to auto driving cars. CPSs are
inherently complex due to their sophisticated behaviors and thus
difficult to build. In this paper, we propose a systematic approach
to develop CPSs with quality assurance throughout the
development process. A CPS is abstracted and partitioned into a
set of independent executing agents, where each agent is further
refined into a set of behaviors. Each behavior is modeled with a
high level Petri net, called behavior net. The overall behavior of an
agent is modeled by an agent through composing individual
behavior nets. Finally, the overall system behavior is modeled by a
system net through integrating individual agent nets
incrementally. Simulation and model checking can be performed
on individual behavior nets, agent nets, and the final system net.
The resulting system net is systematically mapped to behavior
programs in Java, which are enhanced and extended with domain
specific functionality. A set of property patterns based on behavior
program is developed, which are used to generate runtime
monitors to check behavior program executions. We demonstrate
our approach using a multi-car parking system.

Keywords - cyber physical systems; behavior programming; high
level Petri nets; simulation; model checking, runtime verification

I. INTRODUCTION

Cyber physical systems (CPSs) are pervasive in our daily
life and need to be extremely reliable since they are often safety
critical. CPSs consisting of computation and physical processes
are inherently complex and demonstrate many sophisticated
behaviors including synchronous, asynchronous, distributed,
real-time, discrete, and continuous [1]. In [2], several major
design challenges of CPSs were discussed, including
concurrency and timing, which are intrinsic and critical in CPSs
but are not adequately addressed in current computing
abstractions. While fundamental new technologies are needed
to develop CPSs, improving and integrating existing
technologies including software engineering processes, design
patterns, formal verification, and simulation provides a
potential solution [2].

In [3], we provided a concrete framework to realize the ideas
in [2], where a model driven approach from high level Petri nets
to Java programs was presented. Essential CPS design issues
including concurrency and timing are modeled using high level
Petri nets and analyzed through model checking and simulation.
Assumed environment constraints from hardware devices are
checked during implementation and runtime verification. The
overall framework is shown in Fig. 1. An agent oriented
modeling approach is used to capture CPSs at a high abstraction
level where meaningful computational components and
physical processes with independent behaviors are viewed as
agents and modeled using individual high level Petri nets. An
aspect oriented approach is used to incrementally integrate

system components represented using individual agent nets into
a complete system net. Agent nets and the system nets are

analyzed through simulation as well as model checking. The
above modeling and analysis techniques are supported by tool
chain PIPE+ [4] and SPIN [5]. A systematic translation
approach has been developed, where a set of translation rules is
used to map the individual agent nets into corresponding Java
threads to form the general program structure. A complete Java
program is obtained by combining the translated general
program structure with domain specific program refinements.
The additional refinements are necessary to realize CPSs,
especially domain dependent physical devices. Bounded
symbolic model checking and runtime-time verification are
performed to ensure model level properties and additional
properties are not violated in the implementation. The model
level analysis and implementation level analysis are
complementary. At model level, both safety and liveness
properties can be checked to detect potential errors in the
requirements with environmental assumptions such as the
hardware devices working properly. At the implementation
level, safety properties can be checked through bounded
symbolic model checking and monitoring the actual behavior of
hardware devices.

In this paper, we enhance the above framework with an
additional behavior-oriented modeling approach that
complements the agent-oriented modeling approach. While the
agent-oriented approach provides a higher level system
decomposition driven by concurrency, in which physical
devices and computational processes are abstracted and
modeled as agents; the behavior-oriented approach offers a
finer system decomposition driven by unique non-deterministic
behaviors within each physical device or computation process.
Behaviors provide a more intuitive, natural, and concrete way
to incrementally understand and develop CPSs. This systematic
and multi-level incremental approach helps us to better
understand and develop CPSs. A new set of runtime monitoring
property patterns based on behavior programming are
developed to ensure the dependability of the implementation.

456

hex
Typewritten Text
DOI reference number: 10.18293/SEKE2018-004

Our new contributions include: (1) a systematic approach for
modeling and analyzing CPSs, (2) a new behavior-oriented
approach to incrementally model and analyze CPSs, (3) a
pattern based translation method for generating behavior
programs from behavior nets, and (4) a set of behavior based
runtime monitoring property patterns. Our systematic approach
is demonstrated through a multi robotic car parking system.

II. CYBER PHYSICAL SYSTEM MODELING

To effectively model and analyze the complex behaviors of
CPSs, many modeling techniques have been proposed and
adapted in recent years including formal methods such as
hybrid automata [6] and special graphical modeling languages
such as actor-oriented MoC [7]. High level Petri nets [8] are
well suited to model the complex behaviors of CPSs, especially
combined with well-established software engineering
approaches such as agent-oriented approach and aspect-
oriented approach [3]. However most existing techniques only
provide very general guidelines and lack fine grained rules.
Behavior based modeling [9] provides an intuitive, natural, and
concrete way to incrementally understand and develop CPSs. In
the following sections, we describe a systematic approach in
modeling and analyzing CPSs, which consists of three levels –
a behavior-oriented approach for modeling the internal
behaviors of an agent; an agent-oriented approach to model the
components of a system, and an aspect-oriented approach to
synthesize the whole system. We demonstrate our approach
using a multi robotic car parking system.

A. Modeling Individual Behaviors
In behavior-oriented modeling, the unique behaviors of a

physical device (sensors and actuators) or a computation
process are identified and abstracted from the requirement
specifications and are modeled with individual high level Petri
nets called behavior nets that interact with external
environments. Specifically, we provide the following general
and simple design pattern of a behavior net shown in Fig. 2:

Where place Behavior models a behavior based on a
uniquely identified behavior, which can be further refined by
replacing the place with a more detailed net if needed. The type
of place is a power set of a Cartesian product to capture multiple
instances of behaviors of different objects, where each object
has a unique identifier and other fields to capture important
information. Place Environment models the external
environment that can be detected by an object. Transition
ControlB defines a condition to start the behavior and transition
SuppressB models the end of the behavior. An additional
incoming arc to transition ControlB will be created to indicate
the selection of the behavior when the behavior net is integrated
into an agent net and an outgoing arc from transition SuppressB
will be created to integrate the behavior net.

We demonstrate our behavior-oriented approach in
modeling a multi robotic car parking system. Each robotic car
has two motors, two color sensors, and two IR (infrared
obstacle) sensors. The color sensors are amounted on both front
sides of a robotic car and are used to detect driving lane, two
garage entrances, one exit, and four parking lots (all marked
with unique colors). The IR sensors are amounted at the left
front side (for left turning only) and the front of a robotic car to
detect obstacle such as another robotic car or garage wall. Each
robotic car has the following unique scenarios: (1) detecting an
entrance using color sensors, (2) detecting the exit using color
sensors, (3) searching for lane using color sensors, (4) detecting
the lane using color sensors, (5) detecting obstacles for collision
avoidance using IR sensors, (6) detecting a vacant parking lot
using color sensors and IR sensors, (7) entering a parking lot
using IR sensors, (8) leaving a parking lot using IR sensors, and
(9) exiting the garage. Some of the above scenarios can be
combined to form a more complex scenario such as searching
and detecting lane, and some scenario such as detecting an
entrance can be split into two specific scenarios – detecting
entrance one and detecting entrance two. A screenshot of the
behavior net search for lane (3) created in PIPE+ is shown in
Fig.3. Since there is only one lane, place Lane holds only one
token modeling the lane. Place SearchLane is a power set of
tokens that model individual cars (4 cars in this system). Each
car has a structured type of 3 string fields, the 1st field denotes
car identifier, the 2nd field models a communication socket (not
used in the model), and the 3rd field records a car status that is
used to keep track behavior history and to select follower up
behaviors.

B. Modeling Individual Components
A high level Petri net can be used to capture the structure

and the behavior of a physical or computation process. Petri nets
naturally support synchronous, asynchronous, and distributed
control and data flows. High level Petri nets are capable to
model virtual time through time stamps associated with tokens
and transition constraints representing delays and durations.
Continuous behaviors of physical devices can be abstracted and
discretized using real typed places and the associated
transitions, and can be further refined during implementation.

Each type of physical devices (sensors and actuators) or
computation processes is modeled with an agent net that has its
own independent reactive and/or proactive behavior interacting
with the external environment. Based on the behavior-oriented
modeling, an agent net is obtained by integrating a set of

457

remarkably simple behavior nets through a place Arbitrator,
which is used to control the selection of individual behaviors
within an agent. The complete agent net of a single car after
integrating all 12 behavior nets (the four parking lot behaviors
are separately modeled) is shown in Fig. 4, which contains 22
places, 26 transitions, and over 60 arcs (many are bidirectional).

C. Modeling the Whole System
The overall system net is obtained by integrating individual

agent nets that shows the interaction, communication, and
cooperation among different agents. Synchronized activities are
modeled through new joint transitions with modified
constraints, and asynchronous activities are modeled through
connecting a place in one agent net to a transition in another
agent net. An aspect oriented approach [8] is used to build a
complex model incrementally through weaving individual Petri
nets representing agents capturing physical devices and
computation processes. This aspect oriented approach further
supports system adaptation and evolution, and facilitates
compositional analysis. In this multi robotic car system, all the
cars have the same behaviors and they do not communicate with
each other. Thus the overall system net has the same structure
as that of a single car. However multiple tokens with unique
identifiers representing different cars are added to the place
Arbitrator as part of initial marking.

III. CYBER PHYSICAL SYSTEM ANALYSIS

A CPS system is often a hybrid system consisting of both
continuous hardware devices and discrete computation
processes. In most cases, the only available technique for
continuous components is simulation. High level Petri nets are
executable and thus support simulation of hybrid system
models. Formal verification techniques based on symbolic
reachability analysis is available for sub classes of hybrid
systems such as those can be modeled using linear hybrid
automata [1] where the state transition rates are constants with
restricted checking and updating actions. Our tool PIPE+
supports simple reachability analysis and model checking using

SPIN in addition to simulation.

Model checking performs exhaustive search on finite state
systems and thus is not directly applicable to continuous
systems. However we may be able to model check the bounds
(called barrier certificates) of some continuous state variables.
PIPE+ has a translator that automatically converts a high level
Petri net model to a Promela program in SPIN. During the
translation, each place is translated into a channel with the
place’s type. This kind of conversion may not always work due
to the loss of precision since Promela only supports integer.
There are currently two translation schemes:
(1) Translating each transition as an inline function consisting a
part realizing the precondition – checking the enabling
condition, and another part capturing the post-condition –
transition firing. Each transition is non-deterministically
selected in a loop within a single Promela process;
(2) Translating each transition as a Promela process. Each
translation schema has its own advantages and disadvantages.
The first one seems more efficient in checking safety properties,
while the second one can be used to check liveness property
using strong fairness assumption.

The translated Promela model after adding linear time
temporal logic specifying properties is model checked using
SPIN. Safety and liveness properties are expressed in the
general form []placename(x) and <> placename(x) respectively,
where [] and <> are the temporal operators always and
sometimes in SPIN and x can be a variable or a constant (a
specific token). More complex formulas are defined using
logical connectives.

With regard to behavioral programming, we can define
many generic safety and liveness property patterns using linear
time temporal logic, and then instantiate the patterns using
concrete behaviors and check them using SPIN model checker.
Some generic property patterns include (where B, B1, B2
denote place names representing different behaviors, x and y
denote symbolic tokens):
(1) <>B(x) (G1)
This liveness property states that a behavior B will eventually
active;
(2) [](B(x) → <>!B(x)) (G2)
This liveness property states that an active behavior B will
eventually terminate;
(3) []!(B1(x) ∧ B2(y)) (G3)
This safety property states that two behaviors B1 and B2 cannot
be active at the same time due to the sequential nature of
behavioral programming;
(4) [](B1(x) → <> B2(y)) (G4)
This liveness property states that a behavior B1 leads to
behavior B2.
More sophisticated properties can be defined such as there is
one particular behavior in between two other behaviors.

Here we provide our model checking results of the concrete
properties for in the car parking system.
<>SearchingLane(v1,v2,found) (C1)
 [](SearchingLane(v1,v2,found) →

<>!SearchingLane(v1,v2,found)) (C2)
 []!(DetectingEntO(v1,v2,ent1)∧SearchingLane(v1,v2,found))

458

 (C3)
 [](DetectingEntO(v1,v2,ent1) →

<> SearchingLane(v1,v2,found)) (C4)
Since the concrete values of symbolic variables v1 and v2

are not used in checking the above properties, we use bit type
to abstract their types to reduce the number of states and
instantiate their values according to the initial marking.
Furthermore, these properties are about the same car, we can
restrict our initial marking to one car in place Arbitrator. Also
checking liveness property (C1) can be done more effectively
in SPIN by finding a counter example of its negation:
[] !SearchingLane(v1,v2,found) (C1*)

With the above abstraction and reduction to the resulting
Promela model and using the –DBITSTATE storage option in
SPIN, we have checked all of the above properties as shown in
Table II.

Property Satisfied Depth Stored States Time

C1* No 128 201 5(ms)

C2 Yes 763 554077 895(ms)

C3 Yes 611 550966 923(ms)

C4 Yes 140 540451 897(ms)

IV. MODEL REALIZATION

Design models help us to better understand system features
including functionality, structure, and behavior as well as to
detect and prevent early system development errors. To
leverage the design models to increase productivity and
improve code quality, model driven development based on
UML emerged in the last decade [10], in which UML based
models are translated into programs of object oriented
programming languages. However since there are multiple
UML notations such as class diagram, state machine diagram,
and sequence diagram for representing different aspects of a
system, it is not easy to obtain a coherent set of code. In [3], we
presented a model driven approach to realize our high level
Petri net models, which provided a systematic way of writing
Java programs and establishes the traceability between the
models and resulting programs. Our model driven approach
consists of the general code structure and domain specific
refinement. The general code structure is systematically
generated from the agent models and the overall system model.
However the domain specific refinement requires manual
process in identifying and defining additional features of the
system, especially with regard to the physical devices. Different
from [3] where each agent net was mapped to a thread in Java,
this paper maps each behavior net into a behavior program [11]
that includes 3 template methods: boolean takeControl(),void
action(), and void suppress().

The following translation rules are used to generate the
general code structure from high level Petri net models:

(1) A behavior program is generated for each behavior net, in
which 3 methods are created corresponding to transitions
controlB and suppressB, and place Behavior shown in Fig.3.
The body of each method is empty and requires manual
refinements. The constraint of the transition is attached as
comments for ensuring the correct implementation;

(2) A behavior object class is created, which is to be manually

refined according to the application domain;

(3) The main program is created based on the initial system net
with a single place Arbitrator, and includes the definition of an
arbitrator object and the instantiations of all the behaviors. In a
behavior model, the control flows between behaviors are
enforced through a data field in a behavior object. In behavior
programming, the control flows are based on the priorities of
the behaviors according to their appearances in the behavior
array from low to high. As a result, manual reordering is needed
to ensure correct control flows. Additional manual refinements
are necessary to make the program complete;

(4) A Java project is created to include the above code files.

The above code generation rules are implemented in PIPE+.
A Java project is automatically generated from net by selecting
BehaviorProgram under Export button in File pulldown menu.

The following code segments are automatically generated
by PIPE+ from the multi robotic car parking system model:

package parkingsystem.behavior;
public class DetectEntryOne implements Behavior {

private boolean suppressed = false;
public boolean takeControl() {
//TODO:: to be implemented
//Pre: v.field3=waiting
//Post: c.field1 == v.field1 && c.field2 ==
v.field2 && c.field3 == ent1
}

public void action() {
//TODO:: to be implemented
 suppressed = false;
}

public void suppress() {
//TODO:: to be implemented
//Pre:
//Post:
 suppressed = true;
}

}
...
package parkingsystem.object;
public class Robot {

//TODO:: to be implemented
}
package parkingsystem.main;
public class Main {
//TODO:: to be implemented

 public static void main(String[] args) throws
Exception {
 //TODO:: to be refined
 Robot robot = new Robot();
 ...
 Behavior detectEntryOne = new DetectEntryOne();
 ...
 Behavior[] behavior_array =
 { ...
 detectEntryOne,
 ...
 };
 Arbitrator arbitrator = new
Arbitrator(behavior_array);
 ...

}
}

459

The actual LEGO car parking system implementation
refines the above code templates with domain specific functions
imported from lejos.robotics and lejos.hardware packages.

V. RUNTIME VERIFICATION

Runtime verification is a lightweight formal approach to
detect violation of properties during the execution of a system.
It complements the formal methods applied to system models
such as model checking and theorem proving by detecting
errors either introduced in the process of model implementation
or undetected at model level due to the abstraction of models
and limitations of formal methods.

Runtime verification was adopted in the multi-car parking
system to ensure dependability at implementation level. In our
work, properties are specified using linear temporal logic (LTL)
formula built from the atomic propositions defined using events
written in JavaMop [12]. Monitors are generated from LTL
formulas and woven into system implementation as aspects
using AspectJ [13]. This ensures the independence of system
implementation from monitor – the runtime verification code.

To monitor systems developed with the behavior-oriented
approach, several major events are defined for each behavior:
takecontrolT, takecontrolF, actionR, actionE, and suppress.
Event takecontrolT occurs whenever the method takeControl()
in the behavior-generated code is executed and returns true.
Event takecontrolF is similar to takecontrolT except the value
false is returned. Event actionR occurs whenever the method
action() of the behavior becomes active, while event actionE
occurs whenever the method action() is executed. Event
suppress occurs whenever the method suppress() of the
behavior is executed. To distinguish these events defined for
different behaviors, behavior name is added in the front of these
events. To make the formula more concise, we use the behavior
name only to represent the event actionE. The following
JavaMop code shows an event definition for the behavior
DetectingEntranceOne. Event definitions for other behaviors
are similar.

event DetectingEntranceOne_takecontrolT

after(DetectingEntranceOne bhv) returning(boolean b):

execution(public boolean

DetectingEntranceOne.takecontrol()) && this(bhv) &&

condition(b)

{ //code to be executed when the event occurs;

}
In JavaMOP, the properties to be monitored are specified as

LTL formulae using defined events, and are evaluated against
an execution trace abstracted as a sequence of events. As event
definition implies, an event represents the occurrence of a
concrete action, typically the entry or exit of an action, which
can be calling a method, executing a method, or updating a
primitive variable. Events are atoms when used in a LTL
formula. In a sequence of events, an event atom is true only
when it matches the corresponding event occurrence.

Due to the competition and sequential nature of behaviors
in the multi-car parking system, we divided the properties to be
monitored into two groups: properties of the arbitrator, and

properties on the temporal relations among different behaviors.
The former properties ensure the correctness of the arbitrator.
The latter properties ensure the correct behavior order from the
system specification.

Property patterns of the arbitrator include:

(A1) A behavior b becomes active only if it is selected by the
arbitrator: [] (b_actionR → <*>b_takecontrolT), where <*> is
the past temporal operator previously;

(A2) A behavior b will become active: <> (b_actionR);

(A3) Current behavior b will eventually terminate if the
arbitrator calls its suppress() method: [] (b_suppress → <>
b_action);

(A4) Two behaviors b1 and b2 cannot be active at the same
time: [] ((b1_actionR → !b2_actionR U b1) ˄ (b2_actionR
→ !b1_actionR U b2), where U is the until operator;

(A5) If both behaviors b1 and b2 are ready to become active,
the arbitrator always picks b1 assuming b1 has a higher priority
over b2: [] ((b2_takecontrolT → <*>b1_takecontrolF).

Properties (A2) and (A4) correspond to the generic properties
(G1) and (G3) at the model level. Property (A1) involves some
past concept that cannot be represented in SPIN model checker.
Property (A5) with regard to behavior priorities is dealt with
using an attribute of a token at the model level. Properties (A2)
and (A3) are liveness properties, therefore cannot be verified at
runtime since the monitor doesn’t know when “the good thing”
will happen. To effective monitor these liveness properties, a
timeout event is introduced to make these properties bounded
(thus turning them into safety properties). For example (A2)
becomes (A2’): <> (!timeout U b_actionR).

Property patterns relating different behaviors include:

(B1) An event e1 occurs at most once before another event e2:
[](e1 →○(!e1 U e2)), where ○ is next operator;

(B2) Whenever an event e1 occurs, another event e2 should
occur later: [](e1 → !timeout U e2), which corresponds to
generic property (G4) at the model level;

(B3) Whenever an event e1 occurs, another event e2 must occur
before it: [](e1 → <*> e2);

(B4) An event e1 should never occur before the first occurrence
of another event e2: !e1 U e2;

(B5) An event e1 should never occur after another event e2:
[](e2 → []!e1);

(B6) An event e1 should never occur between event e2 and
event3: [](e2 →!e1 U e3).

An experiment was conducted to verify the effectiveness of
monitoring behavior of the arbitrator and temporal orders of
multiple behaviors. In the experiment, we have two LEGO cars
running the same piece of code in a parking garage with two
different entrances and one exit. The LEGO cars can enter the
parking garage through the same or different entrances. When
entering the garage through entrance one 1, a car can park at lot
1, 2, 3, or 4; otherwise, the car can only park at lot 3 or 4. To
simplify the situation, there is only a one-way lane without

460

circle. Both cars monitor the same set of properties including 5
concrete A type and 6 concrete B type properties. During the
experiments, some properties failed due to the unreliable nature
of color sensors. We also noticed the priorities of the behaviors
have a major impact on the overall system performance:
frequent checking of the readiness of a high priority behavior
has a huge negative impact on the performance of the robotic
cars. Thus it is important to design the monitors carefully to
reduce the performance penalty.

VI. RELATED WORK

Our CPS development approach covers many research
topics including system modeling, system analysis using
simulation and model checking, model driven development,
and runtime verification. Our main contribution is a systematic
CPS development approach by integrating successful existing
technologies. Thus we only discuss several most relevant CPS
development methodologies.

In [14], a general model-based design methodology for
CPSs was proposed. A cook book process was defined, which
contains ten general steps in developing a CPS. The process was
demonstrated through a bouncing ball example. This
methodology is generic and independent of a particular formal
model, and thus is not supported by a tool chain.

In [7], an actor-oriented design approach was described for
modeling CPSs. Actors are used to model components that
communicate through ports. This design approach adopts a
multiple model view and is supported by the modeling and
simulation environment Ptolemy for heterogeneous systems.
Several experimental component modeling modules have been
developed, including discrete events (DEs), continuous time
(CT), finite state machines (FSMs), synchronous reactive (SR),
process networks (PNs), and data flow models. Hybrid system
models are obtained by hierarchically composing CT models
with discrete models such as FSM or DE. Although this
approach provides powerful system modeling and analysis
capabilities, it does not cover code generation and code level
analysis.

In [15], a foundational framework, called VeriDrone, for
reasoning about CPSs at all levels from high-level models to C
code was presented. VeriDrone becomes a built-in library of the
theorem prover CoQ and enables CoQ users define and verify
CPS related properties. This work focuses on formal analysis of
CPS, but does not address how to model and design CPSs.

In [3], we developed an overall framework for developing
CPSs. This framework is model driven and based on a single
formalism – high level Petri nets. This paper extends our
framework in [3] with the following new results: (1) a new
behavior-oriented approach for modeling internal behaviors of
within agents, (2) a net pattern for modeling individual
behaviors, (3) a set of property patterns for specifying
behaviors, (4) a new translation scheme for generating behavior
programs from high level Petri nets, and (5) a set of runtime
property patterns for monitoring behavior program execution.

VII. CONCLUSION

This paper presented a systematic approach for developing

CPSs supported by a tool chain. High level Petri nets are used
for modeling CPSs due to their capability in addressing the
critical features including concurrency and timing of CPSs.
This approach supports a multi-level incremental modeling
consisting of behavior-oriented approach for capturing the
internal behaviors within agents, agent-oriented approach for
system decomposition, and aspect-oriented approach for system
composition. The resulting models are analyzed using
simulation and model checking to detect early design problems.
A translation method for generating general behavior program
structure from high level Petri net models is provided. The
resulting general behavior program is manually refined with
domain specific code to obtain a complete program. This partial
manual process of domain specific refinement requires
creativity in adding details and thus is unavoidable; however is
minimized in our framework. We are currently working on
genetic algorithms to further automate the code refinement
process. Implementation level quality assurance is carried out
using runtime verification. We have developed a set of property
patterns based on behavior programming. We demonstrated our
approach thorough a multi robotic car parking system. We are
currently working on a drone system to gain more experience
with regard to the applicability and scalability of our approach.

ACKNOWLEDGMENT

This work was partially supported by AFRL under FA8750-
15-2-0106. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

REFERENCES
[1] R. Alur: “Principles of Cyber-Physical Systems”, MIT Press, 2015.
[2] E. Lee: “Cyber Physical Systems: Design Challenges”, Proc. of

International Symposium on Object/Component/Service-oriented Real-
Time Distributed Computing, Orlando, FL, 2008, 363-369.

[3] X. He, Z. Dong, H. Yin, Y. Fu: “A Framework for Developing Cyber
Physical Systems”, Proc. of the 29th International Conference on
Software Engineering and Knowledge Engineering, Pittsburgh, July 5-7 ,
2017.

[4] D. Alam and X. He: “A Method to Analyze High Level Petri Nets using
SPIN Model Checker”, Proc. of the 29th Int’l Conf. on Software
Engineering and Knowledge Engineering, Pittsburgh, 2017.

[5] Gerard Holzmann: The SPIN Model Checker, Addison Wesley, 2004.
[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine: “The algorithmic analysis of hybrid
systems”, Theoretical Computer Science, vol. 138, 1995, 3 – 34.

[7] P. Derler, E. Lee, and A. Vincentelli: “Modeling Cyber-Physical
Systems”, Proceedings of the IEE, vol. 100, no.1, 2012, 13 – 28.

[8] X. He: “A Comprehensive Survey of Petri Net Modeling in Software
Engineering”, International Journal of Software Engineering and
Knowledge Engineering, vol. 23, no. 5, 2013, 589-626.

[9] D. Harel, G. Katz, R. Marelly, and A. Marron: “First Steps towards a Wise
Development Environment for Behavioral Models”, International Journal
of Information System Modeling and Design, vol. 7, no. 3, July-
September, 2016.

[10] B. Selic: “The Pragmatics of Model-Driven Development”, IEEE
Software, 2003, 10 – 25.

[11] http://www.lejos.org/nxt/nxj/tutorial/Behaviors/BehaviorProgramming.h
tm.

[12] D. Jin, P. Meredith, C. Lee, and G. Rosu: “JavaMop: Efficient Parametric
Runtime Monitoring Framework”, International Conference on Software
Engineering, Zurich, Switzerland, June 2 – 9, 2012.

[13] The AspectJ Project homepage: https://eclipse.org/aspectj/.
[14] J. Jensen, D. Chang, and E. Lee: “A Model-Based Design Methodology

for Cyber-Physical Systems”, Proc. of the First IEEE Workshop on
Design, Modeling, and Evaluation of Cyber-Physical Systems (CyPhy),
Istanbul, Turkey, 2011.

[15] G. Malecha, D. Ricketts, M. Alvarez, and S. Lerner: “Towards
Foundational Verification of Cyber-physical Systems”, 2016 Science of
Security for Cyber-Physical Systems Workshop (SOSCYPS), 2016.

461

Investigating Technical Debt Folklore: A Replicated

Survey

Nicolli Rios

Department of Computer Science

Federal University of Bahia

Salvador, Brazil

nicollirioss@gmail.com

José Amâncio Macedo Santos

State University of Feira de Santana

Feira de Santana, Brazil

zeamancio@uefs.br

Manoel Mendonça

Department of Computer Science,

Federal University of Bahia

Fraunhofer Project Center @ UFBa

Salvador, Brazil

manoel.mendonca@ufba.br

Rodrigo Oliveira Spínola

PPGCOMP, Salvador University

Fraunhofer Project Center at UFBA

State University of Bahia

Salvador, Brazil

rodrigo.spinola@unifacs.br

Abstract—[Context] The software engineering community

considers the technical debt (TD) concept intuitive, because it

facilitates discussion among team members about problems that

can impact the software development. Personal opinions and

experiences related to the concept have been published in blogs

and other channels without any evaluation, originating the TD

Folklore. [Goal] This work aims to investigate TD Folklore

statements classifying them by agreement and consensus. Besides,

we also investigated if software development experience affects

the perception of developers. [Method] We replicated a survey to

evaluate TD Folklore statements. In the replication, we increased

the number of respondents and added a new research question to

analyze the difference of opinions between participants with and

without software experience. [Results] At total, the survey was

answered by 107 respondents. The list of TD Folklore was

reorganized by the ranking of agreement and consensus indicated

by participants. We also identified that professional experience

does not change the participants´ perception on the concept of

TD for the most cases. [Conclusion] We believe that TD Folklore

can help researchers and practitioners identify gaps for new

research efforts.

Keywords-Technical debt; technical debt folklore; survey

I. INTRODUCTION

Ward Cunningham cited technical debt (TD) for the first
time in 1992 as: "shipping first time code is like going into
debt. A little debt speeds development so long as it is paid back
promptly with a rewrite. The danger occurs when the debt is
not repaid. Every minute spent on not-quite-right code counts
as interest on that debt.” [5]. Since then, the concept, that
originally had its scope limited to source code issues, has been
expanded and considered in different stages of a software
development project [1][2].

Currently, it is common to see subjective opinions, personal
points of view and catch phrases about TD in blogs and
websites. All this attention-grabbing information has raised

concerns, since it was not evaluated before it was published
and reflects only the opinions and experience of the authors.
This scenario characterized by different and contradictory
opinions, but without any evaluation, could led to the
emergence of TD Folklore [12]. The term folklore corresponds
to traditional stories, beliefs and customs of a group of people.
TD Folklore needs to be investigated, because it mays contain
valuable information about experiences that could contribute
significantly to the study of the area. Thus, it can help
researchers formulate theories and hypotheses, and identify
gaps to direct new research efforts.

In this context, Spínola et al. [12] conducted searches on
the Internet looking for TD folklore statements. The search was
performed on online websites, blogs, and published papers. As
result, the authors selected a list of 14 potential TD folklore
statements. After, the authors performed a survey with the
purpose of answering the following research questions:

(RQ1) Agreement: With which folklore statements did
participants agree or disagree?

(RQ2) Consensus: How strong is the consensus on each of
the folklore statements?

The rationale behind these questions was that if any
folklore is either widely agreed to or disagreed with by a large
group of people, then those propositions are more likely to be
good candidates for future research. On the contrary, mixed
responses can indicate that a TD Folklore item is not
commonly believed, depends on many factors, or that the
statement itself is not yet formulated as precisely as needed.

The results initially presented gave us interesting insights
on the subject. From then, we extend the work of Spínola et al.
[12] by replicating their study1. In this paper, we present this
replication, which has two main objectives: i) to mitigate

1 Replication based on previous insights is widely recommended in the

experimental paradigm [3][13][14].

http://dx.doi.org/10.18293/SEKE2018-014

462

limitations of the previous study and; ii) to expand the
knowledge on the topic. We address these points as follows.
First, the main limitation of the previous study presented by
Spínola et al. [12] is related to the number of participants. In
this replication, we expand the population of the study from 37
to 107 (70 new participants). Second, the insights of the
previous survey indicated that we need to investigate how the
developers’ experience impacts on TD Folklore statements.
Then, in this replication, we also revisited the original research
questions including the following new question:

(RQ3) Behavior: Do participants with and without
software development experience have the same perception on
TD folklore statements?

By answering RQ3, we intend to collect evidence that could
provide some support for a known claim in the TD area: one of
the advantages of the TD concept is that it has a common
understanding in the software development community. We
want to analyze this claim by investigating if the lack of
industry experience affects the perception of software
engineers about TD folklore items.

As a result of this replication, we highlight that the
agreement and consensus analysis (RQ1 and RQ2) reinforce
previous findings reported by Spínola et al. [12]. We also
found that the participants’ experience (RQ3) does not affect
their agreement with the TD folklore statements, for the most
cases. This builds evidence on the idea that TD concept has a
common understanding among developers and represents a
simple metaphor to discuss software development problems.

The contribution of this paper is twofold. First, we
reevaluated and reorganized the TD Folklore list by rank of
agreement and consensus. We also complemented this analysis
by investigating if experience on software development
activities influences the perception of participants about each
TD folklore statement. Second, this replicated study will help
us in understanding what participants have said about TD and
what folklore seems to make sense and constitute good
candidates for more detailed investigation.

In addition to this introduction, this paper has other five
sections. Section 2 presents a background on the area. Then, in
Section 3, the TD Folklore’s survey will be presented. Section
4 discusses the results of this replication. Next, Section 5
presents some threats to validity of this study. Finally, Section
6 presents the final remarks of this work.

II. BACKGROUND

Different surveys have been conducted in the TD area.
Klinger et al. [9] interviewed four experienced software
architects to investigate how decisions on incurring debt are
taken within a company and what is the extent of the
consequences of those decisions. They concluded that often the
decision to incur debt is not direct action of the architects, but a
consequence of activities carried out by people that do not
perform technical activities in the project.

In another study, Lim et al. [10] characterized how software
professionals perceive and understand the context in which TD
occurs. After interviewing 37 professionals, they concluded

that to deal with the balance related to TD, professionals must
make this debt explicit, communicate their costs and benefits to
all stakeholders and manage it making its presence healthy for
the project.

Snipes et al. [11] conducted an interview with the change
management committee regarding the defect debt management.
As a result, they indicated that the highest cost of this type of
debt was related to their identification and validation activities
(cost of testing). In addition, the authors also identified that
there are six major components which affect decisions about
incurring/paying a debt item: severity, existence of an
alternative solution, urgency of the correction, effort to
implement the correction, risk of the proposed correction, and
the extent of the required test.

In another study, Codabux and Williams [4] conducted a
survey to identify best practices with respect to TD
management. They analyzed 28 teams working with Scrum. As
results, they reported that: (i) developers considered their own
TD taxonomy based on the type of work they performed and
their personal understanding of the term; (ii) developers pay
more attention to design and test debt; and (iii) having
dedicated teams to eliminate debt items during sprints is a good
initiative to reduce TD.

Holvitie et al. [8] conducted a survey with professionals
from Finland and found that most participants were familiar
with the term TD. The authors also pointed out that more than
half of the interviewees realized that practices directly related
to software implementation have a positive effect on TD and its
management. Finally, it was also identified that the project
stage most affected by TD is the implementation, and the main
cause for the occurrence of TD is an inadequate definition of its
architecture.

More recently, Ernst et al. [7] reported the results of a
survey with software engineers and architects. The authors
found that architectural decisions are the most important source
of technical debt. Furthermore, while respondents believe the
metaphor is itself important for communication, existing tools
are not currently helpful in managing the details.

Finally, Spínola et al. [12] investigated the level of
agreement of software professionals with phrases of effect
("TD Folklore") on TD. The results of this study indicated that
TD is an important factor in software project management and
not simply another term for "bad code". The replication process
of this study, as well as the results obtained will be discussed in
the sequence.

III. TD FOLKLORE SURVEY REPLICATION

A. TD Folklore Survey

The goal of the research conducted by Spínola et al. [12]
was to evaluate a set of folklore statements about TD. For that,
a survey was conducted with professionals in the area of
software engineering. Its goal was to answer the research
questions RQ1 and RQ2.

The survey contains statements about TD, collected on
websites, blogs and published articles. This list has only

463

statements based on personal opinions and experiences without
any evaluation.

The survey was structured into two sets of questions. The
first one aims to establish the level of knowledge of the
interviewees about software development and TD. In the
second one, the survey contains 14 sentences (see Table I) and,
for each of them, the authors asked the participants to indicate
their level of agreement. The questionnaire used the 5-point
Likert scale to indicate the level of agreement: "1: strongly
disagree" to "5: strongly agree". In addition, participants had
the option "I do not know". The survey was designed to be
answered in about ten minutes.

To perform the data analysis, for RQ1 (agreement), the
authors computed the median as indicator for central tendency.
Thus, a median of 4 or 5 shows tendency towards agreement on
a statement. On the opposite side, values of 1 and 2 indicate a
tendency towards disagreement. For RQ2 (consensus), the
authors calculated the spread in the distribution of responses
for each statement by computing the inter quartile range (IQR).
An interval size value of 1 indicates a low spread and high
consensus. On the contrary, higher values show more spread
and indicate less common opinion among participants.

B. Survey Replication

This section details how we evolved the initial design by

adding RQ3, and how we planned and performed the

replication of the study.

1) Procedure

To replicate the survey, it was not necessary to make any

change in the original questionnaire. The main differences

between the study and its replication rely on its:

• analysis methodology for RQ3 (discussed in Section
III.B.3);

• population: differently from the original study that
focused on practitioners, our replication has focused on
both participants with experience and those with none
prior experience on software development activities.

2) Data collection and subject characterization

We replicated the questionnaire in undergraduate and

graduate software engineering classes with participants of

differing expertise and background. Not all participants had

experience with software development, however, theoretical

concepts were presented in the software engineering discipline.

Prior to the application of the questionnaire, the basic concepts

of TD were presented to ensure that everyone knows the term.

The concepts were carefully presented by the last author in

order to do not affect the perception of the participants

regarding the list of folklore statements.
In total, 70 participants (see Table II) answered the

replicated questionnaire and the average time to complete it
was 15 minutes. The survey participants were also asked for
their target degree and years of experience, as well as the roles
they had taken in software projects. Almost half of them (36)
do not have experience with software development. Among the
other 34 participants that have some experience on software
development activities, most of them were developers (29),
followed by project managers (6) and requirements analyst (6).

TABLE I. TD FOLKLORE LIST

ID TD Folklore Statement
Groups

Agreement Consensus

1 Accruing technical debt is unavoidable on any non-trivial software

project.
3 1

No tendency

2 Technical debt usually comes from short-term optimizations of time

without regard to the long-term effects of the change.
4 2

Agreement and high to

medium consensus

3 It is very difficult for software developers to see the true effect of the

technical debt they are incurring.
3 2

No tendency

4 “Working off debt” can be motivational and good for team morale.
4 2

Agreement and high to

medium consensus

5 The root cause of most technical is pressure from the costumer. 3 1 No tendency

6 Unintentional debt is much more problematic than intentional debt.
4 2

Agreement and high to

medium consensus

7 The individuals choosing to incur technical debt are usually different

from those responsible for servicing the debt.
3 1

No tendency

8 If technical debt is not managed effectively, maintenance costs will

increase at a rate that will eventually outrun the value it delivers to

customers.

4 1

Agreement and high to

medium consensus

9 No matter what, the cost of fixing technical debt increases the longer

it remains in the system.
4 2

Agreement and high to

medium consensus

10 Paying off technical debt doesn’t result in anything the customers or

users will see.
2 2

Disagreement and medium

consensus

11 The biggest problem with technical debt is not its impact on value or

earnings, but its impact on predictability.
3 2

No tendency

12 Technical debt should not be avoided, but managed. 3 2 No tendency

13 Not all technical debt is bad. 3 2 No tendency

14 All technical debt is intentional. 1 1 Strongly disagreed

464

The mean time of experience for those who have software
experience was 4.8 years (coincidently, the mean time of
experience was the same considering both data sets). We can
also see on Table II that most of participants (54) are
undergraduate students, followed by master students (14) and
PhD students (2).

Finally, by analyzing the whole population scenario (107
participants), we can notice that the most of participants have
some experience as developer (58), followed by project
managers (15) and requirements analyst (8). We can also notice
that we have approximately 2/3 of participants with (71) and
1/3 of them without (36) prior experience on software
development.

3) Analysis methodology
The research questions RQ1 and RQ2 were analyzed

considering the whole dataset, including the data collected in
[12]. Besides, the same methodology (based on median for
RQ1 and inter quartile range for RQ2) considered by [12] was
applied. In order to address RQ3, initially, we divided the
whole dataset into two subsets representing participants with
(71 subjects) and without (36 subjects) experience on software
development. Our approach was twofold.

First, we computed the median and IQR values for each
statement of each subset. Then, we compared differences
between median and IQR values for three subsets (all
participants indistinctly, and more and less experienced
participants). In other words, we observed if the agreement and
consensus were similar for each subset. A significant difference
on agreement and consensus between these subsets evidences
that the experience impacts on the level of agreement for that
statement.

Second, we statistically compared the Likert scale values
filled in by the participants in different subsets (more and less
experienced participants). We adopted the Shapiro-Wilk
normality test. For all cases, the distribution was not normal.
Due to this, we adopted the Mann-Whitney, a non-parametric
alternative to t-test, with a 0.05 p-value, to statistically test our
hypothesis. The null hypothesis (H0) is: for a specific TD
Folklore, there is no difference of the Likert scale values
between more and less experienced participants. Rejecting the
null hypothesis (p-value<0.05) evidences that the experience
impacts on the TD Folklore level of agreement.

We then considered the two evidences in our analysis: i) the
differences on the agreement and consensus; and ii) the
statistical Mann-Whitney p-value. When these outcomes
presented some inconsistence, we graphically analyzed the
distribution of the Likert scale values.

IV. RESULTS AND DISCUSSION

This study surveyed participants with and without software
development experience to investigate: (i) what statements
from a TD Folklore list the participants agree with; (ii) what is
the consensus around the statements collected about TD, and;
(iii) if the perception on TD is similar or different between
participants with and without experience on software
development.

A. Agreement with statements and Consensus

Results of both research questions RQ1 and RQ2 are
presented and grouped in Table I by central agreement
tendency and consensus. Initially, we can see that no single
folklore statement was commonly strongly agreed with. This
indicates that none of the folklore statements were considered
to be universally true. On the other side, there was one folklore
statement that was commonly strongly disagreed with (#14).
This result (i) suggests that software engineers are aware that
there might be unknown TD items in their projects, and (ii)
supports the ongoing line of research into tools that analyze
source code for unknown debt. In this replication, we can also
notice that we did not have higher values for IRQ, all values
were close to 1. Thus, in general, there was a low spread and
high consensus among the participants for this statement.

Some statements (#2, #4, #6, #8, and #9) presented a
median of 4, which indicates a tendency towards agreement
and high to medium consensus. These results indicated that
there is a common belief that TD is an important part of
software management. On the other hand, the statement #10
received general disagreement and medium consensus. This
result indicated that from the point of view of participants, the
presence of TD items could bring some impact for system
users. Finally, seven other statements (#1, #3, #5, #7, #11, #12,
and #13) showed no tendency on either side of the scale.

Fig. 1 complements the results of the analysis by median
presented on Table I. In this figure, the percentages represent
the distribution of answers according to the Likert scale. We
can see that there is an inclination of the graph to the right side,
indicating agreement (agree or strongly agree) on the folklore
statements. By observing this graph, we also can highlight
some statements (#2, #4, #5, #6, and #8) that reached a

TABLE II. SUBJECTS´ CHARACTERIZATION

Role [12] Replication Total

Developer 29 29 58

Project Manager 9 6 15

Requirement Analyst 2 6 8

Tester 4 1 5

Architect 3 0 3

Operations 1 0 1

Maintainer 1 0 1

Database Administrator 0 1 1

Academic Degree [12] Replication Total

Undergraduate Student 2 52 54

Bachelor in Comp. Science 2 0 2

Graduate Student 14 0 14

Master Student 1 16 17

PhD Student 1 2 3

Undefined 17 0 17

Experienced / no

Experienced Subjects

[12] Replication Total

Subjects with Soft. Exp. 37 34 71

Subjects with no Soft. Exp 0 36 36

Years of Software

Experience

[12] Replication Total

Mean 4.8 4.8 4.8

465

Figure 2. Agreement distribution for the Folklores #7 and #11

widespread agreement (>60% of answers are strongly agree or
agree). On the other side, the participants clearly disagreed
(>60% of answers are strongly disagree or disagree) with
statements #10 and #14. Finally, despite the median analysis
did not indicate an agreement tendency regarding the
statements #5 and #7, most of the participants agreed with
them.

B. Do participants with and without software development

experience have the same perception on TD concepts?

Results of RQ3 are presented in Table III by central
agreement tendency and consensus grouped by the participants’
experience, and the Mann-Whitney p-value (last column).

The light gray lines represent the cases where agreement
and consensus for both experienced and no experienced
participants are similar to the values considering all participants
indistinctly, as presented in Table I. Moreover, for these cases,
it was not possible to reject the null hypothesis (Mann-Whitney

p-value>0.05). The results evidence that the agreement with the
statements was not impacted by the participants’ experience for
the statements #1, #2, #3, #4, #6, #8, #9, #10, #13 and #14.

The dark gray lines represent the cases where agreement,
consensus, and the Mann-Whitney p-value (<0.05) evidence
that the agreement with the statements was impacted by the
participants’ experience. It occurred only for the statements #5
and #12.

For the statements #7 and #11, we found inconsistencies
between agreement/consensus and the hypothesis test. In order
to better understand these cases, we show the distribution of the
participants’ agreement with the statements in Fig. 2. Statement
#7 has similar distribution considering both group of
participants. In opposition, is evident that values for statement
#11 are higher for experienced than for no experienced
participants. These results reinforce the Mann-Whitney p-value
presented in Table III: the participants’ experience impacts the
agreement with the statement #11, and it does not impact the
agreement with the statement #7.

Overall, we observed that the experience impacted only the
TABLE III. AGREEMENT TENDENCY, CONSENSUS AND SHAPIRO-WILK P-

VALUE GROUPED BY THE PARTICIPANTS’ EXPERIENCE

ID Experienced

Participants

Participants without

experience

Mann-

Whitney
Agreement Consensus Agreement Consensus p-value

1 3 3 3 1 0.3635

2 4 1 4 2 0.2789

3 3 2 3 2 0.5785

4 4 2 4 2 0.9725

5 3 2 4 2 0.0204

6 4 2 4 3 0.9719

7 3 1 4 1 0.0722

8 4 1 4 1 0.7241

9 4 2 4 2 0.2551

10 2 2 2 2 0.2503

11 3 1 3 1 0.0107

12 3 2 2 2 0.0219

13 3.5 2 3 3 0.0789

14 1 1 1 1 0.9574

Figure 1. Agreement tendency analysis. Distribution of answers according to the likert scale

466

results for three of the statements (#5, #7, #12). For us, this
indicates that the experience does not have significant impact
on the TD Folklore analysis. However, this also evidences that
we should not to consider all TD Folklores in the same way.
For example, observing TD Folklores #5, #7, #12, we
conjecture that the experience might be impacted the results
because concerns about customer pressure (#5), decisions
about who will pay the debt off (#7) and if the debt should be
avoided (#12) seem to be a reflex of the scenarios faced by
development teams in their daily activities. We are planning
investigate these aspects in the future.

V. THREATS TO VALIDITY

In this section, we discuss some threats to validity:

External validity. The participants of this replication were
graduate and undergraduate students. One aspect mitigates the
threat: in total, most participants had some professional
software development experience. As can be seen in Table II,
there are 71 participants with some software development
experience against 36 participants without software
development experience. Despite this, the results might not
generalize to a context in which developers have long years of
experience (15 to 20 years, for instance). However, it is
important to note that our findings are based on a comparison
between two groups of participants that are clearly distinct
regarding to the level of professional experience.

Internal validity. Another threat to the validity was the
possibility of the presentation made on TD before the
distribution of the questionnaire influence the responses of the
participants. To deal with this threat, the TD concepts were
carefully presented by one of the authors of this work.

Construct validity. Likert scales assume that participants
can accurately map their answers to a question into one
dimension (e.g., strongly agree or disagree). Since TD is a
complex concept, this may not be realistic in some cases. The
TD Folklore statements investigated in this work may not be
100% mutually exclusive and exhaustive.

VI. CONCLUDING REMARKS

In this paper, we presented the results of a replicated survey

on TD folklore. We revisited the original work from Spínola et

al. [12] by expanding the population (from 37 to 107

respondents) and reviewing the results concerning the

agreement/disagreement tendency and consensus about each

folklore item. Besides, we also investigated if experience with

software development affects the perception of the participants

about the considered statements.

Regarding agreement/disagreement tendency and
consensus, our results reinforce the findings previously
reported in [12]. Thus, the results provide some evidence and
motivation for exploring the following issues in TD research:
(i) impact of TD management on maintenance costs (#2, #8,
#9), (ii) relationship between servicing the debt and team
motivation (#4), (iii) relation between unintentional and
intentional debt impact on software projects (#6), (iv) how the
impact of debt items increases (or decreases) during software

evolution (#9), (v) prediction or estimation models for TD
impact (#8, #9), (vi) impact of paying TD items off on
customers (#10), and (vii) development of strategies to identify
unintentional TD items (#14). Finally, the results suggest that
software development experience does not interfere in the
perception on the TD concept for the most cases.

In our future research agenda, we intend to combine the
evidence identified in this work with new theories and
empirical studies developed by our research group.
Specifically, we intend to investigate causes and impacts of TD
on software projects.

ACKNOWLEDGMENT

This work was partially supported by the CNPq Universal
grant 458261/2014-9, by the State of Bahia's SECTI-
Fraunhofer-UFBa cooperation agreement 2012-1, and by
RESCUER project Grant: 490084/2013- 3.

REFERENCES

[1] N.S.R. Alves, R.S. Araújo, and R.O. Spínola. A Collaborative
Computational Infrastructure for Supporting Technical Debt Knowledge
Sharing and Evolution. In: Americas Conference on Information
Systems, 2015, Puerto Rico.

[2] N.S.R Alves, T.S. Mendes, M.G. Mendonça, R.O. Spínola, F. Shull, and
C. Seaman. Identification and management of technical debt: A
systematic mapping study. Information and Software Technology, v. 70,
p. 100-121. 2016. DOI: https://doi.org/10.1016/j.infsof.2015.10.008

[3] F. Shull, V. Basili, J. Carver, J.C. Maldonado, G.H. Travassos, M.
Mendonça, and S. Fabbri. 2002. Replicating Software Engineering
Experiments: Addressing the Tacit Knowledge Problem. In Proc. of the
2002 Int. Symp. on Empirical Software Engineering, USA.

[4] Z. Codabux and B. Williams. Managing technical debt: An industrial
case study. In 2013 4th International Workshop on Managing Technical
Debt (MTD), (pp. 8-15). IEEE.

[5] W. Cunningham. The WyCash portfolio management system. In ACM
SIGPLAN OOPS Messenger (Vol. 4, No. 2, pp. 29-30). ACM. 1992.

[6] A. Erickson. 2009. Don't "Enron" Your Software Project. Retrieved
from http://www.informit.com/articles/article.aspx?p=1401640.

[7] N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord, and I. Gorton. Measure
it? Manage it? Ignore it? Software practitioners and technical debt. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 50-60.

[8] J. Holvitie, V. Leppanen, and S. Hyrynsalmi. (2014), Technical Debt
and the Effect of Agile Software Development Practices on It - An
Industry Practitioner Survey. In MTD 2014, pp. 35-42.

[9] T. Klinger, P. Tarr, R. Wagstrom, and C. Williams. “An enterprise
perspective on technical debt,” in Proceedings of the 2nd Workshop on
Managing Technical Debt. ACM, 2011, pp. 35–38.

[10] E. Lim, N. Taksande, and C. Seaman. “A balancing act: what software
practitioners have to say about technical debt,” Software, IEEE, vol. 29,
no. 6, pp. 22–27, 2012.

[11] W. Snipes, B. Robinson, Y. Guo, and C. Seaman. Defining the decision
factors for managing defects: a technical debt perspective. In 2012 Third
Int. Work. on Managing Technical Debt, (pp. 54-60). IEEE.

[12] R.O. Spínola, N. Zazworka, A. Vetrò, C. Seaman, and F. Shull (2013).
Investigating technical debt folklore: Shedding some light on technical
debt opinion. In Proc. of the 4th Int. Work. on Managing Technical Debt

[13] N. Juristo and S. Vegas. Using differences among replications of
software engineering experiments to gain knowledge. In Proceedings of
the 2009 3rd Int. Symp. on Empirical Soft. Eng. and Measurement. IEEE
Computer Society, Washington, DC, USA, 356-366.

[14] F. Shull, J.C. Carver, S. Vegas, and N. Juristo. 2008. The role of
replications in Empirical Software Engineering. Empirical Software
Engineering. 13, 2 (April 2008), 211-218.

467

Knowledge Management Governance in Software
Development Process with GI-Tropos

Vu H. A. Nguyen
LouRIM-CEMIS

Université catholique de Louvain
Belgium

Email: vu.nguyenhuynh@uclouvain.be

Manuel Kolp
LouRIM-CEMIS

Université catholique de Louvain
Belgium

Email: manuel.kolp@uclouvain.be

Yves Wautelet
Faculty of Economics and Business

KULeuven
Belgium

Email: yves.wautelet@kuleuven.be

Abstract— Governing Knowledge Management in a
Requirements-Driven Software Processes such as (GI-)
Tropos or even waterfall, V, UP-based ones allows IT managers
to propose rules for efficient handling of information and
resources to cope with stakeholders’ requirements. On the
one hand, Knowledge Management Governance in software
engineering has to ensure that software organization business
processes determine organizational knowledge access conditions,
quality maintenance, decision making processes and means of
resolving knowledge management obstacles of the organization.
On the other hand, requirements-driven software methods are
development processes using high-level social-oriented models to
drive the software life cycle both in terms of project management
and deductive iterative engineering techniques. Typically, such
methods are well-suited for the straightforward inclusion and
adaptation of knowledge management governance principles
into the software development life cycle. To consolidate both
perspectives, this paper proposes a generic framework allowing
to drive Knowledge Management in the GI-Tropos software
processes.

Index Terms—Knowledge Management Governance, Software
Process, GI-Tropos

I. INTRODUCTION

Software Engineering [1] is a wide knowledge area. It requires
various other types of data, information, skills and know-how
during the software development and operation processes [2].
It is notably devoted to implement human activities and cope
with socio-intentional problems through business modeling
and requirements engineering techniques at the strategic level
[3]. The software development life-cycle process itself is a
structure of groups of activities in which communicating and
collaborating tasks are required from any user and stakeholder.
At the project and organizational level, each individual’s
knowledge can (or must) be shared as to what knowledge
management activities they do.

Knowledge management (KM) is defined as ’the effective
learning processes associated with exploration, exploitation
and sharing of human knowledge (tacit and explicit) that use
appropriate technology and cultural environments to enhance
an organizations intellectual capital and performance.’ [4].
The foundations of KM include infrastructure, mechanisms,
and technologies [5]. KM mechanisms are organizational or
structural instruments that are used to enable KM systems.
KM technologies are information technologies that can be

used to promote KM. Both KM mechanisms and KM tech-
nologies are supported by the KM infrastructure. From an
organizational perspective, KM infrastructure includes five ma-
jor components: organization culture, organization structure,
organization’s information technology infrastructure, common
knowledge, and physical environment [5].

Common dimensions of knowledge management gover-
nance under conceptualization are leadership, organizational
structure, and relational mechanisms among stakeholders [6].
The goal of knowledge management governance is to ensure
that KM processes deliver value to the identified stakeholders
and minimize risks related to organizational knowledge loss
[7]. Moreover, governing knowledge management sets the
structural principles and rules within which all the components
of a knowledge management system should be deployed in the
broader organizational context. Unfortunately, little specific
research has been completed on KM governance in software
development process, including the problem of aligning both
approaches. Indeed, most studies on knowledge management
governance have rather focused on more wide-ranging fields
than just software engineering life cycle.

Therefore, this paper proposes a generic framework to
align knowledge management rules and constraints to software
processes. The framework uses strategic modeling techniques
to represent the organizational setting but also governance and
management structures. We will also more specifically discuss
the adoption of our framework within particular processes
in order to align KM governance with requirements-driven
software specification.

This paper is organized as follows. Section 2 overviews
our proposed software development template called Gover-
nance I-Tropos (GI-Tropos) for governing requirements-driven
software process. Section 3 illustrates knowledge management
governance in requirements-driven software development pro-
cess. Section 4 introduces a use case for validation. Finally,
Section 5 concludes the paper and points out further work.

II. GI-TROPOS

Figure 1 represents the GI-Tropos [8] process in a classical
iterative perspective based on a series of phases illustrated in
the horizontal dimension and a series of disciplines presented
in the vertical dimension.

468

VuNHA
Typewriter
10.18293/SEKE2018-054

 PHASES

D
is

ci
p

li
n

e
s

Setting Blueprinting Building Setuping Operation

Organizational

modeling

Organizational

modeling

Organizational

modeling

Organizational

modeling

Organizational

modeling

Organizational

modeling

Organizational

modeling

Organizational

modeling

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Architectural

Design

Architectural

Design

Architectural

Design

Architectural

Design

Architectural

Design

Architectural

Design

Architectural

Design

Architectural

Design

Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design

Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation

Test Test Test Test Test Test Test Test

Deployment Deployment Deployment Deployment Deployment Deployment Deployment Deployment

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software

Processes

Governance

Software

Processes

Governance

Software

Processes

Governance

Software

Processes

Governance

Software

Processes

Governance

Software

Processes

Governance

Software

Processes

Governance

Software

Processes

Governance

Change & Risk

Management

Change & Risk

Management

Change & Risk

Management

Change & Risk

Management

Change & Risk

Management

Change & Risk

Management

Change & Risk

Management

Change & Risk

Management

Quality

Management

Quality

Management

Quality

Management

Quality

Management

Quality

Management

Quality

Management

Quality

Management

Quality

Management

Knowledge

Management

Knowledge

Management

Knowledge

Management

Knowledge

Management

Knowledge

Management

Knowledge

Management

Knowledge

Management

Knowledge

Management

Specify

Requirements

Produce

Architecture

Release

Framework

IT Service

go-live

IT Service

go-live

I-Tropos

Fig. 1. GI-Tropos iterative process framework

GI-Tropos is an extension of Iterative Tropos (I-Tropos) [9],
a development process using coarse-grained (i.e., high-level)
and social-oriented requirement models to drive the software
development both in terms of project management [10] and
deductive forward engineering (transformational) techniques,
for aligning requirements-driven software processes with IT
governance rules and principles. This extension aims to en-
able governing and managing requirements-driven software
processes to cope with stakeholders’ requirements and expec-
tations in the context of business aspects.

I-Tropos extends Tropos [11], a requirements-driven de-
velopment methodology using the i* modeling framework
[12] that supports iterative [13] and agent development [14].
The five phases of traditional Tropos (Early Requirements,
Late Requirements, Architectural Design, Detailed Design and
Implementation) are considered as groups of iterations that are
workflows with a minor milestone in order to comply with
the most generic terminology. In I-Tropos, the Organizational
Modeling and Requirements Engineering disciplines respec-
tively correspond to Tropos’ Early and Late Requirements
phases. The Architectural and Detailed Design disciplines cor-
respond to the same stages of the traditional Tropos process.
I-Tropos not only includes core disciplines (i.e., Organizational
Modeling, Requirements Engineering, Architectural Design,

Detailed Design, Implementation, Test and Deployment) but
also supports disciplines to handle Risk Management, Time
Management, Quality Management and Software Process
Management [15]. The research method we have followed uses
a bottom-up approach, I-Tropos was considered as a given and
validated framework and has been enhanced with a governance
level.

From a systems development perspective, GI-Tropos im-
proves and redefines the four following phases (Setting,
Blueprinting, Building, Setuping) of I-Tropos plus a new
one, Operation, to operate the system in the perspective of
IT enterprise governance and management. GI-Tropos also
includes all I-Tropos disciplines plus four new ones: Software
Processes Governance, Change & Risk Management, Quality
Management, Knowledge Management. These new disciplines
ensure that software processes are evaluated, directed and
monitored to meet stakeholders’ requirements and achieve
value added by aligning requirements-driven software pro-
cesses with IT governance rules and constraints. They also
enable identifying, analyzing and assessing changes and risks
as well as developing strategies to manage them. Moreover,
these disciplines ensure that quality expected and contracted
with stakeholders is achieved throughout the system. Finally,
they enable acquiring, storing and utilizing knowledge for such

469

things as problem solving, dynamic and deep learning, strate-
gic planning, decision making and business processes. GI-
Tropos’ disciplines are grouped and transversal to each phase.
They can be deployed in several iterations by phase depending
on each software project characteristics. Consequently, the
disciplines of GI-Tropos can be repeated iteratively and the
effort/workload spent on each discipline varies from one
iteration to another.

III. KM GOVERNANCE IN GI-TROPOS

This section describes knowledge management governance
rules and constraints in a requirements-driven software pro-
cesses. Figure 2 summarizes the alignment while Figures 3
and 4 illustrate the Strategic Dependency model and Strategic
Rationale model for the Software Processes KM governance.

GI-Tropos Framework
Setting Blueprinting Building Setuping Operation

Kn
ow

le
dg

e
M

an
ag

em
en

t G
ov

er
na

nc
e

GI-Tropos Governance Processes

GI-Tropos Management Processes

Evaluate Direct Monitor

Develop
Transfer

Transform

Assess

PerformancePoliciesProposals

Preserve

Apply

Update

Fig. 2. GI-Tropos Knowledge Management Governance Alignment Model

Knowledge Management Governance processes aligned
with requirements-driven software processes such as GI-
Tropos, as depicted in Figure 2, can be summarized as follows:

• The Evaluate process ensures that stakeholders needs,
conditions and options are evaluated to determine bal-
anced, agreed-on organizational objectives to be achieved.
It allows examining and judging current and future use of
knowledge, considering internal and external pressures,
evaluating continuously, considering current and future
business needs and objectives: competitive advantage and
specific strategies.

• The Direct process enables setting direction through pri-
oritization and decision making. It assigns responsibility,
directs preparation and implementation of KM plans
and policies, sets directions for KM, establishes sound
behavior in KM use through policies, properly plans
transition of project to operational status, encourages
culture of good KM governance, directs submission of
proposals identifying needs.

• The Monitor process enables monitoring performance
and compliance against agreed-on direction and objec-
tives. It allows monitoring and measuring KM perfor-
mance, assures that performance is in accordance with

plans and business objectives, ensures that KM conforms
with external obligations (regulatory, legislation, common
law, and contractual) and internal work practices.

• The Develop process ensures that knowledge is acquired,
captured, created, discovered correctly. It also plans activ-
ities in alignment with the direction set by the governance
body to achieve the organizational objectives. It covers
the use of information and technology and how best
it can be used in an organization to help achieve the
organization’s goals and objectives.

• The Preserve process ensures that knowledge is stored,
secured, conserved, retained. It also highlights the orga-
nizational and infrastructural form KM is to take in order
to achieve the optimal results and to generate the most
benefits from the use of KM.

• The Apply process enables knowledge to be used, en-
acted, executed, exploited properly.

• The Update process enables knowledge to evolve, im-
prove, be maintained and refreshed.

• The Transfer process ensures that knowledge is commu-
nicated, deployed, disseminated, shared. It also deploys
activities in alignment with the direction set by the gov-
ernance body to achieve the organizational objectives. It
identifies KM requirements, acquires the technology, and
implements it within the organization’s current business
processes.

• The Transform process ensures that knowledge is com-
piled, formalized, standardized, explicated. It also deliv-
ers activities in alignment with the direction set by the
governance body to achieve the organizational objectives.
It focuses on the delivery aspects of the KM system.

• The Assess process ensures that knowledge is appraised,
evaluated, validated, verified. It also assesses activities in
alignment with the direction set by the governance body
to achieve the organizational objectives. It deals with the
organizational strategy in assessing its needs and whether
or not the current KM system still meets the objectives
for which it was designed and the controls necessary to
comply with regulatory requirements. It also covers the
issue of an independent assessment of the effectiveness
of KM system in its ability to meet business objectives
and the organizational control processes by internal and
external auditors

The Strategic Dependency model, as depicted in Figure
3, has three main actors depending on each other (Imple-
menter, Knowledge Management Development Board, Knowl-
edge Management Governance Board), resources (Organiza-
tion Culture, Organization Structure, IT Infrastructure, Com-
mon Knowledge, and Physical Environment), goals (Devel-
ops Knowledge Management Structure, Continuous Imple-
ment Knowledge Management), qualities (Organization Strat-
egy, Knowledge Management Quality), and tasks (Knowledge
Management Modeling, Knowledge Management Operation).

The Knowledge Management Governance Board decides
on the processes and the environmental factors (risks, quality

470

Implementer

Knowledge
Management
Development

Board

Knowledge
Management
Governance

Board

Common
Knowledge

Knowledge
Management

quality

Organization
Culture

Organization
Strategy

Develops
Knowledge

Management
Structure

Knowledge
Management

Modelling

Knowledge
Management

Operation

Continuous
Implement
Knowledge

Management

Actor ResourceQuality TaskGoal
Dependency link

Legend:

IT
Infrastructure

Organization
Structure

Physical
Environment

Fig. 3. GI-Tropos Knowledge Management Governance Strategic Dependency Model

Implementer

Knowledge
Management
Development

Board

Knowledge
Management
Governance

Board

Common
Knowledge

Knowledge
Management

Quality

Organization
Culture

Organization
Strategy

Develops
Knowledge

Management
Structure

Knowledge
Management

Modelling

Knowledge
Management

Operation

Continuous
Implement
Knowledge

Management

Transform

Preserve

Update

Assess

Evaluate

Direct
Monitor

Performance

Policies

 prior-to

Legend:

Organization
Structure

IT
Infrastructure

Physical
Environment

Develop

Apply

Transfer

Fig. 4. GI-Tropos Knowledge Management Governance Strategic Rationale Model

factors). The scope of the KM governance decisions rel-
evant for GI-Tropos is thus only software processes. The
Knowledge Management Development Board allows aligning
requirements-driven software processes with KM governance.

The Knowledge Management Development Board is thus a
management board, not a governance one.

In the Strategic Rationale model, as depicted in Figure 4,
the Knowledge Management Governance Board performs

471

three tasks (Evaluate, Direct, and Monitor) corresponding to
the three governance core processes (Evaluate, Direct, and
Monitor) respectively. The Knowledge Management De-
velopment Board performs seven tasks (Develop, Preserve,
Apply, Update, Transfer, Transform and Assess) corresponding
to the seven management core processes (Develop, Preserve,
Apply, Update, Transfer, Transform and Assess) respectively.
The Preserve task depends on the Direct task based on the
Policies resource and the Monitor task depends on the Assess
task based on the Performance quality.

IV. USE CASE

This section describes TransLogisTIC, a project used as a
use case to illustrate the paper. This project developed a
collaborative platform for outbound logistics. The purpose was
to propose combined, performing and complete transportations
in the Walloon Region with transport by rail particularly
promoted in accordance with the European policy. The project
involved several complementary actors including 10 private
companies and 5 universities and research labs on a 3 year
basis and a 14 million euro budget.

The TransLogisTIC project was re-built with I-Tropos mod-
els for validation purpose in the context of this work. We
focused on validating knowledge management governance in
the software development process of an online collaborative
logistic platform allowing the major outbound logistics stake-
holders (chargers, carriers, infrastructure managers and final
clients,...) to share information for a better optimization of
the logistic chain. Firstly, we defined the knowledge areas
of the software development process (I-Tropos). Then, we
explained reasons why this knowledge was required. Table I
represents the knowledge areas in I-Tropos based on the Guide
to the Software Engineering Body of Knowledge (SWEBOK,
IEEE Professional Practices Committee [16]) and explains
these reasons. Finally, we aligned knowledge management
governance rules and constraints with GI-Tropos’s governance
processes (Evaluate, Direct, Monitor) based on the workflow
proposed in Figure 5.

The workflow performed during the alignment of
requirements-driven software processes with knowledge
management governance rules and constraints is presented
in Figure 5. These tasks are assumed by the Knowledge
Management Governance Board in interaction with the
Stakeholders and Knowledge Management Development
Board. They are sorted in three groups (Evaluating, Directing,
and Monitoring) corresponding to the three core governance
processes (Evaluate, Direct, and Monitor) respectively. Each
task is summarized as follow:

• Consider: Examine and judge current and future use of
KM include strategy proposals; survey and categorize,
analyze KM activities, elicit, codify and organize; con-
sider the foundations of KM (KM infrastructure, KM
mechanisms, and KM technologies); evaluate continu-
ously; consider current and future business needs and
objectives: competitive advantage and specific strategies;
appraise and evaluate value of knowledge and KM.

TABLE I
KNOWLEDGE NEEDED IN I-TROPOS

I-Tropos phase Knowledge areas Reason knowledge is needed

Setting Software Requirements
 Software Engineering

Management
 Software Engineering

Process
 Software Engineering

Models and Methods
 Software Quality
 Software Engineering

Professional Practice
 Software Engineering

Economics
 Computing Foundations
 Mathematical

Foundations
 Engineering

Foundations

 To justify behind the generalized
model, such as forces and trade-
offs, success factors associated
with practices;

 To establish objectives,
constraints, alternatives;

 To evaluate product and
alternatives;

 To resolve risks.
 To justify behind the task plan,

including risk assessments,
contingency plans, management
goals and criteria.

 To justify behind the system,
including development goals and
criteria, alternatives evaluated,
and their evaluation.

Blueprinting Software Design To design systems
and processes definitions.

Building Software Construction
 Software Testing

 To implement systems
and processes definitions.

Setuping Software Configuration
Management

 To validate systems
and processes definitions.

Operation Software Maintenance To make sure the commitments.

5. Conclusion

Consider
Condition

and option

Set

Establish

Ensure

Measure

Directions
for KM

Stakeholder
Needs

Compliance

KM performance

KM behavior

KM plans
and policies

[More
stakeholder

needs]

[Stakeholder OK]

 Evaluating

 Directing

 Monitoring

Knowledge Management
Governance Board

Stakeholders Knowledge
Management

Development Board

Decision

Task

Document

Legend:

KM mechanisms

KM technologies

KM infrastructure

Fig. 5. GI-Tropos Knowledge Management Governance Workflow

472

• Set: Assign responsibility and direct preparation and
implementation of KM plans and policies; set directions
for KM.

• Establish: Establish sound behavior in knowledge use
through policies; properly plan transition of project to
operational status; encourage culture of good KM gover-
nance; direct submission of proposals identifying needs.

• Measure: Monitor and measure KM performance.
• Ensure: Assure that performance is in accordance with

plans and business objectives; ensure that KM conforms
with external obligations (regulatory, legislation, common
law, and contractual) and internal work practices; handle,
use, control, leverage, distribute and automate knowledge.

V. CONCLUSION

For defining software systems methods and software project
methodologies, governance can be viewed as evaluating, di-
recting and monitoring software processes all along the life
cycle. Governing knowledge management in requirements-
driven software processes such as GI-Tropos enables coping
with stakeholders’ requirements and expectations. This paper
aimed at specifying integration and alignment of knowledge
management governance rules and constraints to requirements-
driven software processes based on the software processes
knowledge areas needed by governance.

The paper presents a new identification of critical moments
in the software development life cycle for knowledge man-
agement governance since the main alignment objective was
to deliver an efficient KM approach that meets stakeholders’
needs and expectations. On the one hand, the strengths of
GI-Tropos are to systematically offer structure and direction
through the whole software processes governance and enable
tailoring the process to the project needs. On the other hand,
GI-Tropos also points out how to establish knowledge man-
agement governance rules to the software processes. Knowl-
edge management can be governed in software development
processes by a proper alignment performed on the software
processes knowledge areas that need to be handled and KM
governance processes themselves. Our proposed alignment
specifies how to carry out these KM processes in the context
of a collaborative software development life cycle.

Further work points to other additional practices that need
to be integrated in this alignment to propose a complete
framework taking into consideration, for instance, IT manage-
ment, project management and agile practices [17]–[19] for
managing the day-to-day activities and reacting to changing
requirements and feedback. In addition, a CASE tool should
be developed to help designing and implementing all the
processes defined in this paper.

REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley
Publishing Company, 2010.

[2] K. C. Desouza, “Barriers to effective use of knowledge management
systems in software engineering,” Commun. ACM, vol. 46, no. 1, pp.
99–101, Jan. 2003.

[3] Y. Wautelet and M. Kolp, “Business and model-driven
development of BDI multi-agent systems,” Neurocomput-
ing, vol. 182, pp. 304–321, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.neucom.2015.12.022

[4] A. Jashapara, Knowledge Management: An Integrated Approach.,
2nd ed. Prentice-Hall, 2011.

[5] I. Becerra-Fernandez and R. Sabherwal, Knowledge Management: Sys-
tems and Processes. Routledge, 2015.

[6] A. Schroeder, D. Pauleen, and S. Huff, “Governance and leadership of
knowledge management,” in Leadership in the Digital Enterprise: Issues
and Challenges. Idea Group Publishing, 2010, pp. 46–61.

[7] S. Zyngier, “Kowledge management governance,” in The Encyclopaedia
of Knowledge Management. Idea Group Publishing, 2005, pp. 373–380.

[8] V. H. A. Nguyen, M. Kolp, Y. Wautelet, and S. Heng, “Aligning
Requirements-driven Software Processes with IT Governance,” in IC-
SOFT 2017 - Proceedings of the 12th International Conference on
Software and Data Technologies, Madrid, Spain, 24-26 July, 2017, 2017,
pp. 338–345.

[9] Y. Wautelet, M. Kolp, and S. Poelmans, “Requirements-driven iterative
project planning,” in Software and Data Technologies - 6th International
Conference, ICSOFT 2011, Seville, Spain, July 18-21, 2011. Revised
Selected Papers, 2011, pp. 121–135.

[10] PMI, A Guide To The Project Management Body Of Knowledge. Project
Management Institute, 2013.

[11] J. Castro, M. Kolp, and J. Mylopoulos, “Towards requirements-driven
information systems engineering: the Tropos project,” Inf. Syst., vol. 27,
no. 6, pp. 365–389, 2002.

[12] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social Modeling for
Requirements Engineering. The MIT Press, 2011.

[13] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed.
Addison-Wesley, 2003.

[14] J. Mylopoulos, M. Kolp, and P. Giorgini, “Agent-oriented software de-
velopment,” in Hellenic Conference on Artificial Intelligence. Springer
Berlin Heidelberg, 2002, pp. 3–17.

[15] Y. Wautelet, “A goal-driven project management framework for multi-
agent software development: The case of I-Tropos,” Ph.D. dissertation,
Universite catholique de Louvain, 2008.

[16] I. C. Society, P. Bourque, and R. E. Fairley, Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2014.

[17] S. W. Ambler and M. Lines, Disciplined Agile Delivery: A Practitioner’s
Guide to Agile Software Delivery in the Enterprise, 1st ed. IBM Press,
2012.

[18] P. Kruchten, “Contextualizing agile software development,” Journal of
Software: Evolution and Process, vol. 25, no. 4, pp. 351–361, 2013.
[Online]. Available: http://dx.doi.org/10.1002/smr.572

[19] A. J. H. d. O. Luna, P. Kruchten, and H. P. d. Moura, “Agile governance
theory: conceptual development,” CoRR, vol. abs/1505.06701, 2015.
[Online]. Available: http://arxiv.org/abs/1505.06701

473

A Search-based Software Engineering Approach to
Support Multiple Team Formation for Scrum

Projects
Alexandre Costa

Federal University of Campina Grande
Intelligent Software Engineering Group

antonioalexandre@copin.ufcg.edu.br

Felipe Ramos
Federal University of Campina Grande
Intelligent Software Engineering Group

feliperamos@copin.ufcg.edu.br

Mirko Perkusich
Federal Institute of Paraiba
mirko.perkusich@ifpb.edu.br

Arthur Freire
Federal University of Campina Grande

Intelligent Software Engineering Group
arthurfreire@copin.ufcg.edu.br

Hyggo Almeida
Federal University of Campina Grande

Intelligent Software Engineering Group
hyggo@dsc.ufcg.edu.br

Angelo Perkusich
Federal University of Campina Grande

Intelligent Software Engineering Group
perkusic@dee.ufcg.edu.br

DOI reference number: 10.18293/SEKE2018-108

Abstract—Search-Based software engineering (SBSE) deals
with metaheuristic search-based optimization techniques to pro-
vide solutions for complex problems. A popular problem in
literature is the team formation problem (TFP), which consists
of finding the best allocation of human resources to a software
development project. This problem is recognized as NP-hard and
it is more complex in companies that carry out multiple projects.
This paper presents an effective and automated approach to
allocate multiple developers into multiple teams to maximize the
technical compatibility between them. The approach consists of
an SBSE method that uses Genetic Algorithm to simultaneously
build multiple teams, using data from tag-based profiles. We
conducted an empirical evaluation using data from eight real-
world software projects of a Brazilian company. The results
indicate that tag-based profiles is a promising information source
to represent technical knowledge, since the suggested teams
were considered to have the proper skills to the attend the
technical demand of the projects. The approach was able to
reach high levels of satisfaction, delivering teams in an effective
and automated way. Although, further investigation needs to be
conducted to reach stronger conclusions.

I. INTRODUCTION

Search-Based Software Engineering (SBSE) is a field that
deals with metaheuristic search-based optimization techniques
to provide automated and semi-automated solutions for com-
plex problems in Software Engineering (SE) [6], [5], [7].
According to Harman et. al. [7], typical SE problems that
involve testing, design, requirements engineering, manage-
ment, and refactoring can be well adapted for SBSE and have
been successfully formulated as search-based optimization
problems. For instance, the team formation problem (TFP),
which consists of finding the best allocation of resources
(developers) to a software development project. This problem
has gain special attention over the last years and became a
well-researched topic in the literature [1], [4], [11], [2].

The TFP is recognized as NP-hard [13] and it is more
complex in companies that carry out multiple projects. It is

necessary to optimize the allocation of multiple developers
with different sets of skills to multiple projects with different
sets of requirements. The goal is to optimize each projects’
chances of success considering the limited resources available
and attempt to have all projects succeeding. The previously de-
scribed scenario represents a multiple team formation problem
(MTFP) [4].

Finding optimal teams brings special concern with agile
methods, such as Scrum [10], a team-centered framework
designed to deliver products with the highest possible value. In
Scrum, the developer team is a self-organized and multidisci-
plinary group which means that, among others, the team must
have the all the required technical knowledge to deliver the
product. A nine-month field study of professional developers
in a Scrum team [8] found that highly specialized skills and a
corresponding division of work are the most important barrier
for achieving effective teamwork. Therefore, it is necessary to
make the most of the available resources, i.e., choosing right
teams to the right projects.

In this paper, we present a SBSE approach to form multiple
teams for Scrum projects. The approach is divided into two
parts. First, we learn the technical knowledge of the developers
through information extracted from the projects in which they
have worked. For this purpose, we instrument the Scrum
process by creating tag-based profiles for developers and
projects. Therefore, we complement the Scrum framework
with activities to assign tags to artifacts, i.e., the Product
Backlog (PB), User Stories (US) and Technical Tasks. Second,
we build a data structure to run a Genetic Algorithm to allocate
developers to projects, forming teams with maximum technical
compatibility, considering the projects demands and the de-
veloper’s skills. We chose Genetic Algorithm, because it one
of the most suitable methods for combinatorial optimization
problems [3].

To evaluate our solution, we used real-world data from
eight Scrum software projects and we collected data from

474

16 developers and 4 projects managers. The results indicates
that the tag-based profiles are a useful information source
to support the multiple team formation with a high level of
satisfaction.

This paper is organized as follows. Section II presents
related work on SBSE applied to MTFP. Section III presents
our solution to mitigate the multiple team formation problem.
Section IV presents the design and discusses the results of the
empirical evaluation. Section V presents the validity threats;
and Section VI presents the final remarks, limitations and
future work.

II. RELATED WORK

As mentioned before, a particular case in the TFP is the
MTFP, which consists of simultaneously allocating multiple
developers to multiple projects to maximize attributes from
both developers and projects.

Palacios et. Al. [1] presented a recommender system de-
signed to assist project managers in configuring multiple teams
for work packages defined by Scrum Projects. The system is
based on fuzzy logic, rough set theory and semantic tech-
nologies. In this work each project manager is responsible for
building both project and developers profiles using competence
baseline documents.

Strnad and Guid [11] proposed a decision support system
based on Fuzzy Logic and Genetic Algorithm. The system uses
fuzzification to automatically obtain fuzzy skill assessments
from numerical data of an employee database. Genetic Algo-
rithms are used to optimize the teams formations according to
the projects requirements, which are obtained by a standard
document specification inside company.

Silva and Costa [2] presented a framework based on dy-
namic programming to allocate human resources in multiple
information system projects. The main goal is to determine
the fit between the complete set of skills available from a
candidate member of a project team and the skills required
for that project to minimize the time required to complete a
project demand.

Gutierrez [4] proposes an optimization model using a
quadratic objective function, linear constraints and integer
variables. The optimization model is solved by three algo-
rithms: a Constraint Programming approach provided by a
commercial solver, a Local Search heuristic and a Variable
Neighborhood Search metaheuristic. Sociometric techniques
are used to estimate performance characteristics such as pro-
ductivity, training ability, leadership, efficiency, among others.

Ren el. al. [9] proposed a search-based software project
method to build teams based on Cooperative Co-evolution.
The teams are formed aiming to reduce the required time to
complete the projects work packages.

The main difference between the cited works and ours, is
the way the profiles of developers and projects are built. Most
of the approaches depend on the knowledge and feeling of
the project managers to build the profiles. For this reason,
the results are subjective. In our approach, the profiles are
derived from the technologies assigned to the Scrum artifacts

during the Scrum Instrumentation, minimizing the subjectiv-
ity. Another difference is that the profile information grows
dynamically, because the instrumentation is refined throughout
the project.

III. PROPOSED APPROACH

The proposed solution is divided into two parts: Scrum
Instrumentation and Solution Operationalization, which are
detailed as follows.

A. Scrum Instrumentation

Scrum is a framework for developing, delivering, and sus-
taining complex products [12]. It was designed to be comple-
mented with technical and managerial processes as needed.
We complement Scrum by applying tags to the artifacts to
register the technical skills necessary to develop the features
associated with them. These skills corresponds to program-
ming languages, frameworks, platforms, APIs, architectures,
databases, or any technology or technical knowledge necessary
to develop a feature.

To lead the tag labeling process, a new role is proposed:
(Scrum) Tagger. The Tagger is responsible for all the tag
labeling process. To assure a standardized tags assignment,
it is recommended that the company establish a small team
of Scrum Taggers who should define specific rules to avoid
that the same technical skill is reperesented using different
tags in different projects. The Scrum Instrumentation occurs
throughout the project and includes the following labeling
processes:

1) Product Backlog Labeling: the Tagger starts to work
during the initial PB definition (Figure 1[1]). The PB is an
ordered list of the product requirements. The Product Owner
(PO) is the responsible for building the PB. Therefore, the
Tagger conducts informal conversations with the PO to elicit
all or at least most of the technologies necessary to develop the
PB. Then, these technologies are converted into tags, forming
the Backlog Tag set.

2) User Story Labeling: the labeling process occurs during
Sprint Planning meetings (Figure 1[2]), which is an event
where some requirements are selected from the PB to be
developed during the given Sprint, defining the Sprint Backlog.
This requirements are usually represented by User Stories.
The Tagger, together with the Development Team, labels all
the USs of the Sprint Backlog. For this purpose, the Tagger
consults the team regarding the necessary technical skills to
develop the USs. Then, the Tagger converts the skills into tags,
forming the User Story Tag Set. It is important to note that
this set is a subset of the Backlog Tag, therefore, if a new tag
appears during this step the Backlog Tag set is updated.

3) Task Labeling: to define the Sprint Backlog, the USs
are splited into Technical Tasks. When a task is done, the
responsible selects a subset of tags from the User Story Tag
set. The selected subset, called Task Tag set, represents the
technical skills demanded to develop the feature represented by
the task. This labeling process (Figure 1[3]) occurs throughout
the Sprints. If necessary, the developer can suggest new tags,

475

which can be reviewed by the Tagger after the end of Sprint
(Figure 1[4]). If new tags are created, the User Story Tag and
the Backlog Tag sets are updated.

B. Solution Operationalization

The second part of the proposed approach consist of creating
the data structure necessary to run a Genetic Algorithm to
allocate multiple developers into multiple projects. First, tag-
based profiles are created for both developers and projects
from the data acquired from the Scrum Instrumentation. Then,
technical compatibilities between developers and projects are
calculated using feature vectors. Lastly, we use weighted
similarity coefficients to create a technical compatibility metric
that is used in the Genetic Algorithm’s fitness function to find
the optimal team formation for each project. These steps are
detailed as follows.

1) Tag-based profile building: The developer profile is
defined from two sources of information: Curriculum and
Development History. First, technical knowledge documented
in the developers’ curriculum is converted into weighted tags.
The weight corresponds to the period of experience with the
given technology. For example, if the developer worked with
the Java programming language for 18 months, his profile
will contain a tag java(18). Second, during the Sprint, the
developers works in tasks in which tags were applied during
the Scrum Instrumentation. Over time, the developer profile
is being formed by the tags that were applied to the tasks
completed by him. These tags also have weight, in this case it
is given by the number of times a tag appeared in a task. For
example, if during the Sprint the developer completed five
tasks with a java tag applied, his profile is filled with the
weighted tag java(5).

The project profile is built from the Product Backlog Tag
set. As the developer profile, it grows throught the execution of
the project, as the project requirements change and the product
backlog items are more detailed.

2) Feature vector: A feature vector is a k dimensional
vector composed by numerical values and represents a set
of the object’s characteristics. The feature vectors are created
from tag-based profiles. They are necessary to calculate the
similarity between profiles.

The project feature vector is called Backlog Vector (VB).
Each tag presented in the project profile corresponds to an
index in the vector. Note that different projects may have
different profiles, consequently, they have different feature
vectors.

For each developer, two feature vectors are created from
his profile. The Curriculum Vector (VC) is built from the
Curriculum Source; the Development Vector (VD), from the
Development History Source. Both vectors use the same
structure as the project feature vector to allow the similarity
calculation.

3) Developer Feature Vector Normalization: Since the
weight of the tags that compose the developer feature vectors
come from two different data sources with different magni-
tudes, it is necessary to harmonize the scales by normalizing

it to values between 0 (zero) and 1 (one). The normalization
uses the Equation 1, where x = (x1, x2, x3, ..., xk) is the key
value in the same position at each developer feature vector
and zi is the ith normalized value. Note that there are two
normalization processes, one for each developer feature vector.

zi =
xi −min(x)

max(x)−min(x)
(1)

4) Similarity calculation: We used Manhattan Similarity
to calculate the similarity between two k-dimensional feature
vectors. The similarities are used to determine the technical
compatibility between the developer and project profiles. Be-
tween each profile, two different similarity coefficients are
calculated. One represents the similarity between the Back-
log Vector and Curriculum Vector and the other represents
the similarity between the Backlog Vector and Development
Vector. Before the similarity calculation, the Backlog Vector
is filled with 1s (ones) to represent a maximum technical
demand of a project, i.e., the developer feature vectors, which
are composed by values closer to 1s (ones), will have higher
values of similarity.

1−
∑k

i=1 |u[i]− v[i]|
k

(2)

5) Genetic Algorithm to Form Multiple Teams: The multi-
ple team formation process consists of allocating multiple de-
velopers into multiple project team to maximize the technical
compatibility between the project demands and the developer
skills. For this purpose, we propose a metric called Technical
Compatibility Level (TCL). The TCL is generated based on a
weighted similarity coefficient given by the Equation 3. The
α represents the weight of the similarity calculated between
the Backlog and Curriculum vectors [sim(vB , vC)]. The β
represents the weight of the similarity calculated between the
Backlog and Development vectors [sim(vB , vD)]. For each
project and developer, a TCL is generated.

TCL =
α · sim(vB , vC) + β · sim(vB , vD)

2
(3)

An example of the chromosome structure used in the
Genetic Algorithm is presented in Figure 2. In this case, we
have 3 projects and 12 developers. The genes represent the
developers and, depending on his position in the structure,
a different TCL is used during the fitness calculation. For
instance, if a developer D1 appears in the indexes between
0 and 4, the TCL between D1 and the Project A is used. If
D1 appears in the indexes between 5 and 7, the TCL between
D1 and the Project B is used. The goal of the fitness function
is to find a candidate solution, where the sum of the TCLs
corresponded to each gene is maximized. Consequently, an
optimal solution corresponds to a configuration where the
matching represents maximum technical compatibility.

IV. EMPIRICAL EVALUATION

To evaluate our approach, we conducted an empirical
evaluation in a Brazilian software development company, in

476

Fig. 1. Scrum Instrumentation

Fig. 2. Example of a chromosome used in the Genetic Algorithm

which we collected real-world data from eight Scrum software
projects. Four of them (P1, P2, P3 and P4) were running
during the evaluation and the remaining projects (P5, P6, P7
and P8) were already finished. Each of the running projects
is composed by a project manager (PM) and four junior
developers. The PMs know the profiles of all 16 developers,
since there is a regular rotation among the projects, to avoid
knowledge islands. The PMs have 2-5 years of experience
in Scrum projects and the developers 1-3 years in software
development.

In Table I, we show statistics regarding the projects. The first
column contains the identification of the running projects; the
second contains the number of Sprints executed in the project.
Each Sprint lasted 2 weeks; the third presents the number
of User Stories completed; the fourth is the number of tasks
done (each task was performed individually); the fifth shows
the identification of the team members; the sixth, contains the
Backlog Tag set collected during the instrumentation process
performed in the evaluation. For reasons of confidentiality, the
projects and developers identifications were presented in an
anonymous way.

We performed the instrumentation process with the four
running projects (P1, P2, P3 and P4). The instrumentation
was designed to be executed in a interactive and incremental

way during the Scrum Events and throughout the project.
Unfortunately, the projects were already started and we had
to apply the process at once to retrieve the previous data of
the projects. For each project, we applied the three labeling
processes described in Section III-A. To avoid overloading
of the participants, which could compromise the process, we
divided the labeling in turns. During the morning, the team
performed the Backlog and User Story labeling processes and
during the afternoon the Tasks’ one. The instrumentation was
applied in different days for each project. The Scrum Tagger
role was performed by the first author of this paper. In Table
I, we can see the Backlog Tag set of projects P1, P2, P3 and
P4.

To create the Curriculum Source, we provided an online
questionnaire and all developers were guided to respond to
it. The questionnaire was composed by the tags present in
the Backlog Tag set (Table I) and complemented with tags
that represent popular technologies which not appeared during
the instrumentation. Also, the developers were free to add
other technologies he have worked outside the company by
answering an open-ended question. Naturally, duplicated tags
were excluded from the questionnaire. For each tag, the
developers were asked to register their experience (in months)
with the given technology.

To evaluate the approach, we simulated a scenario in which
four projects (P1, P2, P3 and P4) were used to learn the profile
of the developers with the goal of allocating them to other four
projects (P5, P6, P7 and P8). We present the Backlog Tag set
for projects P5, P6, P7 and P8 in Table II. To collect the data
for projects P5, P6, P7 and P8, we only executed the Product
Backlog labeling process.

We executed our approach varying α and β weights and the
results are presented in Table III. For each new project, we

477

TABLE I
DATASET STATISTICS

Project #Sprints #User Stories #Tasks Team Formation Backlog Tag set

P1 6 41 136 D3, D7, D9, D14
angular-charts, angular-material, angularjs, bower, Chart.js, checkstyle, css,

ESlint, express, Firebase, Gitlab, gulp, html, javascript, jenkins, JSHint, json,
Mocha, MongoDB, node.js, pmd

P2 4 15 97 D1, D2, D10, D11

angular-charts, angular-material, angularjs, bower, Chart.js, checkstyle, css,
cytoscape, eslint, findBugs, gitlab, gson, hamcrest, html, java, javascript, jpa,
JSHint, json, junit, maven, mockito, mySQL, PMD, spring-boot, spring-jpa,

swagger

P3 3 12 63 D4, D5, D6, D8
angular-charts, angularjs, bootstrap, bower, chart.js, css, eclipse, gitlab, gulp,

html, http-request, java, javascript, javascript, javax, json, maven, mysql,
npm, spring-boot, spring-jpa, sts, swagger, webstorm

P4 7 21 76 D12, D13, D15, D16

android, angular-material, angularjs, http-request, Beaglebone, Bonescript,
Bootstrap, C++, Chart.Js, Css, Express, Gitlab, Heroku, Html, iot, jade, java,

javascript, material-design, MongoDB, node.js, npm, parse-server, python,
Raspberry, Socket.io, XML

TABLE II
PROJECT’S BACKLOG TAG SET

Project Backlog Tag set

P5
android, android-studio, Beaglebone, firebase, git, glide,
http-request, iot, java, javascript, node.js, parse-server,
postman, sqlite, xml, zxing

P6
android, java, xml, node.js, volley, firebase, butterknife,
Body-parser, Json, Express, Mongoose, Nodemailer, Validator,
webstorm, javascript

P7
Body-parser, node.js, bootstrap, css, express, Gitlab, html,
http-request, javascript, JSHint, json, jwt, MongoDB,
Mongoose, Nodemailer, npm, webstorm, git

P8

angularjs, Body-Parser, bootstrap, bower, css, cytoscape,
ESlint, express, git, Gitlab, gulp, html, http-request, jasmine,
javascript, jenkins, JQuery, JSHint, json, karma,
material-design, Mocha, MongoDB, Mongoose, bootstrap,
node.js, NPM, tslint, typescript,Postman

formed five teams and presented to the corresponding project
managers. The PM1 was manager of P8, PM2 was manager
of P7, PM3 was manager P5, PM4 was manager P6. Then,
we asked them to answer a couple of questions. First, the PM
was required to rank the five teams suggested, according to the
level of suitability to the project, i.e, the better ranked teams
should be those who posses the set of technical skill that best
meets the demands of the project. Second, they should rate
using five point Likert scale their satisfaction with the best
ranked team(s) (i.e., multiple teams could be considered tied
with the best rank).

In Figure 3, we show the results related to the first question.
It indicates that when the weight of the Curriculum source of
the developer is high the team is ranked in the best position
by most of the managers. When we increase the weight of
the Development History source the suggested teams start
to be ranked in the last positions. Althought the Curriculum
may not be the most reliable information source, it has the
bigger amount of data, since it represents the knowledge
accomplished by the developers during all their professional
journey. On the other hand, the volume of the Development
History source is much smaller, because the data collected
came only from the projects the developers were participating
during the evaluation and it corresponded just to a few months

of development. This indicates that Curriculum data reflected
most of the technical knowledge the developers claimed to
have, at least by the PMs expectations. Unfortunately, we can
not make solid conclusions about the Development History
source, because of its small amount of data. We believe that,
at a given point after collecting data, this source is more
trustworthy than the Curriculum, but need to collect more data
to verify this hypothesis. In Figure 4, we present the results
related to the second question, which show that the PMs were
satisfied with the allocations.

V. THREATS TO VALIDITY

We identified a few threats to validation in our work. As
same as others agile methodologies, Scrum stands for individ-
uals and interactions over processes and tools. We proposed
a Scrum instrumentation as an incremental and interactive
process. It is designed to be less intrusive as possible to Scrum
framework, since it occurs during already existents events and
demands just a few more steps. Althought the process was
carefully designed, we could not apply it as it is suppose to
be, because the projects had already started. So, we applied
the process at once in each project. We consider this to be an
internal threat to validity.

Since we only collected data from one company for a short
period of time, we cannot claim external validity. We aim to
address this threat in future work.

VI. CONCLUSIONS

In this paper, we propose a SBSE approach to support mul-
tiple team formation for Scrum projects. Among our contri-
butions, we can highlight the Scrum Instrumentation process,
which allows the creation of tag-based profiles for developers
and projects. These profiles can be used to assist technical
knowledge management. Since, the instrumentation process is
designed to be incremental and interactive, the profiles are
susceptible to reflect changes during the project execution
and grow gradually. We can also emphasize the creation of
an automated method based on Genetic Algorithm to support
the project managers during the simultaneously allocation of
multiple developers into multiple software projects, forming
teams with maximum technical compatibility.

478

TABLE III
OBTAINED RESULTS FROM THE VARIATION OF α AND β WEIGHTS

P5 P6 P7 P8
α = 100% and β = 0% D4, D12, D13, D15 D7, D8, D9, D14 D1, D2, D3, D6 D5, D10, D11, D16
α = 75% and β = 25% D7, D12, D13, D15 D4, D8, D9, D14 D1, D2, D3, D6 D5, D10, D11, D16
α = 50% and β = 50% D7, D12, D13, D15 D4, D8, D9, D16 D1, D2, D3, D6 D5, D10, D11, D14
α = 25% and β = 75% D7, D12, D13, D15 D2, D4, D8, D16 D3, D5, D6, D14 D1, D9, D10, D11
α = 0% and β = 100% D7, D12, D13, D16 D2, D4, D8, D11 D3, D5, D14, D15 D1, D6, D9, D10

Fig. 3. Ranked teams by the projects managers

Fig. 4. Project managers satisfaction to the better ranked teams

As a limitation of our approach, we can point the slow
growth of the Development History data source. Since this
source depends on the developer participation in software
projects of the company, the amount and diversity of these
data might need time to reach the same size as the Curriculum
source. We hypothesize that the Development History is a
more reliable source, but we could not verify it in this study.
We plan to verify it in future work, by increasing the number of
projects and developers for the next empirical evaluation and
test different scenarios. Also, we intend to determine optimum
values for α and β dynamically, according to the information
volume of each data source. Furthermore, we plan to integrate
our tagging mechanism to quality and productivity indicators,
to have a more reliable regarding the knowledge (i.e., expected
performance) of the developers.

REFERENCES

[1] R. Colomo-Palacios, I. González-Carrasco, J. L. López-Cuadrado, and
Á. Garcı́a-Crespo. Resyster: A hybrid recommender system for scrum
team roles based on fuzzy and rough sets. International Journal of
Applied Mathematics and Computer Science, 22(4):801–816, 2012.

[2] L. C. e Silva and A. P. C. S. Costa. Decision model for allocating
human resources in information system projects. International Journal
of Project Management, 31(1):100–108, 2013.

[3] E. Falkenauer. Genetic algorithms and grouping problems. Wiley New
York, 1998.

[4] J. H. Gutiérrez, C. A. Astudillo, P. Ballesteros-Pérez, D. Mora-Melià,
and A. Candia-Véjar. The multiple team formation problem using
sociometry. Computers & Operations Research, 75:150–162, 2016.

[5] M. Harman. The current state and future of search based software
engineering. In 2007 Future of Software Engineering, pages 342–357.
IEEE Computer Society, 2007.

[6] M. Harman and B. F. Jones. Search-based software engineering.
Information and Software Technology, 43(14):833 – 839, 2001.

[7] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software
engineering: Trends, techniques and applications. ACM Comput. Surv.,
45(1):11:1–11:61, Dec. 2012.

[8] N. B. Moe, T. Dingsøyr, and T. Dybå. A teamwork model for under-
standing an agile team: A case study of a scrum project. Information
and Software Technology, 52(5):480–491, 2010.

[9] J. Ren, M. Harman, and M. Di Penta. Cooperative co-evolutionary
optimization of software project staff assignments and job scheduling.
Search Based Software Engineering, pages 127–141, 2011.

[10] K. Schwaber and M. Beedle. Agile software development with Scrum,
volume 1. Prentice Hall Upper Saddle River, 2002.

[11] D. Strnad and N. Guid. A fuzzy-genetic decision support system for
project team formation. Applied soft computing, 10(4):1178–1187, 2010.

[12] J. Sutherland and K. Schwaber. The scrum guide. The definitive guide
to scrum: The rules of the game. Scrum. org, 268, 2013.

[13] G. J. Woeginger. Exact algorithms for np-hard problems: A survey.
In Combinatorial OptimizationEureka, You Shrink!, pages 185–207.
Springer, 2003.

479

Bug or Not Bug? Labeling Issue Reports via User
Reviews for Mobile Apps

Haoming Li1, Tao Zhang1,2*, Ziyuan Wang3

1College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
2Key Laboratory of Network Assessment Technology, Institute of Information Engineering, CAS, Bejing 100093, China

3School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
{heulaoyoutiao, cstzhang}@hrbeu.edu.cn, wangziyuan@njupt.edu.cn

*Corresponding author: Tao Zhang

Abstract—A great number of mobile applications (apps) have been

released to the market. Therefore, software maintenance for these

apps become an important and challenging task. For each app,

developers usually submit issue reports to report the bugs, the

features, the questions, and other changes appearing in it. In the

process of software maintenance, developers refer to the

corresponding labels to decide which one should be fixed first. If

the label of an issue report is “bug” which means the report

describes a serious error, developers should fix the bug first.

Otherwise, if the label is not “bug” (e.g., feature or question),

developers can resolve it later. However, according to our

investigation, 36.7% of issue reports in top-10 popular mobile apps

are not labeled. In other words, there are not any labels in them.

It is difficult for developers to decide which issue should be

resolved preferentially. To resolve this problem, we propose a

method to verify whether an issue report describes a bug or not by

using user reviews. Developers usually extract useful information

from user reviews to maintain mobile apps. In this work, we utilize

tf • idf, Word2Vec, and Microsoft Concept Graph (MCG) to

compute the textual similarity between issue reports and user

reviews related to real bug in order to find the issue reports which

describe the real bugs. As a result, our approach with Word2Vec

performs the best among three similarity metrics.

Keywords-issue report; user reviews; simialrity metrics; mobile

apps; software maintenance

I. INTRODUCTION
Recently, the number of mobile devices such as smartphones

and tablet computers have been produced for a wider group of
people. These mobile devices result in the increase of the
number of mobile applications (apps). Therefore, maintaining
mobile apps is becoming important and challenging [1]. Fixing
bugs is a core task in software maintenance activities [2]. Once
a bug is found, a developer can upload an issue report to describe
this bug. The detailed information can help developers fix it.
However, we find that 36.7% of issue reports in top-10 popular
mobile apps were not labeled as “bug” or others. In this situation,
developers should verify whether these issue reports describe the
real faults or not. For a large number of issue reports, it is a time-
consuming work. Thus, it is necessary to develop an approach to
automatically label the issue reports instead of manual
versification.

DOI reference number: 10.18293/SEKE2018-059

In online app stores (e.g., Google Play Store, Apple Store),
users can evaluate each app by using scores and post their
reviews. These reviews are free-form text that may include
important information such as bugs that need to be fixed by
developers. The buggy user reviews can guide developers
resolve bugs appearing in apps. Therefore, the bugs appearing in
user reviews may be very close to the real faults reported in the
issue report so that they can help to verify whether an issue
report describes a bug or not. To the best of our knowledge, there
was no any work to study the relationship between user reviews
and issue reports in mobile apps.

In this paper, we propose an automated labeling approach to
verify whether an issue report describes a bug or not. First,
according to the suggestion mentioned in the literature [3], we
choose user reviews that have less than 3 stars or lower because
the reviews with few number of stars have high probability of
describing bugs. Second, we use SURF [4], a popular review
analysis tool, to automatically classify these user reviews into
five categories: information giving, information seeking, feature
request, problem discovery, and others. Next, we utilize natural
language processing techniques to pre-process the user reviews
in the category-problem discovery to build an index set. Third,
we compute the similarity scores between each candidate issue
report and the index set by using three popular similarity metrics
that include tf•idf [5], Word2Vec [6], and Microsoft Concept
Graph (MCG) [7]. If the similarity is more than a threshold, the
issue report is labeled as “bug”. Otherwise, the issue report does
not describe a software fault.

We perform experiments on user reviews and issue report
selected from 10 open source mobile apps on GitHub. As a result,
the average F1 scores of our approach using tf•idf, Word2Vec,
and MCG achieve 56.1%, 61.4%, and 58.9%, respectively when
the best threshold is set for each metric. The result denotes that
our approach with Word2Vec performs the best among three
similarity metrics.

We summarize the contributions of our work as follows:

• We first propose an approach to automatically label the
issue reports with “bug” by computing the similarity
scores between the issue reports and buggy user reviews.

480

mailto:cstzhang%7d@hrbeu.edu.cn

• We perform our approach on top-10 popular mobile
apps. The result shown that our approach with
Word2Vec performs the best among three similarity
metrics.

Roadmap. Section 2 introduce the background and motivation
of our work. In Section 3, we detail the proposed automated
labeling approach. Section 4 presents the experimental results.
In Section 5, we show the limitations of this work and
corresponding solutions. Section 6 introduces the related work.
Section 7 concludes the paper and introduce the future work.

II. BACKGROUND AND MOTIVATION
For each app, users can input free-text to comment it.

These comments are called user reviews. Since some user
reviews describe the real bugs, they can help us label the issue
reports as “bug” or not. Fig. 1 shows the examples of four
reviews in AntennaPod, which are collected from Google Play
Store.

Fig. 1 User reviews in AntennaPod

From these user reviews, we note that users find the running
problems of podcasts due to the update of the versions. They
post their comments in Google Play Store and give the
relatively low scores (i.e., less than 4 stars). In fact, this is a bug
appearing in AntennaPod. An issue report also describes it, we
show it in Fig. 2.

Fig. 2 An issue report with the label- “bug”

We note that the developer reported a problem when he
downloaded podcast files. The bug is also caused by the version

update. It is similar to the problems described in four reviews
shown in Fig. 1, especially for Review B.

The label of the issue report-#544 is “bug”, therefore, the

user reviews which describe the real faults have the close-knit
relations with the issue reports which are labeled by “bug”.
 According to our investigation for issue reports in top-10
popular mobile apps, we find that 36.7% of issue reports are not
labeled (See Table Ⅰ). In Fig. 3, we show an example of
unlabeled issue report.

Fig. 3 An example of unlabeled issue report

 In Fig. 3, we can see that the reporter did not label this
issue report. In such a situation, a bug fixer should verify
whether the issue report describes a bug or not so that he or she
can decide the priority of resolving the issue. Obviously, this is
a time-consuming task when he or she needs to resolve the
increasing number of unlabeled issue reports.
 When we carefully read the issue report-#237, note that the
report describes a crash problem appearing in AntennaPod. In
the other words, this is a bug. Thus, it should be fixed first. By
analyzing the relationship between the user reviews shown in
Fig. 1 and the issue report-#544 shown in Fig. 2, we think that
buggy reviews can help to verify whether an issue report
describes a bug or not. In the following sections, we introduce
the details of the method and the corresponding experiment.

III. RELATED WORK

A. Software maintenance for mobile apps

Software maintenance for mobile apps become an
important task due to an increasing number of mobile apps.
However, only a few research teams study this problem. Syer et
al. [12] analyzed 15 most popular open source Android apps,
and they found that the “best practices” of existing desktop

software development cannot be utilized for mobile apps due to
the different features. Bhattacharya et al. [13] executed an
empirical analysis of issue reports and bug fixing in open source
Android apps. They analyzed the bug-fixing process and the
quality of issue reports. Zhou et al. [14] conducted a cross-
platform analysis of bugs and bug-fixing process in open source
projects of different platforms such as desktop, Android, and
IOS. They analyzed the different features such as fixing time
and severity of bug-fixing process in these different platforms.

These studies on empirical analysis of issue reports and
bug fixing process of mobile apps give us the inspiration for
beginning this work. In our work, we not only analyze issue
reports, but also analyze user reviews. In addition, we utilize

Just can't seem to get the podcast files to download in
one go. Log just shows connection error and download
failed. Will have to keep downloading again and again
(luckily, it resumes from where it stopped) Pretty sure
that my wifi connection is not getting disconnected or
anything. Damn annoying, this. I use a Motorola E.

481

user reviews to label the issue reports which describe the real
software bugs.

B. User review analysis

In online app stores such as Google Play Store, Apple App
Store, and Windows Phone App Store, users can rate the apps
by selecting the stars from 1 (the lowest rating level) to 5 (the
highest rating level) and inputting the reviews. These reviews
describe users’ impressions, experience, and preference degree.
Therefore, they can be used by developers as a feedback to
facilitate the process of software maintenance. Some studies
focus on user review analysis to extract important information.
Palomba et al. [15] traced informative crowd reviews onto
source code change, and use this relation to analyze the impact
of reviews on the development process. Ciurumelea et al. [16]
analyzed the reviews and classify them. They also
recommended for a particular review what are the source code
files that need to be modified to hander the issue. Genc-Nayebi
and Abran [17] presented the proposed solutions for mining
online opinions in app store user reviews. Chen et al. [18]
proposed an approach to identify attackers of collusive
promotion groups in an app store by exploiting the unusual
ranking change patterns from user reviews.

In our work, we not only analyze and classify user reviews,
but also utilize the relation between user reviews and issue
reports to automatically label the unlabeled reports as “bug” or

“not bug”.

IV. METHOD

A. Framework

In this paper, we propose an automated labeling approach
to verify whether an issue report describes a real bug or not. Fig.
4 shows the framework of this method.

Fig. 4 The framework of automated labeling approach
From this figure, we first use Natural Language Processing

(NLP) techniques to pre-process the issue reports in our data
sets. These issue reports are treated as queries to be labeled.
Second, we classify user reviews into five categories:
information giving, information seeking, feature request,
problem discovery, and others by using an automated review
analysis tool. We extract the user reviews in problem discovery

as buggy reviews according to the suggestion proposed in the
literature [3]. Third, we also preprocess these buggy reviews to

1 http://www.nltk.org/

produce the buggy-review set. Finally, we compute the textual
similarity between each query and the buggy-review set by
using three similarity metrics that include tf•idf, Word2Vec,
and MCG. If the similarity score is more than the threshold, we
label this issue report to “bug”.

In the following subsections, we show the details of each
step.

B. Document Preprocessing

As a first step, we preprocess the issue reports in our data
set by using NLP technologies [8]. We use the python libraries
NLTK1 and TEXTBLOB2 to implement the following steps:

• Tokenization: an issue report is divided into a bag of
words (i.e., tokens), which can be used to compute the
textual similarity.

• Stop word removal: Some stop words such as “the”,
“a”, “are” are common words that are frequent in written
English. These words cannot provide more semantic
information. Thus, they should be removed according to
the list of WordNet English stop words.

• Stemming: the words should be transformed to their
basic forms (i.e., stems) in order to keep the high
accuracy when we compute the textual similarity. For
example, “providing” is changed to “provide”, and
“faults” is changed to “fault”.

• Nouns and verbs filtering: we adopt a part of speech
(POS) tagging classification to identify the nouns and
verbs from issue reports. Since these words are the most
representative, they are considered to compute the
textual similarity scores.

C. Review classification

In order to remove the uninformative reviews and find
buggy reviews, we adopt SURF [4], a state-of-the-art review
analysis tool, to classify them into five categories: Information
Giving, Information Seeking, Feature Request, Problem
Discovery, and Others. Because we focus on buggy reviews, we
only collect user reviews in the category Problem Discovery to
label the issue reports as real bugs.

To verify whether the classification is acceptable, we
randomly select 20% of user reviews in the category Problem

Discovery. The first author and one research assistant (RA)-Mr.
Jiachi Chen from the Hong Kong Polytechnic University are
responsible for checking whether each user review describes a
real fault. The selected user reviews are equally divided into two
groups. Each person is invited to check one group. In order to
reduce the possible bias, two persons exchange their data to
execute the verification again. The corresponding author can
make a final decision when the verification results are
inconsistent. As a result, we get the accuracy of 91.4%.
Therefore, the classification results are acceptable.

D. Structuring buggy-review set

When extracting the user reviews in the category Problem

Discovery, we preprocess these reviews using the same

2 http://textblob.readthedocs.io/en/dev/

482

approach described in Section Ⅲ.B. Then they are grouped into
buggy-review set to be used to compute the similarity scores
with issue reports.

E. Bug report verification

In our work, we propose an automated labeling approach
to verify whether an issue report is a bug or not. To implement
this purpose, we adopt buggy user reviews to verify bug reports
by computing the textual similarity between issue reports and
the buggy-review set via three similarity metrics that include tf
•idf, Word2Vect, and MCG. These metrics are introduced to
transfer the documents to different kinds of vectors so that they
can be input into cosine similarity function [9] to compute the
similarity scores. These metrics are presented as follows:

tf•idf: it is a popular metric to represent documents as
vectors of words. The value for each word is its tf-idf weight
which is defined by:

tf − idf weight = 𝑡𝑓𝑡,𝑑 × 𝑙𝑜𝑔
𝑁

𝑛𝑡
 , (1)

where 𝑡𝑓𝑡,𝑑 is an appearing frequency of term t in the document
d. 𝑙𝑜𝑔 𝑁

𝑛𝑡
 is the inverse document frequency which is a measure

of how much information the word provides. N is the total
number of documents while nt is the number of documents
which contain term t.

When we get all words’ tf-idf weights, a document can be
transferred to a vector of the tf-idf weights. Thus, we can use
the cosine similarity function to compute the textual similarity
between an issue report IRi and buggy-review set BRS. It is
defined by:

sim(𝐼𝑅𝑖 , BRS) =
∑ 𝜔𝑘𝑖𝜔𝑘

𝑛
𝑘=1

√∑ 𝜔𝑘𝑖
2𝑛

𝑘=1 ×√∑ 𝜔𝑘
2𝑛

𝑘=1

 , (2)

where 𝜔𝑘𝑖 and 𝜔𝑘 denote the weight of kth word in IRi and BRS,
respectively. They are computed by tf-idf weight (see formula
(1)).

Word2Vec: it maps a word into semantic word embedding.
A large corpus of text can be transferred to a vector space, and
each unique word in the corpus being assigned a corresponding
vector in the space. We utilize Word2Vec with the skip-gram
model [10]. In k dimensions (k=100 in our work), each word
can be represented as the vector defined as follows:

𝑣𝑒𝑐(𝑤𝑜𝑟𝑑)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =< 𝑣1, 𝑣2, … , 𝑣𝑘 > (3)
 Thus, a document can then be mapped into the space by:

𝐶𝑠 = 𝜃𝑇 ∙ 𝐻𝑊 , (4)
where 𝜃𝑇 is the vector of the tf-idf weights of the words in the
document computed by formula (1) and 𝐻𝑊 is the word vector
matrix. In this matrix, the i-th line represents the word vector of
the word i. The matrix is constructed by concatenating the word
vectors of all words in the document. Via matric multiplication,
a document is transferred to a vector of semantic categories,
denoted by 𝐶𝑠.
 When we get the word vectors of the issue report and
buggy-review set, we can use cosine similarity defined by
formula (2) to compute their semantic similarity.

3 https://github-ranking.com/repositories

MCG: it maps text format entities into semantic concept
categories with some probabilities. This similarity metric can
also overcome the limitation in traditional token-based models
such as tf•idf that only compares lexical words in the document.
It captures the semantics of words by mapping words to their
concept categories. By using MCG, a word can be represented
as its semantic concept categories with probabilities. For
example, the word “Baidu”, which can be categorized into a
large number of concepts such as “company”, “software”, and

“search”. Therefore, a word can be transferred to a concept

vector so that a document can then be mapped into the space by:
𝐶𝑑 = 𝜃𝑇 ∙ 𝐻𝑀 , (5)

where 𝜃𝑇 is the vector of the tf-idf weights of the words in the
document computed by formula (1) and 𝐻𝑀 is the concept
matrix, which is constructed by concatenating the concept
vectors of all words in the document. Via matrix multiplication,
a document is transferred to a vector of concept categories,
denoted as 𝐶𝑑. Actually, the document is mapped to the concept
space by assigning a probability to each concept category to
which the document belongs. This probability is estimated by
summing up the corresponding probabilities of all the words
contained in the document.
 When we get the concept vectors of the issue report and
buggy-review set, we can use cosine similarity defined by
formula (2) to compute their semantic similarity.
 When the similarity score is more than the threshold, we
treat the issue report as the bug report. In other words, the issue
report is labeled as “bug”. Otherwise, the issue report’s label is

not bug.

V. EXPERIMENT

A. Setup of experiment

We collect the issue reports and the user reviews which
have less than 3 stars or lower from 10 open source mobile apps
in GitHub. Note that we treat the closed issue reports as the
experimental object because they have the whole records of life-
cycle so that it is easy to verify the experimental results. We
first download top-100 popular open source mobile apps
according to Ranking Repositories3 in GitHub as our candidate
projects, and then we filter out the projects which have less than
1400 reviews because a small number of user reviews can affect
the result of automated labelling. The scale of our data set is
shown in Table Ⅰ.

In this data set, we note that there are 36.7% (2921/7966
≈36.7) of issue reports are not be labeled. Therefore, the goal
of our experiment is to automatically label them using our
approach described in Section Ⅲ.

In order to easily verify our approach, we also utilize the
proposed approach to predict the label “bug” for the issue report

which had labeled as “bug”. If the final list includes this issue

report, the prediction is correct; otherwise, the prediction is
wrong. For unlabeled issue reports, we first label them
manually to verify the final result using our automated approach.
The first author and Mr. Jiachi Chen who is a RA at the Hong

483

Kong Polytechnic University are responsible for marking the
unlabeled issue reports. They all have more than 3 years
debugging experiences and are familiar with the projects in
GitHub. One person is responsible for labeling half of unlabeled
data while another person is responsible for labeling another
half of data. Then they exchange their data each other. If the
result is not consistent, a senior developer who has more than
10 years debugging experience and also has the experience to
develop the projects managed in GitHub is invited to make the
final decision for ensuring the reliability of the final result.

Table Ⅰ The scale of our data set
Project #reports #unlabeled

reports

#reviews Period

AntennaPod 1,107 382 2,082 03.08.2012-
21.12.2016

Automattic 222 44 1,394 18.01.2013-
30.11.2016

cgeo 1,434 331 4,466 18.01.2011
chrislacy 193 22 1,471
k-9 mail 783 337 4,456 15.03.2015-

23.01.2017
OneBusAway 314 30 2,103 16.02.2013-

28.06.2014
Twidere 653 245 2,031 06.07.2014-

16.12.2016
UweTrottmann 399 192 4,459 26.07.2011-

23.11.2016
WhisperSystems 1,524 1,170 4,443 26.12.2011-

17.01.2017
WordPress 1,337 168 4,433 08.03.2013-

14.01.2017
All 7,966 2,921 31,368

We utilize F1 score [11] to evaluate our result. F1 is a

frequently-used evaluation function, which is defined by:
F1 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 , (6)

where Precision and Recall are computed by:
 Precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 , (7)

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

Here, TP (i.e., Ture Positive instances) indicates the
number of instances (i.e., issue reports in our work) labeled
correctly, FP (i.e., False Positive instances) represents the
number of instances labeled incorrectly, and FN (i.e., False
Negative instances) shows the number of correct instances that
are not labeled by the approach.

B. Parameter adjusting

After we compute the similarity score between each issue
report and the buggy-review set by using three metrics-tf•idf,
Word2Vec, and MCG, the issue reports are labeled as “bug”

when the scores are more than the defined threshold. Therefore,
the threshold is the important parameter, which decides the
performance of our approach. Table Ⅱ shows the F1 scores of
10 projects when we select the different thresholds (0.1 to 0.9)
using Word2Vec. We highlight the best values when selecting
the corresponding threshold. Due to the limited space, we do
not show the adjusting process of the thresholds for 10 projects
by using other similarity metrics, i.e., tf•idf and MCG. But we
show them at our GitHub repository:
https://github.com/heulaoyoutiao/bugtag in order to let each
scholar easily reproduce our work.

C. Experimental result

We adopt the best threshold to implement our approach.
Table Ⅲ shows the Precision, Recall, and F1 scores of all
projects using three metrics.

From this table, we note that our approach using
Word2Vec shows the best performance due to the highest
Precision (47.26%), Recall (93.77%), and F1 scores (61.47%).
Our approach using MCG shows the second-best performance
while our approach using tf•idf shows the lowest performance.

We analyze the possible reasons for this evaluation result.
tf•idf adopts term frequency and inverse document frequency,
but it does not consider the term’s semantic concept. On the

contrary, Word2Vec and MCG also preserve terms’ semantic

and syntactic relationships. Therefore, our approach using
Word2Vec or MCG performs better than that using tf• idf.
Word2Vec performs the best may be caused by the
characteristics of our data sets. We will deeply analyze the
reasons in the future.

VI. LIMITATION
We only collected the issue reports and bug reports from

10 mobile apps managed by GitHub to perform our experiments.
These apps are selected according to Ranking Repositories in
GitHub. Thus, our approach may not be generalizable to other
projects. Even though we think that these popular projects are
representative, we would like to further explore more projects
in our future work.

Moreover, we only consider to automatically label the
“bug” for issue reports by computing the textual similarity

between buggy user reviews and issue reports. Machine
learning techniques can also be utilized to do this task. In this
future, we can consider to implement deep learning-based
automated labelling approach for recommending more labels
such as feature and question to unlabeled issue reports.

VII. CONCLUSTION AND FUTURE WORK
In this paper, we propose an approach to automatically

label an issue report as “bug” or not. This approach considers
the relationship between buggy user reviews and issue report. It
computes the similarity scores between them using three
metrics such as tf•idf, Word2Vec, and MCG. The experimental
result shows that our approach with Word2Vec performs the
best.

In the future, we will propose an approach and
corresponding system to automatically recommend more labels
(e.g., feature, question) for issue reports. Moreover, we consider
to utilize deep learning to tag these labels.

ACKNOWLEDGEMENT
This work was supported in part by the National Natural

Science Foundation of China under grant 61602258, the China
Postdoctoral Science Foundation under grant 2017M621247,
the Heilongjiang Postdoctoral Science Foundation under grant
LBH-Z17047, and the Fundamental Research Funds for the
Central Universities under grant HEUCFJ170604.

484

https://github.com/heulaoyoutiao/bugtag

Table Ⅱ F1 scores (%) of 10 projects when selecting different threshold using Word2Vec
Threshold

F1 scores (%) of 10 projects
AntennaPod Automattic cgeo chrislacy k-9 mail OneBusAway Twidere UweTrottmann WhisperSystems WordPress

0.1 63.05 76.51 65.40 57.50 62.18 70.12 46.66 62.20 74.85 35.41

0.2 63.01 76.13 65.24 57.05 62.29 70.12 46.99 62.06 74.89 35.32
0.3 62.70 74.23 65.20 57.41 62.17 70.27 47.07 60.41 73.73 35.29
0.4 62.90 74.53 64.17 55.77 62.39 70.00 45.80 60.69 72.41 35.31
0.5 60.80 72.26 62.12 53.33 61.00 70.06 44.81 58.15 69.30 35.34
0.6 54.45 72.92 57.22 51.23 56.39 70.95 37.43 56.84 60.89 36.01
0.7 41.93 60.41 46.57 33.33 45.68 68.60 32.56 48.45 45.11 30.29
0.8 26.79 40.21 30.91 19.21 31.59 55.93 17.56 26.86 18.54 22.88
0.9 5.73 4.11 7.30 1.40 9.65 11.34 2.60 2.07 3.44 2.74

Table Ⅲ Performance of our approach using three similarity metrics when the best threshold is selected

Project Our approach using tf•idf Our approach using MCG Our approach using Word2Vec

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)
AntennaPod 45.37 90.75 60.50 44.60 93.50 60.39 46.13 99.61 63.05
Automattic 76.03 78.72 77.35 67.03 86.52 75.54 66.49 90.07 76.51

cgeo 48.47 77.19 59.55 47.45 92.11 62.63 48.83 99.00 65.40
chrislacy 49.01 52.86 50.86 50.30 60.00 54.72 51.11 65.71 57.50
k-9 mail 38.30 74.22 50.53 41.48 90.37 56.86 45.51 99.15 62.39

OneBusAway 55.81 84.71 67.29 54.43 97.65 69.89 54.34 99.41 70.27
Twidere 30.61 79.71 44.24 29.90 89.86 44.87 31.27 95.17 47.07

UweTrottmann 46.67 64.32 54.09 46.75 81.62 59.45 47.44 90.27 62.20
WhisperSystems 55.29 80.76 65.64 55.90 91.21 69.32 59.97 99.67 74.89

WordPress 21.35 56.09 30.93 21.55 94.46 35.09 21.53 99.63 35.41
Average 46.69 73.93 56.10 45.94 87.73 58.88 47.26 93.77 61.47

REFERENCES
[1] T. Zhang, J. Chen, X. Luo, and T. Li, “Bug reports for desktop software

and mobile apps in github: what is the difference?” IEEE Software,
published online, 2017.

[2] N. Shahmehri, M. Kamkar, and P. Fritzson, “Semi-automatic bug
localization in software maintenance,” Proceedings of the International
Conference on Software Maintenance 1990, 1990, pp.30-36.

[3] B. Fu, J. Lin, C. Faloutsos, J. Hong, and N. Sadeh, “Why people hate your
app: Making sense of user feedback in a mobile app store,” Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2013, pp. 1276-1284.

[4] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio,
G. Canfora, and H. C. Gall, “What would users change in my app?
Summarizing app reviews for recommending software changes,”
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2016, pp. 499-510.

[5] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok, “Interpreting tf-
idf term weights as making relevance decisions,” ACM Transactions on
Information Systems, vol. 26, no. 3, pp. 1-37, 2008.

[6] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,”
Proceedings of the 26th International Conference on Neural Information
Processing Systems, 2013, pp. 3111-3119.

[7] L. Wei, Y. Liu, and S.-C.Cheung, “Oasis: Prioritizing static analysis
warnings for android apps based on app user reviews,” Proceedings of the
11th Joint Meeting on Foundations of Software Engineering, 2017, pp.
672-682.

[8] E. Cambria, an B. White, “Jumping NLP curves: a review of natural
language processing research,” IEEE Computational Intelligence
Magazine, vol. 9, no. 2, pp. 48-57, 2014.

[9] S. Tata, and J. M. Patel, “Estimating the selectivity of tf-idf based cosine
similarity predicates,” SIGMOD Record, vol. 36, no. 2, pp. 7-12, 2007.

[10] L. De Vinc, G. Zuccon, B. Koopman, L. Sitbon, and P. Bruza, “Medical
semantic similarity with a neural language model,” Proceedings of the 23rd
ACM International Conference on Information and Knowledge
management, 2014, pp. 1819-1822.

[11] C. Goutte, and E. Gaussier, “A probabilistic interpretation of precision,
recall, and f-score, with implication for evaluation,” Advances in
information retrieval, 2005, pp. 345-359.

[12] M. D. Syer, M. Nagappam, A. E. Hassan, and B. Adams, “Revisiting prior
empirical findings for moble apps: an empirical case study on the 15 most
popular open-source android apps,” Proceedings of the 2013 Conference
of the Center for Advanced Studies on Collaborative Research, 2013, pp.
283-297.

[13] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An empirical
analysis of bug reports and bug fixing in open source android apps,”
Proceedings of the 17th European Conference on Software Maintenance
and Reengineering, 2013, pp. 133-143.

[14] B. Zhou, I. Neamtiu, and R. Gupta, “A cross-platform analysis of bugs
and bug-fixing in open source projects: desktop vs. android vs. ios,”
Proceedings of the 19th International Conferrence on Evaluation and
Assessment in Software Engineering, 2015, no. 7, pp. 1-10.

[15] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests for
mobile apps based on user reviews,” Proceedings of the 39th International
Conference on Software Engineering, 2017, pp. 106-117.

[16] A. Ciurumelea, A. Schaufelbhl, S. Panichella, and H. C. Gall, “Analyzing
reviews and code of mobile apps for better release planning,” Proceedings
of the IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, 2017, pp. 91-102.

[17] N. Genc-Nayebi, and A. Abran, “A systematic literature review: opinion
mining studies from mobile app store user reviews,” Journal of Systems
and Software, vol. 125, pp. 207–219, 2017.

[18] H. Chen, D. He, S. Zhu, and J. Yang, “Toward detecting collusive ranking
manipulation attackers in mobile app markets,” Proceedings of the 2017
ACM Asia Conference on Computer and Communications Security, 2017,
pp. 58-70.

485

A Topic Modeling Approach for Code Clone Detection

Sandeep Reddivari
School of Computing

University of North Florida
Jacksonville, FL, USA 32224

Mohammed Salman Khan
School of Computing

University of North Florida
Jacksonville, FL, USA 32224

ABSTRACT
In this paper we investigate the potential benefits of Latent
Dirichlet Allocation (LDA) as a technique for code clone de-
tection. Our objective is to propose a language-independent,
effective, and scalable approach for identifying similar code
fragments in relatively large software systems. The main
assumption is that the latent topic structure of software ar-
tifacts gives an indication of the presence of code clones. In
particular, we hypothesize that artifacts with similar topic
distributions contain duplicated code fragments. To test this
novel hypothesis, we conduct an experimental investigation
using multiple datasets from different application domains.
Preliminary results show that, if calibrated properly, topic
modeling can deliver satisfactory performance in capturing
different types of code clones. It also achieves levels of accu-
racy adequate for practical applications, showing compara-
ble performance to already existing tools that adopt different
clone detection strategies.

Keywords
Refactoring, Topic Modeling, Code Clones

1. INTRODUCTION
Code clones are similar code fragments that appear in a

software system [10]. It is estimated that a typical mid-size
industrial system contains up to 20% of duplicated code [4,
15, 24]. Clones are often produced by the copy-&-paste prac-
tice of programmers [16]. Rather than rewriting working
code fragments from scratch, programmers prefer to copy,
and perhaps slightly modify, working code that has already
been tested before [9]. The main assumption is that, sim-
ply making a copy of a working code is faster and is less
likely to introduce new bugs, especially when a deadline
is approaching [29]. However, from a refactoring perspec-
tive, code clones are considered a major code smell [3, 10].
They significantly increase the maintenance cost and the
error proneness of the code [14, 20]. For instance, incon-
sistent changes to code duplicates can lead to unexpected
behavior [24]. Therefore, clones must be kept in sync dur-
ing maintenance [21]. In particular, when a bug is fixed in
an instance of a cloned code, all other duplicates must be
altered as well. In addition, clones decrease the modularity
of the system and its level of encapsulation, as well as unnec-
essarily increase the size of the code which can complicate
future maintenance tasks and reduce understandability [9].

DOI reference number: 10.18293/SEKE2018-179

Therefore, code clones have to be refactored whenever de-
tected [18, 30]. Based on the notion of similarity established
between code fragments, various types of code clones can be
identified. Clones can range from exact matches where the
same code fragment is copied, to functional clones where
two code fragments perform the same operation but they
are syntactically and semantically different [30, 4, 19]. A
plethora of clone detection tools have been proposed in the
literature [8, 30]. Such tools often support a large variety
of programming languages, and adopt different clone detec-
tion strategies, at different levels of complexity, designed
to target various types of clones. Despite these advances,
the usage of clone detection tools is still not pervasive in
industry [14]. In general, most of these tools are still far
from achieving optimal accuracy. This requires developers
working with such tools to manually classify and verify the
detected candidate clones [8, 30], a process that is often
described as time-consuming and error-prone [25]. In addi-
tion, there is still a lack of adequate support for large-scale
systems, where clones are likely to spread over several code
modules [13, 21].

In an attempt to address these issues, in this paper we
propose a novel approach, based on topic modeling, to facil-
itate a more accurate, language-independent, and scalable
clone detection process. In particular, we experiment with
Latent Dirichlet Allocation (LDA), the most commonly used
technique for topic modeling in Natural Languages Process-
ing (NLP) [7]. LDA is a probabilistic statistical approach
for estimating a topic distribution over a text corpus [7].
Our main conjuncture is that, the topic distribution over a
code base gives an indication of the presence of code clones.
Our contributions in this paper are the following. First,
we propose an effective, language independent, and scalable
approach for detecting code clones based on topic model-
ing. Second, we provide an experimental benchmark for
calibrating LDA parameters and evaluating its performance
in detecting various types of code clones.

The rest of the paper is organized as follows. Section 2
briefly introduces the background and related work. Section
3 introduces our research methodology. Section 4 presents
our experimental analysis and results. Section 5 presents
threats to validity and finally Section 6 concludes the paper
and discusses the future work.

2. BACKGROUND AND RELATED WORK

2.1 Latent Dirichlet Allocation
LDA was first introduced by David Blei et al. [7] as a sta-

486

tistical model for automatically discovering topics in large
corpus of text documents. The main assumption is that doc-
uments in a collection are generated using a mixture of latent
topics, where a topic is a dominant theme that describes a
coherent concept of the corpus’s subject matter. In recent
years, LDA has been utilized heavily to aid several essential
software engineering activities. For instance, Andrzejewski
et al. [1] proposed an approach based on LDA to support sta-
tistical debugging tasks in software systems. Results showed
that LDA-based approach outperformed existing methods
for bug cause identification. In addition, Thomas et al. [31]
used LDA to study source code evolution. Analysis showed
that evolution caused by change activity was often reflected
in the topic mixture of the system.

LDA takes the documents collectionD, the number of top-
icsK, and α and β as inputs. Each document in the corpus is
represented as a bag of words d =< w1, w2, . . . , wn >. Since
these words are observed data, Bayesian probability can be
used to invert the generative model and automatically learn
φ values for each topic ti, and θ values for each document di.
In particular, using algorithms such as Gibbs sampling [28],
an LDA model can be extracted. This model contains for
each t the matrix φ = {φ1, φ2, . . . , φn}, representing the
distribution of t over the set of words < w1, w2, . . . , wn >,
and for each document d the matrix θ = {θ1, θ2, . . . , θn},
representing the distribution of d over the set of topics <
t1, t2, . . . , tn >. Several methods have been proposed in the
literature to approximate near-optimal combinations of LDA
parameters (α, β, K) in source code. Asuncion et al. [2] and
Oliveto et al. [26] proposed the usage of LDA to automati-
cally capture traceability links in software systems. Maskeri
et al. [23] proposed a human assisted approach based on
LDA to extract business domain topics from source code.

2.2 Code Clones
Four types of clones can be identified based on the notion

of similarity considered between code fragments [4, 19, 30].
These types include:

Type I: Exact clones in which the same fragment of code
is copied without modification in its semantic or syntactic
structure (except for spacing and comments).

Type II: Clones that are syntactically identical fragments
except for slight variations, such as different identifiers names,
literals, types or spacing.

Type III: Clones that have been slightly changed by added,
removed or re-ordered statements, in addition to Type I and
Type II modifications.

Type IV: Functional clones which refer to code fragments
that perform similar operations but their syntactic and se-
mantic structures are different.

Detecting different types of clones requires different levels
of sophistication. While Type I and Type II can be relatively
easy to detect using lexical-based techniques, other types
(especially Type IV) require a higher level of complexity to
match operationally identical code fragments.

3. RESEARCH METHODOLOGY

3.1 Datasets
To conduct our experimental analysis, we used four soft-

ware systems from different application domains. Table 1
describes the characteristics of these systems including: the
size of the system in terms of lines of source code (sloc),

Table 1: Experimental Datasets

Dataset ver. cls. lang. sloc cloc

iTrust 15.0 299 Java 20.7K 9.6K

Apache Ivy 2.3.0 451 Java 49.9K 16.7K

QuantLib 1.3.0 874 C++ 178.8K 22.3K

lines of comments (cloc), implementation language (lang.)
version (ver.) and number of classes (cls).

3.2 Implementation and Tool Support
In this paper we use JGibbLDA, a Java implementation of

LDA . This particular implementation uses Gibbs Sampling
for parameter estimation and inference [12]. To integrate
JGibbLDA in our analysis, a C# prototype is implemented
upon the current Java implementation. We refer to this pro-
totype as CloneTM , a code Clone detection tool based on
Topic Modeling. Our interface provides options to tune the
underlying LDA model (α, β, K), as well as visualization
support for LDA results. For instance, stacked charts and
bar charts are available for visually comparing topic distri-
butions of multiple artifacts.

3.3 Dominant Topic Analysis
We start our analysis by investigating the effect of dif-

ferent values of K over the topic distribution generated for
each artifact in each of our experimental systems. It is im-
portant to point out that the complexity of the study grows
exponentially with the inclusion of other LDA parameters
such as α and β. Therefore, at this stage of our analysis,
we fix the the values of these parameters. This strategy is
often used in related research to control for such variables’
effect [11, 22, 31]. In particular, values of α = 50/K and
β = 0.1 are used. These heuristics have been shown to
achieve satisfactory results in the literature [12, 32].

One interesting observation of our topic analysis is that for
each artifact di ∈ D, regardless of K, there is always a few
number of topics that stand out from the rest of the topics
in the document-topic matrix. Such topics have relatively
larger θi values. To demonstrate this effect, we run LDA
using K=40 over our iTrust experimental dataset. For each
artifact d in the document-topic matrix of iTrust, we sort the
40 topics in a descending order according to their θi value,
so that topics at rank (r = 1) have the highest θ value. We
then average these values for all artifacts (N) in iTrust over
each rank r, producing Ar (Eq. 1).

Ar = (
1

N
)

N∑
j=0

dj(θr) ∀r = 1, 2, . . . , 40 (1)

The results are shown in Fig.1 which shows that in the
topic distribution of each artifact, only a small portion (≈ 5)
of the topics has a θ value larger than a certain threshold
value (λ). These topics with relatively large θ values are
known as dominant topics [22, 27]. In an attempt to spec-
ify λ, we conduct further empirical analysis over our open
source experimental systems using different values of K. Re-
sults show that topic probability distribution for each arti-
fact seems to always follow a regular distribution. In general,

http://jgibblda.sourceforge.net/

487

10 20 30 40
0

0.2

0.4

0.6

D
o
m
in
a
n
t
T
o
p
ic
s

Number of Topics (K)

A
v
er

a
g
e
θ

iTrust

Ivy

QuantLib

Figure 1: Average θ values in the document-topic
matrix arranged in a descending order (K=40).

three categories of topics, based on the empirically observed
λ, can be identified as follows:

• λ1(θ < 0.01): Most of the topics in the document-topic
distribution of each artifact fall under this category.

• λ2(0.1 > θ =>.01): Dominant topics, an average of 4
to 8 topics for each document.

• λ3(θ => 0.1): Absolute dominant topics, usually one
or two topics are classified under this category.

We use these observations about dominant topic distri-
butions to derive our main hypothesis in this paper. In
particular, we assume that the presence of code clones can
be reflected in the dominant topic distribution of software
artifacts. Our main assumption is that documents sharing
similar code fragments might also share a similar dominant
topic distribution. Next we test these assumptions.

4. DETECTING CODE CLONES
To test the hypothesis, we devise an experimental bench-

mark to analyze the performance of LDA in detecting code
clones. In particular, we manually inject code clones of
Types I, II, and III in each of our experimental datasets.
We exclude Type IV refactoring in this study. Manually in-
jecting and verifying code smells for refactoring studies is a
common practice in related research, especially in proof-of-
concept studies [18, 6, 17, 8]. Also, since we are working with
class granularity level, we limit our analysis in this paper to
cross-class or cross-file clones.

Table 2 shows characteristics of our injected clones, in-
cluding the number of clones injected of each type in each
system (no. c) and the number classes affected (cls). Since
QuantLib is a relatively larger system, we were able to inject
more clones in it. Injecting Type I and II is a straightfor-
ward process. In particular, to produce Type I clones, a
method call is simply replaced by the method itself, changes
in spacing and comments are made. When injecting Type
II clones, parameters names are changed. Injecting Type
III clones was challenging as code statements have to be
reordered, added, and removed. To achieve this, we apply
random sequences of certain operation-preserving transfor-
mations into copied code fragments. These transformations
include:

• Conditional Statements: Break and merge certain if

and while statements into if else statements and
vice versa. For example, the code segment:

If(validteUsrNm(uName) && validPwd(uPwd))

return true;

can be broken down into:

If(validteUsrNm(uName))

if(validPwd(uPwd))

return true;

• Loops: Certain for statements were converted into
while loops and vice versa. For example, the following
loop statement:

for(line=br.readLine(); line!=null; line=br.readLine())

is transformed to the following while statement:
line = br.readLine();

while (line != null)

line = br.readLine()

• Re-order: certain statements were reordered in such a
way that does not change the structure of the code.
For example, in the following code segment, variable
fBloodPressure declaration can be moved above the
method call setPatientRecords(patientID) without
affecting the functionality of the code.

setPatientRecords(patientID);

float fBloodPressure = 0.0;

fBloodPressure = pm.getPressure(patientID)

The Second step is to define the notion of matching be-
tween dominant topics. In general, we follow a set-matching
procedure, if any two classes have the same topic appearing
in their set of topics with θi > .01, we consider this case to be
a candidate instance of code clones. We use the word “can-
didate” since we suspect that in some cases, matching also
might happen without the presence of cloning. In that case
we get a false positive. The procedure for our LDA-based
clone detection technique can be described as follows.

Detect Clones: INPUT D, α, β

1. K = 40;

2. Doc Topic Metrix = Generate Topic Model(D, α, β, K)

3. FOR EACH di ∈ D IN Doc Topic Merix

4. FOR EACH tj ∈ di

5. IF θj < .01 THEN Remove tj

6. FOR EACH di ∈ D

7. FOR EACH dj ∈ D

8. IF i 6= j

9. IF(Match (Doc Topic Merix(di, dj)) > 0)

10. RETURN TRUE

11. K += 40

12. GOTO 2

To assess the effectiveness of LDA in capturing instances
of different types of clones. Standard recall and precision
metrics of information retrieval are used. Such metrics are
often used to assess the performance of clone detection tools [8,
6, 30]. Recall measures coverage and is defined as the per-
centage of clones that are correctly identified by the tool,
and precision measures accuracy and is defined as the per-
centage of identified clones that are correct.

488

40 80 120 160 200 240
0

0.2

0.4

0.6

0.8

1

k

R
ec

a
ll

iTrust

40 80 120 160 200 240
0

0.2

0.4

0.6

0.8

1

k

Apachi Ivy

40 80 120 160 200 240
0

0.2

0.4

0.6

0.8

1

k

QuantLib

Type I

Type II

Type III

Figure 2: Recall values of different types of code clones at different values of K.

4.1 Model Calibration
To run our analysis, we initially set K to be 40 topics.

The document-topic distribution of each artifact in the sys-
tem is then generated. A pair-wise comparison is conducted
to capture matching in the latent topic structures of differ-
ent classes. Results are then evaluated against the answer
set using recall, or the number of injected clones the tool
managed to identify. The value of K is then increased by
40 and the process is repeated. This particular step size has
been found to yields noticeable changes in the recall values.
We follow a hill climbing approach to monitor the changes
in the recall. Our objective is to identify, or approximate,
near-optimal K settings to detect clones. We tie optimal-
ity in this paper to recall. Therefore, in our analysis we
emphasize recall over precision. The main rationale is that
errors of commission (false positives) are easier to deal with
than errors of omission (false negative). In other words, it
is easier for a developer to discard instances that were mis-
classified as clones, rather than deal with clones that were
not detected by the tool.

Since we have injected different types of clones, we were
able to produce a separate recall curve for each type (cf.
Fig 2). As for precision, a single precision chart, which shows
the percentage of misclassified cases, is produced for each
system (cf. Fig 3). The list of candidate clones generated
for each system was scanned for already existing cross-file
clones before injecting our clones, such clones were excluded
from our precision calculations. We implemented our evalu-
ation benchmark into CloneTM . Candidate clones are dis-
played to the user and the lines of code which include words
from the matching topics are highlighted in the class view
window of each class. Results show that in all three sys-
tems the recall seem to converge to a local maximum at
the range of K = [160, 200] topics for all systems. The
precision values also show satisfactory performance at this
level. This can be explained based on the observation that
at this range of K, topics tend to be more distinguishable
from each other which makes this particular number of top-
ics seem to be the most nearly optimal for code clone de-
tection. However, at lower values of K, topics tend to have
less density, generally spreading all over the class, and at
higher K values (i.e., > 200) topics tend to be very spe-
cific, not able to cover code fragments with meaningful size.
In general, the results show that our LDA-based approach
was able to capture most types of clones, showing particu-

Table 2: Injecting Code Clones into Our Systems

iTrust Ivy QuantLib

Type no. c cls no. c cls no. c cls

Type I 20 42 20 85 40 86

Type II 20 44 20 17 40 92

Type III 15 30 15 45 25 50

larity good performance in detecting Type I and Type III
clones. Results also showed that the precision, while can be
considered satisfactory, is still far from being optimal. To
put the performance of CloneTM in perspective, we com-
pare its recall and precision with other clone detection tools
such as CCFinder [15] and CloneDR [5]. Table 3 shows
the results of the tool comparison. For each type of clone
in each system we compare the recall values. Results show
that CloneTM is able to achieve comparable levels of recall
to other tools in all systems. In particular, results show that
our LDA-based approach managed to outperform CCFinder
in Type III refactorings. Which can be explained based on
the fact that the sequential analysis of code statements in
CCFinder makes it fragile to statement reordering and code
insertion. In general, many other token-based detection ap-
proaches do not detect clones with reordered statements [30].
However, the fact that LDA treats a class as a bag of words
makes it immune to such changes. In contrast, results show
that CCFinder was more successful in detecting Type II
clones, this can be explained based on the fact that token-
based methods are immune to name changing. On the other
hand, LDA can be very sensitive to the information value
embedded in the identifiers names and comments, so incon-
sistency in such information is expected to lower the accu-
racy. Results also show that, in comparison to CloneTM
and CCFinder, CloneDR captured the smallest number of
clones in all different types of clones. That might be ex-
plained based on the fact that this tool tends to do better
in cross-method rather than cross-file clones detection [8].

5. THREATS TO VALIDITY
This study has several limitations that might affect the

validity of the results. In terms of external validity, the
results of this study might not generalize beyond the under-
lying experimental settings. For instance, only four systems

489

Table 3: Comparing Recall Values of CloneTM , CCFinder, and CloneDR

Recall

Type I Type II Type III

System CloneTM CCFinder CloneDR CloneTM CCFinder CloneDR CloneTM CCFinder CloneDR

iTrust 0.85 0.9 0.2 0.6 0.8 0.2 0.7 0.4 0.13

Ivy 0.8 0.8 0.2 0.65 0.85 0.15 0.73 0.67 0.27

QuantLib 0.775 0.7 0.35 0.575 0.7 0.25 0.68 0.53 0.32

40 80 120 160 200 240
0

0.2

0.4

0.6

0.8

1

k

P
re

ci
si

o
n

iTrust

Ivy

QuantLib

Figure 3: Precision values different values of K.

were used in our analysis. Nevertheless, we believe that us-
ing four datasets from different domains, including a propri-
etary software product, helps to mitigate these threats. In
fact, we believe that using these heavily-used, open source
tools and systems increases the reliability of our results as
it makes it possible to independently replicate our results.
Other threats to the external validity might stem from spe-
cific design decisions, such as using heuristic values for α
and β. However, as mentioned earlier, due to the exponen-
tial complexity of the problem, it was not feasible to evaluate
the effect of all LDA parameters in this study. In addition,
the heuristics we used in our analysis have been proven to
achieve satisfactory performance in related research.

Internal validity refers to factors that might affect the
causal relations established in the experiment. A major
threat to our study’s internal validity is the fact that we
used manually injected clones to calibrate our model, in ad-
dition to manually verifying the candidate clones of different
tools. This can lead to an experimental bias due to the sub-
jectivity of this process. However, this particular experiment
design decision was necessary to gain more insight into our
procedure’s performance, in particular, its effectiveness in
detecting different types of clones. In addition, as reported
earlier, in the current state of research, human approval of
the outcome of the code clone detection tool or method is
inevitable.

6. CONCLUSION AND FUTURE WORK
In this paper we proposed a novel approach based on topic

modeling for code clone detection. In particular, we in-
vestigated the potential benefits of using LDA to identify
cross-class similar code fragments in Object Oriented soft-
ware systems. We built our main research hypothesis upon

observations related to the latent topic structure of the soft-
ware artifacts, and the effect code clones might have on that
structure. In particular, we assume that matching on the
dominant topic distribution between individual artifacts in-
dicates cloning. To test our research hypothesis, calibrate,
and evaluate our approach, we conducted an experimental
analysis using four software systems from different applica-
tion domains. We also compared the performance of our ap-
proach with other popular clone detection tools that adopt
different clone detection strategies including, CCFinder and
CloneDR. Results show that LDA can achieve satisfactory
levels of recall, showing particularly good performance in
detecting Type III clones that other related tools usually
tend to miss. It also achieves levels of accuracy that can
be adequate for practical applications. In the future, we
plan to evaluate our approach by testing CloneTM using
open source software systems to assess the usefulness and
the scope of applicability of our approach. Also, we plan
to fully implement our finding in the tool and provide vi-
sualization support to allow users to visually compare topic
distributions of different classes as well as accept or reject
candidate clones. We also investigate the potential effect of
other code smells, such as God Class or Feature Envy, on
the latent topic structure of software artifacts.

7. REFERENCES
[1] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu.

Statistical debugging using latent topic models. In
European conference on Machine Learning, pages
6–17, 2007.

[2] H. Asuncion, A. Asuncion, and R. Taylor. Software
traceability with topic modeling. In International
Conference on Software Engineering, pages 95–104,
2010.

[3] L. Aversano, L. Cerulo, and M. Di Penta. How clones
are maintained: An empirical study. In European
Conference on Software Maintenance and
Reengineering, pages 81–90, 2010.

[4] B. Baker. On finding duplication and near-duplication
in large software systems. In Working Conference on
Reverse Engineering, pages 86–95, 1995.

[5] I. Baxter, A. Yahin, L. Moura, M. SantAnna, and
L. Bier. Clone detection using abstract syntax trees.
In International Conference on Software Maintenance,
pages 368–377, 1998.

[6] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Transactions of Software
Engineering, 33(9):577–591, 2007.

[7] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research,

490

3:993–1022, 2003.

[8] E. Burd and J. Bailey. Evaluating clone detection
tools for use during preventative maintenance. In
International Workshop on Source Code Analysis and
Manipulation, pages 36–43, 2002.

[9] S. Ducasse, M. Rieger, and S. Demeyer. Language
independent approach for detecting duplicated code.
In International Conference on Software Maintenance,
pages 109–118, 1999.

[10] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison–Wesley, 1999.

[11] S. Grant and J. Cordy. Estimating the optimal
number of latent concepts in source code analysis. In
International Working Conference on Source Code
Analysis and Manipulation, pages 65–74, 2010.

[12] T. Griffiths and M. Steyvers. Finding scientific topics.
In The National Academy of Sciences, pages
5228–5235, 2004.

[13] Z. Jiang and A. Hassan. A framework for studying
clones in large software systems. In International
Working Conference on Source Code Analysis and
Manipulation, pages 203–212, 2007.

[14] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In International
Conference on Software Engineering, pages 485–495,
2009.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
Software Engineering, 28(7):654–670, 2002.

[16] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In International Symposium on
Empirical Software Engineering, pages 83–92, 2004.

[17] K. Kontogiannis. Evaluation experiments on the
detection of programming patterns using software
metrics. In Working Conference on Reverse
Engineering, pages 44–54, 1997.

[18] R. Koschke, R. Falke, and P. Frenzel. Clone detection
using abstract syntax suffix trees. In Working
Conference on Reverse Engineering, pages 253–262,
2006.

[19] J. Krinke. Identifying similar code with program
dependence graphs. In Working Conference on
Reverse Engineering, pages 301–309, 2001.

[20] B. Lague, D. Proulx, J. Mayrand, E. Merlo, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
International Conference on Software Maintenance,
pages 314–321, 1997.

[21] Z. Li, L. Shan, S. Myagmar, and Y. Zhou. CP-Miner:
Finding copy-paste and related bugs in large-scale
software code. IEEE Transactions on Software
Engineering, 32(3):176–192, 2006.

[22] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and
N. Chrisochoides. Modelling class cohesion as mixtures
of latent topics. In International Conference on
Software Maintenance, pages 233–242, 2009.

[23] G. Maskeri, S. Sarkar, and K. Heafield. Mining
business topics in source code using Latent Dirichlet
Allocation. In India software engineering conference,

pages 113–120, 2008.

[24] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a
software system using metrics. In International
Conference on Software Maintenance, pages 244–253,
1996.

[25] E. Murphy-Hill and A. P. Black. Breaking the barriers
to successful refactoring: Observations and tools for
extract method. In International Conference on
Software Engineeringl, pages 421–430, 2008.

[26] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De
Lucia. On the equivalence of information retrieval
methods for automated traceability link recovery. In
International Conference on Program Comprehension,
pages 68–71, 2010.

[27] A. Panichella, B. Dit, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia. How to effectively
use topic models for software engineering tasks? an
approach based on genetic algorithms. In
International Conference on Software Engineering,
pages 522–531, 2013.

[28] I. Porteous, D. Newman, A. Ihler, A. Asuncion,
P. Smyth, and M. Welling. Fast collapsed gibbs
sampling for Latent Dirichlet Allocation. In ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 569–577, 2008.

[29] F. Rahman, C. Bird, and P. Devanbu. Clones: What
is that smell? In MSR, pages 72–81, 2010.

[30] C. Roy and J. Cordy. A survey on software clone
detection research. Technical Report 541, School of
Computing TR 2007-541, Queens University, 2007.

[31] S. Thomas, B. Adams, A. Hassan, and D. Blostein.
Validating the use of topic models for software
evolution. In IEEE Working Conference on Source
Code Analysis and Manipulation, pages 55–64, 2010.

[32] X. Wei and B. Croft. LDA-based document models for
ad-hoc retrieval. In ACM SIGIR conference on
Research and development in information retrieval,
pages 178–185, 2006.

491

XMILE - An Expert System for
Maintenance Learning from Textual

Reports

Eduardo Julião Máximo
Programa de Pós-Graduação em Informática

Aplicada
University of Fortaleza - UNIFOR

Fortaleza, Brazil
ejmaximo@gmail.com

Vládia Pinheiro
Programa de Pós-Graduação em Informática

Aplicada
University of Fortaleza - UNIFOR

Fortaleza, Brazil
vladiacelia@unifor.br

Abstract - Software incidents are normally described in natural
language (like English or Portuguese languages), because the users
become free to express themselves about the incident. In this paper, we
propose XMILE – an eXpert MaIntenance LEarning system based on
NLP (Natural Language Processing) and machine learning techniques,
that is capable of inferring the main attributes (type of intervention,
maintenance action, cause and faulty zone) from textual reports of
incidents. The XMILE was used on a real set of reports of maintenance
incidents performed on IT systems of a Brazilian automobile enterprise,
with excellent results in terms of precision and recall metrics.

I. INTRODUCTION
Nowadays, the massive use of information systems and

technologies (IT) requires a more specialized structure in
IT support services and effective incident management.
Incidents are some kind of unplanned interruption or
reduction of the quality of an IT service, generating direct
or indirect impact to the business. Initially, it is necessary
that incidents be recorded or reported to a service center,
generating software maintenance experiences databases.
Several researches have proposed the reuse of experiences
in Incident Management [1] and models such as the
Information Technology Infrastructure Library (ITIL),
contributing, for example, to the compliance with the rules
of priority and time of attendance of the registered
incidents, defined in Service Level Agreements (SLA).

The dissemination of Computerized Maintenance
Management Systems (CMMS) has contributed to
enriching Experiences Databases, which have been mainly
used for traceability purpose. However, these bases could
be processed in order to make explicit the ‘‘implicit
knowledge’’, in order to improve the decisions related to
the maintenance activity. However, its extraction can
hardly be done manually. In [2], the authors propose an
original Experience Feedback process dedicated to
maintenance, allowing capitalizing on past activities by
formalizing the domain knowledge and experiences using
Conceptual Graphs (CGs) [3]. The basis of the Experience
Feedback process is an ontology that mainly allows
modeling the maintenance interventions according to the
three main parts of an experience: (i) context, that
describes the general situation in which the event has

occurred (i.e. service order, functional localization of
equipment involved, failure, technician); (ii) analysis, that
presents the cause(s) of the problem; (iii) solution, that
describes the type of intervention and the actions that have
been performed for solving this problem.

However, software incidents are normally described in
natural language (like English or Portuguese languages),
because the users become free to express themselves
about the incident. On the other hand, textual reports are a
non-structured knowledge source, making the process of
extracting information about the incident more difficult.
Because of this, traditional CMMS use the form of
description of maintenance experiences by attribute-value,
whereby structured fields need to be informed manually
by users or IT support technicians, making the process
very time consuming.

 In this paper, we propose XMILE – an eXpert
MaIntenance LEarning system based on NLP (Natural
Language Processing) and machine learning techniques,
that is capable of automatically extracting information
about the maintenance from incidents textual reports,
inferring their main attributes. According to [2], we define
four main attributes: type of intervention, maintenance
action, cause and faulty zone. These attributes are required
in order to respond the following question, respectively: in
which conditions?, what?, why?, and where?. For
example, for the incident report “Please check for TGA
and SG must be separate information and program
assumes the same information”, XMILE extracts: Type of
intervention = “IT System”; Fault Zone =”System
functionality” and Cause=”System Failure”.

A distinguishing feature of XMILE is the possibility of
making explicit the information about maintenance cases
(problems and solutions) described in natural language,
for example, in the Portuguese language, in real time and
without human intervention. The XMILE was used in a
real set of reports on maintenance incidents performed on
IT systems of a Brazilian automobile enterprise, with
excellent results in terms of precision and recall metrics.

II. BACKGROUND KNOWLEDGE
Our work is inspired in [2], which proposes a

Experience Feedback Process consisting of two main
modules that are presented in the next subsections. DOI reference number: 10.18293/SEKE2018-197

492

II.1 Experiences Database Structure

The basis of a knowledge-oriented representation of
the experiences is an ontological knowledge, that can be
considered as a rudimentary ontology [4] and is
essentially defined as a couple (TC, TR), representing
respectively the hierarchy of concept types and the
hierarchy of relation types. This ontology is a high level
and generic knowledge on the domain, specifying the
vocabulary of the maintenance domain and the semantics
of this conceptual vocabulary [5]. Since maintenance is a
matter of communication between operators, maintenance
actors and experts of various fields, a specific attention
has been drawn to ontologies, ensuring that
information/knowledge exchanged by different actors is
meaningful, and that all the stakeholders interpret it in the
same way [6]. An ontology is defined in [7] as ‘‘a formal,
explicit specification of a shared conceptualization’’. The
‘‘formal’’ aspect allows guaranteeing that the ontology is
machine-readable [8]. The components of an ontology
should thus allow formalizing the experience-knowledge
in a specific domain.

TC has three main components of an experience:
context, analysis and solution. In TC, the ‘‘context’’ part
describes the general situation in which the event has
occurred (i.e. Work Order (WO), functional localization
of equipment involved, failure, technician); the
‘‘analysis’’ part presents the cause(s) of the problem;
finally, the ‘‘solution’’ describes the type of intervention
and the actions that have been performed for solving this
problem (i.e. selected maintenance activities). TR
expresses the basic relations of generic ontologies that
will be used here, like ‘‘temporal’’ relation (i.e. before,
after, parallel), ‘‘spatial’’ relation (i.e. in, out), ‘‘logic’’
relation (e.g. implies), ‘‘usual’’ relation (i.e. object, agent,
involve, etc.) [9], as well as other specific relations of the
domain of study, such as ‘‘experience relation’’ (i.e.
generates, requires) or ‘‘element of’’. These relations
allow to link the different concepts types in the
representation of an experience. An example is that a
Context “require” an Analysis, which “generate” a
Solution. In the Context we have that a WorkOrder has
an “object” FunctionalLocalization and “concern” to a
Technician. An Analysis is described by the concept
Cause. Finally, the Solution graph defines that a
TypeOfIntervention “concern” a MaintenanceAction.

II.2 Rules Database Generation

This module applies a data mining process on the
Experience Databases in order to discover association
rules. An association rule is formally defined as a relation
between two attributes of experience X and Y (antecedent
and consequent) contained in the Experience database,
based on conditional probability P(X|Y) and P(X∩Y). The
association rules are selected according thresholds. After
the association rules generation, the authors propose a
semi-automatic process for assessment and interpretation
of the rules.

III. XMILE - A EXPERT SYSTEM FOR MAINTENANCE
LEARNING FROM TEXTUAL REPORTS

The reports of software incidents and maintenance
results are normally described in natural language, by

phone, e-mail, chat, or by tools for IT services monitoring,
such as SpiceWorks1, OTRS (Open Ticket Request
System)2, GLPI (Gestionnare Libre de Parc
Informatique)3, among others. As an IT service
management needs the experiences databases in order to
reuse the experiences and to improve the decisions related
to the maintenance activity, we propose XMILE, an expert
system based on NLP and machine learning techniques
that automatically extracts the main attributes of textual
incident and maintenance reports, generating knowledge
in software maintenance. Initially, in this section, we
define the ontology of the XMILE system and, after, we
detail its architecture.

III.1 XMILE Ontology

Inspired on the generic model of an experience,
defined by [2], we instantiate this model for IT
maintenance experiences. An IT Experience consists of
three parts: Context, Analysis and Solution. In the Context
part, the new concepts are: (1) User - represents the user
that report the incident or the user that usually operates the
IT system, and is defined by the following attributes: (a)
Admission Date, representing the date of the admission of
the user in the company or function; and (b) Last Training
Date, representing the date of last training that the user
participated. These attributes aim to capture the user
experience in the use of the system, as we believe that the
user experience impacts on the number of incidents; (2)
Text Report – represents the textual report of software
incident or software maintenance.

We propose the following types of Fault Zone: (a)
Equipment – any hardware device that, connected directly
or indirectly to a computer, adds new functionality or
whatever is required for a task; (b) Net access –
infrastructure (hardware, software and protocols,
configuration) that enables LAN, WAN or Wi-Fi network
connectivity; (c) System functionality – software or
function of the IT system that performs the functional
requirements of the users.

In the Analysis part, the causes of an IT Experience
are: (a) Lack of Maintenance – indicating that there was
failure to perform preventive maintenance on computers,
printers, networks, and other devices; (b) Lack of Training
– difficulty of the user to understand how the IT System
work and how to reach its objectives; (c) IT System
Failure – interruption of one or more tasks due to errors in
IT system operating; (d) IT System Error – interruption of
one or more tasks due to errors in IT system coding; (e)
Lack of Permission – lack of permission granted to the
user to produce or extract some information from the IT
system; (f) Communication Problem – interruption in the
provision or exchange of information on the internal
network or with the Internet.

In the Solution part, the new concepts and instances are:

Type of Intervention – (a) Infrastructure – components
and services (hardware and basic software) that provide
the basis for sustaining all the information systems of an
organization; (b) IT System – Automated or manual
model of processes that use information technologies and

																																																													
1	https://www.spiceworks.com, accessed 03/14/2018	
2	https://www.otrs.com, accessed 03/14/2018	
3	http://glpi-project.org, accessed 03/14/2018	

493

that are responsible for collecting and transmitting data
that are useful for the development of products or services
of companies, organizations and other projects; (c)
Technical Support – Intellectual (knowledge),
technological (hardware or software updates) and
material, for the purpose of solving technical problems;
(d) User Support – clarification of doubts, complaints,
requests for services or support in solving problems.

Maintenance Action – (a) IT System update –
application of security patches, configurations, features,
and other new or revised items that will change the current
system; (b) IT System correction – adjustment in
programs where you change the system default behavior;
(c) IT Training onsite – acquisition of knowledge, skills
and competences as a result of vocational training or
teaching practical skills related to specific useful skills;
(d) Infrastructure repair – installation, monitoring and
updating of servers, printers and other devices in order to
maintain the high availability and normal operation of the
system. 	

III.2 The XMILE System

Figure 1 presents the architecture of the XMILE
system with three components: Pre-processing, NLP and
Machine Learning.

Pre-Processing Component

In the Pre-Processing component are performed the
text mining and cleaning, data selection and data
transformation. In order to prepare the data in an adequate
format for the next NLP and Machine Learning
components, we adopt here a data structure with the past
experiences databases, based on the ontological
knowledge (see Section III.1). This data structure is a
triplet D = (O, I, R), in which D is the database, O is a set
of objects or transactions (i.e. each maintenance
experience), I is a set of attributes (i.e. concepts defined in
the XMILE ontology) and R⊆ O x I is a binary relation
between O and I. Thus, each maintenance experience O in
D is represented by a set of concepts in I related by binary
relations in R. It’s important to note that a text of an
incident report t ∈ T is related with the concept Text
Report in I. Next, we detail each phase:

• Text Cleaning and Mining - in this phase, the text is
mined and cleaned by NLP processors like tokenizers
and lemmatizers, then, stopwords and special
characters are removed, and all letters are turned in
uppercase. This phase aims at improving text quality,
especially because the users and technicians write in
an informal incomplete way. This is done by using
NLP techniques that transform the tokens (word or
expression) into their lemmas or canonical forms.

• Data Selection – in this phase, the values of each
object in O is selected from the databases and
associated to a concept in I. For example, given the
incident “Please check for TGA and SG must be
separate information and program assumes the same
information”, reported by the userId = 9874, which has
data of admission = 09/12/2007, and was trained last
time 10/04/2014. So, we will have the following
concept and values: User.admissionDate =
09/12/2007; User.lastTrainingDate = 10/04/2014

• Data Transformation – in this phase, the same data is
transformed and normalized. For example, if in the
original database, the date was in long format, we can
transform in short format.

FIGURE 1. THE XMILE’S ARCHITECTURE.

NLP Component

• Morphologic Analysis - this component performs the
morphological analysis or shallow parsing of the
texts. Morphological analysis consists of the
separation of sentences and grammatical
classification (noun, verb, adjective, adverb, etc) and
their modifiers of gender, number, time and verbal
mode. Shallow parsing is applied to facilitate and
normalize the search for word meaning (disregarding
verbal, gender and number variations). In this
component, we use a parser according to the
language (e.g Freeling parser [10], for Portuguese
Language, and Stanford Core NLP Toolkit [11], for
English Language).

• Semantic Analysis - this component was developed to
enrich the vocabulary with synonyms from a
knowledge base like WordNet [12] or InferenceNet
[13].

Machine Learning Component

This component is responsible for the calculation of
the features (time of use of the equipment, time of the user
in the organization, and quality of the internet/intranet
connectivity), the balancing of the training and test sets,
and the execution of Machine Learning algorithms, in
order to learn rules for the categorization of attributes:
Intervention type, Faulty zone, Cause and Maintenance
Action.

Text	Incident	
Report	
(T)	

Pr
e-
Pr
oc
es
si
ng

	

Text	
Cleaning	

Data	Selection	

Data	Transformation	

N
LP
	C
om

po
ne

nt
	

Morphosyntatic	Analysis	

Knowledge	
Base	

Semantic	Analysis	

M
L	
Co

m
po

ne
nt
	 Feature	Engineering	

Balancing	Strategy	
ML	

Algorithm	

Categorization	Rules	

494

IV. EXPERIMENTAL EVALUATION
In this experimental evaluation we want to verify the

performance of XMILE in order to extract the information
about the incident from textual report (in Natural
Language).

In order to develop a golden standard, we selected 2819
textual incidents reports related to IT systems of a
Brazilian company of automobile. Two IT technicians
annotated each incident report with one of the Type of
Intervention and Cause of the incident. In this work, we
focus on these attributes because they represent the more
important information to be extracted from incidents
report, related to the Analysis and Solution of an
Experience Database.

We defined two evaluation scenarios:

• SCENARIO 1 – we send to the Machine Learning
algorithms only the bag of words of the textual
reports (lemma of the relevant words)

• SCENARIO 2 – we send to the Machine Learning
algorithms the bag of words and the following
features: (i) time of use of the equipment; (ii) time
(in years) of the user in the function; (iii) quality of
connection of the Intranet or Internet.

In both scenarios, were executed three ML algorithms -
Random Forest, J48 and Naïve Bayes, with 10-cross fold
validation and the balancing strategy SMOTE [14]. Table
1 and 2 present the results in terms of F1-Measure
(harmonic average between precision and recall) for the
attribute Type of Intervention and Cause, respectively.

TABLE 1. RESULTS FOR ATTRIBUTE TYPE OF INTERVENTION (F1-
MEASURE)

 J48 NAIVE
BAYES

RANDOM
FOREST

SCENARIO 1
Infrastructure 0.907 0.849 0.914
IT System 0.896 0.869 0.896
Technical Support 0.858 0.780 0.878
User Support 0.862 0.782 0.863
Average 0,881 0.820 0.888
SCENARIO 2
Infrastructure 0.907 0.811 0.912
IT System 0.900 0.791 0.900
Technical Support 0.855 0.795 0.865
User Support 0.855 0.785 0.862
Average 0.880 0.796 0.885

TABLE 2. RESULTS FOR ATTRIBUTE CAUSE (F1-MEASURE)

 J48 NAIVE
BAYES

RANDOM
FOREST

SCENARIO 1
Lack of Maintenance 0.723 0.670 0.772
Lack of Training 0.742 0.646 0.764
IT System Failure 0.746 0.789 0.773
IT System Error 0.739 0.702 0.738
Lack of Permission 0.803 0.701 0.821
Communic Problem 0.926 0.769 0.942
Average 0.777 0.726 0.799
SCENARIO 2
Lack of Maintenance 0.712 0.670 0.743
Lack of Training 0.750 0.684 0.740
IT System Failure 0.773 0.722 0.744
IT System Error 0.696 0.700 0.726
Lack of Permission 0.787 0.712 0.804
Communic Problem 0.916 0.809 0.917
Average 0.775 0.715 0.777

According to the results, we can observe that the best
ML algorithm is the Random Forest with F1-measure =
0,888 and 0.799, respectively. An interesting result is that
the additional knowledge about the context (additional
features about time in the function, equipment age, and
quality of connectivity) does not influence the results.

V. CONCLUSION
In this paper, we propose XMILE – an expert system

based on Natural Language Techniques that extract
automatically the main attributes from a textual report that
describes a software incident. We evaluate XMILE in a
set of 2819 textual incidents reports related to IT systems
of a Brazilian company of automobile and the expert
system achieved 89% and 80% (f1-measure evaluation
metric) for the main attributes – Type of Intervention and
Cause of an incident. As future works,	we intend to evolve
XMILE to the other attributes of the ontology and to
verify additional features that can improve its
performance.

REFERENCES
[1] BEZERRA, G.; Pinheiro, V.; ALBUQUERQUE, A.Incident

Management Optimization through the Reuse of Experiences and
Natural Language Processing In: 9th International Conference on
the Quality of Information and Communications Technology
(QUATIC), 2014, 2014, Guimaraes.

[2] Ruiz, P Potes, FOGUEM, B Kamsu, GRABOT, BERNARD
(2014). Generating knowledge in maintenance from Experience
Feedback. Knowledge-Based Systems 68 (2014) 4–20.

[3] J. Sowa, Conceptual Structures: Information Processing in Mind
and Machine, Addison-Wesley Publishing Company, Reading,
MA, 1984.

[4] M. Chein, M.L. Mugnier, Graph-Based Knowledge Representation:
Computational Foundations of Conceptual Graphs, Springer
Publishing Company, Incorporated, 2008.

[5] F. Fürst, F. Trichet, Axiom-based ontology matching, Expert Syst.
26 (2) (2009) 218–246.

[6] M. Uschold, M. Grüninger, Ontologies: principles, methods and
applications, Knowl. Eng. Rev. 11 (2) (1996) 93–136.

[7] T.R. Gruber, Toward principles for the design of ontologies used
for knowledge sharing, Int. J. Hum.–Comp. Stud. 43 (5–6) (1995)
907–928.

[8] R. Studer, V.-R. Benjamins, D. Fensel, Knowledge engineering:
principles and methods, Data Knowl. Eng. 25 (1–2) (1998) 161–
197.

[9] J.Breuker, A cognitive science perspective on knowledge
acquisition, Int. J. Hum.–Comp. Stud. 71 (2) (2013) 177–183.

[10] Padró, Lluís e Evgeny Stanilovsky. 2012. Freeling 3.0: Towards
wider multilinguality.

[11] C.D. Manning, M. Surdeanum, J. Bauer, et al. The Stanford
CoreNLP Natural Language Processing Toolkit. In Proceedings of
52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 2014.

[12] Miller, G. A. (1995). Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41.

[13] V. Pinheiro, T. Pequeno, V. Furtado and W. Franco.
InferenceNet.Br: Expression of Inferentialist Semantic Content of
the Portuguese Language. In: T.A.S. Pardo et al. (eds.): PROPOR
2010, LNAI 6001(90–99). Springer, Heidelberg, 2010.

[14] N.V. Chawla, K.W. Bowyer, L.O. Hall and W.P. Kegelmeyer.
SMOTE: Synthetic Minority Over-sampling Technique. JAIR 16,
2002, pp. 321–357.

495

Effort Estimation in Agile Software Development:

an Updated Review

Emanuel Dantas, Mirko Perkusich, Ednaldo Dilorenzo, Danilo F. S. Santos, Hyggo Almeida, Angelo Perkusich

Intelligent Software Engineering (ISE) Group, Federal University of Campina Grande (UFCG)

Campina Grande, Paraiba, Brazil, 58429-140

{emanuel.filho, mirko.perkusich, ednaldo.dilorenzo} @ifpb.edu.br, {danilo.santos, hyggo, perkusich}@embedded.ufcg.edu.br

 Abstract— One of the main issues of an agile software project

is how to accurately estimate development effort. In 2014, it was

published a Systematic Literature Review (SLR) regarding this

subject. The authors of this SLR analyzed works from 2001 to

2013 and reached the number of 25 relevant papers. Therefore,

the goal of our work is to provide an updated review of the state

of the art based on this reference SLR work. We applied a

Forward Snowballing approach, in which our seed set are the

former SLR and its selected papers. We identified changes in this

new review comparing it with the reference SLR: XP

methodology was mentioned in just a few works; Use Case Points

(UCP) method and Case Points as size metric were not found. We

also observed a strong indication of solutions based on Artificial

Intelligence and Machine Learning methods for effort estimation

in Agile Software Development (ASD). Finally, we identified that

in the reference SLR there is a gap in terms of agreement on

suitable cost drivers. Thus, in our updated review, we applied

Thematic Analysis in the selected papers and identified a

representative set of 10 cost drivers for effort estimation.

Keywords- Agile Software Development; Effort Estimation;

Forward Snowballing.

I. INTRODUCTION

In Agile Software Development (ASD), planning is carried
iteratively. Project scope is continuously refined and prioritized
following principles of Just In Time (JIT) management.
According to Silva et al. [17], effort is one of the most
important factors to prioritize requirements and features in
ASD. It is also important to negotiate the scope of releases with
the stakeholders.

Effort estimation in Agile Software Development (ASD) is
an active research area. In 2014, a Systematic Literature
Review (SLR) [20], in which data from 25 papers reporting 20
studies were analyzed and aggregated, was used to describe the
state of the art related to estimation techniques, effort
predictors and applied to ASD. The authors concluded that
there were several gaps in the literature, such as the low level
of accuracy of the techniques and little consensus on
appropriate cost drivers.

 Since 2014, the scientific community has been very active

on the area of effort estimation in ASD. For instance, in 2015

Lenarduzzi et al. [10] proposed a mechanism to improve effort

accuracy using functional size metrics.

DOI reference number: 10. 18293/SEKE2018-003

 On the other hand, in 2016 Grapenthin et al. [5] concluded
that annotating the risks associated with user story during
planning poker increases estimation accuracy.

There are several literature reviews published in the
scientific community about effort estimation [2, 13, 16].
However, it is clear that the theme continues to be challenging
and a subject of further studies given the difficulty of finding
accurate solutions to the problem. In this context, the objective
of this article is to present an updated overview of the state of
the art on effort estimation in the context of ASD. For this
purpose, we applied the Forward Snowballing technique [4] to
find out relevant studies since the reference review of Usman et
al. [20].

As contribution of our review, 24 new relevant papers were
selected. Some findings from the reference review remain
actual, but other questions have been raised in our research. In
special, a significant amount of these new works have used
techniques of Artificial Intelligence or Machine Learning to
support effort estimation in ASD, which contributed to better
estimation accuracy.

Another important implication of our review was the
identification of an increasing use of cost drivers during effort
estimation. Cost Drivers are personal or project factors that
influence the value of estimates. Usually the works use
different nomenclatures to represent the same factor. Based on
this, in our research we used a Thematic Analysis approach [7]
to map these factors.

The remainder of this paper is organized as follows. The
section II presents more details of works related to effort
estimation and the section III discusses the research method.
The section IV presents our findings, and section V discusses
the results of our research. The section VI has our final
remarks, discussing potential future works.

II. RELATED WORK

In this section, we presented more studies and details related

to field of effort estimation. Sehra et al. [16] present a research

of software estimation methods. This research evaluated 1178

papers between 1996 and 2006, many contributions were cited,

but did not present specific findings for companies that use

agile methods.

496

mailto:ednaldo.dilorenzo%7d%20@ifpb.edu.br

Some works presented evidences that effort estimation is a

task critical for project planning [13, 15], especially in agile

software. These studies focused on methods of estimating

effort in ASD. However, these researches did not explore the

levels of accuracy of the approaches and how the use of cost

drivers could be used to solve the problem.

Bilgaiyan et al. [2] indicated that computing techniques

could be used to solve the problem of the effort estimation in

ASD projects. After reviewing the literature, they found works

that use techniques like Genetic Algorithm (GA), Particle

Swarm Optimization (PSO), Artificial Neural Network

(ANN), and Fuzzy Inference Systems (FIS). However, no

evidence of benefits of these techniques was presented and

whether the methods were validated in the industry.

The systematic review published in 2014 by Usman et al.

[20] investigated works from 2001 to December 2013, resulted

in a complete state of the art guide on effort estimates in ASD.

In another work [19] the same authors presented results of a

survey representing the state of the practice.

Based on these related works, the new analysis presented in

our article proposes an update of the state of the art review

presented in Usman et al. [20], and differs from these related

works in the following ways:

• The context of our study is ASD, whereas some of these

reviews do not restrict this scenario;

• Most of these reviews focused solely on effort estimation

methods, whereas ours also focused on the predictors (costs

drivers) used in effort estimation;

• Most of these reviews do not bring information about data

validation, whereas our work informs the domain, accuracy

metrics and accuracy level achieved;

• Comparing to Usman et al. [20], effort estimation has

been a relevant topic in ASD and they only evaluated papers

until 2014. So, there is a need for an update.

III. REVIEW METHOD

According to Kitchenham and Charters [8], systematic

review is an evidence-based technique that uses a well-

defined, unbiased and repeatable methodology to identify,

analyze and interpret all the relevant papers related to a

specific research question, subject area, or phenomenon of

interest. It has been used to explore the state of the art of

several areas such for ordering the product backlog [18],

software requirements prioritization [1] and metrics [9].

The reference study [20] described an extensive SLR of

peer reviewed studies focusing on effort estimation in ASD

and followed the guidelines developed by Kitchenham and

Charters [8]. Since our goal is to update it, we applied the

Forward Snowballing approach [4] following the guidelines

presented in Wohlin [22]. In our update, we followed the same

research questions from the reference SLR and used the same

inclusion and exclusion criteria in the evaluations.

A. Research Questions

The following research questions (RQ) were investigated:

 RQ1: What techniques have been used for effort or size

estimation in ASD?

 RQ1a: What metrics have been used to measure estimation

accuracy of these techniques?

 RQ1b: What accuracy level has been achieved by these

techniques?

 RQ2: What effort predictors (size metrics, cost drivers)

have been used in studies on effort estimation for agile

software development?

 RQ3: What are the characteristics of the dataset/

knowledge used in studies on size or effort estimation for agile

software development?

 RQ4: Which agile methods have been investigated in

studies on size or effort estimation?

 RQ4a: Which development activities (e.g. coding, design)

have been investigated?

 RQ4b: Which planning levels (release, iteration, current

day) have been investigated?

B. Search strategy

 The first step of the snowballing involves the identification

of a set of studies as a starting point (seed set) [6]. In the

context of updating SLRs, key studies already exist, and

should be the results of the previous SLR [4].

 All papers selected in the reference SLR were submitted to

the procedure of Forward Snowballing. In this process, we

used Google Scholar
1
 and Scopus

2
 to analyze all the citations

of these papers. Forward snowballing is conducted by

examining papers published in the interval of the 2014 to

December 2017. In the reference SLR [20] inspected works

until December 2013.

 The cited papers were forwarded to the study selection

phase (Figure 1). It is important to note that citations to books,

dissertations and theses were not considered. Initially, a basic

evaluation is performed by analyzing only paper’s title and

abstract. Papers that pass this stage go to a selection of

advanced evaluation where every paper is read. The analysis is

performed by two reviewers who evaluate the paper according

to the criteria for inclusion and exclusion (see criteria in [20]).

Fig. 1: Review Steps

 Finally, papers categorized as relevant after the advanced

evaluation are subjected to a procedure of quality assessment

and data extraction. It is important to emphasize that

1
 https://scholar.google.com.br

2
 https://www.scopus.com/

497

https://ksiresearchorg.ipage.com/seke/seke17paper/seke17paper_7.pdf

snowballing is an iterative process, that is, at the end of an

evaluation cycle, a new one is started using as seed set the

resulting papers of the previous cycle. The process ends when

no more new citations are found.

IV. RESULTS

 This new review produced new evidences, accounting for

changes in the practice and research in effort estimation in

ASD, and also reinforces some of the results of the reference

SLR, increasing the general confidence on its findings. In this

section we describe the details of the whole review process

and the results for each of the research questions.

 After applying Forward Snowballing, the total number of

found works was 262. Then, we performed an initial discard

and reached the number of 120 relevant works. In this process

we removed dissertations, theses, books and duplicate papers.

Table 1 describes the number of studies of the different stages

of the update review.

 The next steps are the basic and advanced evaluation of the

120 selected papers. In the basic, two reviewers evaluated the

title and abstract in accordance with the criteria for inclusion

and exclusion. Only 36 papers followed for advanced

evaluation.

TABLE 1. No. Of Papers during Snowballing 01

Papers Search

a. Search results 262

b. After initial discard 120

c. After basic evaluation 36

d. After advanced evaluation 24

e. Excluded on low quality score 04

f. Final Papers Snowballing 01 (d-e) 20

 After full paper reading in the advanced review, only 24

papers were compliant with the inclusion and exclusion

criteria according to reviewers. Among those, 04 did not

achieve the required score in quality assessment. In the end,

after first cycle of the snowballing, we ended up with 20

selected papers.

 The papers from the first evaluation were submitted to a

new process of Forward Snowballing. The resulting papers

from each evaluation phase of the second cycle are descried in

Table 2.

TABLE 2. No. Of Papers during Snowballing 02

Papers Search

a. Search results 50

b. After initial discard 20

c. After basic evaluation 11

d. After advanced evaluation 06

e. Excluded on low quality score 02

f. Final Papers Snowballing 01 (d-e) 04

 This was the last cycle of this study, since the papers of

this second cycle did not have news citations. After adding

papers from the last cycle to our database, we achieved the

number of 312 papers analyzed, where 24 papers compose the

resulting state of the art update.

 Out of the 24 selected papers, conference proceedings

provided 16 papers (62,5%) and journals 8 articles (37,5%) of

relevant studies, these proportion range similar to those

obtained in the reference SLR. We observed that publications

about effort estimation have been growing in recent years.

There were 04 papers published in 2014, the same for 2015,

while in 2016 and 2017 there were 08 papers in each year.

 For more details, we created a webpage
3
 to provides a

summary of the information extracted from each paper. It is

important to note that some of these papers are from the same

authors and might represent a single study. As a result, we had

a total of 24 papers mapped to 15 primary studies. In the

following subsections we presented the results of the extracted

data related to our study’s research questions.

A. (RQ1) Estimation Techniques

Planning Poker was the most cited (09 papers) estimation

technique, while Expert Judgment was also reported in some

works (04 papers). Differently from the reference SLR [20],

Use Case Points (UCP) Method has not been cited in any

paper in this review

 In this update, we observed a strong trend towards the was

use of intelligent techniques to estimate or support the

estimation of effort. In the context of this work, an intelligent

technique is defined as a technique that captures knowledge

from data or individuals, discovers knowledge or automates

routine tasks.

 Half of the 24 papers described intelligent techniques for

decision making in the process of effort estimation. Machine

Learning (08 papers) Bayesian Networks (03 papers) and

Optimization Algorithms (01 paper) were cited. Some works

use an intelligent technique together with one traditional

techniques (Planning Poker or Expert Judgment).

1) Accuracy Metrics: Question 1a investigates which

prediction accuracy metrics were used in the works. As in the

reference SLR, Mean Magnitude of Relative Error (MMRE) is

the most frequently used accuracy measure. In Table 3, we

showed the number of papers based on the used prediction

accuracy metrics.

TABLE 3. Accuracy metrics used

Metrics Papers IDs F

MMRE P1, P2, P3, P4, P6, P7, P8, P13, P15,

P16, P17, P18, P19

13

PRED(25) P6, P7, P8, P13, P15, P18, P19 7

PRED(8) P16, P19 2

BRE P5, P9 2

MSE P6, P7 2

3 https://goo.gl/1ei1Sa

498

Not Used P11, P12, P20, P21, P22, P23, P24 7

Other P14 (MRE); P10 (comparation with

actual); P16 (MdMRE); P18 (MAE)

4

 In this review we verified a decrease of the use of

magnitude of relative error (MRE). Furthermore, comparing

with the reference SLR, new metrics were cited such as Mean

Square Error (MSE) in P6 and P7 works. Mean Absolute Error

(MAE), Mean Squared Error (RMSE), Relative Absolute

Error (RAE) and Relative Squared Error (RRSE) was cited in

paper P18.

2) Accuracy Level Achieved: Question 1b looks into the

accuracy levels achieved by different techniques. Table 4

shows the works that had the best results, in other words, the

best levels of accuracy by technique.

TABLE 4. Accuracy achieved by techniques

Technique Accuracy Achieved % (Paper IDs)

Planning Poker MMRE: 16-61 (P1)

BRE: 35 (P5)

Expert Judgment MRE: 20-90 (P14)

MMRE: 22 (P15)

PRED (25): 73.13 (P15)

BRE: 38.7-78.5 (P9)

 We observed that even in the best results reported in

Table 4, the level of accuracy is not good. Which in most

cases did not turn out to meet the 25% threshold [3]. However,

the works that use intelligent techniques presented better

results. In the Table 5 we show a sample of these works and

the levels of accuracy achieved.

TABLE 5. Accuracy achieved by Intelligent techniques

Intelligent Technique Accuracy Achieved % (IDs)

Machine Learning MMRE: 2.93 (P8)

PRED (7.19): 100 (P8)

Bayesian Networks MMRE: 6.21 (P18)

PRED(25): 100 (P18)

Optimization Algorithms MMRE: 5.69 (P16)

MdMRE: 3.33 (P16)

PRED (8): 66.67 (P16)

B. (RQ2) Effort Predictors

1) Size Metrics: Since Planning Poker was the estimation

technique most found, it was no surprise that the most reported

size metric was story points. In short, 17 papers used story

points, 03 studies have used Function Points, and other papers

did not report the size metric. The result this question was

similar to that found in the reference SLR, except we did not

find papers using the metric Use Cases Points.

2) Cost Drivers: The works presented different factors that

influence the estimation process. In general, most papers

describe project factors. A specific paper uses people factors

(P21). Many papers also cited people’s factors and project

factors (Both) as important in the process of estimating effort

in ASD. Only 25% (6 papers) of the works do not mention

cost drivers in their finding.

 We identified an increase on studies that report on cost

drivers, and a trend for some of these factors. The reference

SLR reports that there is little agreement on suitable cost

drivers for ASD projects. We observed that multiple works use

different classifications for mentioning the same predictor.

Therefore, we used thematic analysis to classify the cost

drivers identified in the selected papers. In Table 6 we present

the result of this process.

TABLE 6. Cost Drivers

Cost Driver Papers IDs F

Quality Requirement P1, P5, P8, P11, P12,

P14, P15, P18, P20

9

Task Size P3, P4, P8, P14 4

Integration P1, P4, P8, P16 4

Priority P2, P5, P10, P22 4

Complexity P4, P5, P11, P12, P18,

P22, P24

7

Delay Stakeholders P8, P11, P12, P16 4

Team composition P8, P11, P12, P16, P21 5

Work Environment P8, P11, P12, P16, P21 5

Experience P10, P11, P12, P20,

P21, P23, P24

7

Technical Ability P11, P12, P18, P20, P21 5

 Quality Requirement was the most cited factor with 37,5%

(9 papers). The papers report that the clarity of requirements,

the level of uncertainty or ambiguity, and the characteristics of

the application domain are crucial in the estimation process.

Furthermore, regarding project factors, other cost driver cited

was complexity with 29,1% (7 papers). Here, we consider all

complexity related with technology or business solution.

Factors related to the level of integration of components and

tools, task size, priority and business value, and finally the

delay response of Stakeholders were cited by many works.

 Regarding people factors, the level of experience of the

team was the most cited factor with 29.1 % (7 papers). Factors

related to the work environment, team composition and

technical ability were also cited, such as the ability with

technologies or communication and management skills

C. (RQ3) Characteristics of the Dataset or Knowledge Used

 RQ3 looks into the domain (industry or academic). In

short, industry remains the most reported domain used by the

studies (14 papers). However, we can see that compared with

the reference SLR, there was a considerable growth in the

number of works describing validation in academic (7 papers)

environment (i.e., 29.2% vs 13.6%).

 We also analyzed details about the type of dataset used

herein; cross-company was cited in only one paper, all others

used within-company data. As in the reference SLR, we

499

believed these results are quite interesting as they suggest that

within the scope of ASD, companies have focused on their

own project data, rather than looking for data from cross-

company datasets.

D. (RQ4) Characteristics of the Dataset or Knowledge Used

 This research question is designed to identify the specific

agile methods used in effort estimation studies in an ASD

context. Agile methods are concrete approaches to materialize

the manifesto’s
4
 values and principles towards agility [11].

According to this review, Scrum is the most frequent method

used (11 papers) as software development methodology in the

ASD context. Some works (04 papers) use some combined

features of Scrum and XP. Finally, others papers don’t

describe explicitly the method adopted, simply describe the

method as being something with regular deliveries, fast

customer feedback and emphasis on development rather than

documentation.

1) Development Activity: Question 4a investigates the

development activities (Analysis, Design, Implementation or

Testing) towhich the effort estimate applies. In this update of

the literature, only one of the 24 works exclusively uses one

activity of the development cycle, in the case of

Implementation (P4). All other works either do not explicitly

describe which activities or mentions that the effort estimate

matches the functionality completely, from its analysis until it

is ready for delivery.

2) Planning Level: Question 4b investigates the Planning

Level. Out of the 24 works only 2 refer to release planning

(P11, P12), meanwhile the others did not mention or report

that the studies evaluated estimates of effort at each Iteration.

V. DISCUSSION

 We presented in Subsection A, a comparison between the

new findings and the results of the reference SLR published in

2014 by Usman et al. [20] checking the progress on questions

researches. While in Subsection B we presented new

discoveries, suggest lines of research and threat to validity.

A. Comparison with reference SLR

 The results of this study address four research questions,

which explore aspects related to effort estimation in agile

software development projects. Regarding estimation

techniques, planning poker is the most commonly cited

method. However, expert Judgment was also found in the

research. These techniques are effective when the team has

similar experiences in the past when working in new project.

 Comparing with the reference SLR, we observed a decrease

in the use of Expert Judgment (i.e., 16.7% vs 20%), and an

4
 http://agilemanifesto.org

increase use of intelligence techniques to support the effort

estimation (i.e., 50% vs 27.5%). In particular, we did not

mention new works citing Use Case Points (UCP) method,

which was reported in 3 primary studies in the reference SLR.

 In Usman et al. [20], MMRE was the most popular metric

of accuracy, which was also observed in this update. Unlike

the reference SLR, where it was widely cited, MRE was cited

by only in one study in this review. BRE metrics cited in the

reference SLR also remain in evidence and are reported in this

work. Some works justified the choice of the BRE because of

criticism of the MRE regarding its lack of balance [12].

 The research on size metrics showed that story point

remains the most largely used measure, mainly motivated by

being the measure used with planning poker. In this review we

did not find records of the use of use cases points as size

metrics, which is a consequence of not finding mentions to

UCP method. Some papers used characteristics of the

functional size of the features to help in the process of

estimates of effort in agile environments. However, the results

reported by the authors has moderate significance. The size

metric Lines of Code cited in 1 of the primary studies of the

reference SLR was not found in this update.

 Usman et al. [20] reported that the low accuracy in effort

estimation could be related to the lack of clarity in cost drivers

and that new studies in this context needed to be carried out.

We identified an increase in the use of Cost Drivers in the

studies. Only 25% (6) of papers do not use some cost driver.

 In the reference SLR, industrial datasets are used in most

of the studies. Although this persists in the new review, we

identified an increasing number of works which were

validated in the academic domain. We believed that the works

that were validated only in the academic domain requires

future works to replicate the proposals on projects in the

industries, so that the conclusions can be valid of practitioners.

 Usman et al. [20] believed that some effort should be made

to make cross-company datasets available for ASD context.

However, this was not found in this review. Only one paper

validated the data in cross-company environment, all others in

within-company environments. We believed that the greatest

difficulty in this context is that effort measures are relative and

subjective to teams. This hinders a common measure in cross-

company with different teams.

 We only found 4 works describing the use of Extreme

Programming (XP) and all of them had XP used in

combination with Scrum. In the reference SLR, XP was cited

7 and Scrum, 8. In our update, we found a total of 15 papers

that reported to use Scrum (i.e., 4 that use XP and Scrum and

11 that use Scrum).

 We believed that this increase is a consequence of, today,

Scrum being the most popular agile method in industry, as

reported by VersionOne [21]. Many works did not explicitly

set out which agile method was they used. Regardless of the

agile methodology, we agree with Usman et al. [20] that the

activities when they are estimated refer to the complete

500

development effort. The design, implementation and testing

activities are performed very closely to each other. As in the

reference SLR, the works reported in this review mostly deals

with planning at the level of iterations.

B. Implications for research and practice

An important gap cited by Usman et al. [20] is the lack of

studies that show good estimation accuracy. We identified in

this update that accuracy remains a challenge in most of the

papers analyzed. However, an enhancement is clearly

observed in works that use intelligent techniques in this

context (see Table 5).

We observed an increasing usage of intelligence

techniques for effort estimation in ASD. Half of the 24 works

uses some Artificial Intelligence or Machine Learning

technique. These works use historical data and expert

knowledge to support decision-making. Since some of them

validated their approaches only in academia, there is a need

for further researches with replication of these techniques in

the industry.

It was also mentioned by Usman et al. [20] that the lacking

of the consensus in costs drivers is a reason for poor accuracy

levels. In this research, we used thematic analysis to

categorize the predictors that were identified in the primary

studies. The result showed 10 factors (see Table 6), in which

five are related to projects and five to people. We believed that

further case studies in industry evaluating these cost drivers

are needed.

A potential threat to validity is, as for any systematic

literature review, if we were not able to cover all primary

studies. We used Forward Snowballing because we considered

unliked that a relevant paper published in 2014 or later does

not refer to any of the papers results of the SLR from Usman

et al. [20]. In regard to the quality of the selection of the study

and data extraction, we used a systematic approach where

which each paper was evaluated by at least two reviewers, to

avoid reviewer bias and human errors.

VI. CONCLUSION

 This study presents an update review of a reference

systematic literature review on effort estimation in Agile

Software Development [20]. Forward Snowballing was used

to look for the most relevant works in this theme since the year

of 2014. The seed set used for beginning the search were the

relevant works listed in the reference SLR and the reference

SLR itself. After two evaluation cycles using Forward

Snowballing and 312 works evaluated we selected 24 relevant

papers.

 Some considerations of the reference SLR are still valid

and current. However, we identified new trends. We believe

that further investigation into the use of the cost drivers and

intelligence techniques is needed in effort estimation, given

the possible benefits for a best management of agile projects.

Further efforts in academia and industry are need to be made

in this direction.

REFERENCES

[1] Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N.: A systematic

literature review of software requirements prioritization research.
Information and Software Technology 56(6), 568–585, 2014.

[2] Bilgaiyan, S., Mishra, S., Das, M.: A Review of Software Cost Estimation

in Agile Software Development Using Soft Computing Techniques.
International Conference on Computational Intelligence and Networks

(CINE), 112–117, 2016.

[3] Conte S. D., Dunsmore V.Y.S. H. E.: Software engineering metrics and
models. In: Benjamin-Cummings Publishing Co, 1986.

[4] Felizardo, K.R., Mendes, E., Kalinowski, M., Souza, E.F., Vijaykumar, ´

N.L.: Using Forward Snowballing to update Systematic Reviews in
Software Engineering. International Symposium on Empirical Software

Engineering and Measurement - ESEM ’16, 1–6, 2016.

[5] Grapenthin, S., Book, M., Richter, T., Gruhn, V.: Supporting Feature
Estimation with Risk and Effort Annotations. 42nd Euromicro

Conference on Software Engineering and Advanced Applications, SEAA

2016, pp. 17–24, 2016.
[6] Jalali, S., Wohlin, C.: Systematic Literature Studies: Database Searches vs.

Backward Snowballing. International Symposium on Empirical Software

Engineering and Measurement, pp. 29–38, 2012.
[7] John Wiley and Sons: Introduction to Qualitative Research Methods: The

Search for Meanings. New York. John Wiley and Sons, 1984.

[8] Kitchenham, B., Charters, S.: Guidelines for performing Systematic
Literature Reviews in Software Engineering. Engineering 2, 1051, 2007.

[9] Kupiainen, E., Mantyla, M.V., Itkonen, J.: Using metrics in agile and lean

software development – a systematic literature review of industrial
studies. Information and Software Technology 62, 143–163, 2015.

 [10] Lenarduzzi, V., Lunesu, I., Matta, M., Taibi, D.: Functional size

measures and effort estimation in agile development: A replicated study.
Business Information Processing, vol. 212, pp. 105–116, 2015.

[11] Melo O., Santos C., Katayama V., E., Corbucci, H., Prikladnicki, R.,

Goldman, A., Kon, F.: The evolution of agile software development.
Brazil. Journal of the Brazilian Computer Society, 523–552, 2013.

[12] Miyazaki, Y., Takanou, A., Nozaki, H., Nakagawa, N., Okada, K.:

Method to estimate parameter values in software prediction models.
Information and Software Technology 33(3), 239–243, 1991.

[13] Munialo, S.W., Muketha, G.M.: A Review of Agile Software Effort

Estimation Methods, 612–618, 2016.
 [15] Schweighofer, T., Kline, A., Pavlic, L., Hericko, M.: How is Effort

Estimated in Agile Software Development Projects? Sqamia, 2016.

[16] Sehra, S.K., Brar, Y.S., Kaur, N., Sehra, S.S.: Research patterns and
trends in software effort estimation, 2017.

[17] Silva, A., Perkusich, A.: A systematic review on the use of Definition of

Done on agile so ware development projects, 2017.
[18] Silva, A., Ramos, F., Silva, A.: Ordering the Product Backlog in Agile

Software Development Projects : A Systematic Literature Review
International Conference on Software Engineering & Knowledge

Engineering –SEKE, 2017.

[19] Usman, M., Mendes, E., Borstler, J.: Effort estimation in agile software
development: A survey on the state of the practice. International

Conference on Evaluation and Assessment in Software Engineering.

EASE ’15, pp. 12–11210. ACM, New York, NY, USA, 2015.
[20] Usman, M., Mendes, E., Weidt, F., Britto, R.: Effort estimation in Agile

Software Development: A systematic literature review. ACM

International Conference Proceeding, 82–91, 2014.
[21] VersionOne: 11th Annual State of Agile Development Survey Results.

https://versionone.com/pdf/VersionOne-11th-Annual-State-of-

AgileReport.pdf. Accessed in: 02-12-2017, 2017.
[22] Wohlin, C.: Guidelines for snowballing in systematic literature studies

and a replication in software engineering. International Conference on

Evaluation and Assessment in Software Engineering - EASE ’14, pp. 1–
10, 2014.

501

SIDD – SCRUM ITERATION DRIVEN DEVELOPMENT: AN AGILE
SOFTWARE DEVELOPMENT AND MANAGEMENT PROCESS BASED ON

SCRUM

Tayse Virgulino Ribeiro1 Cristina D’Ornelas Filipakis Souza2 Heloise Acco Tives Leão3

1,2Lutheran University Center of Palmas - CEULP/ULBRA, Palmas – TO – Brazil
3Department of Computer Science - University of Brası́lia (UnB) – Brası́lia-DF, Brazil

E-mail: {tayse1000,filipakis,heloise.acco}@gmail.com

Abstract

Scrum Iteration Driven Development is an agile, Scrum-
based process that allows the management and development
of software, making possible an improvement in the soft-
ware development process, with the objective of assisting
in the management and planning of software projects. The
proposal of Scrum Iteration Driven Development (SIDD)
is to be an agile process capable of directing development
and management activities. Therefore, considers the con-
text of the company, to help them follow the principles of
this process in its entirety, without the need for complemen-
tary techniques. Finally, to disseminate the results of the
work, an interactive presentation area of the SIDD process
was developed with information related to the software de-
velopment and management process, with the intention of
being a guide to assist the users in the project management
process1.

Keywords - Software Engineering, Agile Methodology,
Scrum, Development Process, SIDD.

1 INTRODUCTION

Pressman [3] states that software engineers should strive
to produce and use techniques and tools to develop high-
quality systems. Currently, the reality for large and small
companies is the difficulty to understand the concepts of
Software Engineering tha leads to misuse of software de-
velopment practices.

Therefore, this work emphasizes a specific agile soft-
ware development methodology, called Scrum. According
to Sabbagh [5], Scrum is an agile, simple and lightweight
framework used to manage the development of complex
products. Identifying it as a framework means that it is able

1DOI reference number: 10.18293/SEKE2018-102

to solve a problem in a particular domain, and to solve this
problem, your applications needs to be working according
to project standards.

In this way, the present work aims to create an agile pro-
cess, allowing the development and management of soft-
ware in an iterative way. This process is based on a quali-
tative and quantitative research carried out with 20 compa-
nies from the city of Palmas, Tocantins - Brazil, in April
2017 by Ribeiro [4], addressing the interviewees about the
use of software development practices. This research aimed
to identify the approach of the use and the evolution of the
companies in the context of software development process,
to obtain a better understanding of the use of agile practices.
Therefore, to propose a software management and develop-
ment process in order to provide improvement in the soft-
ware development process.

Based on this, the problem that this paper seeks to solve
is related to the creation of a Scrum-based agile process for
software development and management in order to provide
improvement in the software development process of com-
panies. Raising as hypothesis, if there is an understanding
of the company profile analysis and the approach to using
Scrum, then it is possible to create a Scrum-based agile pro-
cess for software development and management in order to
provide improvement in the software development process.

Thus, the proposal to use the SIDD process has positive
aspects in the aid of the administration of project manage-
ment activities, such as the creation of specific artifacts that
aid in the management and development of the software.
However, the process tends to lose agility face other agile
processes, because there is an addition of events and arti-
facts construction in its tasks. This addition is what intro-
duces the management context to the process.

502

2 THEORETICAL FRAMEWORK

After the “software crisis” in the mid-1990s, agile
methodologies became known as methods of improving de-
velopment processes. In the year 2001, an Agile Manifesto
was written by Kent Beck and sixteen other software pro-
fessionals. This manifesto generated twelve principles that
explain the concept of agility in the area of software devel-
opment. From that year, the term ”Agile Methodologies”
became popular in this field.

According to Sharma and Hasteer [6], in the world of
software development industry, traditional software devel-
opment has moved to the agile model over the years. In
this field there are many methodologies, such as Scrum, Ex-
treme Programming, Crystal, FDD (Feature-driven devel-
opment), DSDM (Dynamic Systems Development Method,
etc. The agile process developed in this work emerged as a
technique to aid in software development.

Khmelevsky, Li and Madnick [2] complement that agile
practices such as Scrum, which allow a better dynamic of
concentration between the teams and an agile delivery, have
become one of the easiest and most desirable techniques to
work with. On the other hand, it should be noted that it is
necessary to evaluate the type of project to which the tech-
nique will be applied, since the process may not be directly
applicable.

The use of an agile process is directly related to the ap-
plication environment and the approach type. Therefore,
Srivastava, Bhardwaj and Saraswat [7] state that the use of
an agile method has a different approach and perspective for
each project.

3 METHODOLOGY

The composition of the work development methodology
elaborated for design the SIDD process is shown in Figure
1. In the study phase of the theoretical reference was car-

Figure 1. Methodology of the developed
stages of the project.

ried out a study of the main concepts related to the use of

agile development processes, as well as quality approaches
to software processes. After that, a qualitative-quantitative
research was carried out in 20 software development com-
panies in Palmas-TO, Brazil in the year 2017. From the
analysis of the results obtained in the research it was possi-
ble to start planning the business model, which is the third
stage of the work methodology.

A business model was created for the process, in order
to describe aspects related to the use of the management
and development process in the job market. In this way,
were verified the benefits that this process will provide for
its customers, the resources necessary for its use to be possi-
ble and the way in which the communication with the client
will be established.

After the construction of the business model, an anal-
ysis of the Scrum development process was carried out to
identify suitable practices for the scenario. This analysis
was carried out in order to understand the scenario of soft-
ware development in private companies, with the purpose
of defining a proposal for a software management and de-
velopment process appropriate to the companies.

Faced with this, the definition of the steps of the SIDD
Process was started with the purpose of presenting the def-
inition of the workflow of the software development and
management process that is developed in this work.

With the steps delineated, the definition of the artifacts
was started, elucidating all the artifacts used for the compo-
sition of the process and presentation of the documentation.
And finally, the visual representation of the SIDD process
was created. In this phase the flow is presented in a graph-
ical way, relating the roles to the stages in which they are
involved.

4 QUALI-QUANTITATIVE RESEARCH

A qualitative-quantitative research was carried out in 20
software development companies in Palmas-TO, Brazil in
the year 2017 with the objective of evaluating the evolu-
tion and needs of the utilization of development processes
in the companies and agencies of this city. According to
what was collected in the research, where it can be seen
that seven companies did not adopt a specific software de-
velopment practice, two adopted traditional development
practices, while eleven adopted agile practices. In addition,
100% of companies that used agile practices used the Scrum
development process as a basis, but with adaptations.

In some companies/agencies there was adaptations re-
lated to term and events that are approached in agile prac-
tices. Six of the companies, made adaptations of sprints
and backlog times in project planning, changing the sched-
ule, as they can not meet the deadline initially reported. One
of these adaptations, for example, refers to the project pro-
gression meetings (Daily’s - Scheduled Scrum Meetings).

503

The adjustments made at the meetings were not specified.
But the adaptations can be related to two points, which are:
not holding meetings or holding meetings more consistently
(e.g. a meeting per day period rather than at the end of the
day). Some adaptations are not possible to identify, since
the partial way of use was not informed and in other cases
the responsible person was not able to respond. It is worth
mentioning that all adaptations should be evaluated, since
accession to a methodology basically means following its
principles.

Based on this, it is necessary to take some aspects into
account before adopting a development practice. The com-
pany / organization must make a diagnosis in the sector, to
verify how its management style behaves and if they have
trained individuals. After identifying these characteristics,
the entire industry and the company must commit to the
plans that will be carried out, since this is a significant influ-
ence. According to the theoretical reference, it is possible to
observe some important criteria when adopting a software
development practice. According to Awad [1] and Stoica, et
al. [8], there are a number of factors influencing the tradi-
tional methodology, such as: methodology approach; matu-
rity of the company/body and team; team composition; level
of project knowledge; perspective of project change, com-
munication, culture, documentation and the project’s return
on investment.

Thus, a proposal for a new agile software development
process capable of directing the development and manage-
ment activities, besides taking into account the context of
the company, can contribute for the companies follow the
processes in its entirety, without the necessity for comple-
mentary techniques.

5 SCRUM ITERATION DRIVEN DEVEL-
OPMENT

The process of development and management of SIDD
software was obtained through the case study carried out, in
which the presentation flow was created with the aim of fa-
cilitating the presentation of the software development and
management process. Figure 2 presents, graphically, the
workflow of the process developed in this work.

The division of the process takes place in the accom-
plishment of the events, in the construction of the artifacts
and in the participation of their respective roles. The SIDD
process consists of the following events: Planning Meeting,
Sprint Planning, Planning Poker (optional), Sprint, Daily
SIDD and Sprint Review.

In the execution of these events the following artifacts
are generated: Project Model Canvas, Product Backlog,
Sprint Backlog, Object Model(optional), Sequence Dia-
gram (optional), Testing Session, Definition of Done and
Product Increment.

Figure 2. Structure of the Process.

Thereby and to carry out the SIDD cycle, the participa-
tion of SIDD Team is required. This team consists of the
following roles: Product Owner, SIDD Master and Devel-
opment Team. These roles aim to achieve results with qual-
ity and agility, in a proactive and collaborative way. The
performance of a role is directly related to a set of executed
events and their developed artifacts.

The participation of the Product Owner in the SIDD pro-
cess begins in Planning Meeting. This meeting discusses
the need of the customer and what will be generated of
value. With this, the Product Owner and SIDD Master work
to define the Project Model Canvas. Based on this, the items
that make up the Product Backlog are defined. Finally, it
participates in conjunction with the SIDD Master and the
Development Team in the performance of the Sprint Review
activity, assisting in the evaluation regarding the fulfillment
of the Sprint objective, characterizing the delivery of the
product. SIDD Master is responsible for leading and facil-
itating the work of the Development Team in order to pro-
mote organizational skills, communication and continuous
improvement in the development process. SIDD Master is
one of the only roles that is present all the time in the prod-
uct design process because it aims to monitor the progress
of all activities and keep the project always aligned with the
needs of the Product Owner.

Its participation begins in the Planning Meeting. After
that, the Product Owner and SIDD Master work to define
the Project Model Canvas. As a consequence, the items
that make up the Product Backlog are defined. In addi-
tion, Sprint Backlog planning is done in the Sprint Plan-
ning event. In the act of this planning the SIDD Master and
the Development Team are also performing the Planning
Poker. After that, at the execution of Sprint, the Develop-
ment Team contributes in the accomplishment of the daily
meeting, known like Daily SIDD. During the execution of
Sprint, SIDD Master participates in assisting and leading
the Development Team in the construction of the artifacts
that aid in the development of the product, such as: Object

504

Model(optional), Sequence Diagram (Optional), Test Ses-
sion, Definition of Done and Product Increment.

The Development Team is responsible for develop-
ing the product. Therefore, the team should contem-
plate some characteristics, such as: specialty in the field,
self-organization, focus, motivation, discipline, agility and
teamwork. The Development Team begins its participation
in the Sprint Planning event. In this event, you define what
will be done from the beginning of the project execution. At
the time of this planning, the team also conducts Planning
Poker. After that, in the execution of Sprint the Develop-
ment Team contributes in the accomplishment of the Daily
SIDD. During the execution of Sprint, the team participates
in the generation of the same artifacts that aid in product
development.

To disseminate the results of the work, an interative pre-
sentation area of the SIDD process was developed, with
information related to the software development and man-
agement process, which can be accessed through the fol-
lowing link http://metodologiasidd.com.br/. This area was
presented according to the structure of the process, which
is performed in the accomplishment of the events, in the
construction of the artifacts and in the participation of
their respective roles. The development of the site was
mainly aimed at the development of the process guide area
(http://metodologiasidd.com.br/guide.html), in which it is
possible to obtain the orientation of the Scrum Iteration
Driven Development process, presenting the main areas of
the process, which are: events, artifacts, and roles.

6 CONCLUSION

In the analysis of the results of the qualitative-
quantitative research carried out by Ribeiro [4], it was pos-
sible to observe that the companies that worked with the
practice of agile development did not necessarily meet all
the principles of a methodology, since much of its use was
made in a partial way. Besides that, it was noted that the use
of Scrum as a methodology was standard in the software de-
velopment companies in the region. Thus, this research had
the goal of questioning respondents on the use of software
development practices analysis of the information obtained.

In this way, the proposal of a new agile process capable
of directing the activities of development and management,
in addition to taking into account the company context, can
assist companies to follow the principles of this process in
its entirety, without need for complementary techniques.
Based on this, the objective of this study was to provide
an improvement in the software development process of en-
terprises. Therefore, in addition to explaining the concepts
of agile methodology and the steps of the process Scrum,
this work consisted in modeling an agile process based on
Scrum that allows software management and development.

From this, the Scrum Iteration Driven Development, an
agile process based on Scrum, was developed, which allows
the management and development of software, making pos-
sible an improvement in the software development process,
with the objective of assisting in the management and plan-
ning of software projects.

Therefore, the use of the SIDD is beneficial in assist-
ing the management of project management activities, such
as creating specific artifacts that assist the management and
development of software. However, the process tends to
lose agility face other agile processes, because there is an
addition of events and artifacts construction in its tasks.
This addition is what introduces the management context
to the process.

References

[1] M. Awad. A comparison between agile and traditional soft-
ware development methodologies, this report is submitted as
partial fulfillment of the requirements for the honours. In The
University of Western Australia. Citeseer, 2005.

[2] Y. Khmelevsky, X. Li, and S. Madnick. Software develop-
ment using agile and scrum in distributed teams. In 2017 An-
nual IEEE International Systems Conference (SysCon), pages
1–4, April 2017.

[3] R. Pressman. Engenharia de software: uma abordagem profis-
sional [internet], 2011.

[4] T. V. Ribeiro. Quantitative Research on Software Develop-
ment Processes Used by Companies in Palmas-TO. 2017.

[5] R. Sabbagh. Scrum: Gestão ágil para projetos de sucesso.
Editora Casa do Código, 2014.

[6] S. Sharma and N. Hasteer. A comprehensive study on state
of scrum development. In 2016 International Conference on
Computing, Communication and Automation (ICCCA), pages
867–872, April 2016.

[7] A. Srivastava, S. Bhardwaj, and S. Saraswat. Scrum model
for agile methodology. In 2017 International Conference on
Computing, Communication and Automation (ICCCA), pages
864–869, May 2017.

[8] M. Stoica, M. Mircea, and B. Ghilic-Micu. Software develop-
ment: Agile vs. traditional. Informatica Economica, 17(4):64,
2013.

505

Investigating the Effects of Agile Practices and

Processes on Technical Debt - The Viewpoint of the

Brazilian Software Industry

Vivyane Coelho Caires
PPGCOMP, Salvador University
Federal Institute of Bahia-IFBA

Jequié/Vitória da Conquista, Brazil
vivyane.caires@ifba.edu.br

Nicolli Rios

Department of Computer Science,

Federal University of Bahia
Salvador, Brazil

nicollirioss@gmail.com

Johannes Holvitie

TUCS - Turku Centre for Computer

Science & University of Turku
Finland

jjholv@utu.fi

Ville Leppänen

TUCS - Turku Centre for Computer

Science & University of Turku
Finland

ville.leppanen@utu.fi

Manoel G. de Mendonça Neto
Department of Computer Science,

Federal University of Bahia

Fraunhofer Project Center @ UFBa
Salvador, Brazil

manoel.mendonca@ufba.br

Rodrigo Oliveira Spínola
PPGCOMP, Salvador University

Fraunhofer Project Center at UFBA

Salvador, Brazil
rodrigo.spinola@unifacs.br

Abstract—The current scenario of software development is

characterized by a wide adoption of agile methodologies, which

define processes and practices that address a range of problems

faced by development teams. However, there is still little

information on how these methodologies deal with technical

debt(TD). This work presents the results of a replicated

survey(originally executed in Finland) whose goal was to

investigate which agile practices and processes are sensitive to

TD. Despite this replication allows different types of analysis, the

focus of this paper will be on the analysis of the effects of the agile

practices and processes on TD from the perspective of the

Brazilian software industry, where the study was replicated. At

total, 62 practitioners from different organizations answered the

questionnaire. The results indicated that participants already had

a good knowledge about TD, instances of TD reside in the

software implementation and are caused due to deficiencies in its

architecture, the size of a debt item is proportional to its impact

on the project, and, refactoring and iteration have the most

positive effect on TD. This replication also contributes to the

investigated topic through the accumulation of evidence about

the findings, thereby increasing the level of confidence in results.

Keywords-Technical debt; agile methodology; survey; replicated

study.

I. INTRODUCTION

Technical debt (TD) represents the effects of immature
artefacts that bring short-term benefits in terms of increased
productivity and lower costs, but which may need to be
adjusted later with interest during software development [1, 2,
3]. TD is usually incurred when development teams have to
choose between to evolve the system considering quality
standards or to put it to run in the shortest possible time, using
minimum resources. As TD is incurred in a project, the effort
required to eliminate it is cumulative and its payment tends to
become more complex. Different types of debt may occur
during the phases of a software development process and the
used methodology can affect their presence [4]. An inadequate

management of TD can bring significant losses to a software
project [7].

The current scenario of software development is
characterized by a wide adoption of agile methodologies,
which define processes and introduce practices that address a
range of problems currently faced by development teams [5].
However, there is still little information on how these
methodologies accommodate the concept of TD. To shed some
light in this discussion, Holvitie et al. [9] conducted a survey
with practitioners from Finland on how TD issues relates to
agile software processes and practices. They investigated
participants’ level of knowledge on TD, how TD manifests
itself in their projects, and what processes and practices of agile
development are sensitive to it. In general, the study pointed
out that the processes and practices that are closest to the
implementation and maintenance activities are perceived as
having the most positive effects on the control of TD. In
addition, the authors also identified that TD items usually come
from problems in the software architecture.

Although the surveys’ results are valid, the work of
Holvitie et al. [9] is also limited by some issues. The main one
is that the data were collected from development companies
based in Finland and, therefore, the results may reflect only the
local scenario. To deal with this, an international consortium
involving researchers from Finland, Brazil and New Zealand
worked together to replicate the survey in their respective
countries. The goal of this set of replications was investigate
whether the findings of the Holvitie’s study are reproducible.
Results from the whole gathered data were reported in [10].
However, as the results presented in [10] did not consider the
specificities of each involved country (the whole dataset was
analyzed as an only instance), an in-depth analysis of the
results of each individual replication is still missing. This kind
of analysis can reveal hidden details that could not be perceived
in a generic look at the data. More specifically, it can reveal
how software practitioners perceive impacts that agile practices

DOI reference number: 10.18293/SEKE2018-131

506

and processes have in TD considering the local software
industry reality that usually differs from other places when we
consider variables like the size of organizations and
development teams, and the size and duration of software
projects.

This work presents the results of the replication 1 of the
study of Holvitie et al. [9] in Brazil, a country located in
another continent and with a culture different from Finland.
Despite the fact of this replication allows different types of
analysis (for example, comparison between the results from
each country), the focus of this work is to discuss the results of
the replication in Brazil. Thus, we will present an analysis on
the effects of the agile software development practices and
processes on TD from the perspective of the Brazilian software
industry. We will discuss the answers to the following research
questions: RQ1 - What is the level of knowledge of respondents
about TD?; RQ2 - Which agile software development practices
and processes are sensitive to TD?; and RQ3 - How does TD
manifest itself in the participants' work?

To replicate the survey, we used a web-based questionnaire
that was answered by 62 practitioners (mostly characterized by
professionals with more than 6 years of experience) from 62
different software organizations. In general, the results
indicated that the participants already had a good knowledge
about the concept of TD, but some of them are still not familiar
with the term. In another finding, we could observe that many
instances of TD reside in the software implementation and are
caused due to deficiencies in its architecture. We also identified
that the size of a debt item is proportional to its impact on the
project. Finally, considering all analyzed agile software
development practices and processes, most of respondents
indicated that refactoring (practice) and iteration (process) have
the most positive effect on TD.

In addition to this introduction, this paper has five more
sections. In Section II, the replication of the survey in Brazil is
described. The effects of the agile software development
practices and processes in TD are presented in Section III.
Section IV discusses the obtained results. Next, limitations of
the study are presented in Section V. Finally, Section VI
presents some final remarks.

II. SURVEY REPLICATION - BRAZIL

A. Survey

The goal of the research performed by Holvitie et al. [9]
was to investigate which agile software development practices
and processes are sensitive to TD. They conducted a survey,
structured in three groups of questions, considering a
population of practitioners.

The first group of questions aims to establish the level of
knowledge of the respondents about software development and
how they perceive TD in their projects. For this, the research
questions were defined as, for an individual: (RQ1.1) does
work experience, (RQ1.2) do used agile development practices,
or (RQ1.3) do associated project responsibilities correlate with

1 Replication based on previous insights is widely recommended in the

experimental paradigm [13]

what the respondent perceives his/hers assumed or actual TD
knowledge to be?; (RQ1.4) in which mediums has he/she seen
or heard the term TD be used?; (RQ1.5) in which situations has
he/she or his colleagues applied the concept of TD?, and;
(RQ1.6) in which situations does he perceive the use of the TD
concept as helpful? During this first stage, the authors also
present the McConnell’s definition of TD [7], ensuring that all
participants know the term.

In the second stage, there is a set of questions about which
agile development practices and processes are used by
respondents in their projects and how they realize that their use
affects TD. We established that the XP practices together with
Scrum processes cover the components of agile software
development well in addition to being highly popular [11, 12].
Questions of this stage intend to answer the following research
questions: are there certain agile software development
practices or processes for which (RQ2.1) their effect on
technical debt is seen to be significantly positive, neutral or
negative?; (RQ2.2) it is seen that they (do not) cover the team’s
or the project’s development management needs?, and; (RQ2.3)
it is seen that they (are not) able to cover TD issues that require
management?

In the third stage of the survey, participants are asked to cite
particular instances of TD and, from that concrete instance,
answer the following research questions: for a concrete
instance of technical debt, (RQ3.1) in which phase of the
software development it was observed?; (RQ3.2) what are the
causes for its emergence?; (RQ3.3) is it legacy?; (RQ3.4) is its
size dynamic?, and; (RQ3.5) does its effects correlate with its
size?

In total, the questionnaire has 37 questions (35 objective
and 2 subjective) and collects the following information: (i)
participants’ knowledge on software development; (ii)
organizational details (such as participants’ role in the project,
number of projects developed by the company, number of
people involved in a given project); (iii) agile development
processes and practices that are applied; (iv) interviewee’s
knowledge on TD; (v) perception of the development phases
affected by TD; and (vi) an example of an artifact affected by
TD, the size of that debt item and its perceptible effects. The
survey, available at http://soft.utu.fi/tds16/questionnaire.pdf,
was developed as a web-based form in order to increase the
response rate and minimize data manipulation errors. Google
Forms platform was used for building, distributing, and
collecting survey data.

B. Survey Brazil

When we decided to replicate the survey in Brazil, it was
already designed and all the instruments were available.
Therefore, in this section we focus on the details of how we
planned and operated the replication in Brazil. Further
information on the design of the survey can be found in [9].

To plan the survey replication in Brazil, we held a couple of
discussions with the general organizers. During the discussions,
the online questionnaire was presented and some general
guidelines for conducting the survey were provided. Thus, the
configuration of the environment was performed and then the
participants were invited by e-mail to contribute with the

507

http://soft.utu.fi/tds16/questionnaire.pdf

research. Participants were selected through software
associations or local industry contacts. In this process, we tried
to reach practitioners spread out in different regions in Brazil.

In total, 62 professionals from different software
development organizations answered the survey. Regarding the
size of the organizations in terms of number of employs, 44%
of the respondents work on organizations with over 250
employs. A significant number (30%) of answers were also
obtained from participants of organizations that have between
10 and 50 employs. 10% of the participants work on small
companies with less than 10 employs. Finally, 16% of the
respondents indicated that work on companies that have
between 51 and 250 employs. The development teams in which
participants are involved in are mainly characterized as small
teams (42%, 2-5 members). 25% of the respondents work on
teams that have between 6-10 members. We also had answers
from teams with over 20 members (10%). The other
participants are part of very small or middle size teams.

The length of projects in which participants are working on
has the following distribution: 1-3 months (23%), 4-6 months
(31%), and over 6 months (38%). Regarding development
iteration length, the answers are distributed as follows: one
week or less (18%), 2-3 weeks (26%), 1 month (10%), 2
months (5%), over 2 months (10%), no iteration (20%).
Finally, concerning respondent level of experience,
approximately 15% of the respondents have less than 3 years of
software development experience, slightly more than 20% have
between 3 and 6 years, and 65% have more than 6 years. The
average time to complete the questionnaire was 15 minutes.

To ensure a standardized data analysis in relation to the
work of Holvitie et al. [9] and make possible a future
comparison between them, we forwarded the responses to the
general organizers, which applied the same analyzes carried out
in the study performed in Finland. Then, they returned the
results and we could interpret them.

III. RESULTS

In this section, we discuss the survey results concerning (i)
what is the level of knowledge on TD of the participants, (ii)
what agile software development practices and processes are
perceived as sensitive to TD, and (iii) how TD manifests itself
in their work.

A. RQ1 - What is the level of knowledge of respondents about

TD?

Research questions grouped by RQ1 are focused on
participant’s perception on the concept of TD. For this,
participants are initially asked about how they perceive their
knowledge on TD, followed by a request for them to
(optionally) describe their definition of the term. These answers
were classified according to respondents’ work experience
(RQ1.1), applied software development techniques (RQ1.2)
and assumed roles (RQ1.3). There was no significant
difference between the distributions of these variables. Thus,
the most general one is presented here. From Figure 1, it is
observed that 32% of the respondents considered having a good
or very good definition of TD, however, almost 50% of them

indicated that they did not know the term or had a poor
definition of it.

Next, the McConnell’s definition of TD [7] was presented
and, then, the respondent was asked to indicate how close to
this concept was his initial understanding. The results are
represented in Figure 1 and indicate that about 70% of
respondents reported that their definition were close to or very
close to the definition extracted from the technical literature.
Besides, slightly more than 20% reaffirmed not knowing the
term or having a poor definition of it. These data indicate that
participants were initially reticent about their understanding on
concept of TD, but that most of them (80%) really already
knew it. Other surveys performed in the area have pointed out
this same behavior [6][9].

Complementing this analysis, Figure 2 presents the
relationship between the experience of survey participants,
their previous knowledge on TD and their knowledge after the
definition be presented in the questionnaire. We can see that for
interviewees with less than 3 years of experience, 5% had a
good or very good definition for TD, 8% had a poor or very
poor definition, and 2% reported not knowing the term. After
reading the definition presented in the survey, the percentages
passed to 11%, 2% and 2%, respectively. For participants who
had experience between 3 and 6 years, 3% indicated having a
good or very good definition for TD, 16% a poor or very poor
definition and 2% indicated not knowing the term. After
reading the definition, the percentages passed to 10%, 2% and
10%, respectively. Finally, for the most experienced
participants (more than 6 years of experience), 25% reported
having a good or very good definition for TD, 29% had a poor
or very poor definition, and 11% reported not knowing the
term. This percentage changed to 49%, 10% and 6%,
respectively, after reading the TD concept presented.

Then, the respondents were asked where they had either

Figure 1. Distribution for perceived TD knowledge

Figure 2. Relationship between interviewees' experience and

knowledge on TD concept

508

seen or heard the term TD used (RQ1.4). The questionnaire
provided seven initial options that can be observed in Figure 3.
We can see that more than 50% have seen the term in the
technical literature. Surprisingly, about 40% of the respondents
reported the term has been used in work meetings. It is also
important to mention that over 15% of respondents never had
heard the term before.

Finally, closing the analysis of RQ1, a mapping of common

decision situations in development is shown in Figure 4. We
asked participants whether, for each situation, he/she or a co-
worker had already applied the concept of TD (RQ1.5) and
whether the use of the concept would have been useful
(RQ1.6). The data show that more than half of the respondents
realized the utility of using the concept of TD in all situations
and only 5% reported that its use would not bring gains.

Still on Figure 4, 27% of respondents reported that they
have already applied the concept of TD in unforeseen
situations, almost 20% in decisions about development
infrastructure, about 20% in integrated resources, and 35% in
conduction of software development. From the perspective of a
co-worker, 27% reported that a colleague had already used the
term TD in unforeseen situations, 18% in issues involving
development infrastructure, 10% in integrated resources, and
almost 30% in the conduction of software development. It is
worth mentioning that more than 50% of respondents never
used the TD concept in decision-making in any of the
situations.

B. RQ2 - Which agile software development practices and

processes are sensitive to TD?

The RQ2 group of questions is focused on investigating the
effects of agile software development practices and processes
on TD. For this, initially the questionnaire presented a list of 11
agile development practices [11] and, for each of them, the
interviewee should indicate how positively/negatively it could
impact the TD in the project (RQ2.1). The results presented in
Figure 5 demonstrate that practices used during implementation
phase (simple design, TDD, coding standards, refactoring,
continuous integration, and pair programming) are considered
by more than half of the interviewees as having a positive or
very positive effect on TD. More specifically, refactoring was
indicated as the practice that has the most positive effect.

Afterwards, we asked participants about the effect of agile
development processes on TD (RQ2.1). For this, a list of six
processes [12] was considered. As we can see in Figure 6, all
processes (iteration planning meetings, iterations, iteration
backlog, iterations reviews/retrospectives, daily meetings, and
product backlog) were considered to have very positive or
positive effects on TD. The iteration process was considered
the most positive among them.

We also asked if the combination of agile techniques that
participants used were adequate for the team’s or the project’s
management needs (RQ2.2) and if the techniques were able to
cover all aspects that require management (RQ2.3). For
singular practices, processes and their adoption rates, not a
single combination could be identified for which the difference
in their management or cover characteristics was statistically
significant.

Figure 4. Respondent’s application and perceived usefulness of

applying the TD concept

Figure 5. Perceived effect of agile software development practices on TD

Figure 3. Technical debt usage in different mediums

Figure 6. Perceived effect of agile development processes on TD

Finding 1: The concept of TD is already known by a large
part of the population represented in this study. On the
other hand, practitioners are still assimilating the concept.

Finding 2: The usefulness of using the TD concept in
development activities is recognized.

509

RQ3 - How does TD manifest in the participants’ work?

The group of questions RQ3 is focused on the analysis of
situations that TD affected the progress of projects in which the
participants were involved. When asked about in which phase
of the software development the TD was observed (RQ3.1), as
we can seen in Figure 7, 77% of respondents stated that the
implementation phase is the most affected, followed by design
phase. Although the testing phase was reported as the least
affected, its percentage is still relevant.

We also investigated the causes that led to the occurrence
of debt (RQ3.2). To do this, from a previously defined list of
causes [2], the participant should indicate which of them he/she
considered pertinent. In Figure 8, we can see that the causes
most often indicated by participants were inadequate
architecture and inadequate structure, followed by violation of
best practices or style guides, and inadequate testing and
documentation. This result is aligned with findings reported by
Ernst et al. [6] that also pointed to problems in architecture as
the main source of TD in software projects.

In addition to this question, when asked about the source of
TD instances (RQ3.3), most participants (50%) stated that TD
instances came from the legacy from an earlier team/individual
who previously worked on the same project/product. 18% of
the participants indicated that their source is in the legacy from
an unrelated project/product of the organization, and 14%
stated that the source is in the legacy from outside the
organization. Only 18% of participants answered that the
source is not from legacy activities.

Then, when asked about the relationship between the
continued development of a component and the size of the debt
located in that component (RQ3.4), most of participants (82%)
reported that the continued development would contribute to
the increase in the size of the debt, while only 18% reported
that this would lead to a reduction in the size of the debt. None
of the respondents indicated that there would be a large
decrease or no change.

Finally, when asked about the correlation between the size
of a TD item and the effects that it causes in software
development (RQ3.5), about 70% of the respondents answered
that the size is directly proportional to the magnitude of the
effects, 5% stated that it is not proportional, and another 5%
answered that it is inversely proportional. Other 23% reported
that the size is somehow proportional to effects magnitude.
Thus, for most respondents, the larger is the size of a debt item,
the greater is the effect it brings to the project.

IV. DISCUSSION

This work presented the results of a replicated survey in
Brazil. For RQ1, we found that the concept of TD is already
known by a good part of the population represented in this
study. Regarding RQ2, we observed that, in general, agile
software development practices and processes have a positive
effect on TD. In this item we highlight the refactoring practice
and the iteration process, which were considered as having the
most positive effect. Finally, for RQ3, the data indicated that
the implementation phase is the most affected by debt items,
and problems associated with the architecture and internal
structure of the software are the main causes of TD. These
results justify, at a certain extension, the fact that agile
practices that have a more positive effect on TD are directly
related to coding activities.

Another result from RQ3 indicated that continued
development in a software item contributes to the increase in
TD in that item. This is an interesting result because if, on the
one hand, continuous work on an item opens opportunities for
improvements in its internal structure (that can lead to payment
of debt items), on the other hand, if we do not explicitly
manage TD, these opportunities can be lost and, as
consequence, the debt size can reach higher levels. Finally,
participants also reported that there is proportionality between
debt size and the effects it brings to the project. These two

Finding 1: The implementation phase is, usually, the most
affected by TD.

Finding 2: Inadequate software architecture and internal
structure are the main causes of TD.

Finding 3: Debt items tend to come from the legacy of a
team/individual who previously worked on the same
project/product.

Finding 4: Continued development in a software item
contributes to the increase in TD's size on that item.

Finding 5: The larger the size of a TD item is, the greater is
the effect it brings to the project.

Finding 1: In general, agile practices have a positive effect
on the TD. Among the analyzed practices, refactoring was
considered to have the most positive effect.

Finding 2: In general, agile processes have a positive
effect on the TD. Among the considered processes,
iteration was indicated as having the most positive effect.

Figure 7. Distribution of TD by project phases

Figure 8. Indicated causes for concrete instances of TD

510

results reinforce the importance of making explicit the
management of the TD items.

A. Relation to previous work

The results of this replication indicated that the population
has different characteristics from the original study [9]: (i)
Finland sees a majority in the smaller organization size
categories and Brazil is in the middle ground with highs in
medium and large categories; (ii) Finland had average iteration
length of two to three weeks whereas Brazil is more evenly
distributed (from 1 week to more than 2 months), and (iii)
projects in Brazil tend to be longer and Finland's shorter. Thus,
on the perspective of the population characterization, we could
say that this replication contributes to the original study by
expanding the sample from the organization spectrum. Besides,
it also indicates that the obtained results reflect particularities
of the Brazilian local scenario of agile software development.
Concerning participants’ level of experience, country-wise
deviation is almost non-existent.

Regarding results for research questions, despite in general
both executions pointed out to the same direction, we also
could detect particularities. For example, respondents from
both countries answered that common agile practices and
processes are sensitive to technical debt. However, while in
Brazil refactoring and iteration are considered as having the
most positive effects on TD, in Finland, participants indicated
coding standards and iteration reviews/retrospectives. A more
detailed analysis of differences and similarities between the
results obtained with the execution of the survey in Finland and
its replication in Brazil is out of the scope of this paper, being
part of the next steps of this research.

V. STUDY LIMITATIONS

Some limitations apply to this study. One of them is related
to the cultural influence of the region where the survey was
performed. Although the questionnaire was answered by
participants from different companies of different sizes and
based in different regions from Brazil, yet the "Brazilian way"
of developing software may have influenced the responses. A
detailed analysis considering this aspect is outside the scope of
this paper, but it is a future work that will be carried out by the
authors considering the data obtained with the execution of the
survey in Finland and its replication in Brazil.

A second limitation that affects this study is related to the
lack of control over the participants invited to participate in the
research. It could happen that only developers interested in the
TD area participate of the study. This might bias the results
towards a more positive view of technical debt knowledge.
However, about 50% of the respondents initially indicated that
they were not familiar with the concept and thus we assume
that this positive bias is not significant.

Finally, although the number of responses (62) can be
considered good, yet the data cannot be generalized to
represent practitioners from Brazilian software industry. Still,
they provide valuable indicators on the research questions
raised. Their analysis together with the data obtained from the
original execution of the study in Finland will allow a greater
level of confidence in the results.

VI. FINAL REMARKS

This work is aligned with a growing concern of the
software engineering community: the replication of empirical
studies. It contributes to the generation of knowledge in a given
topic through the accumulation of evidence about the findings,
thereby increasing the level of confidence in results [13].

Specifically, this replicated study investigated the
perception of practitioners on TD concept, the effects of agile
software development practices and processes on it, and how
TD manifests itself in practice in the Brazilian software
industry. The reached results, described in details on Sections
III and IV, contribute to the improvement of the body of
knowledge that has been built around the Technical Debt
Landscape [3] [8]. The next steps of this research include a
country level comparison of the obtained results.

ACKNOWLEDGMENT

This work was partially supported by the CNPq Universal
grant 458261/2014-9, by the State of Bahia's SECTI-
Fraunhofer-UFBa cooperation agreement 2012-1, and by the
RESCUER project Grant: 490084/2013- 3.

REFERENCES

[1] C. Seaman & Y. Guo (2011), Measuring and Monitoring Technical
Debt, Advances in Computers 82, 25-46.

[2] P. Kruchten; R. Nord & I. Ozkaya (2012), Technical Debt: From
Metaphor to Theory and Practice, Software, IEEE 29(6), 18-21.

[3] C. Izurieta; A. Vetro; N. Zazworka; Y. Cai; C. Seaman & F. Shull
(2012), Organizing the technical debt landscape, in Managing Technical
Debt (MTD), 2012 Third International Workshop on, pp. 23-26

[4] N.S.R. Alves, T.S. Mendes, M.G. Mendonça, R.O. Spínola, F. Shull, and
C. Seaman, Identification and management of technical debt: A
systematic mapping study, Information and Software Technology,
Volume 70, February 2016, Pages 100-121, ISSN 0950-5849.

[5] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[6] N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord, and I. Gorton. 2015.
Measure it? Manage it? Ignore it? software practitioners and technical
debt. In Proc. of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, New York, NY, USA, 50-60.

[7] S. McConnel, “Managing Technical Debt,” Construx Software, Version
1. Available from: http://www.construx.com, 2008

[8] N.S.R. Alves, R.S. Araújo, R.O. Spínola. A Collaborative
Computational Infrastructure for Supporting Technical Debt Knowledge
Sharing and Evolution. In: Americas Conference on Information
Systems, 2015, Puerto Rico.

[9] J. Holvitie; V. Leppanen & S. Hyrynsalmi (2014), Technical Debt and
the Effect of Agile Software Development Practices on It - An Industry
Practitioner Survey, in MTD 2014, pp. 35-42.

[10] J. Holvitie, S.A. Licorish, R.O. Spínola, S. Hyrynsalmi, S.G. MacDonell,
T.S. Mendes, J. Buchan, and V. Leppänen. Technical debt and agile
software development practices and processes: An industry practitioner
survey. Information and Software Technology, 2017, ISSN 0950-5849.

[11] N. Kurapati, V. S. C. Manyam, K. Petersen, Agile software development
practice adoption survey, in: Agile processes in software engineering
and extreme programming, Springer, 2012, pp. 16{30.

[12] D. West, T. Grant, Agile development: Mainstream adoption has
changed agility 2 (41).

[13] F. Shull, J.C. Carver, S. Vegas, and N. Juristo. 2008. The role of
replications in Empirical Software Engineering. Empirical Software
Engineering. 13, 2 (April 2008), 211-218.

511

Timing Analysis for Microkernel-based Real-Time
Embedded System

Rongfei Xu, Li Zhang
School of Computer Science and Engineering

Beihang University
Beijing, China

Ning Ge
School of Software
Beihang University

Beijing, China
gening@buaa.edu.cn

Jing Jiang
School of Computer Science and Engineering

Beihang University
Beijing, China

Abstract—Currently, more and more application-specific op-
erating systems (ASOS) are applied in real-time embedded
systems. With the development of microkernel technique, the
ASOS is usually customized based on the microkernel using
the configurable policy, which has various alternatives. In the
design of the real-time embedded system (RTES) based on such
ASOS, evaluating its timing performance at the early design
stage is helpful to guide the designer towards choosing the most
appropriate policy. However, the existing works lack a uniform
approach to support analyzing the various alternatives of the
configured policy. To solve this problem, this paper presents a
general-purpose timing analysis approach for the ASOS-based
RTES. In the analysis, a timing analysis tree is proposed to
characterize the tasks and the ASOS in the RTES. Then, each
of the alternative policies in the ASOS is refined by the uniform
execution rules in the tree. Finally, the task’s response time under
the various alternative policies is analyzed by a traversal of the
timing analysis tree using a uniform way. In the case study, we
take the scheduling policy as an example to show the use of our
approach on a real-life robot controller system.

Index Terms—real-time embedded system, microkernel-based
RTOS, application-specific operating system, alternative policy,
timing analysis

I. INTRODUCTION

In real-time embedded systems (RTES), the real-time op-
erating system (RTOS) is usually used to manage the tasks
in the system, and directly impacts their timing performance
[1]. The RTESs in various domains may suffer from the
general-purpose operating system (OS) due to their specif-
ic characteristics. Currently, many works are aimed at the
application-specific operating systems (ASOSs) to enhance
the performance of a certain application [2], e.g., microkernel
architectures are representative ASOSs. Nowadays, more and
more practical RTOSs are designed based on a microkernel,
such as QNX, Integrity, and FreeRTOS. A microkernel [3] is a
minimalistic kernel that contains the near-minimum amount of
functions and features required to implement an OS, it adopts
the ”separation of mechanism and policy” principle. Such
principle makes it convenient to build arbitrary OS services
using the configurable policy. When customizing an ASOS,
every configurable policy has various alternatives, each of

This paper is supported by the National Natural Science Foundations of
China (No. 61672078 and No. 61732019)

DOI:10.18293/SEKE2018-095

which has a different influence on the response time of the
task. Hence, in this work, we are interested in the timing
analysis of the design of the RTES, which is implemented
on a customized ASOS based on the microkernel with various
alternatives for the configurable policy.

In the real-time systems, the timing analysis approaches
can be divided into two categories: dynamic and static. The
dynamic approaches, which include the simulation and model
checking, suffer from the efficiency problem when applied
to the case mentioned here. For the simulation, each alterna-
tive policy requires generating a policy-dedicated simulation
model, which is not feasible for a general-purpose. For the
model checking, it also needs to concern the policy-dedicated
rules throughout the task model [4]. Thus, we resort to the
static analysis approaches, which include three classes [5]:
structure-based, path-based, and the technique using implicit
path enumeration (IPET). Both the path-based approach [6]
and the IPET [7] are inadequate for our case due to they do
not consider the OS. As for the structure-based approach, it
can only support the specific function of the OS [8], [9], and
is inadequate to analyze the various alternative policies here
in a general purpose way.

In this paper, we propose a timing analysis approach specific
for the RTES based on a microkernel-based ASOS, which is
customized by the configurable policy that has various alter-
natives. In order to perform the timing analysis for the various
alternatives uniformly, we first propose a structure of timing
analysis tree, which is used to characterize the tasks and the
ASOS in the RTES. Then, we define a canonical form of the
execution rules to refine the various alternatives in the timing
analysis tree. Based on the execution rules, we finally propose
a general-purpose analysis technique by a traversal of such
timing analysis tree for the various alternatives. In the case
study, we take the scheduling policy as an example to show
the use of our approach on a real-life robot controller system.
Comparing with the state-of-the-art methods, the superiority
of our approach is that it simplifies the analysis by fixing the
tasks and the ASOS mechanisms, and only replacing the part
of the configurable policy.

This paper is organized as follows: Sect. II discusses
the related works; Sect. III introduces the background and
overview of our approach; Sect. IV proposes the timing

512

analysis approach; Sect. V evaluates our approach on a real-
life case; and Sect. VI gives some concluding remarks and
perspectives.

II. RELATED WORKS

Currently, the timing analysis of the RTES includes two
different classes of methods [5], that is the dynamic methods
and the static methods.

The dynamic methods rely on the simulation or the model
checking. For the simulation-based methods, the works [10],
[11] mapped the MARTE model to the SymTA/S model for
timing analysis based on formal scheduling analysis tech-
niques and symbolic simulation; the work [12] proposed a
simulation-based timing analysis depending on a more detailed
system model, which described the execution control flow at
the code level. When used in our case, the simulation-based
methods need a model transformation (or refinement) for each
alternative policy, which is inflexible. For the model checking,
the work [13] presented an analysis method for the worst-case
execution time (WCET) using UML-MARTE model checker,
which was aimed at detecting wrong software designs and
refined the correct ones with respect to WCET; the work [14]
mapped the activity diagram of UML into the priority time
Petri net (PTPN) to enhance the formal schedulability test of
given real-time tasks; The work [15] mapped the workload
model of real-time systems into a Petri Nets formalism to
generate all transactions for the timing analysis. However, as
for our case, the model checking method needs to specify
the policy-dedicated rules throughout the task model, which
is flexible or even impossible.

The static methods include three classes [5]: structure-based,
path-based, and techniques using implicit path enumeration
(IPET). In the path-based method [6], the execution time
is determined by analyzing the paths in the task. In IPET
[7], the control flow and the basic-block execution time are
combined into the constraints to analyze the execution time
of the task. Both the path-based method and the IPET don’t
consider the OS’s functions in the execution of the task. In the
structure-based method [16], the execution time is analyzed
in a bottom-up traversal of the syntax tree of the task. The
syntax tree takes the functions or subtasks of a task as the
nodes, so the interactions between the nodes can be used
to concern the OS’s functions, such as synchronization [17],
instruction cache locking [9], etc. However, the structure-based
method can’t support analyzing the various realizations of the
function in a general purpose way. For example, the work [17]
proposed three analysis methods for the three instruction cache
locking strategies, i.e. static locking, semi-dynamic locking
and dynamic locking.

III. BACKGROUND AND OVERVIEW

A real-time embedded application is usually designed as a
set of tasks managed by the RTOS [18], i.e. the ASOS here.
The microkernel-based ASOS includes three basic mechanism-
s that cover the essential functions of the microkernel, i.e.
the task scheduling, the inter-process communication (IPC),

and the resource access [3]. Each mechanism can be extended
using a set of alternative policies. The task consists of a
sequence of functional blocks with some system calls [19].
The system call is realized by the basic system calls in the
ASOS. The functional block is used to realize an independent
function and composes the execution sequence of a task [19].

Analysis
input

Task ASOS

Control flow
analysis

Analysis
steps

Timing information
Execution
sequence

Configured policy

Behavior refinement

ASOS behavior
analysis

Timing
analysis

Fig. 1. Overview of our approach

The overview of our approach is shown in Fig. 1. The
RTES design includes the tasks and the ASOS. The response
time of each task is analyzed based on its control flow,
which is characterized by the execution sequence of the task.
Such control flow is influenced by the ASOS behavior, which
varies with different configured policy. Here, we propose to
refine the ASOS behavior at the analysis stage. Besides, the
timing information needs to be specified for the tasks and the
ASOS. Specifically, the worst-case execution time (WCET) is
pre-defined for each functional block in the tasks and each
basic system call in the ASOS. For each alternative policy,
the timing analysis of the RTES design is implemented by
combining the control flow and the ASOS behavior to analyze
the tasks’ response time.

IV. TIMING ANALYSIS APPROACH

In our approach, we define an extensible timing analysis
tree (ETAT) to characterize the task and the ASOS, where the
alternative policy can be replaced flexibly (i.e. extensible). If
a new policy is configured, the only part needs to be modified
in the ETAT is the policy node together with its child node.

A. Extensible Timing Analysis Tree (ETAT)

In this section, we first define the semantics for the extensi-
ble timing analysis tree (ETAT); then, we propose a canonical
form to define the execution semantics for the ETAT, which
is used to refine the ASOS behavior to perform the timing
analysis. Based on the proposed canonical form, we introduce
the execution rules for the three mechanisms in ASOS, i.e.
scheduling, IPC and resource access.

1) Definition of ETAT: In the RTES, each task is modeled as
an ETAT, which consists of a set of nodes and edges. The node
is defined as TreeNode = (time cost, component attribute),
where the time cost attribute records the time cost of the rep-
resented component, the component attribute attribute charac-
terizes the attributes of the represented component. There are
three types of nodes in the ETAT as follows:

513

• object node specifies the tasks and the functional blocks.
• operation node specifies the ASOS behaviors, including

mechanisms and configurable policies
• parameter node specifies the basic system calls and

execution rules for the ASOS behavior.
The various relationships between the nodes are defined as

different types of edges in the ETAT. Each type of edge can
only exist between a pair of certain type of nodes. The are
five types of edges, which are listed as follows:
• use: A task or a functional block uses the mechanism or

the policy in the ASOS; The execution rules and the basic
system calls are used by the mechanism or the policy.

• realize: A policy is realized based on the mechanism.
• consist: A task consists of a set of functional blocks.
• sequence: The successor of a functional block in the

execution sequence is its sub-sequence.
• operate: The mechanism or the policy operates on the

task or the functional block.
2) Definition of the Execution Semantics: The ASOS be-

havior is refined by the execution rules in the ETAT, which
define the operating actions and the timing actions for the
behavior. Specifically, the operating action expresses the op-
eration for this behavior; the timing action indicates there is a
time cost for the operation. A canonical form for the execution
rules is defined as

State
[Condition]/Action−−−−−−−−−−−−→ State′ (1)

where State represents the current state of a task, Condition
means the condition affecting the execution of the task, and
Action is the operating or the timing action for the task
triggered by the satisfaction of conditions.

The execution rules for scheduling mechanism are defined
as shown in Fig. 2.
• Four basic states of a task (running, ready, blocked, sus-

pended) are represented by St Run, St Ready, St Block
and St Suspend, respectively.

• The set of conditions consists of Cond Preempted,
Cond First Run, Cond Wait Event, Cond Event Arrive,
and Cond Time Out.

– Cond Preempted represents the condition that makes
a task be preempted.

– Cond First Run represents that the task is selected
to run first among the tasks in the ready queue.

– Cond Wait Event represents that the task is waiting
for an event.

– Cond Event Arrive represent that the waited event
arrives.

– Cond Time Out represents that the waiting is time-
out.

• The operating actions (i.e. running, readying, blocking
and suspending) are represented by Act Run, Act Ready,
Act Block and Act Suspend respectively, and the timing
action is defined as Act Timing.

The execution rules for resource access mechanism are
defined as shown in Fig. 3.

ST_RUN

ST_BLOCK

ST_SUSPEND

[(CON_PREEMPTED = FALSE)
∧ (CON_WAIT_EVENT = FALSE)]
/ACT_RUN ∧ ACT_TIMING

[(CON_WAIT_EVENT = TRUE)
∧ (CON_TIME_OUT = FALSE)]
/ACT_BLOCK ∧ ACT_TIMING

[(CON_PREEMPTED = TRUE)]
/ACT_READY ∧ ACT_TIMING

[(COND_FIRST_RUN = TRUE)]
/ ACT_RUN ∧ ACT_TIMING

[(CON_WAIT_EVENT = TRUE)
∧ (CON_EVENT_ARRIVE = TRUE)]
/ACT_RUN ∧ ACT_TIMING

[(CON_WAIT_EVENT = TRUE)
∧ (CON_TIME_OUT = TRUE)]
/ACT_SUSPEND ∧ ACT_TIMING

[(CON_WAIT_EVENT = TRUE)
∧ (CON_EVENT_ARRIVE = TRUE)]
/ACT_READY ∧ ACT_TIMING

ST_READY

Fig. 2. Execution rules for scheduling

• Two basic states of St Run and St Block are involved.
• The conditions of Cond Request Resource and

Cond Req Resource Available are used.
– Cond Request Resource represents that the task re-

quests a resource during its execution.
– Cond Req Resource Available represents that the

requested resource is available right now.
• The operating actions include Act Run, Act Block, Ac-

t Check Resource , Act Get Resource and Act Timing.
Among them, Act Check Resource is to check whether
the resource is available, Act Get Resource is to obtain
the available resource.

ST_RUN
ST_BLOCK

[(CON_REQUEST_RESOURCE = TRUE)]
/ACT_RUN ∧ ACT_TIMING
∧ ACT_CHECK_RESOURCE

[(CON_REQ_RESOURCE_AVAILABLE = TRUE)]
/ACT_RUN ∧ ACT_TIMING
∧ ACT_GET_RESOURCE

[(CON_REQ_RESOURCE_AVAILABLE = FALSE)]
/ACT_BLOCK ∧ ACT_TIMING

[(CON_REQ_RESOURCE_AVAILABLE = TRUE)]
/ACT_RUN ∧ ACT_TIMING ∧ ACT_GET_RESOURCE

Fig. 3. Execution rules for resource access

The execution rules for IPC mechanism are defined as
shown in Fig. 4.
• Two basic states of St Run and St Block are involved.
• The conditions of Cond Request Communication and

Cond Req Connect Setup are used.
– Cond Request Communication represents that the

task requests a communication with other task during
its execution.

– Cond Req Connect Setup represents that the con-
nection for the requested communication is set up.

• The operating actions include Act Run, Act Block, Ac-
t Connect Setup, Act Communicate and Act Timing. A-
mong them, Act Connect Setup is to set up the con-
nection, Act Communicate is to communicate with other
task.

B. Timing Analysis for ETAT

The response time of a task consists of the scheduling
time, the interaction time (with other functional blocks), and
the WCET of the functional blocks in this task. Both the

514

ST_RUN
ST_BLOCK

[(CON_REQUEST_COMMUNICATION = TRUE)]
/ACT_RUN ∧ ACT_TIMING
∧ ACT_CONNECT_SETUP

[(CON_REQ_CONNECT_SETUP = TRUE)]
/ACT_RUN ∧ ACT_TIMING
∧ ACT_COMMUNICATE

[(CON_REQ_CONNECT_SETUP = FALSE)]/ACT_BLOCK ∧ ACT_TIMING

[(CON_REQ_CONNECT_SETUP = TRUE)]/ACT_RUN ∧ ACT_TIMING ∧ ACT_COMMUNICATE

Fig. 4. Execution rules for IPC

scheduling time and the interaction time rely on the ASOS
behavior, and consist of the WCET of the basic system calls.
Such response time is analyzed by a traversal of the ETAT of
this task. During the traversal, the time cost of the root node
(i.e. the task node) indicates the current execution time of the
task, and is updated once the time cost of the scheduling node
or that of each functional block node is worked out. The time
spent at each object node of functional block is analyzed based
on its operation child-node. The time spent at each operation
node (include scheduling and interaction) is analyzed based
on its parameter child-node. When the ETAT is completely
traversed, the time cost of the root node indicates the response
time of the task.

Fig. 5. Timing analysis process

Given an ETAT T, the timing analysis process is shown in
Fig. 5. First, visit the root node of T to check whether T is
completely traversed (L. 1). If not, visit the scheduling child-
node of the root node to check whether the task is executable

(L. 5). Then, analyze the time cost of the scheduling child-
node, and update the time cost of the root node (L. 6,7). If the
task is executable, we visit the functional block child-node (say
fb) of the root node, then visit the functional block child-node
(say fb’) of fb, then visit the functional block child-node of fb’,
..., until all functional block nodes are visited (L. 20). For each
functional block node, we check its execution condition and
analyze its time cost based on the operation node (if exists) and
the parameter node (the analysis procedure will be introduced
later), then update the time cost of the root node (L. 14-16).
When all the functional block nodes are visited, the task is
set as completely traversed, the time cost on the root node
indicates the response time of the task.

Next, we specifically introduce the scheduling node and the
functional block node mentioned above. The time cost of the
scheduling node is the time spent at the scheduling operation.
The time cost of the functional block node includes the time
spent at the object itself and at the interaction operation (if
exists). Therefore, we focus on the two types of nodes, i.e.
the object node and the operation node. According to the
definition of ETAT, the basic structures of object node and
operation node are summarized in Fig. 6. For the object node,
it has a child node of the object type with a consist (for
task) or sequence (for functional block) edge between them.
If the object node has a scheduling operation or an interaction
operation, an operation node is generated as its another child
node with the use edge. For the operation node, it has a child
node of parameter with the use edge. If the operation node
has an extended operation (for policy), the realize edge is used
to link them. If the operation node has an other operand, a
child node of the object type is generated for the operand with
the operate edge.

object node operation node

operation node object node

consist\sequenceuse

operation node object node
parameter node

realize
use

operate

Fig. 6. Basic structure of object node and operation node

The timing analysis for the object node and the operation
node is presented as follows. As the object node of the task is
the root node to record the time cost, we focus on the object
node of the functional block here. For ease of illustration, we
call such a child node that has a use edge with its father node
as the use child-node in brief (the same for other edges).
• C1: For the object node of functional block, its time cost

includes the time spent at itself and at its use child-node
(if exists). The time spent at the functional block itself is
specified by the WCET value in its component attribute.
The use child-node is actually the operation node, whose
time cost is analyzed by the way in C2.

• C2: For the operation node, its time cost includes the time
spent at its use child-node, realize child-node (if exist)
and operate child-node (if exist). The time spent at the
use child-node is the time cost of the system call, which is

515

analyzed based on the execution rules (the timing actions
particularly) and the WCET of basic system calls. If
this operation node has a realize child-node, the realize
child-node is actually an operation node, whose time
cost is analyzed by the same way. If this operation node
has other operands except for its father node (as the
operation node is used by its father node, the father node
is one operand of this operation), the operate child-node
is actually an object node, whose time cost is analyzed
by the same way as C1.

V. CASE STUDY

A. Experimental setup

In this section, we will illustrate the application of our
approach to a real-life robot controller system [20]. The robot
controller system (RCS), which consists of three tasks, is
used to keep the robot operating normally. Among the tasks,
the balance task is to keep the balance of the robot by
calculating the input from the gyroscope and the inclinometer;
the navigation task is to avoid obstacles during the process
of going to the destination; the remote task is to receive a
remote command via the infrared. The services of the infrared
sensor, the gyroscope and the inclinometer are realized by
the interrupt service routines (ISR), which are correspond-
ing to infrared isr, gyro isr and inclino isr respectively. To
implement such RCS, we use the µC/OS-II kernel [21] to
configure the ASOS. The µC/OS-II kernel implements a static
priority scheduling policy, and has an optional policy of round
robin scheduling. In this case study, we analyze the timing
performance of the three tasks in the RCS to assess these two
scheduling policies.

For the ASOS, the WCET of the basic system calls in
the µC/OS-II kernel given in [22] is used in this case study.
About the two scheduling policies in the ASOS, the time slice
of the round robin (RR) scheduling is set as 10 thousands
CPU cycles, the priorities (P) for the three tasks in the
static priority (SP) scheduling are set as: P(balance) = 4,
P(navigation) = 6, P(remote) = 5. For the tasks, their timing
requirements are represented by the deadline (D), and set as (in
one thousand CPU cycles): D(balance) = 200, D(navigation) =
40, D(remote) = 4000. Within the tasks, the functional blocks
(FBs) together with their WCET are set as shown in Table. I.

B. Experimental process and results

First, we define the execution rules for the two scheduling
policies. As shown in Fig. 7, these execution rules refine
the preempted condition in the scheduling mechanism (as
shown in Fig. 2). Specifically, for the SP scheduling, an
arbitrary task T is preempted when there exists a ready
task with a higher priority than T; for the RR scheduling,
the task T is preempted when the time slice for T is used
up. It should be noted that the CON PREEMPTED in the
execution rules of scheduling mechanism (as shown in Fig. 2)
is set by the actions of ACT SET PREEMPTED TRUE or
ACT SET PREEMPTED FALSE in the execution rules of the
two scheduling policies.

TABLE I
WCET SETTINGS FOR FUNCTIONAL BLOCKS (IN ONE THOUSAND CPU

CYCLE)

Task Function block WCET
balance Initialization 5

GetInfoFromGyro 10
GetInfoFromInclino 10
Calculation 30
KeepBalance 50

navigation Initialization 1
SendDetector 3
FindObstacle 8
AvoidObstacle 5

remote Initialization 10
GetInfoFromInfrared 800
ExecuteCommand 3000

ro
u

n
d

-r
o

b
in

s
c
h

e
d

u
lin

g

s
ta

ti
c
-p

ri
o
ri
ty

s
c
h

e
d

u
lin

g

Fig. 7. Execution rules for two alternative scheduling policies

Then, we construct the timing analysis trees for the three
tasks as shown in Fig. 8, where the object nodes, the operate
nodes and the parameter nodes are represented by the colors
of green, orange and blue respectively in each timing analysis
tree. As space is limited, the attributes of each node in the
trees are not presented.

After the timing analysis, the response time of each task
under the two scheduling policies is presented in Table. II.
As seen, the static priority scheduling can meet the deadline
of the tasks, while the round robin scheduling can not. This
case study takes the two scheduling policies as an example
to illustrate the feasibility of our approach. Without loss of
generality, any other scheduling policies can also be analyzed
based on the timing analysis trees in Fig. 8 by defining their
execution rules.

TABLE II
TIMING ANALYSIS RESULTS (IN MILLISECONDS)

Task SP scheduling RR scheduling
balance 158 304

navigation 3845 5091
remote 36 47

VI. CONCLUSION AND PERSPECTIVE

In the domain of the real-time embedded system, more
and more application-specific operating systems (ASOS) are
customized based on the microkernel using the configurable
policy. The existing methods usually need an individual timing
analysis for each alternative policy. To simplify the analysis,
we propose a general-purpose timing analysis approach for
such ASOS-based RTES design. A real-life robot controller
system is used as a case study to show the feasibility of our

516

Timing analysis trees

b
a

la
n

c
e

n
a

v
ig

a
ti
o

n
re

m
o

te

Fig. 8. Timing analysis tree for the tasks

approach. Currently, our approach only supports the config-
urable policies of the three basic aspects, i.e. scheduling, inter-
process communication, and resource access. With the RTES
is becoming more and more complex, the more functions
are needed by the ASOS, such as network management, file
system, etc. In the near future, we will extend our approach
to support more configurations in the ASOS.

REFERENCES

[1] J. Schneider, “Why you cant analyze rtoss without considering appli-
cations and vice versa,” 2nd WS Worst-Case Execution-Time Analysis,
2002.

[2] Y. Sun, Y.-F. Ai, and G.-S. Yang, “An optimal scheduling algorithm for
vehicular application specific operating systems,” in Computer Science
and Software Engineering, 2008 International Conference on, vol. 2.
IEEE, 2008, pp. 184–189.

[3] J. Liedtke, “Towards real microkernels,” Communications of the ACM,
vol. 39, no. 9, pp. 70–77, 1996.

[4] E. M. Clarke, W. Klieber, M. Novek, and P. Zuliani, Model Checking
and the State Explosion Problem. Springer Berlin Heidelberg, 2011.

[5] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The worst-
case execution-time problemoverview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
no. 3, p. 36, 2008.

[6] F. Stappert and P. Altenbernd, “Complete worst-case execution time
analysis of straight-line hard real-time programs,” Journal of Systems
Architecture, vol. 46, no. 4, pp. 339–355, 2000.

[7] A. Ermedahl, “A modular tool architecture for worst-case execution time
analysis,” Ph.D. dissertation, Acta Universitatis Upsaliensis, 2003.

[8] G. Aupy, C. Brasseur, and L. Marchal, “Dynamic memory-aware task-
tree scheduling,” in Parallel and Distributed Processing Symposium
(IPDPS), 2017 IEEE International. IEEE, 2017, pp. 758–767.

[9] T. Liu, M. Li, and C. J. Xue, “Instruction cache locking for multi-task
real-time embedded systems,” Real-Time Systems, vol. 48, no. 2, pp.
166–197, 2012.

[10] M. Hagner and U. Goltz, “Integration of scheduling analysis into
uml based development processes through model transformation,” in
Computer Science and Information Technology (IMCSIT), Proceedings
of the 2010 International Multiconference on. IEEE, 2010, pp. 797–
804.

[11] M. Hagner and M. Huhn, “Tool support for a scheduling analysis view,”
in MARTE workshop at DATE, vol. 8, 2008, pp. 41–46.

[12] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte, “Simulation-based
timing analysis of complex real-time systems,” in Embedded and Real-
Time Computing Systems and Applications, 2009. RTCSA’09. 15th IEEE
International Conference on. IEEE, 2009, pp. 321–328.

[13] N. Ge, M. Pantel, and B. Berthomieu, “A flexible wcet analysis method
for safety-critical real-time system using uml-marte model checker,”
2016.

[14] Y. H. Kacem, A. Mahfoudhi, A. Magdich, C. Mraidha, and W. Karamti,
“Using mde and priority time petri nets for the schedulability analysis of
embedded systems modeled by uml activity diagrams,” in Engineering
of Computer Based Systems (ECBS), 2012 IEEE 19th International
Conference and Workshops on. IEEE, 2012, pp. 316–323.

[15] M. Naija, S. B. Ahmed, and J.-M. Bruel, “New schedulability analysis
for real-time systems based on mde and petri nets model at early design
stages,” in Software Technologies (ICSOFT), 2015 10th International
Joint Conference on, vol. 1. IEEE, 2015, pp. 1–9.

[16] A. Colin and I. Puaut, “Worst case execution time analysis for a
processor with branch prediction,” Real-Time Systems, vol. 18, no. 2-
3, pp. 249–274, 2000.

[17] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in Intelligent Robots and Systems, 1998. Proceedings., 1998
IEEE/RSJ International Conference on, vol. 3. IEEE, 1998, pp. 1931–
1937.

[18] Y. Harada, K. Abe, M. Yoo, and T. Yokoyama, “Aspect-oriented
customization of the scheduling algorithms and the resource ac-
cess protocols of a real-time operating system family,” in Smart C-
ity/SocialCom/SustainCom (SmartCity), 2015 IEEE International Con-
ference on. IEEE, 2015, pp. 87–94.

[19] F. Verdier, B. Miramond, M. Maillard, E. Huck, and T. Lefebvre, “Using
high-level rtos models for hw/sw embedded architecture exploration:
case study on mobile robotic vision,” EURASIP Journal on Embedded
Systems, vol. 2008, no. 1, p. 349465, 2008.

[20] T. Braunl, “Eyebot: a family of autonomous mobile robots,” in Neural
Information Processing, 1999. Proceedings. ICONIP’99. 6th Interna-
tional Conference on, vol. 2. IEEE, 1999, pp. 645–649.

[21] Micrium, “µc/os-ii real-time kernel,” http-
s://www.micrium.com/products/, 2017.

[22] M. Lv, N. Guan, Y. Zhang, R. Chen, Q. Deng, G. Yu, and W. Yi, “Wcet
analysis of the µc/os-ii real-time kernel,” in Computational Science and
Engineering, 2009. CSE’09. International Conference on, vol. 2. IEEE,
2009, pp. 270–276.

517

Schedulability Analysis of Real-time Tasks with
Precedence Constraints

Rongfei Xu, Li Zhang
School of Computer Science and Engineering

Beihang University
Beijing, China

Ning Ge
School of Software
Beihang University

Beijing, China
gening@buaa.edu.cn

Xavier Blanc
LaBRI, UMR5800

University of Bordeaux, Bordeaux INP, CNRS
Talence, France

Abstract—The timing requirements of real-time systems can
be guaranteed by the well-designed scheduling. The analysis of
such scheduling inputs an abstract task model of the system and
outputs a diagnostic regarding the practicability of the timing
requirements. Task models have evolved from periodic models to
more sophisticated graph-based ones, among which the digraph
real-time (DRT) task model is the most applicable because of its
good expressiveness and analysis efficiency. However, the DRT
model can’t support the precedence constraints within or between
tasks. In this paper, we propose a new task model, called the
DRTPC model, that extends the DRT model to support the
precedence constraint. Further, based on our model, we present
a uniprocessor schedulability analysis algorithm for the static
priority scheduling, and introduce an optimization technique
to improve the analysis efficiency. Our experiments show that,
despite the high computational complexity of the problem, our
approach scales very well for large sets of tasks with precedence
constraints.

Index Terms—real-time system, schedulability analysis, task
model, precedence constraint, static priority scheduling

I. INTRODUCTION

The timing requirements of real-time systems can be guar-
anteed by the well-designed scheduling. The analysis of such
scheduling is to assess the schedulability regarding the prac-
ticability of the timing requirements [1], i.e. the system’s
tasks can complete by the deadline. In the design of real-time
systems, an abstract task model is usually used as an input
for the schedulability analysis, and specifies the tasks’ timing
constraints (duration, start constraint, etc.) [2]. The precedence
constraints within or between tasks, which commonly exist in
real-time systems [3], [4], directly affect the schedulability and
need to be concerned in the task model.

Let us take a simple example of a robot controller system
to explain the precedence constraint. This system consists of
three periodic tasks: the navigation task is to go to the des-
tination by continuous movements and to avoid the obstacles
when finding them, the detect task is to detect the location of
the obstacles, and the balance task is to keep the balance of the
robot. The navigation task needs the obstacle’s location to do
the job of finding the obstacle (FO). The location is collected
by the job of receiving the location of an obstacle (RL) in the

This paper is supported by the National Natural Science Foundations of
China (No. 61672078 and No. 61732019)

DOI:10.18293/SEKE2018-116

detect task. The job of computing the adjustment for a balance
(CA) in the balance task needs the data from the inclinometer,
which is collected by the job of reading the inclinometer (RI)
in the same task. Finally, the adjustment is used by the job of
controlling balance (CB) to balance the robot. There are then
three precedence constraints: RL precedes FO, RI precedes
CA, and CA precedes CB.

Since the well-known Liu and Layland task model [5]
appeared, a large number of task models, ranging from the
relatively simple periodic and sporadic ones to the more
complex graph-based ones, have been proposed [2]. There is
a contradicting goal of expressiveness and analysis efficiency
for these task models. For example, the Petri net [6] and the
timed automata [7] are powerful to allow accurate model-
ing and easy to support the precedence constraint, but their
analyses are based on the model checking, which can result
in the exponential computational complexity. On the other
hand, some works have specified the precedence constraint by
extending the tractable task models, such as the recurring real-
time task model [8], the sporadic task model [9], the dynamic
offsets task model [10], [11], etc. Although these extended
task models have a relatively good analysis efficiency, they are
limited to the specific tasks and not for general-purpose ones.
Therefore, the existing task models supporting the precedence
constraint are inadequate. Due to good expressiveness and
analysis efficiency, the currently proposed digraph real-time
(DRT) task model [12] is promising according to a thorough
survey [2]. Specifically, the DRT model can specify both the
sporadic and periodic tasks, and is tractable (i.e. in pseudo-
polynomial time) to be analyzed for large sets of tasks.
However, the DRT model is based on the assumption that the
tasks are independent of each other, so it is not yet to support
the precedence constraint.

In this paper, we extend the DRT model by specifying the
precedence constraint to get a new task model called DRTPC
(Digraph Real-Time task model with Precedence Constraint).
Further, we present a uniprocessor schedulability analysis al-
gorithm for the static priority scheduling in the DRTPC model.
This technique is capable of analyzing the schedulability by
considering the interferences caused by both the priority-
based preemption and the precedence constraint. In addition,
we introduce an optimization technique for the schedulability

518

analysis to improve its efficiency. Our experiments show that,
the proposed approach scales very well for large sets of tasks
with precedence constraints.

In the remainder of this paper, we first discuss the related
works in Sect. II. Then, we describe the DRTPC model in
Sect. III and present the schedulability analysis algorithm for
DRTPC in Sect. IV. Finally, the efficiency and scalability of
our approach are evaluated in Sect. V, and Sect. VI gives some
concluding remarks and perspectives.

II. RELATED WORKS

In the past decades, the abstract task models that specify
the tasks’ timing constraints have been studied intensively in
the real-time scheduling [1], such as the multiframe (MF)
task model [13], generalized multiframe (GMF) task model
[14], recurring real-time (RRT) task model [15], etc. The DRT
model [12] considered in this paper is a generalization of
the above models. Specifically, the DRT model can specify
the branching and loop structures in real-time systems, which
makes it capable of modeling both the sporadic and periodic
tasks. Besides, some efficient methods of schedulability anal-
ysis have been proposed for the DRT model [16]. However,
the DRT model can only support the independent tasks.

Currently, some works have been done to concern the de-
pendence between tasks in the DRT model, such dependencies
include three classes: inter-release time constraint [17], shared
resource [18], [19] and synchronization [20], [21]. Specifically,
the works [17] and [20] extended the edge in the DRT model
to specify the global inter-release separation constraint and
the synchronous execution respectively. The works [18], [19]
and [21] extended the vertex in the DRT model to specify
the maximal duration of resource access, the semaphore that
guards the shared resource, and the synchronization operation
respectively. However, it lacks an approach to concern the
dependence caused by the precedence constraint, which is
considered in this paper for the DRT model.

In the context of formal modeling and analysis, the prece-
dence constraint is supported by two classes of works. The
first class is based on the more expressive task models. For
example, the work [7] specified the timed automata to deal
with the precedence and resource constraints between the real-
time tasks; the work [6] identified the precedence constraint
properties of Petri net and tested whether it was feasible to
execute a workflow with the specified temporal constraints.
Due to the analysis complexity of automata or Petri net, the
above-mentioned works suffer from the state space-explosion
problem. The second class extends a simple task model to
support the precedence constraint. For example, the work [9]
considered the real-time system with the implicit precedence
constraints between the intra-task jobs based on the sporadic
task model; the work [8] represented the recurrent precedence-
constrained tasks to be executed on multiprocessor platforms,
where each recurrent task was modeled by a directed acyclic
graph (DAG); the works [10], [11] addressed the schedulability
analysis of the tasks with precedence relations in the distribut-
ed real-time systems based on the model of tasks with dynamic

offsets, which was specific for the distributed systems; the
work [22] proposed an approach to scheduling the tasks with
pipeline precedence constraints in the distributed real-time
systems, which were described by the directed acyclic graph
(DAG). Due to limited expressiveness of the task models to be
extended, the above works can’t support the general purpose
tasks. Therefore, it is necessary to extend the DRT model to
support the precedence constraint.

III. TASK MODEL

In this section, we first introduce the DRT model, then
define our DRTPC model to support the precedence constraint
based on the DRT model, and explain its semantics.

A. DRT Model
A real-time system is usually designed as a set of tasks,

each of which consists of a sequence of functional blocks
(called jobs here) [23]. A task model characterizes a task by
the execution sequences and the timing constraints of its jobs.
According to the definition of DRT model in [12], each task is
characterized by a directed graph G(T). The vertices of G(T)
represent the jobs in the task. Each vertex is labeled by an
ordered pair of (WCET, RD), which represents the worst-case
execution time (WCET) demand and the relative deadline of
the corresponding job respectively. The directed edges of G(T)
represent the orders (from start to end) in which the jobs are
released. Each edge is labeled by the inter-release interval time
between two jobs. In such graph G(T), a vertice may have
multiple edges or a loop edge, which makes the DRT model
can specify the branching and loop structures.

Example 1: For the example of the robot controller, it
consists of three tasks. For the navigation task, it includes
three jobs (go to the destination GD, find an obstacle FO and
avoid the obstacle AO) and four release orders (from FO to AO,
from AO to GD, from GD to FO and to itself). For the detect
task, it includes two jobs (send a detection SD and receive the
location of the obstacle RL) and two release orders (from SD
to RL, and from RL to SD). For the balance task, it includes
three jobs (read the inclinometer RI, compute the adjustment
CA, and control the balance CB) and three release orders (from
RI to CA, from CA to CB, and from CB to RI). If we don’t
consider the precedence constraints, the DRT model of this
example is characterized as shown in Fig. 1. For example,
the job AO in the navigation task is set as having a WCET
demand of 1 time unit and a relative deadline of 3 time units.
The job AO is set as being released at 35 time units later than
the release time of FO.

SD RL
20

<1,5> <2,8>

AOFO
35

<2,5> <1,3>

detect

navigation

10

5

<1,2>
5

10

GD

RI CB

CA

10

2010

<1,2> <1,5>

<2,5>

balance

Fig. 1. DRT model of the robot controller.

519

B. DRTPC Model

The DRTPC model is defined based on the DRT model to
support the precedence constraint, which constrains that the
execution of a job shouldn’t start until all of its precedent
jobs (if exist) are finished. In the DRTPC model, each task
is expressed by a directed graph G’(T), which describes the
timing constraints of each job and the precedence constraints
between jobs in this task. Each vertex of G’(T) is labeled by
a triple (PJ, WCET, RD), which represents a set of precedent
jobs, the worst-case execution time, and the relative deadline
of the corresponding job respectively. The directed edge of
G’(T) has the same meaning as the DRT model, i.e. the inter-
release interval time between jobs. It should be noted that the
precedent job of a job may be in the same task model or in
a different task model, which is called intra-task or inter-task
precedence constraint respectively.

Example 2: The DRTPC model of the robot controller
considering the precedence constraints is shown in Fig. 2.

SD RL
20

<Ø,1,5> <Ø,2,8>

AOFO
35

<[RL],2,5> <Ø,1,3>

detect

navigation

10

5

<Ø,1,2>
5

10

GD

RI CB

CA

10

2010

<Ø,1,2> <[CA],1,5>

<[RI],2,5>

balance

Fig. 2. DRTPC model of the robot controller.

The semantics of the DRTPC model is defined based
on the execution paths generated by the task model. Such
execution path is specified by a job sequence, where each job
is considered from two parts: timing constraint and precedence
constraint. Formally, we use a 3-tuple (RT, DT, AD) to denote
a job that is released at the time RT, with the duration DT and
the absolute deadline AD.

A job sequence is said to be valid, if and only if an arbitrary
job in the sequence satisfies the following two conditions:

Condition 1: For the timing constraint, it should satisfy the
three sub-conditions [12]: The duration is equal to the WCET
of the job; the absolute deadline is equal to the release time
plus the relative deadline of the job; the time between the
release time of the job and that of an other job is greater than
the inter-release interval time between them.

Condition 2: For the precedence constraint, it should satisfy
the two sub-conditions: For the intra-task precedence con-
straint, all of the precedent jobs (if exist) of the job should
be included in the same job sequence; For the inter-task
precedence constraint, all of the precedent jobs (if exist) of
the job should be included in the job sequences of other tasks,
which contain these precedent jobs.

Example 3: We take the task model in Fig. 2 as an example
to illustrate the valid job sequences within one period. For the
balance task, the job sequence of (RI, CA, CB) with the timing
constraints of (0, 1, 2), (10, 2, 15), and (30, 1, 35) respectively
is valid, because the precedent job of CA (i.e. RI) is included

in this job sequence. For the detect task, a valid job sequence
is (SD, RL) with the timing constraints of (0, 1, 5) and (20,
2, 28) respectively. For the navigation task, the job sequence
of (FO, AO) with the timing constraints of (0, 2, 5) and (35,
1, 38) respectively is valid, because the precedent job of FO
(i.e. RL) is included in the job sequence of the detect task.

In the next section, we will take an example of the three
valid job sequences to introduce the schedulability analysis for
the DRTPC model.

IV. SCHEDULABILITY ANALYSIS

In this section, we present the schedulability analysis for
the static priority scheduling in the DRTPC model. For such
scheduling, each task in the real-time system is assigned a
unique priority. The jobs have the same priority as their task.
For each job in the execution paths of the task, the job
can be executed only if no job with a higher priority exists
in the system. When all jobs in the execution paths meet
their deadline after the scheduling, this task is considered as
schedulable.

As the DRTPC model (DRTPC in short) is based on the
DRT model (DRT in short), we first introduce the schedulabil-
ity analysis for the static priority scheduling in the DRT, which
only concerns the interference on the scheduling caused by the
priority-based preemption. Then, we propose our schedulabil-
ity analysis algorithm for the DRTPC, which extra concerns
the interference caused by the precedence constraint.

A. Schedulability Analysis for DRT

The schedulability analysis for the DRT is based on evaluat-
ing the request function [16], which represents the maximum
accumulated workload of all jobs that the job sequence may
generate during a time interval. The request function is defined
as follows.

Definition 1 (Request Function [16]). For the job sequence
σ = (v0, v1, ..., vn) of an arbitrary execution path π in the task
model, its request function before time t is defined as

rfπ(t) = max(dt(π
′
)|π

′
is prefix of π and g(π

′
) < t) (1)

where dt(π) =
∑n
i=0 dt(vi), g(π) =

∑n
i=1 g(vi−1, vi) , dt(vi)

is the duration of job vi, and g(vi−1,vi) is the inter-release
interval time between job vi−1 and job vi.

The schedulability of a job with respect to a set of interfer-
ing tasks is specified based on the request function. To analyze
the schedulability, we first define ΠT as the set of all execution
paths for an arbitrary task T in the task model. Then, for a set
of tasks Γ = (T1, T2, . . ., Tn), let Π(Γ) = ΠT1 × ΠT2 × .
. . × ΠTn be the set of all path combinations, namely Π(Γ)
= { (π1, ..., πn) | π1 ∈ ΠT1, . . ., πn ∈ ΠTn }. Finally, the
schedulability is judged based on the following theorem.

Theorem 1 ([16]): A job with duration dt and absolute
deadline ad is schedulable under a set of interfering tasks Γ
if and only if

∀(π1, ..., πn) ∈ Π(Γ) : ∃t < ad : dt +
∑
Ti∈Γ

rfπi
(t) ≤ t (2)

520

This theorem shows that, a necessary and sufficient condi-
tion for the schedulability of a job is that during its release
time and (absolute) deadline, there exists a time instant t at
which this job and all of the interfering jobs released before t
are finished. For the static priority scheduling in the DRT, the
interfering jobs are the jobs with a higher priority.

B. Schedulability Analysis for DRTPC

As the DRTPC extends the DRT to support the prece-
dence constraint, the interference caused by such precedence
constraint needs to be extra considered in the schedulability
analysis for the DRTPC. We first take an example of the
execution of the robot controller to present the interferences
in the DRTPC.

Example 4: We give a scenario that the tasks in the
robot controller have a priority relationship as P(balance) >
P(detect) > P(navigation). The sample execution of the tasks
with the execution paths in Example 3 is shown in Fig.3.

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

balance

0 5 10 15 20 25 30 35 40
t

detect

navigation

blocked
preempted

preempted

RI CA CB

SD RL

FO AO
preempted

blocked
preempted

t

t

Fig. 3. A sample execution of the execution paths in Example 3

It can be found from the example that there are two
interferences during the scheduling in the DRTPC: preemption
interference caused by the jobs with a higher priority and block
interference caused by the precedent jobs. The schedulability
analysis for the DRT only considers the interference workload
caused by the preemption. Here, we additionally study the
workload resulting from the precedence constraint.

During the scheduling, if the precedent jobs of a job
haven’t been all finished, then this job will be blocked. The
block relationship between a job j and its precedent job k is
summarized as the following three cases:
• The finish time of job k is before the release time of job j.

In this case, job j will not be blocked by such a precedent
job.

• The finish time of job k is after the absolute deadline of
job j. In this case, job j will be blocked until its deadline,
which makes the block time infinite.

• The finish time of job k is between the release time and
the absolute deadline of job j. This case includes two
sub-cases:

– If the release time of job k is before that of job j,
then the block time is the time interval between the
release time of job j and the finish time of job k.

– If the release time of job k is after that of job j,
then the block time is the time interval between the
release time and finish time of job k.

Then, the workload of an arbitrary job under a set of
interfering tasks in the DRTPC consists of three parts: duration
of the job, preemption interference, and block interference.
Based on Theorem 1, an arbitrary job with duration dt and
absolute deadline ad is schedulable under a set of interfering
tasks Γ if and only if

∀(π1, ..., πn) ∈ Π(Γ) : ∃t < ad :

dt +
∑
Ti∈Γ

rf Pπi(t) +
∑
Ti∈Γ

rf Bπi(t) ≤ t (3)

Where
∑

Ti∈Γ rf Pπi
(t) and

∑
Ti∈Γ rf Bπi

(t) represent the
accumulated workload caused by the preemption interference
and the block interference respectively. This formula shows
that, a necessary and sufficient condition for the schedulability
of a job in the DRTPC is that during its release time and
(absolute) deadline, there exists a time instant t at which this
job and all of its precedent jobs together with the jobs with a
higher priority released before t are finished.

Finally, we introduce the schedulability analysis procedure
for a task T with an arbitrary execution path JS (i.e. a job
sequence), which is shown in Fig.4.

Fig. 4. Procedure of schedulability analysis.

Procedure 1: First, compute the accumulated workload
caused by the preemption interference

∑
Ti∈Γ rf Pπi

(t) and
the block interference

∑
Ti∈Γ rf Bπi

(t) for every job j in the
job sequence JS of the task T (L. 2, 3). Then, sum the duration
of the job j, the

∑
Ti∈Γ rf Pπi(t), and the

∑
Ti∈Γ rf Bπi(t) to

check whether the condition of the request function in (3) is
satisfied (L. 4). If there exists some time t that makes the
condition satisfied, then the job j is considered as schedulable
(L. 5). Only all of the jobs in JS are schedulable can the
execution path JS be considered as schedulable (L. 10-15).

C. Optimization for Analysis

The schedulability analysis proposed in Sect. IV-B considers
all path combinations of the interfering tasks Γ, which leads
to a high computational complexity. Here, we optimize this

521

issue by checking each path πi (i.e. job sequence) in the
path combinations ΠΓ before the schedulability analysis, to
distinguish the path combinations that must be tested.

The check follows two principles: if the path πi is checked
to make the task T (to be analyzed) unschedulable, then all
of the path combinations needn’t be analyzed anymore, and
this task is considered as unschedulable directly; if the job
in path πi, which is a precedent job of some job in the job
sequence of task T, is checked to cause no block, then remove
this precedence constraint when analyzing the accumulated
workload caused by the precedence constraints. The check
only involves such jobs in path πi that are the precedent jobs
of some jobs in the job sequence of task T. Here, we assume
an arbitrary job of a job sequence of task T and its precedent
job in path πi as the job j and the job k respectively. Then,
the condition of removing the precedence constraint is that the
priority of k is higher than that of j, and the release time of k
is before that of j; the condition of unschedulable is that the
priority of k is lower than that of j, and the release time of k
is after that of j.

V. EVALUATION

It has been proven that the DRT method can have the
pseudo-polynomial complexity and good expressiveness com-
paring with existing methods. Here, we only need to evaluate
that whether our based-DRT approach also has a tractable
complexity. We first analyze the efficiency and scalability to
evaluate whether it is practical to be used for large sets of
tasks with precedence constraint. Besides, we also investigate
the relationship between the schedulability and the number
of precedence constraints in the task set, which is helpful to
design the precedence constraints in real-time systems.

A. Experimental Setup

We implement our approach using the Javascript program-
ming language running on a standard desktop computer with
the 3.3GHz CPU and 8 GB RAM. For the random task set
generation, we consider three types of tasks (namely small,
medium, and large tasks) referring to [16], which have the
parameter ranges as shown in Table I. For each task, one of
the three types is randomly selected, then the task parameters
are chosen randomly from the corresponding intervals.

TABLE I
TASK PARAMETER RANGES

Task Type Small Medium Large
Vertices [3,5] [5,9] [7,13]

Branching degree [1,3] [1,4] [1,5]
p [50,100] [100,200] [200,400]
e [1,2] [1,4] [1,8]
d [25,100] [50,200] [100,400]

The workload generated by the tasks (instead of their
numbers) has a direct relationship to the experimental results.
Here we use the utilization to represent such workload, which
is defined as the ratio of the sum of duration over the sum of

inter-release separation time in the tasks [12]. Our experiment
is implemented under a given task set utilization. In order to
generate a task set with a desired utilization, random tasks are
generated and added to the task set until the desired utilization
is achieved. Besides, we use the ratio of precedence (RP) to
represent the ratio of the jobs with the precedence constraint
over the whole jobs in the task set, and use the acceptance
ratio to represent the ratio of the schedulable tasks over the
whole tasks in this experiment.

B. Experimental Results

(1) Efficiency and scalability
First, we explore how much our optimization can help in

the complexity reduction. For four representative ratios of
precedence in the task set, the comparison of the total path
combinations and the combinations that must be tested after
the optimization is depicted in Fig. 5. As seen, the reduction
obtained by the optimization is considerable compared to the
number of total combinations. It is also observed that the
task set with a higher ratio of precedence (RP) has the fewer
total combinations, as well as the tested combinations. This is
because a larger number of precedence constraints in the task
set makes fewer paths (i.e. job sequences) valid (see valid job
sequence in Sect. III-B).

A. Total combinations

B. Tested combinations

Fig. 5. Reduction of the path combinations need to be tested

Then, we evaluate the efficiency and scalability of our
approach through varying the ratio of precedence in the task
set with a step of 0.05. Figure 6 shows the comparison of
average run-time for the two analyses (with and without the
optimization) under the task set utilization of 0.5. As seen,
increasing the ratio of precedence in the task set causes that the
analysis without the optimization becomes very lengthy. This
is because that although the higher ratio of precedence means
the fewer valid path combinations, the path combinations

522

with more precedence constraints can sharply increase the
computation. In contrast, the analysis with the optimization has
a good efficiency, and scales very well with the increasing ratio
of precedence. This is because that with the ratio of precedence
increasing, more and more tasks can directly be checked as
unschedulable in advance, and do not cost the analysis run-
time anymore.

Ratio of Precedence (Utilization = 0.5)

A
na

ly
si

s R
un

-ti
m

e
(s

ec
on

ds
)

0.0 0.2 0.4 0.6 0.8 1.0
0

3

6

9

12

15
with optimization
without optimization

Fig. 6. Average run-time of the proposed methods

(2) Schedulability
Here, we investigate the relationship between the schedu-

lability and the ratio of precedence in the task set. We find
that a high ratio of precedence makes most of the tasks
unschedulable, so we only present the results of four low ratios
of precedence as shown in Fig. 7, i.e. RP = 0.00, 0.05, 0.10
and 0.20. As seen, with the utilization increasing, the task
set under the four ratios of precedence all exhibit a lower
and lower acceptance ratio. This is because that the higher
utilization makes the tasks more difficult to be arranged. It
is also observed that a higher ratio of precedence causes the
decline curve of acceptance ratio steeper. This is because more
precedence constraints in the task set lead to more blocks,
which makes more tasks unschedulable.

Fig. 7. Schedulability under different ratios of precedence

VI. CONCLUSION AND PERSPECTIVES

With real-time systems are becoming more and more com-
plex, the precedence constraints between or within their tasks
directly impact the schedulability. In this paper, we propose
an extension of the DRT task model to specify the prece-
dence constraints, then propose a uniprocessor schedulability
analysis algorithm for the static priority scheduling in our
model. In addition, we introduce an optimization method for
the analysis to improve its efficiency. Our experiments show

that, the proposed approach can scale well for large sets of
tasks with precedence constraint. Except for the precedence
constraint, there are various constraints between the tasks
affecting their schedulability, next we will extend our approach
to more constraints. Besides, we will also extend our approach
to support the multiprocessor in the future.

REFERENCES

[1] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-time systems, vol. 28,
no. 2-3, pp. 101–155, 2004.

[2] M. Stigge and W. Yi, “Graph-based models for real-time workload: a
survey,” Real-time systems, vol. 51, no. 5, pp. 602–636, 2015.

[3] J. Schlatow and R. Ernst, “Response-time analysis for task chains with
complex precedence and blocking relations,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, no. 5s, p. 172, 2017.

[4] D. Prot and O. Bellenguez-Morineau, “How the structure of precedence
constraints may change the complexity class of scheduling problems,”
arXiv preprint arXiv:1510.04833, 2015.

[5] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[6] N. R. Adam, V. Atluri, and W.-K. Huang, “Modeling and analysis of
workflows using petri nets,” Journal of Intelligent Information Systems,
vol. 10, no. 2, pp. 131–158, 1998.

[7] E. Fersman and W. Yi, “A generic approach to schedulability analysis
of real-time tasks.” Nordic Journal of Computing, vol. 11, no. 2, pp.
129–147, 2004.

[8] S. Baruah, V. Bonifaci, A. Marchettispaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in IEEE Real-Time Systems Symposium, 2012, pp. 63–72.

[9] T. P. Baker and S. K. Baruah, “An analysis of global edf schedula-
bility for arbitrary-deadline sporadic task systems,” Real-Time Systems,
vol. 43, no. 1, pp. 3–24, 2009.

[10] M. G. Harbour, “Exploiting precedence relations in the schedulability
analysis of distributed real-time systems,” in Real-Time Systems Sympo-
sium, 1999. Proceedings. the IEEE, 1999, pp. 328–339.

[11] R. Pellizzoni and G. Lipari, “Improved schedulability analysis of real-
time transactions with earliest deadline scheduling,” in Real Time and
Embedded Technology and Applications Symposium, 2005. RTAS, 2005,
pp. 66–75.

[12] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time
task model,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2011 17th IEEE. IEEE, 2011, pp. 71–80.

[13] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” in
Proc. Real-Time Systems Symposium, Dec, 1996, pp. 22–29.

[14] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems, vol. 17, no. 1, pp. 5–22, 1999.

[15] S. K. Baruah, “Dynamic- and static-priority scheduling of recurring real-
time tasks,” Real-Time Systems, vol. 24, no. 1, pp. 93–128, 2003.

[16] M. Stigge and W. Yi, “Combinatorial abstraction refinement for feasi-
bility analysis,” Real-Time Systems, vol. 51, no. 6, pp. 1–36, 2013.

[17] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “On the tractability of
digraph-based task models,” in Real-Time Systems (ECRTS), 2011 23rd
Euromicro Conference on. IEEE, 2011, pp. 162–171.

[18] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Resource sharing protocols
for real-time task graph systems,” in Real-Time Systems (ECRTS), 2011
23rd Euromicro Conference on. IEEE, 2011, pp. 272–281.

[19] Y. Zhuo, “Static priority schedulability analysis of graph-based real-time
task models with resource sharing,” 2014.

[20] M. Mohaqeqi, J. Abdullah, N. Guan, and W. Yi, “Schedulability analysis
of synchronous digraph real-time tasks,” in Real-Time Systems (ECRTS),
2016 28th Euromicro Conference on. IEEE, 2016, pp. 176–186.

[21] N. Guan, Y. Tang, J. Abdullah, M. Stigge, and W. Yi, “Scalable timing
analysis with refinement.” in TACAS, 2015, pp. 3–18.

[22] P. Jayachandran and T. Abdelzaher, “Transforming distributed acyclic
systems into equivalent uniprocessors under preemptive and non-
preemptive scheduling,” in Euromicro Conference on Real-Time Systems,
2007, pp. 233–242.

[23] C. M. Krishna, Real-Time Systems. Wiley Online Library, 1999.

523

DOI reference number: 10.18293/SEKE2018-106

Conflict Management in the Collaborative
Description of a Domain Language

Claudia Litvak
DIIT

Universidad Nacional de La Matanza
La Matanza, Bs. As., Argentina

clitvak@unlam.edu.ar

Gustavo Rossi1, Leandro Antonelli
Lifia, Facultad de Informatica

Universidad Nacional de La Plata
La Plata, Argentina

{gustavo, lanto}@lifia.info.unlp.edu.ar
1also CONICET

Abstract—The identification and specification of the
requirements of a software system is a difficult task that has the
goal of obtaining requirements as correct and complete as
possible. It is extremely important that Requirements Engineers
understand a domain language in order to write high-quality
requirements. Moreover, they must describe (and discuss) the
language in a collaborative way in order to consider the different
points of view of all stakeholders to assure that the resulting
requirements will have more chances to meet their needs.
However, collaborative construction implies the occurrence of
conflicts that are unavoidable because of ambiguity, overlapping
and misunderstanding natural language descriptions. This article
relies on the Language Extended Lexicon in order to describe the
application domain. Although it is a semi-structured glossary and
this characteristic helps to reduce the conflicts, our experience
shows that conflicts arise anyway. Thus, in order to mitigate this
problem, this article presents a catalogue with a set of conflicts
that could appear during a collaborative construction of the
Language Extended Lexicon and proposes alternatives for their
resolution.

Keywords-requirements engineering, collaboration, conflicts,
natural language models

I. INTRODUCTION

Requirements Engineering is one of the initial stages of the
Software Development Life Cycle. The goal of this stage is to
acquire the knowledge and the requirements needed for the
system to be built. Errors made in requirements specifications
have a great impact towards the end of software development,
since the cost of error correction increases as each stage
progresses [1].

Several authors argue that the interaction of different
stakeholders working collaboratively on the same problem
improves the quality of the system requirements [2] [3]. Since
different stakeholders have different concerns and different
point of view, all of them working together will produce a
richer model.

However, generating models collaboratively implies the
emergence of conflicts that must be solved in order to build a
consistent high quality model. The existence of a conflict is not
a negative situation, in fact it might be positive since it

provides the possibility of improving the models, analyzing and
discussing the different ideas observed and manifested by the
conflict.

In this context, it is even more important, to define a basic
language in order to interact and describe the needed models.
There are two main kinds of languages: formal and natural
language. Despite the introduction of ambiguity, the natural
language has the advantage to be understood by all the
stakeholders (technical and non technical).

Ambiguity means having two interpretations for the same
word. For example, let’s consider that the word “label” has two
different meanings: (i) “It is the action of putting the brand of
the product on the boxes of finished product”; and (ii) “It is the
action of marking the price of each finished box of finished
product”. Imagine a situation where two stakeholders use the
same word with different meaning: they would think they
understand each other, but in fact, they want to transmit a
different idea. An opposite situation could be the use of two
different words, which in fact are synonyms and represent the
same idea. In this case, both stakeholders can not know that
they are talking about the same thing.

Our research is framed by the Language Extended Lexicon
(LEL). The LEL is a model that uses Natural Language [4] to
describe the vocabulary of the application domain. The LEL is
a very convenient tool for stakeholders with no technical skills,
although people with such skills will profit more from its use
[5]. In particular, the convenience of the LEL as a tool arises
from three significant characteristics: it is easy to learn, it is
easy to use and it has good expressiveness. Goel [6] states that
the LEL is widely used to capture the language to describe
requirements. Moreover, it is a useful technique because can be
understood by the stakeholders, and this characteristic
encourage their active participation which is crucial in first
steps of software development.

The LEL captures the terms (they are called symbols) and
describes them with the name, the notion, and the behavioral
responses. The name identifies the symbol; all synonyms that
exist in the domain must be defined in this attribute. The notion
describes the meaning (denotation) and the behavioral
responses describe the relation of the symbol with other

524

symbols (connotation). Every LEL symbol belongs to one of
four categories: Subject, Object, Verb, and State.

Antonelli [7] outlines a strategy to describe the LEL in a
collaborative way. However, it is very difficult to produce a
domain language specification when there are many actors
involved [8]. In a collaborative context, all participants build a
joint model, and as previously explained conflicts might
emerge between the different viewpoints.

This paper presents an approach for the identification and
resolution of conflicts that emerge when the LEL is developed
collaboratively. The collaborative construction of the LEL
means that different stakeholders propose symbols and
provides definitions in an iterative way. This means that
different people collaborate by making specific contributions:
identifying the symbol that must be defined, or adding a
definition. Nevertheless, in this context, it is necessary to have
a full understanding of all the definitions. Our proposed
approach consists in analyzing the whole glossary looking for
conflicts and providing a solution for each conflict.

The paper is organized as follows: Section II provides the
related work; Section III presents the conflicts, the proposed
solutions, and a preliminary evaluation; finally, Section IV sets
out the conclusions and future work.

II. RELATED WORK

Different authors have studied the existence of conflicts in
Requirements Engineering [9]. Literature covers a wide range
of conflict types and stages of the requirement phase where
conflicts can appear [10]. Bendjenna [11] states the importance
of dealing with conflictive situations during Requirements
Engineering, considering the variety of stakeholders with the
common objective of obtaining a unique system. Aldekhail
[12] presents a literature review related to requirements
conflicts. Some publications have presented requirements
conflict management in a web-based collaborative
environment. The SOP project [13] has developed a wiki using
the Volere Requirements Specification Template [14], seeking
to pinpoint inconsistencies in requirements documents created
with their tool. WikiWinWin [15] is a wiki front-end to the
WinWin tool. Urbieta [16] presents an approach for detecting
and solving inconsistencies and conflicts in web software
requirements and shows a taxonomy for conflicts in Web
applications requirements. Lutz [2] developed CREW-Space, a
tool to support the co-located collaboration of several users to
simultaneously interact through Android-enabled mobile
devices. They use role playing to involve different stakeholders
in a use case analysis. Azadegan [3] proposes two steps: (i)
identifying relevant user requirements and (ii) voting for user
requirements.

The problem of conflicts also appears when building
domain ontologies collaboratively. Lexons with properties,
restrictions and relationships are defined in ontologies. In the
LEL, there are symbols with two specific attributes (notion and
behavioral responses), and relationships between the symbols
are hyperlinks to other symbols used to make the description.
Also each symbol has a type. The most important difference
between ontologies and our approach is that we analyze these
definitions, while approaches with ontologies mainly analyze

the relationship between the elements. It was analyzed if there
is overlapping in definition of the notion or the behavioral
responses, or even if they are similar. If definitions are similar
it could imply that synonyms were found. It is important to pay
attention to homonyms, which are the same symbol referring to
different things. Symbols (concepts) are naturally organized in
a hierarchy way. This approach also analyzes how definitions
are organized or repeated in such structure. In collaborative
ontology engineering there is a great variety of methodologies
[17], nevertheless, they do not analyze the definitions. Chen
[18] proposes an approach that deals with classes and relations.
They detect three kinds of conflicts: hard, soft and latent
conflicts between the classes. On the subject of building
ontologies collaboratively some studies apply the consensus
method [19] [20]. It has been proved to be useful in conflict
solution between objects. The most important problem in
consensus-based collaboration, is defining when they get an
agreement. Consensus quality concept [21] is defined to show,
how they get a consensus, in the construction of the
Vietnamese language dictionary with WordNet.

III. CONFLICTS IN THE COLLABORATIVELY DEVELOPED

LEL MODEL

This section presents the proposed conflict resolution
approach and a preliminary validation. Section A describes the
process to identify conflicts during the collaborative
description of the LEL and presents a set of the conflicts that
could arise. It is important to mention that these conflicts were
identified from several real-life software systems descriptions.
Section B shows each conflict and the actions to solve them.
Finally, section C presents a preliminary evaluation.

A. Our Approach in a Nutshell

The LEL is built in an iterative and incremental way, where
different Requirements Engineers contribute to its description.
With different points of view a conflict may arise. Thus, it must
be identified and solved as soon as possible in order to obtain a
consistent LEL (see Figure 1).

Figure 1. Process for conflicts resolution (Req Engi: Requirements
Engineeri)

The first step represents the action that every Requirements
Engineer performs: identifying a symbol or contributing with
the description of notion or behavioral response. Every action

Quality enough or
time finished

ReqEngi identifies or
describes symbols

Conflicts
identification

Conflicts
resolution

525

can give origin to a conflict. For example, two different
Requirements Engineers could define independently the
previous Label symbols of Table 1 and 2. Thus, the whole
glossary must be analyzed in order to identify conflicts. If a
conflict is identified, it should be solved in order to assure the
consistency of the LEL.

The list of conflicts was defined from the analysis of
several real projects. The conflicts are grouped in categories in
order to make the description clearer.

The first category is Semantic conflicts: These are conflicts
that arise when there are differences in the meaning of the
symbols. For example, Label refers to two different actions: the
action of putting the brand (Table I) and the action of marking
the price (Table II). Subcategories of Semantic conflicts are: (i)
the same identification for elements with different meaning and
the same syntactic classification; (ii) different identification for
elements that refers to the same concept in the same way; (iii)
different identification for elements that refers to the same
concept in different way; (iv) different identification for
elements that refers to the same concept with complementary
information.

The second category is Structural conflicts: Structural
conflicts arise when there is complete or partial repetition in the
definitions, considering the description of the behavioral
responses or the organization of the description in hierarchies.
For example, let's consider that one symbol is a generic
concept, and there is a specific term that specializes the
previous one, and the last symbol repeats information described
in the first one. Subcategories are: (i) different level of detail;
(ii) descriptions duplicated in hierarchies.

The last category is Syntactic conflicts: These conflicts
appear when the same symbol has different syntactic
classifications. For example, Label can be an Object or a Verb.
There is no subcategory.

B. Catalogue of Conflicts and their Solutions

This section describes the conflicts with more detail
together with their proposed resolution. In order to illustrate the
proposed approach, we chose "IP Etiquetas S.A.", a company
that produces some kinds of sticky labels, either with barcodes,
with specific brands or white ones. Underlined words are other
LEL symbols.

The study was developed by means of a series of interviews
carried out by different Requirements Engineers with several
people in the company. A series of conflicts arose during the
attempt to define the LEL model collaboratively. The total
number of conflicts found was 17. For space reasons we show
some of them in detail. The other conflicts refer to behavioral
response conflicts and also conflicts generated when part of a
description of notion or behavioral response defined by a
requirement engineer is contained on the defined by other
requirement engineer. Some examples include the Label
symbol, which was considered by a Requirements Engineer as
the verb meaning “attach a label,” whereas another
Requirements Engineer considers that Label is the produced
label. A third engineer thinks the Label symbol means “attach
the price tag,” this being also a verb.

1) The same identification for elements with different
meaning and the same syntactic classification (Homonym).

This conflict arises when there are two different entries that
are identified with the same symbol, but they represent
different things. For example, let’s consider two different
definitions of the symbol “Label” as described in Table I and
Table II. The identification of both symbols is the same, since
it is “Label”. Nevertheless, both LEL entries refer to different
things; one represents the action of putting the brand, while the
other represents the action of marking the price.

TABLE I. LABEL SYMBOL

Symbol #: 10
Author: Req.

Eng. 3
Type1: Verb

Name/s Label

Notion
- It is the action of putting the brand of the product on
the boxes of finished product.

Behavioral
Response

-The logo of the brand is defined with the client and
is previously established.

TABLE II. LABEL SYMBOL

Symbol #: 10
Author: Req.

Eng. 1
Type1: Verb

Name/s Label

Notion
- It is the action of marking the price of each finished
box of finished product.

Behavioral
Response

-The price per box is previously established according
to the total number required.

Heuristic to detect the conflict: review all the LEL entries,

identifying two or more entries with the same identification.
Check the notion, in order to determine whether the entry is
duplicated or they are different entries.

Solution: If the entry is duplicated merge both definitions.
If the entries are different, specialize the identification in order
to make clear that there are different entries: Label(1) and
Label(2).

2) The same identification for elements with different
syntactic classification (Homonym).

This conflict is similar to the previous one, but the
difference relies on the type of the entries. For example, let’s
consider a new symbol “Label” with Verb classification (Table
III), while the other “Label” symbols refers to Objects (Table
I). The “Label” of object category refers to the end product
manufactured by the company.

TABLE III. LABEL SYMBOL

Symbol #: 11
Author: Req.

Eng. 2
Type1: Object

Name/s Label
Notion - Product manufactured by the company

Behavioral
Response

-…

Heuristic to detect the conflict: review all the LEL entries,

identifying two or more entries with the same identification and
different category.

Solution: Rename the symbols as Label(1) and Label(3).

526

3) Different identification for elements that refer to the
same concept in the same way (Synonym).

This conflict arises when there are two different entries that
are identified with different symbols, but they are described in
the same way. For example, let’s consider two different entries
“missing stock” and “insufficient raw material” as described in
Table IV and Table V. Both refer to the same situation
described identically. That is, “State of raw material stock
when it is lower than the minimum stock level.”

TABLE IV. MISSING STOCK SYMBOL

Symbol #: 17
Author: Req.

Eng. 2
Type1: State

Name/s Missing stock

Notion
-State of raw material stock when it is lower than the
minimum stock level.

Behavioral
Response

-…

TABLE V. INSUFFICIENT RAW MATERIAL SYMBOL

Symbol #: 9
Author: Req.

Eng. 3
Type1: State

Name/s Insufficient raw material

Notion
-State of raw material stock when it is lower than the
minimum stock level.

Behavioral
Response

-…

Heuristic to detect the conflict: Compare all the notions of

the different symbols checking for coincidences.

Solution: Define the elements as synonyms. In the example,
“Missing Stock / Insufficient Raw Material element” must be
defined as synonyms of the same entry.

4) Different identification for elements that refer to the
same concept in different way (Overlapping).

This conflict arises when there are two different entries that
are identified with different symbols, but they are described in
different way. For example, let’s consider two different entries
“insufficient raw material” as described in Table V and Table
VI. Both refer to the same situation described similarly. One
symbol is described as “State of raw material stock when it is
lower than the minimum stock level.” while the other is
described as “State of the stock of supplies when it must be
changed to replenishment.” Both symbols refer to the same
concept, and both descriptions are similar.

TABLE VI. INSUFFICIENT RAW MATERIAL SYMBOL

Symbol #: 8
Author: Req.

Eng. 1
Type1: State

Name/s Insufficient raw material

Notion
-State of the stock of supplies when it must be
changed to replenishment.

Behavioral
Response

-…

Heuristic to detect the conflict: Compare all the notions of

the different symbols checking for similarities.

Solution: Since both descriptions are similar, it must be
agreed only one description. The other entry must be removed.
In Tables V and VI, the same symbol with a different Notion is
shown.

5) Different level of detail.

This conflict arises when there are different symbols
overlapping concepts in a hierarchy structure not well defined.
Let’s consider the situation of two different operators: (i)
Rewinder Operator and (ii) Flexographic Printing Press
Operator. One Requirements Engineer defines only one symbol
named “Operator” with a general description considering both
roles (i) and (ii). While other Requirements Engineer defines
the two specific symbols (i) and (ii). In this situation, there are
common characteristics to both roles; it should be described in
a generic “operator” symbol, and then, the specific
characteristics of both roles (i) and (ii) should be described in
them.

TABLE VII. OPERATOR SYMBOL

Symbol #: 22
Author: Req.

Eng. 3
Type1: Subject

Name/s Operator

Notion
-It is the technician in charge of operating the
production machines.

Behavioral
Response

-…

TABLE VIII. FLEXOGRAPHIC PRINTING PRESS OPERATOR SYMBOL

Symbol #: 9
Author: Req.

Eng. 2
Type1: Subject

Name/s Flexographic printing press operator

Notion
-Is the technician in charge of operating the
flexographic printing press.

Behavioral
Response

-…

TABLE IX. REWINDER OPERATOR SYMBOL

Symbol #: 20
Author: Req.

Eng. 2
Type1: Subject

Name/s Rewinder operator

Notion
-It is the person in charge of rewinding the label rolls.
-It is the technician in charge of operating the
rewinding machine.

Behavioral
Response

-…

Heuristic to detect the conflict: Compare all the notions of

the different symbols looking for possible hierarchy structures.

Solution: Identify the generic and specific terms of the
hierarchy structure, and describe the specifics mentioning the
generic. For example, in specializes symbols, refer to
“Operator”, saying that “He is an Operator that ...”

6) Different identification for elements that refer to the
same concept with complementary information (Synonym with
complementary information).

This conflict arises when there are two different entries that
are identified with different symbols, and they are described

527

with complementary information. For example, let’s consider
two different entries “Cash Flow” and “Monetary Flow” as
described in Table X and Table XI. Both refer to the same
situation. In this case “Cash Flow” describes more details in
Notion, defining it as “the amount of cash inflows and
outflows” and that “it is originated by payments issued or
received” while “Monetary Flow” is defined by “the amount of
cash inflows and outflows”. Moreover, this situation could be
observed in Behavioral Response.

TABLE X. CASH FLOW SYMBOL

Symbol #: 3
Author: Req.

Eng. 5
Type1: Object

Name/s Cash Flow

Notion
-It is the amount of cash inflows and outflows.
-It is originated by payments issued or received.

Behavioral
Response

-It is daily prepared by the Treasurer.

TABLE XI. MONETARY FLOW SYMBOL

Symbol #: 13
Author: Req.

Eng. 1
Type1: Object

Name/s Monetary flow
Notion -It is the amount of cash inflows and outflows.

Behavioral
Response

-It is approved and registered by Treasurer.
-It is used as a source of information when preparing
the Sales Forecast.

Heuristic to detect the conflict: Compare all the notions and

Behavioral Response looking for common descriptions in
different symbols checking for coincidences and differences.

Solution: Define the elements as synonyms; merging all the
descriptions, that is, the whole description must be used: the
common part, and the particularities of each symbol. In the
example, “Cash Flow / Monetary flow” must be defined as
synonyms of the same entry with the richer description in each
case.

7) Descriptions duplicated in in hierarchies

This conflict arises when descriptions are duplicated in
specific elements of the hierarchy instead of putting them in the
generic element. For example, two specific elements have the
same description in the behavioral responses. Thus, the
objective of the hierarchy is to put the common descriptions in
the generic element. The same problem could arise in the
notion.

TABLE XII. OPERATOR SYMBOL

Symbol #: 22
Author: Req.

Eng. 1
Type1: Subject

Name/s Operator

Notion
-It is the technician in charge of operating the
production machines.

Behavioral
Response

- Send the finished order to the Plant Manager

Let’s consider the situation of two different operators: (i)

Rewinder Operator and (ii) Flexographic Printing Press
Operator. A requirements engineer has placed the same
behavioral response on each specialized symbol and another

requirements engineer has defined a generic symbol, but the
former did not realize that the generic symbol was the right
place to put the description. The corresponding behavioral
responses “Send the finished order to the Plant Manager” must
be eliminated from each specialized, leaving this description
only in the generic.

TABLE XIII. FLEXOGRAPHIC PRINTING PRESS OPERATOR SYMBOL

Symbol #: 9
Author: Req.

Eng. 5
Type1: Subject

Name/s Flexographic printing press operator

Notion
-Is the technician in charge of operating the
flexographic printing press.

Behavioral
Response

- Send the finished order to the Plant Manager

TABLE XIV. REWINDER OPERATOR SYMBOL

Symbol #: 21
Author: Req.

Eng. 5
Type1: Subject

Name/s Rewinder operator

Notion
-It is the person in charge of rewinding the label rolls.
-It is the technician in charge of operating the
rewinding machine.

Behavioral
Response

- Send the finished order to the Plant Manager

Heuristic to detect the conflict: Compare all the notions and

Behavioral Response of the different symbols looking for
repetitions in the specific elements.

Solution: Move the repeated description from the specific
elements to the generic one.

C. Preliminary Evaluation

In order to validate the conflicts proposed in this paper, we
analyzed a LEL built collaboratively by 5 Requirements
Engineers. We analyze the resulting LEL looking for the
conflicts we proposed. Then, we present every report to
Requirements Engineers who participated in the construction of
the LEL to check whether they agree with the conflicts
reported. Requirements Engineers have agreed in almost all the
conflict reported. The following Table XV presents some
figures for the 5 different participants.

TABLE XV. TOTAL OF CONFLICTS FOUND IN IP ETIQUETAS

Req. Eng.

Total of
symbols

described

Symbols with
conflicts

Percentage

Req. Eng. 1 42 31 74
Req. Eng. 2 35 28 80
Req. Eng. 3 28 21 75
Req. Eng. 4 31 27 87
Req. Eng. 5 47 38 80

Table XV presents for each Requirements Engineers the

number of symbols in which he participated in their
description, the symbol with conflict identified by our approach
and the percentage that it represents. This table shows that
conflicts are very common.

528

IV. CONCLUSIONS AND FURTHER WORK

Requirements definition is one of the initial stages in the
software development process and their products are the
groundwork for subsequent stages. Thus, errors made in
requirements stage will be replicated and deepened in
subsequent stages. For this reason, it is extremely important to
develop requirements models of the highest quality as possible.
When requirements models are developed collaboratively,
conflicts unavoidable will arise. Moreover, natural language
descriptions are more plausible to give origin to conflicts.

A vast experience in working with a structured glossary, the
Language Extended Lexicon (LEL), proves that such structure
reduces the occurrence of conflicts. However engineers have
observed that while building the LEL collaboratively produces
a richer model, it also introduces conflicts. In our research, and
by analyzing several application domains of real projects, a
classification of conflicts was devised. A process and guides
for their resolution has been described in this paper. Our
approach with some examples of a real project was also
illustrated.

A preliminary evaluation was presented; it showed the
importance of identifying conflicts and the solutions for the
conflicts proposed. The percentage of conflicts was between
74% and 87%, in the five groups that have been evaluated. It
shows the importance of solving those conflicts for arriving to
better quality models.

An experiment to validate the conflicts and their resolutions
is being designed. This experiment will be conducted in a
different country to validate in another context the findings
presented in this paper.

A process to identify the conflicts and an automated
suggestion of solutions is planned. This implementation will be
based on two important modules: (i) a module of natural
language processing and (ii) a module of machine learning.

REFERENCES

[1] B.W. Boehm, Software Engineering Economics. Prentice Hall, 1981.

[2] R. Lutz, S. Schäfer, and S. Diehl, “Using mobile devices for
collaborative requirements engineering”, 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 298–301. ACM.
2012.

[3] A. Azadegan, X. Cheng, F. Niederman, and G. Yin, “Collaborative
requirements elicitation in facilitated collaboration: report from a case
study”, 46th Hawaii International Conference on System Sciences, pp.
569–578, ISSN 15301605, IEEE, 2013.

[4] J. C. S. D. P. Leite, and A. P. M. Franco, “A strategy for conceptual
model acquisition”, Requirements Engineering, IEEE International
Symposium on , pp. 243–246. IEEE, 1993.

[5] A. d. P. A. Oliveira, J. C. S. d. P. Leite, L. M. Cysneiros and C. Cappelli,
"Eliciting Multi-Agent Systems Intentionality: from Language Extended
Lexicon to i* Models", Chilean Society of Computer Science, 2007.
SCCC '07. XXVI International Conference of the, Iquique, 2007, pp.
40–49, doi: 10.1109/SCCC.2007.20

[6] S. Goel, “Transformation from LEL to UML”, International Journal of
Computer Applications, vol. 48, no. 12, 2012.

[7] L. Antonelli, G. Rossi, and Oliveros A., “A collaborative approach to
describe the domain language through the Language Extended Lexicon”,
Journal of Object Technology, vol. 15, no. 3, pp. 1–27, 2016.

[8] N. Mulla, S. Girase S, “A new approach to requirement elicitation based
on stakeholder recommendation and collaborative filtering”,
International Journal of Software Engineering and Applications, vol.
3(3), pp. 51–60, 2012, doi:10.5121/ijsea.2012.3305.

[9] S. Easterbrook, “Resolving requirements conflicts with computer-
supported negotiation”, Requirements engineering: social and technical
issues, vol. 1, pp. 41–65, 1994.

[10] W. N. Robinson, S. D. Pawlowski, and V. Volkov, Requirements
interaction management. ACM Computer Survey, vol. 35(2), pp. 132–
190, 2003.

[11] H. Bendjenna, P. J. Charrel, and N. E. Zarour, “Using AHP Method to
Resolve Conflicts Between Non-Functional Concerns”, International
Conference on Education, Applied Sciences and Management
(ICEASM'2012), Dubai, UAE, pp. 26–27, 2012.

[12] M. Aldekhail, A. Chikh, and D. Ziani, “Software Requirements Conflict
Identification: Review and Recommendations”, International Journal of
advanced computer science and applications, vol. 7, no. 10, pp. 326–
335, 2016.

[13] B. Decker, E.Ras, J. Rech, P. Jaubert, and M.Rieth, “Wiki-based
stakeholder participation in requirements engineering”. IEEE Software,
vol. 24(2), pp. 28–35, 2007.

[14] J. Robertson, and S. Robertson, “Volere Requirements Specification
Template”.The Atlantic Systems Guild, 2012.

[15] D. Yang, D. Wu, S. Koolmanojwong, Brown, A. W., and B. W. Boehm,
“Wikiwinwin: A wiki based system for collaborative requirements
negotiation”, Hawaii International Conference on System Sciences,
Proceedings of the 41st Annual, pp. 24–24. IEEE, 2008.

[16] M. Urbieta, M. J. Escalona, E. R. Luna, and G. Rossi, G., “Detecting
conflicts and inconsistencies in web application
requirements”, International Conference on Web Engineering, pp. 278–
288. Springer, Berlin, Heidelberg, 2011.

[17] E. Simperl, and M. Luczak-Rösch, “Collaborative ontology engineering:
a survey”, The Knowledge Engineering Review, vol. 29, no. 1, pp. 101–
131, 2014.

[18] Y. Chen, X. Peng, and W. Zhao, “An approach to detect collaborative
conflicts for ontology development”, Advances in Data and Web
Management, pp. 442–454.Springer, Berlin, Heidelberg. 2009.

[19] S. Karapiperis, and D. Apostolou, D. “Consensus building in
collaborative ontology engineering processes”. Journal of Universal
Knowledge Management, vol 1(3), pp. 199–216, 2006.

[20] N. T. Nguyen, “Advanced methods for inconsistent knowledge
management”. Springer, London (2008)

[21] T. H. Duong, M. Q. Tran, and T.P.T. Nguyen, “Collaborative
Vietnamese WordNet building using consensus quality”, Vietnam J
ComputSci 2017, vol 4:85, Springer Berlin Heidelberg, Print ISSN:
2196-8888, Online ISSN: 2196-8896, 2017.

529

Belief Function Theory in Constraint Satisfaction Problems: a Unifying
Approach∗

Aouatef Rouahi Kais Ben Salah Khaled Ghedira
ISG of Tunis, Tunisia University of Jeddah Central University, Tunisia
rouahi.aouatef@hotmail.fr kaisuria@yahoo.fr khaled.ghedira@isg.rnu.tn

Abstract

The Constraint Satisfaction Problem (CSP) is acknowl-
edged as a simple declarative formalism for modeling well-
defined decision problems. However, real-world problems
are usually ill-defined, especially, under uncertain circum-
stances. In such situation, uncertainty evokes the need for
flexibility or softness where we accept satisfying some con-
straints to some degree. Moreover, when the relevance of
some constraints depends on other factors, we should pri-
oritize those constraints. Eventually, the modeled uncer-
tainty, as well as the expressed soft and prioritized con-
straints induce preferences over the solutions set. Previ-
ous work employing mathematical uncertainty theories are
either uncertainty-based frameworks or preference-based
ones and the only attempt to handle both uncertainty and
preferences is performed using two uncertainty theories un-
der a commensurability assumption. In this paper, we pro-
pose a unifying CSP extension, labeled Belief CSP, that
deals jointly with all these four concepts, i.e., uncertainty,
soft and prioritized constraints and preferences over the so-
lutions set, by exploiting the expressiveness of the belief
function theory.

1 Introduction

The classical Constraint Satisfaction Problem (CSP)
[6, 5] framework has carried high attention because of its
simplicity and generality. In fact, every problem that can
be described by a set of variables and a set of constraints
among those variables can easily be cast as a CSP

However, decision problems tackled by the classical CSP
are assumed to be well-defined so that all their features
are precise and known with certainty. Hence, the CSP has
proven unfit for reasoning under uncertainty where most of
the problems are ill-defined, i.e., some problem’s compo-
nents are either beyond our control or cannot be assimi-

∗10.18293/SEKE2018-133

lated due to the lack of the required quantity and quality
of knowledge or even ignorance.

From another side, yes-or-no reasoning makes no sense
in uncertain contexts. In fact, uncertainty evokes the need
for flexibility as the satisfaction of some constraints de-
pends on ill-known components. In addition, the majority
of the problems being solved are over-constrained, i.e., they
do not lead to any solution. Therefore, it is necessary to
soften some constraints in order to meet a solution, that is,
accepting satisfying some constraints to some degree.

To boot, in real world problems, not all constraints are
fully reliable. In other words, under uncertainty, the agent
cannot entirely rely on some constraints that can be untrust-
worthy, or subject to change. This reliability affects the rel-
evance of each constraint to the problem. Therefore, we
should rank those constraints according to their reliability
by assigning priorities.

As well, solutions cannot be equally preferable. In fact,
uncertainty induces preference levels over the set of solu-
tions.

In response to these issues, a variety of frameworks has
been introduced. We are particularly interested in CSP ex-
tensions that employed mathematical uncertainty theories.
Those extensions may be split in two trends: Uncertainty-
based frameworks that focus on handling uncertainty in
CSPs as suggested by the probabilistic CSP [4], which ad-
mits that the presence or the relevance of some constraints
to the real problem may be uncertain.

Besides, the preference-based frameworks that focus on
relaxing constraints in order to make an over-constrained
problem solvable, such as the possibilistic CSP [10], which
induces preference degrees over the constraints set to eval-
uate the necessity of the satisfaction of each constraint and
the fuzzy CSP [3] that considers a constraint as a fuzzy set
by making the satisfaction of a constraint by each labeling
a matter of degree.

Yet, despite this variety of frameworks, there is no pro-
posal that addresses the whole panel of those four notions
mentioned above. We shall mention the work proposed in

530

[2] that combined two theories, that are possibility theory
and fuzzy sets theory, to express both uncertainty and soft
constraints in CSPs but under a commensurability assump-
tion between uncertainty degrees and satisfaction degrees.

In this paper, we introduce a unifying CSP framework,
labeled Belief Constraint Satisfaction Problem, that deals
jointly with uncertainty, flexibility, priorities and prefer-
ences in CSPs employing one uncertainty theory, that is,
the Belief Function Theory (BFT) [1, 7, 8], on account of
its expressiveness. The BFT proposes a natural tool for im-
perfection1 modeling as it allows handling uncertain as well
as imprecise data.

The paper is organized as follows: The next section
presents a formal definition of the BCSP and shows how
uncertainty is handled and which components are involved;
it also illustrates the prioritized and soft constraints mod-
eling and preferences expressing. In the section 3 we will
apply the BCSP to a simple agricultural land-use planning
problem followed by a discussion of the main contribution
and some further work.

2 Belief Constraint Satisfaction Problem

2.1 Preliminaries

A classical CSP is defined by a quadruplet (X,D,C,R)
where X = {x1, ..., xn} is a finite set of n variables, each
xi takes its values in a finite domain Di such that D =
{D1, ..., Dn}. The simultaneous assignment of values to a
set of variables is called an instantiation and denoted by θ.
C = {C1, ..., Cm} is a finite set of m constraints where each
constraint Ci is defined on a subset of variables Si ⊆ X
delimited its scope and by a relationRi that specifies the set
of permitted instantiations with respect to Ci; Ri is a subset
of the Cartesian product of the domains of the variables in
Si (i.e., Ri ⊆ ×{Di|xi ∈ Si}). A solution of a CSP is
a consistent complete instantiation, i.e., an instantiation of
all the variables in X , so that, all the constraints in C are
satisfied. A CSP is said to be consistent if and only if it has
at least one solution, otherwise, it is said to be inconsistent.

2.2 Belief Constraint Satisfaction Problem
(BCSP)

A Belief Constraint Satisfaction Problem is a quadruplet
(X,D,Cα, R), where:

• X = {x1, ..., xn} is a finite set of variables;

• D = {D1, ..., Dn} is the set of their domains;

1The term uncertainty is commonly used, in the literature, to refer to
imperfection. However, according to the taxonomy established in [9] un-
certainty is one aspect of imperfection, whereas, imprecision is its other
aspect.

• Cα = {(C1, α1), ..., (Cm, αm)} is a finite set of belief
constraints (shortened as Bf-constraints) where (1 −
αi) is the priority of the Bf-constraint Ci.

• R = {R1, ..., Rm} is a finite set of imperfect relations
associated to Cα.

2.2.1 Imperfect Relations

Under uncertainty, we cannot doubtlessly state whether or
not an instantiation of values to variables is permitted with
reference to a given constraint. To model imperfect (uncer-
tain and/or imprecise) relations, we rely on a basic belief
mass (bbm) distribution over instantiations.

An imperfect relation Ri, defined by a pair (Vi,Θi), as-
sociates a valuation Vi (a bbm distribution), over the frame
of discernment Θi of the associated Bf-constraint obtained
by the Cartesian product of the involved variables domains,
i.e., Θi = {Di1× ...×Dik}. The valuation Vi is defined as
follows:

Vi = mi : 2Θi → [0, 1] |
∑
I⊆Θi

mi(I) = 1

Where I is a singleton or a subset of instantiations. In the
following, we shall restrict ourselves to normalized bbm
distributions where mi(∅) = 0.

If we may define an instantiation as a logical relation
between variables, the finite amount of support (complete,
partial or ignorant) enclosed in the bbm (i.e., mi(I)) and
derived from the available pieces of evidence can be in-
terpreted as the potentiality degree of a given relation to,
actually, occur so that the potentiality of the associated Bf-
constraint to be satisfied by such variables instantiation(s),
I . A second reading interprets this bbm distribution as
preference levels induced over instantiations. Formally, let
θ1 and θ2 two subsets of Θi(i.e., θ1, θ2 ⊆ Θi),m(θ1) >
m(θ2) means that θ1 is more believable (certain) than θ2

and hence θ1 is, a priori, preferred to θ2 for the satisfac-
tion of the given Bf-constraint. This latter reading shows
that the bbm distribution has twofold purpose. The first is
to quantify our belief about a given instantiation whereas
the second is to induce a preorder, i.e., a priori preferences,
among them.

The most appealing feature that makes the BFT an effi-
cient tool is its faithfulness in recognition our knowledge as
well as our ignorance. Obviously, the case of total knowl-
edge matches the classical notion of perfect (certain and
precise) relation where all tuples are known with certainty.
This case is obtained through the certain belief function.
Other kinds of relations may be modeled using the vari-
ous functions offered by the BFT such as the vacuous belief
function for uncertain and imprecise relation and the cate-
gorical belief function for certain but imprecise relation.

531

Likewise, some operations may be applied on imperfect
relations, such as the vacuous extension and the marginal-
ization. The vacuous extension of an imperfect relation Ri
defined on Si, to a larger set S

′

i , such that Si ⊆ S
′

i , is an

imperfect relationR(↑S
′
i)

i defined on S
′

i and obtained as fol-
lows:

m
(↑S

′
i)

i (ϕ) =

{
mi(θ) if ϕ = θ↑S

′
i

0 otherwise
for all θ ⊆ Θi

Such that θ↑S
′
i denotes the cylindrical extension of the set

θ to S
′

i . The vacuous extension is useful when we want to
know to what extent a given instantiation may satisfy the
Bf-constraint Ci. In fact, it corresponds to a refinement of
knowledge.

The knowledge, initially, encapsulated in the bbm distri-
bution can be refined as well as coarsened. The marginal-
ization, which corresponds to a coarsening of knowledge,
of an imperfect relation Ri defined on Si, to a coarser set

S
′

i ,i.e.,Si ⊇ S
′

i , is an imperfect relation R(↓S
′
i)

i defined on
S

′

i and obtained as follows:

m
(↓S

′
i)

i (ϕ) =
∑

θ⊆Θi:θ
↓S′

i =ϕ

mi(θ) for all ϕ ⊆ Θi

Such that θ↓S
′
i denotes the projection of the set θ to S

′

i . We
can employ the marginalization when we want to know to
what extent a given partial instantiation, if extended, may
satisfy the Bf-constraint Ci.

2.2.2 Prioritized Constraints

In real world problems, not all the constraints are fully reli-
able. In fact, under uncertainty, the agent cannot entirely
rely on some constraints that can be untrustworthy, mis-
leading or that can be subject to change. For instance, in
the agricultural production planning problem the reliability
of some constraints depends on fluctuating prices and / or
weather condition. In other words, some constraints may
be relevant in a given circumstance but not in other circum-
stances. Regardless, this reliability affects the importance
of each constraint to the set of solutions. For this reason,
some constraints are prior to others.

To express priorities, we have recourse to the discount-
ing principle provided by the BFT. First, we evaluate the
reliability of each Bf-constraint Ci ∈ C using a discounting
factor θ, so that, the smaller the reliability, the stronger the
discounting. Second, we have to update the bbm distribu-
tion according to that factor. Let mi be a bbm distribution
related to the Bf-constraint Ci on the frame of discernment
Θi and let (1 − αi) be the confidence degree allocated to
that Bf-constraint Ci that corresponds to its priority level.

The updated bbm, denoted by mα
i and induced from the old

bbm mi discounted by the coefficient αi, where every lost
mass is reassigned to the universe of discourse, is obtained
as follows:

mα
i (I) =

{
(1− αi)mi(I) if I 6= Θi

αi + (1− αi)mi(I) if I = Θi

such that αi ∈ [0, 1], it is called the discounting factor
which read as follows:

• αi = 0 means that the Bf-constraint Ci is fully reli-
able, so its priority is equal to 1 and the Bf-constraint
is absolutely relevant. In this case, the bbm mi is left
unchanged.

• αi = 1 means that the reliability of the Bf-constraint
Ci is totally doubtful, so its priority will be equal to
0, which means that it is possible to violate the Bf-
constraint. In this case, all the information induced by
the Bf-constraint Ci will be forthright discarded. The
bbm mi becomes a vacuous function that corresponds
to the total ignorance state (i.e., mα

i (Θi) = 1).

The priority determine the importance of the Bf-constraint.
Let Ci and Cj be two Bf-constraints with priority levels,
respectively, αi and αj , if αi < αj then the satisfaction of
Ci is more relevant than the satisfaction of Cj . The notion
of priority induces a preorder over the Bf-constraints.

2.2.3 Soft Constraints

After expressing our beliefs on the imperfect relations and
updating those beliefs using priorities, we shall extract the
satisfaction degree of the Bf-constraints by each given in-
stantiation θ in Θ aside using the pignistic probabilities pro-
duced by the TBM pignistic transformation [8] of the bbm
distribution.

LetCi be a Bf-constraint,Ri its relation and letmi be the
associated bbm distribution over Θi, the produced pignistic
probability, denoted by BetPi, is defined as follows:

BetPi(θ) =
∑
ϕ⊆Θi

(
mi(ϕ)

|θ ∩ ϕ|
|ϕ|

)
,for all θ ∈ Θi

where, |ϕ| denotes the number of elements of ϕ. Hence, this
notion of pignistic probability allows for expressing soft or
flexible Bf-constraints starting from imperfect relations. It
is of interest to discern the difference between hard con-
straint that should be certainly and fully satisfied and soft
constraint whose satisfaction is not required to be neither
certain nor total. Therefore, the satisfaction of a given con-
straint becomes, essentially, a matter of degree, such that:

• BetPi(θ) = 1 means that the instantiation θ totally
satisfies the Bf-constraint Ci;

532

• BetPi(θ) = 0 means that the instantiation θ totally
violates the Bf-constraint Ci;

• 0 < BetPi(θ) < 1 means that the instantiation θ par-
tially satisfies the Bf-constraint Ci;

A Bf-constraint Ci, whose scope is Si, is said to be (totally
or partially) satisfied by a given instantiation θ ∈ Θi, noted
θ |= Ci if and only if BetPi(θ) > 0. A Bf-constraint Ci
is said to be unsatisfiable if there is no instantiation that
satisfies it, i.e., ∀θ ∈ Θi, BetPi(θ) = 0. Obviously, hard
constraints are a particular case of Bf-constraints which are
satisfied only to 1 or 0 degree.

2.2.4 Preferences over the solutions

The BetP also induces a preorder among instantiations.
Formally, let θ and θ′ be two instantiations defined on the
same set of variables, BetPi(θ) > BetPi(θ

′) means that
is, a posteriori, preferred to θ′ for the satisfaction of the
soft Bf-constraint Ci. Hence theBetP has twofold purpose
as it allows expressing soft Bf-constraints and preferences
among instantiations.

Classically, an instantiation θ of a set of variables S ⊆ X
is said to be consistent if and only if it satisfies all the con-
straints among that set. Within the BCSP view, the con-
straint satisfiability is not any more a yes/no query but a
matter of degree and so the instantiation consistency is.

To get the consistency degree of an instantiation,
we shall aggregate the satisfaction degrees of each Bf-
constraint by the instantiation under consideration. In the
literature, several aggregation functions have been pro-
posed, especially, for decision models where uncertainty
and imprecision are key issues. In order to select the ap-
propriate function, we have considered three imperative cri-
teria. First, the aggregation function should fulfill the most
basic consistency principle, every instantiation that totally
violates (i.e., BetPi(θ) = 0) at least one constraint is re-
jected. Hence, we need an aggregation operator that has an
absorbent element a = 0. Second, we require that the unit
interval [0, 1] be closed to the sought for aggregation func-
tion, so that, the resulted values may be easily interpretable
and comparable. Finally, in order to avoid falling into the
same weakness as the Fuzzy and the Possibilistic CSPs that
suffer from the ”drowning effect” because of the egalitarian
min-max operators use which barely discriminate between
instantiations that satisfy the CSP to the same degree, we
propose using a utilitarian operator for aggregation.

Given these criteria, we find out that the most appropri-
ate function may be the geometric mean. Formally, the con-
sistency degree of an instantiation θ of a set of variables

S ⊆ X is obtained as follows:

C(θ) = BetP∧{Ri|Si ⊆ S}(θ)

=

 ∏
R↑S

i |Si⊆S

{BetPi}(θ)

1/k

=

 ∏
Ri|Si⊆S

{BetPi}(θ↓S)

1/k

such that, k is the number of the Bf-constraints covering S.

• If θ totally satisfies all the Bf-constraints covering S,
it is said to be completely consistent, i.e., C(θ) = 1.

• If θ totally violates, at least, one Bf-constraint is said
to be inconsistent, i.e., C(θ) = 0.

• Otherwise, it is said to be partially consistent, i.e.,
0 < C(θ) < 1.

As the BCSP is a generalization of the classical model, if
the relations are perfect, a given instantiation is either con-
sistent (1) or inconsistent (0).

A solution of BCSP (P) is every consistent complete
instantiation θ, i.e., an instantiation of all the variables in
X whose consistency degree is greater than 0, so that, all
the Bf-constraints in C are satisfied. This consistency de-
gree, evidently, corresponds to the satisfaction degree of the
BCSP (P) by that instantiation.

SP (θ) = C(θ) =

 ∏
Ci∈C;R↑X

i

{BetPi}(θ)

1/m

such that, m is the total number of the Bf-constraints cover-
ing X .

Accordingly, we can merely notice that the satisfaction
degree of the BCSP, as defined above, accomplishes a sort
of quantitative discrimination among the several instantia-
tions inducing then a total preorder over them. Then, the
higher is the satisfaction degree, the better is the instantia-
tion.

The solution space of a BCSP (P) of the set of all the
feasible solutions, i.e.,

Sols(P) = {θ ∈ {D1 × ...×Dn}|SP (θ) > 0}

A BCSP (P) is said to be:

• Totally consistent if and only if it has at least one so-
lution that totally satisfies all the constraints of C, i.e.,
∃θ ∈ Sols(P)|SP (θ) = 1.

• Totally inconsistent if and only if all instantiations of X
are inconsistent, i.e., Sols(P) = ∅ or also ∀θ ∈ {D1×
...×Dn}|SP (θ) = 0.

533

• Partially consistent if and only if all solutions
are somehow feasible, i.e., Sols(P) 6= ∅|∀θ ∈
Sols(P),SP (θ) < 1.

Toward the same view, the consistency degree of a BCSP is
the satisfaction degree of its best solution, i.e.,

C(P) = SP (θ∗)

= max
θ∈Sols(P)

(SP (θ))

= max
θ∈Sols(P)

 ∏
Ci∈C;R↑X

i

{BetPi}(θ)

1/m

3 A planning problem

In this section, we suggest a Belief CSP model for a sim-
ple vegetable crops production planning problem under un-
certainty. The problem is to decide which crop to plant in
which plot (a measured area of land). However, vegetable
crops are, generally, cost expensive and of uncertain prof-
itability due to the fluctuating prices and its dependence
to weather condition that affects the harvest yields. The
generic problem could be the following: a number of crops
must be produced in a number of plots (ai). Each plot has
a limited area and grows one single crop. Each crop has
a profit (pj) and a labor-hour (hi) per unit area (1000m2)
which are uncertain. The agriculturist’s practical experience
and his preferences are considered as pieces of evidence.

A farmer has to grow cucumber, pepper, potatoes, and
peas in four plots a1, a2, a3, and a4. The total area of the
land (L) to be cultivated is 100.000m2(10ha) where a1, a2,
a3, and a4 represent, respectively, 40, 30, 20, and 10 per-
cent of L. The farmer requires a minimum profit (R) equal
to 150.000 TND (Tunisian National Dinar) and a maximum
labor-hour (H) equal to 500 hours. As well, he prefers not
to grow potatoes on the same plot for more than two years
and after potatoes production, it is preferable to grow clean-
ing crops like cucumber to maintain the soil healthiness but
he is doubtful about which crop he prefers more for a1, pep-
per or peas. The evidence we have is that, last year, potatoes
were grown in plot a4.

A BCSP (X,D,Cα, R) may be:

• X = {a1, a2, a3, a4} is the set of four plots;

• D = {D1, D2, D3, D4} , where D1 = D2 = D3 =
D4 = {cu(p1,h1), p(p2,h2), po(p3,h3), pe(p4,h4)}
where cu, p, po, and pe stands respectively for cucum-
ber, pepper, potatoes and peas;

• Cα = {(C1, α1), (C2, α2), (C3, α3)}is a set of two

Bf-constraints.

C1 :

n∑
i,j=1

ai.pj ≥ R;α1 = 0.4

C2 :

n∑
i,j=1

ai.hj ≤ H;α2 = 0.2

C3 : ai 6= ak∀i, k = 1..4 and i 6= k;α3 = 0

• R = {R1, R2, R3} is a set of imperfect relations asso-
ciated to Cα.

Giving the uncertain values of pj and hj , the bbm distri-
butions related to the imperfect relations R1 and R2 are,
respectively, illustrated in Table 1.

The priority of the Bf-constraint C3 is equal to 1(i.e.,
1− α3), so it is fully reliable and absolutely relevant which
means that it should be certainly and fully satisfied. C3 is
a classical hard constraint. The associated relation R3 is
a certain but imprecise relation where there is more than
single instantiation may fully satisfy the Bf-constraint C3.
R3 is represented using the categorical bbm distributionm3

as follows: ∀θ ⊂ Θ3, if ai 6= ak∀i, k = 1..4 and i 6= k then
θ ∈ ϕ such that m3(ϕ) = 1, otherwise, m3(θ) = 0. We
can notice that |ϕ| = 4! complete instantiations that fully
satisfy C3.

Table 1. The imperfect relations R1 and R2.
Ri mi

R1(α1 = 0.4) m1{(a1, p), (a1, pe)} = 0.5
m1{(a4, po)} = 0.3
m1{(a2, cu), (a2, p), (a3, cu)} = 0.1
m1{Θ1} = 0.1

R2(α2 = 0.2) m1{(a1, cu), (a2, cu)} = 0.3
m1{(a4, cu)} = 0.4
m1{(a4, po), (a3, po)} = 0.1
m1{Θ2} = 0.2

Given the relative priorities, the updated bbm distribu-
tions mα

1 and mα
2 related, respectively, to the imperfect re-

lations R1 and R2 are represented in Table 2. R3 is left
unchanged.

At this level, as our problem model is updated, we can
compute the satisfaction degrees of each Bf-constraint by
any complete or partial instantiation θ. For instance, let
θ1 = {(a1, cu), (a2, p)} be a partial instantiation; the satis-
faction degree of C1 by θ1, i.e., BetP1(θ1) = 0.08 whereas
the satisfaction degree of C2 by θ1, i.e., BetP2(θ1) = 0.17.
Let θ2 = {(a1, cu), (a2, p), (a3, po), (a4, pe)} be a com-
plete instantiation; BetP1(θ2) = 0.32 and BetP2(θ2) =
0.25. If we get another complete instantiation θ3 =
{(a1, pe), (a2, p), (a3, po), (a4, cu)}; BetP1(θ3) = 0.47

534

Table 2. The updated imperfect relations.
Ri Priority mα

i

R1 1− α1 m1{(a1, p), (a1, pe)} = 0.3
(α1 = 0.6 m1{(a4, po)} = 0.18
= 0.4) m1{(a2, cu), (a2, p),

(a3, cu)} = 0.06
m1{Θ1} = 0.46

R2 1− α2 m1{(a1, cu), (a2, cu)} = 0.24
(α2 = 0.8 m1{(a4, cu)} = 0.32
= 0.2) m1{(a4, po), (a3, po)} = 0.08

m1{Θ2} = 0.36

and BetP2(θ3) = 0.45. We can notice that the instan-
tiation θ3 is preferred to θ2 for the satisfaction of both
of the soft Bf-constraints C1 and C2. However, they are
equally preferred for the satisfaction of C3 as BetP3(θ2) =
BetP3(θ3) = 0.04.

Let us recall that every complete consistent instan-
tiation is a possible solution for the BCSP. For ex-
ample, one solution to the current BCSP may be
θ2 = {(a1, cu), (a2, p), (a3, po), (a4, pe)} whose con-
sistency degree C(θ2) = 0.15, same as θ3 =
{(a1, pe), (a2, p), (a3, po), (a4, cu)}whose consistency de-
gree C(θ3) = 0.2. However, θ3 is preferred to θ2.

The best solution consistency degree is 0.2. Hence, the
current BCSP is partially consistent as its consistency de-
gree, i.e., C(P) = 0.2.

In order to make our framework valid, as a first step, we
have adapted the very basic Backtrack algorithm to solve
the BCSPs. However, given the sound basis of the BCSP
framework, other interesting solving algorithms as well as
consistency ones may be easily extended.

4 Further work

The large-range expressivity brought by the BFT allows
for covering both aspects of imperfection, uncertainty as
well as imprecision, soft and prioritized constraints, and
preferences over solutions. We may consider the BCSP as
a unifying and general CSP framework where mapping to
other frameworks is possible using the different kinds of re-
lations. In addition, the BCSP is too close to the real world
problems where an agent is not required to provide prior in-
formation and it takes into account his available knowledge
and his preferences.

As a generalization of the standard CSP framework, the
classical algorithms (e.g., the branch and bound algorithm,
the consistency algorithms) can be adapted to our BCSP
framework. Currently, we are working on implementing a
specific algorithm for the BCSP employing some measures
such as the belief and the plausibility offered by the BFT

and discussing its complexity.

References

[1] Arthur P. Dempster. Upper and lower probabilities in-
duced by a multivalued mapping. The Annals of Math-
ematical Statistics, 1967, 38(2):325–339.

[2] Didier Dubois, Helene Fargier, and Henri Prade. Pos-
sibility theory in constraint satisfaction problems:
Handling priority, preference and uncertainty. Applied
Intelligence, 1996, 6:287–309.

[3] Helene Fargier, Jerome Lang, and Thomas Schiex. Se-
lecting preferred solutions in fuzzy constraint satisfac-
tion problems. In Proc. of the first European Congress
on Fuzzy and Intelligent Technologies, 1993, 3: 1128-
1134.

[4] Helene Fargier and Jerome Lang. Uncertainty in con-
straint satisfaction problems: a probabilistic approach.
In Proc. of the Second European Conference on Sym-
bolic and Quantitative Approaches to Reasoning and
Uncertainty, 1993, 747:97-104.

[5] Alan K. Mackworth. Consistency in networks of rela-
tions. Artificial Intelligence, 1977, 8(1):99–118.

[6] Ugo Montanari. Networks of constraints: Fundamen-
tal properties and applications to picture processing.
Information Sciences, 1974,7(2):95–132.

[7] Glenn Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, NJ, 1976.

[8] Philippe Smets. Belief functions. Non-Standard Log-
ics for Automated Reasoning, 1988, 253–286.

[9] Philippe Smets. Imperfect information: Imprecision
Uncertainty. Uncertainty Management in Information
Systems. From Needs to Solutions, 1997, 225–254.

[10] Thomas Schiex. Possibilistic constraint satisfaction
problems or How to handle soft constraints?. In Proc.
of the 8th International Conference on Uncertainty in
Artificial Intelligence,1992, 268–275.

535

DevOps Enhancement with Continuous Test
Optimization

Dusica Marijan
Simula, Norway

dusica@simula.no

Sagar Sen
Simula, Norway
sagar@simula.no

Abstract—Growing evidence suggests the DevOps approach
enables faster development and deployment, and easier mainte-
nance of applications. Still, the efficiency of DevOps is constrained
by long cycle times. This paper presents the approach for
improving time-efficiency in DevOps, and in particular con-
tinuous integration testing, using continuous test optimization.
The approach uses test redundancy analysis to discover test
overlap with respect to feature interaction coverage, and based
on detected redundancy to reduce the size of a test suite. Smaller-
size test suites execute faster and enable shorter test cycles, which
further enables shorter release cycles. The approach has been
experimentally evaluated using an industrial case study, against
three metrics: industry practice of test selection for continuous
integration testing, retest-all approach, and random test selection.
The results suggest that the proposed test redundancy detection
and reduction efficiently reduces test cycles in CI compared to
industry practice and retest-all approach, and improves fault-
detection effectiveness compared to random test selection1.

Index Terms—DevOps, Continuous integration, Continuous
integration testing, Test optimization, Test redundancy

I. INTRODUCTION

DevOps is a growing development practice that promises
to enable faster development and efficient deployment of
applications without compromising on quality. The main prin-
ciple underlaying DevOps is increased communication and
collaboration between development, testing, and operations,
which makes it possible to minimize the time between making
a change and deploying the change into production. Further,
this makes it possible to respond faster to new and rapidly
changing requirements, and thus remain agile. However, in-
creased communication and collaboration do not suffice in
reaching this goal on their own. A key aspect is enabling
an efficient and optimized continuous integration practice.
Continuous integration is a software development model of
frequent integration and testing of source code to detect defects
early in development. This practice has been associated with
benefits such as improved code quality, more frequent releases,
improved development productivity, less-costly development,
and easier code maintenance [2], [3], [4]. The major bottleneck
however in making continuous integration efficient is long-
running testing of code changes after integration. In particular,
after a change is made to the code, a set of automated tests
are run to verify the change. As changes in DevOps are
made frequently, testing of changes before integration runs

1DOI reference number: 10.18293/SEKE2018-168

frequently, which amplifies the need for time-efficiency in
testing. This implies that for each integration cycle test suites
need to be optimized for short run-time and maximized fault-
detection.

Existing techniques to improve the efficiency of software
testing in continous integration include test selection and
prioritization [7], [8], [9], which aim to find an optimal
combination and order of tests for achieving faster test runs.
However, techniques that optimize testing for low run-time
often compromize the ability of tests to detect faults [11], [12],
[13], [14]. We argue that for DevOps, this aspect becomes
especially important. It is essential that testing in DevOps
is time-efficient, at the same time as being able to detect
the most critical faults. Another issue that creates challenges
for efficient testing in DevOps is the size of test suites. In
particular, iterative feature requests and frequent changes of
requirements constantly drive a test suite size larger and larger,
while its quality is not maintained simultaneously. When test
suites grow in size, the containing test cases start overlapping,
covering the same features (parts of functionality) multiple
times in different test instances. This effect is known as test
redundancy, and it negatively affects time-efficiency of testing
in DevOps. Besides directly increasing test effort (if all related
test cases are post for running), test redundancy also increases
test maintenance costs.

In this paper we propose an approach for improving time-
efficiency of DevOps by continuously optimizing long running
test cycles based on test redundancy detection and reduction.
Specifically, for each test cycle we analyze test overlap with
respect to changes and feature interaction coverage in a test
suite, and then detect and remove tests that do not contribute to
increased unique feature interaction coverage. We validated the
approach in one industrial case study, comparing with industry
practice and with the state of the art techniques. The approach
demonstrated the improvement in time-effectiveness and fault
detection effectiveness of CI testing in DevOps compared to
industry practice.

The paper is organized as follows. In Section II we provide
background and related work, as well as some challenges of
efficient testing in DevOps in the presence of test redundancy.
In Section III, we describe our approach for improving time-
efficiency of DevOps with continuous test optimization based
on redundancy detection. In Section IV we give results of the
experimental study evaluating the approach against industry

536

practice. We draw the conclusion in Section V.

II. BACKGROUND AND RELATED WORK

In the following we revisit the key concepts underlying our
work on making DevOps practices more cost-effective. We
also summarize some of the critical challenges for effective
testing in continuous integration and DevOps.

A. DevOps

DevOps is defined as a set of software engineering practices
that aim to build an agile relationship between development
and operations. A key principle is constant communication and
collaboration between development and operations, enabling
benefits such as faster development and deployment of features
into production, faster detection and correction of issues, and
cost-effective running of dependable software with minimal
risks. Existing approaches for improving testing in DevOps
are still narrow. There is an approach reported for run-time
monitoring and reporting to developers, referred to as the
filling-the-gap tool, which enhances and automates the delivery
of application performance information to the developer, with
the goal of improving the quality of service or reducing
maintenance cost [20]. However, more approaches addressing
various other challenges in continuous integration testing for
DevOps are missing, and such limited state of the art in this
field gives even more motivation for our research.

B. Continuous Integration

Continuous integration (CI) is a practice deemed a key
enabler for DevOps. CI is a technique that continuously inte-
grates code changes from all team members, merges them with
the mainline, and verifies the changes against regressed aspects
of the modified code (for unintended effects) with automated
tests. The CI practice prevents working on isolated branches
for too long, which over time start diverging from each other,
leading to high effort of integrating such multiple branches
into the mainline. An important aspect of CI is enabling
rapid automated regression testing of code changes, which
will give quick feedback to developers on the correctness
of their changes. Since CI runs frequently, if it takes long
time, it introduces time-inefficiency in DevOps. To support
rapid regression testing in CI, we explore the concept of test
optimization. Similarly, to improve CI testing, one approach
was proposed combining test selection in the pre-commit stage
with test prioritization in the post-commit stage [7]. However,
this approach does not investigate the effect of test redundancy
on the time-effectiveness of CI testing, which is one key focus
of our work.

C. Test Redundancy

Test redundancy can be defined with respect to coverage
metrics, for example pairwise feature coverage, such that if
two tests check interaction between the same pair of features,
then one of these tests is redundant with respect to one
another. Features represent smaller units of software-under-
test functionality that are self-contained. Considering pairwise

feature coverage in the example provided below, two tests
TestA and TestB cover the identical feature set {b, c}. As
the pairwise feature set covered by TestA is a proper subset
of the pairwise feature set covered by TestB, we say that
TestA is redundant with respect to TestB.

TestA = [b, c]→ {b, c}
TestB = [a, b, c]→ {a, b}, {b, c}, {a, c}

Test redundancy can be caused by multiple factors, such as
test reuse in manual test specification, when existing tests are
modified for testing new similar functionality, unintentionally
leaving parts of already tested functionality. Other causes
include incomplete requirements specification, redundancy of
requirements, legacy, static test suites, parallel testing, or dis-
tributed testing [6]. In this work we are interested in analyzing
test redundancy in integration tests, which test varying number
of feature interactions to expose any faults in interaction
between integrated individual code components.

D. Regression Test Optimization
DevOps promotes iterative development, where smaller self-

contained changes are made to software frequently. Every
change is regression tested to check whether it introduces
any faults caused by the interaction of integrated components.
Since speed is one of the key requirements of efficient DevOps,
regression testing requires only a set of relevant test cases.
This is especially important in fast-evolving systems where
test suites used for validating the correctness of systems
grow quickly. Previous studies have shown that test suite size
has a large impact on the overall test cost in the software
development lifecycle [12], [15], [16]. Therefore, finding such
a set of relevant test cases is the goal of regression test
optimization. Specifically, regression test optimization aims to
find an optimized set and order of regression tests that satisfy
predefined optimization objectives. This includes selecting a
relevant set S′ based on S, known as test selection [17],
and finding the execution order of tests in S′, known as test
prioritization [19]. In this work we focus on test optimization
guided by the analysis of test redundancy. i.e feature interac-
tion overlap among different tests. Existing test optimization
approaches have not been targeted towards DevOps and CI,
and specifically have not been investigating the impact of test
redundancy on the performance of CI testing in DevOps.

E. Challenges of Testing in CI
Testing in continuous integration and DevOps is amenable

to a number of challenges. First, it is highly sensitive to long
runtime, since feedback on source code integration needs to
be provided as rapidly as possible. Fast feedback enables faster
test cycles, which further enable faster release cycles. Second,
test effort needs to be steered towards achieving just the
quality required for deployment to staging or production.
If more effort is put into testing, this may negatively affect
time- and cost-efficiency of testing. Third, since testing is time-
limited in CI and DevOps, testing process (and in particular

537

test selection) should be continuously optimized, guided by
risk analysis, based on the type of code changes made and
their impact. Risk-analysis would enable defining a dynamic
regression scope for each build and test iteration, with mul-
tiple layers of tests to enable iterative, and faster feedback.
Fourth, as test suites grow overtime, to cover new functionality
added to the codebase, tests start to overlap, building test
redundancy. This creates the risk of increased test effort as
many similar tests may seem relevant, and therefore selected
for running. Therefore, the key challenge lies in identifying
test redundancy and selecting test cases so that redundancy is
minimized. This will help reduce long test runtime, and will
enable reaching just the required level of quality. Furthermore,
high levels of test automation are needed, in test selection and
optimization (apart from test execution, where automation is
considered a prerequisite for CI and DevOps).

III. IMPROVING THE EFFICIENCY OF CI WITH
CONTINUOUS TEST OPTIMIZATION

The approach for improving efficiency and effectiveness of
CI that is proposed in this paper exploits the idea of continuous
test optimization based on test redundancy analysis. As stated
previously, one critical challenge of CI and DevOps is enabling
short and effective test cycles given redundant test suites. A
redundant test suite contains test cases that overlap, given a
specific feature coverage criteria. In this context, cost-effective
testing entails a trade-off between the size of a test suite and
its comprehensiveness. Here, we refer to comprehensiveness as
the ability of a test suite to detect faults caused by interactions
between two features (pairwise coverage). For the sake of
simplicity, in this paper we will restrict our approach to
pairwise coverage only, while the proposed concept can be
extended to any-wise feature coverage (consequently entailing
some higher computational complexity). To better illustrate the
complexity of CI testing in the presence of redundant test case
with overlapped feature coverage, we present the following
example.

A. Illustrating Example

A software system under test consists of a set of
functionality modules, referred to as features FS =
{f1, f2, ..., fn}. Features are used to build a set of solu-
tion configurations for video conferencing. Some features
are f1 = video resolution, f2 = audio resolution,
f3 = audio protocol, f4 = point to point calls, f5 =
multi party calls. A test suite TS = {t1, t2, ..., tm} is
developed for testing these solution configurations, where
test cases partially cover the total set of features FS in
different combinations. Cov(ti) = {f1, f2, ..., fn} denotes a
set of features tested by a test case ti. As the system under
test evolves incrementally through continuous development
and testing, TS evolves continuously and grows larger. New
test cases are added covering new functionality, but also
interactions between new and old functionality. The same
features become part of multiple tests, but because of large
size of a test suite, the same combinations of features often

become part of multiple tests. This in turn increases test
effort, as the same interactions between system functionality
are executed multiple times. In the example shown below,
four test cases t1, t2, t3, and t4 cover a set of features
{f1, f2, f3, f4, f5} in different combinations. Considering a
pairwise interaction coverage as a criterion for test redundancy
analysis, the covering set of features for tests t1 and t4
overlap with the covering set of features for tests t2 and t3
respectively. Since this overlap represents proper subsets i.e.
Cov(t1) ⊂ Cov(t2), Cov(t4) ⊂ Cov(t3), tests t1 and t4 are
redundant with respect to tests t2 and t3.

Cov(t1) = {f1, f2}
Cov(t2) = {{f1, f2}, {f1, f3}, {f2, f3}}
Cov(t3) = {{f1, f4}, {f1, f5}, {f4, f5}}
Cov(t4) = {f4, f5}
Cov(t1) ⊂ Cov(t2), Cov(t4) ⊂ Cov(t3)

B. The Approach

Our approach to reducing test cycles with redundancy
detection and reduction explores the concept of total test
redundancy and partial test redundancy. To explain these
concepts, we introduce the following definitions.
Def 1: A test case t1 is totally redundant of a test case t2, if
Cov(t1) ⊆ Cov(t2).
Def 2: A test case t1 is partially redundant of a test case t2,
if Cov(t1) 6= Cov(t2) and Cov(t1) ∩ Cov(t2) 6= 0.

In the first step of the approach, we address total redun-
dancy, by detecting test cases whose covering set of features
is fully covered by another test case. After such test cases
have been identified, we remove them from a test suite. In the
second step of the approach we address partial redundancy by
combining interaction coverage metrics with historical fault
detection effectiveness of tests obtained from test logs. The un-
derlying idea is that partially redundant test cases which have
historically exhibited good fault revealing performance can be
classified as non-redundant, and otherwise as redundant. This
idea is supported by studies showing that test execution history
can help improve cost-effectiveness of testing [7], [8], [9].
[21].

Step 1: Given the system under test and the changes to its
source code, as well as an existing test suite, we first find
a set of tests impacted by the changes. This is performed
automatically, using association links between test cases and
features (software functionality) covered by the test cases.
Next, for the obtained test suite, we analyze test overlap
between test cases to find those test cases whose covering
feature interactions are completely covered by other test cases.
We remove such test cases from a test suite, obtaining a test
suite with only non-redundant and partially redundant test
cases.

Step 2: Next, we look into partially redundant test cases
contained within the test suite. These are the test cases whose
covering feature interactions are partially covered by other
test cases. We obtain execution history for these test cases

538

Fig. 1. Redundancy detection and reduction methodology.

(for those that have been executed before) and analyze their
fault detection effectiveness in past executions. In particular,
we assign different weights to test cases chronologically,
based on how recently they detected faults. Those tests that
detected faults more recently have higher weight than those
that detected faults earlier. If n is the number of historical
test execution iterations, then the weight ω is calculated as
follows:

ω =

{
1
n , for test cases that have been executed before
1, for newly added test cases

Next we sort the test cases based on ω value, such that those
test cases with higher fault detection effectiveness are ordered
higher in the list of partially redundant test cases. The rationale
for sorting is that CI is bound by tight time constraints.
Therefore, we want to ensure that the most important test cases
are run first, in case that available time budget for testing is
smaller than the time required for running the whole test suite.

Step 3: Finally, the resulting test suite consists of test cases
that have been identified as non-redundant in Step 1, which
come first in order, followed by a set of partially redundant
test cases, ordered based on their fault detection effectiveness.
The approach is schematically presented in Figure 1.

IV. EXPERIMENTAL CASE STUDY

We conducted a set of experiments to evaluate the ef-
fectiveness of the proposed approach for test redundancy
reduction in CI and DevOps. The approach was applied to
an industrial case study of optimizing CI development and
testing of video conferencing telepresence systems developed
by Cisco Norway. These systems enable full ”in-person”
meeting experience with high-end video communication and
collaboration between multiple parties using cameras with eye-
tracking features and directional microphones which allow the
transmission of high definition video and audio, as well as
wireless sharing of presentations and other documents.

The objective of the experiments was to evaluate the test
execution time and fault-detection effectiveness of CI testing
when using our approach for test redundancy reduction. We

compared the approach to existing industry practice of CI
testing, retest-all approach, and random test selection. Specif-
ically, we are interested in answering the following research
questions:
RQ1: What effect does the redundancy reduction approach

(RED) have on the duration of test cycles in CI
compared to industry testing practice (IP)?

RQ2: What effect does the redundancy reduction approach
have on the duration of test cycles in CI compared to
retest-all (RA) approach?

RQ3: What effect does the redundancy reduction approach
have on fault detection effectiveness of test suites
compared to random test selection (RS)?

A. Industrial System

The industrial system used in the experimental case study
represents a video conferencing system that is developed
following a DevOps practice. The system is highly complex,
implementing around one hundred features, which are used in
different combinations across different solution configurations
for video conferencing. As the system is developed in CI,
code updates are made frequently. Each update is followed by
integration testing cycle, to verify the correctness of newly
added functionality and to ensure that no regressions are
introduced in existing functionality. The test suite is developed
incrementally and is large in size, covering system features
in various combinations of interactions. Extensive test suites
for integration and configuration testing, together with the
requirements for short test cycles make cost-effective testing
of video conferencing systems in DevOps challenging. The
test data used in the experiments consists of 400 test cases.
Test execution history for these test cases is available for 6
last test execution runs, which gives 2400 test case executions.
Historical data includes test execution result (pass/fail) and test
execution duration.

B. Experiment Setup and Methodology

We address the posed three research questions RQ1-RQ3 in
experiments E1, E2, and E3, respectively.

539

In experiment E1, we compare RED with IP , in terms
of total test execution time. First, for the features affected
by changes, we select a set of impacted test cases. These
tests represent the initial test suite. Then we obtain execu-
tion history for these test cases, and apply our redundancy
reduction approach to the initial test suite. We analyze test
overlap in terms of pairwise feature coverage, and remove
test cases whose covering set of pairwise feature interactions
is completely contained within another test case(s). At this
point, the test suite contains non-redundant test cases and
partially redundant test cases. Next, for all partially redundant
test cases, we analyze which of them have shown good fault-
detection performance in the past. Based on this information,
we eliminate test cases that have not contributed to increased
fault detection effectiveness. Next, we calculate weights for the
rest of partially redundant test cases, rewarding more recent
fault detection higher. We sort these test cases according to
their weight, and append them to the previously identified
non-redundant test cases. For the resulting set of test cases,
we measure the percentage reduction of the test suite size
compared to the size of the original test suite (used by industry
practitioners for testing the changes). We run experiment E1
5 times, for all available historical test execution data.

In experiment E2, we compare RED with RA, in terms
of total test execution time. We chose RA as a comparison
metric because this is a commonly used approach to regression
testing in practice. Specifically, we modified the RA in a way
to include only the tests affected by changes, versus retesting
the entire test suite. Therefore, for the features affected by
changes, we select a set of impacted test cases. These tests
represent the initial test suite. Then we apply our redundancy
reduction approach to the initial test suite, and examine test
overlap in terms of pairwise feature coverage. We remove
redundant test cases base on this criterion, which gives a
test suite containing non-redundant test cases and partially
redundant test cases. Then we analyze execution history for
the partially redundant test cases, and eliminate those which
historically have not showed to increase fault detection. Next,
we order remaining partially redundant test cases based on
their recent fault detection performance and append them to
the previously identified non-redundant test cases. This gives
us the final test suite. For this test suite, we measure the
percentage reduction of the test suite size compared to the
size of the initial test suite.

In experiment E3, we compare RED with RS, in terms of
fault-detection effectiveness. We compare with RS because
this is a commonly used alternative to automated guided test
selection and reduction, primarily driven by low cost and low
complexity. First, for the features affected by changes, we
select a set of impacted test cases, which represent the initial
test suite. Then we apply the same setup as in E1 to obtain the
set of non-redundant test cases followed by an ordered set of
partially redundant test cases, as the final reduced test suite.
Next we measure the total test execution time for the final
test suite (time limit), based on historical test execution time
of each test case. Afterwards, we start randomly selecting test

cases from the initial test suite, accumulating execution time
of each selected test case. We repeat this process until the
time limit is reached. The resulting test suite obtained in this
process is the randomly selected test suite. Now we measure
the loss of fault detection of the randomly selected test suite
compared to the fault-detection of the final test suite. The
measured value is the percentage of faults that were detected
by the final test suite and not by the randomly selected test
suite. Because of the randomness in RS approach, we repeat
the experiment 100 times.

C. Results and Analysis

In this section we present the results of the experiments
E1, E2, and E3, addressing research questions RQ1, RQ2,
and RQ3, respectively. The results are graphically presented
in Figure 2, Figure 3, and Figure 4, respectively.

1) Time-effectiveness Compared with Industry Practice: In
the first experiment addressing RQ1, we compared RED and
IP in terms of test suite execution time. The results show
that RED was able to reduce test cycle by 30% on average
compared to IP . The results are shown in Figure 2. Y axis
corresponds to the percentage reduction of test execution time
of the reduced test suite compared to the test suite used by
practitioners.

2) Time-effectiveness Compared with Retest-All: In the
second experiment aimed to answer RQ2, we compared RED
and RA in terms of test suite execution time. In this experi-
ment, RA showed to reduce total test suite execution time by
35% compared to RA. The results are shown in Figure 3. Y
axis corresponds to the percentage reduction of test execution
time of the reduced test suite compared to retest-all approach.

3) Fault-detection Effectiveness Compared with Random
Selection: In the third experiment addressing RQ3, we com-
pared RED with RS in terms of fault detection effectiveness,
for the same (given) test budget. The results demonstrate that
RED can achieve up to 70% better fault detection compared
to randomly selected test cases, and 40% on average better
fault detection compared to randomly selected test cases, for
the test suites used in the experiment. The results are shown
in Figure 4. Y axis shows the distribution of the percentage
of fault detection effectiveness gain of the reduced test suite
compared to randomly selected test suite.

In summary, the results of the experiments E1, E2, and E3
demonstrate that the proposed approach can effectively reduce
test cycles in CI compared to industry practice of CI testing by
35% on average, and compared to retest-all approach by 30%
on average. The results further demonstrate that the proposed
approach can improve fault detection effectiveness of a test
suite compared to random test selection up to 70%, for the
same test time budget.

D. Threats to Validity

A threat to external validity of the results is the choice of the
industrial case study of continuous integration testing and the
test dataset. While the used industrial context is an example of
good industry practice, we cannot say that it is representative,

540

Fig. 2. Comparison of the proposed approach with industry practice
approach in terms test suite execution time.

Fig. 3. Comparison of the proposed approach with retest all approach in
terms of test suite execution time.

and continuous integration testing can be applied differently
in different companies. More studies are needed to verify
whether our results generalize to other practices of CI and
DevOps. This is part of our future work. A threat to internal
validity could be potential faults in our implementations of the
optimization algorithms. We have thoroughly tested the code
to ensure that these threats are minimized.

Fig. 4. Comparison of the proposed approach with random test selection
approach in terms fault detection effectiveness.

V. CONCLUSION

In this paper we proposed the approach for improving time-
efficiency of DevOps using continuous test optimization. The
approach is based on test redundancy analysis in terms of
feature interaction coverage. By reducing test redundancy, it
is possible to reduce CI test cycles and further release cycles
in DevOps. The approach has been evaluated and has demon-
strated improvement in time-efficiency compared to industry
practice, retest-all approach, and random test selection.

ACKNOWLEDGMENT

This work is supported by The Research Council of Norway,
through the Certus SFI project. We thank to Cisco Systems
Norway for using their test data set and for fruitful discussions
that contributed to this work.

REFERENCES

[1] Economic Benefits of HP Future Smart Agile Transformation, Evidence
and case studies (continuousdelivery.com).

[2] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, Quality
and productivity outcomes relating to continuous integration in GitHub,
International Symposium on the Foundations of Software Eng., 2015.

[3] A. Miller, A hundred days of continuous integration, AGILE, 2008.
[4] M. Leppanen, S. Makinen, M. Pagels, V. P. Eloranta, J. Itkonen, M.

V. Mantyla, and T. Mannista, The highways and country roads to
continuous deployment, IEEE Software, 2015.

[5] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, D. Dig, Trade-offs in
continuous integration: assurance, security, and flexibility, 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE), 2017.

[6] L. Bass, I. Weber, L. Zhu, DevOps: A Software Architect’s Perspective,
Addison-Wesley Professional, 2015.

[7] S. Elbaum, G. Rothermel, J. Penix, Techniques for Improving Regression
Testing in Continuous Integration Development Environments, Interna-
tional Symposium on the Foundations of Software Engineering, 2014.

[8] D. Marijan, A. Gotlieb, S. Sen, Test Case Prioritization for Continu-
ous Regression Testing: An Industrial Case Study, IEEE International
Conference on Software Maintenance (ICSM), 2013.

[9] D. Marijan, M. Liaaen, Effect of Time Window on the Performance of
Continuous Regression Testing, ICSME, 2016.

[10] D. Marijan, M. Liaaen, Test Prioritization with Optimally Balanced
Configuration Coverage, HASE, 2017.

[11] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong, An empirical study
of the effects of minimization on the fault detection capabilities of test
suites, Int. Conference on Software Maintenance (ICSM), 1998.

[12] G. Rothermel, M. J. Harrold, J. Ronne, and C. Hong, Empirical studies
of test-suite reduction, Software Testing Verification and Rel., 2002.

[13] W. Wong, J. Horgan, A. Mathur, and A. Pasquini, Test set size minimiza-
tion and fault detection effectiveness: a case study in a space application,
21st Computer Software and App. Conference (COMPSAC), 1997.

[14] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test
set minimization on fault detection effectiveness, ICSE, 1995.

[15] H.-Y. Hsu and A. Orso, Mints: A general framework and tool for
supporting test-suite minimization, ICSE, 2009.

[16] Y. Yu, J. A. Jones, and M. J. Harrold, An empirical study of the effects
of test-suite reduction on fault localization, ICSE, 2008.

[17] M. Grindal, B. Lindstrm, J. Offutt and S. F. Andler, An evaluation
of combination strategies for test case selection, Empirical Software
Engineering, vol. 11, 2006.

[18] A. Gotlieb, D. Marijan, FLOWER: optimal test suite reduction as a
network maximum flow, Int. Symp. on Soft. Testing and Analysis, 2014

[19] Y.-C. Huang, K.-L. Peng and C.-Y. Huang, A history-based cost-
cognizant test case prioritization technique in regression testing, Journal
of Systems and Software, vol. 85, 2012

[20] J.F. Perez, W. Wang and G. Casale, Towards a DevOps Approach for
Software Quality Engineering, Workshop on Challenges in Performance
Methods for Software Development, 2015.

[21] J.M. Kim and A. Porter, Technique for Regression Testing in Resource
Constrained Environments, International Conference on Software Engi-
neering, 2001.

541

Reducing the Cost of Android Mutation Testing
Lin Deng

Department of Computer and Information Sciences
Towson University, Towson, Maryland

ldeng@towson.edu

Jeff Offutt
Department of Computer Science

George Mason University, Fairfax, Virginia
offutt@gmu.edu

Abstract—Due to the high market share of Android mobile
devices, Android apps dominate the global market in terms
of users, developers, and app releases. However, the quality of
Android apps is a significant problem. Previously, we developed
a mutation analysis-based approach to testing Android apps and
showed it to be very effective. However, the computational cost
of Android mutation testing is very high, possibly limiting its
practical use. This paper presents a cost-reduction approach
based on identifying redundancy among mutation operators
used in Android mutation analysis. Excluding them can reduce
cost without affecting the test quality. We consider a mutation
operator to be redundant if tests designed to kill other types
of mutants can also kill all or most of the mutants of this
operator. We conducted an empirical study with selected open
source Android apps. The results of our study show that three
operators are redundant and can be excluded from Android
mutation analysis. We also suggest updating one operator’s
implementation to stop generating trivial mutants. Additionally,
we identity subsumption relationships among operators so that
the operators subsumed by others can be skipped in Android
mutation analysis.

I. INTRODUCTION

Mobile applications (mobile apps) are software programs
specifically developed for mobile devices. Due to the con-
venience of mobile devices, people use mobile apps more
often than applications on other platforms [1]. Approximately
85% of mobile devices use the Android operating system
[2]. In March 2018, more than 3.6 million Android apps are
available for download on the Google Play Store [3]. However,
many Android apps contain software faults, and users often
experience problems. An Android analysis organization [3]
found that 14% of Android apps are “low-quality.”

Our prior work applied mutation testing to testing Android
apps [4], explored the feasibility of Android mutation testing
[5], and empirically evaluated its fault detection effectiveness
using naturally occurring faults and crowdsourced faults [6].
The results show that Android mutation testing is very effec-
tive at detecting both types of software faults.

However, Android mutation testing can be expensive in
several ways. Due to the constraints on size, weight, and
power consumption, most Android devices are equipped with
hardware that is slower than desktops and laptops. Executing
and testing Android apps take more execution time than tradi-
tional software programs. Moreover, while Android mutation
testing has been found to be effective at designing high-quality
test cases and assessing test cases generated by other testing
techniques, the number of mutants that need to be executed
increases the cost of Android mutation testing. For example,

executing 20 tests, one minute for each test, on 1,000 Android
mutants may require up to 13.8 days.

This paper presents our experimental evaluation that tries
to speed up mutation testing by finding redundant mutation
operators that can be excluded from Android mutation testing,
while still maintaining fault-detection effectiveness. Specifi-
cally, this experimental study analyzed redundancy among the
19 Java traditional mutation operators [7] and the 17 Android
mutation operators [5].

The results of our study show that three mutation operators
are redundant and can be excluded without reducing the ef-
fectiveness of Android mutation testing: (1) Unary Arithmetic
Operator Deletion (AODU), (2) Unary Arithmetic Operator
Insertion (AOIU), and (3) Logical Operator Insertion (LOI).
Also, the design of the Activity Lifecycle Method Deletion
(MDL) operator requires further improvement. Furthermore,
the Button Widget Switch (BWS) operator subsumes But-
ton Widget Deletion (BWD), and Operator Deletion (ODL)
subsumes Constant Deletion (CDL), Conditional Operator
Deletion (COD), and Variable Deletion (VDL). In addition,
mutants created by the Fail on Back (FOB) operator, the
TextView Deletion (TVD) operator, and the Orientation Lock
(ORL) operator are very hard to kill.

This paper is organized as follows. Section II introduces
background on Android mutation testing. Section III describes
the experiment used to identify the redundancy among Android
mutation operators, then, presents and analyzes the experiment
results. Section IV gives an overview of related research.
Section V discusses threats to validity, and the paper concludes
and suggests future work in Section VI.

II. BACKGROUND

In 1978, DeMillo et al. invented mutation testing [8], a
syntax-based software testing technique that is very effective
at designing high-quality tests and evaluating pre-existing
tests. Mutation testing modifies a software artifact such as
source code, to create new versions, called mutants. Mutation
operators define the rules that specify the changes that are
made to a software artifact. Testers design test cases to cause
mutants to behave differently from the original, then the
mutants are called killed. Well designed mutation operators
can lead to very powerful test cases. The more mutants a test
set can kill, the more effective the test set is at finding faults.

Mutation operators have been created for many different
languages, including C and Java [7], [9]. Our prior work [4]–
[6] used the novel programming features, unique characteris-
tics, and testing challenges of Android apps to design andDOI reference number: 10.18293/SEKE2018-184

542

TABLE I: Android Mutation Operators

Category Android Mutation Operator

Event-based

Intent Payload Replacement (IPR)
Intent Target Replacement (ITR)
OnClick Event Replacement (ECR)
OnTouch Event Replacement (ETR)

Component Activity Lifecycle Method Deletion (MDL)
Lifecycle Service Lifecycle Method Deletion (SMDL)

XML-related

Button Widget Deletion (BWD)
EditText Widget Deletion (TWD)
Activity Permission Deletion (APD)
Button Widget Switch (BWS)
TextView Deletion (TVD)

Common Faults
Fail on Null (FON)
Orientation Lock (ORL)
Fail on Back (FOB)

Context-aware Location Modification (LCM)
Energy-related WakeLock Release Deletion (WRD)

Network-related Wi-Fi Connection Disabling (WCD)

evaluate 17 Android mutation operators, as listed in Table
I. We also used 15 Java traditional method-level mutation
operators [7] and four deletion mutation operators [10], [11].

III. EMPIRICAL EVALUATION

Normally, all mutation operators are applied to generate
mutants. This creates lots of mutants that must be executed
many times at significant cost. Recent research [12] has found
that between 90% and 99% of mutants are redundant in the
sense that any test that kills another mutant is guaranteed
to kill the redundant mutant. If redundant mutation operators
can be identified and excluded, the cost of mutation will be
significantly reduced. All mutants generated from the same
mutation operator are of the same type. Thus, we use this
study to determine whether mutants of one type are killed by
the tests designed to kill mutants of other types.

In particular, this empirical evaluation tries to evaluate the
redundancy in Android mutation testing by addressing the
following research questions:

RQ1: How many mutants of one particular type can be
killed by tests created to kill another type of mutants?

RQ2: Which types of mutants are less likely to be killed
by tests created to kill other types of mutants?

RQ3: Can any mutation operator be excluded or improved
without significantly reducing effectiveness?

A. Experimental Subjects
This experimental evaluation used 12 Android classes and

their XML layout and configuration files from four open
source Android apps: JustSit [13], MunchLife [14], TippyTip-
per [15], and Tipster [16]. Table II provides an overview
of the projects. The 19 Java traditional mutation operators
[7] generated 1,947 muJava mutants and the 17 Android
operators generated 1,018 mutants. The number of muJava
mutants ranged from four for About.java in TippyTipper to
534 for MunchLifeActivity.java in MunchLife, and the number
of Android mutants ranged from one for AndroidManifest.xml
in MunchLife to 258 for JustSit.java in JustSit.

B. Redundancy Scores
The mutation-adequate test set Ti includes tests that are

specifically designed to kill all the mutation of type i. To quan-
tify the redundancy among Java traditional mutation operators

TABLE II: Details of Experimental Subjects

Apps Components LOC XML muJava Android
Nodes Mutants Mutants

JustSit JustSit.java 444 394 258
main.xml 13
About.java 48 9 13
about.xml 6
RunTimer.java 99 131 25
run timer.xml 3
JsSettings.java 61 28 31
settings.xml 6
AndroidManifest.xml 14 0 4

Munch- MunchLifeActivity.java 384 534 158
Life main.xml 12

Settings.java 68 47 8
preferences.xml 5
AndroidManifest.xml 10 0 1

Tippy- TippyTipper.java 239 105 198
Tipper main.xml 20

SplitBill.java 134 124 49
SplitBill.xml 31
Total.java 279 231 115
Total.xml 44
About.java 30 4 14
About.xml 10
Settings.java 61 13 15

Tipster TipsterActivity.java 297 327 129
main.xml 30

Total 2144 204 1947 1018

and Android mutation operators, Praphamontripong and Offutt
[17] defined the redundancy score ri,j to be:

Redundancy Score: ri,j =
mi,j

Mj
× 100% (1)

where, mi,j is the number of mutants of type j killed by the
mutation-adequate test set Ti, and Mj is the total number of
non-equivalent mutants of type j.

In other words, the redundancy score ri,j is the percentage
of mutants of type j killed by a test set that is adequate
for type i. For example, a program has 100 non-equivalent
Relational Operator Replacement (ROR) mutants and 200
non-equivalent Arithmetic Operator Insertion (AOIS) mutants.
A tester designs a test set that kills all the non-equivalent
AOIS mutants, getting an AOIS mutation-adequate test set.
If this AOIS mutation-adequate test set also kills 60 ROR
mutants, the redundancy score rAOIS,ROR in this program is
60÷ 100 = 60%.

Note that for a given subject app, according to the defi-
nition above, every possible pair of mutation operators has
a redundancy score. Then, across all the subject apps in an
experimental evaluation, there are multiple redundancy scores
for the same pair of mutation operators with different values.
For example, rAOIS,ROR may be 60% in subject s1, 50% in
s2, and 40% in s3. Consequently, a score that can represent
the overall redundancy relationship is required. Praphamon-
tripong and Offutt [17] defined the average redundancy score
(raverage,i,j) to be the average value of all the ri,j of the
operator in all experimental subjects. The average redundancy
score is not weighted, i.e., we compute the redundancy score
for each subject app, then calculate the average of the scores.

Redundancy score indicates quantitatively whether a muta-
tion operator is redundant or not. For example, if a mutation
operator has a redundancy score of 0%, it means no tests that
were designed to kill other types of mutants killed any mutants
of this type. That is, the mutation operator is not redundant.

543

However, if a mutation operator has a redundancy score of
100% for the tests that are specifically designed to kill mutants
of another type, it means this operator is totally redundant and
does not contribute anything to the quality of tests. Excluding
it from the mutation analysis can reduce cost without reducing
effectiveness. If a mutation operator has a redundancy score
of 50%, half of the mutants generated by this operator are
killed by the tests designed for other types of mutants. Some
programs do not use all language features, thus the relevant
mutation operators cannot be used to generate tests. Then, no
tests will be designed for this mutation type.

C. Experimental Procedure

This study includes four steps to obtain the redundancy
scores among the mutation operators:

1) Generate mutants: Given a subject, apply the 19 Java
traditional mutation operators and the 17 Android mu-
tation operators to to generate mutants. mn represents
the mutants created by operator n.

2) Eliminate equivalent mutants and design tests: For
each set of mutants mn, eliminate all equivalent mutants.
Then, design a set of test cases to kill all the non-
equivalent mutants, denoted by tn, that is, tests designed
to kill the mutants of type n. We design tests indepen-
dently for each type of mutants. No redundant tests are
introduced once all the mutants are killed.

3) Execute tests: For each set of test cases tn, execute all
tests on all mutants.

4) Compute the redundancy scores: For each pair of
mutation operators and for each subject app, compute the
redundancy score ri,j . Then, to get an overview across
all the subjects in the experiment, compute an average
redundancy score for each mutant type.

Our tool implements a multithreading controller to paral-
lelize the execution with multiple emulators and real devices.
The tool executes on a MacBook Pro with a 2.6 GHz Intel i7
processor and 16 GB memory to control 8 emulators and 12
Motorola MOTO G Android smartphones in the experiment.
All devices run on the Android KitKat operating system.

D. Experimental Results

This section presents experimental results and key findings.
RQ1: How many mutants of one particular type can be

killed by tests created to kill another type of mutants?
Table III shows the average redundancy scores across all the

subject apps. The columns represent mutation operators, and
rows represent tests designed to kill all mutants of that type.
So, for example, the tests designed to kill all AODU mutants
(test AODU) killed 18.2% of the AOIS mutants. Some pairs
mutant types never showed up in the same program, so their
tests could not kill mutants of the other type. For example,
LOR and CDL mutants never appeared together, so test LOR
is marked “n/a” for CDL, and vice versa.

Four Java traditional mutation operators, ASRS, LOD, SOR,
and AODS, did not generate any mutants, and four Android
mutation operators, ETR, LCM, SMDL, and WCD, did not
generate any mutants. Thus, they are not listed in Table III.
WRD mutants are also excluded because testers need to use the

dumpsys tool to check system information, thus they cannot
be redundant with other types of mutants. APD mutants are
excluded because the principle of APD is to try all possible
tests to identify those un-killed APD mutants, instead of
designing tests to kill mutants.

RQ2: Which types of mutants are less likely to be killed
by tests created to kill other types of mutants?

According to the results in Table III, three Android mutation
operators were found to be very hard to kill. On average,
only 6.4% of Fail on Back (FOB) mutants were killed by
the mutation adequate test sets of other mutation operators,
with the highest redundancy score of 33.3%. FOB injects a
“Fail on Back” event handler into every Activity class. Since
Android apps are event-based programs, their execution flows
rely heavily on events initiated by user actions. The Back
button lets users move backward to the previous Activity,
interrupting the usual execution flow. It is usually not on the
“happy path” from the perspective of software design, and
results in a common fault of Android apps, that is, the software
fails when the Back button is clicked. To kill FOB mutants,
testers need to design tests that press the Back button at least
once at every Activity. However, in this experiment, very few
tests designed for other mutation operators included the user
action of clicking the Back button.

Very few TextView Deletion (TVD) mutants were killed.
On average, less than 1% of TVD mutants were killed by the
mutation adequate test sets of other mutation operators, and its
highest redundancy score was 8.3%. Since TextView widgets
cannot be edited by users, they usually do not associate
with any user events, nor require event handlers from the
implementation of the app. However, TextView widgets are
widely used by developers to present essential information.
TVD deletes TextView widgets from screens one at a time.
Killing a TVD mutant needs a test to ensure that the TextView
widget displays correct information. Very few tests checked
TextView widgets’ contents, unless the TextView widget was
used to display some variable results, such as a tip amount.

Very few Orientation Lock (ORL) mutants were killed. On
average, only 2.5% of Orientation Lock (ORL) mutants were
killed by the mutation adequate test sets of other mutation
operators, and its highest redundancy score was 12.5%. Most
mobile devices have the unique feature of being able to change
the screen orientation. To use to this feature, many apps change
their layout of the GUI when the orientation changes. How-
ever, different screen sizes and resolutions on different devices
make switching the orientation difficult for the developers,
leading to faults. ORL mutants freeze the orientation of an
Activity by inserting a special locking statement into the source
code, so that no switching actions can be accepted by the app.
To kill ORL mutants, testers need to design tests that explicitly
change the orientation, then check whether the GUI structure
is displayed as expected after switching the orientation. In this
experiment, no other mutation operators consider switching the
screen orientation, so there was no redundancy.

RQ3: Are any Android mutation operators redundant
enough to be excluded, or can any be improved? In
particular, can the mutants of one type always be killed
by tests created to kill another type?

544

TABLE III: Average Redundancy Scores
muJava Mutation Operator Android Mutation Operator

AODU AOIS AOIU AORB CDL COD COI COR LOI LOR ODL ROR SDL VDL BWD BWS ECR FOB FON IPR ITR MDL ORL TVD TWD
test AODU —— 0.182 0.351 0.250 0.000 0.000 0.108 0.000 0.286 0.000 0.053 0.169 0.165 0.000 0.125 0.333 0.200 0.000 0.917 0.000 0.167 0.750 0.000 0.000 0.500

test AOIS 1.000 —— 0.819 0.875 0.750 1.000 0.537 0.524 0.631 0.000 0.491 0.504 0.545 0.937 0.688 0.111 0.869 0.167 0.567 0.800 0.778 0.875 0.021 0.000 0.667

test AOIU 1.000 0.545 —— 0.865 0.600 0.750 0.466 0.476 0.681 0.000 0.402 0.443 0.560 0.916 0.813 0.167 0.869 0.125 0.472 0.800 0.944 0.781 0.016 0.000 0.667

test AORB 1.000 0.563 0.688 —— 0.750 0.750 0.500 0.643 0.561 0.000 0.527 0.429 0.396 0.947 0.688 0.111 0.869 0.000 0.458 0.800 0.778 0.850 0.025 0.000 0.667

test CDL 1.000 0.601 0.768 0.633 —— 0.750 0.456 0.643 0.645 n/a 0.567 0.497 0.546 0.702 0.583 0.111 0.803 0.000 0.333 n/a 1.000 0.900 0.025 0.050 0.500

test COD 1.000 0.211 0.632 0.333 1.000 —— 0.500 0.286 0.500 n/a 0.474 0.326 0.342 0.333 0.250 0.333 n/a 0.000 1.000 n/a n/a 1.000 0.000 0.000 0.000

test COI 1.000 0.424 0.471 0.613 0.500 1.000 —— 0.905 0.574 0.500 0.439 0.854 0.621 0.579 0.833 0.417 0.775 0.200 0.708 0.800 0.958 0.850 0.025 0.000 0.500

test COR 0.000 0.412 0.385 0.075 0.125 0.750 0.874 —— 0.505 n/a 0.277 0.725 0.563 0.026 0.375 0.333 0.333 0.333 0.667 n/a 1.000 0.833 0.042 0.000 0.000

test LOI 1.000 0.777 0.868 0.765 0.600 1.000 0.461 0.571 —— 0.000 0.425 0.645 0.590 0.916 0.813 0.278 0.869 0.125 0.472 0.800 0.778 0.781 0.016 0.000 0.667

test LOR 1.000 0.286 0.176 0.500 n/a n/a 0.105 n/a 0.138 —— 0.000 0.152 0.132 0.000 1.000 n/a 0.600 0.000 0.833 0.800 0.333 0.500 0.000 0.000 1.000

test ODL 1.000 0.777 0.847 0.885 1.000 1.000 0.689 1.000 0.796 0.500 —— 0.712 0.673 1.000 0.792 0.278 0.869 0.143 0.567 0.800 0.972 0.893 0.018 0.042 0.667

test ROR 1.000 0.654 0.543 0.838 1.000 1.000 0.900 1.000 0.621 0.500 0.664 —— 0.694 0.658 1.000 0.417 1.000 0.200 0.708 0.800 0.958 0.850 0.125 0.000 0.500

test SDL 1.000 0.730 0.921 0.920 1.000 1.000 0.926 1.000 0.853 0.500 0.916 0.945 —— 0.937 1.000 0.278 1.000 0.250 0.639 0.800 0.972 0.906 0.078 0.083 1.000

test VDL 1.000 0.706 0.743 0.708 1.000 0.750 0.368 0.643 0.653 0.500 0.527 0.429 0.424 —— 0.688 0.111 0.869 0.000 0.458 0.400 0.972 0.850 0.025 0.000 0.667

test BWD 1.000 0.401 0.566 0.431 0.333 0.750 0.561 0.786 0.583 0.000 0.316 0.459 0.331 0.355 —— 0.278 1.000 0.000 0.458 0.800 0.833 0.688 0.031 0.000 0.000

test BWS 0.000 0.009 0.445 0.033 0.000 0.000 0.200 0.000 0.418 n/a 0.013 0.048 0.185 0.018 1.000 —— 0.000 0.000 0.333 n/a 0.000 0.917 0.000 0.000 0.000

test ECR 1.000 0.500 0.532 0.575 0.750 n/a 0.453 1.000 0.521 0.000 0.400 0.397 0.470 0.474 1.000 0.000 —— 0.000 0.278 1.000 0.972 0.583 0.042 0.000 0.500

test FOB 0.500 0.004 0.503 0.020 0.000 0.000 0.080 0.000 0.449 0.000 0.006 0.049 0.312 0.011 0.000 0.000 0.000 —— 0.472 0.000 0.000 0.281 0.000 0.000 0.000

test FON 0.500 0.138 0.578 0.363 0.125 0.000 0.276 0.333 0.537 0.000 0.125 0.246 0.338 0.079 0.500 0.000 0.652 0.000 —— 0.400 0.639 0.607 0.018 0.000 0.000

test IPR 1.000 0.286 0.353 0.500 n/a n/a 0.105 n/a 0.138 0.000 0.389 0.152 0.388 0.000 1.000 n/a 1.000 0.000 0.833 —— 0.500 0.500 0.000 0.000 0.000 Excluding:
test ITR 1.000 0.262 0.471 0.367 0.250 n/a 0.186 0.000 0.415 0.000 0.240 0.135 0.251 0.035 0.389 0.000 0.563 0.000 0.278 0.800 —— 0.750 0.000 0.000 0.500 AODS APD

test MDL 0.500 0.062 0.520 0.040 0.250 0.000 0.171 0.333 0.472 0.000 0.023 0.109 0.334 0.021 0.125 0.000 0.111 0.000 0.472 0.000 0.333 —— 0.016 0.000 0.000 ASRS ETR

test ORL 0.000 0.007 0.503 0.020 0.000 0.000 0.080 0.000 0.449 0.000 0.006 0.019 0.291 0.011 0.000 0.000 0.000 0.000 0.472 0.000 0.000 0.219 —— 0.000 0.000 LOD LCM

test TVD 0.500 0.010 0.449 0.025 0.200 0.000 0.100 0.000 0.426 0.000 0.223 0.062 0.363 0.211 0.000 0.000 0.000 0.000 0.458 0.000 0.000 0.833 0.083 —— 0.000 SOR SMDL

test TWD 0.500 0.095 0.518 0.167 0.000 0.250 0.192 0.143 0.476 0.000 0.147 0.157 0.183 0.000 0.167 0.333 0.603 0.000 0.611 0.000 0.500 0.833 0.000 0.000 —— WCD

Average 0.771 0.360 0.569 0.450 0.465 0.538 0.387 0.468 0.514 0.125 0.319 0.361 0.404 0.382 0.576 0.177 0.602 0.064 0.561 0.530 0.626 0.743 0.025 0.007 0.375 WRD

According to the results, several mutation operators gener-
ated mutants that were easily killed by the tests designed to
kill other types of mutants. Among the 17 Android mutation
operators, the Activity Lifecycle Method Deletion (MDL)
mutation operator has the highest mean redundancy score
(74.3%). Android operating systems require all components in
Android apps to behave according to a pre-defined lifecycle.
If developers want to define a specific behavior when an
Activity switches its state, they must follow the lifecycle
and override correct methods in it. For example, after an
Activity is launched, three methods, onCreate(), onStart(),
and onResume(), need to be executed sequentially before the
user can see the Activity on the screen. MDL deletes each
overriding method to force Android to call the version in
the super class. This requires the tester to design tests that
ensure the app is in the correct expected state. However,
many developers use onCreate() to define and initialize GUI
structures of their apps. After MDL deletes the content of
onCreate(), no GUI widgets can be displayed for the current
Activity. Then any test case that looks for a GUI widget or
initiates a user event can kill MDL mutants.

A recommendation is that instead of simply deleting the
content of onCreate(), an alternative implementation is to
move the content of onCreate() to onStart() and onResume().
Figure 1 gives an example of the recommended implemen-
tation. All the code that defines GUI widgets and initializes
event handlers has been migrated from onCreate() to onStart().
In this way, MDL mutants are no longer trivial. In addition,
the only way to kill this new version of MDL mutants is
to make the Activity switch among different states, so that
different lifecycle methods can be called. Therefore, modified
MDL would require testers to design tests to make the Activity
switch among different states.

The Unary Arithmetic Operator Deletion (AODU) mutation
operator has the highest mean redundancy score (77.1%) of
the 19 muJava mutation operators [7]. 16 sets of mutation
adequate test sets designed to kill other types of mutants killed

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.main);
Button up button = (Button) findViewById (R.id.up button);

}
public void onStart () {

super.onStart ();
}

Original
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);
}
public void onStart () {

super.onStart ();
setContentView (R.layout.main);
Button up button = (Button) findViewById (R.id.up button);

}
Mutant

Fig. 1: Recommended Implementation of MDL

all AODU mutants, indicated by “1.000” values in the AODU
column in Table III. AODU deletes basic unary arithmetic
operators in an expression. Figure 2 shows an example AODU
mutant, in which the minus symbol is deleted. The results
indicate that AODU is redundant and can be excluded.

Original: int x = - y ; AODU Mutant: int x = y ;

Fig. 2: An Example AODU Mutant

As shown in Table III, the Button Widget Deletion (BWD)
column has six “1.000” values, which is the second highest
among all the mutation operators. In fact, all the BWD mutants
were killed by the BWS tests. Button widgets are used by
nearly all Android apps in many ways. BWD deletes buttons
one at a time from the XML layout file of the UI. BWS
switches the locations of two buttons on the same screen. In
this way, the function of a button is unaffected, but the GUI
layout looks different from the original version. BWS requires
the tester to design tests that deliberately check the location
(either relative or absolute) of a button widget.

When BWS mutants ensure every button is displayed at the
expected location, it also guarantees that this button is shown

545

on the screen. Subsumption is used to theoretically compare
test criteria: a criterion C1 subsumes another criterion C2, if
every test that satisfies C1 is guaranteed to satisfy C2 [18]. In
mutation testing, an operator MO1 subsumes another operator
MO2 if a test set that kills all mutants of MO1 is guaranteed
to kill all mutants of MO2. Thus, BWS subsumes BWD, that
is, every test set designed to kill all the BWS mutants can kill
all the BWD mutants. As a result, when users include BWS in
the Android mutation analysis, excluding BWD mutants will
not affect test effectiveness. Note that if an Activity only has
one button widget, BWS cannot generate any mutants. This
is because to achieve switching, the Activity must display at
least two buttons. Thus, it is recommended to disable BWD
when there are BSW mutants, and enable it otherwise.

The Conditional Operator Deletion (COD) mutation oper-
ator also has six “1.000” values (second highest), and the
Constant Deletion (CDL) mutation operator has five “1.000”
values (third highest). Also, the ODL test sets killed all the
mutants of CDL, COD, and the Variable Deletion mutation
operator (VDL). The Operator Deletion mutation operator
(ODL) was originally designed by Delamaro et al. [11]. It
deletes each arithmetic, relational, logical, bitwise, and shift
operator from all expressions. CDL deletes each constant in an
expression, and VDL deletes each variable in an expression.
Figures 3 shows example ODL, CDL, and VDL mutants. Ac-
cording to the definitions, it is guaranteed that ODL subsumes
CDL and VDL. COD deletes unary conditional operators.
Figure 3 also shows that ODL and COD generate the same
mutants. Therefore, ODL theoretically subsumes COD. Not
surprisingly, test cases designed to kill ODL mutants also
kill CDL, COD, and VDL mutants, which means when using
ODL, we can exclude CDL, COD, and VDL.

Original: int x = y + 2 ; ODL Mutant 1: int x = y ;
ODL Mutant 2: int x = 2 ;

CDL Mutant: int x = y ;
VDL Mutant: int x = 2 ;

Original: int x = - y ; ODL Mutant: int x = y ;

Original: if (! isError) { ODL Mutant: if (isError) {
x = y ; } x = y ; }

COD Mutant: if (isError) {
x = y ; }

Fig. 3: Example ODL, CDL, VDL, and COD Mutants

The Unary Arithmetic Operator Insertion (AOIU) inserts a
minus sign in front of integer variables. The Logical Operator
Insertion (LOI) inserts a bitwise complement operator in front
of integer variables. 50.3% of AOIU mutants and 44.9% of
LOI mutants were killed by test FOB tests, which are simple
tests that only launch an Activity and click the Back button.

int level = 1;
current level.setText (Integer.toString (level)); // Original
int level = 1;
current level.setText (Integer.toString (-level)); // AOIU Mutant
int level = 1;
current level.setText (Integer.toString (∼level)); // LOI Mutant

Fig. 4: AOIU and LOI Examples

Figure 4 gives example AOIU and LOI mutants. In Android
apps, each GUI widget is assigned a resource ID that is
recorded as an integer number. These resource IDs are stored
and managed in XML files. Both AOIU and LOI generate
many mutants by mutating the resource IDs in Android apps.
Figure 5 shows an example where AOIU changes the resource
ID of upbutton. However, once a resource ID is changed and
not mapped to its original GUI widget, the Android app will
immediately crash after launched, making the mutant trivial
and redundant. That is, any test case that launches the app can
kill this mutant. Similarly, LOI also generates trivial mutants.
Therefore, when using mutation testing for Android apps, we
recommend to exclude AOIU and LOI.

Button upbutton = (Button) findViewById (R.id.upbutton); // Original
Button upbutton = (Button) findViewById (- R.id.upbutton); // AOIU

Fig. 5: AOIU Changes Android Resource ID

In summary, we recommend the following:

1) Exclude AODU, because of its highest average redun-
dancy scores

2) Improve the design of MDL, because MDL generates
trivial mutants

3) Exclude BWD when using BWS, because BWS sub-
sumes BWD

4) Exclude AOIU and LOI, because around 50% of AOIU
and LOI mutants are trivial

5) Exclude CDL, COD, and VDL when using ODL, be-
cause ODL subsumes them

E. Re-evaluating the Effectiveness

Based on the evaluation results, we provide recommenda-
tions to eliminate the redundancy among Android mutation
operators. However, it is not clear whether the effectiveness
of Android mutation testing still holds after removing and
modifying redundant mutation operators. Due to the high
computational cost of Android mutation testing, re-conducting
the whole effectiveness evaluation in Section III would take
several months. Thus, we elected to check the results on one
subject app.

According to the recommendations, we updated the im-
plementation of our Android mutation testing tool. We took
Tipster as the subject app for the re-evaluation. Originally,
Tipster generated 327 muJava mutants and 130 Android
mutants. After removing and modifying redundant mutation
operators, Tipster generated 259 muJava mutants and 125
Android mutants, with an overall 16% reduction in terms of
the total number of the mutants. After that, a new set of
mutation adequate tests was designed. Originally, Tipster had
64 crowdsourced faults, in which 51 were detected by the old
mutation adequate test set. After re-conducting the evaluation,
the newly designed mutation adequate test set using fewer
and less redundant mutants found the same 51 crowdsourced
faults in Tipster. Therefore, it is concluded that removing and
modifying redundant mutation operators in this research did
not impact the effectiveness of Android mutation testing.

546

IV. RELATED WORK

Traditional mutation testing uses three types of approaches
to reduce cost: do-fewer, do-smarter, and do-faster [19]. As
a do-fewer approach, selective mutation was introduced by
Wong and Mathur to choose a subset of mutation operators
[20]. The muJava tool selects 15 operators to preserve almost
the same test coverage as non-selective mutation [7]. Empirical
studies in both Java and C show that the Deletion mutation
operators are able to result in very effective tests with much
lower cost [10], [11]. This study, as a do-fewer approach, also
discussed them in Android mutation testing.

V. THREATS TO VALIDITY

Similar to most experiments in software engineering, this
empirical evaluation has several threats to validity.

Internal validity: In this experiment, we designed only one
set of Android mutation-adequate tests for each type of mutant.
The results of redundancy scores may differ for different
Android mutation-adequate tests. Also, in this experimental
study, we identified all the equivalent mutants by hand. Manual
work could introduce human errors.

External validity: We cannot guarantee that the selected
subjects are representative. The results and redundancy scores
may differ from the results in this study if we used different
subject apps. To improve the ability to compare results, we
chose Android apps that have previously been used in other
Android testing studies.

Construct validity: The implementation of our Android
mutation testing tool and the associated mutation operators
may include software faults. In this study, we constantly tested
the experimental environment to ensure reliability.

VI. CONCLUSIONS AND FUTURE WORK

Android mutation testing is an effective approach to design
and evaluate tests for Android apps. However, due to the
unique conditions of Android devices and apps, the cost of
Android mutation testing can be very expensive, in terms of
computational time and effort. We conducted an empirical
study to identify redundancy among mutation operators, with
the goal of finding mutation operators that are redundant and
do not contribute to the quality of tests.

The results of our study show that three Java traditional
mutation operators (AODU, AOIU, and LOI) are redundant
in Android mutation analysis. Excluding them can save costs
without reducing test quality. As BWS subsumes BWD, we
recommend skipping BWD mutants when BWS is used. As
ODL subsumes CDL, COD, and VDL, these three can be
excluded if ODL is used. Our study indicates that three
Android mutation operators (FOB, TVD, and ORL) have very
low average redundancy scores (6.4%, 0.7%, and 2.5%). They
are very hard to kill by other types of tests. Also, we provide
a recommendation for improving the design of MDL to stop
generating trivial mutants.

Kurtz et al. [21] found that traditional mutation scores are
inflated during mutation analysis, so are flawed as a test quality
measurement device. Since a very strong and rich test set is
needed to perform minimal mutation analysis and compute
dominator mutation scores, we did not include them into this

study, due to the expensive cost. For future work, we hope to
use minimal mutation analysis and dominator mutation scores
to verify the conclusions in this study.

ACKNOWLEDGMENT

This work was partly funded by The Knowledge Foundation
(KKS) through the project 20130085: Testing of Critical
System Characteristics (TOCSYC).

REFERENCES

[1] Kleiner Perkins Caufield & Byers, “Internet trends 2015,” Online, May
2015, http://www.kpcb.com/internet-trends, last access September 2015.

[2] International Data Corporation, “Smartphone OS market share, 2017
Q1,” Online, May 2017, https://www.idc.com/promo/smartphone-
market-share/os, last access March 2018.

[3] “Android apps on Google Play,” 2018, http://www.appbrain.com/stats/
number-of-android-apps, last access March 2018.

[4] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, “Towards mutation
analysis of Android apps,” in Tenth Workshop on Mutation Analysis
(Mutation 2015), April 2015, pp. 1–10.

[5] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation operators for
testing android apps,” Information and Software Technology, vol. 81, pp.
154 – 168, 2017.

[6] L. Deng, J. Offutt, and D. Samudio, “Is mutation analysis effective
at testing android apps?” in 2017 IEEE International Conference on
Software Quality, Reliability and Security (QRS), July 2017, pp. 86–93.

[7] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava : An automated class
mutation system,” Software Testing, Verification, and Reliability, Wiley,
vol. 15, no. 2, pp. 97–133, June 2005.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, pp. 34–41, April 1978.

[9] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. Krauser, R. J.
Martin, A. Mathur, and G. Spafford, “Design of mutant operators for
the C programming language,” Software Engineering Research Center,
Purdue University, West Lafayette, IN, Technical Report SERC-TR-41-
P, March 1989.

[10] L. Deng, J. Offutt, and N. Li, “Empirical evaluation of the statement
deletion mutation operator,” in 6th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2013), Luxembourg,
March 2013.

[11] M. E. Delamaro, J. Offutt, and P. Ammann, “Designing deletion mu-
tation operators,” in 7th IEEE International Conference on Software
Testing, Verification and Validation (ICST 2014), Cleveland, Ohio,
March 2014.

[12] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in 7th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2014), Cleveland,
OH, March 2014, pp. 21–30.

[13] (2010) JustSit. https://play.google.com/store/apps/details?id=
com.brocktice.JustSit, last access September 2016.

[14] (2014) MunchLife. https://play.google.com/store/apps/details?id=
info.bpace.munchlife, last access September 2016.

[15] (2013) TippyTipper. https://code.google.com/p/tippytipper, last access
September 2016.

[16] I. Darwin, “Tipster,” 2016, https://github.com/IanDarwin/Android-
Cookbook-Examples/tree/master/Tipster, last access September 2016.

[17] U. Praphamontripong and J. Offutt, “Finding redundancy in web mu-
tation operators,” in Twelfth Workshop on Mutation Analysis (Mutation
2017), March 2017, pp. 134–142.

[18] P. Ammann and J. Offutt, Introduction to software testing, 2nd ed.
Cambridge University Press, 2017, iSBN 978-1107172012.

[19] J. Offutt and R. Untch, “Mutation 2000: Uniting the orthogonal,” in
Proceedings of Mutation 2000: Mutation Testing in the Twentieth and
the Twenty First Centuries, San Jose, CA, October 2000, pp. 45–55.

[20] W. E. Wong, M. E. Delamaro, J. C. Maldonado, and A. P. Mathur,
“Constrained mutation in C programs,” in Proceedings of the 8th
Brazilian Symposium on Software Engineering, Curitiba, Brazil, October
1994, pp. 439–452.

[21] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
N. Gökçe, “Analyzing the validity of selective mutation with dominator
mutants,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: ACM, 2016, pp. 571–582.

547

http://www.kpcb.com/internet-trends
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
https://play.google.com/store/apps/details?id=com.brocktice.JustSit
https://play.google.com/store/apps/details?id=com.brocktice.JustSit
https://play.google.com/store/apps/details?id=info.bpace.munchlife
https://play.google.com/store/apps/details?id=info.bpace.munchlife
https://code.google.com/p/tippytipper
https://github.com/IanDarwin/Android-Cookbook-Examples/tree/master/Tipster
https://github.com/IanDarwin/Android-Cookbook-Examples/tree/master/Tipster

A Test Case Generation Method Based on State
Importance of EFSM for Web Application

Junxia Guo, WeiWei Wang, Linjie Sun, Zheng Li and Ruilian Zhao
College of Information Science and Technology

Beijing University of Chemical Technology
Beijing, China

Email: gjxia; lizheng; rlzhao@mail.buct.edu.cn

1 Abstract—Test cases generation is a principal process in
web application testing. Most existing methods generate test
cases for improving test efficiency mainly from the aspects like
minimizing the test case suite, increasing the code coverage,
and so on. However, similar with traditional software having
important functions, classes or modules, some web states are
more vital than others in web applications. It can be thought
that those vital web states relatively have higher influence on the
performance of web application. So, they should be given more
attention in test case generation. In more detail, the importance of
web states can be measured from its page contents or topological
structures. Meanwhile, as we known Model-based Testing is a
kind of widely used approach in automatic test case generation.
Therefore in this paper we propose an EFSM based test case
generation method considering the importance of web states
for web applications. The experimental results show that our
methods can deterministically enhance the testing efficiency of
web application.

Index Terms—Web application testing; test case generation;
Web state importance; EFSM model;

I. INTRODUCTION

With the high speed development of Internet, web applica-
tions have become widespread and still increase rapidly. Web
applications testing becomes more and more difficult. As an
main part of testing, test cases generation is crucial to improve
the test efficiency. Unquestionable, good test cases can detect
bugs faster. So, test case generation approaches for web appli-
cations aim to generate better test cases automatically. There
are several kinds of methods with respect to test case genera-
tion for web applications, for instance, Capture/Replay-based
methods, source code analysis-based methods and model-
based methods. Most of those methods generate test cases
for improving test efficiency mainly from the aspects like
minimizing the test case suite, increasing the code coverage,
and so on. However, similar with traditional software having
important functions, classes or models[1], some web states
are more vital than others in web applications. These web
states relatively have higher influence on the performance of
web application. They should be tested preferentially. So, the
test case generation for web applications should give more
attention on these web states.

In order to generate test cases that can cover the important
web states, we need to, firstly, find those web states in a web

1DOI reference number: 10.18293/SEKE2018-177

application. As we known, web states of a web application
can be described with a graph, such as a state-flow graph, a
state-transition graph and so on. Although the importance of
nodes can be calculated according to the algorithms of graphic
theory, the importance is only reflected from the topology of
graph, without referring to the importance of a web page itself.
Meanwhile, nowadays, more and more new dynamic page
techniques are adopted in web applications in order to get
better user experience with the help of client-side scripting or
server-side scripting or both of them. Asynchronous JavaScript
and XMLHttpRequest (Ajax) is a set of those techniques
which can change content dynamically without reloading
the entire page, hence can decrease the information transfer
between client side and server side. This makes the traditional
methods that use a web page as a web state for web application
test become not suitable. So, we need to pay more attention
to the change of Document Object Model (DOM) structures.

Model-based testing (MBT) is a promising paradigm for
test case generation. Therefore, in this paper, we firstly propose
a method of building Extended Finite State Machine(EFSM)
model based on session data for web applications, in which a
state node represents a web state in the format of combining a
URL and DOM structure. Then, we measure the importance of
states from that of page contents or topological structures, and
give an algorithm to evaluate the importance of web states.
Finally we present a test case method based on the state
importance of EFSM model.

The primary contributions of this paper are as follows:

1) Propose a method for building EFSM model based on
session data, which can illustrate a web application more
explicitly.

2) Present a test case generation method based on the
importance of web states, which considers the aspects
of page contents and topological structures.

3) Implement a prototype tool and empirically evaluate our
EFSM model building method and test case generation
method. The results show that our methods are usable
and effective.

The rest of this paper is organized as follows. Section II
presents an overview of the related work. Section III describes
how to construct an EFSM model for a web application based
on its session data in detail. Section IV explains the algorithm

548

for evaluating the importance of web states from the aspects
of page contents and topological structures. Section V reports
the experimental results and analysis. Finally, conclusion and
future work are given in Section VI.

II. RELATED WORK

In this paper, we broadly categorise test case generation
techniques for web applications into three groups, including
Capture/Replay-based techniques, source code analysis-based
techniques, model-based techniques. Capture/Replay-based
techniques are one of notable trends for the automated test
case generation and execution in the area of web application
testing in recent years. Currently the most popular capture-
replay tools for AJAX testing are Selenium[2], Sahi[3], and
Watir[4], which can test DOM-based web applications by
capturing events information from user interaction. Such tools
need to access the DOM, can assert expected UI behaviour
defined by the tester and replay the events[5]. However, a
substantial amount of manual efforts are required for testing.

Source code analysis-based techniques generate test cases
based on the information which are obtained from the page
contents of client-side pages or the code structure of server-
side code of web applications. Such as, Wang et al.[6] proposes
a static analysis approach for automatic generating test cases
for web applications. In this approach, source code is analyzed
to extract interfaces which are composed of input parameters
with domain information and user navigation map which is
composed of all the possible URLs from web application
source code. Then through the navigation graph, a set of
paths is selected and test cases are generated for each path.
Guodong et al.[7] present SymJS, a symbolic framework for
both pure JavaScript and client-side web programs. The tool
contains a symbolic execution engine for JavaScript, and an
automatic event explorer for web pages. Mark Harman et al.[8]
introduce three related algorithms and a tool for automated
web application testing using Search Based Software Testing
(SBST). Their approach starts with a static analysis phase
that collects static information to aid the subsequent search
based phase and produces a test suite that maximizes branch
coverage of the server-side application under test.

Model-based testing(MBT) is an increasingly wide-used
approach which has gained much interest in recent years,
from academic as well as industrial domain. The idea of
MBT is to create and maintain a model that contains the
information about the structure and possibly about the desired
behaviours of a web application. Test cases are then derived
either manually or automatically from the model with algo-
rithms that systematically cover the model using so called
selection criteria. Ricca and Tonella[9] proposed a UML model
for web application which incorporates static and dynamic
aspects of web application and re-interpreted it as a graph.
They developed a tool ReWeb, which is used to create the
model, and another tool TestWeb, which is used to generate
and execute a set of test cases based on the model built
by ReWeb. Alessandro Marchetto et al.[10], [11] proposed
a state-based testing approach, specially designed to exercise

Ajax web applications. The DOM of the page manipulated
by the Ajax code is abstracted into a state model. Callback
executions triggered by asynchronous messages received from
the web server are associated with state transitions. Test
cases are derived from the state model based on the notion
of semantically interacting events. QI et al.[12] present a
combinatorial strategy for full form test. This approach aims
to exploring more states and building a complete automated
test model for a web application. Miguel[13] proposed a test
generation and filtering technique for model-based testing for
web applications. A model contains the information of all UI
Test Patterns linked with connectors. Each UI Test Pattern
contains its specific configurations with the data needed for
test execution. Priti Bansal et al.[14] proposed a Model Based
Test Case Generation technique, in which the model represents
the navigation behavior of a web application. The related
information is derived from requirements and low level design.
Traversing the model can generate test sequences which can
be incorporated with input data to generate test cases later.

III. METHOD FOR BUILDING EFSM MODEL BASED-ON
SESSION DATA

To describe a web application explicitly, we use the com-
bination of URL and DOM structure as a state. In addition,
in order to ensure the executability of generated test cases,
the detailed information about how to trigger the transitions
is also necessary, including the trigger event, preconditions
and follow-up actions. EFSM is a widely used model which
consists of states and transitions. It is an enhanced model
which adds the preconditions of transitions and actions based
on Finite State Machine (FSM). The information about pre-
conditions of transitions and follow-up actions can be depicted
on EFSM model. Thus we assume that EFSM is suitable for
describing web applications.

An EFSM model is formally represented as a 6-tuple (S,
S0, I, V, O, T), where S is a finite set of states, S0 ∈ S is an
initial state named START, I is a set of input declarations, V
is a finite set of internal/context variables, O is a set of output
declarations, T is a finite set of transitions. Each member
of I is expressed as event(input parameters) meaning event
occurs with a list of input parameters. Each member of O is
described as action. Each transition t ∈ T is represented by
a 5-tuple 〈source(t), target(t), event(t),condition(t), action(t)〉,
where source(t) ∈ S is the start state of transition t,
target(t) ∈ S is the target state, event(t) ∈ I is an incentive
event or empty, condition(t) is the preconditions performing
transition t, and action(t) represents a sequence of actions[15],
[16].

The framework of EFSM model building method is shown
in Figure1. It is mainly consisted of four processes. 1) Get state
and transition-related information through crawling client-side.
2) Get transition-related information through session data. 3)
Combine the information of client-side with the session data.
4) Build EFSM model. We present the details in following
subsections.

549

Collect user-behavior session Data Crawl client-side DOM structure

Web Application

A set of users’ browsing-behavior
records

State(URL & DOM structure) flow
chart

Server-side Client-side

Preprocess Merge Equivalent DOM

A set of users’ visiting records with detail
information including “Trigger Event”,

“Precondition” and “Follow-up Actions”

Combine related transition information
of client-side and sever-side

EFSM Model

Build

Fig. 1. Method Framework of Building EFSM Model

A. DOM Structures and Transition-related Information Col-
lection from Client-side

In this paper, we use a tool named Crawljax[17] to get the
DOM structures of a web application. Crawljax works in the
mode of depth-first crawl rule. The result includes the states
information and the transition-related information which could
be got from client-side.

There may exist duplicate states that are triggered by
different events and handled by the same script function.
Meanwhile, there are states which have the same structure
but have different contents, for example different text content.
Therefore, in order to avoid state explosion, the above two
kinds of states need to be reduced and combined. Firstly,
we abstract the DOM structure of all states by filtering the
structure-unrelated elements, such as text content, time stamp
and so on. Then we judge the similarity of two states by using
the edit distance of two DOM structures, which is calculated
through Levenshtein[18] method. Finally, we reduce all the
same states and combine all the similar states which have high
similarity.
B. Session Data Preprocessor

Session data, a kind of log data which can record the
original information when a user visits a web application
and sends requests. Based on those data, we can get the
whole visiting trails of every user. In addition, we can get the
transition information through them. In this paper, we collect
the session data from server-side. The detailed information
of session data mainly includes User IP, Session ID, Date
& Time, Request Event, Request URL, Referrer URL and
Responded HTTP Code.

The preprocessing of session data mainly has three proce-
dures, which are clearing up unusable records, user identifica-
tion and dividing users’ visiting trails. We use session ID to
identify different users. There are mainly two kinds of methods
for separating user’s visiting sequence. One is based on the
referrer information. Another is according to the visiting time
threshold. In this paper, we united the two kinds of methods
as the rule, which can be described as: Record a user’s visiting
trail based on the page URL referrer. If the interval of the user
visiting is larger than 30 minutes, we confirm the user start a

new visiting. The time threshold is determined according to
the related work[19], [20].
C. Transition-related Information Integration

User-operations of web application may interact with the
server-side or not. For example, when deleting a mail in the
email system, the selection operation do not interact with
server-side while the deletion operation do. In order to get
integrated transition-related information, we need to combine
the related information got from client-side and server-side.

For example a email deletion operation usually has two
steps. Select the check-box to mark the email. Then click
the ”delete” button to finish the operation. The first step
just has client-side information recorded about this transition.
The second step has interaction with server-side. The related
information will be recorded in session data. The information
of those two steps will be combined and recorded to the related
users’ visiting sequence. The relationship diagram of records
in session data could be illustrated as Figure2.

Fig. 2. Relationship Diagram of Records in Session Data

D. Build EFSM Model

As mentioned above, the item of <URL, DOM-structure>
is a state in our method. The information of Trigger Event,
Precondition, Follow-up Action is integrated transition infor-
mation. According to the relationships between item <Referrer
URL, Referrer DOM> and <Request URL, DOM Structure>
shown in Figure2, which describes the transition sequence of
states, the EFSM model could be built. The pseudo-code of
building EFSM model algorithm is shown in Algorithm 1.
Algorithm 1 EFSM Model Construction
Require: integrated user session
Ensure: an EFSM model description file for the web application
1: EFSM.init(); //store the model information
2: while session 6= NULL do
3: while record 6= NULL do
4: if record.state NotIn EFSM.state then
5: EFSM.state.add(record.state);
6: end if
7: t.init(record);//initialize the transition t
8: if t NotIn EFSM.trans then
9: EFSM.trans.add(t);

10: end if
11: end while
12: end while

IV. TEST CASE GENERATION METHOD CONSIDERING
WEB STATE IMPORTANCE

We consider the importance of web states mainly from two
aspects. One aspect is from the topological structure. Another
is from the importance of contents on related web page. Based
on the important value of each state, we use traditional Genetic
Algorithm(GA) to generate test cases from the EFSM which
is built using the method described in SectionIII. We present
our method’s detail in following subsections.

550

A. Evaluate Web State Importance
The content of a web page is mainly the text content. The

purpose of evaluating page content importance is to derive
the importance of the textual content displayed in the current
page over other web pages of the web application. For a
web application, we can assume that the pages with important
content are visited frequently. Thus the web pages containing
critical contents are more important for the web application.

The topological structure of web states is the inter-
dependency between the related web pages which can be
divided into data dependency and link dependency. Data
dependency refers to the operation of requesting data from
the server during the transition from the current state to a
new state. Link dependency refers to a simple jump from the
current state to a new state without data interaction.

Therefore, the importance of a web state can be evaluated by
combining the importance of the state in topological structure
and the related content. In this paper, we firstly calculate
content importance of the web page for each state. Then
we calculate the state importance directly by introducing the
content importance into topological importance calculation.

1) Content importance of a web page: By traversing the
state of EFSM model, we can get all web pages for all states.
For each web page, we can get a vector model of page content.
A keyword vector model reflecting the entire web application
is inferred with all pages’ vector models. Comparing the vector
model of a page and the keyword vector model of the web
application, the content importance of the web page can be
calculated.

When trigger a transition according to the information
of precondition, the textual content of the web page for
destination state can be extracted from the HTML code using
tag reduction method. The word segmentation operation is
performed on the textual content and the number of occur-
rences of each word is counted. Word segmentation and word
frequency constitute a vector model of the page content, which
can be formalized as: State(v) = {w1 : m1, w2 : m2, , wi :
mi}. Where w is the word appearing in the page and m is
the occurrence frequency of the word. After obtaining the
vector models of all pages, a keyword vector model of the
web application is inferred with all pages’ vector models
Key = {w1 : n1, w2 : n2, , wi : ni}.

The content importance(Con Importance) of a web page
can be calculated through comparing the vector model of
the page(State(v)) and the keyword vector model of the
web application(Key). The calculation formula is as follows.
Con Importance(v) = sin(State(v),Key) = cosθ =

State(v)·Key
||State(v)||·||Key||

2) State importance evaluation: The state importance eval-
uating algorithm presented here draws from the PageRank
algorithm’s logic, whose core idea is that the page with high
importance relies on the important pages, and the page relying
on high importance pages is of high importance[21].

Including the content importance, we consider 5 factors
totally , which are the importance of the states which current

state has data or link dependency and those depend on current
state. We divide those 5 factors in two attributes: Authority
and Hub. Authority refers to the summed importance of
the states on which the current state depends. There are
mainly three parts to measure authority: data dependency, link
dependency and content importance. The calculation formula
is as follows, where Authority(v) is the summed importance
of the states(includingu,w) on which the current state(v)
depends. (w, v) ∈ E,DTR means that state v has a data
dependency on state w, and (u, v) ∈ E,LTR means state v
has a link dependency on state u. Importance(w) means the
state importance of state w. α is a constant more than 1 since
we think the data dependency is more important than the link
dependency.

Authority(v) =
∑

(w,v)∈E,DTR αImportance(w) +∑
(u,v)∈E,LTR Importance(u) + Con Importance(v)

Hub refers to the summed importance of states that depend
on the state. It mainly consists of two parts: data dependency
and link dependency. The calculation formula is as follows.

Hub(v) =
∑

(w,v)∈E,DTR αImportance(w) +∑
(u,v)∈E,LTR Importance(u)

So a state’s importance can be calculated with the formula
Importance(v) = Authority(v) +Hub(v).

The algorithm for calculating state importance is described
in Algorithm 2. The web application is abstracted into the form
of an EFSM model. The initial value of state importance equals
the Authority value, which equals to the content importance.
The initial Hub value equals 0. In the iterative process, the
value of current importance is compared with that of the
previous generation. And when the difference is less than
threshold ε, the iteration ends and the page importance result
is obtained. Note that Importancet refers to an importance
value vector of all the web pages in the tth iteration.

Algorithm 2 Web State Importance Calculation
Require: EFSM =< state, trans >, the threshold ε
Ensure: Pages’ content importance value
1: for v in state do
2: Importance(v) = Authority(v), H(v) = 0
3: end for
4: while ||Importancet − Importancet−1|| <= ε do
5: for v in state do
6: Authorityt(v) =

∑
(w,v)∈E,DTR αImportancet−1(w) +∑

(u,v)∈E,LTR Importancet−1(u) + Con Importancet−1(v)

7: Hub(v)t =
∑

(w,v)∈E,DTR αImportancet−1(w) +∑
(u,v)∈E,LTR Importancet−1(u)

8: Importancet(v) = Authority(v)t +Hubt(v)
9: end for

10: Importancet =
Importancet
||Importancet||

11: t=t+1
12: end while

B. Test Case Generation

There are many test generation approaches for EFSMs.
The search-based algorithm is the most commonly used. In
this paper, we use GA to generate test cases based on state
importance of EFSM model for web applications.

551

A test case is one transition path on EFSM which can be
expressed as a sequence Ind =< t1, t2, , ti, tj , , tn >. A test
case is an individual, and the initial population is randomly
generated from the EFSM. Fitness function is to guide the
evolution towards optimal solutions. It determines whether an
individual can be selected into the next evolution. We design
the fitness function from two aspects. One is maximizing the
summed importance of the web states in an individual. The
other is minimizing the repeated ratio of transitions in an
individual. The fitness function can be formalized as follows.

fitness =
∑n

i=0 Importance(si) ·
||UniTrans||
||Ind||

In this formula, Importance(si) refers to the importance of
the web state si, ||UniTrans|| is the number of not-repeated
transitions and ||Ind|| is the number of transitions in this
individual Ind.

Genetic operators include selection, crossover and mutation.
Selection is based on the fitness of the individual, which means
the individual of greater fitness has larger probability to be
selected as the parent. Crossover operator in our method is
single-point crossover. Mutation is applied to alter gene values
in an individual.

V. EXPERIMENT

In this section, we firstly validate the feasibility of our
modelling method. Then we generate test cases from the
EFSM model guided by the state importance to demonstrate
the benefit of our method. To assess the effectiveness of our
method, we conduct case studies on two web applications. The
following research questions motivate our experiments.

RQ1: Is our session data based modelling method effective
and feasible?

RQ2: Do the test cases which are generated guided by state
importance from the EFSM, cover the important web states
earlier?

A. Experimental Subjects

In the experimental studies, we use an open source on-
line Book Store[22] and the laboratory management system
(DBLab) developed by our group as the subjects to evaluate
the validity and effectiveness of our method. The lines of
code(LOC) of DBLab and Book store is 10162 and 6304
respectively. Book store allows users to add and remove books
from a cart, login and register new users and so on. DBLab is a
laboratory management system that includes user registration
and login, group meeting management and viewing, user
account management, library management, file management,
student forums, data sharing and other functional modules.

B. EFSM Model Evaluation

The EFSM model is abstracted based on the Session data
recorded on the server-side when the users access the web
application. It may not be sufficient for modelling the web
application. The integrity of the EFSM model is directly
related to the Session data. In order to analyze the dependency

between the model and the Session data, and judge whether the
EFSM model is integral, we perform the following experiment.

Taking the DBLab as an example, according to the record
time of session data, the EFSM model is established with
session data from one month, two months, three months, and
four months respectively. Finally, the EFSM model of the web
application is manually analyzed and checked to verify if there
are missing states or transitions. The experimental results are
as follows.

TABLE I
STATISTICS OF DBLAB GENERATES EFSM BY MONTH

Item records N. in
Session

state N. on
EFSM

Transition N.
on EFSM

June 954 20 40
June to July 1583 24 54
June to August 1942 24 54
June to September 2814 26 61
Manually checked – 28 65

It can be seen from the Table I , after modelling the
web application manually, the EFSM model increased two
states and four transitions. Through analyzing the extra states
and transitions, we find that these functions of DBLab are
not daily use type. Based on the above analysis, we can
see that the proposed EFSM model construction method for
web applications in this paper has a great dependence on
Session data. However, if the users’ session records for web
applications reach certain level of saturation, the EFSM model
established based on the session data can basically reflect all
the functions of the web application and realize the complete
description for the web application. So our session data based
modelling method is effective and feasible(RQ1).

The detail information of EFSM models which are built
through our method for two test subjects is, 1) the number
of states and transitions of the DBLab’s model is 28 and 65
respectively; 2) the number of states and transitions of the
BookStore’s model is 9 and 36 respectively.

The EFSM model of two test subjects can be found at
http://research.cs.buct.edu.cn/guo/files/EFSM-BS.pdf and http:
//research.cs.buct.edu.cn/guo/files/EFSM-DBLab.pdf.

C. Test Case Generation Method Evaluation

The purpose of the test case generation method proposed
in this paper is to prioritize those nodes with high importance
to be tested earlier. Because that such nodes have high error
propagation capability and are more likely to bring negative
affect in the web applications. We select the three most
important nodes from the BookStore and DBLab as the high
importance nodes according to the node importance value.
The three high importance nodes in the BookStore are State1,
State2, and State8. The three high importance nodes in the
DBLab are State16, State18, and State22.

We use our method and the random method to generate
test cases from the EFSMs of the two applications. The
test suite size(population size) are set to 10 (BookStore)
and 20 (DBLab). The goal of the test suite is to cover all
the transitions. Our test case generation method and random
method were executed 10 times repeatedly. The results is

552

that, in the BookStore, the number of test cases generated
by our method is 4.6 to cover the three high importance
nodes on average, and the number of test cases generated by
random method is 8.2 on average. In DBLab, the number of
test cases generated by our method is 5.2 to cover the three
high importance nodes on average, and the number of test
cases generated by random method is 15.8 on average. The
importance of test suites generated by our method and random
method for ten times is shown in Figure 3(H : experimental
number, V: number of generated test cases).

[BookStore]

[DBLab]

Fig. 3. The importance of test suites comparison

As the Figure 3 shows, under the premise of full transitions
coverage, the test suite generated by our method has a higher
importance value than the randomly generated test suite. At
the same time, our test suite can cover important nodes when
executing a small number of test cases. It can be seen that
the method proposed in this paper can ensure that nodes with
high importance to be tested firstly(RQ2).

VI. CONCLUSION AN FUTURE WORK

In this paper, we proposed an EFSM model constructing
method for web applications based on session data, which can
address the accurate description problem of web applications,
and an algorithm to evaluate state importance of the EFSM
model. In addition, we give a test case generation method
based on the state importance of EFSM model, which can
ensure the important web states can be tested first and then
improve the efficiency of web application test.

The experimental results show that our methods can model-
ing web application well and the generated test case an cover
the important web state earlier.

As the future work, firstly we will try to modify the EFSM
model constructing method. Because that the method proposed
in this paper need a sufficient amount of session data to detect
the states and transitions. Secondly, we would like to design
other algorithms for evaluating state importance by introducing
other items, for example the number of variables.

ACKNOWLEDGMENT

The work described in this paper is supported by the
National Natural Science Foundation of China under Grant
No.61702029, No.61672085 and No.61472025.

REFERENCES

[1] M. Hammad, M. L. Collard, and J. I. Maletic, “Measuring class
importance in the context of design evolution,” in IEEE International
Conference on Program Comprehension, 2010, pp. 148–151.

[2] “Selenium,” https://www.seleniumhq.org/.
[3] “Sahi,” http://sahipro.com/.
[4] “Watir,” http://watir.com/.
[5] Y. F. Li, P. K. Das, and D. L. Dowe, “Two decades of web application

testinga survey of recent advances,” Information Systems, vol. 43, no. C,
pp. 20–54, 2014.

[6] M. Wang, J. Yuan, H. Miao, and G. Tan, “A static analysis approach for
automatic generating test cases for web applications,” in International
Conference on Computer Science and Software Engineering, 2008, pp.
751–754.

[7] G. Li, E. Andreasen, and I. Ghosh, “Symjs: automatic symbolic testing
of javascript web applications,” in The ACM Sigsoft International
Symposium, 2014, pp. 449–459.

[8] N. Alshahwan and M. Harman, “Automated web application testing
using search based software engineering,” in Ieee/acm International
Conference on Automated Software Engineering, 2011, pp. 3–12.

[9] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in
International Conference on Software Engineering, 2001, pp. 25–34.

[10] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax web
applications,” in International Symposium on Search Based Software
Engineering, 2009, pp. 3–12.

[11] A. Marchetto and P. Tonella, “Using search-based algorithms for ajax
event sequence generation during testing,” Empirical Software Engineer-
ing, vol. 16, no. 1, pp. 103–140, 2011.

[12] X. F. Qi, Z. Y. Wang, J. Q. Mao, and P. Wang, “Automated testing of
web applications using combinatorial strategies,” Journal of Computer
Science and Technology, vol. 32, no. 1, pp. 199–210, 2017.

[13] A. M. Torsel, “Automated test case generation for web applications
from a domain specific model,” in Computer Software and Applications
Conference Workshops, 2011, pp. 137–142.

[14] P. Bansal and S. Sabharwal, “A model based approach to test case gener-
ation for testing the navigation behavior of dynamic web applications,”
in Sixth International Conference on Contemporary Computing, 2013,
pp. 213–218.

[15] A. S. Kalaji, R. M. Hierons, and S. Swift, An integrated search-
based approach for automatic testing from extended finite state machine
(EFSM) models. Butterworth-Heinemann, 2011.

[16] A. S. Kalaji and Hierons, “Generating feasible transition paths for
testing from an extended finite state machine (efsm),” in International
Conference on Software Testing, Verification, and Validation Workshops,
2010, pp. 230–239.

[17] “Crawljax,” http://crawljax.com.
[18] A. Mesbah and A. V. Deursen, “Migrating multi-page web applications

to single-page ajax interfaces,” in European Conference on Software
Maintenance and Reengineering, 2007, pp. 181–190.

[19] L. D. Catledge and J. E. Pitkow, “Characterizing browsing strategies
in the world-wide web,” in International World Wide Web Conference,
1995, p. 10651073.

[20] J. Guo, C. Gao, N. Xu, G. Lu, and H. Han, “Analyzing query trails and
satisfaction based on browsing behaviors,” in Web Information System
and Application Conference, 2014, pp. 107–112.

[21] L. L, D. Chen, X. L. Ren, Q. M. Zhang, Y. C. Zhang, and T. Zhou,
“Vital nodes identification in complex networks,” Physics Reports, vol.
650, pp. 1–63, 2016.

[22] “Book store,” http://gotocode.com/.

553

Parallel Property Checking with
Symbolic Execution

Junye Wen, Guowei Yang
Department of Computer Science

Texas State University, San Marcos, TX
{j w236, gyang}@txstate.edu

Abstract—Systematically checking code against functional cor-
rectness properties is costly, especially for complex code anno-
tated with rich behavioral properties. This paper introduces a
novel approach to checking properties in parallel using symbolic
execution. Our approach partitions a check for the whole set
of properties into multiple simpler sub-checks—each sub-check
focusing on a single property, so that different properties are
checked in parallel among multiple workers. Furthermore, each
sub-check is guided by the checked property to avoid exploring
irrelevant paths and is prioritized based on distances towards
the checked property to provide early feedback. We implement
our approach in Symbolic PathFinder, and experiments on
systematically checking assertions in Java programs show the
effectiveness of our approach.

I. Introduction
Researchers have long recognized the value of annotating

functional correctness properties of code using assertions [7]
or executable contracts, such as those supported by the Java
Modeling Language [15] or Eiffel [17]. However, developers
are often reluctant to use them largely due to the high
computational cost of running automated analyses to check
them.

Symbolic execution [13], [14] is a powerful program anal-
ysis technique that has a number of useful applications and
has been widely used as a systematic technique for bug
finding [10], [20], [22], [28], but symbolic execution is com-
putationally expensive due to the large number of paths to
explore as well as the high cost of underlying constraint
solving. Scaling symbolic execution remains challenging for
complex programs in practice. When programs are annotated
with functional correctness properties, symbolic execution can
be naturally applied to automatically check program behaviors
against the annotated properties to check their validity. How-
ever, the scalability issue is even exacerbated as the annotated
properties often introduce extra paths and extra constraints.
This paper is focused on reducing the computational cost of
symbolic execution in checking properties.

A lot of advances in symbolic execution have been made
during the last decade. Specifically, parallel analysis [5], [23]–
[25] allows multiple workers to explore largely disjoint sets
of program behaviors in parallel, and has shown particular
promise in addressing the scalability issue of symbolic ex-
ecution. However, to the best of our knowledge, none of

DOI reference number: 10.18293/SEKE2018-171

the approaches consider the characteristics of the annotated
properties in their parallelization strategies.

This paper introduces a novel approach to parallel property
checking using symbolic execution. Our key insight is that
properties are normally written without side effects, and thus
checking of each property is independent of checking of other
properties. Our approach partitions a check for the whole set of
properties into multiple simpler sub-checks—each focusing on
one single property, so that different properties are checked in
parallel among multiple workers. Furthermore, each sub-check
is guided by the checked property to avoid exploring irrelevant
paths and is prioritized based on distances towards the checked
property to provide earlier feedback, allowing users to fix bugs
in code or refine properties earlier. Specifically, during state
space exploration we statically check whether the checked
property is reachable or not along the current path, and prune
the search when the checked property cannot be reached.
Moreover, we prioritize the state space exploration so that the
state whose corresponding location has the shortest distance
towards the checked property is explored first, i.e., the shortest
path to the checked property gets explored first. Therefore, the
prioritized state space exploration can provide earlier feedback
on the checked property. Note that the chance of pruning
irrelevant state space is much higher in each sub-check than
in the original check, since in a sub-check the program under
analysis has only one property at a particular location in the
program, while the program under analysis in the original
check has multiple properties scattered in different locations
in the program.

We implement our approach in Symbolic PathFinder [18].
To evaluate the efficacy of our approach we apply it in the
context of symbolic execution for checking Java programs
annotated with assertions. We conduct experiments based
on five subjects: three Java programs with manually written
assertions and two Java programs with synthesized assertions.
Experimental results show that our approach for parallel prop-
erty checking detects more assertion violations and reduces
the overall analysis time compared with regular non-parallel
property checking. For one subject, while regular property
checking timed out after executing for two hours, our parallel
property checking technique completed within four seconds. In
addition, for most sub-checks, our guided check prunes state
space and reduces the time cost, and our prioritized check
provides earlier feedback compared to regular check.

554

II. Motivating Example

We use an example to illustrate how our approach leverages
the annotated properties to improve the scalability of symbolic
execution for property checking. Consider the source code of
median shown in Figure 1. It computes the middle value of
its three integer inputs; this method is adapted from previous
work [12], and five assertions are manually added to check
the correctness of the program. For example, the user asserts
x <= y && y <= z at line 4, indicating that y should be
the middle value of the three inputs; otherwise, an assertion
violation is captured.

1int median(int x, int y, int z) {
2 if (y < z) {
3 if (x < y){
4 assert x <= y && y <= z; //#1
5 return y;}
6 else if (x < z){
7 assert y <= x && x <= z; //#2
8 return x;}
9 }

10 else {
11 if (x > y){
12 assert z <= y && y <= x; //#3
13 return y;}
14 else if (x > z){
15 assert z <= x && x <= y; //#4
16 return x;}
17 }
18

19 assert (x<=z && z<=y) || (y<=z && z<=x); //#5
20 return z;
21}

Fig. 1. Method to compute the middle value of three input numbers and its
annotated assertions.

The workload of checking five assertions in this program is
conducted by five workers running in parallel, such that each
worker checks one single assertion. For example, the worker
responsible for checking assertion #1 analyzes a program
version, where the code together with the target assertion
#1 remain unchanged, while all the other four assertions are
removed.

In addition, each sub-check is further optimized using
guided and prioritized state space exploration based on the
checked assertion. For checking assertion #1, the sub-check
is guided by assertion #1, avoiding exploring the irrelevant
parts of the program. Therefore, instead of exploring all the
six possible paths in the program, the guided check only
explores one path, that satisfies path condition y < z and x < y
and reaches the checked assertion. It results into up to 5/6
reduction in terms of the number of paths to be explored. If
multiple paths can reach the checked assertion, we use shortest
distance based heuristics to prioritize the search so that the
assertion can be checked as early as possible and a feedback,
i.e., whether the assertion is violated or not, can be returned
to the user as early as possible.

Fig. 2. An overview of the approach

III. Approach

Our approach is focused on how to optimally utilize the
computing resources available to check properties, specifically
in a parallel setting where the checking can be conducted
among several workers. Our key insight is that properties are
normally written without side effects, and thus checking of
each property is independent of checking of other properties.
The result from checking all properties in one run should be
the same as that from checking properties in multiple multiple
runs in parallel. This enables us to partition a check for the
whole set of properties into multiple simpler checks–each
focusing on one single property, so that different properties
are checked in parallel among multiple workers. Therefore, the
original check is converted into multiple simpler sub-checks
in parallel for better scalability.

Figure 2 shows an overview of the approach. Consider a
program P with multiple properties PT = {PT1, PT2, ..., PTm}

to check. Our approach first statically analyzes the program
to find all the m properties to check, and accordingly prepare
m program versions V = {v1, v2, ..., vm} where each version
contains only one property that does not appear in other
versions. These versions are then checked by m workers, each
worker focusing on one version and altogether checking all the
properties in parallel. Each worker works on its own program
version with one single property using property guided and
prioritized check. Finally, the property checking results from
these workers are delivered to the user.

The partition of properties not only simplifies the program
to be checked due to the removal of other properties, but also
allows further optimization of each sub-check. Since each sub-
check focuses on one single property, it is more likely to have
paths that do not reach the checked property compared with the
original check that focuses on multiple properties. Leveraging
this observation, each sub-check, i.e., a symbolic execution run
for checking one single property, is guided by the checked
property such that it only explores the program state space
that is relevant to the checked property. If the current path
cannot reach the checked property, symbolic execution does
not continue along the path and backtracks. By effectively

555

Algorithm 1 Procedure check for checking a property
Input: Program P, property PT , search depth bound DepthBound
Output: A set of property violations detected during symbolic execution VS

1: Queue tq← enabled transitions at current state s
2: while ¬tq.isEmpty() do
3: t ← tq.remove()
4: nt ← GetCFGNode(P, t)
5: na← GetCFGNode(P, PT)
6: if ¬IsCFGPath(nt, na) then
7: continue
8: else
9: s′ ← execute(s, t)

10: pc← current path condition
11: depth← depth + 1
12: if pc is not satisfiable then
13: continue
14: end if
15: if isPropertyViolated(s′) then
16: VS .add(violation(s′))
17: continue
18: end if
19: if depth == DepthBound then
20: continue
21: else
22: check(s′)
23: end if
24: end if
25: end while

pruning paths that cannot reach the checked assertions, our
approach avoids the cost of exploring irrelevant paths.

Algorithm 1 shows the procedure check for performing
property checking for a program with one single property.
Given as input a program, a property to check, and a bound on
the search depth, the procedure check the conformance of the
program behaviors with the checked property, and return all
property violations in the program. It starts with the initial state
for s, 0 for depth, and an empty set for VS . It finds all enabled
transitions at the current state (Line 1) to systematically search
the state space. Lines 4 − 5 locate the Control Flow Graph
(CFG) nodes for the enabled transition, and the checked prop-
erty, respectively. Both the enabled transition and the checked
property could correspond to multiple CFG nodes, we simplify
it here assuming that each corresponds to one CFG node.
It checks whether the current transition reaches the checked
property, and if not prune the search (Lines 6− 7); otherwise,
it executes the transition to get to the next state, and update
the pc and depth (Lines 9 − 11). If pc is unsatisfiable (i.e.,
the corresponding path is infeasible), the checked property is
violated, or search depth reaches the bound, it backtracks to
explore other un-explored enabled transitions (Lines 12− 20);
otherwise, it recursively explores the states rooted at the new
state s′ (Line 22).

In addition, each sub-check is prioritized to provide early
feedback to the user. In the context of property checking,
usually one property violation is enough for investigating the
violation, and there is no need to find all property violations.
Our insight is that the earlier a property is checked, the earlier
the user could start the investigation and fix the potential
problem either by modifying the code or by refining the
checked property. As there is no precise way to predict the
feasibility of paths and how long each path would take. We use
a heuristics to prioritize the check. Specifically, we calculate

the distances from the current point towards the checked
property along all potential paths, and choose the shortest path
to explore first [16].

To prioritize the search, at each branching point, we sort
the list of enabled transitions based on an estimated distance
to the checked property in a CFG. For each enabled transition
ti, we compute an estimated distance to the checked property.
The enabled transitions queue (tq in Algorithm 1) is sorted
in ascending order based on the estimated distances of the
transitions before the queue is explored. The enabled transition
with the shortest distance is explored first. The distance is a
lower bound on the number of CFG branches from a node ni

(corresponding to ti) to node n j, that is corresponding to the
checked property:

∀ni . n j : di := min (branches (ni, n j))

In our approach, we use the all-pairs shortest path algorithm
to compute the lower bound on the number of CFG branches.
The complexity is cubic in the number of branches in the CFG.
We note that metrics other than number of branches can also
be used as a distance estimate, for example, the number of
bytecodes.

IV. Evaluation

We empirically evaluate the effectiveness of our approach
for parallel property checking. Our evaluation addresses the
following research questions:

◦ RQ1: How does the efficiency of our parallel property
checking compare with regular property checking?

◦ RQ2: How does the cost of our guided check compare with
regular check?

◦ RQ3: How does our prioritized check compare with regular
check in terms of providing feedback to the user?

A. Artifacts

In our evaluation, we use five subjects including median,
testLoop, trityp, WBS, and TCAS. All of them have been
used before for evaluating symbolic execution techniques [19],
[25], [27], [28].

The first subject median is shown in Figure 1. The second
subject testLoop is used to investigate how our approach
can help deal with loops, as they pose particular challenges
to symbolic execution and handling them efficiently is an
active area of research. The third subject is a Java version
of the classic triangle classification program by Ammann
and Offutt. The classification logic of the trityp program
seems deceptively simple, but are non-trivial to reason about.
We consider the correct version of assertions developed for
trityp in previous work [27].

For the two subject programs WBS and TCAS, we use
mechanically synthesized assertions. To synthesize assertions
for our experiments, we use the Daikon tool for invariant
discovery [9]. Specifically, we apply Daikon on each subject to

556

discover invariants and transform them to assertions. Daikon
requires a test suite to execute the program under analysis and
detect its likely invariants. TCAS had a test suite available in
the Software Infrastructure Repository [1], so we used this test
suite which contains 1608 tests. For WBS, we wrote a random
test generator to create a test suite with 1000 tests. We selected
all the eight Daikon invariants for TCAS and randomly selected
25 out of 35 invariants for synthesizing assertions.

B. Experiment Setup

In this work, we use Symbolic PathFinder (SPF) [18], an
open-source tool for symbolic execution of Java programs
built on top of the Java PathFinder (JPF) model checker [26]
to perform symbolic execution. We implemented guided and
prioritized check in SPF as a customized listeners, and we
built customized control flow graphs to compute estimated
distances and reachability information to guide and prioritize
property checking. We also conduct experiments using regular
symbolic execution as implemented in SPF for comparison.
Choco constraint solver [2] is used for solving path conditions
involved in symbolic execution.

To evaluate RQ1 and RQ2, symbolic execution is configured
to detect all assertion violations; while to evaluate RQ3,
symbolic execution is configured to stop when it detects the
first assertion violation, to check whether our prioritized check
could provide earlier feedback than regular check.

We assume that there are enough workers available for
performing the tasks in parallel. In practice, resources could be
limited, and we need design strategies for statically grouping
work before dispatching or for dynamically stealing work
among workers, which is left for future work.

We perform the experiments on the Lonestar cluster at
the Texas Advanced Computing Center (TACC) [3]. TACC
provides powerful computation nodes with reliable and fast
connectivity. The programs for each worker node are executed
on independent processors without memory sharing.

C. Results and Analysis

In this section, we present the results of our experiments,
and analyze the results with respect to our three research
questions.

RQ1: How does the efficiency of our parallel property
checking compare with regular property checking?

Table I shows the experimental results for checking all
assertions in the subject programs using our parallel property
checking approach and using regular non-parallel property
checking approach. It shows the number of detected assertion
violations, and three types of checking cost, i.e., time, number
of states explored, and the maximum memory cost, for each
approach. Since in the parallel property checking sub-checks
are analyzed in parallel among multiple workers, the table
shows cost ranges of values across all sub-checks, and it also
shows the overall time cost for the parallel property checking;
while for regular symbolic execution the cost is collected by
running regular symbolic execution on the original program
annotated with all assertions. We note that 0 in time cost means

less than 1 second. TO indicates that the corresponding check
timed out.

We find that there are no assertion violations for median
and trityp, while for the other three subjects, the parallel
approach detects more assertion violations than regular ap-
proach. This is because some expensive assertion checking
happens only in the parallel property checking. Since Sym-
bolic PathFinder backtracks as soon as it detects an assertion
violation, the inputs reaching deep assertions may be reduced
due to violations of the shallow assertions along the same
path, and thus may not detect the possible violations of the
deep assertions in regular property checking approach.

Moreover, for all subjects except for WBS, the parallel
approach is more efficient than regular approach in prop-
erty checking. Specifically, it achieves almost 3X speedup
for TCAS. For testLoop, while regular symbolic execution
timed out after executing for two hours, the parallel property
checking completed within 31 seconds. Without surprise, most
sub-checks explored only part of the state space. We also note
however for WBS our approach took more time, and explored
more states, which is because of the cost for detecting the 130
more violations.

In addition, we find that although the parallel approach takes
almost the same memory cost as regular symbolic execution
for most runs, it takes more memory for some sub-checks for
WBS and TCAS; we note however that the maximum memory
reported by SPF may vary a lot due to the underlying garbage
collection, and thus this comparison is not very meaningful.

RQ2: How does the cost of our guided check compare with
regular check?

Table II reports the experimental results for each sub-
check using guided check and prioritized check compared to
using regular check, i.e., regular symbolic execution. As we
explained before, the comparison in memory cost is not very
meaningful, thus here we only report the cost in terms of time
and explored states.

To evaluate RQ2, symbolic execution is configured to check
for all assertion violations. We observe that for 44 out of 50
versions, our guided check explored fewer states than regular
check, since guided check prunes state space exploration when
the checked property is not reachable. For example, for v1 of
testLoop, guided check explored 103 states while regular
check explored 154 states, which is about 1/3 reduction.
Accordingly, the guided check took less time than regular
check for most of these cases. For example, for v1 of trityp,
guided check took 18 seconds while regular check took 22
seconds. However, we note that for some cases, although there
was a reduction in states, the time cost of guided check was
even higher than regular check due to the overhead of static
analysis involved in guided check.

RQ3: How does our prioritized check compare with regular
check in terms of providing feedback to the user?

To evaluate RQ3, run symbolic execution is configured to
stop when it finds the first assertion violation. From Table II,
we observe that for 40 out of 50 versions, prioritized check

557

TABLE I
Results of parallel and regular property checking.

Subject
Parallel Property Checking Regular Property Checking

Detected Total Time Time # of Memory Detected Time # of Memory
Violations (s) (s) States (MB) Violations (s) States (MB)

median (5 assertions) 0 2 0-2 5-13 965-965 0 2 13 965
testLoop (2 assertions) 2 31 0-30 103-180 965-965 - TO - -
trityp (10 assertions) 0 49 18-48 33-49 965-965 0 103 81 965
WBS (8 assertions) 222 7 0-7 359-671 965-1178 92 2 533 965

TCAS (25 assertions) 251 680 27-679 679-935 965-1685 195 2025 2047 965

TABLE II
Property checking using guided and prioritized check and regular check.

Subject Ver
Check all violations Check first violation

Guided Check Regular Check Prioritized Check Regular Check
Time States Time States Time States Time States

median

v1 0 5 0 11 0 5 0 11
v2 0 7 1 11 0 7 1 11
v3 0 5 1 11 0 5 1 11
v4 1 5 0 11 0 5 1 11
v5 2 13 2 13 1 13 1 13

testLoop v1 0 103 0 154 0 103 0 154
v2 30 727 TO TO 0 180 TO TO

trityp

v1 18 33 22 40 18 33 22 40
v2 18 35 18 36 18 35 21 36
v3 33 49 40 57 34 49 35 57
v4 29 39 29 39 29 39 32 39
v5 48 35 53 36 45 35 55 36
v6 28 37 30 42 28 37 29 42
v7 26 37 27 40 26 37 29 40
v8 19 35 20 36 21 35 21 36
v9 22 39 19 42 22 39 20 39
v10 20 39 23 39 23 39 21 39

WBS

v1 0 451 0 455 0 163 0 255
v2 0 359 0 359 0 222 0 341
v3 0 527 1 530 0 527 0 530
v4 0 623 1 623 0 9 0 9
v5 0 535 1 535 0 535 0 561
v6 7 671 11 680 0 9 0 9
v7 0 487 1 500 0 48 0 117
v8 0 527 0 530 0 368 0 421

TCAS

v1 219 727 250 760 289 727 265 702
v2 27 727 27 760 37 727 43 702
v3 34 687 33 702 37 687 33 702
v4 149 687 156 702 125 687 137 702
v5 30 679 41 754 27 679 34 754
v6 35 679 40 754 33 679 37 754
v7 31 679 35 679 33 679 34 679
v8 28 679 33 679 33 679 34 679
v9 241 695 275 722 240 695 257 722
v10 251 695 270 722 222 695 318 722
v11 32 695 36 722 1 33 1 38
v12 31 695 33 722 1 33 1 38
v13 201 695 226 727 238 695 241 727
v14 130 695 132 727 134 695 146 727
v15 28 695 34 727 11 229 13 270
v16 28 695 35 727 9 229 12 270
v17 679 743 644 745 557 743 568 745
v18 31 743 32 745 31 743 32 745
v19 36 935 34 950 15 370 26 439
v20 33 935 36 950 8 247 14 323
v21 30 719 30 874 29 678 29 678
v22 34 719 35 874 11 167 18 214
v23 33 815 35 827 0 20 0 33
v24 28 815 39 827 10 191 20 331
v25 34 815 35 827 9 211 19 231

explored fewer states than regular check, and for 8 versions,
both techniques explored the same number of states. For
instance, for v24 of TCAS, prioritized check explored 191
states, while regular check explored 331 states. However, for
the other 2 versions (i.e., v1 and v2 of TCAS, prioritized check
explored slightly more states than regular check. This is not
surprising as the shortest path selected by our heuristics is
based on number of branches in CFG, and may result in more
states to explore in symbolic execution. Similar to previous
experiments, prioritized check usually took less time when
it explored fewer states, as the time cost is correlated with
states exploration. For example, for v10 of TCAS, prioritized

check took 222 seconds, while regular check took 318 seconds,
which is about 1.5X speedup. Moreover, for v2 of testLoop,
prioritized check completes in less than one second; in con-
trast, regular check timed out after running for two hours. Only
for few versions, prioritized check took slightly more time than
regular check.

V. RelatedWork

Several research projects have proposed techniques for
parallel symbolic execution [5], [23], [25]. Static partition-
ing [25] leverages an initial shallow symbolic execution run
to minimize the communication overhead during parallel sym-
bolic execution. It creates pre-conditions using conjunctions
of clauses on path conditions encountered during the shallow
run, and restricts symbolic execution by each worker to
explore only paths that satisfy the pre-condition. ParSym [23]
parallelizes symbolic execution dynamically by taking each
path exploration as one unit of work and using a central
server to distribute work between parallel workers. Cloud9 [5]
utilizes load balancing that initially assigns the whole program
analysis to a worker, and whenever an idle worker becomes
available, the load balancer instructs the busy worker to
suspend exploration and breaks off some of its unexplored sub-
tree to send to the idle worker to balance the work load. While
these techniques use parallelization to speed up symbolic
execution in general and check the whole bounded state space,
our work is focused on checking side-effect-free properties
and ignores path exploration that is irrelevant to the checked
properties.

Much work has been done for guiding symbolic execu-
tion [16], [19], [21]. Directed symbolic execution [19] uses a
def-use analysis to compute change affected locations and then
uses this information to guide symbolic execution to explore
only program paths that are affected by the changes. Santelices
and Harrold [21] use control and data dependencies to sym-
bolically execute groups of paths, rather than individual paths.
Ma et al. [16] propose a call chain backward search heuristic to
find a feasible path to the target location. Our work leverages
reachability of properties to guide symbolic execution to only
explore paths relevant to the checked properties.

Some recent projects [11], [27], [29] have explored more
efficient checking of properties. Guo et al. [11] introduce
assertion guided symbolic execution for eliminating redundant
executions in multi-threaded programs to reduce the overall
computational cost. An execution is considered redundant
when it shares the same reason why it cannot reach the bad
state with previous executions, and thus can be eliminated

558

for the purpose of checking assertions. While it focuses on
eliminating redundant executions for multi-threaded programs,
our guided check focuses on eliminating irrelevant executions
for single-threaded programs. iProperty [27] computes differ-
ences between assertions of related programs in a manner that
facilitates more efficient incremental checking of conformance
of programs to properties. Our approach is orthogonal and
can use iProperty to compute differences between assertion
versions when the checked assertion is changed, thus speed-
ing up the assertion checking carried out by each worker.
iDiscovery [29] uses assertion separation to focus symbolic
execution on checking one assertion at a time, and violation
restriction to generate at most one violation of each assertion.
While our work shares some insight with assertion separation
on checking assertions separately, the guided and prioritized
check in our work has potential to more efficiently check each
assertion.

This work is different from property-based slicing and
property-aware testing and verification [4], [6], [8], since here
we simply check the reachability of properties and apply this
for guiding symbolic execution rather than other testing or
verification techniques.

We have presented the high-level ideas of this work in
Java PathFinder workshop 2015 to get early feedback,with
no formal proceedings for the paper. In this paper we have
developed the ideas further, and we have also provided more
evaluation of the work.

VI. Conclusions and FutureWork
This paper introduced a novel approach for partitioning the

problem of property checking using symbolic execution into
simpler sub-checks where each check is focused on checking
one single property. All sub-checks are performed by multiple
workers in parallel for better scalability. The parallelized prop-
erty checking enabled us to further optimize each sub-check
by pruning irrelevant paths regarding the checked property.
Moreover, check is prioritized to explore shorter paths towards
properties so that earlier feedback on the checked property
can be provided to the user. Experiments using five subject
programs with assertions that are manually written as well
as automatically synthesized, showed that our approach for
parallel property checking reduced the overall analysis time
compared with regular non-parallel property checking; and
in sub-checks which focus on checking one single assertion,
our guided check pruned state space exploration and thus
reduced the time cost, and our prioritized check provided
earlier feedback compared to regular check.

As for future work, we plan to conduct more extensive eval-
uation of our approach using more complex subjects, such as
open source programs. We would also like to investigate how
to parallelize property checking when not enough resources
are available, for example, the number of available workers is
fewer than the number of checked properties in the program.

Acknowledgments
This work is partially supported by the National Science

Foundation under Grant No. CCF-1464123.

References
[1] SIR Repository. http://sir.unl.edu.
[2] Choco solver. http://www.emn.fr/z-info/choco-solver.
[3] Lonestar cluster. https://www.tacc.utexas.edu/systems/lonestar.
[4] R. H. Bordini, M. Fisher, M. Wooldridge, and W. Visser. Property-based

slicing for agent verification. J. Log. and Comput., 19(6):1385–1425,
Dec. 2009.

[5] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In EuroSys, pages
183–198, 2011.

[6] G. Canfora, A. Cimitile, and A. D. Lucia. Conditioned program slicing.
Information & Software Technology, pages 595–607, 1998.

[7] L. A. Clarke and D. S. Rosenblum. A historical perspective on
runtime assertion checking in software development. SIGSOFT Software
Engineering Notes, 2006.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Bandera: a source-
level interface for model checking java programs. In ICSE, pages 762–
765, 2000.

[9] M. D. Ernst. Dynamically Discovering Likely Program Invariants. PhD
thesis, University of Washington Department of Computer Science and
Engineering, Seattle, Washington, Aug. 2000.

[10] P. Godefroid, S. K. Lahiri, and C. Rubio-González. Statically validating
must summaries for incremental compositional dynamic test generation.
In SAS, pages 112–128, 2011.

[11] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta. Assertion guided
symbolic execution of multithreaded programs. In ESEC/FSE, pages
854–865, 2015.

[12] J. A. Jones. Semi-Automatic Fault Localization. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, 2008.

[13] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In TACAS, pages 553–568,
2003.

[14] J. C. King. Symbolic execution and program testing. Communications
of the ACM, pages 385–394, 1976.

[15] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How
the design of jml accommodates both runtime assertion checking and
formal verification. Sci. Comput. Program., pages 185–208, 2005.

[16] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic
execution. In SAS, pages 95–111, 2011.

[17] B. Meyer, J.-M. Nerson, and M. Matsuo. Eiffel: Object-oriented design
for software engineering. In ESEC, pages 221–229, 1987.

[18] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,
and N. Rungta. Symbolic Pathfinder: integrating symbolic execution
with model checking for Java bytecode analysis. Automated Software
Engineering, pages 391–425, 2013.

[19] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental
symbolic execution. In PLDI, pages 504–515, 2011.

[20] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic exe-
cution and system-level concrete execution for testing NASA software.
In ISSTA, pages 15–26, 2008.

[21] R. Santelices and M. J. Harrold. Exploiting program dependencies for
scalable multiple-path symbolic execution. In ISSTA, pages 195–206,
2010.

[22] K. Sen and G. Agha. Cute and jcute: Concolic unit testing and explicit
path model-checking tools. In CAV, pages 419–423, 2006.

[23] J. H. Siddiqui and S. Khurshid. ParSym: Parallel symbolic execution.
In ICSE, pages V1–405 – V1–409, 2010.

[24] J. H. Siddiqui and S. Khurshid. Scaling symbolic execution using ranged
analysis. In OOPSLA, pages 523–536, 2012.

[25] M. Staats and C. Pǎsǎreanu. Parallel symbolic execution for structural
test generation. In ISSTA, pages 183–194, 2010.

[26] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engg., pages 203–232, 2003.

[27] G. Yang, S. Khurshid, S. Person, and N. Rungta. Property differencing
for incremental checking. In ICSE, pages 1059–1070, 2014.

[28] G. Yang, C. S. Păsăreanu, and S. Khurshid. Memoized symbolic
execution. In ISSTA, pages 144–154, 2012.

[29] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid. Feedback-
driven dynamic invariant discovery. In ISSTA, pages 362–372, 2014.

559

Software Process Improvement Programs: What

happens after official appraisal?
Regina Albuquerque

Graduate Program in Informatics –
Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba – Paraná

– Brazil
Regina.fabia@pucpr.br

Andreia Malucelli
Graduate Program in Informatics –

Pontifícia Universidade Católica do

Paraná (PUCPR), Curitiba – Paraná

– Brazil

malu@ppgia.pucpr.br

Sheila Reinehr
Graduate in Informatics – Pontifícia

Universidade Católica do Paraná

(PUCPR), Curitiba – Paraná – Brazil

sheila.reinehr@pucpr.br

Abstract— Studies of critical success factors in the

implementation of programs of software process

improvement have been conducted on a large scale in recent

decades. However, these studies only focus on the

implementation and do not consider the factors that

influence the continuity or abandonment of these programs

after official appraisal. Therefore, the objective of this study

is to investigate the critical factors involved in the

maintenance or abandonment of these programs. For this

purpose, an exploratory survey was conducted, with the

participation of consultants and appraisers of software

process improvement reference models. The result was the

proposal of a theoretical framework of critical success

factors to maintain the use of processes of reference models,

composed of the following categories: human factors,

project factors, consultancy, organizational factors and

technical factors involved in the process.

Keywords: Software Process Improvement, continuity of

SPI, abandonment of SPI.

I. INTRODUCTION

Since NATO meeting that was held in 1968, where the
term software engineering was born, the field has evolved
significantly in terms of methods, tools and programming
languages [1]. Several paths have been taken by both
practitioners and researchers during this evolution. One of
them concerns the belief that the quality of the software
development process directly influences the quality of the
resulting software product [2]. Based on this assumption
several models to support software process improvement
(SPI) were developed [3], especially those based on the
concepts of maturity and capability, such as CMMI-DEV
(Capability Maturity Model Integration for Development)
[4]. Nowadays, there are also reference models that are highly
recognized in their home country such as MR-MPS-SW
(Brazilian Software Process Improvement Model) [5] and
MoProSoft (the Mexican Model for Software Process) [6].

In 2003 the MPS.BR (Brazilian Software Process

Improvement Program) was created by SOFTEX
(Association for Promoting the Excelence of Brazilian

Software) to support small and medium software
organizations in the journey of SPI. The program is based on
five core components [5]: Reference Model for Software
(MR-MPS-SW), Reference Model for Services (MR-MPS-

SV), Reference Model for Human Resources Management
(MR-MPS-RH), Assessment Method (MA-MPS) e Business
Model (MN-MPS).

The reference model called MR-MPS-SW is focused on
software processes and is equivalent to CMMI-DEV [15].
Both define maturity levels that establishes process evolution
patterns, characterizing stages of improvement in the
implementation of processes in an organization.

To facilitate the adoption of the model by the Brazilian
software companies, MR-MPS-SW has seven maturity levels
(starting at level G, the lowest one, and progressing up to
level A): A (Optimizing) corresponds to CMMI-DEV Level
5; B (Quantitatively Managed) corresponds to CMMI Level
4; C (Defined), D (broadly defined) and E (partially defined)
correspond to CMMI level 3; F (Managed) and G (Partially
Managed) are equivalent to CMMI-DEV level 2.

The cooperative business model is a hiring modality that

stands out because it has the financial support of the Brazilian

federal government (it has already reached the mark of 10

million), allowing companies to be organized in groups,

sharing costs of training and implementation.

Organizations adopting such reference models are
submitted to an official assessment to attest their process
maturity level. In the case of CMMI-DEV, the appraisal
model is called SCAMPI [4]. In the case of MR-MPS-SW,
que appraisal method is called MA-MPS. Based on the results
of the appraisal, organizations can plan changes to their
process aiming at reaching better business results [7]. In both
cases, an appraisal expires after 3 years.

In seeking maturity in their development processes,
organizations often modify their management style. This
change can impact positively on the results of software
projects. For example, according to [8][9] some benefits can
be observed such as the improvement on the predictability of
cost and schedule estimates.

Although some very promising results of implementing
such models have been described, there are some challenges
on the way. As stated by [10], “understanding how to

implement software process improvement (SPI) successfully

is arguably the most challenging issue facing the SPI field”.

The finding of this difficulty was the motivation to carry out
a significant number of researches on critical success factors
for SPI initiatives, as seen in the systematic literature reviews
(SLR) [11] [12].

DOI: 10.18293 / SEKE2018-186 560

mailto:Regina.fabia@pucpr.br
mailto:malu@ppgia.pucpr.br
mailto:sheila.reinehr@pucpr.br

Although there are some studies [13] [14] aiming to
understand what influences the continuity of SPI programs
after the official appraisal, there are several open questions
such as: why do some organizations start at the lower
maturity levels and do not evolve to a higher one? Why
several organizations do not renew their appraisals when they
expire? What really happen to the assessed processes after the
official assessment: are they still up and running? Are they
abandoned? Are they still been improved? There is, therefore,
a need for more research that explores different cultural and
organizational contexts, as well as the publication of
experience reports from the software industry on the
continuous improvement of software processes.

In this context, the objective of this study was to

understand what makes it difficult and easier to maintain

these SPI programs in software companies evaluated. To

answer this question, a survey was conducted with SPI

specialists. The results indicate that the continued use of SPI

programs is related to human factors, the SPI project itself,

organizational factors, consultancy and processes.
The study is organized into five sections. Section II presents

the theoretical basis; section III the research method; section
IV the results and the final considerations in section V.

II. BACKGROUND

As discussed in the introduction there is a dearth of studies

on continuity of SPI programs. Therefore, it was decided to

carry out a systematic literature review (SLR) on the

implementation of SPI programs. The study followed the

steps defined in Kitchenham [16]: (i) planning, (ii)

identification, and (iii) the selection of primary studies.

The research protocol was defined in the planning phase

(purpose of the review, research questions, inclusion and

exclusion criteria, and evaluation of the selected studies). The

research questions were defined: i) Which factors positively

influence the implementation of software process

improvements? and; ii) Which factors negatively influence

the implementation of software process improvements?

In the identification phase, the search for relevant studies

was carried out in the electronic bases of the ACM Digital

Library, IEEE Explore, Science Direct and Springer Link,

from December/2012 to January/2013, with supplementation

in May/2014. The search period comprised the years 2002 to

2013. Publications were considered in journals and

conferences, written in English. These procedures identified

2,474 articles.

The articles were selected considering three main activities

i) reading of the titles of the articles; ii) reading of the

abstracts of the articles and; iii) reading of whole article.

Exclusion criteria were secondary articles and primary

articles not related to implementation of SPI programs. The

exclusion of these items was carried out in pairs, resulted in

51 papers which were analyzed with the open and axial

coding procedures from the Grounded Theory [17]. The

validation was done by specialists in SP, who performs

implementations and assessments of maturity models.

The analysis of the studies from the systematic review

resulted in 03 conceptual categories on success factors in the

implementation phase of SPI: 35 Properties of Critical

Success Factors (PCSF); 13 Critical Success Factors and; 04

macro categories of Critical Success Factors. Figure 1 shows

the Critical Success Factors (CSF) grouped by macro

categories of CSF, as show Table 1.

Table 1. Classification of Critical Success Factors.

Categories Critical Success Factor CSF Properties

H
um

an
 Motivation and acceptance of change Acceptance of change; Motivation for change.

Support, commitment and involvement Support, commitment and involvement (senior management and employees).

Technical and personal skills Technical and methodological skills; Personal skills (behavioral skills, attitudes and behaviors).

Im
pr

ov
em

en
t P

ro
je

ct

Implementation strategies Training; SPI project management; Adaptation of the SPI to the needs of the company; Gradual

implementation of improvement project; Definition of implementation strategy; Consideration of

culture (regional and organizational); Pilot projects; Selection of suitable professional for improvement.

Resources Availability of human resources; Availability of infrastructure resources; Availability of financial

resources; Availability of external resources (consultancy).

Adequate consultancy Relationship of trust between consultancy and company; Adequate consultancy work; Easy access of

the company team to the consultancy.

O
rg

an
iz

at
io

na
l

Communication Adequate communication; Awareness of benefits.

Goals SPI goals aligned to the business; Clear and relevant SPI goals.

Leadership Existence of SPI leadership

Internal and external policies Internal policies that support SPI; External policies that support SPI.

Organizational structure Formalization of functions and responsibilities; Stable business environment.

Return on investment Visibility of return on investment.

561

Pr
oc

es
se

s Processes Standardization of new processes;

Monitoring of new processes;

Institutionalization of new processes, and metrics.

III. SURVEY

This is an exploratory study and, as such, it aims to provide
a better understanding of the theme [18]. The research
question that directed this work was: "What are the factors

that influence the maintenance or abandonment of SPI

programs?". For this purpose, a survey was conducted

involving consultants and appraisers of software processes in

order to assess the factors found in the literature and identify

new factors in the field. The study followed the script

proposed by Kitchenham et al. [19], establishing the activities

described in the following sections.

A. Identifying the research goals

The aim of this study was to identify which factors of

implementation identified in the systematic literature review,

influence the maintenance or abandonment of software

process improvement programs.

B. Identifying and Projecting the Sample

The population of this study was composed of Brazilian

consultants and appraisers of the MPS.BR program,

accredited by SOFTEX, and consultants and appraisers of the

CMMI models. To identify the sample, a search was made

from the SOFTEX website (http://www.softex.br), which

identified 473 consultants and 124 appraisers of the MPS.BR

program, affiliated with SOFTEX at the time of the research.

However, an attempt was made to select a sample of

professionals who were effectively exercising process

improvement activities. A selection of professionals involved

in the MR-MPS-SW model was conducted. This was based

on the document entitled Result of Software Process

Appraisal, which contains all the information of the appraisal

conducted at the company, including the name of the lead

appraiser and the assistant appraiser(s). This document is

published on the SOFTEX website in the section on current

appraisals of the model, for each company successfully

appraised for the MR-MPS-SW and with an up-to-date

appraisal, i.e., conducted in the last three years. From this

search, there are currently thirty professionals involved in

appraising the MPS.BR program in Brazil.

C. Preparing the Questionnaire

The questionnaire was developed based on the

implementation of the SPI identified in the SLR. It was

divided into two sections. The first contained six objectives

and subjectives questions to characterize the professional by

his experience. The second was divided into two parts: factors

with a positive influence and factors with a negative

influence. The questionnaire in Portuguese is available at

https://pucpr.co1.qualtrics.com/jfe/form/SV_ehaV0rvIW5B

4wrb.

For the factors with a positive influence, the following

question was asked: “In your opinion, to what extent does

each factor contribute in practice when appraised companies

maintain the use of the defined process?” For each factor, the

respondents were offered three evaluations levels of the

Servqual method [20]: minimum acceptable level, maximum

desirable level and perceived level. These factors were

assessed using the degree of importance according to a scale

that varied from 1 (least relevant) to 9 (most relevant).

In this method, the interval between the mean of the

acceptable minimum level and the mean of the desired

maximum level is called the tolerance range, that is, it

comprises values not perceived by the evaluator as being

acceptable for the performance of that indicator. In this study,

we consider that the factors with averages situated within the

tolerance range, are factors perceived by the respondents as

performed in the organizations practice. Factors with

averages below the tolerance range indicate that these factors

are not performed in the organizations' daily lives.

For the factors with a negative influence, the following

question was asked: “In your opinion, to what extent does

each factor contribute in practice when companies abandon

their processes?” For this evaluation, a 9-point Likert scale

was shown, starting with minimum value 01 (Totally

disagree) to maximum value 9 (Totally agree). The

respondents could also add other factors that they considered

relevant for both maintenance and abandonment of SPI

programs, using as open answer box.

The last section of the questionnaire included a

confidentiality agreement, ensuring that the individual

information would not be made public.

D. Application of the pilot test

Before forwarding the questionnaire to the target public, a

pilot test was conducted with one consultant of the CMMI-

DEV model and one of the MR-MPS-SW model to evaluate

the tool and the content of the questionnaire. The

questionnaire was then distributed using a link sent by e-mail.

E. Validity threats

Regarding content validity in the design of the instrument

[18], a pilot survey was conducted with the aim of evaluating

whether the questions were easily understood and whether the

degree of information provided by the questionnaire was

appropriate. The participants reviewed the questionnaire and

suggested some small changes to wording, aiming to

facilitate understanding.

External validity refers to the conditions of generalization,

i.e. the representativeness of the sample and the

correspondence between respondents and the unit of analysis.

Thus, to avoid inconsistent responses on the problem,

562

https://pucpr.co1.qualtrics.com/jfe/form/SV_ehaV0rvIW5B4wrb
https://pucpr.co1.qualtrics.com/jfe/form/SV_ehaV0rvIW5B4wrb

respondents that were practitioners and experienced in SPI

programs were identified.

IV. IDENTIFICATION OF PERCEPTION OF SPI EXPERTS

A. Professional Profile

 Twenty-one SPI specialists (representing 70% of the

sample) participated in the study. The professionals were

characterized by their experience in implementations and

assessments. We consider as experienced the specialists who

performed more than five implementations and/or

assessments. We identified 18 experienced consultants and

14 lead appraisers in the MR-MPS-SW model and 09

consultants and 04 experienced appraisers in the CMMI-DEV

model.

We identified that the total number of implementations

performed by these professionals up to the time of the survey

totaled 485 implementations in the MR-MPS-SW model

(84% of the total assessments performed in the country) and

100 implementations in the CMMI model (45% of the

country's total assessments). This shows that the sample of

the participants is very representative in relation to the total

evaluations of the maturity models implemented in the

country.

B. Critical Maintenance Factors (CMF)

This section will present the analysis of the data found,

considering the three levels of evaluation for each factor of

the SERVQUAL method.

Table 2 shows the experts' perception for the maintenance

factors (positive influence) of the category of “human

factors” for the post-evaluation period. Regarding the

minimum acceptable, human factors are in a range of

importance with a value higher than 05, the average of the

method, and under 07, which reinforces the importance

attributed to these factors. For the Perceived Level, only

factors of support senior management and employees are

slightly above the minimum acceptable. The other factors are

below the minimum acceptable, indicating that, according to

the perception of the respondents, in practice the

organizations are not paying due attention to these issues.

TABLE 2. Critical Maintenance Factors: Human.
Maintenance Factor

SERVQUAL

NMA NID NP

Support of senior management 6,67 8,62 6,71

Support of employees 6,19 8,24 5,67

Technical and methodological skills 5,86 7,71 5,57

Personal skills (behavioral skills, attitudes

and behaviors)

6,05 7,95 5,71

Acceptance of change 6,61 8,44 6,22

Motivation for change 6,10 8,15 5,70

Table 3 shows the experts' perception for the maintenance

factors (positive influence) of the category of “process”. It is

worth noting that the standardization of new processes was

the only factor within the zone of tolerance with the score for

the Maximum Desired Level (6.43) and the Minimum

Acceptable Level (6.29). The easy processes obtained a high

score for the Maximum Desired Level (8.52) and low for

Perceived Level (5.88), indicating that this factor is

considered important but in practice, this does not occur in

the organizations.

TABLE 3. Critical Maintenance Factors: Process.
Maintenance Factor

SERVQUAL

NMA NID NP

Standardization of new processes 6,29 8,05 6,43

Monitoring of new processes 6,90 8,62 6,19

Institutionalization of new processes 7,05 8,81 6,38

Adequate processes (Easy) 6,94 8,52 5,88

Adequate metrics 6,67 8,71 5,38

Table 4 shows the experts' perception for the maintenance

factors (positive influence) of the category of “SPI project”.

Only the Definition of SPI project implementation strategy

had a score slightly higher than the minimum acceptable

(6.05) for the Perceived Level (6.14). Nevertheless, it is

worth emphasizing that the score for the Perceived Level is

very close to the minimum acceptable. This indicates that

despite being present in the organizations, it is not sufficient

to ensure the use of the processes. The factors with the lowest

Perceived Level values are Consideration of regional culture

(5.33) and Conducting a pilot project for new processes

(5.90). The values of the remaining factors were higher than

06 for Perceived Level.

TABLE 4. Critical Maintenance Factors: SPI project.
Maintenance Factor

SERVQUAL

NMA NID NP

Definition of implementation strategy 6,05 8,29 6,14

SPI project management 6,67 8,52 6,05

Consideration of culture organizational 6,48 8,14 6,05

Consideration of culture regional 5,71 7,35 5,33

Training 6,57 8,29 6,05

Adaptation of the SPI to the needs of the company 7,00 8,60 6,60

 Gradual implementation of SPI 6,50 8,27 6,27

Availability of human resources 7,10 8,76 6,14

Availability of financial resources 6,95 8,57 6,29

Availability of external resources 6,35 8,20 6,15

Selection of suitable professional for improvement 6,38 8,48 6,00

Pilot projects 6,48 8,33 5,90

Table 5 shows the experts' perception for the maintenance

factors (positive influence) of the category “Organizational

factors”. SPI goals aligned to the business and Existence of

leadership scored higher for the ideal level (8.71). For the

perceived level, the factors with the lowest scores were:

Consciousness on benefits (5.81), ROI visibility (5.19),

563

communication (5.62) and internal support policies (5.52),

which indicates that in practice they may be neglected.

External support policies had the lowest score for the

acceptable minimum level (5.35), which indicates that in the

opinion of experts, this factor is not as important for

continuity of RLS programs.

TABLE 5. Critical Maintenance Factors: Organizational.
Maintenance Factor

SERVQUAL

NMA NID NP

Awareness of benefits 7,00 8,67 5,81

Adequate communication 6,71 8,48 5,62

Formalization of functions and responsibilities 7,10 8,76 6,38

Ambiente empresarial estável 6,40 8,40 6,10

Internal policies that support SPI 6,43 8,10 5,52

External policies that support SPI 5,35 7,63 6,05

Existência de liderança 7,00 8,71 6,48

SPI goals aligned to the business 6,86 8,71 6,00

Clear and relevant SPI goals 6,81 8,57 6,05

Visibility of return on investment 6,52 8,43 5,19

C. Critical Abandonment Factors (CAF)

This section shows in ascending order for the average of the

factors that the specialists identify the possible causes for the

abandonment of SPI programs. The results are presented below

by category.

In the “Human Factors” category (Table 6), the factors

had average scores higher than 06. Therefore, all the factors

in this category are considered to influence the abandonment

of SPI. It is worth highlighting that the lack of support from

the upper management was considered the most critical factor

in the abandonment of these initiatives (8.19). This was

followed by the time/commercial pressures factor (7.75) and

Work load (7.52). This shows that the specialists perceive

that a lack of adequate support from the upper management

and pressures at work on the executors of the process are

factors that hinder the continuation of process improvements.

TABLE 6. Critical Abandonment Factors: Human.

Critical Abandonment Factor Avg. Standard

Deviation

Lack of technical and methodological

competencies

6.05 1.50

Lack of personal competencies 6.10 1.45

Resistance from employees 6.43 1.75

Low employee motivation 6,71 1.68

Lack of employee involvement 6.95 1.24

Bad/negative experiences 7.15 1.67

Imposition 7.25 1.69

Work load 7.52 1.50

Time/commercial pressures 7.75 1.49

Lack of support from upper management 8.19 1.25

Processes category shown in Table 07, all the factors were

considered critical to the abandonment of SPI programs. The

factor with the lowest average (5.67) was Reduced creativity,

and the factor with the highest average (8.05) was Lack of

monitoring. Four factors had averages higher than 07:

Inadequate metrics, Extensive documentation, Bureaucracy

and Complex processes.

TABLE 7. Critical Abandonment Factors: Processes.

Critical Abandonment Factor Avg. Standard

Deviation

Reduced creativity 5.67 2.76

Lack of standardization 6.19 1.69

Complicated framework 6.67 2.37

Lack of flexibility 7.00 1.82

Inadequate metrics 7.19 1.75

Extensive documentation 7.29 1.65

Bureaucracy 7.33 2.01

Complex processes 7.38 1.20

Lack of monitoring 8.05 1.12

The SPI project category is shown in Table 08. To the

respondents, the most critical abandonment factors were:

Lack of consideration for organizational culture (7,60) and

Lack of human resources (7.52), with average values very

close to 08 on the evaluation scale. The least influential factor

for the abandonment of SPI programs was Implementation on

a large scale (large scope of the improvement project causing

coordination problems) (5.75). The considering regional

culture factor (4.64) was not considered critical to the

abandonment of SPI. The other factors scored over 06 and 07

on the evaluation scale.

TABLE 8. Critical Abandonment Factors: SPI Project.
Critical Abandonment Factor Avg. Standard

Deviation

Not considering regional culture 4.64 2.87

Implementation of SPI project on a large scale 5.75 2.39

Lack of training 6.19 1.91

Lack of implementation strategy 6.40 2.11

Lack of infrastructure resources 6.86 1.59

Lack of financial resources 6.90 2.10

Lack of SPI project management 6.95 2.13

Lack of human resources 7.52 1.66

Not considering organizational culture 7.60 1.38

 Table 9 shows the Organizational Factors category. Five

factors were more frequently identified by the respondents as

being critical to the abandonment of SPI: High turnover (7.0);

Lack of awareness of the benefits of the improvement project

(7.14); Lack of alignment between business and the goals of

the improvement project (7.43); Lack of clarity of the goals

of the project and (7.38) and Lack of understanding of the

return on the investment (7.52), with averages up to 07. The

other factors had averages higher than 06. Therefore, they are

also factors that should be taken into consideration regarding

the continuity of improvement programs.

TABLE 9. Critical Abandonment Factors: Organizational.
Critical Abandonment Factor Avg. Standard

Deviation

Lack of formalism of functions and

responsibilities

6.48 1.97

Inadequate communication 6.76 1.79

High cost of SPI 6.81 1.60

High turnover 7.00 1.89

Lack of awareness of benefits 7.14 1.71

Lack of clarity in SPI goals 7.38 1.28

Lack of alignment between business and SPI 7.43 1.60

564

Lack of understanding of return on

investment

7.52 1.83

V. CONCLUSION

Studies on the successful implementation of software

process improvement programs have been the focus of

researchers in the past two decades. However, the reasons

why these companies end up maintaining or abandoning these

initiatives is a field that has not seen a great deal of research.

Thus, this study sought to bridge this gap. The research

concludes that the continuation or abandonment of software

process improvement programs depends critically on 13

factors, namely: i) motivation and acceptance of change; ii)

support, involvement and commitment; iii) technical and

personal competencies; iv) strategies for SPI; v) resources

and communication; vi) goals; vii) organizational structure;

viii) policies; ix) return on investment; x) leadership; xii)

adequate external consultancy services and; xiii) processes.

The study also found that the perception of SPI specialists

is that in practice organizations do not pay due attention to

these issues. This is probably one of the reasons why software

development organizations abandon these programs.

The main limitation of this study is that it does not delve

more deeply into the issues identified in the survey. There are

some unanswered questions as: What does it happen to a

company after the official evaluation using a maturity model?

Why is not possible to identify a consistent evolution in

maturity levels? Do companies abandon only the official

evaluation process or abandon the overall improvement

program? Do they abandon completely the implanted process

or just parts of it?

For this purpose, it would be necessary to conduct a deeper

study of the appraised software organizations to understand

why these companies maintain and why they abandon

software process improvement programs. Therefore, the next

stages of this work will involve conducting a case study of

the appraised software companies to assess the findings of

this exploratory study in practice. Our preliminary case

studies with the organizations showed some similar factors.

In future studies, it would be interesting to investigate how

the maintenance of these SPI programs occurs in practice,

i.e., looking at companies that continue their active appraisals

and companies whose appraisals are overdue.

REFERENCES

[1] Sommerville, I., Software Engineering. 9th ed. Pearson Prentice Hall,
2011.

[2] A. Fuggetta. Software Process: a roadmap. In Proceedings of the
conference on the future of software engineering – international
conference on engineering, Limerick, Irlanda, 2000, p. 25-34.

[3] G.M. Kituyi and C. A. Amulen. Software capability maturity adoption
model for small and medium enterprises in developing countries, In
The Electronic Journal on Information Systems in Developing
Countries EJISDC , v.55, n.1, p.1-19, 2012.

[4] CMMI PRODCUT TEAM. CMMI for Development. (CMU/SEI-2010-
TR-033). Versão 1.3. Pittsburg: Software Engineering Institute –
Carnegie Mellon University, 2010.

[5] Sociedade para Promoção da Excelência do Software Brasileiro
(SOFTEX). Guia Geral MPS de Software - 2016. Disponível em:<
http://www.softex.br/mpsbr/_guias/default.asp>.

[6] Secretaria de Economia do México - SEM. Modelo de Processos para la
Industria de Software – MoProSoft versión 1.3, Agosto de 2005.
Disponível em: http://www.comunidade.moprosoft.com.

[7] Lepments, M.; McBrid, T.; Ras, E. Goal alignment in process
improvement, In the Journal of Systems and Software, v.85, p.1440–
1452, 2012.

[8] Elm, J.; Goldenson, D. The Business Case for Systems Engineering
Study: Detailed Response Data. (CMU/SEI-2012-SR-011). Software
Engineering Institute, Carnegie Mellon University, 2013.
http://www.sei.cmu.edu/library/abstracts/reports/12sr011.cfm.

[9] Kalinowski, M.; Weber, K.; Franco, N.; Zanetti, D.; Santos, G. Results
of 10 Years of Software Process Improvement in Brazil Based on the
MPS-SW Model. In Quality of Information and Communications
Technology (QUATIC), 2014 9th International Conference, p. 28-37,
Sept. 2014.

[10] Dyba, T. An Empirical Investigation of the Key Factors for Success in
Software Process Improvement. IEEE transactions on software
engineering, vl. 31, n5, p. 410-424, May 2005.

[11] Khan, A. A. ; Keung. J. Systematic review of success factors and
barriers for software process improvement in global software
development . IET Software (Volume: 10, Issue: 5, 10 2016).
DOI: 10.1049/iet-sen.2015.0038.

[12] Bayona, S.; Calvo-Manzano, J.A.; Feliu, T.S. Critical Success Factors
in Software Process Improvement: A Systematic Review. International
Conference on Software Process Improvement and Capability
Determination - SPICE 2012: Software Process Improvement and
Capability Determination pp 1-12.

[13] Almeida, C. D. A., Albuquerque, A. B., Macedo, T. C. “Analysis of the
continuity of software processes execution in software organizations
assessed in MPS.BR using Grounded Theory”, XXIII Software
Engineering and Knowledge Engineering, Miami 2011.

[14] UskarcI, A., Demirörs, O. Do staged maturity models result in
organization-wide continuous process improvement? Insight from
employees. In Computer Standards & Interfaces 52 (2017) 25–40.

[15] Sociedade para Promoção da Excelência do Software Brasileiro
(SOFTEX). Guia de Implementação – Parte 11: Implementação e
Avaliação do MR-MPS-SW:2012 em Conjunto com o CMMI-DEV
v1.3. Agosto, 2012. Disponível em:<
http://www.softex.br/mpsbr/_guias/default.asp>.

[16] Kitchenham, B. Procedures for Performing Systematic Reviews.
Software Engineering Group, Keele University, Keele, UK, July, 2004.

[17] Strauss, A.; Corbin, J. Basics of Qualitative Research, 2ª ed.: Sage
Publications, Thousand Oaks, London New Delhi, 1998, 312p.

[18] Forza, C. Survey research in operations management: A process-based
perspective. International Journal of Operations & Production
Management, v.22, n.2, p.152-194, 2002.

 [19] Kitchenham, B.; Pfleeger, S.L.P. Principles of Survey Research:
Parts1-6. ACM SIGSOFT - Software Engineering Notes, 27, n. 1-6,
Setembro 2002.

[20] Parasuraman, A.; Berry, L.L.E.; Zeithaml, V.A. SERVQUAL: A
multiple-item scale for measuring consumer perception of servisse
quality. Journal of Retailing, York University, 1998.

565

http://www.comunidade.moprosoft.com/
http://www.sei.cmu.edu/library/abstracts/reports/12sr011.cfm
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4124007
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7585166
https://doi.org/10.1049/iet-sen.2015.0038
https://link.springer.com/conference/spice
https://link.springer.com/conference/spice
https://link.springer.com/conference/spice
https://link.springer.com/book/10.1007/978-3-642-30439-2
https://link.springer.com/book/10.1007/978-3-642-30439-2
http://www.softex.br/mpsbr/_guias/default.asp

Improving Code Summarization by Combining
Deep Learning and Empirical Knowledge

Lingbin Zeng, Xunhui Zhang, Tao Wang, Xiao li, Jie Yu, Huaim Wang
College of Computer Science

National University of Defense Technology
Changsha, Hunan, China

{zenglingbin16, zhangxunhui, taowang2005, xiaoli, yujie16, hmwang}@nudt.edu.cn

Abstract—Code summaries are human-readable text that de-
scribes the functionality of code blocks. Software developers use
code summaries to understand the specification of API while
code retrieve system relies on code summaries for effective code
search. However, code summaries are often written by software
developers. Writing good code summaries usually requires great
effort. It could be helpful if developers use automatic code
summarization system to generate code summaries. Recently,
some works have applied deep learning methods to generate
code summaries for code snippets. However, those deep learning
methods treat code snippets as streams of text tokens while
ignoring the inherent code structure information. In this paper,
we propose a novel code summarization method named the CDE-
Model (Code summarization by Deep learning and Empirical
knowledge) that combines inherent code structure information
with deep learning models. The CDE-Model proposes several
empirical strategies to transform code snippets to refined code
representation and feeds them into an encoder-decoder neural
network for text generation. We conduct large-scale experiments
on 1500 popular Java projects on GitHub1 with 396,184 pairs
of code snippets and summaries. Experimental results show that
the quality of code summaries generated by our CDE-Model is
better than other two methods. To the best of our knowledge,
this paper is the first to combine code structure information with
deep learning.

Keywords:Code summarization; GitHub; Recurrent neural
network; Java language.

I. INTRODUCTION

The rapid development of open source software (OSS)
provides a massive reusable resource for software development
[1] [2] [3] [4]. In OSS, code summaries are very important as
they describe the functionality of code blocks in the form of
human-readable text [5]. On one hand, software developers use
code summaries to understand the specification of API. On the
other hand, code retrieve system relies on code summaries for
effective natural language code search [6]. Thus, it is crucial
to maintain high-quality and adequate code summaries in OSS
projects. However, code summaries are often manually written
by software developers and writing good code summaries
usually requires great human effort. In our pilot study, we
found that the annotation rate for even famous projects on
GitHub are very low (see TableI). This could significantly
hinder software innovation. It could be helpful if developers

1https://github.com
DOI reference number: 10.18293/SEKE2018-191

use automatic code summarization system to generate code
summaries.

TABLE I: Annotation rate of several famous GitHub projects

Project name Lines of codes Code annotation rate
Redis 83,233 23.7%

cocos2d-x 461,685 8.3%
Hadoop 1,217,655 13.1%

blueprints 33,356 8.6%
Tensorflow 300,864 9.2%

hebel 10,040 8.1%
jQuery 42,300 12.0%

To address this problem, automatic code summarization
systems have been proposed for generating code summaries.
Previous code summarization methods usually rely on in-
formation retrieval and text mining methods. For example,
Vassallo C et al. [7] propose the CODES method which ex-
tracts candidate summaries from StackOverflow2 discussions
and creates Javadoc descriptions based on social connection
theory. Wang et al. [8] introduce an approach to analyze
constructs of code snippets and extract keywords to produce
code summaries.

Recently, deep learning methods have become a popular
research topic in code summarization research. Iyer et al. [1]
use long short-term memory (LSTM) network to generate code
summaries according to code context. The model they trained
is especially useful for short code snippets. Although the deep
learning based methods have shown effectiveness in code sum-
marization, they usually treat code snippets as stream of text
tokens while ignoring the inherent code structure information.
Explicitly utilizing code structure information, such as loop,
condition and equation expression, into deep learning models
may improve the performance of code summarization.

In this paper, we propose a novel code summarization
approach named the CDE-Model to automatically generate
code summaries. Different from the previous methods, our
approach first utilizes code syntax specification to embed
explicit code structure information into raw source code. Then,
we feed the transformed code snippets into an encoder-decoder
neural network for summary generation. The key contributions
of our study are as follows:

2https://stackoverflow.com

566

• A new code summarization framework that combines
deep learning and code structure information.

• A large-scale dataset of Java code summarization task,
which contains 396,184 pairs of source code and text
summaries.

• A high-performance neural network model that leads to
a significant improvement of BLEU readability score.

The rest of this paper is organized as follows. Section II
reviews previous works. Section III describes our methods.
Section IV shows the experimental result and the last section
concludes this paper.

II. RELATED WORK

Many works have been proposed for code summarization.
These works can be divided into three categories including
information retrieval methods, text mining methods and deep
learning methods.

A. Information retrieval

Wong et al. [9] propose an approach which uses information
retrieval methods to associate comments in the Q&A commu-
nity with code snippets. Vassallo et al. [7] propose to use social
connection theory to connect code snippets and comments in
the StackOverflow. Bahihi et al. [10] presente a method named
CrowdSummarizer which exploits crowdsourcing, gamifica-
tion and natural-language processing to automatically generate
high-level summaries of Java program methods. Moreno et
al. [11] present a technique to automatically generate human
readable summaries for Java classes with heuristics rules.

B. Text mining

Wang et al. [8] present an approach to automatically gener-
ate natural language descriptions of Java methods. They identi-
fy the statements in the code snippets and extract the keywords
to generate sentences as code summaries. McBurney et al. [12]
propose a source code summarization technique that generate
English descriptions of Java methods by analyzing how those
methods are invoked. Hill et al. [13] propose an approach that
automatically extracts natural language phrases from source
code and categorize the phrases in a hierarchy. These methods
could generate the logic description for the code snippets.
However, they could not generate code summaries in a high-
level abstraction.

C. Deep learning

Iyer et al. [1] present a deep learning model to generate
code summaries automatically. They use the LSTM network,
a recurrent neural network (RNN), to encode code snippets
into a fixed vector and decode vector into code summaries.
The model has a good performance on short code snippets
and could generate the new words that are not appeared in
the code snippets. Paulus R et al. [14] introduce a neural
network model with intra-attention, and propose to combine
supervised word prediction and reinforcement learning to
generate summaries. The result shows that summaries created
by reinforcement learning model are more readable. Loyola et

al. [15] propose a model to automatically describe changes
introduced in the source code of a program with encoder-
decoder architecture. The result showed that it can generate
feasible and semantically sound descriptions.

III. OVERVIEW OF CDE-MODEL

In this section, we describe the framework of our approach.
Similar to the works of Iyer et al. [1] and Paulus R et al. [14],
we also model the code summarization problem as a sequence-
to-sequence learning task which maps a sequence of code
tokens into a sequence of natural language tokens. Different to
their approaches, we consider the inherent syntactic structure
information in the code tokens. We propose to analyze code
syntax and weave the syntactic structure information into deep
learning networks.

Fig. 1: Framework of the CDE-Model

Figure 1 shows the framework of our approach which con-
sists of four steps for code summarization task. Specifically,
given a code snippet, we first conduct syntactic structure
analysis to generate the abstract syntax tree (AST) which is
very useful for code analysis and mining. Second, for code
summarization task, what we want is concise human-readable
description rather than programming logic description. Thus,
not all of the AST nodes can be useful. We propose several
heuristic strategies to prune the AST to simplify the code
snippet. Third, based on the pruned AST, we generate an
intermediate code which is simpler than raw code snippets
while preserving the code structure information. Finally, we
feed the intermediate code into a sequence-learning neural
network model to generate text summary.

The key step in our approach is to prune the AST tree.
Programming languages have control statements such as loop
and condition to determine the execution trace of software. In
this paper, we mainly discuss the pruning strategies that deal
with the loop nodes in the AST (see figure 2). Because loop
is one of the most common control statements in the code
snippets [16].

567

Fig. 2: The key steps in pruning loop nodes

A. Pruning loop node

After we generate the AST from a code snippet, we propose
to traverse the AST to find loop nodes. If we find loop nodes
such as for and while, we will continue to recursively traverse
its child nodes with three different strategies discussed below.

1) If encountering a method call in the loop subtree: If
we find a method call in the subtree, we will replace the
entire loop subtree with a statement of method call. We present
an example in figure 3. We can see that buf.append(b) is an
object method call inside the loop body. Thus, we use text
“buf append” to replace the loop node.

Fig. 3: An example of code snippets

One may say that doing so could remove lots of useful
information in the loop subtree. However, we believe that in
Java programming language good class method name usually
reveals the semantic meaning. In addition, if there are more
than one method call, we will choose the last method call
in the loop body to replace the entire loop subtree. Because
several empirical study show that the later the statement, the
more likely it representing the true meaning [14].

2) If encountering special nodes in the loop subtree: If
there are no method calls in the loop subtree, we traverse
the loop subtree from the last child nodes to the first to
find three different type of special nodes including operation
nodes, assignment nodes and control nodes. We tabulate the
processing methods in table II.

If the first encountered node is mathematic notation, such
as “+” “-”, “*”, or “/”, the entire loop subtree will be replaced
with a text node of “count”. If the first encountered symbol is
“=”, we will give an “assignment” text node as the summary
of the loop body. The summary will be taken as “judge” if

TABLE II: Special nodes

Types of nodes Related symbols Replacement as text nodes
Operation node “+”, “-”, “*”, or “/” “count”

Assignment node “=” “assignment”

Control node
“break”

“return true”
“return false”

“judge”

control statements such as “break”, “return true” or “return
false” is first encountered.

3) Other situations: If there are no special nodes in the loop
body, we select the last node in the loop subtree to replace the
loop body.

After pruning the AST, we expand the AST as normal
text stream of code snippet. It should be noted that the code
structure information has been explicitly embed in the code
snippets. To help clarify our algorithm, we give an example
in table III to show the difference of the three strategies.

TABLE III: Code snippets after pruning ASTs

Before pruning After pruning

Method Call

void queueIsEmpty() {
for (Node p = head; p != null;

p = p.next)
{Itr it = p.get();
if (it != null) {

p.clear();
it.shutdown();} }

head = null;
itrs = null;}

void queueIsEmpty() {
it shutdown ;
head = null;
itrs = null;
}

Special Nodes

public ContactIrc getContact(final
String id) {

if (id == null | | id.isEmpty()) {
return null;
}
for (ContactIrc contact :

this.contacts) {
if (id.equals(

contact.getAddress())) {
return contact;}}

return null;}

public ContactIrc
getContact
(final String id) {

if (id == null ||
id.isEmpty()) {

return null;
}
Judge
return null;
}

Others

public void removeAt
(int index, int size) {

final int end = Math.
min(mSize, index + size);

for (int i = index; i ¡ end; i++) {
removeAt(i);
}
}

public void removeAt
(int index, int size)
{

final int end = Math.
min(mSize, index + size)

removeAt(i);
}

B. Sequence learning

We build a sequence-to-sequence generation system for
code summarization task. Our approach use RNN with
attention-based mechanism and encoder-decoder architecture
to produce code summaries. The network architecture is shown
in figure 4

The RNN Encoder-Decoder with attention-based mechanis-
m consists of two RNN that act as an encoder layer and
a decoder layer. The encoder layer maps a variable-length
source sequence to a fixed-length vector. The decoder layer
maps the vector representation back to a variable-length target
sequence [17]. The biggest difference in the attention model
is that it does not require the encoder to encode all input
information into a fixed-length vector [18].

568

Fig. 4: Basic framework of encoder-decoder neural network

In this paper, we use the LSTM cell for encoder and
decoder layers. LSTM has been shown to have good per-
formance in text translation model with attention mechanism
to generate one word at a time. A detail introduction of the
LSTM and encoder-decoder related neural network can be seen
in [19] [20].

IV. EXPERIMENTS

A. Dataset

In this section, we describe the dataset used in this paper.
We collect data from GitHub which is one of the most popular
open source community in the world. All the data can be
downloaded in the Trustie3 , a famous open source community
in China [21].

We briefly describe the dataset generation process. First, we
search in the GHTorrent [22] and use Kraken [23] to crawl
the top 1500 popular Java projects ranked by star numbers.
Second, we use java-parser4 tools to analyze source code and
extract the code snippets and comments of java API respective-
ly [24]. Those pairs of code snippets and text comments will
be treated as training data for our neural network models. In
addition, to improve data quality, we remove noisy comments
in the dataset. Specifically, we remove the comments shorter
than two words. Special symbols except dash “-” and underline
“ ” are also removed. Eventually, we generate 396,184 pairs
of code snippets and summaries. As shown in table IV, the
average length of code snippets is of 108.7 words. The average
length of text summaries is of 8.8 words.

TABLE IV: Basic information of datasets

Total pairs Average code length Average summary length
396,184 108.7 8.8

B. Experiment settings

We implement the CDE-Model based on Tensorflow5. We
build an encoder-decoder network with 6 layers each with 128

3www.trustie.net
4https://www.eclipse.org/jdt/
5https://www.tensorflow.org/

units. We restrict the input vocabulary size to the top 40,000
most frequent code tokens, and the output text vocabulary to
the top 40,000 most frequent tokens in the training set. We
train the models with a batch size of 128 and a learning rate
α of 0.5. We do not stop training the model until perplexity
score becomes stable. We use 85% of the dataset for training,
10% for validation and 5% for testing. We has published all
of our data and codes in Trustie6.

To compare our models with the other methods, we also
implement two other models based on the CDE-Model. The
Del-Model just removes the loop structure in the code snippets
while the Gen-Model keeps the code unchanged. We list the
three models in table V.

TABLE V: Methods to be compared in experiments

Methods Description
CDE-Model Replace the loop structure with heuristic strategies
Del-Model Delete the loop structure in the code snippets
Gen-Model Keep the loop structure unchanged in the code snippets

C. Evaluation metrics

We use Bilingual evaluation understudy (BLEU) score as
the evaluation metric in this paper. BLEU is an algorithm for
evaluating the quality of machine translated text from one
natural language to another [25]. Recently, it has become
a popular evaluation matric in deep learning based code
summarization. In this paper, we report the average BLEU-
4 score in experiments, which is often used to measure the
quality of text sentences.

D. Experimental results

We tabulate the experiments results in table VI. We find
that the CDE-Model outperforms the other methods by a large
margin. Specifically, the BLEU-4 values (the second column
in table VI) of the CDE-Model is 10.4% higher than the Del-
Model and 32.5% higher than the Gen-Model. In addition, we
conduct a detailed performance analysis on the code snippets
containing loop structure. In our test dataset, there are 2296
code snippets which contain the loop nodes. We measure
the BLEU-4 score (the third column in table VI) on this
data and find that the CDE-Model is much better than the
other methods. Specifically, the BLEU-4 score of the CDE-
Model is 6.7% higher than the Del-Model and 85.38% higher
than the Gen-Model. This means that utilizing code structure
information with empirical data processing strategies into deep
learning models can improve the code summarization task
significantly.

TABLE VI: BLEU-4 score of different methods

Models BLEU-4 values BLEU-4 values containing loop node
CDE-Model 0.52801 0.47548
Del-Model 0.47817 0.42813
Gen-Model 0.37254 0.23058

6https://www.trustie.net/projects/1738

569

Second, we randomly sample 100 code snippets containing
loop nodes to evaluate the three methods. As shown in figure 5,
the performance curve of the CDE-Model wins the Del-Model
and the Gen-Model in most cases. This further demonstrates
that the loop structure has significant impact on the model
performance. Replacing the loop structure (by the CDE-model)
is much better than the methods that delete the loop structure
(by the Del-Model) or keep the loop structure unchanged (by
the Gen-Model).

Fig. 5: BLEU-4 score on the sampled data

Third , we analyze the BLEU-4 score of the three methods
on the code snippets that satisfying the three conditions (see
Section III). As shown in table VII. We find that the BLEU-4
score of the CDE-Model is always better than others in all the
three conditions. Specifically, the BLEU-4 score of the CDE-
Model is 7% higher than the Del-Model and 84.91% higher
than the Gen-Model in method call condition. Besides, the
CDE-Model owns the best performance than others in special
nodes condition. Whats more, the BLEU-4 score of the CDE-
Model is 4.36% higher than the Del-Model and 66.16% higher
than the Gen-Model in others condition. This results mean
that the three strategies proposed in the CDE-model are very
effective.

TABLE VII: BLEU-4 score in three different strategies

Models CDE-Model Del-Model Gen-Model
Method call 0.42410 0.39617 0.22935

Special nodes 0.52627 0.51252 0.25674
Others 0.47175 0.45205 0.28392

E. Case study

Why does the CDE-Model perform better than other two
methods? In this subsection, we conducted a detailed case
study for qualitative analysis.

Table VIII shows a code snippet with a loop body. The
gold standard is written by professional developers. We can
see that the code summary generated by our CDE-Model is
the most closer to the gold standard compared with the Del-
Model and the Gen-Models. Our method successfully captures
the semantics of “empty test” while the summaries generate
by the Del-Model and the Gen-Model is not meaningful.

For the poor results of Gen-Model, it may be the reason
that the loop structure in normal code snippets is usually very
complex. Blindly feeding loop body into the encoder-decoder
LSTM network may introduce noise. This is why the word
“clear” appears both in loop body and Gen-Model summary.

Although the Del-Model removes the noisy loop structure,
it loses too much information and thus cannot generate good
results. Therefore, in deep learning based code summarization
task, it is very important to consider the inherent code structure
information.

TABLE VIII: Code snippets and summaries

Code snippet

void queueIsEmpty() {
for (Node p = head; p != null; p = p.next){

Itr it = p.get();
if (it != null) {

p.clear();
it.shutdown();

}
}

head = null;
itrs = null;

}
Gold standard Called whenever the queue becomes empty
CDE-Model Called when the buffer has been empty
Del-Model Called to iterate the observers of this node
Gen-Model The clear blocks that have been returned

V. CONCLUSION & FUTURE WORK

In this paper, we present and implementation a novel code
summarization method name the CDE-Model which combines
the deep learning and code structure information. The major
feature of the CDE-Model is that it traverses the abstract syn-
tax tree of code snippets to manipulate the complex structural
code body to generate intermediate code snippets by empirical
strategies. After that, the CDE-model learns an encode-decoder
LSTM network for text generation. We conduct large-scale
empirical study on 1500 popular Java OSS projects in GitHub.
The experimental results and the case study demonstrate that
our method is effective.

In the future work, we will try to exploit more advanced
sequence learning models to directly encoding AST structure
for long code snippets. Besides, we will also study other deep
learning methods such as deep reinforcement learning.

ACKNOWLEDGMENT

The research is supported by the National Grand R&D
Plan (Grant No. 2016-YFB1000805) and National Natural
Science Foundation of China (Grant No. 61502512, 61702532,
61432020, 61472430 and 61532004).

REFERENCES

[1] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, 2016, pp. 2073–2083.

[2] Q. Fan, Y. Yu, G. Yin, T. Wang, and H. Wang, “Where is the road for
issue reports classification based on text mining?” in Empirical Software
Engineering and Measurement (ESEM), 2017 ACM/IEEE International
Symposium on. IEEE, 2017, pp. 121–130.

570

[3] Y. Zhang, H. Wang, G. Yin, T. Wang, and Y. Yu, “Social media in github:
the role of@-mention in assisting software development,” Science China
Information Sciences, vol. 60, no. 3, p. 032102, 2017.

[4] A. E. Prieto, J.-N. Mazón, A. Lozano-Tello, and L.-D. Ibáñez, “Support-
ing open dataset publication decisions based on open source software
reuse,” 2018.

[5] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proceedings of the 36th International Con-
ference on Software Engineering. ACM, 2014, pp. 390–401.

[6] I. J. Mujhid, J. C. Santos, R. Gopalakrishnan, and M. Mirakhorli, “A
search engine for finding and reusing architecturally significant code,”
Journal of Systems and Software, vol. 130, pp. 81–93, 2017.

[7] C. Vassallo, S. Panichella, M. Di Penta, and G. Canfora, “Codes: Mining
source code descriptions from developers discussions,” in Proceedings of
the 22nd International Conference on Program Comprehension. ACM,
2014, pp. 106–109.

[8] X. Wang, L. Pollock, and K. Vijay-Shanker, “Automatically generating
natural language descriptions for object-related statement sequences,” in
Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on. IEEE, 2017, pp. 205–216.

[9] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and
answer sites for automatic comment generation,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on.
IEEE, 2013, pp. 562–567.

[10] S. Badihi and A. Heydarnoori, “Crowdsummarizer: Automated genera-
tion of code summaries for java programs through crowdsourcing,” IEEE
Software, vol. 34, no. 2, pp. 71–80, 2017.

[11] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for
java classes,” in Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on. IEEE, 2013, pp. 23–32.

[12] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[13] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and reuse,”
in Software Engineering, 2009. ICSE 2009. IEEE 31st International
Conference on. IEEE, 2009, pp. 232–242.

[14] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for
abstractive summarization,” arXiv preprint arXiv:1705.04304, 2017.

[15] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,”
arXiv preprint arXiv:1704.04856, 2017.

[16] R. Hundt, “Loop recognition in c++/java/go/scala,” Proceedings of Scala
Days, vol. 2011, p. 38, 2011.

[17] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[18] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” arXiv preprint arXiv:1509.00685,
2015.

[19] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[20] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[21] H. Wang, G. Yin, X. Li, and X. Li, “Trustie: a software development
platform for crowdsourcing,” in Crowdsourcing. Springer, 2015, pp.
165–190.

[22] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in Mining software repositories (msr), 2012 9th ieee working conference
on. IEEE, 2012, pp. 12–21.

[23] L. Zeng, G. Yin, T. Wang, Y. Yu, Q. Fan, Z.-X. Li, J. Yu, and
H. Wang, “Kraken: A continuous incremental data acquisition system for
github and git repositories,” No. 38 A, Xueqing Road, Haidian District,
Beijing, China, 2017, pp. 144 – 149, data extraction;Development ac-
tivity;Development history;GitHub;Incremental data;Open source com-
munities;Regular patterns;Rest API;.

[24] R. Hosseini and P. Brusilovsky, “Javaparser: A fine-grain concept
indexing tool for java problems,” in CEUR Workshop Proceedings, vol.
1009. University of Pittsburgh, 2013, pp. 60–63.

[25] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

571

Reverse Engineering Encapsulated Components
from Object-Oriented Legacy Code

Rehman Arshad, Kung-Kiu Lau

rehman.arshad, kung-kiu.lau @manchester.ac.uk

School of Computer Science, University of Manchester

M13 9PL, United Kingdom

Abstract

Current component-directed reverse engineering ap-
proaches extract ADL-based components from legacy sys-
tems. ADL-based components need to be configured at
code level for reuse, they cannot provide re-deposition af-
ter composition for future reuse and they cannot provide
flexible re-usability as one has to bind all the ports in order
to compose them. This paper proposes a solution to these
issues by extracting X-MAN components from legacy sys-
tems. In this paper, we explain our component model and
mapping from object-oriented code to X-MAN clusters us-
ing basic scenarios of our rule base.

Key Words —Reverse Engineering, Component Based Develop-
ment1

1. Introduction
The term legacy systems usually refers to such software

systems that are outdated, lack proper documentation and
cannot support a new feature without breaking another logic
yet they are vital to an organisation [5]. Unfortunately, most
legacy code was designed with non-modular approach that
cannot exploit the luxury of re-usability. For many compa-
nies, maintenance or comprehension of legacy code is cru-
cial because some of their functions are too valuable to be
discarded and too expensive to reproduce from scratch.

Component based development is a domain that revolves
around the construction of systems from pre-built software
units i.e., re-usability. Components extraction can recon-
struct a legacy system as modular executable architectural

1DOI reference number: 10.18293/SEKE2018-111

units that can be reused across many systems. Component-
directed2 reverse engineering consists of following steps:
1) Capture the source code in appropriate notation (graph
nodes etc.). 2) Define a rule base to map the extracted no-
tation to abstraction model. 3) Formation of clusters i.e.,
code re-structuring 4) Mapping of clusters to a component
model. Output of component-directed reverse engineering
approaches is dependent on the definition of component
each approach uses. Most approaches use loose definition
of component. For them, a component is consisted of meth-
ods that belong together as they offer a specific functionality
of the system. Such components can be giant classes, clus-
ters or re-formation of the source code to get better cohesion
and loose coupling. These approaches neither defines the
extraction of explicit interfaces nor the composition mech-
anism of the extracted components (e.g., [9]). Such compo-
nents are not feasible for reuse as non-explicit architecture
cannot help in achieving a good re-usability.

Few like us, follow the szyperski's definition of compo-
nents. This definition defines component as ”A unit of com-
position with contractually specified interfaces and explicit
context dependencies only” [15]. These approaches extract
explicit architecture (components with well-defined compo-
sition and interfaces).

Almost all the current reverse engineering approaches
that extract explicit components are based on ADLs3. ADLs
define required and provided services as ports (composi-
tion mechanism of ADLs). Ports use (indirect) method
calls at code level to compose components together. ADL-
based components have three major shortcomings from re-

2Reverse Engineering that aims for the extraction of components.
3Components based on architecture description languages.

572

usability point of view: 1) Inability to select/de-select/alter
ports without changing the code manually at all required
places (for every single composition) to compose the com-
ponents after retrieval. 2) One has to bind all the ports
in order to reuse an ADL component i.e., non-flexible re-
usability. 3) It is impossible to re-deposit4 a configured
composition of components for reuse (e.g., composite com-
ponent). Components have to be retrieved and configured
as many times as the same composition is required. To the
best of our knowledge, no such component-directed reverse
engineering approach exists that can: do code-independent
composition, allow to reuse the components without bind-
ing all services (ports) and support the re-deposition of com-
posed components for further reuse or composition.

This paper presents a reverse engineering approach that
can resolve the above stated issues. The mapping from ex-
tracted clusters to meta-model of our component model X-
MAN [10] and working of our tool has already been ex-
plained in [4] (white boxes in Figure 1). In this paper, we
explain how we: 1) Capture the object-oriented source code.
2) Map the captured notation to X-MAN clusters based on
our rule base, by stating basic scenarios (red boxes in Fig-
ure 1). Section II of this paper compares our approach with
other approaches that extract explicit architecture. Section
III explains X-MAN component model. Section IV presents
our approach using an example. Section V include conclu-
sion and future work.

2. Related Work
There are quite a few approaches that follow szyperski's

definition of components for reverse engineering.
JAVACompExt [3] is a heuristic based approach that ex-

tracts Abstract Data Type (ADT) components. The ap-
proach by Antoun et al. [1] re-engineers Java code into
ArchJava components. Chouambe et al. [7] produces com-
posite components from Java source code. Pattern-based
Reverse Engineering of Design Components [12] extracts
design components based on the structural descriptions of
design patterns. A Reverse Engineering Approach to Sub-
system Structure Identification [14] re-structures the sys-
tem into a hierarchy of subsystems along with their high-
level abstract representation as components. Washizaki [16]
detects reusable part of object-oriented classes and trans-
forms classes into JavaBeans components. Archimetrix [8]
reconstructs the architecture in form of components from
the source code after removing design deficiencies. Qual-
ity centric approach [11] focuses on quality of explicit in-
terfaces by following a semantic-correctness model. Al-
shara et al. [2] extracts OSGi or SOFA components from
object-oriented code. Components extraction in memory-
constrained environments [16] identifies reusable part of an

4The term re-deposit-ability means ability to re-deposit the composed
components after retrieval for future reuse.

Source
Code

Mapping From
Clusters

X-MAN Meta Model
& Deposit

Component Validation

& Re-composition

Component Retrieval

Nodes
Extraction

Nodes
Structuring

Mapping From
Object Oriented Code

To Clusters

Capturing the Code Base

Figure 1: RX-MAN
Approach Re-Composition Deposit Indenpendency Automated

Component

JAVACompExt ✓❌ UML❌ ❌

Antoun et al. ArchJava❌ ❌ ✓ ❌

Choumbe et al. EJB❌✓ ✓
Washizaki JavaBeans✓ ✓✓

RX-MAN X-MAN✓ ✓✓✓

Componentization
Model

UML❌ ❌ ✓ ✓Design
Components

ADL❌ ❌ ✓ ✓
Subsystem
Structure

Identification

Repository

Archimetrix

Alshara et al.

Quality
Centric

Memory
Constrained.. JavaBeans✓ ✓ ✓

ADL✓ ❌

✓✓ ADL

❌✓ SOFA✓

❌

❌

❌

❌

❌

❌

❌

❌

Table 1: Approaches based on Explicit Components
object oriented code and refactors the relative or surrounded
code to reuse the identified part.

Few major shortcomings with these approaches are lack
of automation, inability to retrieve from repository and in-
ability to achieve code-independent composition of the ex-
tracted components. These approaches however, extract
explicitly defined components with required and provided
services. In Table 1, attribute Repository Deposit means
whether an approach is based on a component model that
supports repository or not. JAVACompext, Antoun's ap-
proach and Design Components are based on component
models that do not support repository whereas, Subsystem
Structure Identification, Archimetrix and Quality centric
approach do not define or discuss the deposition of com-
ponents via a repository. Lack of repository decreases re-
usability as components cannot be configured and preserved
for retrieval. The attribute Automated shows whether an ap-
proach is automated or needs manual assistance. Compo-
nent Model shows the component model that is followed for
extraction of components. Componentization independency
shows whether an approach is only applicable on source
systems that are designed as separate packages.

Out of all the explicit approaches, our approach (that
we call RX-MAN) is the only one that: supports com-
ponent repository as part of its implementation, does not
need code-level configurations for reuse, is automated, does
not restrict to bind all the ports of a component being
reused and supports composition of the re-deposited com-
ponents. A well-known framework partially relevant to
our approach is MoDisco [6]. MoDisco uses Architecture-
driven modernization (ADM) to construct the Knowledge
Discovery Meta-model (KDM). The core difference is that
our approach aims for a specific meta-model (X-MAN) as
a transformation model whereas, MoDisco aims for a cus-

573

tomised meta-models based on legacy technology and re-
quirements5.

3. X-MAN Component Model
Unlike ADL-based components, X-MAN component

model is based on encapsulation i.e., an X-MAN compo-
nent only has provided methods and no required ones. An
atomic X-MAN component consists of a computation unit
that has the implementation of methods and exposed func-
tionality of specific methods (the methods that can be se-
lected for composition). Methods are exposed as interfaces
which are implemented in the computation unit. Any ex-
posed method can be selected before instantiating a compo-
nent and method's inputs and outputs can be used with the
exposed methods of other X-MAN components. Computa-
tion only takes place in a computation unit, which is why
this component model is encapsulated [13].

In case of a composite component, encapsulation is pre-
served by composition because a composite component
consists of two or more atomic components composed to-
gether by composition connectors. Composition connectors
in X-MAN are control structures that direct the route of ex-
ecution. Sequencer (SEQ) composition connector provides
sequencing of execution between two or more than two
components and Selector (SEL) provides branching based
on specific conditions6. If two components A and B will be
instantiated with one exposed method each and composed
by a sequencer, then there will be only two methods that
will be involved in this composition. Basic semantics of X-
MAN component model are shown in Figure 2 (lollipop in
the Figure is a notation used to show the presence of ex-
posed methods). One computation unit cannot interact with
other units directly but only via composition connectors.
Control of the components exists outside of computation
units and that is why one does not need code-level config-
urations to reuse the components. Any component can be
reused by composing it with others using appropriate com-
position connector [13] and exposed methods.

CUComputation
Unit A B

Atomic
component

Control CC

Composite Component

Control

. . .

Composition connector

.

SEQ SEL
Sequencer Selector

CCExposed
Methods

Atomic Component

Figure 2: X-MAN Component Model

In ADL-based component models, control cannot be
separated from computation and therefore, one needs code-
level configurations to recompose required and provided

5The implementation of our approach and MoDisco uses many com-
mon frameworks e.g., Ecore, eclipse modelling framework (EMF) etc.

6With SEQ (sequencing), SEL (branching) and LOOP (looping), X-
MAN is Turing complete.

public class A{
public int provideSpeed(int speed)
{speed=100; this . returnSpeed(speed) ;}
public int returnSpeed(int topSpeed){ this .saveInLog(topSpeed); return

topSpeed;}
private void saveInLog(int value){ System.out . println (”Value is

saved”);}}

Figure 3: Scenario 1

package com.A.scenario;
import java . util .*;
public interface A {

public int provideSpeed (int speed) ;
public int returnSpeed (int topSpeed);}

package com.A.scenario;
import java . util .*;
public class AImpl implements A {public AImpl() {}

public int provideSpeed (int speed) {speed = 100; return speed;}
public int returnSpeed (int topSpeed){ this .saveInLog(topSpeed);

return topSpeed;}
private void saveInLog(int value){ System.out . println (”Value is

saved”);}}

Figure 4: Mapped Code from Scenario 1
services. X-MAN component model also supports re-
deposition of components after composition and composed
integrations of components can be retrieved for future reuse.
One does not need to bind all the ports at code level like
ADLs but only need to select the exposed methods and ap-
propriate composition connector for a composition.

4. Our Approach: RX-MAN
This section uses an example of Brake Control System to

demonstrate the code capturing and mapping of code from
object-oriented classes to X-MAN clusters. Before showing
the mapping in terms of an example, section below demon-
strates few basic scenarios to show the rules of mapping.

4.1. Mapping from Source Code to X-MAN clusters
In RX-MAN, each input is a class, bunch of classes or a

program (object-oriented code base). The input is mapped
using a rule base against defined scenarios and output is one
or more than one X-MAN components. The mapping is
based on interactions and invocations of methods. Below
are few basic scenarios to show the mapping rule base.
1) Single Class with no interaction: A single non-
interactive class is the most trivial scenario in RX-MAN.
In this scenario, all the methods that call each other belong
to the same class. Output of this scenario would be one X-
MAN component with all the methods of the class mapped
to computation unit. Figure 3 is showing a non interac-
tive single Java class. In Figure 3, methods provideSpeed

public class A{
B obj= new B();
public void provideSpeed(int speed){speed=100;

obj . evaluateSpeed(speed);}}
public class B{

public int evaluateSpeed(int topSpeed){ int maxSpeed=200; return
maxSpeed−topSpeed;}}

Figure 5: Scenario 2

574

public class A{
B obj= new B();
public void provideSpeed(int speed){speed=100;

obj . evaluateSpeed(speed);}}
public class B{

public int evaluateSpeed(int topSpeed){ int maxSpeed=200; int
recordSpeed=maxSpeed−topSpeed; this.saveInLog(recordSpeed);
return recordSpeed;}

private void saveInLog(int recordValue){system.out . println (”Value
Logged Successfully”) ; }}

Figure 6: Scenario 3
and returnSpeed are marked as exposed methods. Method
saveInLog is in the computation unit along with other two
methods but it cannot be used as an exposed method be-
cause its modifier is private. The exposed methods of this
component are mapped as an interface and computation unit
has implementation of all the methods. Figure 4 shows the
notation of mapped code of scenario 1 (inside X-MAN com-
ponent). Figure 7(a) shows the notation of X-MAN compo-
nent mapped from this scenario. Red boxes in Figure 7(a)
shows the exposed functionality of this component i.e. ex-
posed methods.
2) Two Classes with public-public methods interaction:
Next possible scenario is the interaction of two Java classes
in a code base. As our approach is based on interaction and
invocation of methods, modifiers of methods play an im-
portant role in defining a scenario. Figure 5 is showing an
example of two Java classes that interact with each other
via methods with public modifiers. In this scenario, out-
put would be just one X-MAN component. All the callers
would be placed in one computation unit along with the
methods they called. If a method M is in invocation list
of more than one methods, it would be placed in the com-
putation unit only once to avoid redundancy. This scenario
assumes that all the interactions are between public methods
and no method is neither invoking any private method nor
dealing with any private class level variable. Figure 7(b)
is showing the X-MAN component mapped for two Java
classes of scenario 27.

3) Two Classes with private-public OR public-private
methods interaction: This scenario has more possible out-
comes than the previous two. If a private or a public method
in Class A calls a public method in Class B, there are fol-
lowing possible scenarios.
1) Public method in Class B is neither accessing any pri-
vate variable of the class nor it is calling any private method
of B. In this case, such public method will be placed along
with its caller in the same computation unit.
2) If method in Class B uses private variable of Class B or
it calls some other private method of B, it cannot be simply
placed with its caller. In this case:

a) If caller is private, the public method of B will be
placed in both components (computation unit of A and com-
putation unit of B as its dealing with private entities of both

7In case of void methods, output of an exposed method is boolean that
indicates termination of execution of that method

classes).
b) If caller is public, public method of B will only be part

of computation unit of B. Its caller can access it using com-
position connector or by data input/output of an exposed
method.
Figure 6 shows a scenario of public-private case. Method

provideSpeed of Class A has method evaluateSpeed of
Class B in its invocation list. Method evaluateSpeed is ac-
cessing private method saveInLog of Class B. Output of this
scenario would be two X-MAN components. One compo-
nent would have one method i.e. provideSpeed. The other
component would have evaluateSpeed and saveInLog in its
computation unit and evaluateSpeed would be the exposed
method of second component. Figure 7(c) shows two com-
ponents mapped from scenario 3. The purpose of explaining
the above scenarios is to provide comprehension of the ba-
sic mapping mechanism. Clustering of methods based on
their invocations and modifiers provide much better cohe-
sion as only those methods would belong to same compo-
nent that are associated and have loose coupling with rest
of the components. To apply these scenarios on a full code
base, one needs an appropriate notation that can capture the
whole legacy code and preserve the relation and dependen-
cies among all the entities. To capture the code base, our
approach uses a customised parser that is written specifi-
cally for RX-MAN.

4.2. Capturing the Code Base
The customised parser used in this approach is based on

Abstract Syntax Tree (AST) parser. The designed parser is
more powerful than the default AST parser as it also ex-
tracts and maps invocation nodes from each method node in
the code base. If a method A invokes method B, and method
B invokes method C then our parser extracts and connects
all nodes of the method C to method A as both are indirectly
connected by method B. AST parser extracts one big tree of
nodes from a code base in which all the nodes are connected
hierarchically e.g., starting node would be compilation unit
(class level or package level) connected with its sub nodes
i.e., class declarations, class variables etc. Each class dec-
laration node is further connected to its method nodes and
each method node is connected with its sub nodes. This
hierarchy of nodes goes till the last level which is simple
name nodes i.e., name of local variables etc.

It is impossible to trace and cluster the chain of all possi-
ble method interactions and invocations from this one big
complex tree. Therefore, RX-MAN parser indexes each
method of the code base and connect all associated nodes
with every method. Figure 8 is showing the extraction of
nodes using RX-MAN parser. Each method node index has
information about its parent class, parent package and class
variable this method uses. Along with this information,
each method node index is connected with all the method

575

provideSpeed

returnSpeed

. . .

i

o

input
output

i

i

o

o

Speed Speed

Top
Speed

Top
Speed

(a) X-MAN Component mapped
from Scenario 1

provideSpeed

evaluateSpeed

. . .

i

o

input
output

i

i

o

o

Speed Speed

Top
Speed

Top
Speed

(b) X-MAN Component mapped from
Scenario 2

evaluateSpeed

. . .

Component2

i oTop
Speed

Record
Speed

provideSpeed

. . .

Component1

i oSpeed Speed

(c) X-MAN Components mapped from Scenario 3

Figure 7: X-MAN: Components Mapped From Scenarios

Method 2 Index
Node

Method 1 Index
Node

Method N Index
Node

Field

Declaration

Type

Declaration

Invoked

List

Invoked
Method 2

Invoked
Method 1

Invoked
Method N

Invoked
Method 1

Invoked
Method N

Method
Declaration

Field
Declaration

Type
Declaration

Method
Name

Method
Modifier

Method
Parameters

Method
Body

......

......

......

Parameter1
Type

Parameter1
Return

Parameter1
SimpleName

Method
Return

Code Base

......

Figure 8: RX-MAN Parser
package vehicle . control . speedcontrol ;
import vehicle . brakecontrol .BrakeControl;
public class SpeedMonitoring {
BrakeControl obj ;
public SpeedMonitoring(){}
public double collisionTimeCalculator (double speed, double distance)
{speedMonitoringValue(distance /speed) ;
return distance /speed;}
public boolean speedMonitoringValue(double collisionEstimate)
{boolean time= false ;
if (collisionEstimate <15)
{time=true ; obj . collisionParametersActivation (time) ;}
else {obj . collisionParametersActivation (time) ;} return time;}}

package vehicle . brakecontrol ;
public class BrakeControl {
public BrakeControl(){}
public boolean collisionParametersActivation (boolean flag){
if (flag ==true){BrakeSystemActivation(flag) ;}
else{TimeTriggerValue(flag) ;} return flag ;}
private void BrakeSystemActivation(boolean value){
System.out . println (”Brakes Applied”);}
public boolean TimeTriggerValue(boolean value){ return value ;}

Figure 9: Brake Control System
it invokes directly or indirectly. This mapping makes sure
that no indirect invocation goes undetected. In short, start-
ing from each method in a code base, each method node in-
dex is connected with whole chain of invocations it causes
in a code base (Figure 8). Therefore, each cluster of RX-
MAN is consisted of restructured associated nodes based
on rules of method's interactions and invocations.

4.3. Example: Brake Control System
Fig 9 shows a simple example of brake control system

that is reverse engineered using our approach. In the given
example, there are two classes. Class SpeedMonitoring has
methods collisionTimeCalculator (for calculating time till
collision) and speedMonitoringValue (for automatic brake

Figure 10: Deposition of A Composite Component
mode if time till collision is less than 15 seconds). Method
speedMonitoringValue invokes collisionParametersActiva-
tion from Class BrakeControl. Depending on the value of
time, method collisionParametersActivation either invokes
BrakeSystemActivation or TimeTriggerValue.
According to our approach, method speedMonitoringValue
has one method node against its invocation node i.e., colli-
sionParametersActivation and method collisionParameters-
Activation has two method nodes against its invocation node
i.e., BrakeSystemActivation and TimeTriggerValue (hence
two indirect invocation nodes against speedMonitoring-
Value). As the method BrakeSystemActivation is private
(scenario 3) therefore, the approach will map the whole
code to two clusters.

RX-MAN tool maps these clusters to X-MAN meta-
model and extracts two components. First cluster has
methods speedMonitoringValue and collisionTimeCalcula-
tor (both will be mapped as exposed methods of an X-MAN
component). Second cluster has methods collisionPa-
rametersActivation, BrakeSystemActivation and TimeTrig-
gerValue (from this cluster method BrakeSystemActivation
cannot be mapped as an exposed method as it is private.

Fig 10 is showing a possible case of composition of
RX-MAN using a composition connector sequencer (SEQ).
SpeedMonitoring component (extracted from first cluster)
will be triggered first as this route has 0 (lower number
means higher priority) and component BrakeControlActiva-
tion (extracted from second cluster) will be triggered after
that. It is one valid case of composition as the component
BrakeControlActivation will perform its execution after get-
ting collisonValue from component SpeedMonitoring. Fig
10 is also showing that this composite component has been
deposited in the BrakeControlSystem (X-MAN repository
at left) and can be instantiated in future to be reused or re-

576

Code Base Java Classes Components Ratio Methods

Draw.io 9%101 11 892

EverNote SDK 106 09 12% 3910

JGraph5 171 26 7% 3482

TeamMates 815 34 23.97% 7519

Total

935 110 8.5% 6434JabRef

993 39 25.46% 10274JFree Chart

X-MAN Abstraction

06 Secs

08 Mins, 11 Secs

Processing Time of RX-MAN

06 Mins, 28 Secs

20 Mins, 43 Secs

39 Secs

05 Mins, 76 Secs

Figure 11: Evaluation Cases
composed further.

The proposed approach has been applied on six legacy
code basis, available for empirical evaluation at GitHub and
Quality Corpus. Figure 118 is showing the summarisation
of results, obtained by our approach.

5. Discussion and Conclusion
This paper presents two important steps of our approach:

code capturing and mapping from object-oriented code to
X-MAN clusters. We also demonstrated an example of
Brake Control System and show a valid case of composi-
tion in our tool.

The biggest threat to validity of RX-MAN is the lack
of consideration to important relations in an object-oriented
language e.g., aggregation, composition and inheritance etc.
These relations, if mapped, can provide much better cohe-
sion and hence better re-usability. Future work includes
expanding this approach beyond interactions of methods
to map control statements in the code (if, switch, loops
etc.) to composition connectors of X-MAN. To the best
of our knowledge, ours is the only approach that can reuse
and compose the extracted components without any code-
level configurations with ability of re-deposition of compo-
nents.

References

[1] Marwan Abi-Antoun, Jonathan Aldrich, and Wesley
Coelho. A case study in re-engineering to enforce ar-
chitectural control flow and data sharing. Journal of
Systems and Software, 80(2):240–264, 2007.

[2] Zakarea Al-Shara, Abdelhak-Djamel Seriai, Chouki
Tibermacine, Hinde Lilia Bouziane, Christophe Dony,
and Anas Shatnawi. Materializing architecture recov-
ered from oo source code in component-based lan-
guages. In ECSA: European Conference on Software
Architecture, 2016.

[3] Nicolas Anquetil, Jean-Claude Royer, Pascal Andre,
Gilles Ardourel, Petr Hnetynka, Tomas Poch, Dragos
Petrascu, and Vladiela Petrascu. Javacompext: Ex-
tracting architectural elements from java source code.
In Reverse Engineering, 2009. WCRE’09. 16th Work-
ing Conference on, pages 317–318. IEEE, 2009.

[4] R. Arshad and K.-K. Lau. Extracting executable ar-
chitecture from legacy code using static reverse engi-

8Abstraction Ratio means average size of components in terms of code
classes

neering. In Proceedings of Twelfth International Con-
ference on Software Engineering Advances, pages 55–
59. IARIA, 2017.

[5] K. Bennett. Legacy systems: coping with success.
IEEE Software, 12(1):19–23, Jan 1995.

[6] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and
Frédéric Madiot. Modisco: A model driven reverse
engineering framework. Information and Software
Technology, 56(8):1012–1032, 2014.

[7] Landry Chouambe, Benjamin Klatt, and Klaus Krog-
mann. Reverse engineering software-models of
component-based systems. In Software Maintenance
and Reengineering, 2008. CSMR 2008. 12th European
Conference on, pages 93–102. IEEE, 2008.

[8] Markus Detten, Marie Christin Platenius, and Stef-
fen Becker. Reengineering component-based soft-
ware systems with archimetrix. Softw. Syst. Model.,
13(4):1239–1268, October 2014.

[9] J. M. Favre, F. Duclos, J. Estublier, R. Sanlaville, and
J. J. Auffret. Reverse engineering a large component-
based software product. In Proceedings Fifth Eu-
ropean Conference on Software Maintenance and
Reengineering, pages 95–104, 2001.

[10] Nannan He, Daniel Kroening, Thomas Wahl, Kung-
Kiu Lau, Faris Taweel, C Tran, Philipp Rümmer, and
S Sharma. Component-based design and verification
in X-MAN. Proc. Embedded Real Time Software and
Systems, 2012.

[11] S. Kebir, A. D. Seriai, S. Chardigny, and A. Chaoui.
Quality-centric approach for software component
identification from object-oriented code. In 2012 Joint
Working IEEE/IFIP Conference on Software Architec-
ture and European Conference on Software Architec-
ture, pages 181–190, Aug 2012.

[12] Rudolf K Keller, Reinhard Schauer, Sébastien Ro-
bitaille, and Patrick Pagé. Pattern-based reverse-
engineering of design components. In Proceedings
of the 21st international conference on Software en-
gineering, pages 226–235. ACM, 1999.

[13] Lau Kung-kiu et al. An Introduction To Component-
based Software Development, volume 3. World Scien-
tific, 2017.

[14] Hausi A Müller, Mehmet A Orgun, Scott R Tilley, and
James S Uhl. A reverse-engineering approach to sub-
system structure identification. Journal of Software:
Evolution and Process, 5(4):181–204, 1993.

[15] Clemens Szyperski. Component software: beyond
object-oriented programming. Pearson Education,
2002.

[16] Hironori Washizaki and Yoshiaki Fukazawa. Extract-
ing components from object-oriented programs for
reuse in memory-constrained environments.

577

Leveraging the Power of Component-based
Development for Front-End Components:

Insights from a Study of React Applications
Chen YANG∗, Yan LIU�†, Yiwei LIN§

School of Software Engineering, Tongji University
Shanghai, China

Email: ∗1610833@tongji.edu.cn, †yanliu.sse@tongji.edu.cn, §1532790@tongji.edu.cn

Jia Yu‡
SEEBURGER China Inc.

Shanghai, China
Email: ‡j.yu@seeburger.com

Abstract—Classic design patterns, architectural styles, and
design principles have been introduced and enhanced in Web
front-end development. Recently, component-based architecture,
successfully introduced in React.js, has tended to replace MVC
and other MV* patterns in front-end frameworks. However,
we still know little about design strategies for leveraging the
power of component-based development. We conducted a study
to explore the use of components in React-based applications
from two levels. Three private repositories were analyzed to get
practical insights into the nature, limitations and potentials of
CBD for front-end implementations. Our research started with
an aerial view, where we examined the dependency, connectivity,
and overall of components. Quite different architectural and
programming styles were observed; these can be easily attributed
to the lack of front-end component design paradigms. Meanwhile,
all cases exhibit similar component connectivity and dependency
patterns, which enlighten the study to categorize them further.
Next, the study zoomed in on the architectural elements level,
where we classified front-end components into four categories.
Our observations suggest that design components on the ar-
chitectural elements level may dramatically boost the power of
component-based front-end development.

Keywords—Component-Based Development, Web Front-End,
React Framework, Case Study

I. INTRODUCTION

Along with the development of Internet and cloud com-
puting, business systems form a unique web-based develop-
ment style. Due to the plethora of applications served by
JavaScript and varieties of programming needs, JavaScript
Frameworks have been developed to facilitate the work of
Web programmers[1]. The use of React for building web ap-
plications has given rise to the popularization of Component-
Based Development (CBD) for front-end development. React
is mainly applied to developing applications with declara-
tive views and composable components[2]. Owing to the
differences between programming languages, scenarios, and
implementation method, front-end CBD has a unique nature.
However, few studies have been done in this area[6]. In this
paper, we explored the implementations of CBD for front-
end, and the discoveries stimulated us to categorize front-

DOI reference number: 10.18293/SEKE2018-147.

end components. We hope that our findings can lead to the
potential improvements in CBD.

This paper makes following contributions: (1) Creation of
an experimental exploration process for front-end CBD from a
code observation view. (2) Derivation of significant discover-
ies, such as orphan components, connectivity, and dependency
patterns from the exploration process. (3) Tentative proposal
of a four-category classification of front-end components,
mapping of categories to the selected cases, and confirmation
of the rationality of the classification.

The paper is organized as follows. In Section II, the
scope will be introduced. Section III illustrates the exploration
process. In Section IV and Section V, the different levels in
the exploration process will be elaborated. In Section VI, the
progress in CBD and front-end development will be traced.
The conclusion and future work are in Section VII.

II. RESEARCH SCOPE

A. Case Study

CBD for front-ends is at the initial stage, and it’s obviously
beneficial to explore an old theory under a new situation by
doing a case study. Just like follows, we started with selecting
independent and complete repositories which can reflect real
corporate situations. Then we proceeded to preprocess, where
a Javascript analytical tool chain was integrated to extract
information from the source code. Besides, same observation
views and priorities were applied to the three selected repos-
itories. Next, we continued our exploration to get insights
from two levels. Discoveries and conclusions were reached
throughout the whole process.

B. Study Scope

To carry out the exploration, we used repositories from
private corporate software environments as cases. Repositories
released as open source are normally libraries or projects
created by individuals. Component libraries act as the basis
of other applications, yet few relations can be extracted
from these loose components. Elementary, exploratory, or
instructional repositories are unable to reflect the stressful,
complicated, and systematic corporative application scenarios.

578

Three private repositories with complete processes were
selected, involving different groups; all utilize React to achieve
the effect of CBD. These repositories all possess high sepa-
rability and use AJAX to handle interactions with the back-
end through standard JSON-based REST API. Therefore, these
repositories are fully equivalent. Discoveries of our case study
did not interfere with the programmers behavior since we
commenced our research after the repositories had developed.

A brief description of the selected repositories is presented
in Table I. React is the View layer in MVC patterns, so we sim-
ply focused on the visible components. Thus only the JS/JSX
source code were extracted, while CSS and configuration were
not taken into account. Besides, a React-based Web application
relies on many different kinds of third-party libraries; we
merely focused on libraries related to View, paying no attention
to those related to language, framework, etc.

TABLE I
OVERVIEW OF CASE PROJECTS

Project
agname

LOC Start - End date Duration
(week)

Contri-
butors

Third-party
library/View

Usage Scenario

BD 6,929 2016.12.26-2017.05.22 21 6 8 life service provider

MY 6,523 2016.10.24-2017.03.08 19 6 14 financial management

FE 26,807 2016.08.07-2016.11.08 13 3 9 fund analysis

In order to guarantee the validity of results, we integrated
a Javascript analytical tool chain. Firstly, due to the in-
compatibility between the ES6 in React-based projects and
Esprima1, the raw source code without irrelevant files was
compiled into the ES5 format via Babel2. By Estraverse3,
we traversed, extracted, and persisted the preliminary data,
including components, relations, properties, functions from
the abstract syntax tree generated by Esprima. Lastly, we
combined or disassembled this information and converted it
into an understandable visualization.

III. EXPLORATION PROCESS

The theory of CBD has become mature after 50 years of
back-end development[4]. However, little is known about the
design strategies for harnessing CBD capabilities for front-
end development. So, we created an exploration process in an
attempt to figure out the current situation of front-end CBD.
Fig.1 illustrates the basic workflow of our exploration process
from three key phases. Progressive relationship exists between
the phases, and they also influence each other conversely. In
this paper, we summarize the major conclusions in the second
phase due to space limitations. A brief description of the first
phase are given to pave the way for the second. Although the
elaboration of the component timeline isn’t presented in this
paper, evidence suggests that it deserves further investigation.

The process starts with global features at the aerial view.
We extracted components and relations from source code
and got observations from three different aspects. Above all,
we did an overall observation. Afterwards, certain features

1Esprima: http://esprima.org/
2Babel: http://babeljs.io/
3Estraverse: https://github.com/estools/estraverse

(see Section IV) are selected to analyze the state or extent
of all components connected in connectivity aspect. Finally,
regarding the dependency aspect, there are many remarkable
features associated with the degree of dependency between one
component and others. Significant observations on the aerial
view provided the basis for launching a thorough analysis.

Fig. 1. Exploration Process �

Meaningful discoveries could be derived from the aerial
view, which we generalized into three aspects. Firstly Gran-
ularity refers to the encapsulation capability of components,
specifically the number of attributes and functions. We also
made discoveries about Reusability, like the reuse degree
and component reuse pattern. Valuable relation features were
obtained from the Dependence among components. Besides,
abnormal discoveries like orphan components and groups
were also made. Further analyzing the timeline of orphan
components can help us investigate the accumulation process.

With the help of external features emerging from the aerial
view, we proceeded with our exploration at the architectural
elements level, where we focused on the nature of one com-
ponent itself. We mapped components into four categories
considering their typical usage scenarios, and examples were
presented to facilitate the readers understanding. By attaching
internal qualitative and quantitative features, each component
was categorized uniquely according to its distinctive nature.
Similarly, these categories also reflect external features.

IV. OBSERVATIONS FROM THE AERIAL VIEW

A. Feature Selection and Case Exhibition

To get a better idea of the aerial view, a brief summary
of the key features derived from these aspects is shown in
Table II, and important attributes that represent the key features
quantitatively are listed too. Statistical features such as scale
(Table II, 1.1) are shown directly. Graphs in Fig.2 are created
to facilitate the understanding of the remaining features that
cannot be captured in a numerical form. Moreover, attributes
like Scale and Code Clone were calculated using SonarQube4,
and attributes like Maximum Path were gained by combining
or disassembling the basic information extracted in Section
II.B. The dependency graphs are drawn by Gephi5. Finally,
Table III shows the observations and explanations of the cases.

The dependency graphs describe the state of components
and relations from a global perspective. As shown in Fig.3, the
internal invocation structure of the project can be regarded as

4SonarQube: https://www.sonarqube.org/
5Gephi: https://gephi.org/

579

https://github.com/Ada12/RCCE/blob/master/img/Fig1-Exploration-Process.png

graphs, where nodes represent components and edges represent
relations between them. The degree of a node in graphs is the
number of edges attached to the given node. The nodes in
gray, red, blue, and green respectively represent the ordinary,
leading indegree, leading outdegree, and leading degree nodes.
The size and shade of a edge indicate the weight of it,
determined by the number of relations between one component
and others. In addition, these graphs are directed graphs, where
the direction of an arrow denotes the callee.

TABLE II
ATTRIBUTES DERIVED FROM FEATURES

Aspect Key Feature Attribute BD MY FE

1.Overall

1.1. Scale Scale 6929 6523 26807

1.2. Code Clone Code Clone 7.6% 10.7% 24.1%
1.3. Components
and Relations
Summary

Components 95 153 76

Relations 122 241 114

2.Connectivity

2.1. Global
Relations Pattern

Maximum Path 3 4 3

Average Path Length 1.355 1.482 1.371

Maximum Relation Weight 3 9 3

Relation Weight Distribution As shown in Fig. 2. (a)

2.2. Disconnected
Components

Disconnected Set 4 7 2

Disconnected Components 17/15.2% 23/13.1% 14/15.6%

3.Dependency

3.1. Relation
Strength

Average Degree 2.568 3.15 3

Maximum Indegree 5 15 16

Maximum Outdegree 33 8 8

Average Weighted Degree 1.337 1.98 1.671

Maximum Weighted Indegree 5 29 16

Maximum Weighted Outdegree 33 11 10

3.2. Relations
Distribution

Indegree Distribution As shown in Fig. 2. (b)

Outdegree Distribution As shown in Fig. 2. (c)

Weighted Indegree Distribution As shown in Fig. 2. (d)

Weighted Outdegree Distribution As shown in Fig. 2. (e)

(a) Relation Weight (b) Indegree (c) Outdegree

(d) Weighted Indegree (e) Weighted Outdegree

Fig. 2. Attributes Distribution �

(a) BD (b) MY (c) FE

Fig. 3. Dependency Graphs �

B. Discovery

In light of the observations, our preliminary discoveries
regarding the three aspects are as follows: Granularity: (i)
Components with fine granularity tend to possess a higher

TABLE III
OBSERVATIONS FROM THREE ASPECTS

Aspect Observations Explanations / Possibilities

Overall

An asymmetry exists between the number of
components & relations and the scale of the
respective project.

Different coding styles may account for this
phenomenon, FE exhibits a lack of decomposi-
tion, while MY tended to be overencapsulated.

A project with larger components (FE) has the
highest code clone rate (24.1%).

Similar tiny functions are implemented in the
form of code clones between components.

Connectivity

Complex multi-layer nesting rarely exists. Nestings of components in React come at a cost.

The relation weight of the dependency
graphs are generally very small.

Cannot determine if a higher relation weight
is beneficial, yet the callee component with
larger relation weight (9), importing third-party
components directly with nothing attached, can
be considered as a kind of over-encapsulation.

Orphan component (a component that is inde-
pendent of the primary components set) and
group exist with a fairly high ratio (14%).

Reasons such as code examples, strategy, and
requirements changes led to the legacy of or-
phan groups

Dependency

Components with smaller degrees account for
the majority; few differences exist between
distributions with weight and those without.

Simple dependency is dominant.

Different top-ranked in-degree components
perform different functions; Over-
encapsulation exists in components with
an extremely high in-degree.

Components with a higher in-degree tend to
either be (1) basic components applied in differ-
ent pages, or (2) relatively complex components
implemented a specific function.

Different top-ranked out-degree components
show different features.

Components with a higher out-degree tend to
be (1) page-level components that invoke many
other components; or (2) normal components
that invoke over-encapsulation components.

in-degree; (ii) components with rough granularity tend to
possess a higher out-degree; (iii) a potential correlation may
exist between granularity and code clones. Reusability: (i)
Reusability didn’t achieve the optimal effect; (ii) the over-
encapsulation phenomenon may affect the reusability of com-
ponents. Dependence:(i) Simple dependency plays a major
role; (ii) orphan components deserve more discussion.

V. INSIGHTS FROM THE ARCHITECTURAL ELEMENTS
LEVEL

In the exploration of the aerial view, quite different archi-
tectural and programming styles were observed. These can
be easily attributed to the lack of front-end component design
paradigms, which motivated us to perform a thorough analysis.

For existing front-end development, efforts have been made
regarding different types of business logics encapsulation. For
example, React is regarded as a presentation (view) layer, and
often used with Redux, which is separated into an action (con-
troller) layer and a reducer (model) layer as well, to interact
with interfaces[3]. The appearance of stateless components in
React also indicates that components in front-end gradually
perform their respective roles. So that a layered architecture
for front-end is one possible way to improve development
by providing more controllability. According to programming
experiences and design specifications for building components,
we tentatively propose a classification methodology.

A. A Four-Category Classification of Front-End Components

We propose a four-category classification of components
for React-based applications in Table IV considering typical
usage scenarios. As space is limited, a graphical example to
help readers understand the component categories is available
online6. It’s strongly recommended for readers who want to
understand the usage scenarios and code features of different
categories. Reasonable use of the four-category classification
may have a positive effect on good design.

6Example: https://github.com/Ada12/RCCE/blob/master/example.md

580

https://github.com/Ada12/RCCE/blob/master/Fig2-Attributes-Distribution.md
https://github.com/Ada12/RCCE/blob/master/Fig3-Dependency-Graphs.md

TABLE IV
CLASSIFICATION OF THE COMPONENTS

Component Definitions

Decoration
Component

A Decoration Component is a tiny component that is only responsible for decorative functionalities
with extreme dependence upon parent components, and pays no attention to its own state and lifecycle.

Atom
Component

An Atom Component is a basic component that tends to be an inseparable unit of functionality with
complete lifecycle management. It can be a constituent of other more complicated components.

Intent
Component

An Intent Component is a more complex component, which can be thought of as the glue between
components. It implements a complete presentational business process, and can be composed of
Decoration Components and Atom Components.

Container
Component

A Container Component is a page-level component that manages states exposed by subcomponents
unifiedly, and composed of the components mentioned above. It’s responsible for communications
between different subcomponents and interacted with external interfaces.

B. Findings from the Case Study
In order to observe the categories in real-world React-based

projects, we continued the analysis of our cases. Although
we mapped the categories according to usage scenarios and
qualitative features, definite quantitative features should still be
used as benchmarks. In addition, the preliminary discoveries
summed up in Section IV were also taken into account. Table
V lists the features we utilized to categorize the components.
Table VI shows the mapping of components and features, in
which the symbol

√
represents one component possesses a

given feature, and symbol ↑ or ↓ represents the component
possesses a larger or smaller value of a given feature.

TABLE V
SUMMARY OF BASIC FEATURES

Observation Aspect Quantitative Qualitative Discoveries

Key Element

1.1 state; 1.2 props; 2.1 usage scenarios 3.1 indegree

1.3 invoke third-party library 2.2 business coupling 3.2 outdegree

1.4 invoke other component 2.3 scale 3.3 reusability

1.5 life cycle management

1.6 interact with interfaces

TABLE VI
MAPPING OF COMPONENT AND FEATURES

Component
Features

1.1 1.2 1.3 1.4 1.5 1.6 2.3 3.1 3.2 3.3

Decoration
√

↓ ↑ ↓ ↑
Atom

√ √ √ √
↓ ↑ ↓ ↑

Intent
√ √ √ √ √

↑ ↓ ↑ ↓
Container

√ √ √ √ √ √
↑ ↓ ↑ ↓

(a) Counts (b) BD (c) MY (d) FE

Fig. 4. Component Distribution by Category �

By the category criteria of Table V and VI, we categorized
the three cases manually; the results are shown in Fig.4.
We found that (1) project (’FE’) which possesses a lack
of decomposition and a higher code clone rate, has less
Decoration and Atom Components, due to the unreusable tiny
functions; (2) project (’BD’) with high quality demands of user
experience tend to have more Decoration Components; (3)
more Intent Components exist in project (’MY’) that focuses
a great deal on business process.

C. Conclusion

In conclusion: (1) Significant differences exist between the
various component categories; (2) different categories can
represent specific usage scenarios; (3) a slight variation in
distribution exists for categories under different scenarios.

VI. RELATED WORK

It has been fifty years since software components was firstly
proposed[4]. CBD developed rapidly and gradually formed
its own philosophy. Alan[5] indicated that a component is
a deliverable piece of functionality that can independently
provide interface access to its services. Tassio[6] investigated
1231 studies dating from 1984 to 2012, and summarized the
domains where CBSE has been applied; yet most of them
were related to the server side, only one showed solicitude for
providing better services for the front-end. These all indicate
that little research has been done on CBD for front-ends.

Based on the keyword JavaScript, we explored papers in 15
conferences in the field of SE over past five years. 48 papers
involving a variety of different areas, matched the condition.
However, none of them pay close attention to the field of CBD
for front-end development. In addition, some papers explored
the related area. Cappiello[7] defined a quality model for
building blocks of mashup applications. Magnusson[8] found
that a certain framework and the way to implement its data
flow pattern are the main reasons that impact maintainability.

VII. CONCLUSION AND FUTURE WORK

In this paper, we carried out an exploration tentatively, and
the constant outpouring of discoveries prompt us to propose
a four-category classification of front-end components. By the
researches above, we concluded that (1) Hard-to-maintain phe-
nomena such as lack of decomposition and over-encapsulation
may be avoided by adopting a good design prior to CBD;
(2) Components for front-end may have more capabilities
of prefactoring, so components can be created purposefully
according to the categories we proposed. In the future, we will
continue our exploration on the component timeline, orphan
components, and component code clones.

REFERENCES

[1] Andreas Gizas, F., Sotiris P. Christodoulou, S., Theodore S. Pap-
atheodorou, S.: Comparative evaluation of javascript frameworks. In:
WWW ’12 Companion Proceedings of the 21st International Conference
on World Wide Web, 513-514(2012).

[2] ”React home,” https://facebook.github.io/react/, accessed: Dec.15, 2017.
[3] ”React&Redux MVC,” https://hackernoon.com/thinking-in-redux-when-

all-youve-known-is-mvc-c78a74d35133, accessed: Feb.5, 2018.
[4] Brown A W. Component-Based Development[J]. 2000.
[5] Alan W. Brown, Large-Scale, Component Based Development, Prentice

Hall PTR, Upper Saddle River, NJ, 2000
[6] Vale T, Crnkovic I, Almeida E S D, et al. Twenty-eight years of

component-based software engineering[J]. Journal of Systems & Soft-
ware, 2016, 111:128-148.

[7] Cappiello C, Daniel F, Matera M. A quality model for mashup compo-
nents[C]//International Conference on Web Engineering. Springer, Berlin,
Heidelberg, 2009: 236-250.

[8] Magnusson E, Grenmyr D. An Investigation of Data Flow Patterns Impact
on Maintainability When Implementing Additional Functionality[J].2016.

581

https://github.com/Ada12/RCCE/blob/master/Fig4-Component-Distribution-by-Category.md

A Lightweight Approach to Detect Memory Leaks in

JavaScript

Ju Qian

College of Computer Science and Technology,

 Nanjing University of Aeronautics and Astronautics

Nanjing 210016, China

jqian@nuaa.edu.cn

Long Wang, Xiaoyu Zhou

School of Computer Science and Engineering,

Southeast University

Nanjing 211189, China

zhouxy@seu.edu.cn

Abstract—Although with garbage collection support, many JavaS-

cript programs still suffer from memory leaks. These leaks can af-

fect application performance and even cause crashes, especially for

single page websites. The existing work on JavaScript memory

leak mainly focuses on the static detection of leaks toward certain

leak patterns. The application scope of such approaches are lim-

ited. Previous techniques used for detecting memory leaks in Java-

like languages might be extended to JavaScript. However, how to

apply these techniques in JavaScript is still a problem. In this pa-

per, we firstly present many common leak detection heuristics

used in garbage-collected languages and investigate their effective-

ness on JavaScript. According to the investigation results, we then

propose a lightweight multi-snapshots based dynamic leak detec-

tion method for JavaScript. The initial experimental results show

that the proposed approach is effective.

Keywords- memory leak; JavaScript; dynamic analysis

I. INTRODUCTION

JavaScript is a popular language mainly used to develop dy-
namic web pages. Although with automatic memory manage-
ment, JavaScript still suffers from the memory leak problem. If
a useless object in JavaScript is unintentionally referenced by
some long-term living references, the object cannot be re-
claimed by a garbage collector. It will hence be leaked and oc-
cupy unnecessary memory.

For traditional web applications, the memory leaks in JavaS-
cript may not cause serious problems, since the web pages of an
application are usually frequently switched and the leaked
memory can be reclaimed when a browser discards old pages.
However, modern web applications are often single-paged. In
those applications, the web pages of an application are no longer
frequently switched. A web page may be alive for hours or even
days using Ajax technologies to update contents without com-
pletely refreshing the page. Many rich client web applications,
such as Google Gmail and Microsoft Office 365, follow this style.
In such cases, the leaked memory can be largely accumulated,
which can degrade the performance of web applications or even
cause the applications to crash due to out of memory error.

To address the issue, early research detects circular refer-
ences to catch memory leaks in the old browsers. In some old
browsers like IE6, the DOM objects are garbage-collected with
reference counting, while the other JavaScript objects are gar-
bage-collected using some kinds of mark and sweep algorithms.
Useless objects in DOM-related reference cycles may not be

effectively reclaimed. To help find the leaked objects, the
SIEve/Drip tool [1] tracks all DOM nodes to find the ones in-
volved in reference cycles. It then lets the users to determine
which DOM nodes are leaked. Microsoft developed another sim-
ilar tool named JavaScript Leaks Detector [2]. It reports circular
reference caused leaks by simulating IE6 and IE7's garbage col-
lection (GC) mechanisms. In recent browsers, the GC algorithms
have already been improved. The unnecessary memory caused
by DOM-related reference circles now can be automatically
freed by a browser. Therefore, such memory leaks do not need
additional efforts to detect and fix any more.

For the memory leaks caused by reachable useless objects,
some static techniques have been proposed to detect certain leak
patterns in web frameworks [3, 4]. A typical tool in this category
is Leak Finder [3]. It detects memory leaks in Google’s Closure
library. The tool finds goog.Disposable objects in a heap snap-
shot and inspects these objects to check whether certain easily to
leak objects are freed. Its memory detection capability is limited
to the Closure library. Pienaar and Hundt proposed another more
advanced tool JSWhiz [4]. The tool summarizes several leak pat-
terns in the Closure library. It can statically detects many kinds
of memory leaks based on the abstract syntax tree and type sys-
tem of JavaScript source code. Even though, the application
scope of such work is limited, since the used leak patterns are
often bound to certain types of applications. Jensen et al. [5] and
Rudafshani and Ward [6] also proposed approaches to detect
memory leaks in JavaScript. Their approaches need to track the
allocations and accesses of objects and hence can be very costly
for large programs. More general and lightweight JavaScript
memory detection tools are still in demand.

One insight for developing such general JavaScript memory

leak detection techniques is to extend the existing techniques for

Java-like languages [7] to JavaScript. Java suffers from memory

leak problems similar to JavaScript’s. To detect memory leaks

in Java, one kind of approach locates leaks according to the

growth trends of heap structures, e.g., [8-11]. Another kind of

technique detects memory leaks according to the structural in-

formation within the heap, such as the ownership relation [12],

the data structure similarity and reoccurrence [13], etc. Besides,

some other approaches also find leaks using the object lifetime

information, such as the age of objects [7] and the staleness of

objects (how long the object have not be used) [14].

Although effective for Java, it is still unclear whether these

techniques are still suitable for JavaScript, since JavaScript has

DOI reference number: 10.18293/SEKE2018-151

582

many individual characteristics that are different from Java,

such as the dynamic type system and the prototype-based inher-

itance. To this end, this paper firstly studies the effectiveness of

different memory leak detection heuristics which are borrowed

from Java on JavaScript and then presents a dynamic approach

to detect JavaScript memory leaks on the basis of JavaScript’s

own characteristics and the existing leak detection heuristics.

The approach collects heap snapshots for web applications, and

uses a lightweight statistical method combining many heuristics

to recommend suspicious leaking objects. The initial experi-

mental results show that the proposed approach can effectively

detect memory leaks and hence can be helpful for the users.

II. MEMORY LEAK DETECTION HEURISTICS

The general memory leaks caused by unbroken reference in
garbage-collected languages are hard to be precisely detected by
static analyses. For such leaks, dynamic analyses are often pre-
ferred. Even though there is a rich literature on the dynamic anal-
ysis techniques for memory leaks, most of the existing techniques
are based on a few core detection heuristics.

A. Leak detection heuristics

Table 1 shows many leak detection heuristics (or their core
metrics) used by previous research. Before introducing their de-
tails, some basic concepts are firstly explained.

GC Roots: Root objects or references where a garbage col-

lector starts its analysis. Typical GC roots include stack varia-

bles, static fields, class objects, etc.

Ownership: If in an object reference graph, every path from

GC roots to a node n going through a node d, we say d owns n.

Leak Root: Root objects or references which directly or in-

directly reference the whole leaked data structure. A leak root

can represent a collection of leaked objects.

Fringe: Fringe [8] refers to the boundaries between the old

objects and the newly created objects in the object reference

graph of a heap snapshot.

In the introduction of leak detection heuristics, we suppose the

heap change history forms a sequence of heap snapshots = (H1,

H2, ..., Hn), where Hi is the i-th snapshot in the heap change history.

DCR: For an object type T, let D(T) and C(T) be the num-

bers of T’s instances destructed and constructed in a heap snap-

shot, respectively. DCR(T) = D(T) / C(T) is said to be the de-

struction/construction rate of T. If DCR(T) is continuously low

in a heap snapshot sequence, T can be considered as a probably

leaked object type [9].
TIV: Given two heap snapshots Hi and Hi+1, assume the num-

bers of objects of a type T in Hi and Hi+1 is Vi and Vi + 1, respec-

tively. Then, from Hi to Hi + 1, the increase volume of type T is

TIV(T) = (Vi+1 Vi). The types with high TIV values are more

likely to be the ones with instances leaked.

TPFI: Assume the numbers of references between two object

types T1 and T2 are Ri and Ri + 1 in two sequential heap snapshots

Hi and Hi+1, respectively. Then, the type point-from relationship

increment between T1 and T2 from snapshot Hi to snapshot Hi + 1

is TPFI = (Ri + 1 Ri). The larger TPFI, the more likely that the

involved types are with objects leaked [10].

LN: Leaf nodes in an object reference graph are not likely to

be the root causes of memory leaks. Therefore, it is better to not

TABLE 1. Leak detection heuristics (or their core metrics)
abbreviation heuristics or their metric

DCR Destruction/Construction Rate

TIV Type Increase Volume

TPFI Type Point-from Increase

LN Leaf Nodes

IMN Immutable Nodes

INN Internal Nodes

NON Non-owner Nodes

NAI No Age Intersection

NF No Fringe

OSR On-stack Reachability

FOC Fringe Ownership Count

NOC New Ownership Count

SOC Similar Object Count

LS Life Span

directly report them as the leak diagnosis results.

IMN: Immutable objects with sizes not changed in different

heap snapshots are unlikely to be leak roots.

INN: Internal objects maintained by the language runtime

(e.g., JavaScript VM) are unlikely to be leaked.

NON: An object not owning any other objects is said to be a

non-owner object. The non-owner objects are often close to GC

roots, and their referenced objects are shared by other references.

These non-owner objects are less likely to be leak roots.

NAI: The age of an object describes how long ago it has been

created. In a heap snapshot, the objects created in the current heap

snapshot and not holding references to the objects created in old

snapshots, or the objects created in old snapshots and not holding

references to the objects created in the current snapshot are said

to be no age intersection objects. NAI objects are unlikely to be

leak roots. If a new object does not reference old objects, it is

likely to be a temporal object. If no new object is attached to an

old data structure, then the old data structure is likely to be stable.

NF: No fringe objects refers to the objects owning no objects

on the fringe. Memory leaked objects are often connected with

fringe objects. No fringe objects are unlikely to be leaked, while

the objects referencing to both fringe and no fringe objects have

more possibility to be the leak causes [8].
OSR: The objects directly accessible from stack variables are

more likely to be temporary objects instead of leak roots.

FOC: If an object owns more objects on the fringe, it is

more likely to be a leak root object.

NOC: Objects owning a lot of newly created objects are

more likely to be leak roots.

SOC: In a heap snapshot, if an object has more similar objects,

then there will be high possibility that such type of objects are leaked.

LS: If an object firstly appears in a snapshot Hi and finally dis-

appears since snapshot Hj, we say its life span is LS = (j i). The

longer life span, the larger possibility that the object is leaked.

B. Effectiveness of leak detection heuristics on JavaScript

We conducted experiments on some JavaScript programs to
analyze the effectiveness of the above heuristics. The results are
discussed as following.

(1) The type memory growth based heuristics (TG)

The DCR and TIV heuristics detect memory leaks according to
the memory growth trends of each type. These heuristics are ef-
fective for JavaScript. However, the leak sources detected by them
are mostly basic types like Object, Array, HTIMDivElement, etc.

583

This is because JavaScript uses a prototype-based inheritance
mechanism, and the types dynamically extended from a root type
like Object by attaching or removing properties at runtime are
difficult to be distinguished from the root type. A basic type can
have too many sub-types dynamically extending from it. Only
knowing that objects of some basic types are leaked is not very
helpful for leak diagnosis. Heuristics DCR and TIV must be com-
bined with techniques that can classify objects with finer granu-
larity to effectively help locating leak sources.

(2) The reference growth based heuristic (RG)

The TPFI heuristic detects memory leaks according to the
growth of reference relationships between types. It can rank the
leak causing reference relationships in high position. However,
most of the reported results are relationships between basic object
types. Such relationships are too rough for leak diagnosis. The
reasons are similar to that of the DCR/TIV heuristics, which are
also due to the very flexible nature of the JavaScript type system.

(3) The heap structure based heuristics (HS)

Heuristics LN, IMN, INN, NON, NAI, NF, OSR, FOC, and
NOC mainly detect leaks by analyzing the structural attributes of
objects on a single or two sequentially obtained heap snapshots.
Our experiments show that applying heuristics LN, IMN, INN,
NON, NAI, NF, and OSR can filter out a large number of objects
that are unlikely to be leak roots and heuristics FOC and NOC are
effective for suspicious leak root ranking. However, determining
ownership relationships can be costly for large heap snapshots.

(4) The data structure similarity based heuristic (DSS)

Heuristic SOC can be used to partition objects in to similarity
groups and then analyze the properties of these groups to identify
leak sources. In Java, we can at least use the type information to
distinguish similar objects. However, in the prototype-based Ja-
vaScript language, many objects are created by dynamically ex-
tending the root Object type and the actual type information is
hard to determine. Therefore, there need some other techniques
to help determine the similarity between objects. Besides, we
found the SOC heuristic should better be used together with TG
heuristics to get more valuable results. The similarity groups can
be viewed as finer-grained resolution of object types or data
structures. Such grouping also can benefit many different meth-
ods which depend on type or data structure information.

(5) The object lifetime based heuristic (OL)

Heuristic LS detects memory leaks according to the object
lifetime information. With this heuristic, we may detect a large
number of individual leaked objects instead of a few object types
or data structures. Because in JavaScript, objects are not with
their types distinguished with fine granularity, such results do not
provide clear clue for further leak diagnosis. Besides, when
roughly tracking the lifetime of objects according to their occur-
rences in heap snapshots, without monitoring the uses (reads or
writes) of objects, heuristic LS can easily lead to false alarms.

III. A LIGHTWEIGHT LEAK DETECTION METHOD FOR JAVASCRIPT

According to the above findings, we believe an effective and
lightweight way for JavaScript memory leak detection is to com-
bine the TG, DSS, and some HS heuristics for leak object identi-
fication. We may follow the DSS heuristics to get a better reso-
lution of types or data structures. The TG heuristics can be used
to rank suspicious objects, and we can use the HS heuristics to
filter out unlikely leaked objects. Under such idea, this section

find newly

created objects

group objects

Start

End

filter objects

rank and report
growth trends

analysis

obtain heap

snapshots

Figure 1. The workflow of the MS method

presents a lightweight multi-snapshots based leak detection
method (the MS method). The method takes the characteristics of
JavaScript language into account and can be more helpful for Ja-
vaScript memory leak diagnosis.

A. The detection method

The proposed method is a dynamic approach which detects
memory leaks based on two or more heap snapshots obtained
from a memory leaking program. The workflow of the method
is shown in Figure 1. It takes 6 main steps.

In the first step, we obtain a sequence of heap snapshots from
the execution of the target program. Then, the heap snapshots
will be parsed and we traverse the object reference graphs em-
bedded in the heap snapshots and compare every two adjacent
snapshots to locate the newly created objects in a snapshot. The
objects occurred in the current snapshot but do not occur in a
previous one are considered as the newly created objects.

After that, the objects unlikely to cause memory leaks will be
filtered out according to heuristics IMN, INN, NAI, and OSR.

Next, we classify the newly created objects into partitions ac-

cording to the connections between objects. For two newly created

objects, if they are connected, then the two objects will be put

into the same partition. Each partition can be regarded as an indi-

vidual data structure. We then follow the idea of heuristic SOC

to categorize these data structures into similarity groups. Instead

of doing object level similarity analysis, we find common parent

objects of the objects in the above partitions on the object refer-

ence graph. A common parent object can be viewed as the repre-

senting node of one or more partitions. The data structures refer-

enced by a common parent object are usually similar. Finding com-

mon parent objects works as a kind of data structure level simi-

larity grouping. This can result in fewer groups compared to object

level similarity grouping. Each common parent object can be re-

garded as a candidate leak root. By inspecting these leak roots, it

will be easier to diagnose the root causes of memory leaks.
For the calculated candidate leak roots, we will further ana-

lyze their memory growth in the heap snapshots. Unlike doing
memory growth analysis at type-level, the previous grouping can
make the analysis results easier for further inspection. The total
size of the objects in each object group represented by a common
parent object is used as an approximation of the occupied
memory of a leak root. If the occupied memory continues to grow,
then the candidate is considered suspicious; otherwise, it will be
excluded from the leak detection results.

After all the heap snapshots have been analyzed, we rank the
candidate leak roots according to their totally occupied memory
and the number of objects in the categorized object groups. The
top ranked candidates will be reported as leak detection results.

To better show which objects are leaked, we use a chain of
object property names that used to reach a leak root in the object
reference graph as the identification of the leak root.

584

TABLE 2. The experimental subjects

Name Library Source

JQueryWeb JQuery http://javascript.info/tutorial/memory-leaks

ExtWeb ExtJS
http://www.sencha.com/forum/showthread.php?

263439-ExtJS-Memory-Leak

YuiWeb YUI http://yuilibrary.com/trac-archive /tickets/2530415.html

DojoWeb Dojo http://www.ibm.com/developerworks/cn/web /wa-sieve/

MeteorWeb Meteor https://github.com/meteor/meter/issues/1157

BackWeb Backbone http://plnkr.co/edit/xfJWIF?p=info

AngularWeb Angular https://github.com/angular/angular.js/issues/4864

B. Experimental analysis

We conducted an initial experimental study on 7 JavaScript
programs using popular libraries JQuery, ExtJS, etc. to validate the
effectiveness of the proposed approach. The subjects are listed
in TABLE 2. In the experiment, we use the Chrome browser to
run the subject programs for a while and then use Chrome Dev-
Tools to obtain snapshots at different time points. The snapshots
are exported to local files for further analysis. Each obtained
heap snapshot can be viewed as an object reference graph. These
snapshots are parsed and analyzed with Java language.

TABLE 3 shows the effects of different analysis steps in our
lightweight leak detection method. The table only lists the exper-
imental data when analyzing two adjacent snapshots. In the table,
column #new shows the number of identified newly created ob-
jects. Column #filter shows the number of remaining objects after
doing object filtering. Column #partition lists the number of cat-
egorized newly created object connection partitions, and column
#parent shows the number of calculated common parent nodes
for the object partitions. From the table, we can see that object
filtering can greatly reduce the number of the objects to need be
analyzed, and the object partitioning and common parent group-
ing can effective categorize objects into suspicious object groups.

The final results of our lightweight leak detection method
are shown in the rightmost two columns of TABLE 3. The re-
sults indicate that our proposed method can detect memory
leaks in high precision. The reported numbers of suspicious leak
roots are small, which can reduce the effort of further leak di-
agnosis and fixing.

TABLE 4 shows the analysis time consumed by different leak
detection methods on the same snapshots. TG, RG, HS, and OL
stand for the detection methods with different groups of heuristics
applied, respectively. From these data, we can see that our light
weight multi-snapshots based method consumes very little time.
This is because we only analyze the newly created objects on each
snapshot, which greatly reduces the number of objects need to be
processed. We use a lightweight method to calculate metrics for
suspicious leak root ranking, which also reduces the analysis cost.

TABLE 3. Effects of different analysis steps

Subject #new #filter #partition #parent #detected

leak roots

#actual

leak roots

JQueryWeb 95101 28431 14221 2 1 1

ExtWeb 19334 906 534 34 9 3

YuiWeb 12151 7050 937 14 2 1

DojoWeb 1805 290 84 2 1 1

MeteorWeb 165896 77609 4681 197 5 2

BackWeb 9030 2510 421 36 2 1

AngularWeb 3800 856 599 21 5 3

TABLE 4. Analysis time of different methods (ms)

Subject TG RG HS OL MS

JQueryWeb 384 550 16325 465 198

ExtWeb 960 4466 5497 4168 179

YuiWeb 341 557 4436 560 547

DojoWeb 211 1175 1069 1113 135

MeteorWeb 638 1242 91332 1146 395

BackWeb 550 923 4540 827 553

AngularWeb 326 737 1116 691 190

IV. CONCLUSION

In this paper, we firstly investigate the effectiveness of many
common leak detection heuristics on JavaScript programs. Based
on the investigation results, we propose a lightweight multi-snap-
shots based leak detection method for JavaScript. The method
combines many effective heuristics and takes the characteristics
of JavaScript language into consideration. Our experimental re-
sults show that it is both effective and efficient. In the future, we
plan to further improve the method and conduct more experi-
ments on more subjects to further validate its effectiveness.

ACKNOWLEDGMENT

This work is supported by the China Defense Industrial Technol-
ogy Development Program (Grant No. JCKY2016206B001 and
JCKY2014206C002), the Science and Technology Planning Project of
Jiangsu Province (BY2016003-02), and the National Natural Science
Foundation of China (Grant No. 61472175).

REFERENCES

[1] IE/Sieve. http://home.online.nl/jsrosman/
[2] JavaScript Memory Leak Detector. http://blogs.msdn.com/b/gpde/archive

/2009/08/03/javascript-memory-leak-detector-v2.aspx
[3] Leak Finder for Javascript. http://code.google.com/p/leak-finder-for-javascript/
[4] J. A. Pienaar, R. Hundt. JSWhiz: Static analysis for JavaScript memory

leaks. IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2013, pp. 1-11.

[5] S. H. Jensen, M. Sridharan, K. Sen, S. Chandra. Meminsight: Platform-
independent memory debugging for JavaScript. In Symposium on the
Foundations of Software Engineering, 2015.

[6] M. Rudafshani, P. AS Ward, LeakSpot: detection and diagnosis of
memory leaks in JavaScript applications, Software: Practice and
Experience, 47(1): 97-123, 2017.

[7] V. Šor, S. N. Srirama. Memory leak detection in Java: Taxonomy and
classification of approaches. Journal of Systems and Software, 2014.

[8] N. Mitchell, G. Sevitsky. LeakBot: An automated and lightweight tool for
diagnosing memory leaks in large Java applications. In the European
Conference on Object-Oriented Programming, 2003.

[9] K. Chen, J. B. Chen. Aspect-based instrumentation for locating memory
leaks in Java programs. In Annual International Computer Software and
Applications Conference (COMPSAC), 2007.

[10] M. Jump, K. S. McKinley. Cork: dynamic memory leak detection for
garbage-collected languages. ACM SIGPLAN Notices. 2007, 42(1): 31-38.

[11] J. Qian, D. Zhou, Prioritizing test cases for memory leaks in Android
applications, Journal of Computer Science and Technology, 31(5), 2016.

[12] D. Rayside, L. Mendel. Object ownership profiling: a technique for finding
and fixing memory leaks. In International Conference on Automated
Software Engineering, 2007, pp. 194-203.

[13] E. K. Maxwell, G. Back, N. Ramakrishnan. Diagnosing memory leaks using
graph mining on heap dumps. In SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2010.

[14] H. Yu, X. Shi, and W. Feng. LeakTracer: Tracing leaks along the way. In
15th International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2015 pp. 181-190.

585

http://home.online.nl/jsrosman/

Pseudo-Exhaustive Verification of Rule Based
Systems

D. Richard Kuhn1, Dylan Yaga1, Raghu N. Kacker1, Yu Lei2, Vincent Hu1

1 National Institute of
Standards and Technology

Gaithersburg, MD 20899, USA
{kuhn,dylan.yaga,raghu.kacker}@nist.gov

2Computer Science & Engineering
University of Texas at Arlington

Arlington, TX, USA
ylei@uta.edu

Abstract — Rule-based systems are important in application
domains such as artificial intelligence and business rule engines.
When translated into an implementation, simple expressions in
rules may map to a large body of code that requires testing. We
show how rule-based systems may be tested efficiently, using
combinatorial methods and a constraint solver in a test method
that is pseudo-exhaustive, which we define as exhaustive testing of
all combinations of variable values on which a decision is
dependent. The method has been implemented in a tool that can
be applied to testing and verification for a wide range of
applications.

Keywords — combinatorial testing; constraint solvers; formal
methods; t-way testing; rule-based systems; test automation

I. INTRODUCTION
Rule-based systems have been important in a variety of

application domains for many years. Some of the earliest
artificial intelligence systems (AI) were designed to evaluate
large rule sets, and this approach continues to be important for
AI. In other domains, business rule engines automate complex
enterprise resource planning (ERP) problems [1]. The terms
used in rules may be expressed as Boolean (dichotomous) or
relational conditions on inputs, values from databases, and
environmental conditions such as time of day. Thus even a rule
that contains only a few simple conditionals may invoke
significant processing involved in computing the values used in
the rule conditions. A rule-based system must work for any set
of inputs, and can be implemented with a wide variety of rule
engines. For example, JBoss, Oracle Policy Automation,
OpenRules, Drools, IBM ODM, and many other tools exist to
process rules supplied by users. But as with conventional
software, exhaustive testing is nearly always intractable. This
paper generalizes a practical method developed for testing
access control systems [2], and introduces a tool that implements
this method.

The approach to testing rule-based systems is pseudo-

exhaustive, which we define as exhaustive testing of all
combinations of variable values on which a decision is
dependent. This approach is analogous to pseudo-exhaustive
methods for testing combinational circuits [3], where the
verification problem is reduced by exhaustively testing only the

DOI reference number: 10.18293/SEKE2018-072

subset of inputs on which an output is dependent, or by
partitioning the circuit and exhaustively testing each segment.
The general concept of exhaustively testing subsets of variable
values on which a decision is dependent is applied here to rule-
based systems by transforming rule conditions to disjunctive
normal form, then considering each term separately [2].

Testing a rule-based system requires showing that the rules

as specified, P, are correctly implemented. The implementation
P' must be shown to produce the same response as P for any
combination of input values used in rules. That is, for input
values x1,…, xn, P'(x1,…, xn) = P(x1,…, xn). Positive testing to
show that a rule produces a specified result is easy: instantiate
conditions to true for each antecedent associated with the result
and verify that the system returns the designated result. Negative
testing, showing that no combination of input values will
produce the same result when it should not, is much more
difficult. With n Boolean variables there are 2n possible
combinations of variables. For example, it would not be unusual
to have 50 Boolean variables, resulting in 2"# ≈ 10'"
combinations, which would appear to make full negative testing
intractable. In this paper, we show how combinatorial methods
can be used to make this testing problem practical, given
assumptions that apply to many or most rule-based systems.

II. TEST CONSTRUCTION
We describe the derivation of complete test cases from rules

converted to k-DNF structure (disjunctive normal form where no
term contains more than k literals, and a term is a conjunction of
one or more literals within the disjunction), using a constraint
solver and a covering array generator. Two arrays are
constructed for each possible rule consequent, such that every
test in each array should produce the same result, with variations
indicating an error. The method may be applied to rule systems
with multiple outputs, where outputs are either discrete values
or are defined by a predicate or expression with a Boolean result.

 Rules are assumed to be given as expressions made up of

variables with logical connectives in an antecedent, with a
consequent given as a discrete value or simple predicate,
structured as shown below where Ri are predicates evaluating
the values of one or more variables, and resulti is the result
expected when conditions of Ri evaluate to true:

(R1 → result1) (R2 → result2) … (Rm → resultm)

586

else → default
which is equivalent to:

(R1 → result1) (R2 → result2) … (Rm → resultm)
 (~R1) (~R2)… (~Rm) → default

Each Ri may include multiple variables, conditions, and
logical connectives. It is required that the rule antecedents Ri are
mutually exclusive, i.e., for any set of input variable values, only
one antecedent will be matched. We believe this requirement is
not overly restrictive, as in most applications it would be an error
for matches of more than one rule. (It would be possible to use
the constraint solver to check that rule antecedents are mutually
exclusive, but this feature has not been implemented.)

Example 1: Suppose we have a rule set as shown below:
 if (a && (c && !d ||e)) R1;
 else if (!a && b && !c) R2;
 else exit();

This code can be mapped to the following expression (note
second line is "else", i.e., negation of predicates for R1 and R2):

 (a(cd̅ +e) → R1) (a̅ b c̅ → R2)
((∼(a(cd̅ +e)))(∼(a̅ b c̅)) → exit)

Literals can be conditions, such as age>18, or Boolean

variables such as employee (yes, no), but the structure will be a
series of expressions specifying subsets of conditions that
produce each result, followed by a default rule when none of the
attribute expressions have been instantiated to true.

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	
1	 0	 0	 0	 1	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0	
2	 0	 0	 1	 0	 1	 1	 1	 1	 1	 0	 0	 0	 0	 0	 1	
3	 0	 1	 0	 0	 0	 1	 0	 1	 1	 1	 1	 1	 1	 0	 0	
4	 0	 1	 1	 1	 1	 0	 0	 1	 0	 0	 0	 1	 0	 0	 1	
5	 1	 0	 0	 0	 1	 0	 0	 1	 0	 0	 1	 1	 1	 1	 0	
6	 1	 0	 1	 1	 0	 1	 1	 1	 0	 1	 0	 1	 1	 1	 0	
7	 1	 1	 0	 1	 1	 1	 0	 0	 0	 1	 0	 0	 1	 0	 1	
8	 1	 1	 1	 0	 0	 0	 1	 1	 1	 1	 1	 0	 1	 1	 1	
9	 1	 0	 0	 0	 0	 1	 1	 0	 1	 0	 0	 1	 1	 1	 1	
10	 0	 1	 1	 1	 0	 1	 1	 0	 1	 0	 1	 1	 0	 1	 0	
11	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 1	 0	 1	 1	 1	
12	 1	 0	 1	 1	 1	 0	 0	 0	 1	 0	 1	 0	 1	 0	 0	
13	 1	 0	 0	 1	 1	 0	 1	 1	 1	 1	 1	 1	 0	 1	 1	
14	 1	 0	 1	 0	 0	 1	 0	 0	 0	 0	 1	 1	 0	 0	 1	
15	 0	 1	 1	 0	 0	 1	 1	 0	 0	 1	 1	 0	 0	 0	 0	
16	 0	 1	 1	 0	 1	 0	 0	 0	 1	 1	 0	 1	 1	 1	 1	
17	 1	 1	 0	 1	 0	 0	 1	 1	 1	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 0	 0	
19	 0	 1	 0	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	
20	 1	 1	 1	 1	 0	 0	 1	 0	 0	 1	 1	 1	 0	 1	 1	
21	 1	 0	 0	 0	 1	 1	 0	 0	 1	 0	 0	 0	 0	 1	 0	
22	 0	 1	 1	 1	 0	 1	 1	 1	 0	 1	 0	 0	 1	 1	 1	
Figure 1. 3-way covering array of 15 boolean parameters

To make testing tractable, we use combinatorial methods
[2][4]. To see the advantages of a combinatorial approach, refer
to Fig. 1, which shows a covering array of 15 boolean variables.
A covering array is an 𝑁 × 𝑘 array of N rows and k variables. In
every 𝑁 × 𝑡 subarray, each t-tuple occurs at least once. In
software testing, each row of the covering array represents a test,
with one column for each parameter that is varied in testing. For
example, Fig. 1 shows a complete 3-way covering array that
includes all 3-way combinations of binary values for 15

parameters in only 22 tests. The size of a t-way covering array
of n variables with v values each is proportional to 𝑣.	𝑙𝑜𝑔	𝑛
[6][7]. For Example 1, with five attributes and two possible
decisions for each attribute, there are 25 = 32 possible rule
instantiations. However, a covering array of all 3-way
combinations contains only 12 rows. The number of variables
for which all settings are guaranteed to be covered in a covering
array is referred to as the strength; a 3-way array is of strength
3. We use covering arrays of variables from rules that have been
converted to k-DNF form. For example, abc + de contains two
terms, one with three literals and one with two, so the expression
is in 3-DNF form. The covering array does not contain all
possible input configurations, but it will contain all k-way
combinations of variable values. Where an expression is in k-
DNF, any term containing k literals that is resolved to true will
clearly result in the full expression being evaluated to true. For
example, an access control rule in 2-DNF form could be: “if
employee && US_citizen || auditor then grant”. This rule
contains one term of two attributes and one term of one attribute,
so it is 2-DNF. Because a covering array of strength k contains
every possible setting of all k-tuples and i-tuples for i < k, it
contains every combination of values of any k literals.

As noted in the Introduction, we exhaustively test all

combinations of values on which a decision is dependent. For
the example above, the decision grant depends on either of two
terms being true: employee && US_citizen or auditor. Any
other setting of these three variables should result in deny. A
truth table of all eight possible settings of these three variables
would allow exhaustive testing of this set of rules. In general,
exhaustive testing is intractable for nearly all applications, but
note that at most two variables are required to produce a grant
result. So if we test all 2-way combinations of settings of the
input variables, we have achieved exhaustive testing of all
combinations of variable values on which a decision is
dependent, since no decision depends on more than two
variables. (Later in the paper we show how this approach scales
up to larger problems, and address the effectiveness for detecting
errors when implemented rules contain more variables than are
included in specified rules.)

Covering array generation tools, such as ACTS [4][6], make

it possible to include constraints that prevent inclusion of
variable combinations that meet criteria specified in a first order
logic style syntax. For example, if we are testing applications
that run on various combinations of operating systems and
browsers, we may include a constraint such as ‘OS = “Linux”
=> browser != “IE”’. Constraints are typically used in situations
such as this, where certain combinations do not occur in practice
or are physically impossible, and therefore should not be
included in tests. Modern constraint solvers such as Choco [8]
and Z3 [9] make it possible to process very complex constraint
sets, converting logic expressions into combinations that are
invalid and can be avoided in the final array.

Method: Let R = rule antecedents (left side of an implication
rule such as p in p → q) of one or more rules being tested in k-
DNF, and Ti are terms (conjuncts of one or more variables or

587

terms) in R. We designate the result/consequent of the rule
being tested as (+), and any other possible result as (-). For the
example included in Example 1, terms Ti of R1 would be acd̅,
and ae, and R1 would be designated as (+) and R2 or exit()
designated as (-), for this test.

Positive testing: Generate a test set PTEST for which every test
should produce a particular response. It must be shown that for
all possible inputs, where some combination of k input values
matches a (+) condition, a (+) result is returned. Construct test
set PTEST = {PTESTi} with one test for each term Ti of R as
follows: PTESTi = 𝑇5(7 ~𝑇9)9;5

The construction ensures that each term in P is verified to

independently produce the expected response for that rule.
Negating each term Tj, i ≠ j, prevents masking of a fault in the
presence of other combinations that would return the same
result. For example, if a rule condition is ab + cd →R1, inputs of
1100, 1101, 1110 could be used for testing ab →R1. However,
input 1111 would not detect the fault if the system ignores
variable a or b, because the condition cd would cause a result of
R1, and no other predicates in the rule would be evaluated. One
such test is required for each term in a rule, so for m rules with
an average of p terms each, the number of tests required is
proportional to mp.

Negative testing: Generate a test set NTEST for which every test
should produce a response other than the result designated by
the rule being tested. It must be shown that for all possible
inputs, where no combination of k input values matches a rule,
an alternative result is returned.

NTEST = covering array of strength k, for the set of
variables in all rules, with constraints specified by ~Ri.

Note that the structure of the rule evaluation makes it
possible to use a covering array for NTEST, compressing a large
number of test conditions into a few tests. Converted to k-DNF,
each rule antecedent includes a sequence of conditions that are
each sufficient to trigger the specified result. Because rule
antecedents are mutually exclusive, masking of one combination
by another can only occur for NTEST when a test produces a
negative response, i.e., a response that is not a consequent of the
rule instantiated in PTEST. In such a case, an error has been
discovered, which can be repaired before running the test set
again. Since NTEST is a covering array, the number of tests will
be proportional to vk log n, for v values per variable (normally
v=2 since most will be Boolean conditions), and n variables.

Rule antecedents are assumed to be mutually exclusive (to

prevent masking as discussed above), but we allow for cases
where multiple rules may have the same consequent (result). In
such cases, rule antecedents are combined to produce the set of
conjuncts used in generating PTEST and NTEST arrays. For
example, if two rules are R1→ Q1 and R2→ Q1, then k-DNF
terms for PTEST are produced from (R1+ R2) and constraints for
NTEST are given by ~(R1+ R2). For m rules with the same

consequent (result), the number of tests is multiplied by the
constant m.

Example 2: Table I gives a set of Boolean variables a through
e, where each row defines values for the variables that determine
an access control decision, either grant (+) or deny (-). Thus a
covering array for the antecedent R of a rule in 3-DNF such as
(acd̅ +	a̅bc̅ → grant) is given in Table 1. The total number of 3-
way combinations covered is the number of settings of three
binary variables multiplied by the number of ways of choosing
three variables from five, i.e., 2= >53A = 80.	

TABLE I. 3-WAY COVERING ARRAY
 a b c d e
1 0	 0	 0	 0	 0	
2 0	 0	 1	 1	 1	
3 0	 1	 0	 1	 0	
4 0	 1	 1	 0	 1	
5 1	 0	 0	 1	 1	
6 1	 0	 1	 0	 0	
7 1	 1	 0	 0	 1	
8 1	 1	 1	 1	 0	
9 1	 1	 0	 0	 0	
10 0	 0	 1	 1	 0	
11 0	 0	 0	 0	 1	
12 1	 1	 1	 1	 1	

TABLE II. 3-WAY COVERING ARRAY WITH CONSTRAINT ~R

 a b c d e
1 0	 0	 0	 0	 0	
2 0	 0	 1	 1	 1	
3 0	 1	 1	 0	 0	
4 1	 0	 0	 1	 0	
5 1	 0	 1	 1	 0	
6 1	 1	 0	 0	 1	
7 1	 1	 1	 1	 1	
8 0	 0	 1	 0	 1	
9 1	 1	 0	 1	 0	

10 0	 0	 0	 1	 1	
11 1	 0	 0	 0	 0	
12 0	 1	 1	 1	 0	
13 1	 0	 0	 0	 1	
14 0	 1	 1	 0	 1	

Table II shows a covering array for this set of variables

generated using ~R as a constraint. That is, the two terms of the
rule, acd̅ and	a̅bc̅, have been excluded from the array, but all
other 1-, 2-, and 3-way combinations can be found in the array.
Because acd̅ and	a̅bc̅ are the only conditions under which access
should be granted, the array in Table II should result in a deny
response from the system for every test. Collectively, tests
include all 78 3-way settings of variables that will not instantiate
the access control rule to true.

III. FAULT DETECTION PROPERTIES
Now consider the faults that this method can detect. Suppose

that some combination of variables exists that produces a
different response than required by the rule set P, for example
because of errors in code that instantiates variable values. Tests
contained in PTEST and NTEST will detect a large class of

588

missing terms, added terms, or altered terms containing k or
fewer variables. In this section we analyze faults that will be
detected, and the underlying conditions in these faults. Table III
illustrates the fault types and detection conditions for each.

TABLE III. EXAMPLE FAULTS AND DETECTION CONDITIONS.

 Term C=correct
term

F=faulty
term

PTEST detect
condition

NTEST detect
condition

notes

1 missing abc -- abc none
2 added -- ab none ab
3 abc a̅b none a̅bc, a̅bc̅
4 abc ab none abc̅
5 ab abc -- -- no fault
6 altered abc abc̅ abc abc̅
7 abc ab none abc̅
8 abc a̅b abc a̅bc, a̅bc̅

k-DNF detection property: It is shown in [2] that

collectively, tests from PTEST and NTEST will detect faults
introduced by added, deleted, or altered terms with up to k
variables. We can also show [2] that if more than k attributes are
included in the altered term, some faults are still detected.
Specifically, where a correct term has more than k variables and
is not a subset of a faulty term, the fault will be detected. If a
correct term is a subset of a faulty term in this case, some faults
will be detected.

IV. SOFTWARE TOOL
The prototype research tool, Pseudo-Exhaustive Verifier

(PEV), was developed in Java, and utilizes several open source
external Java libraries. The software is packaged as a Java
Archive (.jar) file which is directly executable as a Graphical
User Interface (GUI), or can be run as a Command Line
Interface (CLI) from a terminal.

The PEV software has been designed to accept rule sets

comprised of Boolean variables, Boolean operators and
relational expressions, implementing the algorithm described in
Sect. II. The software parses the rule set, converts to Disjunctive
Normal Form (DNF), inverts the DNF rule set, solves for
positive conditions, and uses NIST’s Automated Combinatorial
Testing for Software (ACTS) tool [6] to compute a covering
array for negative conditions.

Algorithm implementation: PEV utilizes several publicly
available Java Archive libraries to generate test arrays.
Transforming the input Boolean rule set to DNF is done using
jbool_expressions [10], and the Choco constraint solver [11] is
used for resolving relational statements.

Parsing: Parsing is a critical step of the PEV software, which
occurs before any testing is performed. Since the software needs
to accept input from the user, any input must be modified and
sanitized prior to use, to ensure compatibility with the various
APIs used, as well as to catch any syntactical problems prior to
testing... The parser strips extraneous whitespace, and then
normalizes Boolean operators (&&, &, ||, |, !, ~),
and attempts to match open and closing parenthesis. This
sanitization ensures compatibility with the various APIs used

throughout the software, and catches any syntactical problems
prior to testing.

 The software is not restricted to Boolean expressions, and
has initial support for relational expressions (e.g., b < 3;). Note
that a semicolon is used to identify a relational expression.
During parsing, PEV will locate numeric relational expressions
and replace them with temporary Boolean variables. After the
replacement, the rule set is processed as normal. The relational
values are solved at a later step and the results are recorded.

Once the initial input rule set is parsed, the software will

convert it to Disjunctive Normal Form (DNF) to be tested. The
user will be presented with a breakdown of the DNF rule set
(split on the OR statements), each part of which is a positive
condition that needs to be solved. Additionally, the user can set
minimum and maximum values for any relational variable found
in the rule set.

Solve for positive conditions: Each individual expression
between OR operators is an expression that, once solved, will
produce one positive condition. These expressions represent the
only possible positive conditions for the original rule set – so it
is possible to produce exhaustive positive conditions.

Consider Fig. 1, with the original input rule set:

 emp & age>18; & (fa | emt | med) | b<3;

Converted to DNF, this is:

((age > 18; & emp & emt) | (age > 18; & emp
& fa) | (age > 18; & emp & med) | b < 3;)

Splitting on the OR operators, there are four individual

expressions for the positive conditions (replacing relational
expressions with temporary Boolean variables
tmp0 = age > 18; and tmp1 = b < 3;):

• tmp0 & emp & emt
• tmp0 & emp & fa
• tmp0 & emp & med
• tmp1

To solve these expressions, any variable present is evaluated

with the following rules, as shown in Table V:
• Non-negated variables evaluate to true
• Negated variables evaluate to false
• Variables not present evaluate to false

 Solve for negative conditions: Depending on the complexity

of the input rule set, it may not be feasible to produce exhaustive
negative condition output combinations. By utilizing
combinatorial test methods, it is possible to generate covering
arrays of sufficient strength to have good test coverage. The
method for producing negative conditions can be found by
generating the full covering array for all the unique Boolean
variables within the rule set, and using the DNF rule set as a
constraint – which will remove the positive conditions from the
resulting output.

589

Figure 1. PEV software, after initial rule set parsed

TABLE V - SOLVED POSITIVE CONDITIONS
Expression tmp0 tmp1 emp emt fa med
tmp0 & emp & emt 1	 0	 1	 1	 0	 0	
tmp0 & emp & fa 1	 0	 1	 0	 1	 0	
tmp0 & emp & med 1	 0	 1	 0	 0	 1	
tmp1 0	 1	 0	 0	 0	 0	

 A covering array for all negative conditions is computed as

described in Sect. II. To perform this task, PEV creates an
internal instance of the ACTS software, and passes a list of the
unique Boolean variables from the rule set (including temporary
Boolean replacements for relational expressions). The next step
is to add the DNF rule set as a constraint to the system – so that
the positive conditions are not included as negative results.
Finally, the k-way combination is dynamically set after the k-
DNF transform, which finds the conjunction with the largest
combination of Boolean variables. In this example, the value of
3 is set (Table VI). PEV currently supports k = 2..6, because
ACTS is used as the covering array generator, but there is no
inherent limit to 6-way combinations and the method could
support k > 6.

Solve for relational expressions using the Choco Expression
Parser and the Choco Constraint Solver.
 Relational Expression Formatting: The general format is:

Variable OPERATOR Integer_Value; Or
Integer_Value OPERATOR Variable;

Every relational expression must end with a semicolon (;),
and two or more relational expressions in a row (without
Boolean operators between them) will be replaced with one
temporary Boolean variable during parsing. An example is
shown in Table VII.

 After being extracted and replaced by temporary Boolean
variables, and the Positive/Negative conditions are found, an
instance of Choco Expression Parser is created, and the
relational expressions are passed as parameters. The minimum
and maximum range for the expression to test against must be
set – the PEV GUI includes a section which will allow the
adjustment of every relational variable min and max values
(default set to 0 to 100). These values can be adjusted prior to

testing the rule set so that a customized range can be found. The
solutions to the solved expressions are then placed into the
results where appropriate.

TABLE IV. SOLVED NEGATIVE CONDITIONS

tmp0 tmp1 emp emt fa med
1	 0	 1	 0	 0	 0	
1	 0	 0	 1	 1	 1	
0	 0	 1	 1	 1	 0	
0	 0	 0	 0	 0	 1	
0	 0	 0	 1	 0	 0	
0	 0	 1	 0	 1	 1	
1	 0	 0	 0	 1	 0	
0	 0	 1	 1	 0	 1	
1	 0	 0	 1	 0	 1	
0	 0	 0	 0	 1	 0	
1	 0	 0	 0	 0	 1	
1	 0	 0	 1	 0	 0	

TABLE V. INPUT POLICIES AND RESULTING PARSED RULE SET

Input Rule set Parsed Rule set
a > 10; 20 < b; || n tmp0 || n
a > 10; || 20 < b; || n tmp0 || tmp1 || n

Results: Once testing completes, PEV displays usage metrics
and parameters which will result in positive conditions, and the
covering array for negative conditions. At this point, the results
can be saved as a comma separated value (.csv) file.

V. V. TEST SET SIZE AND PRACTICAL IMPLICATIONS
The process scales easily to systems with a large number of

variables and rules. Because the number of rows in a covering
array grows only with log n for n variables at a given number of
values, a large increase in the number of variables requires only
a few additional tests.

The most significant limitation for this approach occurs
where terms in rules contain a large number of values per
variable. Because the number of rows of a covering array
increases with vk, for v variable values, if terms in the rules have
more than 10 to 12 values, it may not be practical to generate
covering arrays. However, a large number of tests is not a
barrier, because the structure of the solution resolves the oracle
problem by ensuring that every test in PTEST should produce a
response of (+) and every test in NTEST should produce a
response of (-). Consequently, tests can be fully automated,
making it possible to execute a large test set.

VI. VI. RELATED WORK
This paper generalizes a method developed originally for

testing attribute-based access control systems [2], which had
been incorporated into the Access Control Policy Testing tool
ACPT [12]. The generalized method and new tool, PEV, were
developed to make the method useful in development and testing
for a wider range of applications. Pseudo-exhaustive test
methods for circuit testing have an extensive history of
application [1]. While our method is not derived from these
earlier approaches, it shares the basic notion of determining
dependencies, partitioning according to these dependencies, and

590

testing exhaustively the inputs on which an output is dependent.
We have previously applied this notion to software testing in a
more general form, using the observation that faults depend on
a small number of inputs, by covering all 2-way to 6-way
combinations of inputs [13]. This earlier work generated a test
oracle using a model checker with a formal specification of a
system, instantiated with inputs from a covering array.

 Relatively little work has been published on testing
specifically for rule-based systems. Dalal et al. [15] describe a
case study of a rule-based system in an evaluation of model
based testing, including the use of the combinatorial testing tool
AETG. However, their testing considered only high level
properties, such as whether updates correlated with the
assignment of jobs during a working day. That is, no tests were
generated from the rules. Rule based systems have also been
used in a number of studies of test data generation [16][17], but
used rules in generating tests for other software, rather than
testing the rule-based systems themselves.

Among automated test generation systems, PEV falls into

the class of tools with a specified test oracle, using the taxonomy
of Barr et al. [14], because system rules serve as a specification
of system behavior. Many such systems have been developed.
The test oracles used in those systems were designed to answer
the question "For a given set of inputs and initial state, what is
the system output?", using a formal spec of some kind. Given
such an oracle, test inputs must also be provided. Our method
differs from these in that we address a narrower class of systems,
but trade this limitation for complete coverage of inputs up to k-
way combinations, providing testing that is pseudo-exhaustive,
i.e., exhaustive for all subsets of inputs on which a rule result is
dependent.

VII. CONCLUSIONS
Rule-based systems are used extensively in applications such

as enterprise resource planning and machine learning [20]. If
rules contain at most k Boolean variables per conjunction, for an
expression in k-DNF, then a k-way covering array can test all
possible settings of such terms. Thus for any possible
combination of n inputs, only k (k < n) matter in determining the
truth of the expression. In most applications, the number of
conditions in conjunction will be small, even though the number
of rules may be very high, possibly several hundred or even into
thousands. The number of rows in a k-way covering array of
Boolean variables is proportional to 2k log n, and the ACTS
covering array generator used in PEV produces arrays up to 6-
way. Therefore PEV can efficiently process thousands of
conditions or rules with up to six conditions per conjunction,
sufficient for practical use.

 The method described here was initially used in access
control policy testing [2], and PEV has extended its applicability
to a broader range of potential use. We are also considering
methods to improve the efficiency of the PEV tool, including
use of SAT solvers for generating covering arrays [18][19]. It
may be possible to integrate the methods described in this paper
with SAT-solver based covering array generation, to produce
more compact arrays.

To make the tool more useful for practical application,
features to allow import and export from common rule system
formats, or decision table structures, may be helpful. We plan to
investigate the possibilities depending on interest from users.
We have received inquiries regarding compatibility with
commercial tools, which could be considered for further
development. Thus far, the major interest for this test method is
for business rule systems, but it could be applied to traditional
expert system applications as well.

Note: Identification of products does not imply endorsement by NIST, nor that
products identified are necessarily the best available for the purpose.

REFERENCES
[1] Lu, R., & Sadiq, S. A survey of comparative business process modeling

approaches. In Intl Conf on Business Information Systems (pp. 82-94).
Springer, 2007.

[2] Kuhn, D. R., Hu, V., Ferraiolo, D. F., Kacker, R. N., & Lei, Y. (2016,
April). Pseudo-exhaustive testing of attribute based access control rules.
In Software Testing, Verification and Validation Workshops (ICSTW),
2016 IEEE Ninth International Conference on (pp. 51-58).

[3] McCluskey, E. J. (1984). Verification Testing: A Pseudoexhaustive Test
Technique. Computers, IEEE Transactions on, 100(6), 541-546.

[4] Kuhn, D. R., Kacker, R. N., & Lei, Y. (2010). SP 800-142. Practical
Combinatorial Testing, NIST, Gaithersburg, MD 20899

[5] ACTS Home Page, http:// csrc.nist.gov/acts/
[6] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: A general

strategy for t-way software testing. 14th intl conference on the
engineering of computer-based systems, 2007, pp 549–556

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG
System: An Approach toTesting Based on Combinatorial Design,” IEEE
Trans. Software Eng., 23(7):437-444,1997.

[8] Jussien, N., Rochart, G., & Lorca, X. (2008). Choco: an open source java
constraint programming library. Open-Source Software for Integer and
Contraint Programming (OSSICP'08) (pp. 1-10).

[9] De Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems (pp.
337-340). Springer Berlin Heidelberg.

[10] https://github.com/bpodgursky/jbool_expressions
[11] https://github.com/kaktus40/choco-exppar

http://www.choco-solver.org/
[12] ACPT Home Page, http://csrc.nist.gov/groups/SNS/acpt/

access_control_policy_testing.html
[13] D. R. Kuhn, V. Okun, Pseudo-exhaustive Testing For Software, 30th

NASA/IEEE Software Engineering Workshop, April 25-27, 2006
[14] Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2015).

The oracle problem in software testing: A survey. IEEE transactions on
software engineering, 41(5), 507-525.

[15] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton,
G. C., & Horowitz, B. M. (1999, May). Model-based testing in practice.
21st Intl Conf on Software Eng. (pp. 285-294). ACM.

[16] Deason, W. H., Brown, D. B., Chang, K. H., & Cross, J. H. (1991). A
rule-based software test data generator. IEEE transactions on Knowledge
and Data Engineering, 3(1), 108-117.

[17] Edvardsson, J. A survey on automatic test data generation. 2nd
Conference on Computer Science and Engineering (pp. 21-28) 1999.

[18] Lopez-Escogido D, Torres-Jimenez J, Rodriguez-Tello E, Rangel-Valdez
N. Strength two covering arrays construction using a sat representation.
InMICAI 2008: Advances in Artificial Intelligence 2008 Oct 27 (pp. 44-
53). Springer Berlin Heidelberg.

[19] Banbara M, Matsunaka H, Tamura N, Inoue K. Generating combinatorial
test cases by efficient SAT encodings suitable for CDCL SAT solvers.
InLogic for Programming, Artificial Intelligence, and Reasoning 2010
Oct 10 (pp. 112-126). Springer.

[20] Lee, C. C. (1991). A self-learning rule-based controller employing
approximate reasoning and neural net concepts. International Journal of
Intelligent Systems, 6(1), 71-93.

591

Metrics for Data Uniformity of User Scenarios
through User Interaction Diagrams

Douglas Hiura Longo and Patrícia Vilain
Informatics and Statistics Department,
 Federal University of Santa Catarina,

Florianopolis, Brazil
douglashiura@inf.ufsc.br, patricia.vilain@ufsc.br

Abstract— In the software development process, the
acceptance testing may be used by non-technician users to
define software requirements. In this article, we use the US-
UIDs (User Scenarios through User Interaction Diagrams) as
automated acceptance tests in order to provide
communications and collaboration between programmers and
users. We propose three metrics for measuring the data
uniformity in the US-UIDs. These metrics are investigated in
four projects. The resulting measures from the investigations
of the four projects are used to build a scale with classes to
classify the uniformity of the US-UIDs. The classes
(duplication, uniformity, irregularity) were created from
empiric evaluation and compared to the measures from the
offered metrics. The classification purpose is to identify the
US-UIDs as uniform or irregular.

Keywords: US-UID; User Scenarios Through User
Interactions Diagrams; ATDD; Uniformity; Acceptance Test;
Automated Test; Executable Test; Executable Requirement;
Quality Factor; Requirements; Requirements Specification;
Metrics.

I. INTRODUCTION
Analogous to the Test-Driven Development (TDD) [1],

the Acceptance Test-Driven Development (ATDD) includes
team members with different perspectives (client, developer,
tester) collaborating to write acceptance testing before
deploying the functionality [2]. Teams that try ATDD
generally find that only by defining acceptance tests when
discussing requirements outcomes there will be a better
understanding. However, the acceptance tests force us to
reach a solid agreement about the exact behavior that the
software should expose [3].

The User Scenarios through User Interaction Diagrams
(US-UIDs) are suggested to allow that non-technician users
define software functional requirements in the ATDD
approach [4, 5]. The US-UIDs are used to specify primarily
the values of the information exchanged between the user
and the computer in tasks that represent functional
requirements, mainly in information systems and can be
used as automated acceptance tests [6].

To use a US-UID as an automated test, the following
steps are performed: specification of the US-UID,
nomination of the fixtures that represents the US-UID

elements, and creation of the glue code that will link these
fixtures to the SUT (System Under Testing) code [6].
Although data uniformity problems are generated in the
specification step, the identification of these problems
occurs usually in all three steps of test automation.

Figure 1 shows a pair of US-UIDs to exemplify the
uniformity problem in the data. The example considers only
a part of the original US-UIDs to show data with uniformity
problem. Both US-UIDs show the same functionality, the
specification of the authentication system, but show
different values to the information. The example highlights
two uniformity problems, where the first is related to the
values of the user inputs “Mary” and “John”. Both values
are different from one another but have the same sense. The
sense is clearly a user name. This sense can be extracted
through the experience with people names and with data
from close elements in the US-UID. In this authentication
system, it is hard to deconstruct the sense of user names for
these values, however, for specific systems with little
known specialties between the stakeholders, the non-
uniform data causes loss of sense. The second uniformity
problem is related to the system outputs “Enter” (Figure 1,
US-UID A) and “Log In” (Figure 1, US-UID B). Both
systems outputs represent in SUT implementation the button
text for the action of entering in the system. For
communication purposes, the stakeholder can understand
the text of these two system outputs that, although different,
have the same sense. However, as an automated test, there
will be a problem with the implementation. As the system
outputs of a US-UID are also assertions and the assertions
rely and capture the SUT values, it is inviable that an
implementation, in an automated manner, could answer to
two distinct values (“Enter” and “Log in”) in the same way,
unless the same action is duplicated in the SUT.

The irregular data generation occurs mainly in the
shared specification, i.e., when more than one stakeholder
specifies US-UIDs to a same system. Thus, when there is
more than one person specifying different US-UIDs, usually
there is no care to keep the data uniform, as each person
uses the data domain that he/she knows for the test. Other
way to generate non-uniform data is by the partial repetition
of a US-UID path. The partial repetition is necessary
because there cannot be deviations and branches in the US-

DOI reference number: 10.18293/SEKE2018-075.

592

UIDs [4, 5]. Therefore, when you repeat manually parts of
the US-UIDs, it is usual to change small details and not
apply the changes in all the US-UIDs, that way, there will
be a uniformity problem that will be spread in all test
automation steps. Furthermore, as the US-UIDs of a project
increases, more difficult becomes the uniformity problems
identification.

Figure 1. Two fragments of US-UIDs with dat uniformity problems

The general purpose of this work is to suggest metrics
for measuring data uniformity from US-UIDs. The specific
purpose is the empiric evaluation of the metrics to create a
classification that allows the identification of US-UIDs with
irregular data.

This paper is organized as follows. The second section
shows the theory basics about the US-UIDs. The proposal is
detailed in the third section. The fourth section shows the
projects of the evaluation. The fifth section shows the
results of the evaluation. Finally, the sixth section shows the
conclusions.

II. BACKGROUND
The US-UIDs are used for specifying software

requirements. The US-UIDs have been suggested as a
specialization of the UID technique [7], where the abstract
information is replaced with concrete values from the user
scenarios. The applicability of the US-UIDs is usually made
by non-technician users to create acceptance testing before
the development. In agile development teams, the US-UID
can be used for communication and collaboration between
the stakeholders in software development.

Figure 2 shows an example of US-UID with the
interactions of the sum operation using of a calculator.
According to Longo and Vilain [4], this example was
adopted to explain to non-technician users how to specify
the US-UIDs. With the knowledge acquired from the
example, non-technician users have participated in
experiments to evaluate the correctness and the
completeness of the US-UIDs [4, 5].

Figure 2. Example of a US-UID of a calculator sum operation, as

suggested by Longo and Vilain [4, 5]

In this example, the user enters the values of the sum
operation (3 + 1 =) and the system shows the result (4). In
the example, five states of interaction are shown, meaning
each state of interaction (ellipse) contains the user input and
the system output values. The state of interaction flow is
represented by the arrow direction through the states of
interaction. The initial state is the first state of interaction
that follows the arrows and the end state is the last state in
the flow. Table I shows the language symbols from the US-
UIDs.

TABLE I. SYMBOLS FOR THE LANGUAGE OF US-UIDS [1, 2]

Symbol Use

Ellipse – represents a state of interaction.

 Arrowed line – represents the direction flow, i.e., the
transition between interactions states.

Rectangle – represents the user input, its value is
represented by a set of characters placed within the
rectangle.

Characters
sequence

Value – represents the system output, where a set of
characters is placed within the ellipse.

A. Mathematical Model of the US-UIDs
The US-UIDs can be represented in a mathematical

model. Thus, as suggested by Longo et al. [6], the structure
of a US-UID is formed by a set of states of interaction and
each state of interaction is, in turn, formed by a set of user
inputs and a set of system outputs. A state of interaction is
represented by:

𝛿" = 𝜀"%, 𝜀"', 𝜀"(, … , 𝜀"*, 𝜊"%, 𝜊"', 𝜊",, … , 𝜊"- ,
∀𝑖	(𝑖 = 1; 	𝑘), ∀𝑗	(𝑗 = 1; 	𝑛),
(∀𝑙	 𝑙 = 1;𝑚)	

(1)

Given a state of interaction, 𝑛 is the amount of system
outputs and 𝑚 is the amount of user inputs, ο", is the 𝑙-th
system output from 𝑖-th state of interaction, ε<= is the 𝑗-th
user input of the 𝑖 -th state of interaction. A US-UID is
represented as follows:

𝜏? = 𝛿?%, 𝛿?', … , 𝛿?", … , 𝛿?@ ,	

																														 ∀𝑖	(𝑖 = 1; 𝑘), ∀𝑡	(𝑡 = 1; 𝑑)		
(2)

The 𝑘 is the amount of states of interaction of the US-

UID. The δ?" is the 𝑖-th state of interaction of the 𝑡-th US-

593

UID. As a restriction, the set must have at least a state of
interaction.

III. PROPOSAL
The lack of uniformity in data may cause problems in

the communication and collaboration between the
stakeholders, when defining the fixture names and the glue
code. Therefore, it is important to evaluate the data
uniformity in the US-UID specification step. For evaluation,
easy-to-apply uniformity metrics are useful, especially,
computational metrics, with measures of easy availability
for the stakeholders.

This paper proposes three metrics to measure the
uniformity of US-UIDs data. The proposed metrics are of
absolute uniformity, absolute irregularity and relative
uniformity. The metrics for absolute uniformity and
absolute irregularity are created by comparing pairs of US-
UIDs. A set of pairs of US-UIDs is generated from a set of
US-UIDs. The set of pairs of US-UIDs is defined by:

𝜓 =
𝜏%, 𝜏' , 𝜏%, 𝜏E , … , 𝜏?, 𝜏F , … , 𝜏 GH% , 𝜏G , … , 𝜏G, 𝜏 GH% ,
∀𝑡	(𝑡 = 1; 𝑑), ∀𝑞	(𝑞 = 1; 𝑑), 𝑡 ≠ 𝑞,	d	>	1	

 (3)

where, 𝑑 is the amount of US-UIDs from generated set. The
set generated with the pairs of US-UIDs should have at least
two US-UIDs. Both 𝜏? and 	𝜏F are two any US-UIDs from a
US-UIDs set. (𝜏?, 𝜏F) is a pair formed by distinct US-UIDs.
For the pairs formation, the restriction is that the formed
pairs cannot exist with the same US-UIDs, such as 𝑡	 ≠ 𝑞.

A. Metrics for the absolute uniformity
The absolute uniformity is calculated for each pair

(𝜏?, 𝜏F) where each pair of US-UID is split by user inputs
and system outputs. The user inputs and system outputs are
also compared in pairs.

A pair of uniform system outputs is formed by a system
output of 𝜏? and by another system output of 𝜏F . The
criterion to form the pairs of system outputs is that the data
must be identical. The measure of the absolute uniformity of
system outputs from a pair (𝜏?, 𝜏F) is calculated by the
following formula:

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 TU,TV = 1	𝑖𝑓	𝜊", ∈ 𝜏F												
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒												

-

,]%

@

"]%

,

∀𝛿?" 𝛿?" ∈ 	 𝜏?), (∀𝜊",|𝜊", ∈ 	 𝛿?")

(4)

The expression ο", ∈ τF	 means that the system output
ο", belongs to one of the system outputs among all the states
of interaction τF . The absolute uniformity of the system
outputs is equal to the count of all system outputs from all
states of interaction of a US-UID that have a pair compared
to another US-UID. The absolute uniformity of the user
inputs (UniformInput(kU,kV)) is built in a similar way to the
metrics for system outputs.

B. Metrics for the absolute irregularity
In this study, absolute irregularity is the complement of

absolute uniformity. The metrics for the absolute
irregularity is built for a pair (𝜏?, 𝜏F) of US-UIDs. The
construction of this metric is similar to the metrics for
absolute uniformity, in that the metrics for absolute
irregularity is sectioned by user inputs and system outputs.
The absolute irregularity of the system outputs from a pair
(𝜏?, 𝜏F) of US-UIDs is calculated in relation only to system
outputs belonging to 𝜏?. So, the system outputs belonging to
𝜏? that do not have a pair are counted as being irregular. The
criteria for not forming a pair of system outputs is that a
system output belongs to 𝜏? and that no other belongs to 𝜏F
with identical data. The absolute irregularity of the system
outputs of a pair (𝜏?, 𝜏F) is calculated by the following
formula:

𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 TU,TV

= 1	𝑖𝑓	𝜊", ∉ 𝜏F												
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒												

-

,]%

@

"]%

,

∀𝛿?" 𝛿?" ∈ 	 𝜏?), (∀𝜊",|𝜊", ∈ 	 𝛿?")

(5)

The expression 𝜊", ∉ 𝜏F means that the system output 𝜊",
does not belong to the system outputs among all states of
interaction τF . The irregularity metrics for user inputs
(NonUniformInput(kU,kV)) is built in a similar way to the
metrics for system outputs.

C. Metrics for the relative uniformity
The relative uniformity metric is computed from the

absolute uniformity and absolute irregularity metrics. So, for
the measure of the relative uniformity we have the following
equation:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑈𝑛𝑖𝑓𝑜𝑚𝑖𝑡𝑦 kU,kV 	

= 	
𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV 	+ 	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV 	
+	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV

+		𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV
+	𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV

∗ 100

 (6)

The outcome measured from the relative uniformity
takes the values in the range [0%, 100%]. For each
comparison pair τ?, τF the relative uniformity is
calculated. This way, for a set of pairs of US-UIDS, the
average of the relative uniformity can be used as a
quantitative value that represents the general uniformity.

D. Computational implementation of the metrics
The uniformity metrics have been implemented in a

computational version1. The computational version allows
applying the metric in a large set of US-UIDs. The version
has been implemented with the paradigm of object-oriented

1 https://github.com/douglashiura/us-uid

594

programming and Java programming language. The
implementation has been developed to measure the US-
UIDs specified in the framework Sc3n4r10 [6]. It handles
the US-UIDs in files in JSON format2. This way, the files in
JSON formats are converted in Java objects and then
applied to the metrics.

IV. EVALUATION OF METRICS
To evaluate the metrics, the US-UIDs of four projects

are taken into account. In each project, the metrics are
applied, and the outcomes compared. The projects are
specified in different ways and have a uniformity gap
between them. In this section, research issues are also
shown and discussed for applicability of the metrics on the
projects.

A. Project P1: 8-Puzzle
The 8-puzzle is a game that consists in a grade with

three lines and three columns. The grade has a sequence of
numbers from 1 to 8 and a blank. The purpose of the game
is to start in a random state and put in order the sequence of
numbers. This project is comprised by the US-UIDs from
Longo and Vilain [4, 5] study that measured the
completeness and the correctness of the requirements
specified by non-technician users. In the original
experiment, fourteen participants specified the winning state
of the game. During the specification, each participant
should consider at least one move in the grade. Essentially,
the US-UIDs specified in this project are duplicated,
showing only small differences, as all participants had to
specify the same requirement. This way, presumably, the
data from the US-UIDs should be 100% uniform.

B. Project P2: Web Application
The web application is a system that has been developed

for evaluation and monitoring of the courses chain from e-
Tec Brazil3. The system contains a database with surveys
and evaluation outcomes about Brazilian Federal Education
Institutes. A student evasion module has been developed
with the specifications of the US-UIDs a priori. For the
evasion module, four US-UIDs have been specified. The
specification work was developed by two users and two
experts in US-UIDs. After being specified, the US-UIDs
were automated with tests and reviewed for quality
improving, where the best data uniformity was considered.
In this project, the US-UIDs were developed with the best
correctness and completeness as possible.

C. Projects P3 and P4: Messaging System
The message system is an experiment where the

requirements were chosen by the participants themselves.
The participants were requested to think about the
requirements for an application similar to WhatsApp,
Telegram, Hangout or Messenger and, then, specify the
requirements as US-UIDs. Two projects were performed in
the same experiment. In the project P3, a participant, along

2 https://www.json.org/
3 http://saas.etec.ufsc.br/

with an expert, specified the US-UIDs. The expert reviewed
the US-UIDs produced in order to minimize uniformity
problems. The project P4 was performed with four
participants and without the expert's help. In the project P4,
we tried to simulate the situation of shared specification
where the irregularity of the data of the US-UIDs occurs.
For both of these projects, the controlled factor is the aid
from expert. By the practical knowledge, we know that the
aid from expert is significantly important for a better quality
of the uniformity.

D. Uniformity a priori of the projects
The four projects were selected with characteristics that

contribute to a gap in the uniformity of US-UID data among
the projects. The unevenness on the uniformity of each
project is considered for subsequent evaluation of the
sensitivity of the proposed metric. Table II shows the
classification a priori of the uniformity of the projects. The
classification was made by an expert on US-UIDs. For the
classification, the characteristics of each project and the
manual review from an expert were considered. The manual
identification of the uniformity problems is complex when
the amount of US-UIDs increases. Other factor that
complicates the manual evaluation is the number of
elements belonging to the US-UIDs evaluated. For example,
when there are lots of elements as states of interaction in the
US-UIDs, the evaluation becomes complex as well. For the
manual evaluation of the US-UIDs from an expert, the
number of elements should be small, around four US-UIDs,
because, above this amount, lots of doubts may be raised for
the manual evaluation. The projects were evaluated in a
general way by the specialist, i.e., an evaluation was
performed to each project.

TABLE II. CLASSIFICATION A PRIORI OF THE PROJECT UNIFORMITY

Project Classification of the uniformity
P1 Duplication
P2 and P3 Uniformity
P4 Irregularity

The characteristics of the three classes are:

• Duplication: occurs when the same requirement is
specified in lots of US-UIDs, although small
peculiarities occur in each specification.

• Uniformity: occurs when the diagrams are being
specified carefully and taking into account the
domain data. In projects P2 and P3, uniformity was
maintained with the help of experts.

• Irregularity: occurs when the diagrams are specified
by different people and each person considers only
the data of their own knowledge and not of the
general domain. In project P4, it was observed that
uniformity was not maintained since each
participant individually specified the US-UIDs and
without the expert's help.

595

V. RESULTS OF THE METRICS EVALUATION
This section shows the results and the analysis of

applicability of the measures of uniformity from projects.

A. Relative Uniformity
The relative uniformity was calculated to all pairs of US-

UID for the four projects. Figure 3 shows a graphic with the
box plot of the relative uniformity of each project.

Figure 3. Visual comparison of the distribution of relative uniformity of

each pair of US-UIDs for each project

On the right side of the chart there are three intervals for
the three classifications of uniformity defined by the expert
to each project. The relative uniformity interval for the
duplication class is [47.1% to 100%]. The relative
uniformity interval for the uniformity class is [32.4% to
100%]. The relative uniformity interval for the irregular
class is [0% to 90%]. Ideally, the intervals should be
continuous with no overlapping, however, the projects keep
the real characteristics, i.e., they are not projects with all
controlled data, removing discrepancies. This way, to
classify the measures of relative uniformity, it is more
suitable to consider a scale of classes of continuous intervals
and with no overlapping. The suitable scale can be built
using intervals closer to medians, but after analyzing the
sensitivity of the metric.

1) Sensitivity of the metrics
The result of the Kruskal-Wallis ANOVA statistical

analysis for uniformity measure of the projects shows the
statistical measure (H=422.3), with degrees of freedom
equal to (3) and probability of significance (Pvalue = 0.0000).
This way, for a level of significance of 5% (α=0.05), the
test suggests that there is a difference in measures of
uniformity between the projects, therefore, the alternative
hypothesis (H1) is asserted. Thus, a post hoc test is needed
to identify among which projects there is a difference in the
measure of relative uniformity. Table III shows a
comparison of the measures of relative uniformity among
the projects.

TABLE III. COMPARISON POST HOC AMONG THE AVERAGES OF
RELATIVE UNIFORMITY AS PER THE PROJECTS

Projects Pvalue Statistical Decision (𝛂 = 𝟎. 𝟎𝟓)

P1 x P2 1.0000 H0: Insensitive
P1 x P3 0.1265 H0: Insensitive
P1 x P4 0.0000 H1: Sensitive
P2 x P3 1.0000 H0: Insensitive
P2 x P4 0.0000 H1: Sensitive
P3 x P4 0.0000 H1: Sensitive

The statistical analysis suggests that there is no
significant difference among the measures of uniformity in
the projects P1, P2 and P3, but there is a significant
difference for the measures of relative uniformity between
the projects P1 and P4, P2 and P4 and P3 and P4. This way,
we can notice that the classes of duplication and uniformity
that are classified manually by the expert are not sensitive to
the metric, i.e., the metric is not able to classify between
duplication and uniformity. However, the metric is sensitive
and can classify among the classes of uniformity and
irregularity as per the evaluation from expert. For the
projects P2 and P3 that are classified as uniform, the metric
is insensitive, i.e., the metric does not measure differences,
because, in fact, there are no significant differences in the
measure of relative uniformity between the projects P2 and
P3.

B. Absolut Uniformity and Irregularity
The absolute uniformity is the count of the pairs of user

inputs and system outputs sectioned in uniform and
irregulars. Figure 4 shows the box plots for visual
comparison of the absolute uniformity and irregularity of
each project. The first characteristic that we can notice is
that the amount of pairs of system outputs is greater than the
amount of pairs of user inputs in all projects. This first
characteristic is compatible with the fact that in the US-
UIDs there are more system outputs than user inputs. The
second characteristic is that there are more uniform system
outputs in the projects that were classified as duplicate and
uniform (P1, P2 and P3). Adversely, for the project
classified as irregular (P4), there are more irregular system
outputs. The third characteristic that we can notice is that
there are less uniform user inputs than irregular ones in all
projects. However, this third characteristic is less
accentuated in project P3 if compared with the project P4,
where we can conclude that the system outputs also
influence the uniformity, but it is more difficult to analyze
and keep the uniformity during the specification of the US-
UIDs. The fourth characteristic is about the influence on the
automation process of the tests in the uniformity. During the
test automation process, US-UIDs are reviewed to improve
quality. Project P2 considers this process. Also, project P2
has more uniform system outputs than others projects. In
practice, the testing automation process is done by the
programmers and, in this process, with the help from the
stakeholders, the US-UIDs are corrected and implemented.
In general, programmers are more rigorous with the review
process and tend to review US-UIDs to improve uniformity.

596

Figure 4. Visual comparison of the absolute uniformity of the user inputs and system output.

VI. CONCLUSIONS
This paper shows three metrics for measuring data

uniformity of the US-UIDs. The metric of relative uniformity,
based on metrics of uniformity and absolute irregularity, is
important for measuring and classifying the US-UIDs. The
metric takes values from measure of uniformity in the interval
[0% to 100%], where 0% is irregular and 100% is uniform.

In order to evaluate the metric, four empirically pre-
evaluated projects were used by an expert. The evaluation from
expert considered three classes for classifying the uniformity:
duplication, uniformity, irregularity. With the results of the
applicability of the metrics, it was concluded that, through the
measure of relative uniformity, only two classes are suitable.
The metric of relative uniformity is not sensitive for three
classes of the projects. Based on the results, the suitable classes
are uniformity and irregularity. The class of irregularity takes
the interval [0% to 45%] from the measure of relative
uniformity. The class of uniformity takes the interval [45% to
100%] from the measure of relative uniformity. The value 45%
of relative uniformity is the boundary between both classes, but
in both projects classified as uniform and irregular, a measure
overlapping has occurred, where this point was arbitrary
defined as the most suitable for boundary between both classes.
So, this classification is suitable to evaluate the US-UIDs
during the process of specification and reviewing them, if
necessary, before starting the testing automation process.

The measures of absolute uniformity and irregularity are
complementary and can be used to evaluate and compare the
types of elements in the US-UIDs. The elements of type of
system outputs are more present in the US-UIDs and are also
more uniform, however, it was unable to create a classification
like the relative uniformity one. However, through the projects,
the elements of system outputs have weights of uniformity
different than the user inputs.

With the specifications of uniform data of the US-UIDs, it’s
expected avoid reworking and improve the communication
between users and developers. However, the evaluation of
quality criteria not always has significant results in practice [8],
so, it also should be investigated how to apply the metrics
during the specification of the US-UIDs and how to guide the
users in uniformity troubleshooting.

 The main contributions of this work are the proposed
metrics, the computational implementation of the metrics and
the evaluation of four projects. Moreover, the US-UIDs used in
the evaluation are available (https://github.com/douglashiura/
us-uid-uniformity) for future investigations of this acceptance
testing format for the software development.

REFERENCES
[1] BECK, Kent, “Test-driven development: by example,” Addison-Wesley

Professional, 2003.
[2] Gärtner, Markus, “ATDD by example: a practical guide to acceptance

test-driven development,” Addison-Wesley, 2012.
[3] Hendrickson, Elisabeth, "Driving development with tests: ATDD and

TDD," STARWest 2008, 2008.
[4] Longo, Douglas Hiura, and Patrícia Vilain, "Creating User Scenarios

through User Interaction Diagrams by Non-Technical Customers,"
SEKE. 2015, pp. 330-335.

[5] Longo, Douglas Hiura, and Patricia Vilain, "User scenarios through user
interaction diagrams," International Journal of Software Engineering and
Knowledge Engineering 25.09n10, 2015, pp.1771-1775.

[6] Longo, D. H., Vilain, P., da Silva, L. P., & Mello, R. D. S, “A web
framework for test automation: user scenarios through user interaction
diagrams,” In Proceedings of the 18th International Conference on
Information Integration and Web-based Applications and Services.
ACM, 2016 pp. 458-467.

[7] Vilain, P., Schwabe, D., de Souza, C., “A diagrammatic tool for
representing user interaction in UML,” <<UML>> 2000- The Unified
Modeling Language. Springer, 2000, pp.133-147.

[8] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S.,
“Improving user story practice with the Grimm Method: A multiple case
study in the software industry,” In International Working Conference on
Requirements Engineering: Foundation for Software Quality.). Springer,
Cham, 2017, pp. 235-252.

597

Feedback Topics in Modern Code Review:
Automatic Identification and Impact on Changes

Janani Raghunathan, Lifei Liu, Huzefa Kagdi
Department of Electrical Engineering and Computer Science

Wichita State University
Wichita, Kansas 6760, USA

Email: {jxraghunathan, lxliu2, huzefa.kagdi}@wichita.edu

Abstract— Recent empirical studies show that the practice
of peer-code-review improves software quality. Therein, the
quality is examined from the external perspective of reducing
the defects/failures, i.e., bugs, in reviewed software. There is
a very little to no investigation on the impact of peer-code-
review on improving the internal quality of software, i.e., what
exactly is affected in code, due to this process. To this end, we
conducted an empirical study on the human-to-human discourse
about the code changes, which are recorded in modern code
review tools in the form of review comments. Our objective
of this study was to investigate the topics which are typically
addressed via the textual comments. Although, there is an existing
taxonomy of topics, there is no automatic approach to categorize
code reviews. We present a machine-learning-based approach
to automatically classify reviewer-to-reviewer and reviewer-to-
developer comments on proposed code changes. We applied this
approach on 468 code review comments of four open source
systems, namely eclipse, mylyn, android and openstack. The
results show that Evolvability categories are dominating topics.
In an attempt to verify these observations, we analyzed the code
changes that developers performed on receiving these comments.
We identified several refactorings that are congruent with the
topics of review comments. Refactorings are mechanisms to
improve the internal structure of software. Therefore, our work
provides initial empirical evidence on the effectiveness of peer-
code-review on improving internal software quality.

I. INTRODUCTION

Different types of maintenance help improve sustainability
and quality of large-scale software systems. Corrective mainte-
nance helps eliminating or reducing defects in the software;
thereby, improving the external software quality. Preventive or
Perfective types of maintenance may not necessarily address
the defects or features at hand directly; however, they improve
the design or code structure; thereby, improving the internal
software quality. Software testing is primarily used to identify
the defects and is often considered as an ubiquitous mechanism
to improve the external quality. Code review is a rejuvenated
phenomena with benefits in improving the software quality.

Extensive research shows the usefulness of code review in
improving the external quality [1], [2], [3], [4], which is an
important result. Unfortunately, there is little to no work on
investigating how code review improves the internal software
quality. Previous studies [5], [6], [7], [8], [9], [10], [11], [12]
show that the internal quality is also critical and equally (or
more) important. For example, evolvability or internal design
issues could lead to code decay and/or premature degradation.

Peer-code review is the process of reviewers critiquing the
code changes that developers submit to decide if those changes
are of acceptable quality and can be integrated to the main code
base of a software system. Nowadays, it is often lightweight,
informal and tool-based, which is termed as Modern Code
Review (MCR) [13]. MCR is popularly used in industrial and
open source software-development paradigms [14], [2], [15].
The primary discourse between reviewers and developers is
in the form of textual feedback about the code changes at the
line level or collectively within an enabling tool, e.g., Gerrit.

The primary objective of this paper is to investigate how
code review is effective in improving the internal software
quality, which we substantiated with three research questions:

RQ1: What are the common topics, related to both internal
and external qualities, discussed during code review?

RQ2: To what extent these common topics can be automati-
cally classified?

RQ3: How do the developers address the review comments
that reviewers provide to revise their code changes?

With respect to RQ1, we analyzed the code review reposi-
tories of four open source projects, namely eclipse, mylyn,
android and openstack, which are archived in Gerrit. We
manually investigated the three most relevant attributes of
information from Gerrit: the patch description as it contains
the reason the patch is submitted, the changed lines of code by
the developers and the review comments from the reviewers
for the proposed code changes. We classified each of the
review comments into the most appropriate topic based on
the taxonomy of Mantyla et al. [16]. Our results indicate that
topics related to both external and internal qualities are found
during the code review; however, those related to the internal
quality are dominating. As a prime example, 75% of the defects
identified during code review are evolvability type of defects
and hence the majority of the comments raised by the reviewers
are focussed on improving the internal software quality.

With respect to RQ2, we present an automatic approach to
identify the topics found in code reviews. Our approach builds
a machine-learning-based classifier to automatically categorize
the code change into its appropriate topic. The results of our
automatic classifier suggest that evolvability type of issues in
a code can be well predicted with an average precision and
recall of 0.45 and 0.41 respectively. Although, Mantyla et al.
[16] proposed the taxonomy, they did not offer any automaticDOI reference number: 10.18293/SEKE2018-097

598

solutions to classify topics or issues typically identified during
the code review. We also discuss application scenarios of this
automatic classification (see Section IV).

With respect to RQ3, we investigated the review comments
from mylyn, eclipse and android. We manually studied the
changes in the code for the review comments raised by the
reviewers. As every review comment corresponded to a specific
topic, we were able to correlate the action of a developer to a
particular topic. We observed that developers adopted different
refactorings to address different defect topics in code review.
We investigated the structural changes that took place in differ-
ent revisions of code review as a result of review comments and
observed that developers did perform refactoring to address the
review comments. By comparing those refactoring techniques
with the respective topics, we observed a substantial congruence
between the topics of feedback from reviewers and the specific
(categories) of refactorings developers performed to address
the review feedback in revising their code changes. Refactoring
is a mechanism to improve the internal design of the software.
Therefore, it is evident from our results that code review is
effective in improving the internal software quality.

II. BACKGROUND ON MCR AND TAXONOMY OF TOPICS

We define the key concepts involved in the modern code
review process, which is driven by supporting infrastructure
and tools, e.g., Gerrit.

Code Change: A code change is a set of modified source
code files submitted in order to fix a bug or add a feature.

Patch Description: A brief information about the patch and
the reason it is submitted. For instance, it contains information
about the bug id from Bugzilla, if the patch is submitted to
address a particular bug.

Review: A code review is a record of the interactions between
the owner of a change and reviewers of the change including
comments on the code and signoffs from reviewers.

Owner: An owner is the developer who makes the change
in the source code and submits it for review.

Reviewer: A reviewer on a particular review is a developer
who is assigned to and/or contributes to that review.

Review Comment: A review comment is textual feedback
written by a reviewer about the code change during the review
process. A review comment may be about the change in general
or may be explicitly tied to a particular part of the change
called the in-line comment.

The life-cycle of a review is as follows: Initially a developer
(owner) makes changes to the source code in response to a
bug report or feature request. Once complete, they submit the
code change for review. The owner may indicate the intended
reviewers, who are subsequently notified about the review
invitation. It should be noted that the invited reviewers do not
necessarily accept the invitation and contribute to the review.
Reviewers then inspect the change through the code review
tool (a web page in the case of Gerrit) and provide feedback
in the form of review comments to the owner. The owner may
update the change and submit the update to the review as a

result of such feedback. The code change is typically depicted
by showing the difference of the code before and after the
change. Eventually, a reviewer signs-off on the review, once
they believe the code change is of sufficient quality to be
checked into the code repository. If a change never received
sign-off, it is abandoned. It is critical that code review is both
effective (actually improves code changes and blocks poor code
from being checked into the repository) and timely (does not
act as a bottle-neck too by slowing down changes). Therefore,
automation and tool support are key to its success.

Mantyla et al. [16] divided defects detected from code review
into the following parent groups: evolvability, functional, and
false positives. Evolvability defects are sub-divided into Docu-
mentation, Visual Representation, and Structure. The Functional
category has seven groups: Resource, Check, Interface, Logic,
Timing, Support and Larger defects. Each of these defect
categories have a definition as defined by Mantyla et al. and
C. Bird et al. in their works [16] and [17] respectively. We
have used the taxonomy proposed by them to classify the
reviews in our dataset. Mantyla et al. [16] have broadly referred
to all types of issues found in code during code review as
defects, irrespective of whether it is an external defect affecting
the functionality of the software or an internal design flaw
affecting the internal quality of the software. For consistency
and simplicity, we adopted the same terminology. We have
referred to all types of issues found by the reviewers as different
types of defects or topics found in the code.

We define an evolvability defect as a defect in the code
that makes the code less compliant with standards, more error-
prone, or more difficult to modify, extend, or understand. The
functional defects are those that cause a system failure or fail
in their business logic. False positives are those class of defects
which were initially suspected to be defects but later on were
discovered to be as no defects during team meetings. Each
category is further divided into sub-categories.

III. EMPIRICAL STUDY: FORMULATION OF BENCHMARK

The purpose of this study was twofold: 1) to determine
which specific categories were prevalent in the open-source
systems under study, and 2) to curate a benchmark to assess
our automatic approach for classification (see Section IV).
There is no established dataset nor benchmark for our context
in the literature. Additionally, our effort can be considered
as an independent empirical verification or replication of the
categories of Mantyla et al. [16]. That is, we address:

RQ 1: What are the common topics, related to both internal
and external qualities, discussed during code review?

Dataset and Methodology: For our study, we collected the
patches from four open source systems namely eclipse, mylyn,
android and openstack between the periods Jan 2014 and Feb
2016 and classified the review comments into either of the
categories proposed by Mantyla et al. [16] and Bosu et al.
[17]. Each patch has a brief textual description called the
patch description, the owner who submitted it, the files that
are modified as part of the patch, the list of reviewers selected
to review the patch, the line of code that changed and the

599

review comment that the reviewers made on the changed line
of code. In order to create the benchmark, we considered the
following patch selection criteria: 1) patches that were merged
or abandoned, 2) that had either in-line or general review
comments from the reviewers. We also considered those patches
that had a relevant bug id in bug tracking system like Bugzilla to
better understand the patch and thereby classify the review more
accurately. Review #227221 from Mylyn, is an example of how
we classified an individual review into its appropriate defect
category. The reviewer Sam Davis commented on the changes
in the file BugzillaRestPostNewTask.java: This is creative but
I’d rather use ImmutableList from Guava. The owner Frank
Becker had used an ArrayList and the feedback suggested the
use of ImmutableList instead. It is evident from the changed
line of code and the keywords in the review comment, namely,
”use ImmutableList” that the reviewer is proposing an alternate
approach to the ower’s solution. As Mantyla et al. mentioned in
their work [16] that the comments that suggested function call
changes or a complete rethinking of the current implementation,
belonged to Solution Approach defect category. We classified
this review into Solution Approach category. In another example,
review #52373, the reviewer commented When you copy a big
chunk of code like this, it would help to add a comment saying
where it’s copied from because it’s a sign that we might want
to create a common implementation in the future. Similarly,
in this case, after inspecting the changed line of code and the
keywords from the review comment, namely, ”add comment”
suggest that reviewers are concerned about the documentation.
Hence, we categorized this review into Documentation category.

Results: While consolidating the results of our manual
analysis, we observed a total of 17 defect categories which
covered the majority of the defects identified during code review.
They are: Check Function, Check User Input, Check Variable,
Compare, Compute, Data and Resource Manipulation, Wrong
Location, Algorithm/Performance, Organization, Parameter,
Solution Approach, Support, Supported by Language, Textual,
Variable Initialization, Visual Representation and Compiler
Error. Table I shows the distribution of defect categories within
and across projects. They show that topics across evolvability
and functional categories are found in code review. They cover
both external and internal aspects of the reviewed code. It
is also evident from these results that 75% (352 out of 468
review comments) of the defects identified during code review
are evolvability type defects. Overall, we see that the internal
quality aspects are dominant.

IV. APPROACH: AUTOMATIC CLASSIFIER

As discussed in the previous section, the review topics
pervade both external and internal software qualities; however,
identifying them is non-trivial, tedious, non-scalable, among
other things. Therefore, we need to consider their automatic
identification. That is, we address:

RQ2: To what extent can we automatically classify the
common topics?

1https://git.eclipse.org/r/#/c/22722/4

TABLE I
DEFECT CATEGORY/TOPICS COMMONLY FOUND IN EACH PROJECT

Eclipse Platform(86) Mylyn(108) Android Platform(98) OpenStack(177)
Defect categories # of reviews % # of reviews % Total No. of reviews % # of reviews %

Evolvability Defects
Textual 39 45.35 25 23.36 38 38.8 51 28.8
Supported by language 8 9.3 7 6.54 10 10.2 8 4.54
Organization 6 7 14 13.08 8 8.16 36 20.45
Solution Approach 9 10.50 27 25.23 9 9.18 18 10.22
Visual Representation 8 9.3 3 2.8 18 18.37 9 5.11
Functional Defects
Compare 3 3.48 4 3.73 1 1.02 3 1.7
Compute 6 6.97 2 1.86 5 5.1 6 3.4
Check Function 9 8.41 3 3.06 33 18.8
Check Variable 4 4.65 11 10.28 6 6.12 8 4.54
Check User Input
Algorithm/ Performance 1 0.56
Wrong Location 1 1.16 3 2.8
Data and Resource Manipulation 1 1.16
Variable Initialization 1 0.93 2 1.13
Parameter 1 0.93
Support 1 0.93
Timing 1 0.56
Compiler Error 1

Methodology. We developed a classifier to automatically
categorize the reviews into appropriate defect categories or
topics, using natural language processing and machine learning.
The patch description contains information about the code
changes (i.e., patch) the developer submitted for review. The
lines of code suggest the changes in the source file that were
submitted as part of the patch. The review comments contain the
textual feedback the reviewers provide on the code changes. We
considered these three features from the code review repository
to train our model.

Each review comment along with its patch description, line
of code and the respective category (label) was considered a
document. The patch description and review comment of the
document were preprocessed by removing the stop words and
stemming. We did not perform any processing of the line of
code feature because they were programming syntax and we
had to preserve the information as it is required to accurately
identify the defect category. After preprocessing, we performed
the term-weighting where we produced a dictionary from all
of the terms in our document and assigned a unique integer Id
to each term appearing in it using the tf-idf metric.

The model was trained on the 7 most common defect cate-
gories namely Visual Representation, Supported by Language,
Solution Approach, Textual, Logic, Check and Organization
because our dataset did not have enough samples for all of the
17 defect categories to train our model. The labels (topics) for
each review were derived from our manual investigation (see
Section III). Of the 468 review comments from our manual
investigation across subject systems combined, we considered
240 review comments from three open source projects namely
eclipse, mylyn and android to train our model.

After the model was trained, we tested it with our test data
that consisted of 50 test cases. The test data consisted of
only the patch description and the line of code that changed.
The reason for that was to not include any forward looking
information as they would invalidate the results. For example,
review comments are available once the code review is already
under way. Therefore, there might be very little benefit in
predicting the review topics at that stage. We would like
to predict the topics as early as possible and with as little
information as possible. Similar to our training data, the test
data also underwent preprocessing like removing stop words
and stemming of the patch description. We fed the processed
training data to our classifiers and predicted its performance

600

on test data. Once the automatic classification for the test
data was performed, its predicted label was compared with the
identified label and the accuracy was estimated. We adopted
three different machine learning algorithms that are commonly
used for text classification: KNN (K Nearest Neighbors) with
a K value of 7, Naive Bayes and Support Vector Classification.
We observed that KNN performed the best.

Results: With KNN, we observed an accuracy of 20% and
an average precision and recall of 0.45 and 0.41 respectively.
Table II shows the results of our automatic recommendation
model. Our results indicate that we were able to predict both
evolvability and functional types of defects. Also, we observe
that the evolvability categories namely Textual, Organization,
Visual Representation and Solution Approach have much more
promising levels of precision and recall. Therefore, we surmise
that automatic topic classification holds a much better promise
in internal quality than external quality topics. Our effort is a
first step in automating the topic identification as soon as a
code change is submitted for review.

TABLE II
RESULTS OF AUTOMATIC DEFECT CLASSIFICATION

Defect categories Precision Recall

Textual 0.73 0.50
Supported by Language 0.00 0.00
Organization 0.31 0.50
Solution Approach 0.27 0.80
Visual Representation 1.00 0.50
Check 0.00 0.00
Logic 0.60 0.38
Avg/ Total 0.45 0.41

Application Scenario: This investigation also gave us an
insight on the reviewers’ expertise in identifying a specific
type of defect. Table III shows a list of all the reviewers that
participated in reviewing the 108 review comments from mylyn
project and the number of defects they identified under each
category. It is evident that Sam Davis has actively participated
in the code review process and he is more experienced in
identifying defect categories like Solution Approach and Textual.
On the other hand, with Sam Davis as the owner for two large
patches #478882 and #610913 of the total 20 patches that were
investigated in mylyn, there were only 2 defects identified
on his patch which were of the type Visual Representation
and Check. This suggests that active participation in code
review helps in building knowledge, improves the quality of the
developer and thereby significantly reduces the defect likelihood
in one’s code. This table also shows that many reviewers did
not contribute enough during the code review process. However,
this can be prevented by recommending appropriate reviewers
i.e. reviewers who are capable of identifying specific defects
in a patch, based on what defect types the patch is prone to.

Other application scenarios include prioritizing the code
changes (patches) based on the topics of concern, predicting
their acceptance likelihood and completion time, topic-specific
knowledge transfer, and overall project’s development and
maintenance status and overall maturity.

2https://git.eclipse.org/r/#/c/47888/
3https://git.eclipse.org/r/#/c/61091/

TABLE III
REVIEWERS AND CONTRIBUTED TOPICS IN MYLYN

Reviewer Textual Organization Visual Representation Solution Approach Supported by Language Check Logic

Sam Davis 17 13 27 4 16 9
Steffen Pingel 2 1 3 1
Landon Butterworth 3
Frank Becker 1
Doug Janzen 1
Colin Ritchie 2 2
Blaine Lewis 2 2 1

Discussion: We discuss the evolution of our automatic
classifier. We made several attempts to build a reasonably
strong model. In our first attempt, we considered the data
collected from eclipse, mylyn and android projects from our
manual investigation and considered all the 17 defect categories
that were identified during manual analysis. The training data
set consisted of 240 review comments and the test data set
consisted of 50 review comments. To build our classifier, we
chose the following features from Gerrit; patch description,
file name as it would be a good analysis to see the defect
type with respect to the file, owner name as it would give
information about the quality of the developer, line of code
that was changed in order to address the bug or implement a
new feature and the review comment written for the specific
line of change in the code. We processed the dataset to remove
the stop words and stemming and then trained our classifier
to predict the defect categories of the test dataset. We used
KNN, Naive Bayes and Support Vector Classification for our
classifier to automatically recommend the defect category. Our
first attempt was not successful. The accuracy came out to be
as low as 4%. The main reason was the insufficient dataset.
The samples for each defect category in the dataset were not
sufficient. Hence the model could not be trained well.

Because the size of dataset was small and the number of
defect categories was large, for our second trial, we reduced
the total number of defect categories by combining a few of
the similar categories and eliminating some of the rare defect
categories. We eliminated those defect categories that had very
few occurrences in the entire dataset. For instance, we combined
the categories Check User Input with Check Function as they
are similar. Check Function checks for the return value of a
function and Check User Input asks for a test case to verify the
return value of a function. Similarly, we combined Data and
Resource Manipulation with Variable Initialization as both of
them are related to Resource management. The Compiler Error
category is a very rare scenario because it is highly unlikely
for one to submit a file with compilation errors for code review
because of the automatic pre-checks typically in place. Only
one review comment belonged to the Compiler Error category
of all the 468 review comments that were investigated. Hence,
we eliminated this category in the second round. In total, we
considered a list of 13 defect categories for the second trial
to train our model and they are as follows: Check Function,
Check Variable, Compare, Compute, Organization, Parameter,
Resource, Solution Approach, Supported by Language, Textual,
Timing, Visual Representation, and Wrong Location. We
considered the same set of features as in our first trial (namely
patch description, owner name, file name, line of code and
review comment). The training and test datasets were the same
from the first trial (i.e 240 and 50 respectively). The only
difference was with the number of target defect categories

601

on which the model was trained. This time we obtained an
accuracy of 6%. The accuracy was still low because of the
small dataset and also the noise introduced in the dataset in
the form of file and owner names.

After these two unsuccessful trials, we realized that there
was a need to further reduce the total number of defect
categories. This time we considered only the most common
defect categories for our classifier. We chose only those
categories that were identified to be more prevalent in code
review. In other words, we chose those target categories that had
enough samples in our dataset. We also removed the features
like file name and owner name which were mostly acting as
noise in our dataset. In our third trial, we eliminated those
features and considered only the patch description, line of code
and review comment to train our classifier. This was the trial
that gave a significant improvement in the accuracy, precision
and recall and it was discussed in detail in the previous section.

For our next trial, we considered the data from all the four
projects. The training data consisted of 360 records and the
test data consisted of 108 records. We considered the same
features as 22 our last trial (patch description, line of code
and review comment). But this time, the average precision
and recall fell from our previous attempt. Upon analyzing the
results, we realized that the low accuracy in general was due
to the following reasons. Firstly, there was insufficient data set
and insufficient samples for each defect category. Secondly,
the results of the manual investigation could not be verified by
the concerned developer or the reviewer, hence the accuracy
of the manual investigation results, on which the automatic
classifier was built, could not be verified. Thirdly, our model
provides good precision and recall to identify evolvability
defects; however, there are not sufficient features in the code
review tool to help us perform automatic classification of
functional type of defects effectively. Another important reason
is the difference in the line of code feature which is an important
feature in our automatic model. openstack is a completely
different project with python as its programming; eclipse and
mylyn use the same programming language which is java,
whereas android has both C++ and Java code.

V. IMPACT ON REVISING CODE CHANGES

We wanted to investigate how developers receive the review
feedback and what actions they take to improve their code
changes. Was there any relationship between the topics they
were critiqued on and the corresponding actions they took to
resolve them. That is, we address:

RQ 3: How do the developers address the review comments
that reviewers provide to revise their code changes?

By analyzing the code review comments, we identified that
reviewers are more inclined towards identifying the internal
design flaws in the code as it is evident from our manual
investigation that 75% of the defects identified by the reviewers
are about the internal quality of the code. As a next step, to
validate these results, we wanted to study the steps that were
taken to address those review comments. We carefully studied
each revision of the patch, analysed the review comment and

therefore the underlying defect category and observed the
developer’s code change so as to address that defect for the
following projects: eclipse, mylyn and android.

From our empirical study, we observed that developers
incorporated specific refactorings that are congruent to the
defect category of the review comments. For instance, in the
review #22719 4, the reviewer Steffen Pingel suggested in his
review comment that a class be split into a separate class. This
comment is clearly about an issue in the organization of the
code as it is about rearranging the code such that the software
is more comprehensible and maintainable, and hence can be
categorized as Organization. If we observed the next revision
of the patch, we see that the developer has extracted that part
of the code and created a separate class as suggested by the
reviewer. In this case, the developer has incorporated Extract
class refactoring technique.

Similarly, in another review #60407 5, the reviewer suggested
a naming issue in a developer’s code. This defect can be
compared with the Textual defect category where emphasis
is given to proper naming or comments in the code which
otherwise can cause misleading information. In the next
revision of the changed code (patch), we observed that the
developer had changed the name of the method as per the
reviewer’s comments. This action can be compared to the
rename refactoring method as it is about renaming a class or
a variable or a method in order to make its purpose clear.

It can be seen from our observation that majority of the
defects identified during code review are evolvability type
of defects and in order to address those, developers adopted
refactoring techniques. Since refactoring is a mechanism to
improve the internal structure of the code, it is evident that
code review is useful in improving the internal software quality
or the evolvability of the software. Table IV shows the mapping
between various defect topics and the refactorings adopted by
the developers for each of those topics.

TABLE IV
MAPPING BETWEEN TOPICS AND REFACTORINGS

Defect categories Refactorings

Textual Rename method
Organization Extract method, Extract class, Move method
Solution Approach Substitute Algorithm
Supported by Language Hide Method

VI. THREATS TO VALIDITY

We discuss internal, construct, and external threats to validity.
Misclassification of review comments: The results of the

manual investigation could not be verified by the original
developer/reviewer or other proficient software engineers
thereby raising the risk of researcher’s bias.

Heterogeneous Dataset: Although all the open source
projects that we considered for our research uses the same code
review tool and the mechanism, the projects themselves are
different in nature (e.g., their main programming languages).

4https://git.eclipse.org/r/#/c/22719/1
5https://git.eclipse.org/r/#/c/60407/3

602

The line of code is a primary feature in our classifier, which
could have impacted our results.

Insufficient Dataset: Since manual investigation is a tedious
process, we could not gather enough data for all the defect
categories. Hence our dataset was relatively small.

Insufficient Features: Code review tool has possibly insuf-
ficient features for our automatic recommendation model to
classify functional defects effectively.

Generalization: Although we investigated four open source
systems, we do not claim that our results would generalize to
every single software system.

VII. RELATED WORK

There have been many efforts on studying the effectiveness
of code review in improving the external quality. However,
very few efforts have been done to emphasize the importance
of code review in improving the internal software quality.

Siy and Votta [15] proposed that 75 percent of the defects
found during code reviews are evolvability defects that affect
the evolution of the software instead of runtime behavior. C.
Bird et al. [17] in their work, identified the factors that led to
useful code review. They investigated the usefulness of code
review by performing an empirical study in Microsoft projects,
built and verified a classification model that can distinguish
between useful and not useful code review feedback. Recently,
McIntosh et al. [2] empirically showed that that poor code
review negatively affect software quality. In another study,
McIntosh et al. [18] reported that the percentage of reviewed
changes a code component underwent correlates inversely to
its chance of being involved in post-release fixes.

Rigby et al. [19] examined two peer review techniques:
review-then-commit and commit-then-review used by Apache
server project. They measured the frequency of reviews, the
level of participation in reviews, and the size of artifacts under
review in their studies. Beller et al. [20] found that the types of
changes due to modern code review in Open source software
are similar to those in the industry and academic systems from
literature, featuring a similar ratio of maintainability-related
to functional problems. Kemerer et al. [3] showed that code
review reduces the amount of defects in student projects. With
the available data they were also able to study the impact of
review rate on the inspection performance. They found high
review rates (i.e., a high number of reviewed LOC/hour) to be
associated with a decrease in inspection effectiveness.

VIII. CONCLUSIONS AND FUTURE WORK

We conducted an empirical study on the types of topics
in the reviewers’ feedback provided to developers on their
code changes. Four open source systems were the subject
of this investigation: eclipse, mylyn, android and openstack.
Furthermore, we presented an automated approach to predict
potential topics of reviewers’ feedback as soon as a developer
submits their code changes for review. Lastly, we also examined
the impact of these review comments on the revisions that
developers perform on their changes. We found that topics

relevant to both external and internal code qualities are
discussed in code review; however, those on the internal quality
are dominant. Also, developers use refactorings to address those
topics. The specific refactorings seem to align with the specific
nature of review feedback topics. In summary, we provide
evidence of the benefits of code review on internal code quality.
Our future work will be directed on improving the automatic
detection of these topics (e.g., accuracy) and developing their
applications to further empower the peer-code-review process.

To facilitate replication, among other things, we pro-
vide access to our online appendix http://serl.cs.wichita.edu/
codereview/topicmodel.

REFERENCES

[1] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Computer, vol. 34, pp. 135–137, Jan. 2001.

[2] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014,
pp. 192–201, 2014.

[3] C. Kemerer and M. Paulk, “The impact of design and code reviews
on software quality: An empirical study based on psp data,” Software
Engineering, IEEE Transactions on, vol. 35, pp. 534–550, July 2009.

[4] O. Laitenberger, “Studying the effects of code inspection and structural
testing on software quality,” pp. 237–246, IEEE, 1998.

[5] R. S. Arnold, “Software restructuring,” vol. 77, pp. 607–617, Apr 1989.
[6] “Refactoring: Improving the design of existing code,” (Boston, MA,

USA), Addison-Wesley Longman Publishing Co., Inc., 1999.
[7] N. Gorla, A. C. Benander, and B. A. Benander, “Debugging effort

estimation using software metrics,” vol. 16, pp. 223–231, Feb 1990.
[8] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,”

vol. 23, pp. 111 – 122, 1993.
[9] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman,

“Program indentation and comprehensibility,” vol. 26, pp. 861–867, Nov.
1983.

[10] P. W. Oman and C. R. Cook, “Typographic style is more than cosmetic,”
vol. 33, (New York, NY, USA), pp. 506–520, ACM, May 1990.

[11] H. D. Rombach, “A controlled expeniment on the impact of software
structure on maintainability,” vol. 13, (Piscataway, NJ, USA), pp. 344–
354, IEEE Press, Mar. 1987.

[12] T. Tenny, “Program readability: procedures versus comments,” vol. 14,
pp. 1271–1279, Sep 1988.

[13] C. Bird and A. Bacchelli, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the International Conference on
Software Engineering, IEEE, May 2013.

[14] P. C. Rigby and C. Bird, “Convergent software peer review practices,”
in Proceedings of the the joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC/FSE), ACM, 2013.

[15] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pp. 931–940, 2013.

[16] M. Mantyla and C. Lassenius, “What types of defects are really discovered
in code reviews?,” vol. 35, pp. 430–448, May 2009.

[17] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code reviews:
An empirical study at microsoft,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, pp. 146–156, May 2015.

[18] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,”
in Proc. of the 22nd Int’l Conf. on Software Analysis, Evolution, and
Reengineering (SANER), pp. 171–180, 2015.

[19] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software peer
review practices: A case study of the apache server,” in Proceedings of
the 30th International Conference on Software Engineering, pp. 541–550,
ACM, 2008.

[20] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pp. 202–211, ACM, 2014.

603

Expediting Binary Fuzzing with Symbolic Analysis

Luhang Xu 1 Wei Dong 1* Liangze Yin 1 Weixi Jia 1 Yongjun Li 2

1 National University of Defense Technology, Changsha, China
2 Northwestern Polytechnical University, Xi’an, China

* Corresponding author

E-mail: me@xuluhang.cn, {wdong, yinliangze}@nudt.edu.cn,

wxjia92@163.com, lyj@nwpu.edu.cn

Abstract

Fuzzing is an important method for binary vulnerability

mining. It can analyze binary programs without the source

code of the program, which is not easy to do by other tech-

nologies. But due to the blindness of input generation, binary

fuzzing often falls into traps for a long time when the new

mutated inputs cannot generate unexplored paths. In this pa-

per, we propose an efficient and flexible fuzzing framework

named Tinker. It defines the Growth Rate of Path Coverage

to measure the current state of fuzzing. If the fuzzing falls

into low-speed or blocked states, a symbolic analysis proce-

dure is invoked to generate a new input which can help the

fuzzing jump out of the trap. In the symbolic analysis pro-

cedure, we employ dynamic execution to track the traversed

nodes. The untraversed branches are then identified accord-

ing to the recorded data of AFL. At last, we employ CFG to

construct complete paths to these branches and a new input

is generated using symbolic execution. Tinker has been im-

plemented and the experiments on DARPA CGC benchmark

show that Tinker is more efficient in vulnerability mining than

state-of-the-art binary vulnerability mining tools.

1. Introduction

Fuzzing is a representative method for software vulnera-

bility mining [1]. The basic idea of fuzzing is to provide a

large amount of invalid, unexpected, or randomly generated

data as inputs to a program. The program is then monitored

for exceptions such as crashes. Given that fuzzing does not

need the inside information of a program, it is one of the most

important techniques for binary program analysis.

Existing fuzzing techniques can be classified into two

classes: black box fuzzing and white box fuzzing. Black box

fuzzing [2] does not require any source information of the

program. Researches on this technique mainly focus on ef-

fective inputs generation. White box fuzzing [3][4] has been

widely studied in recent years. It usually combines fuzzing

with other analysis methods such as symbolic execution [5]

and dynamic blot analysis [6]. To improve the capability of

vulnerability mining, white box fuzzing usually explores the

inside structures of a program to guide the fuzzing process.

Fuzzing has many advantages compared with other vul-

nerability mining techniques. However, due to the blindness

of input generation, traditional fuzzing often falls into traps

in which most of the executed paths are redundant [7][8]. To

mitigate this problem, recently there has been some work us-

ing other analysis methods such as symbolic execution [9] to

improve the efficiency of fuzzing. However, there are still

two weaknesses for existing work: 1) Existing work is not

sensitive enough to the current state of fuzzing. They usually

invoke symbolic execution when fuzzing is in blocked states,

without considering those low-speed states in which fuzzing

may explore just several new paths for a long time. In prac-

tice, these states might be the most cases. 2) Existing work

cannot handle system calls properly. As a result, they can

only be applied to simple environments rather than real pro-

grams. For example, Driller [9] can run just on a simplified

operating system (OS) with only seven system calls [10].

This paper proposed a new binary fuzzing approach Tin-

ker. It first employs the defined Growth Rate of Path Cover-

age (GRPC) to evaluate the efficiency of fuzzing in current

state. If fuzzing is trapped into a low-speed or blocked state

which cannot efficiently find new paths, a symbolic analysis

procedure will be invoked to generate a new valid input of

the program, such that fuzzing can jump out of the trapped

state and again run in a high-speed state. We employ a tool

Angr for CFG generation, which has rewritten most of the

system calls properly. Our method can be applied to real pro-

grams. Moreover, as our unexplored paths are analyzed from

the CFG of the target binary program, the input generated in

our method is often more effective.

The main contributions of this paper include:

• We proposed an efficient and flexible binary vulnerabil-

ity mining approach Tinker. It employs GRPC to eval-

uate the current state of fuzzing. If fuzzing falls into a

trap, a symbolic analysis procedure is invoked to gener-

ate an input which helps fuzzing jump out of the trap.

• We proposed an effective symbolic analysis based new

input generation method. It supports real binary pro-

gram analysis and can always return an effective input

to an unexplored path. CFG is used in this method to

construct the paths to those untraversed branches.

• We implemented Tinker and evaluated it on DARPA

CGC benchmark. The experimental results demonstrate

that, compared with state-of-the-art tools, Tinker can

detect more binary vulnerabilities and is often more ef-

ficient for unexplored path exploration.

DOI reference number: 10.18293/SEKE2018-120 604

The rest of this paper is organized as follows. Section 2

outlines the framework of Tinker. Section 3 and 4 present

our GRPC-based fuzzing evaluation and symbolic analysis

based fuzzing intervention methods, respectively. Section 5

provides the experimental results. Section 6 reviews the re-

lated work, and Section 7 concludes our paper.

2. Method Overview

In this section, we first discuss the challenge of binary

fuzzing, and then we outline the framework of Tinker.

2.1. The Challenge of Binary Fuzzing

Consider the example shown in Figure 1. The pro-

gram contains two strings order and magic byte. It runs

the fault() statement only if both order and magic byte

equal ”vuln”. For this example, fuzzing will enter the true

branch of Line 4 only if it succeeds in mutating the value of

magic byte to ”vuln”. Given that ”vuln” has 4 ∗ 8 bits, a

maximum number of 24∗8 variations of inputs are required

for fuzzing to reach Line 6. For some other long string, it

will be more difficult for fuzzing to enter the true branch. A

string like ”vuln” here that hampers fuzzing to new paths

in mutation is called “MAGIC-BYTE”. The similar problem

occurs in Line 7. In this paper, we use the growth rate of path

coverage (GRPC) to measure the efficiency of fuzzing. For

this example, the GRPC will keep zero until the true branchs

of Line 4 and Line 7 are explored.

1 i n t main (void){
2 char order [2 0] , magic byte [2 0] ;

3 s c a n f (”%s\n ” , magic byte) ;

4 i f (strcmp (magic byte , ” vu ln ”)==0)

5 {
6 g e t s (order) ;

7 i f (strcmp (order , ” vu ln ”)==0)

8 f a u l t () ;

9 }
10 re turn 0 ;

11 }

Figure 1: A challenging example for traditional fuzzing.

To further investigate this problem, we have analyzed the

efficiency of traditional fuzzing for three real binary pro-

grams, as shown in Figure 2. The vertical axis P represents

the number of new explored paths for each time unit (15 min-

utes). According to this figure, fuzzing might perform differ-

ently for different programs. 1) For the Multipass program,

the value of P always keeps 40 on average, and we say that

fuzzing is in “high-speed” state. 2) For the Grisword pro-

gram, the value of P always keeps in just 10 on average after

4 time units, and we say that fuzzing is in “low-speed” state.

3) For the Monster Game program, the value of P reduces

to zero after 3 time units, and we say that fuzzing falls into a

“blocked” state.

0

10

20

30

40

50

60
Monster Game

Grisword

Multipass

Time(15min)

P
(n

u
m

 o
f
p

a
th

s
/t
im

e
 u

n
it
)

4 8 12 16 20 24 28

Figure 2: Efficiency of fuzzing for three real programs.

2.2. Framework of Tinker

When fuzzing falls into a blocked or low-speed state, it is

usually difficult for fuzzing to jump out of such a state itself.

In other words, it might be trapped into such a state for a long

time, which significantly limits the efficiency of fuzzing. To

deal with this problem, we proposed a new binary fuzzing

approach called Tinker. The idea is that we continuously

compute the value of GRPC during the fuzzing process to

evaluate the current state of fuzzing. If we find that fuzzing

is trapped into some blocked or low-speed state, we employ

a symbolic analysis method to generate a new input to guide

fuzzing to search the other untraversed branches, such that

fuzzing always explores new paths and keeps in high-speed

states for vulnerability mining.

The framework of Tinker is outlined in Figure 3. Before

the fuzzing starts, the target binary program will be prepro-

cessed to generate an instrumented binary and its control

flow graph (CFG). During the process of fuzzing, we iter-

atively employ a GRPC-based fuzzing evaluation procedure

to measure the current state of fuzzing. If the fuzzing falls

into a low-speed or blocked state, we then invoke the sym-

bolic analysis based fuzzing intervention process to generate

a new input to motivate the fuzzing to a high-speed state. To

generate the new input, we first select an input from fuzzing

which leads to a redundant path. The instrumented binary is

then executed with this input to obtain the traversed nodes

of the corresponding path. According to the recorded data

of AFL, we can obtain those untraversed opposite branches

of the path. CFG is then employed to obtain the complete

paths of these untraversed branches. At last, we select one

of these paths and employ symbolic execution to generate a

new input. In such a manner, whenever the fuzzing falls into

a low-speed or blocked state, we can detect it in time and

generate a new input that helps fuzzing jump out of the trap.

In particular, in Tinker, fuzzing and symbolic-based analysis

work in parallel. The intervention of symbolic-based analy-

sis does not interrupt Fuzzing.

3. GRPC-based Fuzzing Evaluation

If the fuzzing falls into a blocked or low-speed state, it

may spent most of its effort on iteratively exploring those

redundant paths. To quantitatively evaluate the efficiency of

fuzzing, we proposed the notion of Growth Rate of Path Cov-

erage (GRPC), which defines the average number of new ex-

605

Figure 3: Framework of Tinker.

plored paths that grows per time unit over the latest period.

The smaller the value of GRPC is, the lower the efficiency

of fuzzing will be. If GRPC equals 0, then the fuzzing is

trapped into a blocked state.

To compute GRPC, we divide the fuzzing process into in-

tervals. Then the average number of new explored paths per

time unit for the last interval can be obtained as equation (1),

where qm represents the total number of different paths that

have been explored in the last m intervals, and ∆t represents

the time length of each interval. The value of qm can be ob-

tained from AFL directly.

pm =
qm − qm−1

∆t
, m ≥ 1 (1)

Given that there may exist some noises sometimes, one in-

terval might not reflect the actual state of fuzzing in practice.

For example, the fuzzing might fall into a low-speed state in

some interval, and have a large probability of returning back

to a high-speed state in the next interval. To avoid such cases,

we filter out those noises by using the idea of moving average

[11]. In this idea, the mth sample result is an average of the

2n+ 1 sample values on time points m− n, m− n+ 1, ...,

m+n− 1 and m+n. Similarly, we can employ the pm’s of

the last 2n+1 intervals to compute our GRPC Pm, as shown

in equation (2).

Pm=
1

2n+ 1

2n∑

k=0

pm−k, m ≥ 2n (2)

Now the problem is how to decide the value of n. If n is

too big, the fuzzing will stay in those blocked and low-speed

states for a long time; if n is too small, many of those noises

might not be filtered out in our method, which may also de-

crease the efficiency of fuzzing. According to the work of

moving average, we usually set n = 2 in practice [11]. Our

experiments also proved that fuzzing can usually obtain the

best efficiency for n = 2. For m < 2n, we use the average

of all pk for k ≤ m to compute Pm.

After obtaining GRPC, we need to decide the current state

of fuzzing. For any program, the GRPC Pm have a peak

value Pmax, which can be obtained from its execution his-

tory. We say that fuzzing obtains a highest efficiency if Pm

equals Pmax. Given that the values of Pmax for different

programs differ significantly, the threshold that determines

the state of fuzzing should also be different for different pro-

grams. Our idea is to decide the threshold according to the

value of Pmax for each program. To this end, we can decide

the current state of fuzzing using the following definition.

Definition 1 Suppose that the currently observed peak value

of GRPC is Pmax, w is a threshold factor. Then the current

state of fuzzing is determined as follows. Fuzzing is at

1) high-speed state, if Pm ≥ Pmax ∗ w;

2) low-speed state, if 0 < Pm < Pmax ∗ w;

3) blocked state, if Pm = 0.

At the beginning of fuzzing, Pmax can be set to a small

value that is greater than zero. After each interval, Pmax will

be updated to Pm if current Pm is larger. Threshold factor

w can be customized by user according to the performance

of fuzzing. In our experiments, we tried several values and

found that setting w = 0.4 can usually obtain higher effi-

ciency. If fuzzing is at low-speed or blocked state, a symbolic

analysis procedure will be started to generate a new input that

enables fuzzing to jump out of the trap.

4. Symbolic Analysis Based Fuzzing Interven-

tion

The purpose of symbolic analysis based fuzzing interven-

tion is to generate a test input which can help the fuzzing

to explore new branches. The idea is that we first select an

untraversed branch and then use symbolic execution to gen-

erate an input to this branch. However, given that we have no

source information of the target binary program, a problem is

how to obtain the path of an input and generate the path con-

dition constraints for an untraversed branch. To address this

problem, we propose to use existing disassemble techniques

to generate the CFG of the target binary program first, and

then we use existing binary instrumentation tools to generate

606

an instrumented binary which can obtain the execution path

of an input. With the instrumented binary, we use dynamic

execution to identify a path explored by fuzzing. According

to the recorded data of AFL, we can obtain the untraversed

opposite branches of the path. Then CFG is employed to

generate the condition constraints of these branches, which

are then solved by a constraint solver to generate valid inputs

to these branches. The main steps of our symbolic analysis

method are as follows.

1) Instrumented binary and CFG generation. To per-

form our symbolic analysis, we should generate an instru-

mented binary and the CFG of the target binary program first.

For instrumented binary, dyninst [12] is a binary instrumen-

tation tool satisfying all our requirements. Hence, we select

dyninst for instrumented binary generation in our work. For

CFG generation, an issue here is how to generate those sys-

tem call nodes which cannot be disassembled directly. We

found that Angr [13] can rewrite most of the system calls

and generate a CFG with system call nodes, which makes

our method work well for most real programs. Hence, we

select Angr to perform the CFG generation.

Figure 4: An example CFG used in symbolic analysis

2) Untraversed branches identification. Dynamic exe-

cution is a technique which can track an instrumented pro-

gram under an input and record the traversed nodes. To ob-

tain an untraversed branch, we select an input from fuzzing,

and then use dynamic execution to obtain the traversed path

of the input. Then for each branch of this path, we will check

if the opposite branch has been explored yet. In AFL, it has

recorded all the traversed nodes during the fuzzing process.

If an opposite branch has not been explored yet, then an un-

traversed branch has been found. We will generate an input

to this branch in the following steps. Given that some branch

may be unreachable in an real execution, we will obtain all

untraversed branches of the path in this step.

3) Unexplored paths construction. To generate the input

of an untraversed branch, we should identify the path to it and

then generate the condition constraint of the path. To achieve

this, we map the path to the CFG, and then construct a sub-

graph of the CFG which contains just nodes of the path. For

the example shown in Figure 4, the subgraphs for F and G in

Figure 4 can be represented by GF = {A,B,C,D,E, F},

and GG = {A,B,C,D,E,G}, respectively. An issue here

is that dynamic execution does not consider those system

calls. In other words, there are some system call nodes which

have been traversed by fuzzing but not marked as traversed

in the CFG yet. We should detect these nodes and mark them

as traversed in the CFG before the subgraph generation.

4) New test input generation. In this step, we will gen-

Algorithm 1 Symbolic analysis based test input generation

Input: The binary bin, selected input fin from fuzzing.

Output: New test input testcase.

//Instrumented binary and CFG generation

ins bin = Instrument(bin);
cfg = CreateCFG(bin)
//Untraversed branches identification;

path = DynamicExecution(ins bin, fin);
n list = UntraversedBranches(path);
//Unexplored paths construction;

PathMap(path, cfg);
MissedNodesAdd(cfg);
g list = ∅;

for each untraversed branch n ∈ n list do

g list = g list ∪ PathConstruct(n);
end for

//New test input generation;

for each subgraph g ∈ g list do

cons = ConstraintGeneration(g);
input = Solve(cons);
if input is VALID then

RETURN testcase;

end if

end for

RETURN NULL ;

erate a new test input which explores an unexplored path and

helps the fuzzing jump out of a trapped state. The idea is

that for each subgraph we have constructed, we first con-

struct a constraint formula according to it. The constraint

formula is then solved by a constraint solver. In this paper,

Z3 is employed as our constraint solver. Given a constraint,

it can generate an input of the program if the constraint is

satisfiable. Setting this input as the input of the binary pro-

gram will generate a path to the untraversed branch. If Z3

returns unsatisfiable, then the selected path is invalid and we

will generate the new input according to another unexplored

path.

The whole procedure of our test input generation process

is demonstrated in Algorithm 1. The input is a target bi-

nary program bin, and an input fin selected from fuzzing.

We first use dyninst and Angr to obtain the instrumented

binary ins bin and the CFG cfg, respectively. Then the

function DynamicExecution is invoked to obtain the ex-

ecution path of fin. The function UntraversedBranches

identifies those untraversed opposite branches of the path

according to the recorded data of AFL and stores them in

n list. To generate the condition constraints of these untra-

versed branches, the path is mapped to cfg. The function

MissedNodesAdd detects those missed system call nodes

and adds them to the path in the CFG. For each untraversed

branch n, PathConstruct constructs a subgraph which con-

tains all nodes of the path leading to n. Given a subgraph, the

function ConstraintGeneration generates a constraint for-

607

mula, which is then solved by Z3 using the function Solve.

If a valid input is generated, then we have obtained a new test

input and the procedure terminates. Otherwise, the selected

untraversed branch is unreachable and we need to continue

the loop and analyze another untraversed branch.

5. Experimental Evaluation

We implemented Tinker based on the open source tools

AFL 2.33b [14], Angr [13], dyninst [12], and Z3 [15]. AFL is

used as the fuzzer in Tinker and we extended it with an infor-

mation collection interface to dynamically obtain the num-

ber of explored different paths to compute GRPC. Angr is a

python-based binary analysis framework integrating a vari-

ety of existing analytic techniques. In Tinker, it is used to

translate the target binary program into an intermediate rep-

resentation, and generate its CFG. Dyninst is used to gener-

ate the instrumented binary and Z3 is used as the solver to

generate a new input of an unexplored path.

Our experiments were performed on a machine with four

Intel Core i7-6700 cores and 16GB memory. The operating

system is 64-bit Ubuntu 16.04 LTS. Although AFL supports

parallelism, it will produce deviations and influence the com-

parison results. Hence, we used only one fuzzing process in

the experiments.

We use the DARPA CGC sample binaries [16, 17] as our

benchmark to evaluate the vulnerability mining capability of

our method. However, these binaries can only run under the

DARPA Experimental Cyber Research Evaluation Environ-

ment (DECREE), which is a simplified OS with only seven

system calls. Tinker aims to find vulnerabilities in real-world

binaries. Therefore, we select the data set CB-multios pro-

vided by TrailofBits team [18], who migrated the DARPA

CGC benchmark from DECREE to Linux.

For the 244 binary programs in CB-multios, we filtered

some special types of programs that could not be used in

fuzzy test analysis.

We performed our experiments on the remaining 211 pro-

grams. To evaluate the efficiency of our method, we com-

pared the results of Tinker with that of Angr and AFL-qemu,

which employ symbolic execution and pure fuzzing tech-

niques for vulnerability mining, respectively. Both of them

are state-of-the-art binary analyzers. We use two hours as the

time limit. For the symbolic execution in Angr and Tinker,

the depth of loop exploration is limited to 500 to avoid ex-

plosion. The more programs can be triggered to crash, the

stronger a tool’s vulnerability mining ability will be.

The experimental results are shown in Figure 5. Tinker

detected 116 vulnerable programs, AFL found 96 vulnera-

ble programs, and Angr found only 47 vulnerable programs.

Angr found 10 vulnerable programs which were not detected

by AFL. Tinker found all the 106 vulnerable programs that

AFL and Angr have found, and it found 10 more vulner-

able programs which were not detected by either Angr or

AFL. These results suggest that under the same time limita-

tion and conditions, Tinker can usually find more program

crashes than existing binary fuzzing and symbol execution

techniques.

Figure 5: The crashed programs found by Tinker, AFL and

Angr in DARPA CGC benchmark.

To further analyze the efficiency benefited from our

method, we compare the number of explored paths within

two hours between Tinker and the traditional fuzzing which

contains no fuzzing intervention. All the 116 vulnerable pro-

grams that have been detected by Tinker are considered as

the benchmark. The comparison is shown in Figure 6.

In this figure, the examples are divided into 3 categories

based on the improvement rate. The Y-axis represents the

number of examples for each category. From this figure, our

method explores more paths than traditional fuzzing for all

examples. Particularly, our method searched more than 20%

of paths for 26 examples, searched 10%-20% more paths for

36 examples, and searched less than 10% more paths for 54

examples. We further studied the programs in which the ef-

ficiency is improved less than 10%. Most of these programs

contain simple string comparisons which can be well han-

dled by traditional fuzzing. For those programs with complex

structures, our method can usually obtain more than 20% of

the efficiency. In this sense, Tinker is more suitable to deep

vulnerabilities in practice.

Figure 6: Efficiency benefited from fuzzing intervention.

6. Related Work

A variety of binary fuzzers have been proposed in recent

years. Most of them focus on seed generation. Some fuzzers

try to generate highly structured input, such as Skyfire [19].

The others mainly aim to improve the efficiency of fuzzing,

such as AFL-lafintel [20], which converts a program into

608

LLVM IR [21]. Moreover, most of the fuzzers need to work

at the source level. Although there exist some fuzzers such

as AFL-qemu, AFL-dyninst [22] and Aflpin [23], which sup-

port binary programs without source code, their efficiency

for vulnerability mining still requires further improvement.

Symbolic execution is one of the most successful tech-

niques for binary program analysis. Tools adopting this tech-

nique include Angr [13], Mayhem [24] and S2E [25]. The

main problem for this technique is the path explosion prob-

lem. In order to mitigate this problem, various approaches

have been proposed (e.g. veritesting [26]).However, existing

techniques and tools are still not effective enough for real

binary program analysis.

To address the problems faced by above methods, white

box fuzzing has been proposed and widely studied in re-

cent years. It explores analysis methods to guide fuzzing

to generate more effective test cases (e.g. Steelix [27] and

Vuzzer [28]), such that the path coverage of fuzzing can be

improved. However, due to the high frequency of additional

analysis invoking, this technique usually brings heavy load.

Driller [9] is the closest work to Tinker. If fuzzing falls

into a blocked state, it uses concolic execution to guide

fuzzing to a new path. Compared with Driller, Tinker has

a more efficient and flexible efficiency evaluation method

which makes it more sensitive to the current state of fuzzing.

In addition, Tinker employs Angr for CFG generation which

has rewritten most of the system calls and can generate a

CFG with those system call nodes. Hence, Tinker works well

for real binary programs, while Driller can only be applied to

binaries running on DECREE.

7. Conclusions

This paper presents a new fuzzing framework named Tin-

ker. Unlike traditional white box fuzzing techniques, Tin-

ker uses GPRC to measure the current work state of fuzzing,

and invokes a symbolic analysis approach when fuzzing is

in blocked or low-speed states. In the symbolic analysis ap-

proach, new input is generated using symbolic execution to

guide fuzzing jump out of the trap. Tinker is implemented

based on open source tools AFL, Angr, dyninst and Z3. Ex-

periments on DARPA CGC benchmark show that Tinker has

higher efficiency in vulnerability mining than the other state-

of-the-art fuzzing tools such as AFL and Angr. In future

work, we will try to integrate existing efficient symbolic ex-

ecution algorithms in to our approach so that the vulnerabil-

ities in more complex binary programs can be detected.

8. Acknowledgement

We would like to thank the authors of ANGR and AFL

for opening their source code. This work is funded by Na-

tional Natural Science Foundation of China (No.61690203,

No.61532007), and 973 National Program on Key Basic Re-

search Project of China (No.2014CB340703).

References

[1] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability

discovery. Pearson Education, 2007.

[2] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling black-

box mutational fuzzing,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security. ACM, 2013.

[3] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox

fuzzing,” in ACM Sigplan Notices, vol. 43, no. 6. ACM, 2008.

[4] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox

fuzzing,” in Proceedings of the 31st International Conference on Soft-

ware Engineering. IEEE Computer Society, 2009.

[5] J. C. King, “Symbolic execution and program testing,” Communica-

tions of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[6] J. Newsome and D. Song, “Dynamic taint analysis for automatic de-

tection, analysis, and signature generation of exploits on commodity

software,” 2005.

[7] U. Kargén and N. Shahmehri, “Turning programs against each other:

high coverage fuzz-testing using binary-code mutation and dynamic

slicing,” in Proceedings of the 2015 10th Joint Meeting on Foundations

of Software Engineering. ACM, 2015, pp. 782–792.

[8] “American Fuzzy Lop,” http://lcamtuf.coredump.cx/afl/.

[9] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,

Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting

fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,

pp. 1–16.

[10] “Cyber Grand Challenge,” http://archive.darpa.mil/cybergrandchallen

ge/about.html.

[11] S. L. Marple and S. L. Marple, Digital spectral analysis: with appli-

cations. Prentice-Hall Englewood Cliffs, NJ, 1987, vol. 5.

[12] “Dyninst api.” http://www.dyninst.org/dyninst., 2005.

[13] “Angr,” http://angr.io/index.html.

[14] “AFL-qemu,” http://lcamtuf.coredump.cx/afl/technical details.txt.

[15] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 2008, pp. 337–340.

[16] J. Song and J. Alves-Foss, “The darpa cyber grand challenge: A com-

petitor’s perspective,” IEEE Security & Privacy, vol. 13, no. 6, 2015.

[17] “CyberGrandChallenge samples,” https://github.com/CyberGrandCh-

allenge/samples.

[18] “DARPA Challenge Binaries on linux and os x,” https://github.com/

trailofbits/cb-multios/.

[19] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed gen-

eration for fuzzing,” in Security and Privacy (SP), 2017 IEEE Sympo-

sium on. IEEE, 2017, pp. 579–594.

[20] “Circumventing Fuzzing Roadblocks with Compiler Transfor-

mations,” https://lafintel.wordpress.com/2016/08/15/circumventing-

fuzzing-roadblocks-with-compiler-transformations/.

[21] C. Lattner and V. Adve, “Llvm: A compilation framework for life-

long program analysis & transformation,” in Proceedings of the inter-

national symposium on Code generation and optimization: feedback-

directed and runtime optimization. IEEE Computer Society, 2004.

[22] “AFL-dyninst,” https://github.com/vrtadmin/moflow/tree/master/afl-

dyninst.

[23] “AFLPIN,” https://github.com/mothran/aflpin.

[24] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing

mayhem on binary code,” in Security and Privacy (SP), 2012 IEEE

Symposium on. IEEE, 2012, pp. 380–394.

[25] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for

in-vivo multi-path analysis of software systems,” ACM SIGPLAN No-

tices, vol. 46, no. 3, pp. 265–278, 2011.

[26] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing sym-

bolic execution with veritesting,” in Proceedings of the 36th Interna-

tional Conference on Software Engineering. ACM, 2014.

[27] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,

“Steelix: program-state based binary fuzzing,” in Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering.

ACM, 2017, pp. 627–637.

[28] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,

“Vuzzer: Application-aware evolutionary fuzzing,” in Proceedings

of the Network and Distributed System Security Symposium (NDSS),

2017.

609

Topic Modeling for Noisy Short Texts with
Multiple Relations

Chiyu Liu, Zheng Liu, Tao Li and Bin Xia
Jiangsu Key Laboratory of Big Data Security & Intelligent Processing

School of Computer Science, Nanjing University of Posts and Telecommunications
Nanjing 210023, People’s Republic of China
{1016041229, zliu, towerlee,bxia}@njupt.edu.cn

Abstract—Understanding contents in social networks by infer-
ring high-quality latent topics from short texts is a significant task
in social analysis, which is challenging because social network
contents are usually extremely short, noisy and full of informal
vocabularies. Due to the lack of sufficient word co-occurrence
instances, well-known topic modeling methods such as LDA
and LSA cannot uncover high-quality topic structures. Existing
research works seek to pool short texts from social networks
into pseudo documents or utilize the explicit relations among
these short texts such as hashtags in tweets to make classic topic
modeling methods work. In this paper, we explore this problem
by proposing a topic model for noisy short texts with multiple
relations called MRTM (Multiple Relational Topic Modeling).
MRTM exploits both explicit and implicit relations by intro-
ducing a document-attribute distribution and a two-step random
sampling strategy. Extensive experiments, compared with state-
of-the-art topic modeling approaches, demonstrate that MRTM
can alleviate the word co-occurrence sparsity and uncover high-
quality latent topics from noisy short texts.

Index Terms—Topic Modeling · Multiple Relations · Short
Texts · Social Analysis

I. INTRODUCTION

Topic modeling based on probabilistic graphical models
with latent variables for uncovering hidden thematic struc-
tures is widely used in various applications including content
recommendation [1], user profiling [2], trend detection [3],
etc. Short texts, especially ones from social networks, tweets,
feature short length, inordinate structure, and colloquialism.
As a result, uncovering the potential topics from these short
texts is not an easy task [4], [5]. Take the short texts from
popular social networks such as Twitter as an example. Tweets
are short, informal, and lack regular patterns, which leads to
poor performance of the classic topic model Latent Dirichlet
Allocation (LDA) [6], as well as many other LDA-like topic
models. The underlying reason is that there are not enough
word co-occurrence instances due to term sparsity in short
texts.

Pooling tweets or other short texts [7] by aggregating them
into pseudo documents based on their attributes has been
proved to be a promising way to improve the quality of
topics found by LDA-like methods. Possible attributes could
be the authors of short texts [8], [9], or time periods. For
tweets from social networks, hashtags [4] or burst scores

* Corresponding author: Zheng Liu
DOI reference number: No.10.18293/SEKE2018-022

[10] could also server as the aggregation cornerstones. These
pseudo documents by aggregating short texts enrich the word
co-occurrence, but on the other hand, they not only bring
duplicates of short texts containing multiple attributes as well
as new co-occurrence instances which do not exist, but also
ignore the relations among these attributes. For example, each
tweet could contain more than one hashtag, so some hashtags
are likely to appear together than other hashtags. The hashtag
correlations are the bridges of words in different short texts,
and could help to improve the quality of topics. Wang et al.
[11] proposed a Hashtag Graph based Topic Model (HGTM)
for tweets, in which user-contributed hashtags are considered
in the generative process of tweets. Experimental results show
that it is more reliable than the simple pooling strategy.

It is not difficult to see that there are multiple attributes
in short texts. Besides the explicit attributes like hashtags or
users, there are many other implicit attributes such as various
kinds of entities and temporal attributes. In this paper, we use
labels to denote the possible values of attributes. For example,
if the attribute is actors, then the corresponding labels are
actor names. Tweets discussing movies could contain entities
like actors, directors, as well as movie genres, movie released
date, etc. Each of these attributes could be represented by
a relational graph, where a vertex is a possible label of the
attribute and an edge indicates the co-occurrence relations
between two labels, which we will explain in detail in Section
III. These relational graphs of attributes could reveal the
semantic associations between labels. On the other hand,
unnatural co-occurrence words about the background of short
texts are noises, which impact the topic quality. For example,
if the short texts are about some movies, then words like
movie, film or cinema are not discriminative, while they exist
in informal oral presentation [9]. Traditional solutions like TF-
IDF can not handle well in short texts. Noisy words are highly
related to the domain knowledge of the short texts, and not
helpful in understanding the corpus.

With above observations, in this paper, we propose a topic
model for noisy short texts with multiple relations, called
MRTM, which can uncover meaningful topics. The main idea
is to incorporate multiple relations into the generative process
of short texts to produce high-quality topics measured both
subjectively and objectively. Gibbs Sampling [12] is adopted
to estimate the parameters in MRTM. The main contributions
of this paper are summarized below.610

• The proposed MRTM alleviates the sparsity of word co-
occurrence in short texts by incorporating multiple rela-
tions into the generative process, resulting in a coherent
generative topic model.

• MRTM further improves the quality of the uncovered top-
ics by removing unnatural word co-occurrence instances
caused by considering weakly-supervised relations.

• Extensive experiments are conducted on real data sets
crawled from Microblog. The experimental results are
carefully analyzed, showing that MRTM can uncover
coherent topics of higher quality than the start-of-the-art
approaches.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III describes the proposed
multiple relational topic model in detail, as well as the
inference process of its parameters. Section IV presents the
experimental results and finally, Section V concludes the paper
with possible future directions.

II. RELATED WORK

Classic topic models such as Latent Dirichlet Allocation
(LDA) [6] suffers term sparsity and noises when applied to
short texts, resulting in low-quality topics due to insufficient
word co-occurrence instances. Many researchers studied this
problem, where the approaches can be categorized as follows.
Pooling based strategy

Pooling short texts by aggregating them into pseudo docu-
ments based on certain attributes [8], [9], [10] has been proved
to be a promising way to make LDA-like approaches work.
Zhao et al. [9] analyzed the internal characteristic of short
texts by introducing topic category and background words.
In particular, they found users’ topics are concentrated and
consist of only a few words. Mehrotra et al. [4] analyzed the
extensive experimental results of various pooling attributes and
found that not all pooling attributes are helpful in capturing
high-quality topics.
Semantic based strategy

Using word semantics as the prior knowledge could benefit
topic modeling for short texts, where the prior knowledge is
pre-trained word embedding based on the large corpus. Li
et al. [13] proposed a topic model based on the Dirichlet
Multinomial Mixture (DMM), which is able to find more
semantically related word pairs under the same topic during
the sampling process. Similarly, Nguyen et al. [14] incorpo-
rated vector representations of words during topic modeling to
improve the word-topic mapping. The vector representations
of words are learned by using a large corpus.
Relation based strategy

Recently, many efforts [11], [15], [16] were put on con-
straining LDA with semi-structured relations. By integrating
this kind of prior knowledge, the generative processes in
these models for short texts are more reasonable. Rosen et
al. [8] proposed an author-topic model (ATM) for documents
to include authorship information. Each author is associated
with a topic distribution. However, it is not appropriate for
short texts. Daniel et al. [15] proposed Labeled LDA to
learn one-to-one mappings between topics and labels, but they

ignored the correlations between labels. Labeled-LDA is a
strong supervised model that labels have equal impact on short
texts. Wang et al. [11] improved the graphical models in LDA
family with hashtag graph based topic model (HGTM). Unlike
pooling based strategy in which tweets are aggregated into
pseudo documents, it incorporated a hashtag graph into topic
modeling. The key differences between HGTM and MRTM in
this paper could be explained in terms of both complexity and
robustness. HGTM only considers a single explicit relation,
i.e., hashtags, while MRTM incorporates multiple relations
into topic modeling. Moreover, MRTM integrates a new hid-
den variable which makes it more robust than HGTM. Note
that multiple relations represented by information networks
have various inherent textual information. Their rich semantics
could enhance the inherent coherence among texts, and as a
result, MRTM could uncover topics with better quality which
is shown in Section IV.

III. THE PROPOSED APPROACH

A. Notations

Let D = {d1, d2, . . . , dm} denote the corpus of short
texts where corpus and di is a short text. Let W =
{w1, w2, . . . , wn} denote the vocabulary set of D, where wi

is a word. Let C = {c1, c2, . . . , ck} denote the attribute sets
where ci is an attribute. In the following of this paper, we also
use c to denote a certain attribute.

Take the tweets of movie reviews as an example. Fig. 1
shows the overall concept of multiple relational graphs. Recall
that labels denote values of a certain attribute. A tweet could
contain hashtags, as well as many other entities, such as title,
actors, released time, etc., as shown in Fig. 1. Then we can
construct a relation graph gc = (Vc, Ec) for each attribute c,
where Vc is the vertex set in which each vertex represents a
label belong to attribute c, and Ec is the edge set in which
each edge represents the relation between two vertices. For
each attribute c, let Lc = {lc1, lc2, . . . , lco} represent the label
set of attribute c. gcij is a weighted relation between label lci
and lcj vertices in the relation graph gc of attribute c.

Let a denote the relation of actors and h denote the
relation of hashtags, respectively. Then we can construct the
relation graph ga = (Va, Ea) of actors and the relation graph
gh = (Vh, Eh) of hashtags. In the relation graph ga, each
edge indicates the relation between two actors who are likely
to co-occur in one tweet. In the relation graph gh, each edge
indicates relations between two hashtags which are likely to
co-occur in one tweet. The weights of the edges in both graphs
are the number of co-occurrence instances of the adjacent
vertices in the corpus of short texts. As shown in Fig. 1, usually
there are multiple relation graphs.

B. Multiple Relational Topic Modeling

θK1 is the distribution over topics with dirichlet prior param-
eter α. φk is the topic-word distribution with dirichlet prior
parameter β. z represents the topic assignment matrix and zd
represents the topic assignment for a short text d. wd is the
word sequence of short text d and wdi represents the word at
position i in d. Then the parameters of MRTM are as follows.611

actors

hashtags

multiple relations

I am in favor of Morgan

Freeman. An American

black actor aged 77. well,

 I see. he has talent in act.

 #tail actor story# When

he was only 8 years old,

he has already played

a chief role in a dram at

his school.

Joshua David

Sandra Annette Bullock

Chace Crawford

year 2013

 Transformers

....

....

....

....

actor matrix

0 1

1 1

hashtag matrix

relation extraction

Fig. 1: Multi relations extracted from short texts

D

Nd

CCC K

βα

φθg

wzyld

rη

Cd

Fig. 2: The model structure of MRTM

θc|α ∼ Dirichlet(α) (1)

φk|β ∼ Dirichlet(β) (2)

zdi ∼Multinomial(θydi
) (3)

wdi ∼Multinomial(φzdi) (4)
Fig. 2 presents the structure of our proposed multiple

relation topic model. A unique topic distribution is associated
with each label in each attribute. Each topic is represented
as a multinomial distribution over words. A short text could
include two or more attributes, and attributes can serve as
bridges between short texts. In order to incorporate multiple
relations into our topic model, we first introduce the following
concepts.

Document-attribute distribution Cd. Documents could pre-
fer some attributes. For example, users talking about a movie
are likely to discuss actors in the movie rather than hashtag
concepts. Vice verse, users might be willing to talk about hash-
tag concepts than actors. We use document-attribute matrix to
model this kind of preference of attributes, and each attribute
has its unique distribution of topics.

Observed attribute labels ld. Observed attribute labels refer
to the labels existing in a short text. As prior knowledge, it is
better than the simple pooling strategy [11].

Potential attribute labels yp. Potential attribute labels refer
to the labels inferred from the whole corpus based on the graph
based attribute relation. Related labels of the observed labels
are also be utilized as prior knowledge.

Let l denote the attribute assignment and ld be assignment
vector of short text d. ydi represents the attribute assignment
for position i in short text d. Different short texts have different
attribute preference, represented by Cd, the document-attribute
distribution. By introducing an indicator parameter r to decide

whether we choose the observed attribute label or potential
attribute label(s), the label assignment at position i of short
text d, ydi is defined in Eq. 5.

ydi|Cd, g
c, r ∼ Bernoulli(η) (5)

where η controls the randomness of attribute labels. Large η
means more randomness.

The overall generative process for MRTM is described
below.

1) for each of the label l in attribute C, l ∈ {1, . . . , L},
sample θl ∼ Dir(α);

2) for each of the topic k ∈ {1, . . . ,K}, draw words φk ∼
Dir(β);

3) for each of the documents d ∈ {1, . . . , D}, give all
document-attribute distribution Cd and all prior knowl-
edge gc;

4) for each word wdi ∈ d, i ∈ {1, . . . , Nd}
5) sample cdi ∼Multinomial(Cd);
6) sample observed attribute label ldi ∼ Uniform(cdi)
7) sample potential attribute label related with observed

label in graph gc, yp ∼Multinomial(norm(gcdildi
));

8) sample r ∼ Bernoulli(η);
9) if r is 0, sample ydi = ldi;

10) else if r is 1, sample ydi = yp;
11) draw topic zdi ∼Multinomial(θydi

);
12) draw word wdi ∼Multinomial(φzdi).
Firstly we sample current label based on Cd. Secondly, we

sample a value of r from Bernoulli distribution and decide
whether this label is related with current word. If not, we
sample from highly related labels from the relation graph.
Through the two-step sampling from line 6 to 10, we can
obtain the document-attribute assignment. norm(gcdildi

) in line
7 is a normalized L-dimension possibility vector, where L is
the number of labels in attribute c and each element in the
vector is calculated by using the following equation.

p(lj |lcdidi) =
gcdildi,lj∑L

l′=1(g
cdi
ldi,ll′

)
(6)

This model adds word co-occurrence under graph structure
when latent relationships between short texts are found, and
we filter unnatural word co-occurrence caused by merely
aggregating short texts. In our experiment after introducing
actor networks or hash-tag network, we enhance the semantic
information in movie reviews. More exciting is that we can612

add more relations to this framework in general tasks based
on short text topic modeling.

C. Model Parameter Inference

The joint distribution of the latent variables is

p(w|θ, φ, r, l, G) =
D∏

d=1

p(wd|θ, φ, r, ld, gc). (7)

Assuming that attribute-topic distribution ld and topic-word
distribution φ are independent, we have

p(wd|θ, φ, r, ld, gc) =
Nd∏
i=1

p(wdi|θ, φ, r, ld, gc)

=

Nd∏
i=1

C∑
c=1

K∑
k=1

p(wdi, zdi = k, ydi = c|

θ, φ, r, ld, g
c)

=

Nd∏
i=1

C∑
c=1

K∑
k=1

φwdi
θkcpcydi

(8)
where pcydi

= p(ydi = c|r, ld, gc) represents the assignment
possibility of attribute c on attribute-topic distribution ld and
potential labels.

According to the two-step sampling mentioned in Section
III-B, the assignment of c is associated with relation graph gc.
Then we have

p(ydi =c|r, ld, gc)

=

{
p(lcdi = c|ld)p(ydi = c|lcdi)

}r

×{
L∑

l′=1

p(lcdi = ll′ |Cd)p(ydi = c|lcdi = ll′ , g
c)

}1−r

(9)
It is computational infeasible to estimate directly the condi-
tional probability distribution p(wd|θ, φ, r, ld, gc), like many
other topic modeling approaches, we adopt Gibbs sampling
[12] to approximate it as follows.

p(zdi = k, ydi = c, rdi = u|
wdi = v, z−di,y−di,w−di, C,G, α, β, η)

∝
NV K

vk,−di + β∑
v′ NV K

v′k,−di + V β
·

NKC
kc,−di + α∑

k′ NKC
k′c,−di +Kα

· pcydi

(10)
Let NKC be the matrix recording the number of times that
a topic is assigned to some attribute. Let NV K be the matrix
recording the number of times that a real word is assigned to
some topic. After iterative sampling, the final θc and φk are
as follows.

θ̂c ∝
NKC

kc + α∑
k′ NKC

k′c +Kα

φ̂k ∝
NV K

vk + β∑
v′ NV K

v′k + V β

(11)

IV. EXPERIMENTAL EVALUATION

In this section, we report our experimental results. The
quality of uncovered topics of short texts is evaluated using
both subjective and objective metrics. All experiments are
done on a PC with Intel i5 CPU at 2.3 GHz and 8GB memory,
running Windows 10. All algorithms are implemented in
Python.

A. Datasets and Settings

We collected more than 150,000 tweets from Microblog1,
which is a Chinese social network site similar to twitter. All
tweets are in Chinese, and related to Chinese movies released
in 2017 in order to narrow down the domain of the potential
topics for analysis. Unlike English, sentences in Chinese do
not contain spaces between words. We applied JieBa2 (an
open-source NLP tool for Chinese) to segment sentences into
words and remove stop words.

It is worth noting that the relations utilized in the proposed
topic model is widely available in short texts in many applica-
tions. In particular, these attributes, labels, and relations could
be manually defined, automatically learned, or extracted from
existing knowledge bases. In the experiments, we extract re-
lations by using both knowledge based matching and RegExp
based matching.

B. Subjective Quality Evaluation

We report the uncovered topics of each method and evaluate
their quality in a subjective view in this section. We conducted
the experiments on tweets about five most popular Chinese
movies released in 2017. The characteristics of the movies and
the tweets are presented in Table II. For readers not speaking
Chinese, we translated all the Chinese words into English in
Table II, as well as ones in the following table, where phrases
in italic are movie titles, and phrases with underline are actor
names.

We compared the proposed MRTM with the state-of-the-art
topic model for short texts, i.e., HGTM [11], as well as the
classic LDA topic model [6] as a baseline. Recall that HGTM
is the topic model for short texts based on the hashtag graph.
In all models, the topic number K = 150, the latent variable
α = 0.5, and β = 0.1. We set η = 0.5 in HGTM as indicated
in [11]. The number of iteration times for Gibbs sampling is
set to be 1000 in all experiments.

Table I shows the top 10 words from top 1 topic uncovered
by each models ranking based on probabilities. The irrelevant
words found by LDA are marked with label irrelevant in
parentheses. New words found by HGTM and MRTM are
in bold. We also summarized the new words of HGTM and
MRTM in Table III, by categorizing all new words into two
groups, major actors and relevant words consistent with movie
genres.

By careful analysis of the discovered topics together with
the original tweets, we have the following observations. For
Movie #1 and #2, the topic found by LDA contains many

1http://www.weibo.com
2https://github.com/fxsjy/jieba613

TABLE I: Top 1 topic dicovered by LDA, HGTM and MRTM

Movie #1 Movie #2 Movie #3 Movie #4 Movie #5

LDA

Taohua, Sansheng,
film, Sanshi, Shili,
happiness,summer-

vacation, interesting,
movie season, not bad

film, sacrifice, suspect,
duo(irrelevant),

meng(irrelevant),
superise, not bad,
both(irrelevant),

propaganda, acting skill

support, Zhanlang,
movie season, happiness,

interesting, film, good,
summer vacation,
dream, Chinese

memory, film, master,
acting skill, plot,

reversal, interesting,
murderer, really,

Huang Bo

new year movie, movie-
season, not good,

strongest, Jackie Chan,
more and more, interesting,

film, Yoga, not bad

HGTM

movie season, summer-
vacation, happiness,
Sansheng, Sanshi,

Shili, Taohua, film,
Yang Yang, special effects

film, suspect, sacrifice,
like, support, awesome,

fighting, superise,
acting skill, propaganda

Chinese, Zhanlang,
Wu Jing, film, box-

office, pride, support,
strike, poke, enjoy

memory, master,
Huang Bo,

Duan Yi Hong, film,
expect, eyesight, plot,

reversal, murderer

Kung Fu, Yoga,
strongest, interesting ,

Jackie Chan,
Zhang Yi Xin,

brother, excellent,
laugh, like

MRTM

summer vacation,
Yang Yang, interesting,

special effects, Sansheng,
Sanshi, Shili, Taohua,

film, movie season

suspect, film, sacrifice,
awesome, like, superise,
acting-skill, love, enjoy,

fear

Zhanlang, Wu Jing,
patriotic, support, strong,

strike, Chinese, film,
scene, enjoy

memory, master,
Huang Bo,

Duan Yi Hong,
murderer, plot, reversal,

film, killer, except

Kung Fu, Jackie Chan,
interesting ,Yoga, laugh ,

zhang yi xin, love,
excellent, indian, funny

TABLE II: The characteristics of movies and tweets

ID Movie Title Movie Genre # of Tweets

#1
Sansheng Sanshi

Shili Taohua
romance, fantasy 9,932

#2
The Devotion Of

Suspect X
feature, crime 9,215

#3 Wolf Warriors II action, military 19,230

#4 Battle of Memories suspense, crime 9,355

#5 Kung-Fu Yoga comedy, adventure 7,375

TABLE III: Words discovered by HGTM and MRTM

ID Words of leading actor Words related to movie genres

#1 Yang Yang special effects

#2 - awesome, fear

#3 Wu Jing pride, strike, poke

#4 Huang Bo, Duan Yi Hong killer

#5 Zhang Yi Xin Kung Fu, laugh, Indian, funny

irrelevant words. For Movie #3 ,#4, and #5, the topic contains
major actors names such as Huang Bo (A Chinese actor) and
Jackie Chan. In general, it seems that words in LDA’s topics
provide an overview but also bring some unnatural words such
as ’not bad’ or ’film’(background noise, [9]) which caused by
unnatural co-occurrence.

For HGTM and MRTM, in Movie #1, they both found out
the leading actor ’Yang Yang’ with different rankings. More
substantive words have higher probabilities than words in the
movie title, such as Sansheng, Sanshi, Shili, Taohua. In Movie
#2 and #3, both HGTM and MRTM can get rid of irreverent
words and find new words . In Movie #4, movie genre related
word like ’killer’ is within the top 10-word list, substituting the
irrelevant word ’really’. In Movie #5, word ’laugh’ shows this
movie is a comedy. The word ’Indian’ appearing in MRTM’s

topics is because the story of the movie took place in India.

C. Objective Semantic Coherence

In this section, we report the uncovered topics of each
method and evaluate their quality in an objective view. We em-
ployed Pointwise Mutual Information (PMI) [17] to measure
the topic coherence, which has been proved to be an effective
measure for topic quality [18]. Given a topic t and its top
K words W t = (wt

1, w
t
2, . . . , w

t
K) (The top K words with

highest probabilities.), P (w) denotes the document frequency
of word w and P (wl, w

′
l) is the probability wl and w′l co-occur.

The metric is defined for a specific topic t as

PMI(wt
l , w

t
l′) = log(

P (wt
l , w

t
l′)

P (wt
l)P (w

t
l′)

). (12)

Then the coherence of a top-K models is the summarization
of the PMI scores of each topic as follows. Larger coherence
score shows better topic partition.

Coherence(t,W t) =

K∑
i=2

i∑
j=1

log(
P (wt

i , w
t
j) + ε

P (wt
i)P (w

t
j)

) (13)

We filtered the tweet corpus by removing tweets of un-
popular movies and split the remaining tweets into two data
sets, MR1 and MR2. MR1 has 2,3452 tweets with the average
length 6.96, wile MR2 has 7,329 tweets with the average
length 7.97. We compared MRTM with the classic topic
model Latent Dirichlet Allocation (LDA) [6], the author topic
model (ATM) [8], and the hashtag graph based topic model
(HGTM) [11].

We extract top 10 words for each topic generated by each
model for computing the coherence. The number of topics is
100, α = 0.3 and β = 0.1. The number of iterations of Gibbs
sampling is 200 which is enough for uncovering topics. We
conduct all the experiments repeatedly for 5 times and report
the mean value of each measure in Table IV. For each topic,614

TABLE IV: Average PMI and coherence scores of in MR1 and MR2

Model
dataset MR1 MR2
K 5 10 15 20 30 5 10 15 20 30

LDA [6]
Average PMI -6.3264 -7.9251 -8.3323 -8.6869 -9.1779 -3.8294 -5.6971 -6.9512 -8.0397 -8.9713

Coherence -31.632 -79.251 -124.9845 -173.738 -275.337 -19.147 -56.971 -104.268 -160.794 -269.139

ATM [8]
Average PMI -7.8479 -8.9783 -9.6743 -9.5824 -9.546 -6.3908 -7.5662 -8.0043 -8.1444 -8.6616

Coherence -39.2395 -89.783 -145.1145 -191.648 -286.38 -31.954 -75.662 -120.0645 -162.888 -259.848

HGTM [11]
Average PMI -1.9698 -3.9027 -5.0757 -5.4254 -6.243 -3.0478 -3.6876 -4.2665 -4.8512 -5.1454
Coherence -9.849 -39.027 -76.1355 -108.508 -187.29 -15.239 -36.876 -63.9975 -97.024 -154.362

MRTM
Average PMI -2.3854 -2.7416 -3.0652 -3.3337 -3.6853 -2.7831 -3.2135 -3.9521 -4.3683 -4.8573
Coherence -11.927 -27.416 -45.978 -66.674 -110.559 -13.9155 -32.135 -59.2815 -87.366 -145.719

we only keep K words with the largest probabilities, and the
average PMI indicates the average PMI scores of all topics.

MRTM achieves lowest scores in all settings except when
topic length is 5 in MR1. Classic LDA and ATM show lower
coherence because they cannot handle the sparsity of short
texts. For all approaches, the coherence becomes unstable
when K goes larger generally. However, an interesting fact
we found is that using hashtags is more stable than using
other relations, and with multiple relations, we can further
lower the trend of increasing. Another observation is related
to the range of average PMI and coherence along with the
change of K. The range in MRTM is much smaller than the
one in HGTM, i.e., 60% approximately. With smaller range
of average PMI and coherence, MRTM is more robust than
HGTM with respect to K.

It is essential to incorporate multiple relations appropriately.
Otherwise, it might deteriorate the quality of discovered topics.
In the proposed MRTM, we introduce new latent document
attribute layer and incorporate multiple relations to obtain high
coherent topics.

V. CONCLUSION

A Multiple Relation Topic Model (MRTM) is proposed
in this paper with the aim of overcoming the difficulties
of sparsity and informality caused by noisy short texts. By
incorporating explicit and implicit relations among short texts
into the generative process of short texts, MRTM can uncover
high-quality topics. Extensive experiments demonstrate that
MRTM can achieve better performance than both the classic
topic model approach LDA, and the state-of-the-art topic
modeling approaches, i.e., ATM and HGTM. Possible future
directions include accelerating the sampling speed and trading
off between explicit and implicit relations of short texts.

ACKNOWLEDGEMENTS

This work is supported in part by Jiangsu Provincial Natu-
ral Science Foundation of China under Grant BK20171447,
Jiangsu Provincial University Natural Science Research of
China under Grant 17KJB520024, Jiangsu Key Laboratory
of Big Data Security & Intelligent Processing under Grant
BDSIP1803 and Nanjing University of Posts and Telecommu-
nications under Grant No. NY215045.

REFERENCES

[1] R. Krestel, P. Fankhauser, and W. Nejdl, “Latent dirichlet allocation for
tag recommendation,” in Proceedings of the third ACM conference on
Recommender systems. ACM, 2009, pp. 61–68.

[2] A. McCallum, X. Wang, and A. Corrada-Emmanuel, “Topic and role
discovery in social networks with experiments on enron and academic
email,” Journal of Artificial Intelligence Research, vol. 30, pp. 249–272,
2007.

[3] J. H. Lau, N. Collier, and T. Baldwin, “Online trend analysis with topic
models: twitter trends detection topic model online.” in International
Conference on Computational Linguistics, 2012, pp. 1519–1534.

[4] R. Mehrotra, S. Sanner, W. Buntine, and L. Xie, “Improving lda
topic models for microblogs via tweet pooling and automatic labeling,”
in Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval. ACM, 2013, pp.
889–892.

[5] X. Yan, J. Guo, Y. Lan, and X. Cheng, “A biterm topic model for short
texts,” in Proceedings of the 22nd international conference on World
Wide Web. ACM, 2013, pp. 1445–1456.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3.

[7] Y. Zuo, J. Wu, H. Zhang, H. Lin, F. Wang, K. Xu, and H. Xiong, “Topic
modeling of short texts: A pseudo-document view,” in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2016, pp. 2105–2114.

[8] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, “The author-
topic model for authors and documents,” in Proceedings of the 20th
conference on Uncertainty in artificial intelligence. AUAI Press, 2004,
pp. 487–494.

[9] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li, “Com-
paring twitter and traditional media using topic models,” in European
Conference on Information Retrieval. Springer, 2011, pp. 338–349.

[10] M. Naaman, H. Becker, and L. Gravano, “Hip and trendy: Characterizing
emerging trends on twitter,” Journal of the Association for Information
Science and Technology, vol. 62, no. 5, pp. 902–918, 2011.

[11] Y. Wang, J. Liu, J. Qu, Y. Huang, J. Chen, and X. Feng, “Hashtag graph
based topic model for tweet mining,” pp. 1025–1030, 2014.

[12] T. Griffiths, “Gibbs sampling in the generative model of latent dirichlet
allocation,” 2002.

[13] C. Li, H. Wang, Z. Zhang, A. Sun, and Z. Ma, “Topic modeling for
short texts with auxiliary word embeddings,” in International Acm Sigir
Conference on Research & Development in Information Retrieval, 2016,
pp. 165–174.

[14] D. Q. Nguyen, R. Billingsley, L. Du, and M. Johnson, “Improving topic
models with latent feature word representations,” Transactions of the
Association for Computational Linguistics, vol. 3, pp. 299–313, 2015.

[15] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning, “Labeled lda: a
supervised topic model for credit attribution in multi-labeled corpora,”
in Conference on Empirical Methods in Natural Language Processing:
Volume, 2009, pp. 248–256.

[16] S. Li, J. Li, and R. Pan, “Tag-weighted topic model for mining semi-
structured documents,” in International Joint Conference on Artificial
Intelligence, 2013, pp. 2855–2861.

[17] D. Newman, J. H. Lau, K. Grieser, and T. Baldwin, “Automatic evalua-
tion of topic coherence,” in Human Language Technologies: Conference
of the North American Chapter of the Association of Computational
Linguistics, Proceedings, June 2-4, 2010, Los Angeles, California, USA,
2010, pp. 100–108.

[18] A. Fang, C. Macdonald, I. Ounis, and P. Habel, Topics in tweets: A user
study of topic coherence metrics for Twitter data, 2016.

615

Svega: Answering Natural Language Questions over
Knowledge Base with Semantic Matching

Gaofeng Li, Pingpeng Yuan, and Hai Jin
Services Computing Technology and System Lab. / Cluster and Grid Computing Lab. / Big Data Technology and System Lab.

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
Email: {gaofengli, ppyuan, hjin}@hust.edu.cn

Abstract—Nowadays, more and more large scale knowledge
bases are available for public access. Although these knowledge
bases have their inherent access interfaces, such as SPARQL,
they are generally unfriendly to end users. An intuitive way to
bridge the gap between users and knowledge bases is to enable
users to ask questions with natural language interface and return
desired answers directly. Here the challenge is how to discover
the query intention of users. Another challenge is how to obtain
accurate answers from knowledge bases. In this paper, we model
the query intention with a graph based on an entity-driven
method. Consequently, the core problem of natural language
question answering can be treated as subgraph matching over
knowledge bases. For a query graph, there is a huge number of
candidate mappings in a knowledge base, including ambiguities.
Thus, a semantic vector is proposed to address disambiguation
by evaluating the semantic similarity between edges in a query
graph and paths in a knowledge base. By this way, our system
can extract accurate answers directly without any offline work.
Extensive experiments over the series of QALD challenges show
the effectiveness of our system Svega in terms of recall and
precision against other state-of-the-art systems.

I. INTRODUCTION

Nowadays, many knowledge bases, such as DBpedia [1],
Yago [2], are available for public access. Distinct from docu-
ment bases of information retrieval systems, knowledge bases
integrate substantial small facts, known as triples (subject-
predicate-object). To access these knowledge bases, SPARQL,
a SQL-like query language, is provided as a standard interface.
However, SPARQL is unfriendly to general users because of its
complex syntax. Although keyword search, commonly applied
in information retrieval, is simple and convenient for end users,
it may not work properly when employing keyword search to
retrieve answers from knowledge bases, because it is difficult
for keywords to express the query intention completely. For
example, the keywords of the question “Who starred in the
films that were directed by Stanley Kubrick?” may be “star”,
“film”, and “Stanley Kubrick”. However, if only taking into
account these keywords, the real query intention, actors of the
films, will be missing. Compared with SPARQL and keyword,
natural language is not only intuitive to end users, but also
able to express users’ query intention accurately. Thus it
is important to bridge the gap between unstructured natural
language and structured knowledge bases.

DOI reference number: 10.18293/SEKE2018-119

One way to bridge the gap is to translate a natural language
question to a structured query and then extract answers from
the mapping results of the query. However, it is difficult to
convert a natural language question to a structured query. One
reason is that most structured queries need to specify the query
statement accurately, while some query statements have ambi-
guities between natural language and knowledge bases. Con-
sidering the above example, the phrase “Stanley Kubrick” may
refer to <Stanley Kburick> or <Stanley Kubrick Archive>
in knowledge bases. The exact meaning of phrases depends
on the context of questions and knowledge bases. In order to
clarify the meaning of phrases and obtain correct mappings
from knowledge bases, some QA (Question Answering) sys-
tems provide candidates for users to interactively choose [3],
which actually is a controlled natural language. The above
example question can be converted into “Who dbp:starring
the dbo:Film that were-dbp:director res:Stanley Kubrick?”
by replacing the phrases with the words of a knowledge
base. This approach facilitates QA systems, but it requires
users to do much. Other QA systems, such as gAnswer [4],
automatically map phrases in the natural language into words
in knowledge bases based on a dictionary, which is generally
built manually or using machine learning approach. However,
it is impossible for the offline-built dictionary to indicate
comprehensive mapping relationships between phrases in the
natural language and knowledge bases.

Here we present an online natural language question an-
swering system Svega. An entity-driven method is proposed
to translate a natural language question into a query graph.
Consequently, the problem of natural language question an-
swering is converted to subgraph matching over knowledge
bases. To address disambiguation, we first search isomorphism
subgraphs of the query graph from a knowledge base based
on vertex mapping. Then a semantic vector is proposed
to filter ambiguities by evaluating semantic similarity. Our
contributions are as follows.

1) An online question answering system Svega is presented.
Svega provides a natural language interface for general
users to retrieve desired answers from knowledge bases
directly, without any offline work.

2) Query graph is constructed to model the query intention
of a natural language question by adopting an entity-

616

driven approach. In this approach, entities are identified
firstly and then the query intention is explored by ex-
tracting predicates based on grammatical relationships.

3) A semantic vector is proposed to represent the semantics
of paths (namely edges in query graph and paths in
knowledge base). Thus, the problem of disambiguation
is addressed by evaluating the semantic similarity be-
tween a query graph and mapping subgraphs online.

4) Extensive experiments on the standards of QALD series
competitions are conducted and the experimental results
demonstrate that Svega has a competitive performance
in terms of recall and precision.

II. RELATED WORK

There are many QA systems available. The traditional QA
systems can only return texts related to keywords. Although
some extending QA systems, such as [5], consider semantics
of results, they still can not retrieve answers directly. The
development of knowledge bases, storing fine-grained facts,
makes it possible to directly return desired answers [6], [7],
[8], [9]. Since the inherent interfaces, such as SPARQL, pro-
vided by knowledge bases are too complex for general users,
current QA systems allow users to employ natural language
to access knowledge bases. According to the restriction on
natural language, these systems can be broadly classified into
two categories: controlled natural languages, which restrict the
grammar and vocabulary in order to reduce ambiguity and
complexity, and un-controlled natural language.

Controlled natural language. These systems using this
approach provide some candidate entities and predicates for
users’ choice [3], [7]. Then users choose words from can-
didates to indicate their query intention. For instance, the
example can be transferred to “Who dbp:starring the d-
bo:Film that were-dbp:director res:Stanley Kubrick?”. In the
question, “dbp:starring”, “dbo:Film”, “dbp:director”, and
“res:Stanley Kubrick” are not natural language words, but
entities and predicates from a knowledge graph. Thus, this
way limits the expressiveness and usability of QA systems
[3], but improves the correctness to answer questions.

Un-controlled natural language. Different from the ap-
proaches with controlled natural languages, users can answer
questions using any words in thees systems. Then the QA
systems usually translate natural language questions into struc-
tured queries, such as SPARQL. In this approach, the key
is how to identify entities and map entities into words of
knowledge bases. For example, Xser [8] maps phrases into
words of knowledge bases using an ad-hoc lexicon. CASIA [9]
detects phrases by grammatical token and then uses Markov
Logic Network to resolve ambiguities. gAnswer [4] builds
a paraphrase dictionary offline to achieve the mapping of
predicate. However, the dictionary built offline can not indicate
the exact meaning of each predicate because language is live.
All in all, these systems address disambiguation only by taking
into account the semantic of single words instead of context
of the words.

III. PRELIMINARY AND OVERVIEW OF SVEGA

A. Preliminary

The core issues of answering natural language questions
over knowledge bases is to bridge the gap between structured
knowledge bases and unstructured natural language question.
Regrading this problem, we first model the query intention of
a natural language question with query graph Q.

Definition 1: (Query Graph). A query graph is denoted as
Q = (V, E), where V is a set of vertices, corresponding to
entities or variables. Specially, the query intention or variable
is represented as “?”. The edge between vertex vi, vj can be
denoted as triple T = < vi, r, vj >, where r represents the
relation between vi, vj .

Except variable vertices, there are two kinds of vertices
in query graph. We name a vertex with an entity label as
a Key Vertex (KV). The other vertices are not assigned a
label because they are not indicated in questions, which
are named as Hidden Vertex (HV) since they are implicit.
For example, Fig.1 shows the query graph of the running
question. <Stanley Kubrick, directed, HV> is a triple, in
which <Stanley Kubrick> is a KV. The graph also has a HV,
which is the set of films that were directed by Stanley Kubrick.

Now, answering natural language question is actually to find
matches of a query graph over knowledge bases. When map-
ping a query graph to a knowledge base, ambiguities will be
introduced. For a candidate mapping of an entity in Q, if there
is no isomorphism subgraph containing it, it must be an am-
biguity. For example, the vertex <Stanley Kubrick Archive>
in Fig.1 is a ambiguity. Based on this idea, we address
disambiguation with subgraph matching, which considers the
schema of knowledge bases.

Definition 2: (Match). A subgraph S in a knowledge base
is a match of query graph Q if and only if the following
conditions hold:

1) ∀v ∈ V of Q, ∃u ∈ S where the vertex u is a mapping
of the vertex v;

2) ∀e : (vi, vj) ∈ E of Q, ∃(ui, uj) ∈ S, associated with
e, and where the two vertices ui and uj are mappings
of vi and vj respectively.

The mappings of vertex “?” in Q will be answers of the
query. In Fig.1, vertex <Walter Cartier> and <Stadmueller>
are the matches of vertex “?”. Thus, they are two answers of
the running question.

B. Overview of Svega

Our approach mainly consists two parts: Entity-driven
Query Graph Construction and Disambiguation with Query
Graph Mapping. Fig.1 shows the framework of our system.

Entity-driven Query Graph Construction. In order to
model the query intention of a natural language question with
Q, we extract triples (see Definition 1) from natural language
question firstly, because triple has a simpler structure. Based
on this idea, we propose an entity-driven approach to extract
triples and construct Q by joining the same vertex of triples.
The details will be described in Sect. IV.

617

Who starred in the films that were directed by Stanley Kubrick?

Stanley_Kubrick

Stanley_Kubrick_

Archive

Film

Movie

Stanley

Kubrick

films

<Stanley Kubrick, directed, HV>

< HV, type, films >

< HV, starrted, ?>

?

films

Stanley Kubrick

type

directed

starred

HV

Stanley Kubrick

type

Film

type

director

Day of the Fight Flying Padre

director

Movie

Walter Cartier Fred Stadmueller

starringstarring

Stanley Kubrick Archive

type

Film

Archives

Archives

In London

Query Graph

Entity Recognition and Mapping ×

Triples

2

1

Knowledge Graph

3

Fig. 1: System Overview

Disambiguation with Query Graph Mapping. Naturally,
a query graph matching mainly includes vertices and edges
mapping, which will introduce ambiguities. To address disam-
biguation, we first search isomorphism subgraphs of Q based
on vertices mapping. Then a semantic vector is proposed to
prune ambiguities by evaluating the semantic similarity. The
details will be described in Sect. V.

IV. ENTITY-DRIVEN QUERY GRAPH CONSTRUCTION

In a query graph, any edge with two endpoints can be
represented as a triple. Thus, we first extract triples from a
natural language question. Each triple is composed by two
entities (vertices in a graph) and the relation between them
(edge between two vertices). We then construct the query
graph of the questions from the triples. To extract triples,
the system needs to identify entities and relationship between
entities indicated in natural language questions. The words
to show relationship are various in natural language while
the form of entity is relatively simple. They can be verb and
adjective phrases etc. Here, we first identify entities and then
propose an entity-driven approach to extract relational phrases
based on the grammatical relationships between words.

A. Entity Identification

Here, we employ DBpedia Spotlight [10] and Stanford
Parser [11] to analyze a sentence and generate a dependency
tree to indicate grammatical relationships between words. The
output is generally a dependency tree. For example, Fig.2 is the
tree of the example question. There are many auxiliary words
(“in”, “that” etc) in a dependency tree while a query graph
only contains key entities and relationships between them. So
a dependency tree is still far from a query graph. In order to
construct Q, we need to know both the key entities and theirs
semantics. For instance, the category words (e.g. “film” in the
running example) generally indicate ‘is-a’ relationship. In the
case, we will add some extra nodes and edges to show this.
As shown in Fig.2, we will add a node and an edge labeled
“type” which represents the fact that “film” is a “type”.

Some questions may contain hidden information. The exam-
ple question “films that were directed by Stanley Kubrick” has

a hidden entity “that” which represents all the films directed
by Stanley Kubrick. Here, we denote it by a HV. HVs can
be identified based on the structural feature of vertices in
a query graph. If a vertex is adjacent to only one vertex,
it is a KV, otherwise it is a HV. So identifying HVs needs
more information. In the running example, “film” and “Stanley
Kubrick” can be recognized in this stage, and HVs will be
inferred in the following stage.

by

nmod:in

starred

who

nsubj

films

thein
thatdirected

nmod:by

were

auxpass

Stanley_Kubrick

case acl ref det

case

T1 = <Stanley_Kubrick, directed, HV>

T2 = <HV, type, films>

T3 = <HV, starred, who>

?

films

Stanley Kubrick

type

directed

starred
HV

(a) Dependency Tree (b)Triples (c)Query Graph

Fig. 2: Examples of Dependency Tree, Triple, and Query
Graph

B. Recognizing Relation

Relation phrases generally co-occur with the corresponding
entities. So they can be recognized from the words that have
grammatical relationships with the obtained entities. Although
a dependency tree [12] can reveal grammatical relationships
between words in a sentence, the words connecting entities is
not only the words that represent relations, but also auxiliary
words. Here a relation priority is proposed to denote the possi-
bility of a word to represent relation. The priority is computed
based on the possibility of the grammatical relationships which
are listed as follow in a non-ascending order 1: nsubj, subj,
obj, dobj, nsubjpass, pobj, nmod:*, amod, prep, acl, auxpass,
case, ref, det.

In Fig.2, the word “were”, connecting to the word “di-
rected”, will be pruned, because the edge label “auxpass”,

1These grammatical relationships are defined in [12]. For example, “nsubj”
refers to a noun phrase which is the syntactic of a clause.

618

Algorithm 1: Extracting Ts from a dependency tree
Input: Dependency tree, recognized entities set RES
Output: Ts
Define a variable var;
for each unvisited element in RES do

The element, e, is the member of a T and set var = e;
Carry out traversal in the dependency tree from var;
Select the edge with a highest-priority relationship;
if the V is a class word then

Insert a HV to current T;
Build a new T, composed by V, type and a HV;
Continue;

else
Insert V and HV to the current T;
Build a new T and insert a HV to the new T;
Set var = V;
Continue;

end
end

representing passive auxiliary, has a low priority. Simultane-
ously, HVs can be inferred according to the proposed structural
feature of vertices.

Here, Algorithm 1 is used to extract triples. It starts from
the entities recognized but not category words. For instance,
the entity “Stanley Kubrick” will be an element of T1. Then,
because the priority of “nmod:by” is higher than “case”,
“directed” is selected as a relation. Then, the class word
“films” will be traveled and it will introduce the relation
“type”. So here a HV is needed because it will connect
two edges with label “directed” and “type” respectively. So
<Stanley Kubrick, directed, HV> and <HV, type, film> are
two triples extracted from the question. Next, “starred” and
“Who” are travelled, and they are composed the T3. Finally,
the obtained three Ts are composed together to build the Q by
joining the same vertex.

V. DISAMBIGUATION WITH QUERY GRAPH MAPPING

Once the query graph is built, we need to find subgraphs
from a knowledge base, which match the semantics of the
query graph. It is a NP hard problem to find the best mapping
[4], and ambiguities will be introduced. Here we first filter
ambiguities based on structural mapping, then a semantic
vector is proposed to achieve semantic mapping.

A. Structural Mapping Based on Vertices

Query graph mapping includes vertices and edges mapping.
Due to this reason, we first extract isomorphism subgraphs
based on vertices mapping. The general way to map vertices,
with entity label, from query graph to knowledge bases is by
computing string similarity or edit distance. By this way, an
entity in the natural language may correspond to several can-
didates in a knowledge base. For instance, the possible map-
pings of the entity “Stanley Kubrick” in the running question
include <Stanley Kubrick>, <Stanley Kubrick Arechive>

...

...

...

...

...

...

...

...

Film Movie

Stanley_Kubrick Stanley_Kubrick_Archive

films

Stanley_Kubrick

Flying_Padre Citizen_Kane

Brian_GageFlying_Padre

Barry_LyndonHawk_Films

Hawk_Films Barry_Lyndon

TelevisionShow Annie Hall

Film_archives Archives_in_London

Fig. 3: Query Graph Mapping Based on Entities

Algorithm 2: Pruning paths based on entities
Input: Knowledge graph KG, query graph Q
Output: mapping results of Q
for each vertex Vi in the Q do

Obtain the mapping candidate set Ci of Vi;
for each element cj in Ci do

Carry out BFS in KG from the vertex cj ;
end

end
for each edge between two vertex Vi and Vj in the Q do

Select two elements from the two candidate sets Ci

and Cj respectively and find paths between them;
end

etc. Moreover, in order to ensure that all answers can be
obtained, synonyms should also be considered, which is an
entity linking problem. In our work, Lookup [13] is adopted
to link an entity to candidate entities in a knowledge graph. Up
to now, all vertices in a query graph will have some candidate
results and the corresponding paths only occur between these
candidate results, so we can prune the paths that have no con-
nection with the entities mapping results. Based on this idea,
we propose the Algorithm 2 to prune paths in the knowledge
graph. Fig.3 shows temporary results of the running example,
and some ambiguities, such as <Stanley Kubrick Archive>,
will be filtered because it is isolation in the mapping results.

B. Semantic Mapping with Path Vector

After obtaining isomorphism subgraphs of a query graph,
there are still ambiguities in candidates, because only the
structure of a query graph is considered, while the semantics
of a query graph is not taken into account. For example,
the vertex <Hawk Films>, included in the mapping results,
is not a correct answer of the running question, and the
predicate, between <Hawk Films> and <Stanley Kubrick>
in the knowledge graph, is irrelevant to the corresponding
relation “directed” in Q. Consequently, the pruning method
should be executed according to the semantic confidence.

619

?

type born in

Country

(a) Query Graph

Bill

Gates

country birthPlace

Country

Bill

Gates

type

Washington

United

States

(b) Knowledge Graph

Question: Which country did Bill Gates born in?

Fig. 4: Example of Edge and Mapped Path

An edge with a predicate label in a query graph may be
mapped to a path in a knowledge graph, as shown in Fig.4. So,
the key is how to represent the semantics of them and evaluate
the similarity between them. Here, we propose semantic vector
to quantify the semantic information of predicates and paths.

1) Path Vector: Generally, the semantic vector obtained by
Glove [14] can only represent a single word. In knowledge
bases, a path contains several edges, each of which has
its labels. For example, in the path <birthPlace, country>,
“birthPlace” and “country” will have a semantic vector
representation respectively. In addition, semantics of edges in
a knowledge graph between different vertices are irrelevant. So
we propose the method that composing the semantic vectors
together based on the synthesis of vector additions to compute
the path vector α.

2) Predicate Vector: Generally, a predicate is a phrase.
We also need a method to synthesize the predicate vector.
Different from pathes in knowledge graph, the words in a
phrase are relevant. For example, the words “born” and
“in” are composed together to represent the relationship that
someone is born in a place. The contribution of each word
in the predicate is different. The word “in” occurs in many
phrases, while the word “born” only appears in a few phrases.
Thus, the word “born” is more important than ‘in”. However,
we can not ignore “in” because it indicates a born place
instead of time or anything else. Thereby, we use the tf-
idf proposed firstly in information retrieval to measure the
importance of a word to a predicate phrase.

Assume a predicate phrase p is composed of word wi (i =
1, ..., n). The tf-value of wi is defined as follows:

tf(wi, p) = |{wi | wi ∈ p}| (1)

The idf-value of word wi over the phrase dictionary d is
defined as follows:

idf(wi, d) = log
|d|

|{p ∈ d | wi ∈ p}|+ 1
(2)

Thus, the tf-idf value of wi can be computed as following:

tf − idf(wi, p, d) = tf(wi, p) ∗ idf(wi, d) (3)

According to the tf-idf value of each word, we define the
importance weight of word wi in predicate p as following:

ψ(wi, p) = tf − idf(wi, p, d) (4)

Since each wi has a vector v, we can compute the predicate
vector β as follows:

β =
∑

wi∈p
ψ(wi, p) ∗ vi (5)

C. Ranking Subgraph Matches

The subgraph matching mainly includes vertices and edges
mapping. Consequently, semantic confidence of vertices and
edges are composed together to measure the semantic simi-
larity of a subgraph, which also reflect the confidence of the
answer.

Definition 3: (Answer Confidence). Given a query graph
Q of a question and a mapping result M. Let φ(v, u) be
the confidence between vertex v ∈ Q and u ∈ M. And
ϕ(vw, P (x, y)) is the confidence between edge vw of Q and
path P(x, y) of M. Thus, the answer confidence, AC(Q, M), is
defined as follows:

AC(Q,M) =
∑

vi∈Q && ui∈M
φ(vi, ui) +∑

vivj∈Q && P (ui,uj)∈M
ϕ(vivj , P (ui, uj))

(6)

where

ϕ(vivj , P (ui, uj)) = α(P (ui, uj)) · β(vivj) (7)

VI. EVALUATION

In this section, we evaluate our system Svega against
some existing popular natural language question answering
systems using the QALD series benchmarks. Here, we do not
choose squall2sparql [7] as a competitor because the input of
squall2sparql is controlled language question rather than un-
controlled natural language.

A. Data Sets

QALD series competitions are one of important benchmarks
to evaluate natural language question answering system. Here
we choose QALD-3 and QALD-4 as many research did.
According to the requirements of the QALD series compe-
titions, DBpedia series knowledge bases are also used in the
experiments and managed by TripleBit [15].

B. Effectiveness of Question Answering

We report the experimental results in Table I (QALD-
3) and Table II (QALD-4). The experimental results of our
competitors on QALD-3 and QALD-4 are available at the
official website2 of QALD, in which Proceed indicates the
number of questions that can be return non-empty answers by
these systems.

Table I shows that Svega is the best natural language
question answering system on QALD-3, with highest recall,
precision, and F-measure. Our system can answer 44 questions
correctly and 9 questions partially, while CASIA [9] can only
answer 29 questions all right.

In QALD-4, we can see that Svega outperforms all competi-
tors on both recall and precision (Table II). Both the recall and

2https://qald.sebastianwalter.org/

620

TABLE I: QALD-3 on DBpedia 3.8

Proceed Right Partially Recall Precision F-measure
CASIA 52 29 8 0.36 0.35 0.36

Scalewelis 70 32 1 0.33 0.33 0.33
RTV 55 30 4 0.34 0.32 0.33
Intui2 99 28 4 0.32 0.32 0.32
SWIP 21 15 2 0.16 0.17 0.17
Svega 96 44 9 0.52 0.52 0.52

TABLE II: QALD-4 on DBpedia 3.9

Proceed Right Partially Recall Precision F-measure
Xser 40 34 6 0.71 0.72 0.72

gAnswer 25 16 4 0.37 0.37 0.37
CASIA 26 15 4 0.40 0.32 0.36
Intui3 33 10 4 0.25 0.23 0.24
ISOFT 28 10 3 0.26 0.21 0.23
RO FII 50 6 0 0.12 0.12 0.12
Svega 48 35 6 0.76 0.76 0.76

precision of Svega are 0.76, while the recall and precision of
the best competitors Xser [8] is 0.71 and 0.72 respectively. In
addition, Xser needs to train a KB-independent model offline
before it answers questions, while Svega does not need to train
any model in advance.

C. Effectiveness of Query Graph Building and Mapping

We implement a system by replacing the semantic vector
method of Svega with paraphrase dictionary method used in
gAnswer. We name it as ED+PD.

The experimental results show that ED+PD is not better
than Svega in all aspects (Table III, IV). It confirms that
the similarity evaluating method of semantic vector is very
effective, because the difference between ED+PD and Svega
is only the similarity evaluating method. The results also
show ED+PD outperforms gAnswer. It indicates that the
entity-driven method of our system has more advantages on
building query graph, because ED+PD and gAnswer use same
dictionary, but different approach to build query graph.

TABLE III: Results on QALD-3

Proceed Right Partially Recall Precision F-measure
Svega 96 44 9 0.52 0.52 0.52

ED+PD 96 36 9 0.43 0.43 0.43
gAnswer 76 32 11 0.40 0.40 0.40

TABLE IV: Results on QALD-4

Proceed Right Partially Recall Precision F-measure
Svega 48 35 6 0.76 0.76 0.76

ED+PD 48 22 4 0.55 0.55 0.55
gAnswer 25 16 4 0.37 0.37 0.37

VII. CONCLUSIONS

In this paper, we present Svega - an online natural language
question answering system over knowledge bases. Moreover,
the query intention of a natural language question is modeled
by a query graph based on an entity-driven method. As a
result, the problem of natural language question answering

over knowledge graph is converted to subgraph mapping. At
last but not least, predicate vector and path vector are proposed
to measure the semantic confidence between predicates and
paths. Consequently, our approach is effective in the terms of
recall and precision.

ACKNOWLEDGMENT

The research is supported by The National Key Ba-
sic Research Program (No. 2018YFB1004000002), NSFC
(No. 61672255), Science and Technology Planning Project
of Guangdong Province, China (No.2016B030306003 and
2016B030305002), and the Fundamental Research Funds for
the Central Universities, HUST.

REFERENCES

[1] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“Dbpedia - a large-scale, multilingual knowledge base extracted from
wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in Proc. of WWW’07. ACM, 2007, pp. 697–706.

[3] G. M. Mazzeo and C. Zaniolo, “Answering controlled natural language
questions on RDF knowledge bases,” in Proc. of EDBT’16, 2016, pp.
608–611.

[4] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao, “Natural
language question answering over RDF: a graph data driven approach,”
in Proc. of SIGMOD’14. ACM, 2014, pp. 313–324.

[5] H. Bast and B. Buchhold, “An index for efficient semantic full-text
search,” in Proc. of CIKM’13. ACM, 2013, pp. 369–378.

[6] L. Shao, Y. Duan, X. Sun, H. Gao, D. Zhu, and W. Miao, “Answering
who/when, what, how, why through constructing data graph, information
graph, knowledge graph and wisdom graph,” in Proc. of SEKE’17. KSI,
2017, pp. 1–6.

[7] S. Ferré, “squall2sparql: a translator from controlled english to full
sparql 1.1,” in Proc. of Working Notes for CLEF’13. Springer, 2013.

[8] K. Xu, Y. Feng, S. Huang, and D. Zhao, “Question answering via phrasal
semantic parsing,” in Proc. of CLEF’15. Springer, 2015, pp. 414–426.

[9] S. He, Y. Zhang, K. Liu, and J. Zhao, “Casia@v2: A mln-based question
answering system over linked data,” in Proc. of CLEF’14. Springer,
2014, pp. 1249–1259.

[10] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, “Improving
efficiency and accuracy in multilingual entity extraction,” in Proc. of
I-Semantics’13. ACM, 2013, pp. 121–124.

[11] S. Schuster and C. D. Manning, “Enhanced english universal dependen-
cies: An improved representation for natural language understanding
tasks,” in Proc. of LREC’16, pp. 2371–2378.

[12] M. C. D. Marnee and C. D. Manning, “Stanford typed dependencies
manual,” Stanford University, Tech. Rep., 2008.

[13] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, R. Cyganiak, and S. Hell-
mann, “Dbpedia - a crystallization point for the web of data,” J. Web
Sem., vol. 7, no. 3, pp. 154–165, 2009.

[14] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proc. of EMNLP’14. ACL, 2014, pp.
1532–1543.

[15] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu, “Triplebit: a fast
and compact system for large scale RDF data,” PVLDB, vol. 6, no. 7,
pp. 517–528, 2013.

621

Software Process Selection based upon Abstract
Machines for Slow Intelligence Systems

Shi-Kuo Chang, Jinpeng Zhou, Akhil Yendluri and Kadie Clancy
Department of Computer Science

University of Pittsburgh, Pittsburgh, PA 15238, USA
{schang, jiz150, aky13, kdc42 }@pitt.edu

Abstract— The Abstract Machine Model was developed by
Chang to formalize the decision cycles of slow intelligence
systems. It turns out the selection of software process can
also be regarded as a slow intelligence system. In this
paper we formalize abstract-machine prototypes for
different software process models such as waterfall model,
incremental model, spiral model, extreme programming
model and scrum model. A Software Process Generator
SPG was implemented to generate software process models
based upon design considerations. Initial evaluation by
undergraduate students using SPG to learn software
processes suggests further improvements to make it a
useful learning tool.

Keywords—slow intelligence system, software process
models, abstract machine model, component-based software
engineering, software process learning tool.

1 Introduction

The slow intelligence system is an approach to design human-
centric psycho-physical systems. A slow intelligence system
(SIS) is a system that (i) solves problems by trying different
solutions, (ii) is context-aware to adapt to different situations
and to propagate knowledge, and (iii) may not perform well in
the short run but continuously learns to improve its
performance over time. The general characteristics of a slow
intelligence system include enumeration, propagation,
adaptation, elimination, concentration and multiple decision
cycles [1]. In our previous work, an experimental test bed was
implemented that allows designers to specify interacting
components for slow intelligence systems [2].

In this paper, we formalize abstract-machine prototypes for
different software process models such as waterfall model,
incremental model, spiral model, extreme programming (XP)
model and scrum model. Inspired by recent research on design
spaces [3, 4, 5], a software process design space characterized
by eleven parameters can be used to assist the designer in
finding an appropriate software process model.

The paper is organized as follows. Section 2 presents an
abstract machine model for the computation cycles. Section 3
shows some preliminary work based on building finite state
machine (FSM) for each model. Based on the observations of

DOI reference number: 10.18293/SEKE2018-135

preliminary work and the abstract machine of slow
intelligence system (SIS), we further describe our abstract
machines in Section 4. In Section 5 we present five prototypes
to show how to use our abstract machine definition for
different models. Once the abstract machine model is
provided, a compiler can be constructed to generate the
components. In Section 6 we describe the major steps of the
generic Abstract Machine Compiler (AMC). Section 7
describes the Software Process Generator SPG we
implemented to construct different process models based upon
design parameters. Initial experimental results. discussion and
conclusion are presented in Section 8.

2 The Abstract Machine Model for
Computation Cycles

An SIS typically possesses at least two decision cycles. The
first one, the quick decision cycle, provides an instantaneous
response to environmental changes. The second one, the slow
decision cycle, tries to follow the gradual changes in the
environment and analyze the information acquired from the
environments or peers or past experiences. The slow/quick
decision cycles enable the SIS to both cope with the
environment and meet long-term goals.

Complex SISs may possess multiple slow decision cycles and
quick decision cycles. Most importantly, actions of slow
decision cycle(s) may override actions of quick decision
cycle(s), resulting in poorer performance in the short run but
better performance in the long run.

To model such decision cycles we introduce an abstract
machine model of multiple computation cycles.

The Abstract Machine Model is specified by: (P, S, P0,
Cycle1, ..., Cyclen), where

P is the non-empty problem set,
S is the non-empty solution set, which is a subset of Po,
P0 is the initial problem set, which is a subset of P,
Cycle1, ..., Cyclen are the computation cycles.

Each computation cycle will start from an initial problem set
and apply different operators such as +adapAij=, -enum<,
>elim-, =propAij+ and >conc= successively to generate new
problem sets from old problem sets until a non-empty solution
set is found. If a non-empty solution set is found, the cycle is
completed and later the same computation cycle can be

622

repeated. If on the other hand no solution set is found, a
different computation cycle is entered.
As an example the problem set P consists of problem elements
p1, p2, p3, ..., pn, and each problem element pj is specified by
a vector consisting of attributes Aij. A computation cycle x
will attempt to find a solution set by first adapting based upon
input from the environment: Px0 +adapAij= Px1 is to adapt
based on attribute Aij, for example, by appending Aij to each
element in Px0 to form Px1. Then it may try to find related
problem elements: Px1 -enum< Px2 where Px2 = {y: y is
related to some x in Px1, e.g. d(x,y) < D}.

Next it may try to eliminate the non-solution elements:
Px2 >elim- Px3 where Px3 = {x: x is in Px2 and x is in S}

Finally the solution elements (or alert messages if there are
nosolutions) may be propagated to peers: Px3 =propAij+ Px4 is
to export/propagate attribute Aij to peers.

Therefore this computation cycle can be specified succinctly
as follows: Cyclex [guard x,y]: Px0 +adapAij= Px1 -enum< Px2
>elim- Px3 =propAij+ Px4.

The above expression is a specification of the computation
cycle, not a mathematical equation. This expression should be
read and interpreted from left to right.

If Px4 is non-empty, the Abstract Machine will complete this
cycle of computation and terminate at the end of Cyclex, and it
may later resume at the beginning of Cyclex. Otherwise Px4 is
empty and the Abstract Machine will jump to a different
Cycley. This is specified by [guard x,y] where x is the current
computation cycle if a solution set is found (Px4 is non-empty),
and y is the computation cycle to enter if no solution set is
found (Px4 is empty). Before an Abstract Machine completes
its current computation cycle, it will propagate the solution set
(or alert messages) to its peers.

In the above, the elimination operator can be replaced by the
concentration operator, whenever the solution set is not known
apriori. The concentration operator applies a predefined
threshold to filter out problem elements below the threshold:
Px1 >conc= Px2 where Px2 = {x: x is in Px1 and th(x) above a
predefined threshold t}.
.

3 Software Process Models

Software process models provide certain workflows for
software development. Intuitively, we can use finite state
machine (FSM) to illustrate these models. Each step in the
software process can be represented as a state in FSM. The
inputs and outputs of each state are corresponding to the
requirements and products of each process step, which may
include documents, program codes, user communications, test
datasets, prototypes, and timings.

3.1 FSM for different models

Based on the state transition tables, we drew the sketches for
five software process models. These are meant to illustrate the
concept, and the specific details of each software process
model may vary.

Fig 1. Waterfall model

Fig 2. Incremental model

Fig 3. Spiral model

Fig 4. Extreme programming model

Fig 5. Scrum model

3.2 Observations

There are some key observations that inspire the definition of
our abstract machines:

 All process models are based on a major workflow,

starting from the user requirements to the final release of
software. Thus, we can use operation cycles to represent
the process flows. Furthermore, we need to bind to a
starting point so that the machine starts from the first user
requirements.

 The final purpose of a software process is to build a
production software, which typically consists of different
features, or objectives. These objectives derive from the
original user requirements and are abstracted,
implemented, and verified during the process. Thus, each
state in the FSM actually can be presented as a set of

623

objectives, which is similar as the problems set in SIS
abstract machine.

 An objective has a lifetime starting from user
requirements to verification. Each step in the process will
update or mark the objective with a new state. Thus, we
can assign a color for each objective to represent its states
during the entire process.

 The software engineering or project managing operations

during the process can be represent by the operators.
These operations can perform add/delete/update on each
objective, including coloring.

 At some points, a step may have different successors

based on certain situation. Thus, we also need a guard
function to provide process control. Furthermore, we need
to know these specific steps and situations.

 Different Models may have different behaviors in similar

step. e.g., agile models do not need explicit and complete
user requirements and system design.

4 Abstract Machines for Software Process
Models

4.1 Machine definition

Based on the observations in Section 3.2, we can define the
abstract machine, by modifying the abstract machine for SIS:

Where is the objective set, is the initial set. is the
solution set which includes all objectives that have been

implemented and verified. are sequences of different
operators. As mentioned above, this abstract machine should
start from a certain starting point. By default, we set the
starting point to be the beginning of cycle_1.

4.2 Objectives

An objective is corresponding to a certain user requirement or
feature for the target software. We define four colors for each
objective.

 White: it’s abstracted or included into the software

process.
 Yellow: it’s implemented and ready for verification.
 Red: failed in verification, such as failed in testing or user

acceptance.
 Green: it’s verified and ready to be used.

4.3 Guard function

In order to support process control, we also define a guard
function by extending the SIS abstract machine’s guard
function:

guard [a, b, P_checkpoint, constraint, P_newInit]

Where a is the current cycle, b is the target cycle. When it
reaches the P_checkpoint of cycle a, it will check whether a
certain constraint is satisfied. If so, it will jump to start cycle b
with P_newInit.

4.4 Operators

To provide a general definition, we defined six basic operators
for software process models:

 Abstract (abst): Translate user-described requirements to

software-engineering requirements. This operator will
initialize objectives with color white. We further divide
this operator into two types: (1) Enumerative Abstract (-
abst<). This type will process every objective; (2)
Selective Abstract (=abst=). This type will process
selected objectives only. It does not guarantee that all
objectives will be processed.

 Design (desi): Functionalize non-green objectives to

module-level or function-level objectives. It also has two
types: enumerative (-desi<) and selective (=desi=).

 Implement (=impl=): Implement white/red objectives to
real product-level objectives and color them as yellow.
We assume that implementation is strictly bound to the
objectives. E.g., each objective will be implemented as a
module. Thus, only selective is required here.

 Test (=test=): Validate yellow objectives and color them

as green or red. Similarly, only selective is required.

 Adjust (=adju=): Modify objectives based on (external)

non-engineering issues, such as user communications,
funding issues. This operator is essential for agile models.

 Release (=rele+): release all green objectives. This

operator is similar as the propagator in SIS abstract
machine, which generates some outputs to environment.

5 Abstract Machine Prototypes

Based upon the observations in Section 3.2 and the formal
specification of abstract machines in Section 4, the software
process models can now be formally specified. Again, these
are meant to illustrate the concept, and the specific details of
each software process model may vary.

5.1 Waterfall

Prototype:

624

• Cycle_1: guard[1, 2, P2, NULL, P2]
– P0 -abst< P1 -desi< P2

• Cycle_2: guard[2, 2, P2, has_non-green, P2]
– P0 =impl= P1 =test= P2 =rele+ P3

In cycle_1: it requires a complete abstraction and design.

In cycle_2: it will go through implementation, test, and final
release. Whenever there’s a failed objective after test, it should
go back to the implementation and redo the following process
again.

The machine halts at P3 in cycle_2.

5.2 Incremental

Prototype:
• Cycle_1: guard[1, 2, P2, NULL, P2]

– P0 =abst= P1 -desi< P2
• Cycle_2: guard[2, 2, P2, one_non-green, P2], guard[2, 1,

P3, all_green, NULL]
– P0 =impl= P1 =test= P2 =rele+ P3

In cycle_1: the abstraction can be incomplete. But the design
should take care of all current objectives.

In cycle_2: different from waterfall model, here it will go back
to cycle_1 for next increment when the current increment is
finished.

The machine halts when no more increment is required, which
means P0 in cyle_1 is empty.

5.3 Spiral

Prototype:
• Cycle_1: guard[1, 1, P3, one_red, NULL], guard[1, 2, P3,

no_red, P1]
– P0 =abst= P1 =impl= P2 >+adju= P3

• Cycle_2: guard[2, 1, P5, all_green, NULL]
– P0 -abst< P1 -desi< P2 =impl= P3 =test=

P4 =rele+ P5

In cycle_1: it required to build a simple prototype to evaluate
the risk. Thus, we need an implement and adjust operator here.
If the risk evaluation says good, then it will transfer to the
cycle_2 for further process.

In cycle_2: similarly, it will go back to cycle_1 until there’s no
more work to do.

The machine halts when P0 in cyle_1 is empty.

5.4 Extreme programming

Prototype:

• Cycle_1: guard[1, 2, P2, NULL, P2]
– P0 =abst= P1 =desi= P2

• Cycle_2: guard[2, 2, P2, hours, P2], guard[2, 3, P3, days,
P3]

– P0 >+adju= P1 =impl= P2 =test= P3
• Cycle_3: guard[3, 1, P2, non-empty, P2]

– P0 =rele+ P1 >+adju= P2

In cycle_1: it does not require complete requirements or
design. It selects a certain user story to implement.

In cycle_2: The process is controlled based on timing. Thus,
the major constraint here should be related to the specific time
deadline. Furthermore, we need the adjust operator to make
sure the implementation and testing are sensitive to user
communications.

In cycle_3: after few days, it’s supposed to generate a version
for quick release. Then it can keep finishing rest or new
objectives based on feedbacks.

The machine halts when P2 in cycle_3 is empty, which means
feedbacks confirm that no more objectives.

5.5 Scrum

Prototype:
• Cycle_1: guard[1, 2, P2, NULL, P2]

– P0 =abst= P1 =desi= P2
• Cycle_2: guard[2, 2, P2, day, P2], guard[2, 3, P2, Weeks,

P2]
– P0 =impl= P1 =test= P2

• Cycle_3: guard[3, 1, P3, non-empty, P3]
– P0 >+adju= P1 =rele+ P2 >+adju= P3

In cycle_1: it does not require complete requirements or
design. It selects a certain backlog and launch it as a sprint.

In cycle_2: it starts a sprint. Inside this sprint, no requirement
modification is allowed.

In cycle_3: in the end of a sprint, the developing team will
review the sprint. Then, based on user communications, the set
of objectives (backlogs) will be updated.

The machine halts when P3 in cycle_3 is empty, which means
all backlogs are finished.

6 The Software Process Model Generator

The Abstract Machine Model is a formal specification of the
computation cycles of a slow intelligence system. Once the
abstract machine model is provided, a Software Process
Generator SPG can be used to generate software process
model based upon design considerations.

625

The input to the SPG are the various software process models
SPM specified by Abstract Machines. The user/designer can
interact with SPG to select the appropriate design choices.
After a software process model is selected, the output in the
form of a web page is generated by SPG. This web page
describes the software process and can be used by the
user/designer to track a project according to the selected
process model.

Figure 6. The software process model generator.

User/designer interacts with SPG through the webpage, such
as tracking process status, updating environment and so on.
The user/designer can make design choices, update
requirements if possible, modify environment, etc. The SPG
updates the current software process status based on the the
selected SPM, and user interactions.

In what follows we describe the major steps of how the AMC
and visualizer work in SPG.

Step 1: Adapt inputs from the user
The AMC will first invoke an interface to receive a set of
features from the user/designer. This set may include
necessary information of the project for simulating different
process models. It is submitted by the user/designer through a
webpage (see box below).

In practice, the user/designer makes choices to specify the
desired parameters (see Figure 7 in Section 7).

AMC Controller manages the process by controlling the state
machine (see box below).

The State Machine will determine the action and the output. It
may give several tries. For example, two solutions can be
applied to one certain state when given certain input (see box
below).

Step 2: Simulate process models
The AMC is responsible to simulate every model.

To answer the question “Which process model is the best?”: (1)
each state will be measured to make sure the current project
status is in a “safe-zone”. Depending on the results of the
measurement, either enumeration operator or elimination
operator can be applied; (2) a specific function, which takes
certain parameters into consideration, will be applied to
evaluate the performance of each model.

If a certain model is simulated successfully, the evaluation
results and simulation logs will be presented to the user on
demand. If a certain state of model A violates project’s
configuration, the AMC will terminate A’s simulation and
start the next un-simulated model.

Step 3: Model selection
After all models have been simulated, the AMC will choose
the model with the best evaluation result to the user, and
present it as the optimal solution to the user.

Step 4: Model visualization
A process visualizer is built to show the simulation to the user.
There are three cases that the visualizer is invoked: (1) the
running simulation requires dynamic or runtime inputs from
users; (2) the user requests to check current simulation status;
(3) the AMC has decided the optimal solution (see box below).

Interactor:
 // adapt current data with user inputs
 while(user inputs are not required) {
 sleep();
 }

while(currentData is not updated) {
adaptCurrentDataWithInputs();

` }
 send DATA_READY msg to Controller;

Controller:
// manage the process of one process model
while(true) {
 while (stateMachine.precheck()) {
 trigger Interface,
 // wait for user inputs
 stateMachine.wait(DATA_READY);

}
stateMachine.perform(currentData);
send msg to visualizer if necessary;

}

State Machine:
// manage the states
enum Status {

State0,
State1,
…;

}

State currentState = State0;//initial state

bool precheck(); // return true if current state requires inputs

int wait(msg); //wait until certain msg is received

void perform(Data currentData) {

 // based on certain state and certain input
 switch (currentState) {
 case ‘State0’:
 perform accordingly;

break;
 case ‘State1’:
 perform accordingly;

break;
….

}
}

626

7 An Experimental SPG System

An experimental SPG was implemented. Software processes
are characterized by the following eleven design parameters:
 Early Functionality (iteratively introduce features, only

produce final product),
 Feature Adaptation (impossible, flexible),
 User Involvement (C only initially, at requests, frequent

feedback),
 Documentation (not produced, produced),
 Experienced Team (requested, not required),
 Model Type (C linear, iterative),
 Planning and Scheduling (upfront, continuous),
 Risk Mitigation (yes, no),
 Project Size (C small, medium, large),
 Prototypes (used, not used).
 Cross-platform development (no, yes)

Figure 7. The designer specifies the needed parameters.

Figure 8. Stored profiles of software processes.

A parameter with continuous value is indicated by the letter
‘C’. In practice the designer can specify a continuous
parameter from 0% to 100% in 10% increments (see Figure 7).
Parameters not specified by the designer are not used in
calculating the optimum. The designer-specified profile
(Figure 7) is compared with the pre-specified profiles of
software process models (Figure 8) and the one with minimum
distance is the SPG-recommended software process model
(Figure 9).

Figure 9. Scrum software process recommended by SPG.

When the designer clicks on the link for Scrum, a Scrum
software process simulator is provided. As shown in Figure
10 the designer can simulate the execution of the software
process by clicking on the actions associated with its current
state. In addition a tutorial on Zoho is provided as the
recommended tool for Scrum software development.

Visualizer:
// present the AMC results
void showCurrent(); // invoked by the AMC or the user

void showOptimal(); // invoked by the AMC

627

Figure 10. Scrum software process simulator.

8 Discussion

The Abstract Machine Model is a formal specification of the
software processes, based upon which the SPG tool was
implemented: http://ksiresearchorg.ipage.com/spg/. The SPG
tool was used by 32 undergraduate student project groups in
two software engineering classes at the Univ. of Pittsburgh to
experiment with software processes. The students were then
asked to evaluate the SPG. In response to the question whether
the SPG tool enhanced understanding of the software
processes, the average rating is 0.35, between “a lot” (0.5) and
“a little” (0.25). There are comments that the individual model
pages are the most helpful, and percentage as a parameter
value is a little vague.

The current SPG was implemented with pre-defined web
pages representing the states of different software process
models. We are implementing a better version by dynamically
generating customized web pages (the process states). Both
pre-defined software processes as well as hybrid software
processes can then be generated, thus making the SPG a more
powerful learning tool. More information is added to the
individual model pages, and parameters are better explained.
With more improvements the SPG tool can become a valuable
learning tool.

Acknowledgement:

This research was supported in part by KSI Research, USA.

References:

[1] Shi-Kuo Chang, "A General Framework for Slow Intelligence
Systems", International Journal of Software Engineering and
Knowledge Engineering, Volume 20, Number 1, February 2010, 1-16.

[2] Shi-Kuo Chang, Sen-Hua Chang, Jun-Hui Chen, Xiao-Yu Ge,
Nikolaos Katsipoulakis, Daniel Petrov and Anatoli Shein, "A Slow
Intelligence System Test Bed Enhanced with Super-Components",
Proceedings of 2015 International Conference on Software
Engineering and Knowledge Engineering, Pittsburgh, USA, July 6-8,
2015, 51-63.

[3] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan,
The design of bug fixes, in Proc. Int. Conf. Softw. Eng., 2013,
pp. 332341.

[4] Murphy-Hill, E., Zimmermann, T., Bird, C., and Nagappan,
N., 2015. The Design Space of Bug Fixes and How Developers
Navigate It. IEEE Transactions on Software Engineering
41, 1, 65-81.

[5] S. CARD, J. MACKINLAY, AND G. ROBERTSON. A MORPHOLOGICAL

ANALYSIS OF THE DESIGN SPACE OF INPUT DEVICES. ACM

TRANSACTIONS ON INFORMATION SYSTEMS, 9:99122, 1991.

628

Evolutionary propositionalization of multi-relational
data

Valentin Kassarnig
Institute of Software Technology
Graz University of Technology

Graz, Austria
kassarnig@ist.tugraz.at

Franz Wotawa
Institute of Software Technology
Graz University of Technology

Graz, Austria
wotawa@ist.tugraz.at

Abstract—Propositionalization has been proven to be a very
effective solution for multi-relational data mining tasks. Tradi-
tional propositionalization approaches follow a two-step prin-
ciple: transforming the relational data into a single, flat table
and applying a propositional learning algorithm. During the
transformation the target table gets expanded by adding many
new features summarizing the information of the non-target
tables. Based on the used feature construction strategy, this leads
to a table of very high dimensionality with a lot of irrelevant
and/or redundant features that has a negative effect on the
predictive performance. In this paper, we propose an alternative
propositionalization approach that evaluates the features already
during the construction phase and reports only a subset of
highly predictive features to the propositional learner. We present
an implementation of this approach that adapts a state-of-
the-art propositionalization technique and combines it with a
genetic algorithm to search for an optimal feature subset. Our
experiments on a number of benchmark datasets reveal superior
predictive performance of the approach compared to traditional
two-step methods making it a considerable extension for any
propositionalization algorithm.

I. INTRODUCTION

The rapid advance of data mining techniques during the
last decades has lead to countless real-world applications,
such as forecasting stock prices [1]–[3], predicting customer
behavior [4], [5], or detecting credit card fraud [6]–[8].
However, mining relational data is still problematic since
conventional data mining algorithms can be only applied to
propositional data. A common approach to solve this problem
is Propositionalization which typically follows a two-step
principle: First, transform the relational data into a single,
flat table and second, apply a propositional learning algorithm
on the transformed data. This principle is also referred to as
Polka (named after the two-step dance) and is illustrated in
Fig. 1a. Such two-step propositionalization methods have been
successfully applied on numerous ILP benchmark tasks as well
as real-world applications such as Kaggle competitions [9],
[10].

The separation of the two steps in Polka has the downside
that the feature construction process is completely isolated
from the learning task. Due to the lack of any evaluation
of the feature construction process all possible features need
to be constructed. Consequently, this results in a table of
unnecessarily high dimensionality with a lot of irrelevant

(a) Traditional two-step framework

(b) Proposed framework with feedback-loop

Fig. 1: Traditional and proposed propositionalization frame-
work. The proposed framework has a feature evaluation step
with a feedback loop to the feature construction that allows
evaluating partial solutions and adapt the feature construction
accordingly.

(and often redundant) features. Furthermore, in the case of
very complex databases and sophisticated feature construction
strategies, the exhaustive feature construction may be even
intractable [11].

We propose to adapt the traditional approach by adding a
feature evaluation step with a feedback loop to the feature
construction, as illustrated in Fig. 1b. This change allows us
to evaluate the predictive power of feature subsets and adapt
the feature construction accordingly. So, in addition to the
actual transformation, propositionalization performs a feature
subset selection. This class of problems is proven to be NP-
complete [12] because only the exhaustive evaluation of all
possible subsets would guarantee an optimal solution. In order
to tackle this problem we utilize a genetic algorithm (GA)
which has a very high rate of convergence to find a near-
optimal solution [13]. The GA searches through the space
of all possible feature subsets and evaluates the predictive
power of the candidate solutions. By only constructing a
constant number of features per generation we are capable of
propositionalizing complex databases where exhaustive feature
construction would be intractable.

DOI reference number: 10.18293/SEKE2018-136 629

Fig. 2: Data model of the financial database from the PKDD
1999 Discovery Challenge.

In this paper, we use the financial database from the PKDD
1999 Discovery Challenge [14] as a running example to
explain different concepts. This database captures information
about a bank offering services to private clients. The goal is to
find out, what clients need to be watched carefully to minimize
the bank losses. Fig. 2 shows the corresponding data model
with the table loan containing the target attribute status that
indicates whether there were any repayment problems with a
given loan or not.

Our main contributions through this paper are as follows:

• We propose an extension of the traditional two-step
propositionalization framework

• We introduce a genetic-based algorithm to propositional-
ize relational data for multi-relational classification tasks

• We conduct an experimental evaluation of our method on
a number of well-known benchmark tasks and compare
its performance with those of state-of-the-art methods

II. RELATED WORK

The problem of mining relational data has been extensively
studied in the past. The two main approaches for this problem
are Inductive Logic Programming (ILP) and Propositional-
ization [15]. Although there are cases where ILP mehthods
have been successfully applied [16], propositionalization ap-
proaches generally outperform them in terms of speed [17],
scalability [17]–[20], and predictive performance [20]–[22].
Furthermore, ILP-based systems perform poorly on a noisy
domain compared to numerical propositionalization [15], [17],
[21].

Recent works have successfully used aggregation-based
propositionalization approaches to automatically mine big
databases (up to 100 GB of raw data) [9], [10]. Their ex-
periments showed that with exhaustive feature construction
methods an enormous amount of computing power is required
to process such massive databases. Even when the workload
was distributed among 60 CPUs it took their best scaling

method nearly 13 hours to process a database of about one
GB raw data [23].

Different approaches have attempted to overcome such
shortcomings of traditional two-step propositionalization. The
aggregation-based algorithm PRORED [24] avoids exhaustive
feature construction by using stochastic optimization. Based
on heuristically determined probabilities only a subset of at-
tributes and aggregate functions is chosen to construct features.
The used heuristic function makes attributes of tables further
away from the target table less likely to be chosen. However,
their gain in scalability comes at the cost of reduced accuracy.

Genetic Algorithms (GA) have been demonstrated to be
useful tools for propositionalization. Braud and Vrain [25]
propose a logic-oriented propositionalization approach with a
GA-based feature construction. Their GA optimizes individual
features, represented as Horn clause-patterns, through the op-
erations union, intersection, variable isolation, variable move,
split, and merge. Similarly, Alfred [26] utilizes a GA as exten-
sion of his propositionalization framework DARA [27] to find
the most predictive patterns of combined attributes. Results
indicate that this extension improves the efficiency as well as
the performance. Furthermore, in the field of propositional data
mining, GAs have been found to be robust and powerful means
to find near-optimal subsets of features [28]–[31]. While the
mentioned GA-based propositionalization approaches utilize
GAs to optimize the predictive power of individual features,
our framework optimizes the predictive power of the final
feature subset. That is, a feature is either selected or not but
it is not changed in any way.

III. METHOD

A. Genetic algorithm

Our proposed approach adapts the traditional two-step
framework by adding a feature evaluation step that evaluates
partial solutions (see Fig. 1). For this purpose we utilize
a standard Genetic Algorithm (GA) [32] with a rank-based
selection strategy. Individuals are encoded as binary strings of
length N where N is defined by the total number of possible
features under the current feature construction strategy. Every
position in the binary string indicates either the presence
or absence of a particular feature. A feature can be either
an attribute of the target table or a construct based on the
attributes of other tables. See Subsection III-C for more details
about the feature construction process.

We will refer to this implementation as GenPro (GENetic
PROpositionalization) throughout the remaining paper. In our
experiments we parameterized the GA with the following
values:
• Population size: 20
• Max. Number of generations: 150
• Probability of initial selection: 0.01
• Probability of crossover: 0.85
• Probability of mutation: 1

N

Every population consists of 20 individuals where each
individual represents a candidate solution encoded as a binary

630

string. Over the course of 150 generations those individuals
are evaluated, selected, combined and mutated in order to
maximize their fitness. The probability of initial selection
determines how likely a feature gets chosen to be part of an
individual in the initial population. When creating an offspring
for the next generation, the probability of crossover defines
whether the offspring is derived by combining two individuals
or just mutating one. The probability of mutation specifies how
likely a bit in the binary string is flipped during the mutation
operation. Because N corresponds to the length of the binary
string, on average only one feature per individual is either
added or removed.

B. Fitness function

The goal of the fitness function is to evaluate the predictive
power of a given feature subset. For this we perform a stratified
10-fold cross-validation with a Classification and Regression
Tree (CART) [33] and determine the predictive accuracy,
defined as

accuracy(x) =
Correct predictions

Total number of examples
(1)

where x is a bit-string encoded individual representing a
subset of features.

As fitness measure for the GA we consider two different
metrics. For the first one, Fit1, we use simply the resulting
accuracy from the cross-validation:

Fit1(x) = accuracy(x) (2)

The second metric, Fit2, takes additionally the cost of
creating the feature subset into account, as suggested by Yang
et al. [29]. In our case, this corresponds to the number of
features in the subset. That is, the fitness function favors
smaller subsets in order to improve generalizability [34] and
reduce computational costs. We define this fitness metric for
an individual x as

Fit2(x) =
accuracy(x)

|x| +
∑|x|

i=1 xi

(3)

where xi is the feature at position i. The sum of x corresponds
to the number of active features in the subset and |x| is the
total number of possible features.

C. Feature construction

The feature construction strategy of a propositionalization
algorithm determines the total number of possible features.
While exhaustive approaches create all of them up front,
we construct them on-the-fly as needed. For our GenPro
implementation we adopt the RELAGGS algorithm [35] as
feature construction strategy. Note that we could have used
here any propositionalization technique that is based on the
Polka scheme.

We reimplemented the basic RELAGGS version as pre-
sented in its original paper [35]. RELAGGS propagates the
identifiers of the target instances to the non-target tables and
summarizes then their attributes through numeric aggregation.

While for numeric attributes the standard SQL aggregate func-
tions MIN, MAX, SUM, and AVG are used, nominal attributes
are summarized by counting the occurrences of every distinct
value. Additionally, a feature representing the group size of a
summarized table is created for every summarized table. The
RELAGGS paper gives no indication of how to treat Date
attributes. Thus, we have extracted from every date its year,
month, week number, day of the year, and weekday and treat
each of them as a numeric attribute. As described in [36] we
set in our experiments the maximum cardinality parameter for
nominal attributes to 100. It is not specified what upper limit
of literals was used in the experiments and we just presume
a value of 6 which gives us a sufficiently large number of
possible features. In contrast to the original version we allow
tables to appear twice in a clause in order to capture additional
information about the past [37].

The following example illustrates the basic principle of the
feature construction. At first, the target identifier loan id is
propagated to the associated table account as illustrated in
Fig. 3a. This association has a N:1 multiplicity and thus, every
target instance can be directly linked to a particular account
instance. Consequently there is no summarization needed and
the attributes can be simply added to the target table. Next,
the target identifiers are further propagated to the table trans.
This association has a multiplicity of 1:N which implies that
every target instance can belong to multiple trans instances.
Therefore, the table needs to be summarized so that every
target instance corresponds to exactly one row. This is done by
applying the previously discussed aggregate functions to each
attribute according to its data type. The example in Fig. 3b
shows how the numeric attribute amount is summarized by
applying four different aggregate functions. Each of those four
new attributes represents a feature that is eventually added to
the target table. While this example illustrates the general idea
of the feature construction, in GenPro we do not summarize
entire tables but only the attributes needed to create the active
features (the ones with a 1 in the binary string) of the current
individual.

IV. EVALUATION

A. Setup

In order to find out how propositionalization benefits from
the proposed framework we applied our method GenPro,
including both fitness functions, on a number of benchmark
tasks. For direct comparison, we performed the same tasks
with our implementation of the RELAGGS algorithm, which
uses the same feature construction strategy as GenPro but
creates all features exhaustively. In addition to the basic
version, we also tested RELAGGS with a follow-up feature
selection (FS) and dimensionality reduction (DR) step. For
FS we used the top 10 % features based on an ANOVA F-test.
DR was performed through a Principal Component Analysis
(PCA) where the feature space was reduced to 10 % of its
original size.

Since the actual performance depends very much on the
used learner we used three different models, namely CART,

631

(a) ID propagation along a N:1-association.

(b) ID propagation along a 1:N-association with subsequent summa-
rization through numeric aggregation.

Fig. 3: Simplified illustration of the RELAGGS feature con-
struction strategy. The colored attribute fields indicate the
propagated target identifiers.

Random Forest (RF), and SVM. We used their respective
Scikit-learn [38] implementations with 100 estimators for the
RF and default parameters other than that. All reported results
are based on ten independent and stratified 10-fold cross-
validations. For the sake of a fair comparison we stopped
the GA in all cases only after 150 generations regardless of
whether the fitness score has already converged or not.

We performed the experiments on a PC with Windows
10 Professional, an Intel Core i7 CPU with 2x 1.70 GHz,
and 8 GB RAM. The code was written in Python 2.7 an no
optimizations techniques, such as parallel or GPU computing,
were used. However, constructed features were cached and
reused when needed in order to avoid redundant computations.

B. Datasets

We used the financial database [14] from the PKDD 1999
discovery challenge as primary benchmark task to evaluate
different GenPro variants. The dataset consists of eight tables
(see Fig. 2) and more than a million records. The goal is to
predict for a given loan whether there will be any repayment
problems. The target table loan has 682 instances of which 606
did not cause any problems and only 76 had repayment issues.
As suggested by Frank et al. [39] we only used transactions
dated before the loan was granted in order to avoid peeking
at retrospective data.

Further experiments were performed on the Mutagenesis
database [40], Medical database [41], Hepatitis database [39],
and the two Musk datasets [42] to cover a wide spectrum of
different problem types.

Table I provides an overview of the used datasets and
their properties. The last column # features describes the
total number of features that can be constructed using our
RELAGGS implementation.

Dataset # tables # target rows # attributes # features
Financial 8 682 55 675
Hepatitis 7 500 26 57
Mutagenesis 3 188 14 43
Medical 3 806 64 232
Musk large 2 102 170 665
Musk small 2 92 170 665

TABLE I: Overview of the benchmark datasets

Method CART RF SVM
RELAGGS 0.904 0.918 0.889
RELAGGS + DR 0.819 0.896 0.889
RELAGGS + FS 0.906 0.932 0.889
GenPro with Fit1 0.964 0.950 0.885
GenPro with Fit2 0.971 0.959 0.891

TABLE II: Predictive accuracies on the financial task. Evalu-
ation of different RELAGGS and GenPro variants for propo-
sitionalization in combination with Classification and Regres-
sion Trees (CART), Random Forests (RF) and Support Vector
Machines (SVM) as predictive models.

V. RESULTS

A. Financial task

This section discusses the results on the financial task.
It is divided into three parts: The first paragraph compares
the predictive performance of GenPro and RELAGGS, and
discusses the impact of different machine learning models.
The second paragraph discusses the differences between the
two GenPro variants before the last paragraph presents the
results of a meta-comparison with other propositionalization
methods and multi-view approaches.

Predictive performance: Table II shows the achieved ac-
curacies of different GenPro and RELAGGS variants on the
financial task. With an accuracy of 97.1 % the best result
was achieved by GenPro with the Fit2 fitness function and
the CART model. This configuration outperformed the best
RELAGGS variant by +4 %. Moreover, both GenPro variants
with either CART or RF models achieved superior results
over any RELAGGS configuration. We can also observe
that RELAGGS benefits from feature selection (FS) while
dimensionality reduction (DR) has rather a negative effect.
Furthermore, the RF classifier seems to better handle the data’s
high dimensionality leading to better results for RELAGGS.
On the other side, GenPro works best with the CART model
which was also used to determine the fitness scores. SVM
performs poorly on this task and seems completely inapplica-
ble here. Note that both RELAGGS and GenPro produce the
same features but in contrast to RELAGGS, GenPro uses only
a subset of it for the learning task.

GenPro’s superior performance over RELAGGS comes
at the cost of decreased computational efficiency. In our
experiment a single 10-fold cross-validation with RELAGGS
took nearly one minute. On the other side, it took GenPro
about three minutes to complete the same task. However, note
that GenPro was stopped after 150 generations but converged

632

Fig. 4: GenPro’s convergence behavior of the fitness value
with the two fitness functions fit1 and fit2.

already way earlier (see Fig. 4).

GenPro variants: Fig. 4 illustrates GenPro’s convergence
behavior of the fitness value with either of the two fitness
functions. The solid lines indicate the median of the nor-
malized fitness values of ten test runs while the transparent
area around it is bound by the respective 25 % and 75 %
percentile. We can see that both fitness functions result in
a very similar convergence behavior and moreover, in most
cases they converge within 75 generations.

In terms of selected feature subset, the two fitness functions
produce very different results. On the financial task, fit1 and
fit2 lead to average subset sizes of 34.3 and 7.3 features,
respectively. This indicates that for this task only very few
features are necessary to achieve outstanding results.

Meta-comparison: In a follow-up meta-comparison we
compared our achieved results on the financial task with those
of some prominent techniques for multi-relational classifica-
tion problems. We considered here the propositionalization
methods DARA [27], RELAGGS [35], and CrossMine [19], as
well as the multi-view approaches MVC [43] and MRC [20].
Table III shows the predictive accuracies of each representa-
tive. With an accuracy of 97.1 % GenPro achieved the highest
score; 2 % better than the second best approach DARA. Note
that the here reported result of the RELAGGS algorithm
origins from the original paper and is slightly better than the
ones of our implementation (c.f. Table II). This is because not
sufficient information about the actual implementation or ex-
perimental setup was available to us in order to fully reproduce
their results. Note that the entire comparison here underlies the
limitations of meta-analysis approaches and thus, the results
should be interpreted with caution [44]. Nevertheless, the
outstanding performance of our approach still indicates a high
potential.

B. Further benchmark tasks

Table IV shows the empirical results on further benchmark
tasks. For reasons of clarity we only report the results of the
best RELAGGS and the best GenPro variant, respectively. On
four out of five tasks GenPro clearly outperformed RELAGGS.

Method Accuracy Source
GenPro 0.971
DARA 0.951 [45]
RELAGGS 0.941 [35]
MVC 0.941 [43]
MRC 0.934 [20]
CrossMine 0.895 [19]

TABLE III: Meta-comparison of different approaches on the
financial task.

Dataset RELAGGS GenPro ∆
Musk small 0.823 0.923 +10.0 %
Musk large 0.794 0.846 +5.2 %
Hepatitis 0.857 0.906 +4.9 %
Mutagenesis 0.900 0.919 +1.9 %
Medical 0.903 0.903 ±0.0 %

TABLE IV: Predictive accuracies on further benchmark tasks.
Results indicate the highest accuracies achieved by any RE-
LAGGS or GenPro variant, respectively. The ∆ column indi-
cates the difference between the results of the two methods.

It achieved predictive accuracies of up to 10 % higher than
RELAGGS. In the one remaining case, on the Medical dataset,
both methods achieved the same result. Surprisingly, even
at the very small Hepatitis and Mutagenesis datasets (<60
features), GenPro could score a respectable improvement over
RELAGGS which suggests a high degree of versatility of the
underlying framework.

VI. DISCUSSION AND CONCLUSION

In this paper, we have presented a modified propositional-
ization approach, that overcomes disadvantages of the tradi-
tional two-step propositionalization framework. By combining
feature construction and feature evaluation we are capable of
avoiding exhaustive feature construction and produce only a
subset of highly predictive features. Furthermore, we have
demonstrated how to use a Genetic Algorithm (GA) to im-
plement the proposed approach. Our empirical results suggest
competitive performance as well as great versatility of our
approach. In a direct comparison, it outperformed a state-of-
the-art propositionalization method on numerous benchmark
tasks. Furthermore, it achieved superior results in a meta-
comparison with other propositionalization methods and multi-
view approaches. Thus, we conclude that this approach rep-
resents a considerable extension for any propositionalization
technique to improve the predictive performance.

Despite the promising results, our approach has also some
limitations which are discussed hereafter. First, we have tested
our approach only with a single feature construction strategy.
Although it achieved outstanding results, the framework’s
performance should be also evaluated with other strategies
in order to strengthen the conclusions. Furthermore, all our
experiments were performed on relatively small databases
making it precarious to make assumptions about the scaling
behavior. Compared to exhaustive feature construction, Gen-
Pro’s properties as anytime-algorithm support undeniably the
ability to handle bigger and more complex databases. Also, the
increased computational cost can be reduced to a minimum

633

through parallel computation and further optimizations [46].
However, to fully evaluate the scalability of our approach
experiments on big real-world datasets need to be performed
and is therefore, topic of future research.

REFERENCES

[1] K.-j. Kim and I. Han, “Genetic algorithms approach to feature discretiza-
tion in artificial neural networks for the prediction of stock price index,”
Expert systems with Applications, vol. 19, no. 2, pp. 125–132, 2000.

[2] D. Enke and S. Thawornwong, “The use of data mining and neural
networks for forecasting stock market returns,” Expert Systems with
applications, vol. 29, no. 4, pp. 927–940, 2005.

[3] P.-F. Pai and C.-S. Lin, “A hybrid arima and support vector machines
model in stock price forecasting,” Omega, vol. 33, no. 6, pp. 497–505,
2005.

[4] C. Apte, B. Liu, E. P. Pednault, and P. Smyth, “Business applications of
data mining,” Communications of the ACM, vol. 45, no. 8, pp. 49–53,
2002.

[5] J. Bennett, S. Lanning et al., “The netflix prize,” in Proceedings of KDD
cup and workshop, vol. 2007. New York, NY, USA, 2007, p. 35.

[6] E. Aleskerov, B. Freisleben, and B. Rao, “Cardwatch: A neural network
based database mining system for credit card fraud detection,” in
Computational Intelligence for Financial Engineering (CIFEr), 1997.,
Proceedings of the IEEE/IAFE 1997. IEEE, 1997, pp. 220–226.

[7] P. K. Chan, W. Fan, A. L. Prodromidis, and S. J. Stolfo, “Distributed
data mining in credit card fraud detection,” IEEE Intelligent Systems
and Their Applications, vol. 14, no. 6, pp. 67–74, 1999.

[8] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support
Systems, vol. 50, no. 3, pp. 602–613, 2011.

[9] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards
automating data science endeavors,” in Data Science and Advanced
Analytics (DSAA), 2015. 36678 2015. IEEE International Conference
on. IEEE, 2015, pp. 1–10.

[10] H. T. Lam, J.-M. Thiebaut, M. Sinn, B. Chen, T. Mai, and O. Alkan,
“One button machine for automating feature engineering in relational
databases,” arXiv preprint arXiv:1706.00327, 2017.

[11] C. A. Ferreira, J. Gama, and V. S. Costa, “Exploring multi-relational
temporal databases with a propositional sequence miner,” Progress in
Artificial Intelligence, vol. 4, no. 1-2, pp. 11–20, 2015.

[12] A. A. Albrecht, “Stochastic local search for the feature set problem, with
applications to microarray data,” Applied Mathematics and Computation,
vol. 183, no. 2, pp. 1148–1164, 2006.

[13] I. A. Gheyas and L. S. Smith, “Feature subset selection in large
dimensionality domains,” Pattern recognition, vol. 43, no. 1, pp. 5–13,
2010.

[14] P. Berka et al., “Guide to the financial data set,” PKDD2000 discovery
challenge, 2000.

[15] S. Kramer, “Relational learning vs. propositionalization: Investigations
in inductive logic programming and propositional machine learning,” AI
communications, vol. 13, no. 4, pp. 275–276, 2000.

[16] S. Dz̆roski, “Relational data mining,” in Relational Data
Mining, S. Dĕzeroski, Ed. New York, NY, USA: Springer-
Verlag New York, Inc., 2000, ch. Relational Data Mining
Applications: An Overview, pp. 339–360. [Online]. Available:
http://dl.acm.org/citation.cfm?id=567222.567240

[17] R. Alfred and D. Kazakov, “Pattern-based transformation approach to
relational domain learning using dynamic aggregation for relational
attributes.” in DMIN, 2006, pp. 118–124.

[18] H. Blockeel and M. Sebag, “Scalability and efficiency in multi-relational
data mining,” ACM SIGKDD Explorations Newsletter, vol. 5, no. 1, pp.
17–30, 2003.

[19] X. Yin, J. Han, J. Yang, and S. Y. Philip, “Crossmine: Efficient
classification across multiple database relations,” in Constraint-Based
mining and inductive databases. Springer, 2006, pp. 172–195.

[20] A. Thakkar and Y. Kosta, “Survey of multi relational classification (mrc)
approaches & current research challenges in the field of mrc based
on multi-view learning,” International Journal of Soft Computing and
Engineering (1), vol. 247, p. 252, 2012.

[21] C. Perlich and F. Provost, “Distribution-based aggregation for relational
learning with identifier attributes,” Machine Learning, vol. 62, no. 1-2,
pp. 65–105, 2006.

[22] A. J. Knobbe, M. De Haas, and A. Siebes, “Propositionalisation and
aggregates,” in European Conference on Principles of Data Mining and
Knowledge Discovery. Springer, 2001, pp. 277–288.

[23] H. T. Lam, T. N. Minh, M. Sinn, B. Buesser, and M. Wistuba, “Learning
features for relational data,” arXiv preprint arXiv:1801.05372, 2018.

[24] V. Gjorgjioski and S. Dzeroski, “Stochastic propositionalization of
relational data using aggregates,” 2008.

[25] A. Braud and C. Vrain, “A genetic algorithm for propositionalization,”
in International Conference on Inductive Logic Programming. Springer,
2001, pp. 27–40.

[26] R. Alfred, “Feature transformation: A genetic-based feature construction
method for data summarization,” Computational Intelligence, vol. 26,
no. 3, pp. 337–357, 2010.

[27] R. Alfred and D. Kazakov, “Data summarization approach to relational
domain learning based on frequent pattern to support the development
of decision making,” in International Conference on Advanced Data
Mining and Applications. Springer, 2006, pp. 889–898.

[28] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-
scale feature selection,” in Handbook Of Pattern Recognition And
Computer Vision. World Scientific, 1993, pp. 88–107.

[29] J. Yang and V. Honavar, “Feature subset selection using a genetic
algorithm,” in Feature extraction, construction and selection. Springer,
1998, pp. 117–136.

[30] H. Vafaie and K. De Jong, “Robust feature selection algorithms,” in
Tools with Artificial Intelligence, 1993. TAI’93. Proceedings., Fifth
International Conference on. IEEE, 1993, pp. 356–363.

[31] F. Z. Brill, D. E. Brown, and W. N. Martin, “Fast generic selection of
features for neural network classifiers,” IEEE Transactions on Neural
Networks, vol. 3, no. 2, pp. 324–328, 1992.

[32] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.
[33] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification

and regression trees. CRC press, 1984.
[34] M. Verleysen and D. François, “The curse of dimensionality in data

mining and time series prediction,” in International Work-Conference
on Artificial Neural Networks. Springer, 2005, pp. 758–770.

[35] M.-A. Krogel and S. Wrobel, “Transformation-based learning using
multirelational aggregation,” in International Conference on Inductive
Logic Programming. Springer, 2001, pp. 142–155.

[36] M.-A. Krogel, “On propositionalization for knowledge discovery in
relational databases,” Ph.D. dissertation, Otto-von-Guericke-Universität
Magdeburg, Universitätsbibliothek, 2005.

[37] M. Samorani, F. Ahmed, and O. R. Zaı̈ane, “Automatic generation of
relational attributes: An application to product returns,” in Big Data
(Big Data), 2016 IEEE International Conference on. IEEE, 2016, pp.
1454–1463.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[39] R. Frank, F. Moser, and M. Ester, “A method for multi-relational
classification using single and multi-feature aggregation functions,” in
European Conference on Principles of Data Mining and Knowledge
Discovery. Springer, 2007, pp. 430–437.

[40] A. K. Debnath, d. C. R. Lopez, G. Debnath, A. J. Shusterman, and
C. Hansch, “Structure-activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. correlation with molecular orbital
energies and hydrophobicity.” Journal of medicinal chemistry, vol. 34,
no. 2, pp. 786–797, 1991.

[41] M. Jan, S. Tsumoto, and K. Takabayashi, “Medical thrombosis data
description.”

[42] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artificial in-
telligence, vol. 89, no. 1, pp. 31–71, 1997.

[43] S. Modi, “Relational classification using multiple view approach with
voting,” International Journal of Computer Applications, vol. 70, no. 16,
2013.

[44] T. D. Spector and S. G. Thompson, “The potential and limitations
of meta-analysis.” Journal of Epidemiology and Community Health,
vol. 45, no. 2, p. 89, 1991.

[45] R. Alfred, A Data Summarisation Approach to Knowledge Discovery.
Citeseer, 2008.

[46] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs
paralleles, reseaux et systems repartis, vol. 10, no. 2, pp. 141–171,
1998.

634

On A Simpler and Faster Derivation of Single Use Reliability Mean and Variance
for Model-Based Statistical Testing

Yufeng Xue, Lan Lin, Xin Sun
Department of Computer Science

Ball State University
Robert Bell Building, Room 455

Muncie, IN 47306, USA
{yxue2, llin4, xsun6}@bsu.edu

Fengguang Song
Department of Computer and Information Science
Indiana University-Purdue University Indianapolis

723 W. Michigan St., SL 280
Indianapolis, IN 46202, USA

fgsong@cs.iupui.edu

Abstract

Markov chain usage-based statistical testing has proved
sound and effective in providing audit trails of evidence in
certifying software-intensive systems. The system end-to-
end reliability is derived analytically in closed form, fol-
lowing an arc-based Bayesian model. System reliability is
represented by an important statistic called single use relia-
bility, and defined as the probability of a randomly selected
use being successful. This paper continues our earlier work
on a simpler and faster derivation of the single use reliabil-
ity mean, and proposes a new derivation of the single use
reliability variance by applying a well-known theorem and
eliminating the need to compute the second moments of arc
failure probabilities. Our new results complete a new analy-
sis that could be shown to be simpler, faster, and more direct
while also rendering a more intuitive explanation. Our new
theory is illustrated with three simple Markov chain usage
models with manual derivations and experimental results.

1 Introduction

This paper re-examines the underlying reliability anal-
ysis for statistical testing based on a Markov chain usage
model. This form of statistical testing, developed by the
University of Tennessee Software Quality Research Labo-
ratory (UTK SQRL), has been around for more than two
decades [5, 4, 8, 6, 9, 12, 11]. With the software use
being modeled as a finite-state, discrete parameter, time-
homogeneous, and irreducible Markov chain, where the
states represent “states of system use” and the arcs repre-
sent possible transitions between states of use, the method
allows for quantitative certification of software using em-
pirical test data by a statistical protocol. A public domain
tool supporting statistical testing called the JUMBL: J Us-

age Model Builder Library, also developed by UTK SQRL,
is freely available [7, 1].

In this paper we focus on the derivation of a system end-
to-end reliability estimate, called single use reliability (both
mean and variance), driven solely by the test data without
any mathematical growth assumptions, given the Markov
chain usage model, and improve on an earlier analytical so-
lution described in [8]. Our new derivation of the mean was
inspired earlier and published in [2], however, it was not
until recently that we figured out a new derivation of the
variance that is similarly simpler, faster, more direct, and
more intuitive, which arrived through a rather convoluted
path. The derivation in [8] follows from the definitions of
mean and variance and only first principles, which could be
a little counter-intuitive to understand. We demonstrate a
new derivation and complete a new analysis. Through three
examples we show the new derivation agrees with the old
derivation (by implementation and experiments), as well as
a direct application of the definition. The new theory is fully
implemented in the latest version of the JUMBL.

2 Single Use Reliability Mean and Variance:
The Old Derivation

Current reliability analysis underlying statistical testing
follows the arc-based Bayesian model [8, 10]. Here one ap-
plies Miller’s Bayesian model [3] to individual arcs of the
Markov chain, and compute for each arc a transition relia-
bility (both mean and variance) from a posterior beta distri-
bution. System end-to-end reliability is computed through
the single use reliability estimate, defined as “the probabil-
ity of a randomly selected use executing correctly relative
to a specification of correct behavior,” [5, 8] either analyti-
cally [8] or through simulation [10]. The analytical solution
in closed form [8], both faster and more precise than simu-
lation, was implemented in the JUMBL. In this section we

DOI reference number: 10.18293/SEKE2018-026 635

summarize the major steps and results of this derivation.
Let P = [pij] be the n×n transition matrix of a Markov

chain usage model. The (i, j)-th entry pij of P is the con-
ditional probability of the next state being state j given the
current state being state i. State 1 is the source. State n is
the sink and the only absorbing state (assuming a reasonable
error recovery scheme). Given Pn×n, Q(n−1)×n denotes
the submatrix of P omitting the last row, and Q̇(n−1)×(n−1)

denotes the submatrix of P omitting the last row and the last
column. Q̇ is the transition matrix of the Markov chain re-
stricted to the transient states.

Let ri,j be a random variable for “transition reliability,”
that is, the fraction of successful transitions from state i to
state j. Let fi,j be another random variable for “transition
failure probability,” that is, the fraction of unsuccessful tran-
sitions from state i to state j. Notice that fi,j = 1− ri,j .

With the arc-based Bayesian model [10], each arc
(transition) reliability ri,j has a standard beta distribution
B(αi,j , βi,j) with two parameters αi,j (for total successes
on transitions from state i to state j) and βi,j (for to-
tal failures on transitions from state i to state j), where
αi,j = ai,j + si,j and βi,j = bi,j + fi,j with ai,j , si,j , bi,j ,
fi,j representing prior successes, observed successes, prior
failures, and observed failures, respectively, on transitions
from state i to state j. In case no prior information is avail-
able, ai,j = bi,j = 1. Each executed test case is mapped to
the usage model and each executed step is marked as suc-
cessful or failing. The observed success and failure counts
are summed for each individual arc in the usage model.

From the posterior (beta) distribution B(αi,j , βi,j) for
ri,j we may compute the mean and variance of ri,j :

E[ri,j] =
αi,j

αi,j+βi,j
=

ai,j+si,j
ai,j+si,j+bi,j+fi,j

, (1)

V ar[ri,j] =
αi,jβi,j

(αi,j+βi,j)2(αi,j+βi,j+1)

=
(ai,j+si,j)(bi,j+fi,j)

(ai,j+si,j+bi,j+fi,j)2(ai,j+si,j+bi,j+fi,j+1) .

(2)

Since V ar[ri,j] = E[r2i,j]−E2[ri,j], we have E[r2i,j] =

E2[ri,j] + V ar[ri,j].
Given fi,j = 1 − ri,j , we can compute the mean and

variance of fi,j as E[fi,j] = E[1− ri,j] = 1− E[ri,j] and
V ar[fi,j] = V ar[1− ri,j] = V ar[ri,j]. Similarly we have
E[f2

i,j] = E2[fi,j] + V ar[fi,j].
By our assumption state n (the sink) is the only absorb-

ing state of the Markov chain. A test case ends when the
sink is first encountered, therefore, we are only interested in
transitions from any state other than the sink (any transient
state). In the matrices defined below (A, B, S, F , R1, R2,
F1, and F2), i is any integer from 1 to n − 1 inclusive, and
j is any integer from 1 to n inclusive.

Let A = [ai,j] and B = [bi,j] be two matrices of size
(n − 1) × n whose entries are prior arc successes and fail-

ures, respectively, obtained from prior testing experience.
Let S = [si,j] and F = [fi,j] be two matrices of size
(n − 1) × n whose entries are observed arc successes and
failures, respectively, obtained through testing.

Let R1 = [E[ri,j]] be an (n − 1) × n matrix whose (i,
j)-th entry is the expected arc reliability of going from state
i to state j, and R2 = [E[r2i,j]] be an (n − 1) × n matrix
whose (i, j)-th entry is the expected value of r2i,j . Let Ṙ1

and Ṙ2 denote respectively the submatrices of R1 and R2

omitting the last columns.
Similarly we define F1 = [E[fi,j]] as an (n − 1) × n

matrix whose (i, j)-th entry is the expected arc failure prob-
ability of going from state i to state j, and F2 = [E[f2

i,j]] as
an (n− 1)× n matrix whose (i, j)-th entry is the expected
value of f2

i,j .
Given two matrices X and Y of the same size (dimen-

sion), X ⊗ Y denotes the entry-wise (or component-wise)
product of X and Y . X ⊗ Y has the same size as X and Y .

We define four entry-wise products as follows. Two of
them are of size (n − 1) × n: F1 = Q ⊗ F1 and F2 =
Q⊗ F2. The other two are square matrices of order n− 1:
Ṙ1 = Q̇⊗ Ṙ1 and Ṙ2 = Q̇⊗ Ṙ2.

Let I be an (n−1)× (n−1) identity matrix, and U be a
column vector of ones of size n. It is established in [8] that
F ∗ in (3) computes the expected single use failure proba-
bility (or single use unreliability) from any starting state.

F ∗ = (I − Ṙ1)
−1F1U (3)

Observe that F ∗ is a column vector of size n − 1. The
i-th component of F ∗ is the computed probability of failure
(the expected value) for an arbitrary use of the system from
a particular usage state, state i, to the sink (i runs from 1
to n − 1 inclusive; the starting state could be any transient
state).

Therefore, the expected single use reliability of the sys-
tem (starting from the source) is one minus the first compo-
nent of F ∗ computed by (3).

For an intuitive understanding of (3), consider all the
paths in the usage model that originate from state i and
have all but the last step successful; the last step on the
path is the only failure step. The probability of taking one
of such paths gives the failure probability from state i, and
is computed in three steps. First, it is shown in [8] that
(I − Ṙ1)

−1 = Ṙ0
1 + Ṙ1

1 + Ṙ2
1 + . . . , hence the (i, j)-

th entry in the inverse matrix computes the probability of
successfully moving from state i to state j in any finite and
arbitrary number of steps (starting from 0 step). State j
must be transient because only the last failure step could
lead to the sink. Second, the inverse matrix is multiplied by
the single-step failure matrix F1 to give the probability of
moving from any transient state to any state in the model
with all but the last step successful. Here the last transition
is made to either a transient state or the sink. And last, the

636

product is multiplied by the vector of ones of appropriate
size to sum up the probabilities of taking paths with a fixed
starting state, all successful prior steps before encountering
the last failure step, and an arbitrary ending state. The sum
is the failure probability from the particular starting state.

An equation is also given in [8] for computing the vari-
ance associated with the single use reliability (or equiva-
lently, the variance associated with the single use failure
probability) from any starting state.

V ∗ = (I− Ṙ2)
−1F2U +2(I− Ṙ2)

−1(Ṙ1− Ṙ2)F
∗−

F ∗ ⊗ F ∗ (4)

In (4) I is an (n − 1) × (n − 1) identity matrix, and
U is a column vector of ones of size n. V ∗ as computed
is a column vector of size n − 1. The i-th component of
V ∗ is the computed variance associated with the single use
reliability (or with the single use failure probability) starting
from state i (i runs from 1 to n− 1 inclusive).

Therefore, the single use reliability variance (when start-
ing from the source) is the first component of V ∗ computed
by (4).

3 A Simpler, Faster, and More Intuitive
Derivation

In this section we illustrate a new derivation of single
use reliability mean and variance that is simpler, faster, and
more intuitive than the old derivation. The new derivation
of the mean was published in [2], however, back then it was
unclear if there existed an alternative and new derivation
of the variance that is similarly simple and intuitive. This
is the major contribution of this paper. The solution was
found through a rather convoluted path. What prompted us
to look for an alternative derivation was the observation that
the old derivation of the variance follows its definition and
first principles, and therefore could be counter-intuitive to
understand. The new derivation presented here completes
a new analytical solution to compute the system reliability
(both mean and variance) based on testing experience ob-
served at the arc level taking into account the usage model
structure.

We are able to compute the single use reliability mean
(expected value) directly, and not through the single use
failure probability (or single use unreliability) as follows.

We define another entry-wise product of size (n−1)×n:
R1 = Q ⊗ R1. Let W be R1 restricted to the last column.
W is a column vector of size n− 1.

We define R∗ as follows:

R∗ = (I − Ṙ1)
−1W (5)

(5) has an intuitive explanation. As explained above for
(3), the (i, j)-th entry in the inverse matrix computes the
probability of successfully moving from the transient state

i to the transient state j in any finite and arbitrary num-
ber of steps (starting from 0 step). When multiplied by the
single-step success matrix R1 restricted to the last column
(i.e., W), the last steps are successful steps leading to the
sink, hence R∗ gives the probability of successfully moving
from any transient state to the sink in any finite and arbitrary
number of steps (starting from 0 step).

Observe that R∗ is a column vector of size n − 1. The
i-th component of R∗ is the expected single use reliability
starting from state i (i runs from 1 to n− 1 inclusive).

Therefore, the expected single use reliability of the sys-
tem (starting from the source) is the first component of R∗

computed by (5).
We propose an alternative way to compute the single use

reliability variance. Let r be a random variable denoting the
single use reliability. Let pi and ri denote the probability
and the reliability of the i-th distinct path starting with the
source ending with the sink (representing a distinct arbitrary
use), respectively. Note that r is a discrete random variable
that takes the value E(ri) with probability pi, hence E(r) =∑

i piE(ri). The variance can be computed by V ar(r) =
E(r2)−E2(r). The problem boils down to how to compute
E(r2).

Note that r2 is also a discrete random variable that
takes the value E(r2i) with probability pi, hence E(r2) =∑

i piE(r2i). We have shown how to compute E(r) using
(5). With the same Markov chain we are able to compute
E(r2) similarly. Now the (i, j)-th arc is associated with a
new random variable (i.e., E[r2i,j]) instead of E[ri,j]. We
can substitute R1 for R2 and compute E(r2) similarly as
follows, with the reasonable assumption that all r2i,js are in-
dependent random variables.

We define an entry-wise product of size (n − 1) × n:
R′

1 = Q⊗R2. Let W ′ be R′
1 restricted to the last column.

W ′ is a column vector of size n− 1.
We define R′∗ as follows:

R′∗ = (I − Ṙ′
1)

−1W ′ (6)
We define V ∗ as:

V ∗ = R′∗ −R∗ ⊗R∗ (7)
V ∗ computes the single use reliability variance with each

state being the starting state. The i-th component of V ∗ is
the single use reliability variance starting from state i (i runs
from 1 to n− 1 inclusive).

Therefore, the single use reliability variance starting
from the source is the first component of V ∗ computed by
(7).

To sum up, the following steps are needed to compute
single use reliability mean and variance by our new deriva-
tion:

1. Determine Q and Q̇ from the usage model.

2. Determine A and B from prior success and failure
counts for each arc in the usage model.

637

21
p12 = 1

r12 = r

Figure 1. Example 1 of a Markov chain usage
model. Arcs are annotated with transitional
probabilities and arc reliabilities.

3. Determine S and F from observed success and failure
counts for each arc in the usage model.

4. Compute R1 and R2 from A, B, S, and F .

5. Compute R1 and Ṙ1, and W .

6. Compute R∗ by (5).

7. Compute R′
1 and Ṙ′

1, and W ′.

8. Compute R′∗ by (6).

9. Compute V ∗ by (7).

10. The expected value of the single use reliability is the
first component of R∗.

11. The variance of the single use reliability is the first
component of V ∗.

Note that (1) the new derivation of the mean is simpler,
faster, and more direct without the need to first compute the
single use failure probability; (2) the new derivation of the
variance is simpler and faster without the need to compute
the second moments of arc failure probabilities; and (3) the
new derivation of the variance is simpler, faster, and more
intuitive by applying a well-known theorem to compute the
variance (i.e., V ar(r) = E(r2) − E2(r)), and by reusing
the existing Markov chain and reusing with adaptation the
formula we have derived for E(r) to compute E(r2). We
have implemented the new formulae in the JUMBL under a
new analysis engine.

4 Examples

In all the three examples (Figures 1 – 3) below the arcs
are annotated with transitional probabilities (i.e., the pijs)
and arc reliabilities (i.e., the rijs). For simplicity we as-
sume all arc reliabilities have a uniform distribution with
the means as rijs and the variances as 0s for the derivations
in Sections 4.1 – 4.3. SUR is for single use reliability.

4.1 Example 1

By the new formula:

To compute the mean:

1 2

3

p12 = 1/3

p23 = 1p13 = 2/3

r12 = r

r23 = r
r13 = r

Figure 2. Example 2 of a Markov chain usage
model. Arcs are annotated with transitional
probabilities and arc reliabilities.

1

3

p12 = 1/2

p23 = 1/2p13 = 1/2

r12 = r

r23 = r
r13 = r

2

p22 = 1/2

r22 = r

Figure 3. Example 3 of a Markov chain usage
model. Arcs are annotated with transitional
probabilities and arc reliabilities.

P =

[
0 1
0 0

]
Q =

[
0 1

]
R1 =

[
r11 r

]
R1 = Q⊗R1 =

[
0 r

]
Ṙ1 =

[
0
]

I =
[
1
]

I − Ṙ1 =
[
1
]

(I − Ṙ1)−1 =
[
1
]

W =
[
r
]

R∗ = (I − Ṙ1)−1W =
[
r
]

E(SUR) = r

To compute the variance:

P =

[
0 1
0 0

]
Q =

[
0 1

]
R1 =

[
r11 r

]
R′

1 = Q⊗R2 =
[
0 r2

]
Ṙ′

1 =
[
0
]

I =
[
1
]

I − Ṙ′
1 =

[
1
]

(I − Ṙ′
1)

−1 =
[
1
]

W ′ =
[
r2

]
R′∗ = (I − Ṙ′

1)
−1W ′ =

[
r2

]
E(SUR2) = r2

V ar(SUR) = E(SUR2)− (E(SUR))2 = 0

We may also compute the single use reliability mean and
variance directly based on its definition, given the Markov
chain usage model. To compute the probability of a ran-
domly chosen use (path) being successful, we compute the
weighted sum of path reliabilities, with weights being the
path probabilities.

By the definition of single use reliability:

To compute the mean:

E(SUR) = r ∗ 1 = r

To compute the variance:

V ar(SUR) = (r − r)2 ∗ 1 = 0

638

4.2 Example 2

By the new formula:

To compute the mean:

P =

0
1
3

2
3

0 0 1

0 0 0

 Q =

[
0 1

3
2
3

0 0 1

]
R1 =

[
r11 r r
r21 r22 r

]

R1 = Q⊗R1 =

[
0 r

3
2r
3

0 0 r

]
Ṙ1 =

[
0 r

3

0 0

]
I =

[
1 0
0 1

]

I − Ṙ1 =

[
1 − r

3

0 1

]
(I − Ṙ1)−1 =

[
1 r

3

0 1

]
W =

[
2r
3

r

]

R∗ = (I − Ṙ1)−1W =

[
2r+r2

3

r

]
E(SUR) = 2r+r2

3

To compute the variance:

P =

0
1
3

2
3

0 0 1

0 0 0

 Q =

[
0 1

3
2
3

0 0 1

]
R1 =

[
r11 r r
r21 r22 r

]

R′
1 = Q⊗R2 =

[
0 r2

3
2r2

3

0 0 r2

]
Ṙ′

1 =

[
0 r2

3

0 0

]

I =

[
1 0
0 1

]
I − Ṙ′

1 =

[
1 − r2

3

0 1

]

(I − Ṙ′
1)

−1 =

[
1 r2

3

0 1

]
W ′ =

[
2r2

3

r2

]

R′∗ = (I − Ṙ′
1)

−1W ′ =

[
2r2+r4

3

r2

]
E(SUR2) = 2r2+r4

3

V ar(SUR) = E(SUR2)− (E(SUR))2 = 2r2+r4

3
− (2r+r2

3
)2

=
2r2(r−1)2

9

By the definition of single use reliability:

To compute the mean:

E(SUR) = r2 ∗ 1
3
+ r ∗ 2

3
= 2r+r2

3

To compute the variance:

V ar(SUR) = (r − 2r+r2

3
)2 ∗ 2

3
+ (r2 − 2r+r2

3
)2 ∗ 1

3

=
r2(r−1)2

9
∗ 2

3
+

4r2(r−1)2

9
∗ 1

3
=

2r2(r−1)2

9

4.3 Example 3

By the new formula:

To compute the mean:

P =

0 1

2
1
2

0 1
2

1
2

0 0 0

 Q =

[
0 1

2
1
2

0 1
2

1
2

]
R1 =

[
r11 r r
r21 r r

]

R1 = Q⊗R1 =

[
0 r

2
r
2

0 r
2

r
2

]
Ṙ1 =

[
0 r

2

0 r
2

]
I =

[
1 0
0 1

]

I − Ṙ1 =

[
1 − r

2

0 1− r
2

]

(I − Ṙ1)−1 = 1
1− r

2

[
1− r

2
r
2

0 1

]
=

[
1 r

2−r

0 2
2−r

]
W =

[
r
2
r
2

]

R∗ = (I − Ṙ1)−1W =

[
r
2
+ r2

4−2r
r

2−r

]
=

[r
2−r
r

2−r

]
E(SUR) = r

2−r

To compute the variance:

P =

0 1

2
1
2

0 1
2

1
2

0 0 0

 Q =

[
0 1

2
1
2

0 1
2

1
2

]
R1 =

[
r11 r r
r21 r r

]

R′
1 = Q⊗R2 =

0 r2

2
r2

2

0 r2

2
r2

2

 Ṙ′
1 =

0 r2

2

0 r2

2

I =

[
1 0
0 1

]
I − Ṙ′

1 =

1 − r2

2

0 1− r2

2

(I − Ṙ′

1)
−1 = 1

1− r2

2

[
1− r2

2
r2

2

0 1

]
=

1 r2

2−r2

0 2
2−r2

W ′ =

 r2

2

r2

2

R′∗ = (I − Ṙ′

1)
−1W ′ =

 r2

2
+ r4

4−2r2

r2

2−r2

 =

 r2

2−r2

r2

2−r2

E(SUR2) = r2

2−r2
V ar(SUR) = E(SUR2)− (E(SUR))2

= r2

2−r2
− (r

2−r
)2 =

2r2(r−1)2

(2−r2)(2−r)2

By the definition of single use reliability:

To compute the mean:

E(SUR) =
∞∑
i=0

(1
2
)i · ri · r

2
· r
2
+ r

2
= r2

4−2r
+ r

2
= r

2−r

To compute the variance:

V ar(SUR) = (r − r
2−r

)2 · 1
2
+

∞∑
i=0

(1
2
)i · 1

2
· 1
2
· (ri · r · r − r

2−r
)2

= r2

2
· (1−r)2

(2−r)2
+ r2

4
·

∞∑
i=0

(r2 · (r
2

2
)i + 1

(2−r)2
· (1

2
)i − 2r

2−r
· (r

2
)i)

= r2

2
· (1−r)2

(2−r)2
+ r2

4
· (2r2

2−r2
− 4r

(2−r)2
+ 2

(2−r)2
)

= r2

2
· (r2−4r+2)(2−r2)+r2(2−r)2

(2−r)2(2−r2)
= r2

2
· 4r2−8r+4
(2−r)2(2−r2)

=
2r2(r−1)2

(2−r2)(2−r)2

4.4 Experiments

We input the three examples in the JUMBL, and com-
puted the single use reliability (SUR) means and variances
using the old analysis as well as our new analysis. The re-
sults are summarized in Table 1. For each Markov chain
usage model, we carried out the following steps for the ex-
periments:

1. Generate a test suite that consists of minimum cover-
age test cases that cover every arc and every node of
the model. The generated test suite happened to cover
each arc exactly once (see Table 1).

639

Table 1. Single use reliabilities (means and
variances) by the old and the new analyses
using the JUMBL for Examples 1 – 3

Example 1 Example 2 Example 3

Test Cases 1, 2
1, 3 1, 3
1, 2, 3 1, 2, 2, 3

SUR Mean
0.666666667 0.592592593 0.5(Old Derivation)

SUR Variance
55.5555556E − 3 65.5006859E − 3 83.3333333E − 3(Old Derivation)

SUR Mean
0.666666667 0.592592593 0.5(New Derivation)

SUR Variance
55.5555556E − 3 65.5006859E − 3 83.3333333E − 3(New Derivation)

2. Record all tests as successful in the test suite, and run a
test case analysis using the old engine to get the single
use reliability mean and variance by the old derivation.

3. With the same recorded test results run a test case anal-
ysis using the new engine to get the single use reliabil-
ity mean and variance by the new derivation.

For each example, since each arc happened to be covered
exactly once in the test suite, we have si,j = 1, fij = 0. As-
suming no prior information ai,j = bi,j = 1. By (1) and (2)
each arc reliability has a mean of 2

3 and a variance of 1
18 .

One can easily verify that if we plug in r = 2
3 in the formu-

lae we derived above for Examples 1 – 3, we get the same
single use reliability means as shown in Table 1 (see the
two rows for SUR mean). One can also verify for Example
1 that the single use reliability variance degenerates to the
arc reliability variance (as there is only one arc in the path),
i.e., 1

18 = 55.5555556E − 3.
We observe that for all the three examples (assuming an

arc reliability mean of 2
3 and an arc reliability variance of 1

18
for every arc), our new derivation produces the same single
use reliability mean and variance as the old derivation.

5 Conclusion

Statistical testing based on a Markov chain usage model
has been well established in theory and proved sound and
effective in practice [5, 4, 8, 6, 9, 12, 11], with tools avail-
able to support all the stages of testing and to automate
the testing process [1, 7]. This paper presents a simpler,
faster, more direct, and more intuitive derivation of the sin-
gle use reliability mean and variance, following the arc-
based Bayesian model [8, 10]. With our new theory single
use reliability mean is obtained more directly without the
need to first compute the single use failure probability. Sin-
gle use reliability variance is obtained in a faster and sim-
pler way applying a well-known theorem, without the need
to compute the second moments of arc failure probabilities.
We illustrate our new theory with three small Markov chain

usage models with manual derivations and experimental re-
sults.

Acknowledgements

This work was generously funded by Ontario Systems
through the NSF Security and Software Engineering Re-
search Center (S2ERC).

References

[1] 2018. J Usage Model Builder Library (JUMBL). Software
Quality Research Laboratory, The University of Tennessee.
http://jumbl.sourceforge.net/jumblTop.html.

[2] L. Lin, Y. Xue, and F. Song. A simpler and more direct
derivation of system reliability using markov chain usage
models. In Proceedings of the 29th International Confer-
ence on Software Engineering and Knowledge Engineering,
pages 462–466, Pittsburgh, PA, 2017.

[3] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M.
Nicol, B. W. Murrill, and J. M. Voas. Estimating the proba-
bility of failure when testing reveals no failures. IEEE Trans-
actions on Software Engineering, 18(1):33–43, 1992.

[4] J. H. Poore. Theory-practice-tools for automated statistical
testing. DoD Software Tech News: Model-Driven Develop-
ment, 12(4):20–24, 2010.

[5] J. H. Poore, L. Lin, R. Eschbach, and T. Bauer. Auto-
mated statistical testing for embedded systems. In J. Zan-
der, I. Schieferdecker, and P. J. Mosterman, editors, Model-
Based Testing for Embedded Systems in the Series on Com-
putational Analysis and Synthesis, and Design of Dynamic
Systems. CRC Press-Taylor & Francis, 2011.

[6] J. H. Poore and C. J. Trammell. Application of statistical sci-
ence to testing and evaluating software intensive systems. In
M. L. Cohen, D. L. Steffey, and J. E. Rolph, editors, Statis-
tics, Testing, and Defense Acquisition: Background Papers.
National Academies Press, 1999.

[7] S. J. Prowell. JUMBL: A tool for model-based statistical
testing. In Proceedings of the 36th Annual Hawaii Interna-
tional Conference on System Sciences, page 337c, Big Is-
land, HI, 2003.

[8] S. J. Prowell and J. H. Poore. Computing system reliability
using Markov chain usage models. Journal of Systems and
Software, 40(4):199–222, 2004.

[9] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore.
Cleanroom Software Engineering: Technology and Process.
Addison-Wesley, Reading, MA, 1999.

[10] K. Sayre and J. H. Poore. A reliability estimator for model
based software testing. In Proceedings of the 13th Inter-
national Symposium on Software Reliability Engineering,
pages 53–63, Annapolis, MD, 2002.

[11] J. A. Whittaker and J. H. Poore. Markov analysis of software
specifications. ACM Transactions on Software Engineering
and Methodology, 2(1):93–106, 1993.

[12] J. A. Whittaker and M. G. Thomason. A Markov chain
model for statistical software testing. IEEE Transactions on
Software Engineering, 30(10):812–824, 1994.

640

A Document-based Parameter Correlation Metric
for Test Design

Hiroyuki Nakagawa
Graduate School of Information

Science and Technology
Osaka University

Osaka, Japan
Email: nakagawa@ist.osaka-u.ac.jp

Nobukazu Ishii
Information and Computer Sciences

School of Engineering Science
Osaka University

Osaka, Japan
Email: n-ishii@ist.osaka-u.ac.jp

Tatsuhiro Tsuchiya
Graduate School of Information

Science and Technology
Osaka University

Osaka, Japan
Email: t-tutiya@osaka-u.ac.jp

Abstract—Efficient software testing requires precise test space
definition. To determine the test space, constraint elicitation is
one of the important processes in a test design; however, the
process usually requires manual capturing and precise definition
of constraints. We have developed a constraint elicitation process
that helps to define constraints from documents relevant to the
test model. In this paper, we propose a refined metric that
finds parameter combinations to be extracted more precisely.
This metric determines the parameter correlation on the basis of
word co-occurrences in the specification document. We conduct
experiments on some test models and demonstrate that our metric
allows us to find parameter combinations that form constraints
with a high recall rate.

I. Introduction
Software testing is an essential activity in the software

development process. In order to conduct the activity correctly
and efficiently, the testing technique requires precise test space
definition to perform testing. We consider a test space that is
modeled by a set of parameters, their values, and constraints
on the value combinations [1] [2]. The constraints define the
value combinations that are prohibited and should be excluded
from test cases. Constraint elicitation and handling is crucial in
test design [3] [4]; however, the constraint elicitation process
has not been well studied.

Our objective is to construct a constraint elicitation process
that helps us define constraints. In general, constraint elici-
tation processes have to solve two problems, that is, “How
do we find which parameter combinations form constraints?”,
and “How do we find which value combinations on the given
parameters define constraints?”.

We have designed the overview of a constraint elicitation
process [5]. To solve the first problem, we proposed a metric
for calculating the correlation between parameters, which uses
the distances between words in a document of a System
Under Test (SUT) to estimate parameter correlations, in the
previous work [5]. In this paper, we introduce an enhanced
metric to estimate the correlation between parameters more
precisely. Since constraints are defined on the relationships
between relevant parameters, such a metric helps to find
which parameter combinations should be considered to define
constraints. We previously proposed a metric for calculating

the correlation between parameters in [5], which sums up the
distances between words of two parameters in a specification
document of a System Under Test (SUT). We conduct exper-
iments on two real world applications, a web application and
a Unix command, to evaluate the validity of our metric. This
empirical evaluation indicates that our new metric allows us
to find parameter combinations that form constraints from a
specification document of SUT with a higher precision and
recall rate than the previous metric.

The rest of the paper is organized as follows: Section 2 gives
the background of this study by providing the explanation of
constraints; Section 3 gives the overview of our approach;
Section 4 describes how we find parameter combinations that
probably cause constraints using our metric; Section 5 presents
the results of two experiments on real world testing examples,
and Section 6 explains how we evaluate our approach with
the experimental results; Section 7 discusses related work, and
Section 8 concludes the paper.

II. Constraints

As an example of a System Under Test (SUT), consider a
web application which may be influenced by various factors
including operating systems, browsers and memory size. Sup-
pose that the three factors are chosen as test parameters. We list
the possible values of parameters in Table I. This test model
has three parameters, i.e., OS, Browser, and RAM (memory),
with their parameter values. A test case is a vector of parameter
values, such as (Windows, Chrome, 4GB).

Formally the test space is modeled by a set of parameters,
their values, and constraints on the value combinations. In par-
ticular, constraints define the combinations that never happen
and must be excluded from test cases. For example, when we
choose Mac for the parameter OS, we should choose as the

TABLE I: A cross-browser test model.

Parameter Values
OS Windows, Mac, Linux
Browser IE, Safari, Chrome
RAM 512MB, 1GB, 2GB, 4GB

DOI: 10.18293/SEKE2018-069

641

Test model
Parameter Values

A a1, a2, a3, ...

B b1, b2, b3, ...

C c1, c2, c3, ...

e.g.) Parameter pairs (A,
B) and (A, C) have

strong relationship

A=“a1” B=“b2”
A=“a2” C=“b1”

...

Constraints
Phase 1
Parameter

combination
identification

Phase 2
Value pair

determination

e.g.) If A=“a1”,
then the value of B

have to be “b2”

Fig. 1: An overview of the constraint elicitation process. This paper focuses on Phase 1. We have proposed a method [5] for
the activity in Phase 2.

browser Safari or Chrome, because Mac OS does not support
IE (Internet Explorer). This constraint is defined as follows:
OS = “Mac”⇒ Browser = “Safari” || “Chrome”.

In the presence of constraints it is necessary to design a test
suite such that all test cases satisfy the constraints. Otherwise,
some test cases would not be executable because of constraint
violation, resulting in redoing the test design process. A test
suite constructed with considering constraints is different with
one constructed without considering constraints because these
test spaces are not the same.

III. Constraint Elicitation Process

The objective of our study is to support identifying which
combinations of values define constraints. There are two
difficulties in the constraint elicitation: one exists in parameter
combination identification and the other exists in value com-
bination identification. In our example explained in Section
II, we first have to identify which parameter combinations,
such as parameters “OS” and “Browser”, form constraints.
Next, after identifying parameter combinations that cause con-
straints, we also have to determine which value combinations
cause constraints. In the above example, it corresponds to the
identification of the value combinations, such as “Mac” and
“Safari” on the parameter combination “OS” and “Browser”.

Figure 1 illustrates an overview of our constraint elicitation
process. This process consists of the following two steps:

• Phase 1: Parameter combination identification. We
identify which parameter combinations form constraints.
We find such combinations by analyzing a specification
document for the SUT. For this analysis, we use a metric
that we propose in this paper.

• Phase 2: Value pair determination. We determine which
value combinations cause constraints.

The goal of this paper is to help find which parameter combi-
nations have strong relationships in Phase 1. Although Phase 2
is beyond the scope of our paper, we have proposed a method
of determining value combinations that define constraints
using a web search engine [5]. We use hits of search results as
a metric. We support that excessively higher/lower hits indicate
that the corresponding value pairs are bound/uncommon pairs
and therefore they probably define constraints.

IV. Parameter Combination Identification

The objective of Phase 1 is to identify which parameter
combinations have strong relationships. Most constraints are
caused by strong relationships between parameters. In order to
find such strong relationships, we use a specification document
as a definitive source and a metric for calculating correlation
between parameters. The correlation ρ(f , g) between parame-
ters f and g represents how strong the relationship between
two parameters is. The value of the metric is calculated by us-
ing a diff(f , g) value, which represents how differently relevant
words of these two parameters appear in the document.

Our parameter combination identification process consists
of the following steps. A specification document for the test
model is given to the process as an input data. We assume that
the document is given as a sequence of English words.
• Step 1: select a set of words for each parameter. The

members of the set are the parameter name and values of
the parameter. If a value of the parameter is a common
word, such as “on” and “off”, the value is excluded from
the set. Instead, representative words that can explain the
parameter, such as the full name of the parameter, can
also be the members, if they exist. We call this set word
group.

• Step 2: split the given document into multiple small parts
(bins). In this paper, we construct bins all of which have
the same size, that is, all of the bins contain the same
number of words.

• Step 3: count the occurrences of words in every word
group within each bin.

• Step 4: construct relative frequency tables for each word
group using the results of Step 3.

• Step 5: sum up the difference of bin values between every
two word groups. These values provide the diff values.

• Step 6: output the reciprocals of the diff values as
correlation ρ values (ρ(f , g) ∝ 1/diff (f , g)).

We briefly explain our identification process using our cross-
browser testing example described in Section II. First, we
define word groups (Step 1). The word group is defined as
a set whose members are the parameter, the values of the
parameter, and relevant words. In our example, the word group
of OS contains the words such as “OS” and “Windows”. Next,

642

0

1

2

3

4

5

6

1-50 51-100 101-150

OS

0

5

10

15

1-50 51-100 101-150

Browser

0

5

10

15

20

1-50 51-100 101-150

RAM

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

OS Browser OS Browser OS Browser

1 50 51 100 101 150

(b)

Fig. 2: (a) Histograms for word groups in the cross-browser testing example. (b) The difference of bin values between relative
frequency tables for parameters OS and Browser. The sum of red bars corresponds to the diff(OS, Browser) value.

TABLE II: Frequency and relative frequency tables. The table
unifies three frequency tables (denoted by “Freq.”) and three
relative frequency tables (“Relative”).

Group Bin 0-50 51-100 101-150 Total
OS Freq. 4 1 5 10

Relative 0.4 0.1 0.5 1
Browser Freq. 12 5 13 30

Relative 0.4 0.17 0.43 1
RAM Freq. 2 15 3 20

Relative. 0.1 0.75 0.15 1

we split the document into small parts (Step 2). We assume
that a given document for the system consists of 150 words.
In this example, we split it into three parts, i.e., words from
the first to the 50th word as the first part, words from the
51st to the 100th word as the second part, and so on. Third,
we count the occurrences of the words in every word group
within each bin (Step 3). Figure 2(a) illustrates the counting
result of the example. After counting the words within each bin
for every word group, we construct relative frequency tables
(Step 4). Algorithm 1 explains the details of Step 4. Table
II lists the results of Step 4 in our example. Next, we sum
up the difference of bin values between every pair of two
word groups to calculate the diff(f , g) values (Step 5). Figure
2(b) represents the difference of bin values between relative
frequency tables for parameters OS and Browser. We sum up
these differences (red bars) and regard the total value as the
diff value. This value becomes low when the occurrences of
a word group is similar to those of the other word group.
Finally we calculate parameter correlations as the reciprocals
of the results of Step 5 (Step 6). Algorithm 2 explains the
details of Steps 5 and 6. Table III lists the correlation ρ
values of our example. This result indicates that the parame-
ter combination (OS, Browser) has strong relationship, and
therefore, the combination may cause constraints, such as
OS = “Mac”⇒ Browser = “Safari” || “Chrome”.

V. Experiments

In order to evaluate the validity of our metric, we conducted
experiments on some applications. We applied our process to
two applications: a real world web application (Exp 1) and a
Unix command (Exp 2).

Algorithm 1 Construct relative frequency tables from a doc-
ument.
[Input] doc: given specification document
[Input] wordgroup[][]: word groups
// wordgroup[n]: word group for the n th parameter

[Input] BINS: the number of bins
[Output] relFreqDist[][]: relative frequency tables
// relFreqDist[n]: a relative frequency table for the n th parameter
(word group)
// relFreqDist[n][i]: the relative frequency of i th bin for the n
th parameter (word group)

1: // split given document into a word list
2: words← split(doc);
3:
4: // count frequency
5: f reqDist[][]← initialized by 0;
6: currentBin ← 0;
7: binSize ← words.size() / BINS; // the number of words for each

bin
8: for i = 0 to words.size() −1 do
9: for j = 0 to wordgroup.size() −1 do

10: if wordgroup[j].contains(words[i]) then
11: f reqDist[j][currentBin]++;
12: end if
13: end for
14: if (i + 1)%binSize== 0 then
15: currentBin++; // move to the next bin
16: end if
17: end for
18:
19: // construct relative frequency tables
20: for i = 0 to wordgroup.size() −1 do
21: for j = 0 to BINS−1 do
22: relFreqDist[i][j]

← f reqDist[i][j] / sum(f reqDist[i])
23: end for
24: end for

A. Exp 1: Testing of web application

First, we conducted an experiment on a web application
testing. The target application is Confluence [6], which is a
web application designed for team collaboration. The SUT
model for the Confluence testing has seven parameters, i.e.,
database, server, client, browser, add-ons, and attachment file
type. We derived seven word groups corresponding to the
parameters for this experiment as illustrated in Table IV. We

643

TABLE III: Parameter Correlations (ρ values).

OS Browser RAM
OS - 7.14 0.77

Browser - - 0.86
RAM - - -

Algorithm 2 Calculate parameter correlation ρ(f , g) using
relative frequency tables.

[Input] f []，g[]: relative frequency tables for word groups f and g,
respectively
// f [i]: relative frequency of i th bin

[Input] BINS: the number of bins
[Output] correlation between parameters (word groups) f and g

1: for i = 0 to BINS−1 do
2: diff ← diff + | f [i] − g[i]|
3: end for
4:
5: return 1/diff; //parameter correlation

used the document [7] as an input document. We split the
document into 960 parts (330 words per bin) based on the
number of pages in this document. We determined the bin
size to let each bin roughly correspond to a page. In reality,
constraints such as the following ones exist in this test model:
• Constraint 1-a: Database = “Microsoft SQL Server”

⇒ Server = “Windows Server”.
• Constraint 1-b: Client = “Mac” ⇒ Browser , “IE”.
• Constraint 1-c: Macro = “Multimedia Macro”

⇒ File Type = “audio” ∥ “video” ∥ “animation”.
We regarded the following six combinations, (Database,
Server), (Browser, Client), (Browser, File type), (Browser,
Add-on), (File type, Add-on), and (File Type, Macro), as the
combinations to be extracted.

Table V lists the results of the correlation calculation. We
extracted the top 30% combinations, whose values are shaded
in Table V, from the calculation results. Observing the results
of this experiment, although we extracted the combination
(Server, Client), which is not involved in any constraints, the
metric allowed us to extract most of the correct combinations
that should be extracted.

We also observed the correctness of the proposed method.
We evaluated the proposed metric by comparing it with the
previous metric proposed in our preliminary work [5] as
the baseline metric. Briefly explained, our previous study
determines parameter correlation using the distance metric,
which sums up the distances between words of two parameters
in the document.

We use the following definition of the precision and recall:
Precision = |Correct ∩ Extracted|/|Extracted|; and Recall =
|Correct ∩ Extracted|/|Correct| , where Correct is the set of
correct pairs to be extracted and Extracted is the set of pairs
that the baseline or proposed method actually extracts from
the document. Figure 3 shows the precision and recall rates
of the two methods. From the figure, both precision and recall
rates of the proposed method are higher than the rates of the
baseline method.

B. Exp 2: Testing of a Unix command

Next, in order to evaluate the scalability of our approach, we
applied our metric to a Unix command, mount (Exp 2). The
SUT model for the testing on mount command has parameters
for options, such as -a, -o, and -t, and arguments, such as
ones for specifying devices, directories, and volume labels. We
constructed 29 word groups corresponding to the parameters
for this experiment. We used a manual of mount command [8]
as an input document1. We split the document into 400 parts
based on the number of lines in this document (32 words per
a bin). In reality, some of constraints exist in the test model
as follows:
• Constraint 2-a: “-O”= “ON” ⇒ “-a”= “ON”.
• Constraint 2-b: “-r”= “ON” ⇒ “-w”= “OFF”.
• Constraint 2-c: “-t”= “ON” ⇒ “vfstype” , “NULL”.
In this experiment, we changed the extraction rate (top 5%,

10%, or 15%) and observed each precision and recall rates.
From the results listed in Table VII, it was found that we
were able to extract most of the parameter combinations to be
extracted even if we extracted only top 5% combinations.

VI. Discussion

We now discuss our correlation metric in the light of our
experiments.

The experimental results in Exp 1 and Exp 2 demonstrate
that our metric could extract most of the parameter combi-
nations that form constraints. In Exp 1, both precision and
recall rates of the proposed method are higher than the rates
of our previous metric. While our previous metric evaluate the
strength of parameter relationship using the distance between
relevant words, the new metric uses co-occurrence of relevant
words. If the word frequency is largely different among word
groups, the latter metric works more properly than the previous
one.

The fact that recall rates in Exp 2 are better than pre-
cision rates indicates that our metric extracts parameters to
be extracted with low false negative rates. It means that the
process using the metric allows developers to find almost all
of the parameter combinations to be extracted by continuously
relaxing the threshold, i.e., extraction rate in Exp 2. This
process is equivalent to acquiring parameter combinations one
by one from the parameter combination list sorted by the
correlation metric in descending order. We can define the end
condition of extraction using the number of a series of wrong
extractions, which mean the extracted combinations are not
involved any constraints.

Precision, on the other hand, was not high. The main
reason is that the strong relationships do not always cause
constraints. While this fact decreases the precision rate, we can
still improve the precision rate. For example, we can improve
the construction of bins. The current process constructs bins
by dividing an input document equally so that the bins
contain the same number of words. The mapping of bins to

1This document can be shown by specifying the keyword “mount” with
“8- Maintenance Commands” option.

644

TABLE IV: Word groups for the Confluence testing (Exp 1). Group names correspond to the parameter names.

Group Words in word group
Database database, PostgreSQL, MySQL, Oracle, Microsoft SQL Server, H2
Browser browser, IE, Internet Explorer, Firefox, Chrome, Safari, Mobile Safari
Server server, Windows Server, Linux, Unix, Mac
Client client, Windows, Linux, iOS, Android, Mac
File type file type, file extension, upload file, image, Office, PDF, video, audio, animation, docx, doc, pptx, ppt, xlsx, xls, txt
Add-on add-on, plugin, Scroll versions, copy space, scroll PDF Exporter, Gliffy, Lucidchart, Balsamiq
Macro macro, Multimedia Macro, Space Attachments Macro, Office PowerPoint Macro, Gallery Macro, PDF Macro, View File Macro

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11

Precision

Baseline Proposed

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11

Recall

Baseline Proposed

Fig. 3: The transition of precision and recall rates in Exp 1. X axis represents the number of extracted pairs in descending
order.

TABLE V: Correlation values in Exp 1. Bold values represent
correct combinations to be extracted. Shaded values represents
combinations that our method extracted.

Browser Server Client File type Add-on Macro
Database 0.575 0.716 0.568 0.512 0.548 0.508
Browser 0.578 0.608 0.602 0.588 0.525
Server 0.698 0.528 0.58 0.522
Client 0.561 0.572 0.58

File type 0.575 0.603
Add-on 0.567

sentimental blocks, such as paragraphs or sentences, will make
the extraction more precise. The main objective of this paper is
to elicit constraints; however, we can use the metric for other
activities in the test design, such as test suite reduction [9] or
the identification of a subset of parameters that require higher
coverage strength in variable strength interaction testing [10].

The effectiveness of our parameter combination identifi-
cation also depends on how we select relative words of
parameters in their word groups. As demonstrated in Exp 1
and Exp 2, we added some characteristic words related to the
parameters, such as synonyms and full names of options, into
word groups. In order to choose more adequate word groups,
we need a mechanism of collecting relevant words. We could
use a query augmentation method, such as [11], or word2vec
[12][13] for this purpose.

VII. RelatedWork

Currently there are few studies on the constraint elicitation.
Blue et al. [14] presents a test suite reduction method, which
excludes test cases that contain prohibited value combinations.

Their method uses existing test cases and minimizes the test
suite with covering all combinations that are included in the
existing test cases. Their method is useful to define a small set
of test cases without violating constraints; however, the main
focus is on the extraction of minimized test cases from the
existing test cases.

Our approach, including our previous metric [5] explained
in Section V, uses word frequencies in a document to identify
the correlation between parameters. TF-IDF [15] is also known
as a method of reasoning the relationship between words.
Gabrilovich et al. [16] proposed a method called Explicit
Semantic Analysis (ESA), in which a word is represented as
a vector whose attributes represent the relevance of individual
concepts calculated using TF-IDF by using Wikipedia as an
input document. While these co-occurrence-based approaches
require a large number of document, our approach uses only
one document. This feature is useful because documents
related to the target systems are often limited.

The literature in the requirements engineering field has dealt
with linguistic techniques. Falessi et al. [17] evaluate the
performance of a large number of natural language processing
techniques. They define seven principles for evaluating the
performance of these techniques. Some of them could be
useful to improve the correlation metric. Query augmentation
techniques, such as one in [11], may improve the correct-
ness of extracted parameter combinations by enhancing word
groups.

VIII. Conclusions
We defined a metric for estimating a parameter correla-

tion for the test design. This metric allows us to identify

645

TABLE VI: Correlation values in the mount command testing (Exp2). Bold values represent correct combinations to be
extracted. Shaded values represent the top 5% combinations that our method extracted.

-V -v -a -F ... -r -w -L -U -t -O -o -B -R -M vfstype device dir uuid label num dirs opts
-h 1000 1.5 0.583 0.5 ... 0.5 0.5 0.5 0.5 0.528 0.5 0.5 0.5 0.5 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.5 0.503
-V 1.5 0.583 0.5 ... 0.5 0.5 0.5 0.5 0.528 0.5 0.5 0.5 0.5 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.5 0.503
-v 0.583 0.5 ... 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.5 0.505
-a 0.538 ... 0.5 0.5 0.5 0.5 0.679 1 0.519 0.5 0.5 0.5 0.538 0.524 0.536 0.5 0.5 0.5 0.5 0.526
-F ... 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.517 0.5 0.5 0.5 0.5 0.5 0.505
...
-r 0.667 0.5 0.5 0.5 0.5 0.538 0.5 0.5 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.5 0.511
-w 0.5 0.5 0.5 0.5 0.519 0.5 0.5 0.5 0.5 0.51 0.5 0.5 0.5 0.5 0.5 0.509
-L 1000 0.5 0.5 0.519 0.5 0.5 0.5 0.5 0.51 0.5 0.917 0.667 0.5 0.5 0.503
-U 0.5 0.5 0.519 0.5 0.5 0.5 0.5 0.51 0.5 0.917 0.667 0.5 0.5 0.503
-t 0.633 0.583 0.5 0.5 0.5 0.679 0.547 0.594 0.5 0.5 0.5 0.5 0.537
-O 0.519 0.5 0.5 0.5 0.583 0.51 0.536 0.5 0.5 0.5 0.5 0.517
-o 0.538 0.538 0.5 0.538 0.556 0.605 0.519 0.547 0.5 0.56 0.57
-B 0.625 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.857 0.509
-R 0.833 0.5 0.503 0.5 0.5 0.5 0.5 0.706 0.507
-M 0.5 0.503 0.5 0.5 0.5 0.5 0.6 0.501

vfstype 0.517 0.577 0.5 0.5 0.5 0.5 0.509
device 0.6 0.524 0.547 0.503 0.503 0.567

dir 0.55 0.526 0.5 0.5 0.519
uuid 0.909 0.5 0.5 0.507
label 0.5 0.5 0.524
num 0.5 0.501
dirs 0.509

TABLE VII: Experimental results in Exp 2.

Extraction rate Top 5% Top 10% Top 15%
Extracted combinations 23 44 69

Precision 0.55 0.23 0.15
Recall 0.73 0.91 1.00

parameter combinations that probably cause constraints. Our
experimental results demonstrated that our metric helps us
extract valid parameter combinations when we analyze speci-
fication documents for the SUT. Such parameter combination
extraction also helps other activities in the test design, such
as test suite reduction or the identification of a subset of
parameters that require higher coverage strength in variable
strength interaction testing.

The results presented in this paper indicate some possible
directions of further work and improvements. There are two
major directions for improving the elicitation mechanism to
identify more precise parameter combinations. First one is to
develop an additional mechanism to improve the precision rate.
The second direction is to define guidelines for applying the
metric, which include the criteria for defining thresholds and
word groups.

Acknowledgments
This work was supported by JSPS Grants-in-Aid for Scien-

tific Research (Grant Numbers 15K00097, 15K00098).

References
[1] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.

Patton, and B. M. Horowitz, “Model-based testing in practice,” in Proc.
of the 21st International Conference on Software Engineering (ICSE’99),
ser. ICSE ’99. ACM, 1999, pp. 285–294.

[2] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011.

[3] M. Grindal, J. Offutt, and J. Mellin, “Managing conflicts when using
combination strategies to test software,” in Proc. of the 18th Australian
Software Engineering Conference 2007 (ASWEC’07), April 2007, pp.
255–264.

[4] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction test
suites for highly-configurable systems in the presence of constraints: A
greedy approach,” IEEE Transactions on Software Engineering, vol. 34,
no. 5, pp. 633–650, Sep. 2008.

[5] H. Nakagawa and T. Tsuchiya, “A search-based constraint elicitation
in test design,” IEICE Transactions on Information and Systems,
vol. E99-D, no. 9, pp. 2229–2238, Sep. 2016. [Online]. Available:
https://doi.org/10.1587/transinf.2015KBP0010

[6] Atlassian, “Confluence,” https://www.atlassian.com/software/
confluence/.

[7] ——, “Documentation for confluence 5.9,” https://confluence.atlassian.
com/alldoc/confluuence-documentation-directory-12877996.html.

[8] T. F. Foundation, “FreeBSD Man Pages,” https://www.freebsd.org/cgi/
man.cgi.

[9] P. J. Schroeder and B. Korel, “Black-box test reduction using input-
output analysis,” in Proc. of the 2000 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’00). ACM, 2000,
pp. 173–177.

[10] M. Cohen, P. Gibbons, W. Mugridge, C. Colbourn, and J. Collofello, “A
variable strength interaction testing of components,” in Proc. of the 27th
Annual International Computer Software and Applications Conference
(COMPSAC 2003), Nov 2003, pp. 413–418.

[11] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards mining re-
placement queries for hard-to-retrieve traces,” in Proc. of the IEEE/ACM
International Conference on Automated Software Engineering (ASE’10).
ACM, 2010, pp. 245–254.

[12] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proc. of the 26th International Conference on Neural Information
Processing Systems (NIPS’13) Volume 2. Curran Associates Inc., 2013,
pp. 3111–3119.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient es-
timation of word representations in vector space,” CoRR, 2013,
https://arxiv.org/abs/1301.3781.

[14] D. Blue, I. Segall, R. Tzoref-Brill, and A. Zlotnick, “Interaction-based
test-suite minimization,” in Proc. of the 2013 International Conference
on Software Engineering (ICSE 2013). IEEE Press, 2013, pp. 182–191.

[15] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., 1983.

[16] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis,” in Proc. of the 20th
International Joint Conference on Artificial Intelligence (IJCAI’07).
Morgan Kaufmann Publishers Inc., 2007, pp. 1606–1611.

[17] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an
industrial case study in retrieving equivalent requirements via natural
language processing techniques,” IEEE Transactions on Software Engi-
neering, vol. 39, no. 1, pp. 18–44, Jan. 2013.

646

Improving Integration Testing of Web Service by Propagating
Symbolic Constraint Test Artifacts Spanning Multiple Software

Projects

Andreas Fuchs F Vincent von Hof F

F University of Münster

Abstract

Software testing is a process involving multiple
consecutive testing phases. Once software-units and
-components have been tested, the integration of
software-components itself must be tested. This dis-
cipline of Integration Testing involves multiple sys-
tems and resources (human and hardware) and the ef-
fort for successfully implementing an integration test-
ing scheme is easily underestimated. Yet errors de-
tected in this phase of the testing process, may require
fixes in the individual software components. Trivially,
if many such problems appear, the testing process is de-
layed and in the worst case, the roll-out of the system
has to be rescheduled. Focusing on the widely adopted
Java Enterprise Edition platform for web-services, this
paper presents an approach to move the detection of
possible integration errors from the integration testing
phase to the earlier and simpler unit testing phase, by
generating and collecting constraints relating to web-
service calls on the client side, in order to improve the
overall time required for the testing process.

1 Introduction
Recently, it was demonstrated how to automatically

generate unit tests for the business logic of Java ap-
plications that include web services [11]. More specif-
ically, a minimal set of test cases is generated which
cover the control-flow graph of that application, e.g. for
the Checkout Counter employing a Library Service

as depicted in Figure 1. If a path depends on the re-
sponse of a web-service request, an executable web ser-
vice with the desired behavior is generated as well. To
achieve this, the application is executed symbolically

in order to systematically explore all paths through
the application. During this execution, a system of
constraints with symbolic variables for both the ap-
plication’s input is created, as well as the web service
responses. Once the symbolic execution of one path is

finished, a constraint solver is used to generate concrete
values for every symbolic variable constellation. In the
end, those values guide the generation of executable
test cases and a set of web services which correspond
to the expected behavior. Thus, the generated service
acts as a stub, which always returns the same result
regardless of change in input, or as a mock, where the
return value is based on method-internal logic.

It is important to note, that the web services gen-
erated by this approach only mimics the model based
on the client’s knowledge of the server, since the server
source code is a black box to the client during gener-
ation time. While this has its own merit, integration
testing is still required to ascertain flawless component
integration. In software engineering systems are often
designed in a waterfall model approach. After writ-
ing the code, unit tests are written (or generated and
validated). Afterwards the individual software compo-
nents are tested regarding their integration with one
another. Since more than two components may exist
in a system, the integration between each and every
one of them needs to be tested. This may occur for
the individual component pairs, larger sets or in a ”big
bang” approach. For large systems with several inte-
grated components, there may exists a large amount
of these tests. Larger software companies, e.g. Google
LLC, restrict themselves to only write integration tests
for ”large, high priority“ features [21]. Integration tests
are often run during off-hours of development. Prob-
lems that occur, can only be fixed the next day. If
problems relate to two interconnected components that
both require correction, a problem with the fixes is only
detected upon the next integration testrun—another
round of fixes may be required.

We propose a system, that utilized the constraints
generated during the web service automated test case
generation phase from one (client) component, during
the test case generation phase of a (server) component.
The resulting unit test case suite is then to be inter-

DOI reference number: 10.18293/SEKE2018-128

647

preted as follow: If a unit test case of this specific test
suite fails upon execution of the unit testing phase,
it hints at a problem that might occur later during
integration testing. By moving the detection time of
potential problems from the integration- to the unit-
testing-phase, problems that may occur due to changes
that were made to the server component are uncovered
earlier. Then, testers may run a small subset of the
integration test only involving these involved compo-
nents, thus reducing the total amount of time required
to remedy the problem.

To summarize, this paper provides the following con-
tributions:

• The detection of integration errors is shifted to
earlier testing phases.
• A system for reusing and sharing of constraint in-

formation is presented.
• We utilize the constraint sharing system to propa-

gate constraints to the automatic test case gener-
ation tool and generate a distinct integration test-
suite for the web-service software component.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the phases of software test-
ing and specifically about the relation . In Section 3 we
describe how the generated constraints can be gathered
and propose an infrastructure schema for exchanging
constraint data. In Section 4, we present related work
that is comparable to our approach, and we conclude
this paper in Section 5.

2 Integration Testing in the Develop-
ment Process

The V-Model is an abstract representation of the
process used for software development [9]. It can be
considered an extension of the waterfall model [9]. In
Figure 2, the left hand side of the model represents
steps necessary to define the goal software system.
Based upon the requirement specification, the function
and non-functional specification are developed. This
model omits, that the two lowest phases occur a num-
ber of times for a given requirement specification, de-
pending on how many systems are involved.

Afterwards, a technical specification is defined, and
the individual programs are specified. After the ac-
tual development of the software artifacts, they are

Checkout

Counter

Library

Service

Loan Request

Figure 1: An overview of two systems that exchange
data.

Requirement

Specification

Functional

Specification

Technical

Specification

Program

Specification

Program

Development

Unit

Testing

Integration

Testing

IaTCG

System

Testing

Acceptance

Testing

Figure 2: A Software Development V-Model with In-
tegration aware Test Case Generation (IaTCG).

1

2 public c lass CheckoutCounter {
3 private f ina l long maxBalance = 50L ;
4

5 private Loan createLoan (In t eg e r userId , L ist<
Str ing> books) {

6 User user = l i b r a r y . getUser (use r Id) ;
7 long balance = l i b r a r y . getBalance (user) ;
8 i f (balance <= maxBalance) {
9 Loan approvedLoan = l i b r a r y . requestLoan (

user , books) ;
10 return approvedLoan ;
11 }
12 throw new In su f f i c i en tFundsExcept i on () ;
13 return null ;
14 }
15 . . .
16 }

Figure 3: Checkout Counter Client.

unit tested to ascertain whether or not they meet the
program testing goals. At this step, automated test
case generation may be utilized to develop the unit test
cases. If the individual programs adhere to the goals,
the integration of the programs according to the tech-
nical specification is checked. The goal of the paper,
relates to this and the aforementioned step unit-testing.

Integration testing of the individual software com-
ponents may occur in a top-down, bottom-up or big-
bang fashion, among others [5]. Assuming, that there
is some hierarchy in the way modules are integrated, we
may call modules, that require none of the other mod-
ules to offer their functionality as basic. For bottom-
up and for top-down testing modules will be assigned
to groups. In the case of bottom-up integration test-
ing, basic modules make up level 0. Level 1 makes
up groups of modules, that require some of the level

648

1

2 public c lass L ib ra rySe rv i c e {
3 private f ina l long maxBalance = 50L ;
4

5 @WebMethod
6 public Loan requestLoan (User user , L i s t<

Str ing> books) {
7 long balance = getBalance (user) ;
8 i f (balance >= maxBalance) {
9 return null ;

10 }
11 Loan loan = createLoan (user , books) ;
12 return loan . get Id () ;
13 }
14 . . .
15 }

Figure 4: Initial Library Service Server.

0 modules to be present upon execution. This holds
for all other levels i + 1 , i ∈ N . Abiding by this pro-
cess, the modules and their dependencies are executed
concretely during this stage.

Using the top-down approach, the lower level de-
pendencies are not present upon integration testing.
The functionality of the lower-level dependencies is pro-
vided by a mock service instead, that mimic the behav-
ior of the lower-level dependencies. This is also a viable
approach,as the mocks can be designed in such a way,
that they are very close in behavior to the functional-
ity checked by test cases used in the lower-level depen-
dencies interfaces. A mismatch of mock behavior and
lower-level interface test behavior is problematic. Of
course, bottom-up and top-down approach can be com-
bined into a mix to decrease integration testing time,
depending on the tree structure of the dependency hi-
erarchy tree.

Finally, integration testing can occur by starting all
modules at the same time and testing the modules in
arbitrary order or even at once. However, first, depend-
ing on the amount of modules, it may be problematic
to create an runtime environment as that matches the
hardware of the production system. Second, if the tests
are not run at the same time, the integration test will
take a large amount of time, compared to the other
approaches. Third, if the tests are run at the same
time, it may be hard to determine which module in the
module call tree failed. This can be remedied, if error
handling and propagation are well designed and allow
for tracing by bubbled errors messages. Side effects of
running all modules of the system at once may occur
that influence the test. Coincidentally, the detection of
occurrences of these kinds of problems, is one reason
why a big-bang test may be employed in complement
with bottom-up, top-down or mixed strategies.

Next, system testing involves testing concrete user
workflows, e.g. from user creation, login, and book

1

2 public c lass LibraryServ iceV2 {
3

4 @WebMethod
5 public Loan requestLoan (User user , L i s t<

Str ing> books){
6 long maxBalance = getMaxBalance (user) ;
7 long balance = getBalance (user) ;
8 i f (balance >= maxBalance) {
9 return null ;

10 }
11 Loan loan = createLoan (user , books) ;
12 return loan . get Id () ;
13 }
14 . . .
15 }

Figure 5: Second Version of Library Service Server.

lending in our library example illustrated in Figure 1.

Finally, the process concludes with the acceptance
testing phase. Initially, based upon the initial require-
ments specification, project acceptance criteria were
devised, that specify, what parts of the requirements
need to be fulfilled, so that the software component is
accepted as complete. Furthermore, to allow for some
room for error in software development, it specifies how
many high level, medium level and low level test fail-
ures are acceptable for the module to still past the ac-
ceptance test.

Considering the example in Figure 34, Line 2 in
CheckoutCounter and Line 2 in LibraryService
specify a maximum balance in unpaid fees that a li-
brary may accumulate, before he is denied a book loan.
If the implementation of LibraryService changes as
illustrated in Figure 5, where the maximum balance
is now an attribute defined on a per-user basis, the
CheckoutCounter would potentially not throw the
desired InsufficientFundsException to display a
message to the counter clerk.

3 Integration Aware
Test Case Generation

This section, will describe the approach, constraint
propagation system and test case generation of the pro-
posed new JUnit test suites for automatically creating
integration checker tests that take the real behavior
of multiple modules into account. The scheme pro-
posed here, is depicted in Figure 6. (1) The modified
symbolic execution system takes as input the client un-
der test (CUT). For each symbolically executed path
π through the CUT, the system generates a set Cπ of
constraints. (2) Next, the constraints are filtered into
the set CI ⊆ Cπ, This represents only the constraints
relating to variables involved in web services calls. Cur-
rently, we use a file that stores these constraints (con-
straint store).

649

Symbolic

Execution

System

CUT

(1)

Constraint

Store

CI = {c1, ..., cn}
(2)

Symbolic

Execution

System

CI (4)

WS

(3)

TC

(5)

Figure 6: An overview of the constraint propagation
and test case generation approach.

Additionally, a unique service identifier name N
that represents the called component is calculated. It
contains the following information.

I) The domain or the network address of the called
web service,

II) the number and type of parameters of the called
method and

III) the return type of the called method.

Finally, CI and N are send to the constraint store.
In a second phase, we use the constraint store and

the service under test (including the web service) to
generate a test case (TC) for π through the CUT.

Using stored constraints for integration
checker test suite generation. (3) The second part
of the schema occurs, once the modified symbolic exe-
cution system is started in server side generation mode.
The result of the server mode execution depend on the
constraint store. The modified symbolic execution sys-
tem generates the service ID object for the method un-
der test, by examining the annotations present prior to
the method declaration. The constraint store is queried
for the constraint set for this service ID. (4) If the con-
straint store offers an empty set as result, the compu-
tation is finished. Otherwise, the test case generator
receives the result set CI and starts in normal execu-
tion mode, i.e. without taking the received constraints
into account. Once this step is completed, the test case
generator starts in additional execution mode. The
gathered constraints CI relate to the parameters and re-
turn variable of the method under test. Whenever the
symbolic execution passes a choice-point, we conjunct
the constraints CI to the constraint stack and check the
constraint solver for satisfiability as usual. This contin-
ues, until the choice-point stack is empty and all node
and edges of the control-flow graph have been covered.
If a branch, that was previously unreachable in normal
mode, becomes reachable in additional mode, this hints
at a possible integration error. (5) If a branch becomes
unreachable, we keep the normal branch, but generate
a failing test case. The test cases generated for these

1 public Libra ryServ i c eTes t {
2 @Test
3 public void t e s t () {
4 User pete r = new User () ;
5 Account p e t e rB i l l i n g = new Account () ;
6 p e t e rB i l l i n g . se tUser (pete r) ;
7 p e t e rB i l l i n g . se tBalance (51L) ;
8 p e t e rB i l l i n g . s e tL imi t (52L) ;
9

10 LibraryServ iceV2 ws = new LibraryServ iceV2 ()
;

11 assertNotEquals (null) ,ws . requestLoan (peter ,
null)) ;

12 }
13

14 @Test
15 @Category (Po t en t i a l I n t e g r a t i onFau l t . class)
16 public void te s t IA () {
17 User pete r = new User () ;
18 Account p e t e rB i l l i n g = new Account () ;
19 p e t e rB i l l i n g . se tUser (pete r) ;
20 p e t e rB i l l i n g . se tBalance (51L) ;
21 p e t e rB i l l i n g . s e tL imi t (52L) ;
22

23 LibraryServ iceV2 ws = new LibraryServ iceV2 ()
;

24 assertNotEquals (null , ws . requestLoan (peter ,
null)) ;

25 f a i l (”The add i t i ona l execut ion revea led ,
that t h i s branch became unreachable ”) ;

26 }
27 }

Figure 7: Normal WS′ Test Case and additional (inte-
gration) Web Service WS′ Test Case.

branches, are saved into a dedicated test suite, marked
with PotentialIntegrationFault.

Making use of the dedicated test suite. The
new additional automated generate test suite is used
as follows. Instead of creating a component stub or
mock for top-down and mixed-mode integration test-
ing or including the whole lower-level component in the
component currently under integration testing, neither
is necessary to reap benefits of the new approach. In-
stead, the dedicated test suite is executed against the
unmodified program, if information regarding the com-
patibility of component external use of the method is
required. Should one of the dedicated test suites fail,
this does not necessarily point to an error in the server
code. However, it does indicate, that the client that
was responsible for the creation of the relevant con-
straints, will fail if it runs into the parameter scenario
described in the test case. If, e.g., the failure of the
dedicated test suite occurs after the server code was
changed, then if this change is deemed to be correct,
then the corresponding client should be informed, that
an impending change to the server will certainly im-
pede the client operation. A secondary benefit of this
approach is, that given the case of service usage across
organizational borders, clients may voluntarily offer
their server usage constraints to the constraint store, to

650

possibly guide development of the server component or
at least be notified of impending compatibility break-
ing changes on the server side. Consider the simpli-
fied example: Figure 4 is the actual implementation
on the server side. The developers introduce a change
to the service which results in Figure 5. The client is
unaware of these changes and does not adapt the im-
plementation accordingly. However, if the constraints
regarding the service usage are stored in the constraint
store, upon generating test cases for the server project,
the problematic usage of the client can be exposed.
Figure 7 depicts the results of both the normal exe-
cution in Lines 1-12 and the additional generation step
in Lines 14-26. The additional generation procedure
test case will fail upon execution, giving the hint to the
server, that there is a problem with the way the service
is utilized.

4 Related Work

Automated test data and test case generation has
been the subject of an extensive research effort. As
a result, several techniques and tools have been pro-
posed. Search-based approaches [13] use optimization
algorithms to identify (near) optimal solutions. This
approach can be applied to software testing [3, 6, 16, 18]
by optimizing testing criteria. EvoSuite [10] is an au-
tomated search-based unit test generation approach.

Our approach is based upon symbolic execution.
EFFIGY [14] is one of the earliest systems that uses
symbolic execution to generate test cases for programs.
Recent approaches [7, 12, 19, 20] use symbolic (or con-
colic as a combination of symbolic and concrete) ex-
ecution to generate test cases for more complex pro-
grams. Muggl [17] is an symbolic-execution tool for
automated unit test generation.

Based on this, several techniques exist, that aim
to test web service, e.g. by generating data for re-
quests that invoke specific operations of the service
[2, 4, 22, 8, 15] and generate unit tests based upon
the source code [11, 1]. However, these techniques take
only either the client-, or only the server-side into con-
sideration and are unaware of integration implications
that can be observed if both sides are taken into ac-
count. To the best of our knowledge, no other ap-
proaches have used the constraints generated during
symbolic execution of web service clients and reused
them to generate a dedicated test suite for the purpose
of detecting potential integration test failure ahead of
the integration test phase.

5 Conclusion

Integration testing requires significant amount of
time and resources to complete, which is why some

larger companies restrict the use of integration testing
to high profile features [21]. To answer this, we have
presented an approach to move the detection of po-
tential errors regarding the integration of service from
the integration phase to earlier phases, by enabling the
detection of potential problems during test case gener-
ation for single component (mock-less) unit testing.

The approach extends an existing symbolic execu-
tion automated test case generation tool, capable of
generating web service mocks and stubs, with the abil-
ity of reusing constraints as test artifacts for future test
case generation runs. This allows us to detect if service
consuming clients—even from other organizations—
may be affected by changes in the source code of
the service providing classes, without doing integration
testing.

Due to the prototypical nature of this work, the con-
straint store only stores its artifacts directly as objects,
so a more robust architecture for storing constraints
would be preferable. Currently, the work focused on
web services, as they are a popular means of integrat-
ing components across organizational boundaries, but
it can be easily applied to other modes of interaction,
e.g. message oriented middleware.

References

[1] A. Arcuri. RESTful API Automated Test Case
Generation. In Software Quality, Reliability and
Security (QRS), 2017 IEEE International Confer-
ence on, pages 9–20. IEEE, 2017.

[2] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen.
WSDL-based Automatic Test Case Generation for
Web Services Testing. In Service-Oriented Sys-
tem Engineering, 2005. SOSE 2005. IEEE Inter-
national Workshop, pages 207–212. IEEE, 2005.

[3] A. Baresel, D. Binkley, M. Harman, and B. Ko-
rel. Evolutionary Testing in the Presence of Loop-
assigned Flags: A Testability Transformation Ap-
proach. In ACM SIGSOFT Software Engineering
Notes, volume 29, pages 108–118. ACM, 2004.

[4] C. Bartolini, A. Bertolino, E. Marchetti, and
A. Polini. WS-TAXI: A WSDL-based Testing Tool
for Web Services. In Software Testing Verifica-
tion and Validation, 2009. ICST’09. International
Conference on, pages 326–335. IEEE, 2009.

[5] R. V. Binder. Testing object-oriented systems:
models, patterns, and tools. Addison-Wesley Pro-
fessional, 2000.

[6] L. C. Briand, Y. Labiche, and M. Shousha. Stress
testing real-time systems with genetic algorithms.

651

In Proceedings of the 7th annual conference on Ge-
netic and evolutionary computation, pages 1021–
1028. ACM, 2005.

[7] C. Cadar, D. Dunbar, D. R. Engler, et al. KLEE:
Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs.
In OSDI, volume 8, pages 209–224, 2008.

[8] T. Fertig and P. Braun. Model-driven Testing of
RESTful APIs. In Proceedings of the 24th Inter-
national Conference on World Wide Web, pages
1497–1502. ACM, 2015.

[9] K. Forsberg and H. Mooz. The Relationship of
System Engineering to the Project Cycle. In IN-
COSE International Symposium, volume 1, pages
57–65. Wiley Online Library, 1991.

[10] G. Fraser and A. Arcuri. Evosuite: automatic test
suite generation for object-oriented software. In
Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foun-
dations of software engineering, pages 416–419.
ACM, 2011.

[11] A. Fuchs and H. Kuchen. Test-case generation for
web-service clients. In Proceedings of the The 33rd

ACM/SIGAPP Symposium On Applied Comput-
ing, Pau, France, 2018. Publication status: Ac-
cepted.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In ACM
Sigplan Notices, volume 40, pages 213–223. ACM,
2005.

[13] M. Harman and B. F. Jones. Search-based Soft-
ware Engineering. Information and Software Tech-
nology, 43(14):833–839, 2001.

[14] J. C. King. Symbolic Execution and Program
Testing. Communications of the ACM, 19(7):385–
394, 1976.

[15] P. Lamela Seijas, H. Li, and S. Thompson. To-
wards Property-Based Testing of RESTful Web
Services. In Proceedings of the twelfth ACM SIG-
PLAN workshop on Erlang, pages 77–78. ACM,
2013.

[16] Z. Li, M. Harman, and R. M. Hierons. Search
Algorithms for Regression Test Case Prioritiza-
tion. IEEE Transactions on software engineering,
33(4), 2007.

[17] T. A. Majchrzak and H. Kuchen. Automated
test case generation based on coverage analysis.
In Theoretical Aspects of Software Engineering,
2009. TASE 2009. Third IEEE International Sym-
posium on, pages 259–266. IEEE, 2009.

[18] P. McMinn, M. Harman, D. Binkley, and
P. Tonella. The Species per Path Approach to
Search-Based Test Data Generation. In Proceed-
ings of the 2006 international symposium on Soft-
ware testing and analysis, pages 13–24. ACM,
2006.

[19] C. S. Păsăreanu and N. Rungta. Symbolic
PathFinder: Symbolic Execution of Java Byte-
code. In Proceedings of the IEEE/ACM interna-
tional conference on Automated software engineer-
ing, pages 179–180. ACM, 2010.

[20] K. Sen, D. Marinov, and G. Agha. Cute: a con-
colic unit testing engine for c. In ACM SIG-
SOFT Software Engineering Notes, volume 30,
pages 263–272. ACM, 2005.

[21] M. Wacker. Just say no to more end-to-end tests.
http://googletesting.blogspot.co.uk/2015/

04/just-say-no-to-more-end-to-end-tests.

html.

[22] W. Xu, J. Offutt, and J. Luo. Testing Web Ser-
vices by XML Perturbation. In Software Relia-
bility Engineering, 2005. ISSRE 2005. 16th IEEE
International Symposium on, pages 10–pp. IEEE,
2005.

652

Prioritizing Unit Testing Effort Using Software
Metrics and Machine Learning Classifiers

Fadel TOURE
Department of Mathematics and Computer Science,

University of Quebec at Trois-Rivières,
 Trois-Rivières, Québec, Canada.

Fadel.Toure@uqtr.ca

Mourad BADRI
Department of Mathematics and Computer Science,

University of Quebec at Trois-Rivières,
 Trois-Rivières, Québec, Canada.

Mourad.Badri@uqtr.ca

Abstract— Unit testing plays a crucial role in object-oriented
software quality assurance. Unfortunately, software testing is
often conducted under severe pressure due to limited resources
and tight time constraints. Therefore, testing efforts have to be
focused, particularly on critical classes. As a consequence,
testers do not usually cover all software classes. Prioritizing
unit testing effort is a crucial task. We previously investigated
a unit testing prioritization approach based on software in-
formation histories. We analyzed different attributes of ten
open-source Java software systems tested using the JUnit
framework. We used machine learning classifiers (Multivari-
ate Logistic Regression and Naïve Bayes) to obtain, for each
system, a set of classes to be tested. The obtained sets of candi-
date classes have been compared to the sets of classes for
which JUnit test cases have been actually developed by testers.
The cross system validation (CSV) technique results showed,
among others, that the sets of candidate classes suggested by
machine learning classifiers properly reflect the testers’ selec-
tion. In this paper, we extend our previous work by investigat-
ing more classifiers and using leave one system out validation
(LOSOV) technique. This LOSOV technique uses a combina-
tion of training datasets from different systems. The obtained
results indicate that: (1) the new classifiers correctly suggest
classes to be tested, and (2) tested classes are particularly well
predicted in the case of large-size systems.

Key words— Tests Prioritization; Unit Tests; Source Code Met-
rics; Machine Learning Classifiers.

I. INTRODUCTION
Unit testing is one of the main phases of the testing pro-

cess where each software unit is individually tested using
dedicated unit test cases. In object-oriented (OO) software
systems, units are software classes and testers usually write
a dedicated unit test class for each software class they de-
cided to test. The main goal is to early reveal faults in soft-
ware classes. In the case of large-scale OO software sys-
tems, because of resource limitations and tight time con-
straints, the unit testing efforts are often focused. Testers
usually select a limited set of software classes for which
they write dedicated unit tests. Hence, it is important to
target the most critical and fault-prone ones. However, the
task is not obvious and requires a deep analysis of software.
In this paper, we focus on how to automatically target suita-
ble classes, candidates to unit testing. Our approach relies
on classifiers algorithms trained on different unit tests in-
formation and source code metrics collected from different
software systems.

A large number of OO metrics, related to different OO
internal class attributes, have been proposed in literature [1,
2]. Some of these metrics have already been used in recent
years to predict unit testability of classes in OO software
systems [3-9]. The authors noticed that, for each of the ana-
lyzed systems, unit test cases have been developed only for
a subset of classes. In our previous work [10], we tried to
understand and determine, using different source code at-
tributes, which criteria have been considered during the
classes’ selection. We investigated, using Multivariate Lo-
gistic Regression (MLR) and Naive Bayesian (NB) classifi-
ers, how to automate and improve the selection of classes on
which unit testing effort has to be focussed using source
code metrics. In the current study, we considered two more
well-known classifiers (K-Nearest Neighbors (KNN) and
Random Forest (RF) algorithms). We also used the Cross
System Validation (CSV) and the Leave One System Out
Validation (LOSOV) techniques. The LOSOV technique
allows, in particular, combining data from various systems
as training datasets. The goal was to determine, firstly, the
affinities that may exist between prediction dataset systems
and training dataset systems according to their characteris-
tics (such as size, type, category, etc.) and, secondly, to
investigate to what extent the combined datasets could im-
prove or degrade the learners’ prediction levels.

The rest of the paper is organized as follows. Section 2
presents some related works. Section 3 presents the OO
software metrics we used in the study. Section 4 describes
the data collection procedure. Section 5 presents the empiri-
cal study that we conducted. Section 6 focuses on the main
threats to validity related to our empirical experimentations.
Finally, Section 7 concludes the paper, summarizes the con-
tributions of this work and outlines several directions for
future investigations.

II. RELATED WORK
Many researchers have proposed different tests prioriti-

zation techniques in the literature, particularly in the context
of regression testing. The proposed techniques are based on
various criteria such as fault detection, coverage rates, soft-
ware history information, and risk analysis.

In fault detection based techniques, the main goal is to
run test cases that target the most fault prone components.
These techniques use different factors of fault exposure as
proxies, which can be estimated in different ways from the
software artifacts. These approaches have been proposed,
among others, by Rothermel et al. [11] and Yu and Lau
[12]. Results showed that these techniques improve the fault
detection rates. DOI reference number: 1018293/SEKE2018-146

653

In coverage based techniques, the main goal is to run test

suites that cover most modified software artefacts during
regression testing. The authors [13-15] used Naïve Bayes,
Genetic Algorithms and different levels of granularity to
implement their prioritization approaches. Results showed
that coverage based techniques also lead to fault detection
rate improvement. Rothermel et al. [11] compared nine test
case prioritization techniques based on random prioritiza-
tion, coverage prioritization and fault detection prioritiza-
tion. Obtained results provide insights into the trade-offs
among various techniques for test cases prioritization.

The history based prioritization uses information from
previous regression tests of the same software system and
current modification information in order to prioritize the
new given test suites. This makes the prioritization tech-
nique unsuitable for the first regression testing of software.
Kim and Porter [16] used the historical execution data to
prioritize test cases for regression tests, while Lin et al. [17]
investigated the weight of used information between two
versions of history based prioritization techniques. The dif-
ferent results indicated that the history based prioritization
provides a better fault detection rate.

Carlson et al. [18] mixed history and coverage based
techniques using a clustering based prioritization technique.
They improved the effectiveness of test cases prioritization
techniques. Elbaum et al. [19] analyzed the conditions under
which techniques are relevant. The obtained results provide
insights and conditions into which types of prioritization
techniques are or are not appropriate under specific testing
scenarios.

Some other techniques allow, upstream, the prioritiza-
tion of components to be tested. The goal is to optimize the
testing efforts distribution by targeting the most fault prone
components. Boehm and Basili [20] proposed a Pareto dis-
tribution in which 80% of all defects within software are
found in 20% of the modules. Ray and Mohapatra [21] rely
on that Pareto distribution to address the question of com-
ponents prioritization. Shihab et al. [22] explored the priori-
tization for unit testing phase in the context of legacy sys-
tems.

Ray and Mohapatra’ approach [21] ignores the history of
the software, whereas the approach of Shihab et al. [22] is
not suitable for new software. Moreover, neither approach
takes advantage of the large amount of information availa-
ble in the public open source repositories. In [10], we pro-
posed the prioritization of unit test candidate classes for OO
software systems. We conjectured that testers generally rely
on classes’ characteristics captured by source code metrics,
in order to select the components to test. Thus, we proposed
an approach that takes advantage of different software test-
ers experiences and software class attributes, in order to
prioritize classes (candidates) to be tested. With the same
systems, the same software metrics, more learning algo-
rithms and LOSOV technique, the current study focusses on
the systems dataset affinities and the effect of merged train-
ing datasets on learner prediction performances. The long-
term objective is to build a collaborative IDE plugin, based
on tests information history and some specific metrics that
support the tests prioritization decisions with suitable ma-
chine learning techniques.

III. SOFTWARE METRICS
We present, in this section, the OO source code metrics

we selected for the empirical study. These metrics have
received considerable attention from researchers and are

also being increasingly adopted by practitioners as testabil-
ity [3-9,23], maintainability [24-26], and fault proneness
[26-31] indicators. These metrics have been computed using
Borland Together IDE (http://www.borland.com). We also
included the well-known source lines of code metric.
• Coupling Between Objects: The CBO metric counts for a

given class, the number of other classes to which it is
coupled and vice versa.

• Weighted Methods per Class: The WMC metric gives the
sum of the complexities of the methods of a given class,
where each method is weighted by its cyclomatic com-
plexity [27]. Only methods specified in the class are con-
sidered.

• Lines Of Code per class: The LOC metric counts for a
given class its number of source lines of code.

IV. DATA COLLECTION

A. Data collection procedure
The selected systems have been developed by different

teams in Java language and tested using the JUnit frame-
work. JUnit (http://www.junit.org/) is a simple framework
for writing and running automated unit tests for Java clas-
ses. A typical usage of JUnit is to test each class Cs of the
software by means of a dedicated test class Ct. To actually
test a class Cs, we need to execute its test class Ct by calling
JUnit’s test runner tool. JUnit will report how many of the
test methods in Ct succeeded, and how many failed.

We used the prefix/suffix linking approach, as other au-
thors [4, 23, 32-33], to match each software class to its JUn-
it test class (es). Indeed, developers usually name the JUnit
dedicated test classes by prefixing or suffixing the name of
software class under the test by “Test” or “TestCase”. We
assign the modality 1 to the set of tested classes and the
modality 0 to the remaining classes, referred as untested
classes.

B. Selected Systems
We extracted information from the repositories of 10

open source OO software systems that were developed in
Java. For each system, only a subset of classes has been
tested using the JUnit framework. We present in the follow-
ing the selected systems, from small size to large-size sys-
tems.
• IO (https://commons.apache.org/proper/commons-io/):

Commons IO is a library of utilities for developing In-
put/Output functionalities. It is developed by Apache
Software Foundation (ASF).

• MATH (http://commons.apache.org/proper/commons-
math/): Commons MATH is a library of lightweight, self-
contained mathematics and statistics.

• JODA (http://joda-time.sourceforge.net/): JODA-Time is
the de facto standard library for advanced date and time
in Java.

• DBU (http://dbunit.sourceforge.net/): DbUnit is a JUnit
extension (also usable with Ant) used in database-driven
projects that, among others, put a database into a known
state between test runs.

• LOG4J (http://wiki.apache.org/logging-log4j/): Log4j is a
fast and flexible framework for logging applications de-
bugging messages.

• JFC (http://www.jfree.org/jfreechart/): JFreechart is a
free chart library for Java platform.

654

TABLE I: DESCRIPTIVE STATISTICS
 MATH JFC

CBO LOC WMC CBO LOC WMC
Obs. 94 94 94 411 411 411
Min. 0 2 0 0 4 0
Max. 18 660 174 101 2041 470
Sum 306 7779 1824 4861 67481 13428
µ 3.255 82.755 19.404 11.827 164.187 32.672
σ 3.716 97.601 25.121 14.066 228.056 46.73
Cv 1.141 1.179 1.295 1.189 1.389 1.43

 IO IVY
CBO LOC WMC CBO LOC WMC

Obs. 100 100 100 610 610 610
Min. 0 7 1 0 2 0
Max. 39 968 250 92 1039 231
Sum 405 7604 1817 5205 50080 9664
µ 4.05 76.04 18.17 8.533 82.098 15.843
σ 5.702 121.565 31.751 11.743 141.801 27.38
Cv 1.408 1.599 1.747 1.376 1.727 1.728

 JODA LUCENE
CBO LOC WMC CBO LOC WMC

Obs. 201 201 201 615 615 615
Min. 0 5 1 0 1 0
Max. 36 1760 176 55 2644 557
Sum 1596 31339 6269 3793 56108 10803
µ 7.94 155.915 31.189 6.167 91.233 17.566
σ 6.443 210.974 30.553 7.243 192.874 35.704
Cv 0.811 1.353 0.98 1.174 2.114 2.033

 DBU ANT
CBO LOC WMC CBO LOC WMC

Obs. 213 213 213 663 663 663
Min. 0 4 1 0 1 0
Max. 24 488 61 41 1252 245
Sum 1316 12187 1989 4613 63548 12034
µ 6.178 57.216 9.338 6.958 95.849 18.151
σ 5.319 60.546 9.451 7.25 132.915 24.168
Cv 0.861 1.058 1.012 1.042 1.387 1.332

 LOG4J POI
CBO LOC WMC CBO LOC WMC

Obs. 231 231 231 1382 1382 1382
Min. 0 5 1 0 2 0
Max. 107 1103 207 168 1686 374
Sum 1698 20150 3694 9660 130185 23810
µ 7.351 87.229 15.991 6.99 94.2 17.229
σ 10.119 130.419 25.7 10.782 154.282 28.319
Cv 1.377 1.495 1.607 1.543 1.638 1.644

• IVY (http://ant.apache.org/ivy/): IVY is a simple and

flexible agile dependency manager tightly integrated with
Apache Ant.

• LUCENE (http://lucene.apache.org/): LUCENE is a
high-performance, full-featured text search engine library
suitable for applications requiring full-text search.

• ANT (http://www.apache.org/): ANT is a Java library
and command-line tool that drives processes described in
build files as target.

• POI (http://poi.apache.org/): POI is a Java APIs for ma-
nipulating various file formats based upon the Office
Open XML standards and Microsoft's OLE2.

C. Descriptive Statistics
Table I summarizes the statistics of selected metrics of

all systems. It shows that the considered systems are of dif-
ferent sizes. The number of lines of code varies from 7,600
lines spread over 100 software classes (IO), to more than
130,185 lines of code over 1,382 software classes (POI).
Table I also suggests 4 groups of systems according to their
size: (1) the small-size systems, about 100 classes (IO and
MATH), (2) the medium-size systems around 200 classes
(LOG4J, DBU and JODA), (3) the large-size systems, be-
tween 400 and 600 classes (LUCENE, IVY, ANT and JFC),
and (4) the very large-size systems over than 1,000 software
classes (POI).

The average cyclomatic complexity varies widely be-
tween systems with similar sizes. Indeed, the medium-size
systems, JODA and DBU, have a quite different average of
cyclomatic complexity (9.34 vs 31.18). Similar trend is
observed for LUCENE and JFC systems. In the dataset,
each row has a binary attribute TESTED taking modalities 1
or 0 indicating whether it is a tested class or untested class.

V. EMPIRICAL ANALYSIS

A. Research questions

The current study focusses on the systems’ dataset af-
finities and the effect of mixing datasets on classifiers’ per-
formance. We tried to respond to the following research
questions:

• RQ1- Can other well-known machine learning algo-
rithms correctly predict the testers' selections?

• RQ2- To what extent can we mix dataset histories of
different systems to predict testers’ selections for a given
new system.

B. Goals
The goal of our first research question (RQ1) is to vali-

date our previous results using other machine learning algo-
rithms, to compare their prediction performances, and to
determine whether they depend (or not) on the type or size

655

TABLE II: CROSS SYSTEM VALIDATIONS
 MATH IO JODA DBU LOG4J JFC IVY LUCENE ANT POI

MATH

LR 0.745 0.590 0.338 0.404 0.160 0.414 0.188 0.184 0.193 0.295
NB 0.723 0.620 0.478 0.521 0.411 0.606 0.400 0.405 0.363 0.418
KNN 0.734 0.64 0.527 0.563 0.416 0.431 0.53 0.48 0.431 0.446
RF 0.926 0.58 0.338 0.469 0.32 0.397 0.382 0.358 0.398 0.391

IO

LR 0.617 0.740 0.458 0.624 0.329 0.623 0.418 0.403 0.359 0.395
NB 0.628 0.710 0.413 0.667 0.494 0.652 0.454 0.433 0.403 0.505
KNN 0.585 0.79 0.418 0.592 0.364 0.275 0.334 0.304 0.275 0.378
RF 0.649 0.94 0.388 0.493 0.394 0.305 0.301 0.366 0.276 0.373

JODA

LR 0.415 0.390 0.711 0.620 0.779 0.620 0.814 0.807 0.796 0.721
NB 0.457 0.420 0.692 0.620 0.771 0.681 0.799 0.800 0.742 0.721
KNN 0.468 0.39 0.841 0.446 0.632 0.698 0.692 0.706 0.698 0.633
RF 0.447 0.43 0.95 0.582 0.684 0.656 0.729 0.62 0.649 0.656

DBU

LR 0.457 0.490 0.622 0.671 0.645 0.664 0.743 0.725 0.677 0.681
NB 0.489 0.600 0.448 0.756 0.589 0.684 0.617 0.571 0.511 0.627
KNN 0.543 0.57 0.453 0.85 0.563 0.538 0.671 0.558 0.538 0.567
RF 0.489 0.49 0.453 0.967 0.563 0.561 0.666 0.58 0.555 0.588

LOG4J

LR 0.436 0.440 0.647 0.554 0.840 0.577 0.818 0.816 0.804 0.728
NB 0.468 0.490 0.637 0.629 0.758 0.672 0.783 0.774 0.692 0.744
KNN 0.394 0.44 0.612 0.577 0.883 0.768 0.803 0.78 0.768 0.719
RF 0.415 0.47 0.602 0.559 0.961 0.724 0.78 0.735 0.719 0.716

JFC

LR 0.511 0.500 0.602 0.601 0.736 0.698 0.766 0.771 0.697 0.724
NB 0.511 0.530 0.597 0.685 0.701 0.689 0.730 0.736 0.632 0.707
KNN 0.404 0.38 0.632 0.592 0.775 0.855 0.794 0.782 0.855 0.69
RF 0.383 0.37 0.667 0.559 0.749 0.952 0.77 0.766 0.958 0.686

IVY

LR 0.383 0.340 0.622 0.596 0.801 0.511 0.822 0.820 0.828 0.726
NB 0.479 0.480 0.667 0.634 0.749 0.696 0.786 0.772 0.707 0.728
KNN 0.404 0.4 0.657 0.592 0.775 0.786 0.893 0.784 0.786 0.726
RF 0.415 0.42 0.642 0.629 0.766 0.736 0.964 0.777 0.741 0.708

LUCENE

LR 0.394 0.360 0.657 0.596 0.814 0.533 0.823 0.820 0.706 0.730
NB 0.468 0.500 0.662 0.615 0.753 0.689 0.784 0.777 0.706 0.736
KNN 0.394 0.45 0.612 0.592 0.805 0.789 0.803 0.863 0.789 0.711
RF 0.426 0.42 0.592 0.554 0.753 0.753 0.798 0.964 0.765 0.705

ANT

LR 0.404 0.360 0.692 0.596 0.823 0.513 0.820 0.816 0.833 0.728
NB 0.394 0.390 0.692 0.629 0.779 0.628 0.814 0.813 0.778 0.735
KNN 0.404 0.38 0.632 0.592 0.775 0.855 0.794 0.782 0.855 0.69
RF 0.404 0.4 0.647 0.573 0.762 0.964 0.788 0.753 0.965 0.696

POI

LR 0.415 0.370 0.682 0.596 0.823 0.582 0.822 0.816 0.837 0.728
NB 0.511 0.540 0.527 0.709 0.714 0.681 0.725 0.712 0.605 0.718
KNN 0.489 0.46 0.572 0.568 0.745 0.7 0.78 0.746 0.7 0.846
RF 0.5 0.49 0.617 0.592 0.736 0.698 0.76 0.756 0.697 0.94

of considered applications (affinities). In the experiment that
we conducted to answer RQ1, the training datasets are com-
posed of 1 system tests information history at the time.
Thus, we could determine potential prediction affinities
between different systems which could lead to introduce
more affinity parameters that may be related to the systems
type, or size, in order to determine the suitable kind of train-
ing dataset for a given new system. To address the second
research question (RQ2), we conducted an empirical study
that uses mixed training datasets from different systems,
builds a classifier and tries to determine whether the datasets
mixing can improve or degrade the predictions obtained in
the previous experiment.

C. Classifiers and cross-system validation
We used machine learning classifiers trained on a sys-

tem’s test information data to provide a set of classes to be
tested for other software systems. We added to the MLR and
NB classifiers previously considered, the well-known K-
KNN and RF algorithms to build prediction models from the
datasets. KNN is an intuitive and fast algorithm that classi-
fies observations according to their similarity. KNN is par-
ticularly suitable for pattern recognition. RF behaves well
when irrelevant features are present or these features have
skewed distributions. The larger the training dataset the
more accurate the classifier. It makes RF particularly inter-
esting when the training dataset is a combined information
of different systems.

1) Cross System Validation

In the CSV technique, datasets collected from each of
the 10 systems are used in turn as training set and the de-
rived classifiers are cross-validated on each of the 9 remain-
ing systems. In such approach, training dataset may be small
depending on the considered system, hence the usefulness of
NB classifiers which can perform on small datasets.

Table II presents the performances of models derived
from MLR, NB, KNN and RF classifiers. In each table, the
cell(i,j) shows the accuracy (1-error) of the 4 classifiers built
from training dataset of the system on row i, and tested on
the dataset of the system on column j. The diagonal cells (k,
k) hold the adjustment (1 – optimistic error) of classifiers on
the dataset of system k. We considered the models with
accuracy values greater than 0.70 (error < 0.30) as good
classifiers. In Table II, systems are sorted from the smallest
one to the largest one in terms of number of classes.

The results show that the very small-size systems
(MATH and IO) form bad training datasets and are not well
predicted. All non-adjustment prediction rates related to
both of the systems are smaller than 70%. Three reasons
may explain these results:
• The small size of the systems. IO (with 100 classes) and

MATH (with 125 classes) are the smallest systems in our
datasets. The dataset they form may not be large enough
to build good classifiers.

• The use of very specific criteria when selecting classes to
be tested leading to over-fitting problems. This hypothe-
sis is supported by the optimistic prediction rates ob-
served on both systems’ diagonal cells.

656

• The lack of a unit test strategy in small-size systems.

With limited software classes, the testers could cover a
higher percent of classes without any strategy. Thus, the
poor rules selection makes irrelevant the information cap-
tured by software metrics. Candidate classes become un-
predictable.
The medium-size systems (DBU JODA and LOG4J) re-

sults are mitigated. LR and NB models based on JODA
training set well predicted all the larger systems except JFC.
JODA’s testers may use common criteria that are also used
when testing larger systems, while DBU testers seem to use
a particular strategy. As a consequence, we obtained the
same performances as for the small-size systems. The same
previous reason may explain DBU’s results. LOG4J results
are similar to large-size systems.

The LOG4J system, the large-size and the very large-
size systems form good training sets and are well predicted
by classifiers trained on their datasets. The results may be
explained by the adoption of an effective tests prioritization
strategy by testers in order to target the critical classes. In-
deed, in large-size systems, testers may adopt an effective
strategy to carefully select the software classes to be tested.
The adopted strategy may suggest large, complex and highly
coupled classes as unit test candidates. Complexity and
coupling attributes are captured by the LOC, WMC and
CBO metrics. This may explain why the associated systems
are well predicted and form good training datasets.

JFC, ANT and IVY are of standalone type systems while
remaining systems are libraries. The results suggest no af-
finity based on the application type. This is supported by the
fact that many libraries are not well predicted by other li-
braries datasets. The good predictions obtained between
standalone apps seem to be related to their size affinity.

The cross-validation results, especially for the medium,
large and very large-size systems, show that it is possible,
based on only a combination of metrics, to construct classi-
fier models from existing software datasets that automatical-
ly suggest, for another software system, a set of classes to be
tested. It also indicates that small systems are unpredictable
and do not form good training datasets. Furthermore, the
most obvious affinity between systems is related to their
size. The larger the systems, the better the training datasets
and the prediction levels of learners.

2) Leave One System Out Validation
In Leave One System Out Validation (LOSOV) tech-

nique, each system will be used in turn as testing dataset to
validate the classifiers derived from the training dataset
formed by the 9 remaining systems. This approach uses
large training datasets and combines different selection cri-
teria if they exist. However, if one of the systems’ testers
randomly selects classes to be tested, it may impact the
whole training dataset quality depending on that system
size.

Table III presents the accuracy rates of the classifiers for
LOSOV. The results confirm those obtained using the CSV
and show that each of medium, large and very large size
systems are well predicted by classifiers trained on merged
dataset of 9 remaining systems. The best accuracy rates vary
from 70.1% to 93.2%.

Some classifiers failed to correctly predict some sys-
tems: NB on JFC system, KNN on POI system and RF on
POI system. The POI data test prediction results may be
explained by its size. Indeed, leaving POI out from training
datasets during the LOSOV may drastically reduce the train-

ing dataset (POI represents 30.7% of classes and 30.5% of
tested classes).

TABLE III: LEAVE ONE SYSTEM OUT VALIDATIONS
 LR NB KNN RF

MATH 0.404 0.457 0.447 0.468
IO 0.37 0.53 0.5 0.41
JODA 0.667 0.627 0.567 0.647
DBU 0.596 0.629 0.573 0.559
LOG4J 0.818 0.736 0.71 0.701
JFC 0.834 0.661 0.846 0.92
IVY 0.84 0.796 0.76 0.747
LUCENE 0.82 0.746 0.732 0.702
ANT 0.834 0.661 0.839 0.932
POI 0.731 0.734 0.681 0.679

The small-size systems are not well predicted since all

classifiers’ prediction rates are smaller than 70%. This result
suggests that their testers used very specific criteria or un-
captured (by metrics) criteria, or may be no criteria during
the selection candidate classes. This result is plausible for
small systems, since testers could test all classes, they also
may not need any particular strategy.

Compared with CSV results, LOSOV slightly improve
and degrade the prediction levels in several cases. However,
LOSOV takes advantage of being usable in real conditions,
in the context of a collaborative tool that supports unit tests
prioritization when different information history (metrics
and tests data) are provided by different teams of develop-
ers.

VI. THREATS TO VALIDITY
The study we presented in this paper was performed on

10 open-source systems containing almost a half million
lines of code (453K). The sample is large enough to allow
obtaining significant results, but the measuring methods and
approaches have limitations that can restrict the generaliza-
tion of certain conclusions.

The external validity threats are mainly related to the
application domain of considered systems. Indeed, some
analyzed systems are mathematical algorithms libraries
(IO), while other systems have more complex architectures
and involve many OO-technology specific artifacts such as
inheritance and polymorphism (JFC). Hence, when a learn-
ing algorithm is trained on some types of systems, it could
be well-adjusted when tested on the datasets of similar do-
main systems and not able to suggest good candidate classes
for other types and domain systems.

The data we collected does not provide any information
on tested classes selection criteria. It may be that, for some
systems, tested classes were randomly selected particularly
for the small size systems.

The main threat of construct validity lies in the tech-
nique we used to match JUnit test classes to software classes
during the tested classes identification. Indeed, the remain-
ing unpaired software classes that are tested by transitive
method invocations are ignored by our approach.

VII. CONCLUSIONS AND FUTURE WORK
Ten open source (Java) software systems have been ana-

lyzed in this study and totalize more than 4400 software
classes. The testers of each system developed dedicated unit
test classes for a subset of classes using the JUnit Frame-
work. In our previous investigations, we explored the possi-
bility of explaining and reusing the selection criteria for
different systems through three experiments using three
source code metrics.

This study extends our previous work by including the

657

KNN and RF classifiers to the MLR and NB classifiers. In
addition to the CSV, we used LOSOV validation technique,
which merges training sets from different systems. The main
objective was to know to what extents the combined infor-
mation of different systems could be a good training set for
the learners and to determine if there exist affinities between
different datasets of systems’ test information history. Re-
sults show that systems with more than a hundred classes
have their tested classed generally well predicted by classi-
fiers built from medium, large and very large systems train-
ing datasets. Furthermore, the obtained results suggest that
all obtained classifiers could help to support unit tests priori-
tization with more than 70% of accurate predictions. The
results of the experiments we conducted become particularly
interesting knowing that effort prioritization is especially
useful during large and complex systems testing. It demon-
strates the viability of a unit tests prioritization automation
technique that uses classifiers trained on merged software
source code metrics with the unit tests information history.
Grouping the systems according to their domains could
improve our results. Since the proposed prioritization tech-
nique suggests a slightly different (30%) tested classes from
those of the testers, it would be pertinent to analyze and
compare their actual performance on covering faulty classes.
This topic will be the next direction of our investigations.

REFERENCES

[1] Chidamber S.R. and Kemerer C.F., 1994. A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493.

[2] Henderson-Sellers B. 1996. Object-Oriented Metrics Measures of
Complexity, Prentice-Hall, Upper Saddle River.

[3] Gupta V., Aggarwal K.K. and Singh Y., 2005, A Fuzzy Approach for
Integrated Measure of Object-Oriented Software Testability, Journal
of Computer Science, Vol. 1, No. 2, pp. 276-282.

[4] Bruntink M. and Van Deursen A. 2006. An Empirical Study into
Class Testability, Journal of Systems and Software, Vol. 79, No. 9,
pp. 1219-1232.

[5] Badri L., Badri M. and Toure F., 2010. Exploring Empirically the
Relationship between Lack of Cohesion and Testability in Object-
Oriented Systems, JSEA Eds., Advances in Software Engineering,
Communications in Computer and Information Science, Vol. 117,
Springer, Berlin.

[6] Badri M. and Toure F., 2011. Empirical analysis for investigating the
effect of control flow dependencies on testability of classes, in Pro-
ceedings of the 23rd International Conference on Software Engineer-
ing and Knowledge Engineering SEKE.

[7] Badri M. and Toure F. 2012. Empirical analysis of object oriented
design metrics for predicting unit testing effort of classes, Journal of
Software Engineering and Applications (JSEA), Vol. 5 No. 7, pp.513-
526.

[8] Toure F., Badri M. and Lamontagne L., 2014. Towards a metrics suite
for JUnit Test Cases. In Proceedings of the 26th International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE
Vancouver, Canada. Knowledge Systems Institute Graduate School,
USA pp 115–120.

[9] Toure F., Badri M. and Lamontagne L., 2014. A metrics suite for
JUnit test code: a multiple case study on open source software, Jour-
nal of Software Engineering Research and Development, Springer,
2:14.

[10] Toure F., Badri M. and Lamontagne L., 2017. Investigating the Priori-
tization of Unit Testing Effort Using Software Metrics, In Proceed-
ings of the 12th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE’17) Volume 1: ENASE,
pages 69-80.

[11] Rothermel G., Untch R.H., Chu C. and Harrold M.J., 1999. Test case
prioritization: an empirical study, International Conference on Soft-
ware Maintenance, Oxford, UK, pp. 179–188.

[12] Yu Y. T. and Lau M. F., 2012. Fault-based test suite prioritization for
specification-based testing, Information and Software Technology
Volume 54, Issue 2, Pages 179–202.

[13] Wong W., Horgan J., London S., and Agrawal, H., 1997. A study of
effective regression in practice, Proceedings of the 8th International
Symposium on Software Reliability Engineering, November, p. 230–
238.

[14] Mirarab S. and Tahvildari L., 2007. A prioritization approach for
software test cases on Bayesian networks, In FASE, LNCS 4422-
0276, pages 276–290.

[15] Walcott K.R., Soffa M.L., Kapfhammer G.M. and Roos R.S., 2006.
Time aware test suite prioritization, Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 2006). ACM
Press, New York, 1–12.

[16] Kim J. and Porter A., 2002. A history-based test prioritization tech-
nique for regression testing in resource constrained environments, In
Proceedings of the International Conference on Software Engineering.

[17] Lin C.T., Chen C.D., Tsai C.S. and Kapfhammer G. M., 2013. Histo-
ry-based Test Case Prioritization with Software Version Awareness,
18th International Conference on Engineering of Complex Computer
Systems.

[18] Carlson R., Do H., and Denton A., 2011. A clustering approach to
improving test case prioritization: An industrial case study, Software
Maintenance, 27th IEEE International Conference, ICSM, pp. 382-
391.

[19] Elbaum S., Rothermel G., Kanduri S. and Malishevsky A.G., 2004.
Selecting a cost-effective test case prioritization technique, Software
Quality Control, 12(3):185–210.

[20] Boehm B. and Basili V. R., 2001. Software defect reduction top-10
list, Computer, vol. 34, no. 1, pp. 135–137.

[21] Ray M. and Mohapatra D.P., 2012. Prioritizing Program elements: A
pretesting effort to improve software quality, International Scholarly
Research Network, ISRN Software Engineering.

[22] Shihaby E., Jiangy Z. M., Adamsy B., Ahmed E. Hassany A. and
Bowermanx R., 2010. Prioritizing the Creation of Unit Tests in Lega-
cy Software Systems, Softw. Pract. Exper., 00:1–22.

[23] Bruntink M., and Deursen A.V., 2004. Predicting Class Testability
using Object-Oriented Metrics, 4th Int. Workshop on Source Code
Analysis and Manipulation (SCAM), IEEE.

[24] Li W., and Henry S., 1993. Object-Oriented Metrics that Predict
Maintainability Journal of Systems and Software, vol. 23 no. 2 pp.
111-122.

[25] Dagpinar M., and Jahnke J., 2003. Predicting maintainability with
object-oriented metrics – an empirical comparison, Proceedings of the
10th Working Conference on Reverse Engineering (WCRE), IEEE
Computer Society, pp. 155–164.

[26] Zhou Y., and Leung H., 2007. Predicting object-oriented software
maintainability using multivariate adaptive regression splines, Journal
of Systems and Software, Volume 80, Issue 8, August 2007, Pages
1349-1361, ISSN 0164-1212.

[27] McCabe T. J., 1976. A Complexity Measure, IEEE Transactions on
Software Engineering: 308–320.

[28] Basili V.R., Briand L.C. and Melo W.L., 1996. A Validation of Ob-
ject-Oriented Design Metrics as Quality Indicators, IEEE Transac-
tions on Software Engineering. vol. 22, no. 10, pp. 751-761.

[29] Aggarwal K.K., Singh Y., Kaur A., and Malhotra R., 2009. Empirical
Analysis for Investigating the Effect of Object-Oriented Metrics on
Fault Proneness: A Replicated Case Study, Software Process Im-
provement and Practice, vol. 14, no. 1, pp. 39-62.

[30] Shatnawi R., 2010. A Quantitative Investigation of the Acceptable
Risk Levels of Object-Oriented Metrics in Open-Source Systems,
IEEE Transactions On Software Engineering, Vol. 36, No. 2.

[31] Zhou Y. and Leung H., 2006. Empirical Analysis of Object-Oriented
Design Metrics for Predicting High and Low Severity Faults, IEEE
Transaction Software Engineering, vol. 32, no. 10, pp. 771-789.

[32] Mockus A., Nagappan N. and Dinh-Trong T. T., 2009. Test coverage
and post-verification defects: a multiple case study, in Proceedings of
the 3rd International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 291– 301.

[33] Rompaey B. V. and Demeyer S., 2009. Establishing traceability links
between unit test cases and units under test, in Proceedings of the
13th European Conference on Software Maintenance and Reengineer-
ing (CSMR ’09), pp. 209–218.

658

Security Analysis of the Access Control Solution of
NDN Using BAN Logic

Yuan Fei Huibiao Zhu∗ Huiwen Wang
Shanghai Key Laboratory of Trustworthy Computing,

School of Computer Science and Software Engineering,
East China Normal University, Shanghai, China

Abstract—Named Data Networking (NDN) is a new promising
architecture of information-centric networking. For its caching
property, traditional mechanisms of access control can no longer
work. Hamdane et al. propose a new access control solution
for both closed and open environments. In this paper, we make
the very first attempt to formally analyze this access control
solution. Inspired by the basic BAN logic which is often used to
describe protocols by logical formulas, we present our BAN-like
logic by adding some new notions to make it suitable for the
access control solution. Using the BAN-like logic, the procedures
of the access control solution is idealized in the form of the
beliefs of principals. Then the idealized procedures are analyzed
under several security goals with a set of logical postulates.
Several unsatisfied goals may lead the access control solution
to be vulnerable to intruders. We give the modification in the
idealized procedures to archive more goals. We also present the
related modification in the implementation of the access control
solution. Our study helps to improve security and protect against
various attacks for the access control solution.

Keywords—Named Data Networking (NDN), Access Control
Solution, BAN Logic

I. INTRODUCTION

Named Data Networking (NDN) [1] is an architecture of
Information-Centric Networking (ICN). ICN aims to offer
solutions to problems existing in TCP/IP Internet. Nowadays
users pay more attention to named content rather than its
location. Though TCP/IP Internet has shown great resilience
over the years, it cannot support the newly evolving content
distribution model successfully. One of the promising can-
didates of ICN is NDN, which supports multicast of data
and adopts the publish/subscribe model. The data producers
mean publishers and the data consumers represent subscribers
in NDN. When data consumer needs data, it sends out an
Interest packet with a required name of the data; according
to the name, routers forward the packet over the network;
and a Data packet is returned to the consumer when a data
produced by the data producer is matched. NDN routers can
cache previous forwarded Data packets, which are able to
be reused when a matching Interest packet comes. For this
caching property, traditional mechanisms of access control, as
a way of limiting access to data, can no longer work. Some
access control specifications [2], [3] are proposed for NDN.
However, each owns several limits. Hamdane et al. [4] put
forward a new access control solution to address these limits.

∗Corresponding Author. E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu).

We focus on this solution and analyze it step by step with our
BAN-like logic.

The BAN logic [5] was first proposed by Burrows, Abadi
and Needham in 1989. It provides a way to formalize the
description and analysis of authentication protocols. It has
been applied to analyze existing protocols and to find out their
flaws [5]. Gaarder et al. [6] introduced new notions based
on the basic BAN logic specially for PKCS authentication
protocols. In order to reason about cryptographic protocols,
Gong et al. [7] added more accurate concepts and definitions
to the basic BAN logic. By adding negation, [8] presented the
special BAN logic designed for monotonic protocols.

Our BAN-like logic is inspired by the basic BAN logic.
We add some new notions to make it suitable for the access
control solution. Adopting the BAN-like logic, the procedures
of the access control solution in [4] is idealized. Then the
idealized procedures are analyzed under several security goals
with a set of logical postulates. The results show that some
goals could not be archived. It indicates that this access control
solution cannot ensure the source of critical keys and data.
This may lead the access control solution to be vulnerable to
intruders. We give the modification of the idealized procedures
and the proofs of them. Meanwhile we also present the related
modification in the implementation of the access control
solution. Our study helps to improve security and protect
against various attacks for the access control solution.

The rest of the paper is organized as follows: Section II
briefly introduces the access control solution of NDN and
explains how it works. Section III gives the BAN-like logic
definitions and the assumptions of the access control solution.
In Section IV and Section V, we apply BAN-like logic to
analyze the access control solution of write and read operations
in a closed environment. Section VI displays the analysis of
write and read operation in an open environment. Finally,
Section VII concludes and points out the future work.

II. ACCESS CONTROL SOLUTION OF NDN

In this section, we introduce the access control solution
[4] for NDN. We give the related entities and assumptions.
The write operations and read operations in closed and open
environments are proposed.

DOI reference number: 10.18293/SEKE2018-124 659

Writeri NN

Interest

Data

Interest

Data

Interest

Data

Data

Readeri NN

Data

Interest

Data

Interest

Data

Interest

Data

Interest

a) Write operations in a closed environment
b) Read operations in a closed environment

Writer NN

Interest

Data

Data

Reader NN

Data

Interest

Data

Interest

c) Write operations in an open environment

d) Read operations in an open environment

a.1

a.2

a.3

a.4

a.5

a.6

a.7

b.1

b.2

b.3

b.4

b.5

b.6

b.7

b.8

c.1

c.2

c.3

d.1

d.2

d.3

d.4

ACM

Name: NK nameOR

Name: NK name
Data: Hash 1st Kpub…Hash nth Kpub

OR

Name: NK name, Hash ith KpubOR

Name: NK name, Hash ith Kpub

Data: {(NKencryption, NKdecryption)}Kpub-writer
OR

Name: Data name
Data: {Data}DK

OR

Name: DK nameOR

Name: DK name
Data: {DK} NKencryption

OR

ACM

Name: Data name

Name: Data name
Data: {Data}DK

OR

OR

Name: DK nameOR

Name: DK name
Data: {DK} NKencryption

OR

Name: NK nameOR

Name: NK name
Data: Hash 1st Kpub…Hash nth Kpub

OR

Name: NK name, Hash ith KpubOR

Name: NK name, Hash ith Kpub

Data: {NKdecryption}Kpub-reader
OR

ACM

Name: NK name, Hash KpubOR

Name: NK name, Hash Kpub

Data: {(NKencryption, NKdecryption)}Kpub-writer
OR

Name: Data name
Data: {Data}DK, {DK} NKencryption

OR

ACM

Name: Data nameOR

Name: Data name
Data: {Data}DK, {DK} NKencryption

OR

Name: NK name, Hash KpubOR

Name: NK name, Hash Kpub

Data: {NKdecryption}Kpub-reader
OR

Fig. 1. Write and Read operations in closed and open environments (simplified
from Hamdane et al. [4])

A. Entities and Assumptions

Entities in NDN own two roles: readers and writers. An
access control manager (ACM) is introduced to control the
management of the access control policy. It creates a key pair
(NKencryption, NKdecryption), which is designed for encrypt-
ing a symmetric data key DK. These keys are similar as public
and private keys, but both of them are secret. NKencryption is
applied to encrypt the DK and only be acquired by entities with
write privilege. NKdecryption allows the DK decryption which
can be obtained by any entities. Meanwhile, every entity owns
the related public and private key pair. The public writer keys
are used to encrypt key pair (NKencryption, NKdecryption), and
public reader keys are adopted to encrypt key NKencryption.

B. Write Operations and Read Operations

We simplify some steps of write and read operations in
[4] and only retain the processing related with keys and data.
Fig.1 illustrates four situations of write and read operations
in different environments. Because the node playing reader’s
or writers role can be connected with a normal node or the
ACM, the communication object of Writeri and Readeri can
be ACM or NN. NN is only responsible to transit message
to ACM eventually. As a result, Writeri and Readeri are
communicating with ACM essentially.

1) Write operations in a closed environment:
Assuming that Writeri knows the name of key pair
(NKencryption, NKdecryption) in advance, it sends an Interest
packet containing NK name to ACM (step a.1). ACM returns
a Data packet with all the hash value of public keys that
ACM has already known (step a.2). Then Writeri recognizes
its own hash and transmits it together with NK name as a

new Interest to ACM (step a.3). ACM recognizes which writer
is communicating with it, and uses Writeri’s public key to
encrypt key pair (NKencryption, NKdecryption). This is added
to a new Data packet which is fed back to ACM (step a.4).
Then Writeri sends the encrypted data DataDK to ACM (step
a.5). ACM learns DK name and sends the Interest to ACM
(step a.6). ACM then uses NKencryption to encrypt DK and
produces a new Data packet as a reply (step a.7).

2) Read operations in a closed environment: Readeri sends
the required Data name to ACM (step b.1). ACM replies
Readeri with Data packet including Data encrypted with data
key DK (step b.2). Readeri knows the name of data key
DK and sends the Interest to ACM (step b.3). ACM uses
NKencryption to encrypt DK and creates a Data packet to
send back to Readeri (step b.4). Readeri sends the Interest
packet carrying name of key pair (NKencryption, NKdecryption)
to ACM (step b.5). ACM returns all the hash value of public
keys (step b.6). Readeri gives ACM with NK name and its hash
value of public key (step b.7). ACM uses the related public key
to encrypt NKdecryption to produce a Data packet for ACM
(step b.8).

3) Writer operations in an open environment: As the envi-
ronment is open, Writer is unknown to ACM. As a result,
Writer needs to send ACM its hash value of public key.
ACM can get the related public key to encrypt information.
First, Writer sends NK name and the hash value of its
public key to ACM (step c.1). As ACM has acknowledged
the public key of Writer, it uses the key to encrypt key
pair (NKencryption, NKdecryption) (step c.2). Writer sends the
encrypted data {Data}DK, together with encrypted data key
{DK} NKencryption (step c.3).

4) Read operations in an open environment: Because the
environment is open, ACM does not acknowledge the public
key of Reader. So it is necessary for Reader to transmit the
hash value of its public key to ACM. First, Reader sends an
Interest with Data name to ACM (step d.1). ACM responses the
encrypted data {Data}DK and the encrypted data key {DK}
NKencryption (step d.2). Reader transmits NK name and its
hash value of public key to ACM (step d.3). Because ACM
realizes the public key of Reader, it applies this key to encrypt
NKdecryption which is built into a Data packet and conveyed
to Reader (step d.4).

III. AN INTRODUCTION OF BAN-LIKE LOGIC AND
ASSUMPTIONS

In this section, we introduce our BAN-like logic inspired
by the basic BAN logic. We add some new notions to make it
suitable for the access control solution. Assumptions of access
control solution are also presented for further analysis.

A. Statements
There are three sorts of objects in our BAN-like logic:

principals, keys, and formulas (also statements). The symbols
P and Q range over principles; K ranges over keys; X ranges
over formulas. The following are basic statements.
• P |≡ X: The principal P believes the statement X is true.

660

• P / X: P sees X, which represents P has received a message
X.

• P |∼ X: P once said X, which also means P|≡ X when P sent
it.

• P Z⇒ X: P governs X, showing that P has an authority on X.
•](X): The message X is fresh.

There is little difference between the keys in the basic
BAN logic and the key used here. We add new notations
for a better explanation. The key K represents the public key
of asymmetric keys, which can be seen by other agents. Its
associated private key K−1 will be secret to any other agents
except one agent which owns it. The key pair (@K,K@)
denotes an asymmetric key pair, in which @K is used for
encryption and K@ is devoted to decryption. An agent can
only acquire this key pair from the package it received, if it is
not the creator of the pair. The symmetric key $K is applied
for both encryption and decryption, which is encrypted and
transmitted between agents.
• K7−→ P: The encryption key K is the public key of P. The

matching private key K−1 will be secret to any other principals
except P.

• @K7−−→ P: The key @K is the encryption key of the asymmetric
key pair (@K,K@), which is acknowledged by P.

• K@7−−→ P: P knows the key K@, which is the decryption key of
the asymmetric key pair (@K,K@).

• $K7−→ P: P learns that the key $K is a symmetric key.
• {X}K :The statement X is encrypted under the key K. K can

also be replaced by @K or $K.

B. Logical Postulates

We introduce four categories of postulates and give their
explanations.
(1) The message-meaning rules are about interpretation of
encrypted messages. We postulate the message-meaning rule
for symmetric keys as below.

MM1
P |≡ $K7−→ P,Q |≡ $K7−→ Q,P / {X}$K

P |≡ Q |∼ X
If both P and Q believe that the key K is the symmetric key
and P sees a message X encrypted under K, then P believes
that Q once said X.

We also present the message-meaning rule for asymmetric
keys as below.

MM2
P |≡ K7−→ Q,P / {X}K−1

P |≡ Q |∼ X
If P believes that the key K is the public key of Q and sees a
message X encrypted under K−1, then P believes that Q once
said X.
(2) The nonce-verification rule states the check of the freshness
of a message.

NV
P |≡](X),P |≡ Q |∼ X

P |≡ Q |≡ X
If P believes a formula X is fresh and P believes that Q once
said formula X, then P believes that Q believes X.
(3) The jurisdiction rule expresses how jurisdiction effects the
belief.

J
P |≡ Q Z⇒ X,P |≡ Q |≡ X

P |≡ X

If P believes that Q has jurisdiction over X and Q believes X,
then P trusts X.
(4) The seeing rule describes the situation when a principal
sees a formula encrypted with different kinds of keys.

SEE1
P / {X}K,P |≡ K7−→ P

P / X
If P sees X encrypted with a public key K and processes the
corresponding private key K−1, then P is considered to have
seen X.

SEE2
P / {X}K−1 ,P |≡ K7−→ Q

P / X
If P sees X encrypted with a private key K−1 and owns the
corresponding public key K, then P is regarded as seeing X.

SEE3
P / {X}@K,P |≡ K@7−−→ P

P / X
If P sees X encrypted with an encryption key @K of a key pair
(@K,K@) and has the decryption key K@, then P is thought
of as seeing X.

SEE4
P / {X}$K,P |≡ $K7−→ P

P / X
If P sees X encrypted with a known symmetric key $K, then
P sees X.

C. Assumptions of access control solution

We refer principals to the Access Control Manager (ACM),
readers and writers, which are presented by symbols M,
R1,...,Rn and W1,...,Wn. KW1,...,KWn and KR1,...,KRn denote
the public keys of writers W1,...,Wn and readers R1,...,Rn

respectively. KW−1
1 ,...,KW−1

n and KR−1
1 ,...,KR−1

n represent the
corresponding private keys. (@NK,NK@) is the asymmetric
key pair produced by ACM M. $DK and Data is the symmetric
key and data created by writers.

To analyze the access control solution, we first list the
following assumptions.

A1: M\Wi\Ri |≡
Kj7−−→ Wj\Rj A2: Wi |≡

$DK7−−→ Wi

A3: M |≡ @NK7−−−→ M A4: M |≡ NK@7−−−→ M

A5: Wi\Ri |≡ M Z⇒ (@NK, NK@) A6: M\Ri |≡ Wj Z⇒ $DK

A7: M\Ri |≡ Wj Z⇒ Data A8: Wi |≡]($DK) A9: Wi |≡](Data)

A10: P / NK@→ P |≡](NK@) A11: P / NK@→ P |≡ NK@7−−−→ P

A12: P / (@NK,NK@)→ P |≡](@NK,NK@)

A13: P / (@NK,NK@)→ P |≡ @NK7−−−→ P

A14: P / (@NK,NK@)→ P |≡ NK@7−−−→ P

A15: P / ($DK)→ P |≡]($DK) A16: P / ($DK)→ P |≡ $DK7−−→ P

A17: P / (Data)→ P |≡](Data)

Assumptions A1-A4 are about the keys initially known to
the principals. Assumptions A5-A7 describe that M is trusted
by Wi to make key pair (@NK,NK@) and M trusts that Wi

can produce data key $DK and data Data. Assumptions A8
and A9 indicate that Wi believes data Data and data key $DK
are fresh. Assumptions A10-A16 present the situation when a
principle sees different keys. The principle P could be replaced
by M, Ri and Wi. P learns the related key which is also
considered to be fresh. A17 shows when P sees data Data
it also confirms the freshness of it.

661

IV. ANALYSIS OF WRITE OPERATION IN A CLOSED
ENVIRONMENT

In this section, we introduce the specific write operation in
a closed environment. Then we apply our BAN-like logic to
this procedure. Several security goals are listed to be proved.

A. Write operation in a closed environment
We give the write operation procedure in a closed environ-

ment according to Fig.1.(a) as below.

Message 1. Writeri → ACM : nameNK

Message 2. ACM→ Writeri : nameNK , H(K1)...H(Kn)

Message 3. Writeri → ACM : nameNK , H(Ki)

Message 4. ACM→ Writeri : nameNK , H(Ki), {NKe, NKd}Ki

Message 5. Writeri → ACM : nameData, {Data}DK

Message 6. ACM→ Writeri : nameDK

Message 7. Writeri → ACM : nameDK , {DK}NKe

Writeri sends the name of key NK to ACM. ACM returns
nameNK together with the hash values of K1...KN , denoted
by H(K1)...H(KN). Then Writeri recognizes the correct hash
values of Ki in the hash value sequences and feedbacks it
to ACM with nameNK . After receiving the package, ACM
returns a new message added with the corresponding key pair
(NKe,NKd). Writeri uses its special data key DK to encrypt the
data and sends it to ACM for storing. ACM can learn the name
of data key DK and send it to Writeri. Finally, Writeri returns
the message of DK encrypted by key NKe with nameDK . This
can lead ACM to acknowledge data key DK, which is used to
decrypt message {Data}DK .

B. Analysis of security goals of asymmetric key pair

In order to idealize the procedure, we abstract all the
forwarding encrypted messages, modify the forms of keys,
and change the expression of formulas in our BAN-like logic
as below. M1: Wi / {(@NK,NK@)}KWi

M2: M / {Data}$DK

M3: M / {$DK}@NK

We hope the procedure should archive several security goals
when distributing (@NK,NK@), Data and $DK. Considering
(@NK,NK@), there are three authentication goals described in
formulas: Wi / (@NK,NK@), Wi |≡ M |≡ (@NK,NK@) and
Wi |≡ (@NK,NK@). These mean that Wi should see key pair
(@NK,NK@), Wi also believes that M believes the key pair,
and Wi believes the key pair respectively.

The first goal can be proved easily. Applying the seeing rule
SEE1 to message M1 and assumption A1 yields

S1: Wi / (@NK,NK@).

Now we hence proved that the procedure has achieved the first
goal. But we cannot keep carrying forward, as the next two
goals need more information. The crux of proving the two
remaining goals is to achieve Wi |≡ M |∼ (@NK,NK@) using
the message-meaning rule MM2. Hence, we need a pair of
asymmetric keys for the application of this rule. We assume
that M owns a public key KM and a corresponding private key
K−1
M used for its signatures. As a result, we do the modification

to the idealized procedure. Two new assumptions are added as
below.

A’1: Wi |≡
KM7−−→ M

A’2: M |≡ KM7−−→ M
As the key pair (NKe,NKd) is produced by M, message M1 is
changed as below.

M1’: Wi / {{@NK,NK@}K−1
M
}KWi

Again applying SEE1 to message M1’ and assumption A1
yields

S2: Wi / {@NK,NK@}K−1
M

.

Using the seeing rule SEE2 to S2 with assumption A’1 also
produces

S1: Wi / (@NK,NK@).

Then employing the message-meaning rule MM2 to S2 and
assumption A’1 gets

S3: Wi |≡ M |∼ (@NK,NK@).

As BAN logic defaults to using Modus Ponens (MP) rule,
adopting MP to S1 and assumption A12 obtains

S4: Wi |≡](@NK,NK@).

Utilizing the nonce-verification rule NV to S3 and S4 obtains

S5: Wi |≡ M |≡ (@NK,NK@).

Applying the jurisdiction rule J to assumption A5 and S5
yields

S6: Wi |≡ (@NK,NK@).

We can conclude that the original formulas can only
archive the first goal Wi / (NKe,NKd). After our mod-
ification, the next two goals Wi|≡ M|≡ (NKe,NKd) and
Wi |≡ (NKe,NKd) can also be satisfied. Hence, in the
implementation of the access control solution in Fig.1
(step a.4), the data domain of Data packet should be
changed from {(NKencryption, NKdecryption)}Kpub−writer to
{{(NKencryption, NKdecryption)}K−1

M }Kpub−writer.

C. Analysis of security goals of data key

The first series of goals should be archived are about data
key $DK: M / $DK, M |≡ Wi|≡ $DK and M |≡ $DK.

Applying the seeing rule SEE4 to message M3 and assump-
tion A5 yields S7: M / $DK.

In order to push further, we need to obtain the formula
M |≡ Wi |∼ $DK concerning with the message-meaning rule
MM2. As a result, we need to utilize the private key KW−1

i to
encrypt $DK first. We also make a little change to the idealized
procedure. Message M3 is altered as below.

M3’: M / {{$DK}KW−1
i
}@NK

Utilizing the seeing rule SEE3 to message M3’ and assump-
tion A4 gains

S8: M / {$DK}KW−1
i

.

Using the seeing rule SEE3 to S8 with assumption A1
produces S7: M / $DK.

Applying the message-meaning rule MM2 to S8 and assump-
tion A1 yields

S9: M |≡ Wi |∼ $DK.

Adopting the MP rule to S7 and assumption A15 gets

S10: M |≡]($DK).

662

Utilizing the nonce-verification rule NV to S9 and S10 gains

S11: M |≡ Wi |≡ $DK.

Applying the jurisdiction rule J to S11 and assumption A6
yields

S12: M |≡ $DK.

By this point, we have figured out the the formal proof of three
goals for data key DK. As a result, in the implementation of
the access control solution in Fig.1 (step a.7), the data domain
of Data packet should be changed from {DK}NKencryption to
{{DK}Kpri−writer}NKencryption.

D. Analysis of security goals of data

We focus on the other three goals for Data which represents
the real data the writer wants to publish. They are M / Data, M
|≡ Wi |≡ Data and M |≡ Data. These denote that M should see
Data, M also believes that Wi believes Data, and M believes
Data respectively.

Similarly, we can easily apply the MP rule to assumption
A15 and S7 to get

S13: M |≡ $DK7−−→ M.

The seeing rule is also adopted to S13 and message M2 to
gain

S14: M / Data.

For further proof, we are required to gain the formula M |≡
Wi |∼ Data springing from the message-meaning rule MM2.
So we choose to apply the private key KW−1

i to encrypt $Data
first. Message M2 is changed as below.

M2’. M / {{Data}KW−1
i
}$DK

Utilizing the seeing rule SEE4 to message M2’ and S13 gains

S15: M / {Data}KW−1
i

.

Applying the seeing rule SEE2 to S15 and assumption A1
yields

S14: M / Data.

Employing the message-meaning rule MM2 to S15 according
to assumption A1 gets

S16: M |≡ Wi |∼ Data.

Using the MP rule to S14 with assumption A16 produces

S17: M |≡](Data)

Applying the nonce-verification rule NV to S16 and S17 yields

S18: M |≡ Wi |≡ Data.

Adopting the jurisdiction rule J to assumption A7 and S18
gets

S19: M |≡ Data.

Now we have settled the formal proof of the three goals of data
Data. As a result, in the implement of the access control solu-
tion in Fig.1 (step a.5), the data domain of Data packet should
be changed from {Data}DK to {{Data}Kpri−writer}DK.

V. ANALYSIS OF READ OPERATION IN A CLOSED
ENVIRONMENT

In this section, the specific read operation in a closed
environment is presented. We adopt our BAN-like logic to
this procedure and analyze it with some important security
goals.

A. Read operation in a closed environment
We demonstrate the read operation procedure in a closed

environment according to Fig.1.(b) as below.

Message 1. Readeri → ACM : nameData

Message 2. ACM→ Readeri : nameData, {Data}DK

Message 3. Readeri → ACM : nameDK

Message 4. ACM→ Readeri : nameDK , {DK}NKe

Message 5. Readeri → ACM : nameNK

Message 6. ACM→ Readeri : nameNK , H(K1)...H(Kn)

Message 7. Readeri → ACM : nameNK , H(Ki)

Message 8. ACM→ Readeri : nameNK , H(Ki), {NKd}Ki

Readeri sends the name of Data to ACM. ACM returns Data
encrypted with data key DK. In order to decrypt it, Readeri
sends nameDK to ACM to request for data key DK. ACM
gives Readeri with DK encrypted with key NKe. As a result,
Readeri still needs to deliver nameNK to get decryption key
NKd. ACM returns nameNK together with the hash values of
K1...KN , denoted by H(K1)...H(KN). Then Readeri recognizes
the correct hash values of Ki in the hash value sequences and
feeds it back to ACM with nameNK . Finally, ACM returns a
new message added with NKd encrypted with public key Ki.
NKd is the corresponding decryption key of encryption key
NKe, which is applied to decrypt {DK}NKe .

B. Analysis of security goals of data
We also idealize the read operation procedure as below.

M4: Ri / {Data}$DK

M5: Ri / {$DK}@NK

M6: Ri / {NK@}KRi

Three security goals described in BAN formulas need to be
proved: Ri / Data, Ri |≡ Wj |≡ Data and Ri |≡ Data.

Applying the seeing rule SEE2 to message M6 and assump-
tion A1 yields

S20: Ri / NK@.

Using Modus Ponens (MP) rule to S20 with assumption A9
produces

S21: Ri |≡
NK@7−−−→ Ri.

Utilizing the seeing rule SEE3 to message M5 and S21 gains

S22: Ri / $DK.

Employing the Modus Ponens (MP) rule to S22 and assump-
tion A15 gets

S23: Ri |≡
$DK7−−→ Ri.

Applying the seeing rule SEE4 to message M4 and S23 yields

S24: Ri / Data.

Now the first goal has been proved. To prove the remaining
goals, we also change message M4 slightly. The modification
reason is similar with the one in Section IV-D. Supposing that
the Data is produced by writer Wj , it first is encrypted by
Wj’s private key KW−1

j .

M4’: Ri / {{Data}KW−1
j
}$DK

Adopting the seeing rule SEE4 to message M4’ and S23
produces

S25: Ri / {Data}KW−1
j

.

663

Applying the seeing rule SEE2 to S25 and assumption A1
yields

S24: Ri / Data.

Utilizing the Modus Ponens (MP) rule to S24 and assumption
A16 gains

S26: Ri |≡](Data).

Using the message-meaning rule MM2 to S25 with assump-
tion A1 produces

S27: Ri |≡ Wj |∼ Data.

Employing the nonce-verification rule NV to S26 and S27 gets

S28: Ri |≡ Wj |≡ Data.

Applying the jurisdiction rule J to S28 and assumption A6
yields

S29: Ri |≡ Data.

So far, we have proved three goals of data Data. So in the
implement of the access control solution in Fig.1 (step b.2),
the data domain of Data packet should be changed from
{Data}DK to {{Data}Kpri−writer}DK.

VI. ANALYSIS OF WRITE AND READ OPERATION IN AN
OPEN ENVIRONMENT

In this section, we show the specific read and write operation
in an open envrionment. The BAN-like logic is applied to
them. Then we analyze them with some important security
goals.

A. Write operation in an open environment
Similar with Section IV-A, write operation procedure in an

open environment in 1.(c) can be idealized as blew.

M1’: W / {@NK,NK@}KWw

M2: M / {Data}$DK

M3: M / {$DK}@NK

As ACM can figure out key Kw when it received the hash
value of it, we can infer that

A’3: M |≡ KWw7−−−→ W.

There are six goals needing to be proved: W / (@NK,NK@),
W |≡ M |≡ (@NK,NK@), W |≡ (@NK,NK@), M / Data, M
|≡ W |≡ Data and M |≡ Data. With the help of assumption
A’3, we can also prove them in almost the same way as we
do in Section IV.

B. Read operation in an open environment
Like Section V-A, read operation procedure in an open

environment in 1.(d) can be idealized as blew.

M4’: R / {Data}$DK

M5’: R / {$DK}@NK

M6’: R / {NK@}Kr

We can also deduce a new assumption.

A’4: M |≡ Kr7−−→ R

Three goals should be verified: R / Data, R |≡ Wj |≡ Data and
R |≡ Data. With assumption A’4, we can demonstrate these
goals using the similar way in Section V.

VII. CONCLUSION AND FUTURE WORK

In this paper, we described a new approach to reasoning
about an access control solution of NDN. Our work,
which is inspired by the BAN logic, is a special logic to
analyze different operation procedures in the access control
solution. We idealized the procedures using the BAN-like
logic and set several security goals to analyze them. These
unsatisfied goals indicate that this access control solution
cannot ensure the source of critical keys and data. This
may lead the access control solution to be vulnerable to
intruders. Then we did some improvement for the unsatisfied
goals and made the new access control solution archive the
important security goals. This method leads us in identifying
mistakes and suggesting corrections. Our study helps to
improve security and protect against various attacks for the
access control solution. As for the future work, we would like
to apply this method to other access control solutions of NDN.

Acknowledgement. This work was partly supported by
Shanghai Collaborative Innovation Center of Trustworthy Soft-
ware for Internet of Things (No. ZF1213).

REFERENCES

[1] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters,
B. Zhang, G. Tsudik, kc claffy, D. Krioukov, D. Massey, C. Papadopoulos,
T. Abdelzaher, L. Wang, and E. Yeh, “Named data networking (NDN)
project,” PARC, Tech. Rep. NDN-0001, 2010.

[2] T. Chen, K. Lei, and K. Xu, “An encryption and probability based access
control model for named data networking,” in IEEE 33rd International
Performance Computing and Communications Conference, IPCCC 2014,
Austin, TX, USA, December 5-7, 2014, 2014, pp. 1–8.

[3] J. Golle and D.Smetters, “Ccnx access control specifications,” Xerox Palo
Alto Research Center-PARC, Tech. Rep., 2010.

[4] B. Hamdane, R. Boussada, M. E. Elhdhili, and S. G. E. Fatmi, “Towards
a secure access to content in named data networking,” in 26th IEEE
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WETICE 2017, Poznan, Poland, June 21-23,
2017, 2017, pp. 250–255.

[5] M. Burrows, M. Abadi, and R. M. Needham, “A logic of authentication,”
ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990.

[6] K. Gaarder and E. Snekkenes, “On the formal analysis of PKCS au-
thentication protocols,” in Advances in Cryptology - AUSCRYPT ’90,
International Conference on Cryptology, Sydney, Australia, January 8-
11, 1990, Proceedings, 1990, pp. 106–121.

[7] L. Gong, R. M. Needham, and R. Yahalom, “Reasoning about belief in
cryptographic protocols,” in Proceedings of the 1990 IEEE Symposium on
Security and Privacy, Oakland, California, USA, May 7-9, 1990, 1990,
pp. 234–248.

[8] A. D. Rubin and P. Honeyman, “Nonmonotonic cryptographic protocols,”
in Seventh IEEE Computer Security Foundations Workshop - CSFW’94,
Franconia, New Hampshire, USA, June 14-16, 1994, Proceedings, 1994,
pp. 100–116.

664

Re-checking App Behavior against App Description
in the Context of Third-party Libraries

Chengpeng Zhang1, Haoyu Wang1,2∗, Ran Wang1, Yao Guo3, Guoai Xu1∗
1 Beijing University of Posts and Telecommunications, Beijing, China, 100876
2 Beijing Key Lab of Intelligent Telecommunication Software and Multimedia

3 Peking University, Beijing, China, 100871
Email: {buptkick, haoyuwang, wangran2015, xga}@bupt.edu.cn, yaoguo@pku.edu.cn

Abstract—Recent research suggested promising approaches
that identify potential malware by checking the inconsistence
between app description and actual behavior of the app. However,
state-of-the-art approaches have ignored the impact of third-
party libraries (TPLs) when detecting outliers, which could affect
the detection results greatly in two folds. On one hand, most
Android apps would not list the functionality of TPLs in app
description, which could cause false positives, as many apps that
use TPLs will be identified as outliers. On the other hand, it is
important to separate TPLs from custom code when analyzing the
sensitive behaviors, otherwise the malicious behaviors of custom
code will be obscured by TPLs. In this paper, we revisit the study
of checking app behavior against app description in the context
of TPLs. Experiment results on more than 400K Android apps
suggest that more than 54% of apps are no longer identified as
outliers after filtering TPLs, and we could identify roughly 50%
of new outliers. Furthermore, removing the impact of TPLs could
help to identify malware and pinpoint the malicious behavior
of custom code. Out results shed a light on applying the TPL
analysis to enhance a variety of mobile app analysis tasks.

I. INTRODUCTION

Mobile malware is rapidly becoming a serious threat in
recent years. The number of Android malware has risen
steadily. Recent report [1] shows that the number of Android
malware achieves almost 3.5 million in 2017, which has
affected billions of devices.

A wide range of research has thus proposed approaches to
analyze and detect malware, which could be roughly catego-
rized into static analysis methods [2]–[5] and dynamic analysis
methods [6], [7]. However, these approaches are usually not
help against new malware families [8], as in many cases, it
is difficult to differentiate between malware and benign apps
because they may share the same/similar sensitive behaviors.
For example, automated tools might detect that a flashlight
app and a map app both use users’ location information, while
the map app is more legitimate than the flashlight app from
the users’ perspective. As a result, the difference between the
users’ expectations and the actual behavior of the app should
be an important indicator for detecting a malicious app.

Recent research suggested promising approaches that iden-
tify potential malware/outliers by checking whether it behaves

*Co-corresponding authors
DOI reference number: 10.18293/SEKE2018-180

Knitting and Crochet Buddy

Sensitive APIs used in TPLs:

LocationManager.getLastKnownLocation()

TelephonyManager.getCellLocation()

Sensitive APIs used in custom code:

None

(1) Sensitive behaviors used in TPLs would lead to outlier apps

YaYa Globe

Sensitive APIs used in TPLs:

TelephonyManager;->getLine1Number

TelephonyManager;->getSimSerialNumber

LocationManager;->getLastKnownLocation

Sensitive APIs used in custom code:

TelephonyManager;->getLine1Number

TelephonyManager;->getSimSerialNumber

LocationManager;->getLastKnownLocation

(2) Sensitive behaviors used in TPLs would hide the
behaviors of custom code

Fig. 1. Motivating Examples

as advertised [9]–[11]. For example, WHYPER [9] and Au-
toCog [10] use natural language processing (NLP) techniques
to infer the apps expected behaviors from app descriptions, and
compare with the actual behavior extracted from the requested
permissions. CHABADA [11] uses Latent Dirichlet Allocation
(LDA) on app descriptions to identify the main topics of
each app, and then clusters apps based on related topics. By
extracting sensitive APIs used for each app, it can identify
outliers which use APIs that are uncommon for that cluster.
For example, for a group of 20 wallpaper apps, the app that
has uncommon behaviors (e.g., access location and contacts)
is probably up to malware.

Our work is motivated by CHABADA [11]. Although
their experiment results are promising, they have ignored an
important issue: the impact of third-party libraries (TPLs).
We argue that TPLs should be considered separately when
checking app behavior against app description for two reasons.

First, TPLs (e.g., ad library, third-party analytics, social
networking libraries, etc.) are widely used in Android apps.
Previous work [12] suggested that more than 60% of the code
in Android apps belongs to third-party libraries on average.
However, the use of TPLs could affect the outliers detection
due to the reason that most Android apps would not list
the functionalities of TPLs in their descriptions. In our
initial experiment on 100 popular Android apps, we found that

665

Fig. 2. Study Methodology

95% of them do not explicit show the functionalities of TPLs
in app descriptions. For instance, as shown in Figure 1 (1),
the app (androiddeveloperjoe.knittingbuddy) uses the Amazon
Ads and InMobi library to display ads. It was identified as
outliers because several sensitive APIs introduced by TPLs,
although there are no sensitive behaviors exist in its main code.

Second, we argue that it is important to separate TPLs
from app custom code, which could be then used to
determine whether the sensitive behaviors are introduced
by custom code or not. Otherwise, the malicious behaviors
of core functionalities will be obscured by TPLs. For example,
for a group of 20 wallpaper apps, the malicious app that tracks
user’s location information in its main code will be identified
as normal app if most of these apps embed advertisement
library that would access location data for targeted advertising.
Indeed, more than 70% of popular apps in Google Play use
advertising libraries [13]. The purposes of sensitive behaviors
used in custom code and TPLs are usually different [14], [15].
As shown in Figure 1 (2), the sensitive behaviors used in TPLs
would dilute the behaviors of custom code.

It is worth noting that some TPLs also show aggressive and
malicious behaviors, as reported by many previous work [16]–
[19]. However, the key idea of this paper is to separate TPLs
from app custom code and determine whether the sensitive
behaviors are introduced by custom code. The malicious
behaviors introduced by app developers in the core function-
alities of the app will be more obvious if we remove the noisy
introduced by TPLs.

Hence, in this paper, we revisit the study of checking
app behavior against app description in the context of TPLs.
We take the first step to examine the impact of TPLs in
pinpointing outlier apps. Experiment results on more than 400k
apps (an order of magnitude higher than CHABADA) from
Google Play suggest that TPLs introduce great impact on the
outlier detection of Android apps, with more than 54% of
apps are no longer identified as outliers after excluding TPLs.
Besides, we could identify more than 50% of new outliers

because removing the impact of TPLs could sharp the sensitive
behaviors of the main functionalities.

II. STUDY METHODOLOGY

A. Crawling the dataset

We have downloaded more than 400 thousand free Android
apps from Google Play in March, 2015. We crawled the meta-
data of these apps, including the app names, app categories,
app ratings, the number of installs, etc. We also downloaded
all the apk files of these apps.

B. Overall Architecture

The overall architecture of our study is shown in Figure 2.
For the crawled apps, we first apply natural language process-
ing (NLP) techniques to the app descriptions for filtering and
stemming. Then we take advantage of LDA to identify topics
from app descriptions, and each app is represented as a topic
vector. Apps with similar topic vectors will be grouped in the
same cluster. For apps in the same cluster, we extract sensitive
APIs used in them. Apps with unusual API used patterns will
be labeled as outliers. Note that to explore the impact of TPLs
on the outliers detection, we use a clustering-based approach
to identify TPLs used in these apps and compare the results
with and without TPLs.

C. Description-based Clustering

1) App Description Preprocessing: Considering that a too
short description cannot represent the functionality of the app
well, we first exclude the apps with the length of descriptions
less than 10 words in our dataset. Then we use the language-
detector [20] tool to detect the language of app description.
Note that we only consider the apps whose descriptions are
written in English in this work. Take advantage of Mallet [21],
we build a list to filter out stop-words. Then we use the
Snowball [22] to turn the words into stem form. At last, after
app description preprocessing, we have 276,333 app samples
left in the dataset.

666

TABLE I
THE 30 TOPICS EXTRACTED FROM THE 276,333 APP DESCRIPTIONS

Topic
Name

Topic Keywords

0 sociality share facebook twitter social chat app friend messag email send network post love peopl free photo creat sms featur easi
1 picture pictur photo imag camera beauti make color design fashion galleri dress girl hair style effect frame choos creat app share
2 religion church god prayer bibl christian book chapter app india indian islam lord read audio listen quran vers holi hindi day
3 racing race car game speed play free slot drive win machin coin real simul truck park excit fun featur spin experi
4 workout workout app weight number calcul exercis time train fit bodi measur result unit simpl convert track math system program base
5 shopping shop servic offer search find book app store price order deal featur product locat custom direct inform home special mobil
6 child child kid babi children game learn fun play anim app color draw pictur cat dog pet educ age free sound
7 jumping play game jump run level shoot control fli fun enemi score tap collect challeng featur bird zombi power avoid world
8 sport sport team score footbal player club world golf soccer countri leagu match app game live cup play includ flag fan
9 geography citi nation state art year south area counti north west american countri includ san world award histori cultur york local

10 theme theme icon font keyboard launcher instal download app appli set free select screen widget home press android function phone support
11 video video mobil watch app movi free download content youtub connect updat channel stream copyright offici disclaim latest devic share
12 scenery beauti natur enjoy fish water christma magic world tree sea room flower beach night day time light blue hous halloween
13 finance money account mobil manag app bank credit check pay bill view payment onlin access secur transact transfer balanc servic inform
14 cooking cook food recip make easi eat drink kitchen step fruit cake ingredi app love delici healthi cream ice chicken restaur
15 business busi compani manag servic provid product develop market custom client industri experi profession design technolog work job offer
16 audio audio music song radio listen play record app download station stream artist lyric free favorit rock danc player live featur
17 life life time peopl make thing good day work person start love feel give tip find learn mind fact back don’t
18 mobile mobil phone call android devic app applic contact connect number messag user sms network wifi control data send password secur
19 calendar calendar event inform school schedul app mobil view student class date access featur offici news confer connect find updat communiti
20 accounting list real properti applic estat inform licens agreement licensor provid term data termin sale user mls servic state relat right
21 ringtone rington sound quot app free applic android phone alarm set funni friend make fun joke inspir sleep effect download notif
22 dictionary dictionari word english learn translat languag studi app test question answer chines letter quiz text search spanish french phrase featur
23 system set button time screen widget app tap click mode display press select devic start phone batteri light version chang featur
24 puzzle puzzl game play score level point fun time challeng match mode player card number free move block simpl bubbl ball
25 news news read latest updat magazin app issu star content articl inform access stori world featur free download subscript www page
26 wallpaper wallpap background live imag set free screen galaxi phone app applic devic support download home pictur anim samsung tablet
27 health healt medich app treatment inform mortgag care help patient doctor profession complet emerg diseas time featur easi access free
28 map map citi locat app guid inform travel hotel place find search navig weather gps tour rout time restaur featur trip
29 documenter file manag android app version devic support applic note data featur search user list creat card googl record save code

2) Identifying Topics from App Descriptions: A “topic”
consists of a cluster of words that frequently occur together
in app descriptions. To identify sets of topics, we resort to
topic modeling using LDA based on Mallet [21]. Note that
we choose the same number of topics (n=30) to be identified
by LDA as CHABADA [11] for comparison. Table I shows the
result of 30 topics (with top 20 keywords of each topic) that we
have identified from the 276K app descriptions. Note that the
“topic name” in the second column is the abstract concept we
manually assigned to that topic, which is a meaningful word
that can represent the corresponding topic. As a result, each
app is represented as a topic vector, and each dimension of
the topic vector represents the probability that an app belongs
to the corresponding topic.

3) App Clustering: To identify the clusters of apps with
similar descriptions, we take advantage of K-means++ algo-
rithm1 for app clustering based on the topic vectors.

Note that the K-means++ algorithm needs to be given either
some initial potential centroids, or the number K of clusters
to identify. Thus one challenge here is to identify the number
of clusters that should be created. One straight-forward idea
is to run the algorithm multiple times and each time with a
different K number. Based on a set of clustering results, we
would then be able to identify the best one.

We propose to use Genetic Algorithm (GA) [23] combined
with K-means++ to determine the best number of clusters,

1https://en.wikipedia.org/wiki/K-means%2B%2B

which was shown to be effective in previous work [24].
GA is suitable to this problem space because the selection,
crossover and mutation steps of GA could help to choose the
optimal value of K. With the generations evolving, the better
individuals with higher fitness values will emerge [24]. As a
result, take advantage of GA, we will get the best value of K.

We used the silhouette coefficient2 as the fitness value to
measure the effectiveness of clustering results. Note that each
cluster is represented by a silhouette coefficient, which is based
on the comparison of its tightness and separation. This silhou-
ette coefficient shows how closely each element is matched
to the other elements within its cluster, and how loosely it is
matched to other elements of the neighboring clusters. The
range of the value of silhouette coefficient is -1 to 1. When
the value of the silhouette coefficient of an element is close to
1, it means that the element is in the appropriate cluster. Thus,
we compute the average of the silhouette coefficient for each
solution using K as the number of clusters, and we select the
solution whose silhouette coefficient was closest to 1.

In this paper, we use the scikit-learn [25] to implement K-
means++ algorithm and the calculation of silhouette coeffi-
cient. The implementation of GA is based on Pyevolve [26], an
evolutionary computation framework. As a result, to achieve
the highest silhouette coefficient on average, we choose 29 as
the best number of clusters should be created. The clustering
result for the 267,333 apps we analyzed is listed in Table II.

2https://en.wikipedia.org/wiki/Silhouette (clustering)

667

TABLE II
THE RESULT OF APP CLUSTERING.

Apps Most Important Topics

0 5825 sport(94.2%), puzzle, jumping
1 11791 business(95.3%), accounting, finance
2 11508 shopping(98.5%), cooking, picture
3 8660 workout(98.6%), finance, racing
4 4711 cooking(99.8%), geography, theme
5 7967 audio(96.9%), geography, video
6 5079 racing(99.8%), jumping, geography
7 5800 health(98.3%), geography, mobile
8 7853 dictionary(99.4%), theme, puzzle
9 18498 puzzle(99.2%), jumping, racing
10 10449 mobile(99.5%), finance, theme
11 5817 ringtone(97.9%), jumping, wallpaper
12 10084 calendar(99.5%), geography, finance
13 6567 finance(100.0%)
14 12485 documenter(95.6%), mobile, finance
15 7025 scenery(78.2%), jumping(5.4%), wallpaper(3.7%)
16 5954 theme(100.0%)
17 10791 system(95.7%), theme, wallpaper
18 9084 map(98.8%), geography, calendar
19 7952 picture(99.7%), wallpaper, geography
20 8539 sociality(94.3%), mobile, picture
21 17604 jumping(99.9%), geography, wallpaper
22 28138 geography(20.7%), accounting(5.5%), jumping(4.8%)
23 6410 religion(98.5%), geography, wallpaper
24 8194 child(97.0%), puzzle, picture
25 7088 video(99.4%), jumping, wallpaper
26 8069 news(95.4%), geography, video
27 9518 life(88.8%), jumping, cooking
28 8873 wallpaper(99.8%), theme, scenery

Each cluster contains apps whose descriptions contain similar
topics, as shown in Column Most Important Topics. The
percentages reported in the last column represent the weight
of the dominant topic within each cluster.

D. App Processing

1) Identifying the Sensitive APIs: To identify outliers re-
garding their actual behavior, we need to identify the sensitive
APIs used in each app. CHABADA uses a set of sensitive APIs
derived from STOWAWAY [27]. The dataset was published
in 2011 and it contains a list of sensitive APIs of Android
version 2.2, which is outdated and incomplete. In this work,
We use a list of permission-related APIs from PScout [28],
which contains 680 sensitive APIs.

As shown in previous work [29], APIs with the same name
but different parameters always share the similar functionali-
ties. Thus we only take account of the name of the API, i.e.,
the APIs with the different parameters but the same name are
identified as the same API. At last, there are only 428 APIs
left from the 680 permission-sensitive APIs.

For each app, we generate an API feature vector where
each dimension represents the invocation frequency for the
corresponding API. Note the previous work [30] suggested
that there are unreachable APIs in Android apps, i.e., these
apps do not declare the corresponding permissions. Thus, we
extract the declared permissions for the manifest of each app
and filter the APIs that use undeclared permissions.

2) Identifying Third-party Libraries: One key idea in this
paper is to measure the impact of third-party libraries in
description-based outlier detection. Thus, we first need to

identify the code that belongs to third-party libraries, and then
we generate the API feature vector for each app with and
without third-party libraries respectively.

In this paper, we have implemented a clustering-based
approach which is shown to be effective in LibRadar [31]–[33]
to identify the common frameworks used in apps. We extract
the API call features at the package level and then we enforce
strict comparison here to cluster all the features into groups,
which means that only when the features of two packages are
exactly the same can they be clustered. We choose the 128 as
the threshold to identify third-party libraries, which means that
as long as the package has occurred in more than 128 apps,
we will regard it as the common library. With this threshold,
we are able to find that roughly 70% of the code belongs to
TPLs. Then we check the usage of sensitive APIs in TPLs to
generate the feature vectors without TPLs as comparison.

E. Outliers Detection

In this paper, we use the Isolation Forest [34] algorithm to
identify outliers, which was shown to be effective in identi-
fying anomalous points in a large number of data. Besides,
Isolation Forest algorithm has low memory requirements and
linear time complexity, so it is more suitable for processing
high-dimensional data. Note that the Isolation Forest algorithm
needs two important parameters, one is the amount of trees,
the other one is the amount of samples. In our study, we use
the default value of sklearn, i.e., the amount of trees is set as
100 and the amount of samples is set as 256.

III. EVALUATION

A. The Impact of Third-party Libraries

First, we want to answer the research question: what is the
impact of TPLs in pinpointing outliers? For this purpose, we
compare the results of outliers detection using Isolation Forest
algorithm with and without TPLs respectively. The result of
outliers detection is shown in Table IV.

Surprisingly, it turns out that only 721 (46.5%) apps are still
identified as outliers while excluding TPLs. Moreover, 723
apps (50.1%) are newly identified as outliers after excluding
TPLs in our experiment. Thus we further analyzed the reasons
that leading to the inconsistence between the results.

1) “False Positive” Outliers: For the apps that are no
longer identified as anomalies after excluding TPLs, we ran-
domly picked 5 apps for each cluster (145 apps in total) and
manually inspect the code for understanding the reason.

At a result, we found that almost all these apps belong to the
reason that TPLs have introduced sensitive APIs that are not
rarely used in the custom code. For example, the app named
“Puzzle Code” (with package name “com.yiqusoft.puzzle”)
uses two ad libraries named “domob” and “adsmogo”. These
two ad libraries use several sensitive APIs (e.g., “getLast-
KnownLocation”) to display customized ads. However, these
sensitive APIs are never invoked in the custom code. Thus,
this app was identified as outliers without filtering TPLs.

668

TABLE III
THE RESULT OF MANUALLY ANALYSIS.

Cluster No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total

With TPLs 1 0 2 1 2 6 0 6 1 2 3 6 1 2 0 0 9 2 0 7 3 2 2 6 2 0 0 6 9 81

W/O TPLs 2 0 4 4 2 10 2 10 2 4 4 6 2 4 0 0 10 2 0 8 4 4 4 10 4 0 0 10 10 122

TABLE IV
THE RESULT OF OUTLIERS DETECTION.

Outliers # Common % Percent

Before 1,551 721 46.5%

After 1,444 721 49.9%

2) “False Negative” Outliers: For the apps that are newly
identified as outliers, we randomly picked 5 apps for each
cluster (a total number of 145 apps) and manually inspect the
code to explore the reason.

We found that the anomalous behaviors introduced by app
developers in the core functionalities of the app will be more
sharp if we remove the impact of TPLs. For instance, the app
“com.appgame7.fruitsbreak” uses a certain amount of sensitive
APIs to collect user’s phone number and location information
in both custom code and TPLs. Most of the apps in the
same cluster have embedded the ad libraries that share similar
sensitive behaviors. The malicious behaviors in the custom
code will be more obvious after removing the impact of TPLs.

B. The Behaviors of Outliers

We further explore the research question: whether our
approach could be used to identify malicious behaviors of
Android apps? For this purpose, we first manually inspect
the top outliers as produced by our technique and classified
them as malicious or normal. Then we upload all the identified
outliers (2,274 apps in total) to VirusTotal3 to check how many
of them are flagged as malicious.

1) Manually Inspection: Only human can interpret properly
what is in an app description. Therefore, we manually inspect
the top 10 outliers for each cluster (290 apps in total). We first
examine their descriptions, the list of sensitive APIs used, and
the corresponding decompiled code. Then we install them on
a real smartphone (nexus 5) and manually test it. Here we use
TCPDump4 to collect and analyze the network traffic.

Note that some outliers may not be malicious due to
the inadequate descriptions. We would classify an app as
malicious if: (1) the app collects user’s privacy information
(e.g., phone number and location) and uploads it to a remove
server without explicit advertise the sensitive behaviors either
in its description or in its privacy policy. For example, the app
“com.appblast.popclock” is a simple alarm clock app, whereas
it collects user’s phone number and uploads it to a remote
server. Another Android app “com.yoursite.lockfingerscanner”
claims that it is able to achieve finger unlock function, whereas
it is a grayware that only contains download links of other
apps. (2) the app is reported as malware by the pre-installed

3virustotal.com
4http://www.tcpdump.org

anti-virus tool5 if we install it on the smartphone. For example,
after the app named “TouchNPaint” (with package name
“game.child.paint”) is installed, the AVL engine will report
it as malware with family name “a.gray.mfpad”. The result
of manually analysis is shown in Table III. After eliminating
TPLs, we could identify more malicious outlier apps.

TABLE V
DETECTION RESULT OF VIRUSTOTAL.

“False Positive”
Apps

“False Negative”
Apps

Common

Flagged by VT 205 359 434

Total 830 723 721

Percentage 24.70% 49.65% 60.19%

2) Detection Result of VirusTotal: We then upload all the
identified outliers (with and without TPLs, 2,274 apps in total)
to VirusTotal to check how many of them are flagged by
current anti-virus engines. As shown in Table V, 639 apps
are labeld as malicious by at least one engines before filtering
TPLs, and the number rised to 793 apps if we removed the
impact of TPLs. It is also interesting to note that, although
roughly 25% of the “false positive” apps are flagged by
VirusTotal, most of them are labeld as “AdWare”, which means
that the malicious behaviors are introduced by ad libraries that
embedded in the app. This result suggests that removing the
impact of TPLs could help to better pinpoint the malicious
behaviors of custom code.

IV. DISCUSSION

In this paper, we revisit the study of checking app behavior
against app description in the context of TPLs. We use several
heuristic methods similar with that used in CHABADA [11]
to identify the topics and clusters, which could be potentially
improved. Moreover, we mostly rely on manually efforts to
analyze the results, which may exist bias.

Our study suggests that TPLs play an important role in
mobile app analysis, which could be potentially used to
enhance a variety of mobile app analysis tasks, e.g., malware
detection and app clone analysis [12], [35].

V. RELATED WORK

A large mount of related work focus on bridging the gap
between app description and user expectation. WHYPER [9]
and AutoCog [10] use NLP techniques to infer permission use
from app descriptions. Yu et al. [30] revisited this approach
and revealed that using description and permission will lead

5AVL for Android, com.antiy.avl

669

to many false positives. Thus they proposed exploiting the
privacy policy and its bytecode to enhance the malware
detection based on app description. Our work is motivated
by CHABADA [11], which uses LDA on app descriptions
to identify the main topics of each app, and then clusters
apps based on related topics. By extracting sensitive APIs
used for each app, it can identify outliers which use APIs
that are uncommon for that cluster. Ma et al. [29] extended
CHABADA by proposing an active and semi-supervised ap-
proach to detect malware using both known benign and
malicious apps. Wang et al. [15], [36], [37] proposed to infer
the purpose of permission use. However, all of the previous
studies do not consider the impact of TPLs when checking
whether the app behaves as it advertised.

VI. CONCLUDING REMARKS

In this paper, we present a study to show that TPLs play
an important role in pinpointing the inconsistence between
app description and app behavior. Based on the extensive
experiment on more than 400K apps, we show that more
than half of the apps are no longer identified as outliers after
filtering TPLs, and we could identify more new outliers. The
results in this paper could shed a light on a new perspective
for researchers that TPLs could be potentially used to enhance
a variety of mobile app analysis tasks.

VII. ACKNOWLEDGEMENT

This work is supported by the science and technology
project of State Grid Corporation of China: “Research on Key
Technologies of Security Threat Analysis and Monitoring for
Power Mobile Terminals” (Grant No. SGRIXTKJ[2017]265).

REFERENCES

[1] “2018 malware forecast: the onward march of android malware,”
https://nakedsecurity.sophos.com/2017/11/07/2018-malware-forecast-
the-onward-march-of-android-malware/, 2018.

[2] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
scalable and accurate zero-day android malware detection,” in MobiSys
2012, pp. 281–294.

[3] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,” in
Asia JCIS 2012. IEEE, 2012, pp. 62–69.

[4] M. Liu, H. Wang, Y. Guo, and J. Hong, “Identifying and analyzing the
privacy of apps for kids,” in Proceedings of the HotMobile 2016, pp.
105–110.

[5] Z. Kan, H. Wang, G. Xu, Y. Guo, and X. Chen, “Towards light-weight
deep learning based malware detection,” in The 42nd IEEE International
Conference on Computers, Software & Applications (COMPSAC 2018).

[6] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems, vol. 32, no. 2, p. 5, 2014.

[7] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis.” in
USENIX security symposium, 2012, pp. 569–584.

[8] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are Android apps
removed from google play? a large-scale empirical study,” in 15th
International Conference on Mining Software Repositories (MSR 2018).

[9] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards
automating risk assessment of mobile applications,” in USENIX Security
2013), pp. 527–542.

[10] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applica-
tions,” in CCS 2014, pp. 1354–1365.

[11] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in ICSE 2014, pp. 1025–1035.

[12] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and
accurate two-phase approach to android app clone detection,” in ISSTA
2015, pp. 71–82.

[13] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, pp. 221–233,
Jun. 2014.

[14] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang,
“Expectation and Purpose: Understanding Users’ Mental Models of
Mobile App Privacy Through Crowdsourcing,” in UbiComp ’12, 2012,
pp. 501–510.

[15] H. Wang, Y. Li, Y. Guo, Y. Agarwal, and J. I. Hong, “Understanding
the purpose of permission use in mobile apps,” ACM Trans. Inf. Syst.,
vol. 35, no. 4, pp. 43:1–43:40, Jul. 2017.

[16] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Investi-
gating user privacy in Android ad libraries,” in MoST 2012.

[17] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in WISEC’12, pp. 101–112.

[18] F. Dong, H. Wang, L. Li, Y. Guo, G. Xu, and S. Zhang, “How do
mobile apps violate the behavioral policy of advertisement libraries?”
in Proceedings of the HotMobile 2018, pp. 75–80.

[19] H. Wang, Y. Guo, Z. Tang, G. Bai, and X. Chen, “Reevaluating android
permission gaps with static and dynamic analysis,” in Proceedings of
GlobeCom, ser. GlobeCom’15, 2015.

[20] “Language detection library for Java,” 2016. [Online]. Available:
https://github.com/optimaize/language-detector

[21] “Mallet: A machine learning for language toolkit,” 2002. [Online].
Available: http://mallet.cs.umass.edu

[22] “Snowball: A language for stemming algorithms,”
http://snowballstem.org, 2001.

[23] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, no. 2, pp. 95–99, Oct 1988.

[24] X. Yang, D. Lo, L. Li, X. Xia, T. F. Bissyand, and J. Klein, “Char-
acterizing malicious android apps by mining topic-specific data flow
signatures,” Information and Software Technology, vol. 90, pp. 27 – 39,
2017.

[25] “Scikit-learn: Machine learning in Python,” http://scikit-learn.org, 2011.
[26] “Pyevolve: A complete genetic algorithm framework written in pure

Python,” 2009. [Online]. Available: http://pyevolve.sourceforge.net
[27] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of

mobile malware in the wild,” in Proceedings of SPSM 2011, pp. 3–14.
[28] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the

android permission specification,” in CCS 2012, pp. 217–228.
[29] S. Ma, S. Wang, D. Lo, R. H. Deng, and C. Sun, “Active semi-

supervised approach for checking app behavior against its description,”
in COMPSAC 2015, pp. 179–184.

[30] L. Yu, X. Luo, C. Qian, S. Wang, and H. K. Leung, “Enhancing the
description-to-behavior fidelity in android apps with privacy policy,”
IEEE Transactions on Software Engineering, 2017.

[31] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in ICSE ’16, 2016,
pp. 653–656.

[32] H. Wang and Y. Guo, “Understanding third-party libraries in mobile
app analysis,” in Proceedings of the 39th International Conference on
Software Engineering Companion, ser. ICSE-C ’17, 2017, pp. 515–516.

[33] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Automated detection and
classification of third-party libraries in large scale android apps,” Journal
of Software, vol. 28, no. 6, pp. 1373–1388, 2017.

[34] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, pp. 3:1–
3:39, Mar. 2012.

[35] W. HaoYu, W. ZhongYu, G. Yao, and C. XiangQun, “Detecting repack-
aged android applications based on code clone detection technique,”
SCIENCE CHINA Information Sciences, vol. 44, no. 1, pp. 142–157,
2014.

[36] H. Wang, J. I. Hong, and Y. Guo, “Using text mining to infer the purpose
of permission use in mobile apps,” in The 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp 2015),
pp. 1107–1118.

[37] H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, and J. Hong, “An
explorative study of the mobile app ecosystem from app developers’
perspective,” in Proceedings of the 26th International Conference on
World Wide Web (WWW 2017), pp. 163–172.

670

Whether Android Applications Broadcast Your Private

information: A Naive Bayesian-based Analysis

Approach

Li Lin1,2,3 , Jian NI1,2,3, Xinya Mao1,2,3,Jianbiao Zhang1,2,3
1College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2Beijing Key Laboratory of Trusted Computing, Beijing 100124, China
3National Engineering Laboratory for Classified Information Security Protection, Beijing 100124, China

 linli_2009@bjut.edu.cn, {17801028290, 13089397966}@163.com, zjb@bjut.edu.cn

Abstract—With the rapid development of android smart terminals,

android applications are exhibiting explosive growth. However,

there remains a challenging issue facing android system, a

malicious application may broadcast user’s private information.

In this paper, we propose a Naive Bayesian-based approach for

analyzing private information leakage under the android

broadcast mechanism, which calls BRbysA. Firstly, broadcast

actions registered in manifest.xml are picked up statically by

keyword matching technique. Secondly, with the Xposed

framework, the broadcast actions specified at run time are

discovered by hooking broadcast callback onReceive() function.

Combining the above two ways, we can capture all real-time

broadcast actions in an android application. Thirdly, we adopt

Naive Bayesian learning algorithm, all broadcast actions which

involved in users’ privacy leakage are analyzed and classified.

Finally, we evaluate the proposed approach by using the dataset

from Drebin and Google Play.

Keywords- Android broadcast; private information leakage;

keyword matching; hook; Naive Bayesian

I. INTRODUCTION
Nowadays more attention has been paid to individual privacy
information protection in android platform [1]. There are
different security capabilities in android custom ROM [2]. It
leads to the potential loopholes and vulnerabilities in android
system [3]. For example, a loophole in BlackPhone has been
discovered to allow an attacker to decrypt users’ encrypted

information [4]. There has occurred a new malware through
Google Play Store to inject malicious codes for collecting the
user's bank and credit card information [5]. Consequently, it is
of great importance to underpin trusted android market by
malicious applications analysis approach, which can accurately
and efficiently detect APKs that reveal users’ private

information.
Existing methods are mainly divided into two categories:

static detection and dynamic monitoring. Static detection
methods involve in the analysis of signature information and
permission information. However it is difficult to find the
privacy disclosure from android broadcast mechanism by
analyzing permission information. Dynamic detection methods

like MonkeyRunner and HIPS can achieve malicious behavior
detection with higher detection accuracy, but it also suffer from
low code coverage and longtime consumption. In fact, android
system may broadcast users’ private information [6]. If a
malicious program can accept system broadcast, it can obtain
users’ private information by calling onReceive() method.

To solve these problems, this paper proposes a Naive
Bayesian-based approach called BRbysA for analyzing private
information leakage under the android broadcast mechanism.
Firstly, broadcast actions registered in the manifest.xml are
picked up statically by exploiting keyword matching technique.
Secondly, referencing Xposed framework, the broadcast actions
specified at running time are discovered by hooking broadcast
callback onReceive() function. Combining the above two ways,
we can capture all real-time broadcast actions in an android
application. Thirdly, adopting Naive Bayesian-based learning
algorithm, all broadcast actions involved in users’ privacy

leakage are analyzed and classified. To our knowledge, we are
the first one to introduce the machine learning-based method to
analyze android broadcast receiver. Furthermore, based on the
above analysis, the probability of each broadcast actions
appeared in malicious programs is calculated to determine
whether the application discloses users’ private information
Based on Drebin dataset proposed by Daniel et al [7] and
Google Play application set, we have test the effectiveness of
the proposed method successfully. We summed up several
kinds of broadcast actions that really exist the risk of leaking
users’ private information.

The rest of the paper is organized as follows. Section II
presents related work. Section III gives the problem description.
Section IV introduces the proposed method in detail. Section V
presents our experimental results. Section VI concludes this
paper and shows some possible future work.

II. RELATED WORK
In the aspect of android malware detection, there are two

schemes: static detection and dynamic monitoring. Static
detection methods [8] mainly concern the analysis of signature
information, permission information of APKs. Dynamic

DOI reference number: 10.18293/SEKE2018-208

671

mailto:linli_2009@bjut.edu.cn
mailto:zjb@bjut.edu.cn

detection methods [9], [10], [11] can trigger the malicious
behavior of malicious programs by running android
applications. Common dynamic testing tools include Monkey,
MonkeyRunner, TaintDroid, droidBox and so on [12].

Most of current malicious applications detection researches
focus on the analysis of permissions and malicious APIs. There
was a little work on investigating android broadcast mechanism.
Fadi Mohsen et al. [6] have developed a tool broadcastViewer,
which can be used to view android system broadcast actions that
has been installed on your phone. However, the work detects
broadcast actions only from the perspective of static analysis
and cannot detect the behavior of broadcast receiver when the
actual operations are triggered by the application. In addition,
Erika Chin et al. [13] proposed ComDroid to analyze android
inter-process communication risk. Di Tian et al. [14] analyzed
the characteristics of Broadcast Receiver vulnerability and
developed a broadcast receiver vulnerability detection system
called BRVD. Noam Kogan et al. [15] present an anti-pirate
revocation scheme for broadcast encryption systems. The above
three work have mentioned that broadcast message may be with
user's private information in broadcast transmission and inter-
application communication. But they also didn’t analyze all

broadcast actions systematically. It may lead to miss some
broadcast actions that reveal users' private information.

III. PROBLEM DESCRIPTION
Users download a wide variety of APKs from third-party

application market in order to meet their daily commerce and
communication needs [16]. An android system consists of four
components: BroadcastReceiver, Activity, Service, and
Content provider. BroadcastReceiver is used to receive
broadcast declared in Manifest.xml file. At this time,
BroadcastReceiver also can call its onReceive() method to
perform certain operations. Interaction between
BroadcastReceiver and android system is shown in Fig. 1. The
broadcast information may contain users’ private information.
A malicious program can perform android broadcast callback
function by customizing onReceive() method. For example, if a
malicious program has registered SMS BroadcastReceiver, it
can receive SMS messages and access the information through
intent.getExtras() method. In this paper, our objective is to
provide a sound method for detecting and analyzing malicious
android APKs, which use broadcast to steal user privacy.

Android
System

Broadcast
Receiver

issue system broadcast notification

regiser system broadcast

Monitor system broadcast

occur specific system events

receive system broadcast, callback
onReceive() method

Figure 1. Interaction between broadcast receiver and android system

IV. DESIGN OF BRBYSA
As shown in Fig.2, the BRbysA method is divided into three

parts: broadcast action static collection, broadcast action
dynamic discover and Naive Bayesian-based privacy leakage
analysis. It must combine static and dynamic methods to collect
broadcast action, because the existing dynamic technologies do
not monitor all broadcast actions in the APK’s manifest.xml.
Moreover, exploiting Naive Bayesian-based learning algorithm,
we can determine whether there exist the risk of leaking users'
privacy through broadcast action information in an APK.

APKs

Broadcast actions collection

 Decompiling APKs based on

APKTool

 Counting broadcast actions
based on keyword matching

 Extracting actions from
manifest.xml file

Installing Xposed
Framework

Hijacking Dalvik virtual
machine

Controling Zygote
process

...

Recording initial
broadcast action array

Calculating appearance
probability of each

broadcast action in APKs

Counting the
occurrences of broadcast

action

Broadcast actions analysis

Summarizing the kinds of
broadcast actions that
may leak user private

information

...

Broadcast
user private
inFormation

OR not?

S
ta

tic co
lle

tio
n

D
y

n
a

m
ic d

isco
v

e
ry

N
a

iv
e

 B
a

y
e

sia
n

-b
a

se
d

 a
n

a
ly

sis

Figure 2.The principle of BRbysA

A. Statically collecting broadcast action

In general, self-defined BroadcastReceiver is specified by
receiver label. A particular broadcast action can be specified by
intent-filter label and received by BroadcastReceiver. In
BRbysA, broadcast actions in APK’s manifest.xml file are
collected using keyword matching algorithm in Table I.

TABLE I. KEYWORD MATCHING-BASED BROADCAST ACTION
EXTRACTION ALGORITHM

Input: APK package under test
Output: broadcast action set
Begin：
1. Decompile APK source file based on APKTool.
2. Extract the manifest.xml file of APK into a specific directory.
3. Read the manifest.xml using FileReader and BufferdReader.
4. Split the manifest.xml across blank, store elements into String array.
5. Create broadcast actions set, to compare with String array

while (bufferdReader.readLine() != null) {
String[] words = line.split(" ");

for (String word : words) {
if (word.equals(“SMS_RECEIVED”))

{arrayList.add(“SMS_RECEIVED”)}
}
}

6. If the broadcast action equals the array element, then add it to the
result set.

End.

B. Dynamically discovering broadcast action

To obtain broadcast actions specified at run time, this paper
proposes a hook-based dynamic monitoring scheme to observe
the actual state of broadcast callback onReceive() method. The
hook operation for broadcast registration API is carried out
based on Xposed framework. BRbysA states the
XposedInstaller entrance class in the configuration file
assets/xposed_init. The algorithm is shown in Table II.

672

TABLE II. BROADCAST ACTION DYNAMICAL DISCOVERY ALGORITHM
BASED ON XPOSED FRAMEWORK

Input: APK package under test
 Output: broadcast action set
 Begin:
1. Android cellphone install Xposed framework, then configure Xposed

framework in project’s manifest.xml.
2. Import XposedBridgeApi-54.jar into project as library file, the stating

XposedInstaller entry class in the assets/xposed.init file.
3. Main class Module implements IXposedHookLoadPackage Interface,

override handleLoadpackage(LoadPackageParam lpparam) method.
4. Assign the hooked package name、method name and param type,

across XposedHelpers.findAndHookMethod().
5. When the specific package is loaded, the system will call

findAndHookMethod(), and then call beforeHookedMethod and
afterHookedMethod.

6. Get broadcast action through ((Intent)param.arg[1]).getAction to,
then storage it into broadcast action array.

End.

C. Naive Bayesian-based privacy leakage analysis

Based on the above methods, all real-time broadcast actions
can be captured in an APK. Next, a naive Bayesian machine
learning algorithm is introduced to classify broadcast actions.
Let X0 be normal program, X1 be malicious program, Ci
represents broadcast action bai appearing in an APK, then the
formula P(Ci|Xi) = P(Xi |Ci) * P(Ci)/P(Xi) (1) indicates the
occurrence probability of broadcast action bai when the APK is
normal or malicious. The algorithm is shown in Table III.

TABLE III. NAIVE BAYESIAN-BASED PRIVACY LEAKAGE ANALYSIS
ALGORITHM

Input: Broadcast action set outputted by the above methods
Output: the conditional probability of occurrence of each broadcast action

when an APK is malicious
Begin:
1． Construct an array ActionArrays[], each element of ActionArrays[] is

from the broadcast action set outputted by the above methods.
2． Array ClassVec[] stores APKs’ classification, where '0' indicates

normal program, '1' indicates malicious program. The array

ArraySingle is used to store the occurrence number of unreplicated
broadcast action . The initial elements of ArraySingle are set all '0'.

3． For any broadcast action bai, count the number of malicious APKs

from ActionArrays under the premise of bai occurrence, which is
denoted by Ni1, count the total number of all APKs from ArraySingle

under the premise of bai occurrence, which is denoted by Ni2.

Calculate P(X1|Ci) through Ni1 divided by N i2.
4． For any APK, calculate P(X1), the probability that APK is malicious.
5． For any broadcast action bai, count the number of bai in ArraySingle

Ni3; Count the total number of all broadcast action in ActionArrays
Ni4. Calculate P(Ci) through Ni3 divided by Ni4.

6． For any broadcast action bai, calculate P(Ci|X1) by Formula (1).
7． For different broadcast actions in an APK, count the average value of

P(Ci|X1) and find a suitable threshold. Determine whether an APK

will reveal user private information by judging if the above average
value exceeds the selected threshold or not.

End.

V. EXPERIMENT EVALUATION

A. Experiment environment

We have implemented and deployed BRbysA on Android
version 4.4. The total kinds of broadcast actions is 136. The
Xposed Framework version used in BRbysA is No.54. We
randomly choose 1000 regular APKs from the Google Play and

download 1000 malicious APKs from Drebin dataset as
experimental samples.

B. Static collection and dynamic discovery effectiveness

Using the algorithms in Table I and II, we have counted the
number of all broadcast actions in the 2000 APKs. Due to
limited space, here we only release statistic data. As shown in
Table IV, only 31 in 136 kinds of broadcast actions appears in
the 2000 APKs, the others don’t appear. PA represents the
average value of conditional probability for broadcast actions
occurring under the premise of malicious APK. The result
shows that the first five have higher frequency than 0.3.

TABLE IV. THE NUMBER OF ALL BROADCAST ACTIONS IN THE SAMPLE.

Broadcast action Num. PA
android.provider.Telephony.SMS_RECEIVED 300 0.4507
android.net.conn.CONNECTIVITY_CHANGE 243 0.4105
android.net.wifi.NETWORK_IDS_CHANGED 156 0.3954

android.intent.action.PHONE_STATE 113 0.3522
android.intent.action.NEW_OUTGOING_CALL 84 0.3013

Intent.ACTION_LOCALE_CHANGED 53 0.2652
Intent.ACTION_REBOOT 22 0.1024

android.hardware.action.NEW_PICTURE 7 0.0202
android.hardware.action.NEW_VIDEO 4 0.0106

android.intent.action.CAMERA_BUTTON 2 0.0103
android.intent.action.DATA_SMS_RECEIVED 2 0.0096

android.intent.action.FETCH_VOICEMAIL 2 0.0043
android.intent.action.NEW_VOICEMAIL 1 0.0043

android.intent.action.PROVIDER_CHANGED 1 0
android.intent.action.PROXY_CHANGE 1 0

android.intent.action.SCREEN_ON 1 0
android.intent.action.SCREEN_OFF 1 0.0043

android.media.VIBRATE_SETTING_CHANGED 1 0.0043
android.net.nsd.STATE_CHANGED 1 0
android.net.wifi.STATE_CHANGE 1 0

android.nfc.action.ADAPTER_STATE_CHANGED 1 0
android.provider.Telephony.SMS_RECEIVED 1 0.0043

android.intent.action.WALLPAPER_CHANGED 1 0
android.media.AUDIO_BECOMING_NOISY 1 0

android.intent.action.PACKAGE_FIRST_LAUNCH 1 0.0043
android.intent.action.MEDIA_SCANNER_SCAN_FIL 1 0.0043
android.intent.action.INPUT_METHOD_CHANGED 1 0

android.intent.action.BATTERY_LOW 1 0
android.intent.action.BATTERY_CHANGED 1 0

android.bluetooth.device.action.UUID 1 0.0043
android.bluetooth.devicepicker.action.LAUNCH 1 0.0043

C. Malicious APKs detection accuracy

Next, we use the above samples to test malicious APK
detection accuracy of BRbysA. As shown in Fig. 3, the
horizontal axis represents probability value ranges, the vertical
axis represents the number of APKs that PA falls in a certain
probability value range. In the experiment, 0.3 is selected as a
threshold. As shown in Fig. 3, the number of APKs whose PA
is greater than 0.3 is 123+141 + 26 = 290. That means, 290
malicious APKs can be detected by BRbysA. Meanwhile, the
number of APKs registered broadcast actions in 1000 malicious
APKs is counted as 310. Considering the most extreme situation,
all malicious APKs registered broadcast actions exist the risk of
leaking users’ private information. Thus the malicious APKs
detection rate of BRbysA is 290/310=93.548%. The result
shows that BRbysA can achieve good malicious APKs detection.

673

Figure 3.Different probability value range vs the number of APKs whose

ProA falls in a corresponding probability value range.

Finally, we compare BRbysA with Manilyzer [17]. In the
experiment, we randomly select 100 APKs from the above 310
malicious APKs registered broadcast actions and select 100
APKs from the above 1000 regular APKs. BRbysA and
Manilyzer are implemented to analyze the selected 200 APKs.
As shown in Fig. 4, the horizontal axis represents different
rounds and the vertical axis represents the number of detected
malicious APKs under different malicious APKs detection
methods. The result shows that BRbysA can work better than
Manilyzer at malware detection rate in most cases.

Figure 4. Different rounds vs the number of detected malicious APKs under
different malicious APKs detection methods.

VI. CONCLUSIONS AND FUTURE WORK
This paper proposes BRbysA to analyze private information

leakage under android broadcast mechanism. The highlights of
this paper are as follows. Firstly, combining static collection and
dynamic discovery, all real-time broadcast actions in an APK
can be captured. Secondly, adopting Naive Bayesian learning
algorithm, all broadcast actions involved in users’ privacy
leakage can be analyzed and classified. Finally, we have
evaluated BRbysA using the dataset from Drebin and Google
Play, which illustrate there are several kinds of broadcast actions
that really exist the risk of leaking users’ private information.

However, the problem of threshold selection is not covered
in this paper. With the change of sample size, we have found that
different thresholds may make different decisions. This is
desirable to develop some data mining approaches to increase
the malware detection accuracy in the set of more malwares.
Furthermore, our ongoing research will test the time and load
overhead performance of the proposed approach.

ACKNOWLEDGMENT
This work is partially supported by the National Science

Foundation of China (No. 61502017), the Scientific Research
Common Program of Beijing Municipal Commission of
Education (KM201710005024).

REFERENCES
[1] Zhang. W, Li.X, Xiong.N and Vasilakos. A. V, “Android platform-based

individual privacy information protection system,” Personal and
Ubiquitous Computing, Vol. 20, no. 6, pp. 875-884, 2016.

[2] Xu. M, Song. C,Ji. Y, Shih. M, Lu. K, Zheng C, et al, “Toward
Engineering a Secure Android Ecosystem: A Survey of Existing
Techniques,” ACM Computing Surveys, Vol. 49, no. 2, pp.38, 2016.

[3] Yang. K, Zhuge.J, Wang. Y, Zhou. L, and Duan. H, “IntentFuzzer:
detecting capability leaks of android applications,” in Proceedings of the
9th ACM symposium on Information, computer and communications
security, pp.531-536, ACM, 2014.

[4] 360 security broadcast, The world's most secure mobile phone
BlackPhone was found loopholes can cause loss of privacy [Online].
Available: http://bobao.360.cn/news/detail/1171.html 2015-01.

[5] Ren. C, Chen. K, and Liu. P, “Droidmarking: resilient software
watermarking for impeding android application repackaging,” in
Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, pp.635-646, ACM, 2014.

[6] F. Mohsen, M. Shehab, E. Bello-Ogunu,and AA. Jarrah, “Android System
Broadcast Actions Broadcasts Your Privacy,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pp.1484-1486, ACM, 2014.

[7] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon and K. Rieck ,
“DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket,”in Proceedings of NDSS 2014, Internet Society, 2014.

[8] Quan. D, Zhai. L, Yang.F and Wang. P, “Detection of Android Malicious
Apps Based on the Sensitive Behavious,” in Proceedings of TrustCom
2014, pp. 877-883, IEEE, 2014.

[9] S. S. Shinde and S. S. Sambare, “Enhancement on privacy permission
management for Android apps,” Communication Technologies, pp.838-
842, IEEE, 2015.

[10] Yang.W, Xiao. X, P. Rahul, E. William and Xie.T, “Improving mobile
application security via bridging user expectations and application
behaviors,” in Proceedings of the 2014 Symposium and Bootcamp on the
Science of Security, pp.32, ACM, 2014.

[11] S. Feese, B. Arnrich, G. Troster, M. Burtscher, B. Meyer and K. Jonas,
“CoenoFire: monitoring performance indicators of firefighters in real-
world missions using smartphones,” in Proceedings of the ACM
international joint conference on Pervasive and ubiquitous computing,
pp.83-92, ACM, 2013.

[12] S. K. Singh, B. Mishra and P. Gera, “A privacy enhanced security
framework for android users,”in Proceedings of the 5th International
Conference on IT Convergence and Security, pp.1-6, IEEE, 2015.

[13] E. Chin, A. P. Felt, K. Greenwood and D. Wagner, “Analyzing Inter-
Application Communication in Android,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
MobiSys'11 and Co-located Workshops, pp. 239-252, ACM, 2011.

[14] Tian.D, “Detecting Vulnerabilities of Broadcast Receivers in Android
Applications,” ProQuest Dissertations and Theses A&I: The Sciences
and Engineering Collection, 2016.

[15] N. Kogan, Y. Shavitt and A. Wool, “A practical revocation scheme for
broadcast encryption using smartcards,” ACM Transactions on
Information and System Security (TISSEC),Vol.9,no.3,pp.225, 2006.

[16] Li. Y, Yao. F, Lan. T and Venkataramani. G. , “SARRE: Semantics-
Aware Rule Recommendation and Enforcement for Event Paths on
Android,” IEEE Transations on Information Forensics and Security:
Vol.11, no 12, pp. 2748-2762, 2016.

[17] S. Feldman, D. Stadther and B. Wang, “Manilyzer: Automated Android
malware detection through manifest analysis,” in Proceedings of the 11th
IEEE International Conference on Mobile Ad Hoc and Sensor Systems,
pp. 767-772, IEEE, 2015.

1582

26 49 123 141
26

0

200

400

600

800

1000

1200

1400

1600

1800

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.6 aboveTh
e

n
u

m
b

er
 o

f
A

P
K

s
w

h
o

se

P
ro

A
 f

al
ls

 in
 a

 c
er

ta
in

p

ro
b

ab
ili

ty
 v

al
u

e
ra

n
ge

different probability value range

78

80

82

84

86

88

90

92

94

1 2 3 4 5 6 7 8 9 10Th
e

n
u

m
b

er
 o

f
m

al
ic

io
u

s
A

P
K

s

Different rounds

BRbysA Manilyzer

674

http://bobao.360.cn/news/detail/1171.html%202015-01

DOI reference number: 10.18293/SEKE2018-038

Model Checking Method for SPA Page Transition
Based on Component-based Framework

Naito Oshima
Graduate School of Creative Science and Engineering

Waseda University
Tokyo, Japan

always-4869@akane.waseda.jp

Tomoji Kishi
School of Creative Science and Engineering

Waseda University
Tokyo, Japan

kishi@waseda.jp

Abstract—In recent years, because web applications have been

handling increasingly important processing tasks, it is ever more

important to avoid errors. Model checking is one verification

method for detecting errors, whereby it is necessary to model the

web application in order to verify it. However, typical web

application developers may lack knowledge on creating the

verification model. Furthermore, web applications have become

increasingly diversified owing to web-browsing technological

advancements and other factors. Among these, the single-page

application (SPA) using a component-based web application

framework, such as Angular, has attracted attention because of

its excellent user experience. However, it makes modeling more

difficult since the page structure is complicated by the intricate

combination of components. In this paper, we therefore present a

method to automatically generate verification models from

source code and perform model checking. The method enables

verification of SPA page transitions using the component-based

framework. We apply our implemented automated tool to several

applications. First, we experiment using sample applications that

do not inject bugs and others that intentionally inject bugs.

Moreover, we apply the method to real applications published on

the Internet. The desired results are obtained, thereby

confirming that the proposed method is effective.

Keywords—Model Checking; Single-Page Application (SPA);

Web Application Framework; Component-based; Angular.

I. INTRODUCTION
In recent years, the number of web applications handling

important processing endeavors, such as online shopping, has
markedly increased, thus magnifying the importance of
avoiding errors. A comprehensive verification method for
detecting errors is model checking [1], whereby it is necessary
to model the target web application in order to verify it.
However, the typical web application developer may have
minimal knowledge of model checking.

Meanwhile, web applications have continued to diversify
on account of the advancement of highly functional web
browsers and web application development technology. Among
them, a new type of single-page application (SPA) has been
developed. By performing front-end processing, such as control
of page transitions, which was traditionally performed on the
back-end, it is possible to provide superior user experience
(UX) with a fast response. Moreover, front-end frameworks—
which are different from back-end frameworks, such as the

conventional Ruby on Rails—are emerging to foster front-end
development. Front-end frameworks include Backbone.js,
Vue.js, AngularJS, and others.

The recently released Angular framework has a novel
component-based architecture that is different from the
conventional one. However, in SPA, with the use of a
component-based web application framework (henceforth
“component-based framework”), the components are intricately
combined. Therefore, the framework is more complicated than
in the conventional one. For example, the page structure is
complex, and errors are easily mixed in the page control part. It
is believed that validation using model checking is effective for
such an SPA. Nevertheless, since the pages are dynamically
constructed by a combination of components, it is difficult to
apply the modeling method with the existing conventional
static page.

In this paper, we therefore propose a method to
automatically generate a verification model and formulas that
verify page transitions from SPA source code using the
component-based framework. Model checking is also
performed. We implement a tool that automates the proposed
method for SPA using the Angular component-based
framework. Experiments are conducted on several applications.
We herein use Simple Promela Interpreter (SPIN) as the model
checker. Hence, Process Meta Language (Promela) describes
the verification model, and Linear Temporal Logic (LTL)
describes the verification formula.

II. BACKGROUND

A. Single-Page Application (SPA)

In conventional web applications, each time an event
occurs, such as a user interaction, the client synchronously
requests the server (e.g., an initial request). The server responds
to the client with all HTML of the corresponding page, and the
client performs reloading and rendering processes.

In SPA, the server generally returns HTML, CSS, script
files, and so on as a response only when responding to the
initial request from the client. For subsequent requests from the
client, we process and redraw using the front-end and
asynchronously acquire data from the back-end in JSON
format when needed. Using this mechanism, the SPA redraws

675

only the corresponding part without reloading the entire page,
and it realizes page transitions as being controlled by the
conventional back-end [2]. Thus, similar to a native
application, the response to the user operation is fast and can
provide excellent UX. Meanwhile, to realize SPA, a
considerable amount of JavaScript code is necessary, and the
front-end implementation and structure are complicated
compared to the conventional approach [3].

B. Component-based Framework

To improve development efficiency and quality, a web
application framework is usually employed in web application
development. Owing to front-end complexities, web
application frameworks are likewise diversified, and front-end
framework development has advanced [3]. The framework
architecture has also changed, and frameworks adopting a new
component-based approach are being developed.

The component-based concept is founded on Web
Components [4], for which the World Wide Web Consortium
(W3C) developed specifications. The following Web
Component functions are the primary ones [4]:

• Custom Elements

• HTML Imports

• HTML Template

• Shadow DOM

The component-based framework usually includes these
four functions. Unlike the back-end framework based on the
model–view–controller (MVC) architecture [6] described for
each role in the component-based framework, independent
component grouping views, logic, and so on are defined for
each element constituting the page.

SPA using the component-based framework dynamically
constructs the whole page by combining those components. It
is thereby possible to improve its reusability and other aspects.
Furthermore, both page generation and page transitions are
controlled by the front-end; thus, the component-based
framework has a routing function to associate a component
with a path (URL pattern) and to control page transitions.

C. Angular

Angular [5] is a component-based framework developed by
Google. For the development language, TypeScript, a superset
of JavaScript, is recommended. It is not compatible with the
earlier version of “AngularJS” (version 1). Since version 2
(September 2016 release), Angular has been referenced as
“Angular.” In this research, an evaluation experiment is
conducted on Angular 4.0.1. Additionally, SPA using Angular
is defined as “Angular SPA.”

Basically one Angular component consists of the following:

• HTML Template, CSS Template

• TypeScript Class

• Metadata Using a Decorator

The entire page is comprised of one or more components,
including a root component, which is the first component to be
called when Angular SPA is activated.

In Angular, it is possible to dynamically replace parent
components under the root component according to a path by
RouterModule with a routing function. It is thus possible to
realize page transitions, similar to the conventional one
controlled by the back-end, without reloading the entire page.

In addition, a custom element can be created as a user-
specific non-standard HTML tag (CustomTag) using the
selector parameter of the @Component decorator describing
the meta-information of each component. By inserting the
value of the selector parameter as the tag name in the other
parent component, the content of the HTML template of the
given custom element can be displayed in the parent
component. By using the custom element, a hierarchical
structure can be composed of a parent component and a child
component. Additionally, several of them can be arranged on
one page, the components can be reused on different pages, and
one component may be used on multiple pages. Figure 1.
depicts an Angular page configuration example.

Figure 1. Example of a page structure using many components.

Thus, in general, the entire page of Angular SPA is largely
divided into three elements:

• Root component

• Parent component controlled by the router (hereafter
the “parent component”)

• Child component group to be inserted using tags of
values declared by the selector parameter of
@Component decorators as the custom element
(hereafter the “custom child component”)

III. RELATED WORK
In this section, we briefly discuss some research related to

verification for applications, focusing especially on model
checking and page transition verification.

In [7], page transition diagrams that are used during the
design phase are addressed. A method of model checking for
one aspect of the whole application, depending on the page
transition and system environment, is proposed. The approach
differs from ours in that the former handles the page transition
diagram at the design stage, not the implementation stage. In
[8], modeling is performed in the UML model and the
reachability of the page is verified. Test cases are generated;
nevertheless, verification is not performed using a formal
method.

Root component

Parent component

Child component1 Child component2

[Web Page]

Grand child component

676

In [12], a method using JPF-Android, an Android
application verification tool, applies Java PathFinder (JPF) to
detect errors, such as deadlocking of Android applications.
Analysis of the actual source code of the application is similar
to that in the present research. However, the authors of [13]
target native Android applications, not web applications.

In [13], the authors focus on Apache Struts of the MVC
architecture web application framework. A method, “Web
Automation by Changing View,” is proposed to model the
behavior model of the web application. It is targeted at the
implementation stage and is intended for web applications that
use the Struts web application framework. However, when
applying the model-checking method to the SPA page
transition using the component-based framework, it is difficult
to use a method of modeling one element of the MVC view as
one page. Moreover, the extraction method is based on static
page information.

In [9], [10], and [11], the authors focus on the
implementation of a web application framework using
dynamically typed languages. They respectively propose
methods for extracting symbolic models to verify the data
integrity of the model part and the access control security.
Hence, the objectives differ from those of our research.

An example of front-end operation verification is the Rich
Internet Application (RIA) (e.g., [15], [16]). The present paper
differs from those works in that test cases are generated from
execution traces of actual applications, attention is focused on
interactions by event handlers, and search is performed by
crawling. In the case of the crawling method, it cannot be
verified that the back-end implementation has not been
completed. However, our proposed approach focuses on the
page transition part of the front-end. It can thus be verified
without relying on the back-end implementation.

IV. METHODS
Our proposed method extracts necessary information from

Angular SPA code for transforming the verification model and
verification formulas for page transitions. Verification by
model checking is performed to detect errors and improve the
quality using verification models and their verification
formulas. By implementing a tool that automates our proposed
methods, ordinary web developers with minimal knowledge of
model checking can also apply this method. The flow of the
proposed method is shown as follows:

A. Extraction of information from Angular SPA

B. Construction of static page information

C. Transformation to the Promela model

D. Transformation to LTL formulas

E. Verification by SPIN

Figure 2. depicts the overall extraction input and output
processes. Meanwhile, the page transitions herein are defined
as follows: “Changing of the parent component embedded in
the router—the router-outlet tag in the root component
corresponding to a path by RouterModule—consequently

changes the rendering of the entire page, similar to the
transition of the conventional web application.”

Figure 2. Overview of our proposed flow.

The page transition information is a set of <before page,
path, after page>, and it is divided into two sets: “page
information” and “transition information.” Page information
indicates a path that can be transitioned from each page. It is a
set of combinations of <before page, path>. Transition
information indicates the transition destination page
corresponding to the path described in the routing. It is a set of
<path, after page>.

In this study, certain restrictions are placed on the Angular
SPA description, such as not using child attributes and route
parameters in routing. Since page transitions under the control
of RouterModule are targeted, changes due to links to external
web sites and data binding are not treated as page transitions.

A. Extraction of Information from Angular SPA

Transition information is included in routing defined by
RouterModule and we thus extract it. Specifically, we extract
path parameters and corresponding parent component names
controlled by RouterModule.

Page information indicates a path that can transition from
one page. In SPA, using the component-based framework, it
consists of the set of “Page information in the root component”
and “Page information in each component.” These pieces of
information are included not only in the parent component
controlled by the RouterModule, but also in the custom child
component that can be inserted using the selector element as
descendants of the parent component. Therefore, page
information is extracted from all components. Furthermore,
since information indicating the parent–child relationship of
each component is also necessary, the “Custom element
information in each component,” of which the parent
component controlled by the RouterModule contains the
descendant component, is also extracted.

B. Construction of Static Page Information

We automatically construct static page information from
the information extracted in Section IV-A. Static page
information is a set of transition-capable paths contained in
those pages. In this paper, each of their page names is defined
by the parent component name controlled by RouterModule.

Angular SPA code

A. Extraction & B. Construction Process

Transition information Static page information

C. Transformation to Promala model &
D. Transformation to LTL formulas Process

Promela Model LTL formulas

E. Verification Process

Verification results, Counterexamples

677

We use the information of Section IV-A from the earlier
flow outline to solve the parent-child relationships among the
root component, parent component, and custom child
component. We construct static page information representing
the page information contained in each parent component
controlled by RouterModule. It expresses the parent component
name (the key part on the left of Table I) controlled by
RouterModule, as well as the transition-capable paths (the
value part on the right of Table I). We transform the Promela
model and LTL formulas based on this static page information
and transition information extracted in Section IV-A.

TABLE I. EXAMPLE OF GENERATED STATIC PAGE INFORMATION

{
 “component1”: [“/component2”, “/component3”],
 “component2”: [“/component1”],
 “component3”: [“/component4”],
}

C. Translation to the Promela Model

Given the transition information of Section IV-A and the
static page information generated in Section IV-B, we convert
the verification model necessary for model checking. In this
paper, since SPIN is used as the model checker, we express the
verification model by Promela, the modeling language used in
SPIN.

The page transitions controlled by routing are indicated by
a set of “pages that can transition from one page and the page
to which the path transitions,” such as <page 1, path, page 2>.

An example of page information by Promela is:

state == page1 -> state = path

An example of transition information by Promela:

state == path -> state = page2

As described above, a combination of page information and
transition information expresses the Promela model of the page
transition. In this Promela model, the state changes alternately
with page, pass, page, pass... and so on. When it is possible to
transition from one page to multiple pages, it is written as if it
occurs non-deterministically using the syntax of “if...fi.” The
process is repeatedly performed using “do ... od” of the guard
command of the repeating syntax.

D. Translation to LTL Formulas

The properties that generally hold in web applications are
the following with reference to [7]:

(1) The page reachable from the top page always has a next
page in the transition (property 1).

(2) Every page is reachable from the initial page (property
2).

(3) The initial page is reachable from all pages (property 3).
(4) A page transition is triggered only after several assumed

pages (property 4).

We examine the above four properties. For property 1, we
do not generate verification formulas because we do not input a
formula. Rather, we perform verification using the default

deadlock-free of SPIN (1). For property 2, for the initial page p
and arbitrary page q, we have the following LTL formula:

¬ ◊(p & ◊q) ()
which will be verified. If a transition is possible, an error
occurs, and it is confirmed that a transition from the initial page
to any page is possible. By changing an arbitrary page q and
repeatedly verifying all pages, it can be confirmed that the
model satisfies property 2. For property 3, as with property 2,
for initial page q and any page p, we have the following LTL
formula:

¬ ◊(p & ◊q) ()
If a transition is possible, an error occurs, and it is confirmed
that a transition from an arbitrary page to an initial page is
possible. By changing arbitrary page p and repeatedly verifying
all pages, it can be confirmed that the model satisfies property
3.

As described above, in the validation of property 2 and
property 3, since formulas are necessary for input, we
automatically generate LTL formulas for all page names that
can be transitioned from all paths defined in routing using
transition information extracted by Section IV-A. This supports
the verification.

In addition to the properties referencing [7], we verify
property 4. For this property, in specifying one page q, and for
any page p, we have the following LTL formula:

¬ ◊(p & XXq) ()
To use the next operator in SPIN, we must attach “-DNXT”
option at gcc compile time. It is confirmed that p is included in
the next page that can be transitioned from page q.

As described above, in this research, we model to include
path transitions between page transitions, such as a path from a
page and another page from a path. That is why the formula
contains the two next operators (XX). By changing an arbitrary
page, p, and repeating the verification for all pages, we can
confirm that the model satisfies property 4. Specifically, it can
be checked whether the next page is directly transferred from
the unintended page to page p, and whether the next page can
be transitioned directly from the intended page to page p.

E. Verification by SPIN

We input the Promela model generated in Section IV-C and
LTL formulas generated in Section IV-D into SPIN and verify
the model for the formulas. In the automation tool, we verify
each generated LTL formula. If the verification result is false, it
automatically analyzes the trail file and automatically outputs
the verification result and counter example simulation result as
files, respectively.

V. EXPERIMENTAL RESULTS
We employed an automated tool that implements the

proposed method to conduct from the information extraction to
the verification for SPA. When inputting Angular SPA, the
automation tool can automatically perform all processes, from
information extraction to generation of the verification model,
generation of formulas, and execution of SPIN.

678

By applying our method to several sample applications, we
checked whether the intended model was output. We then
confirmed the feasibility of the flow of the proposed method
and the feasibility of actually verifying it. In addition, we
applied it to sample applications that intentionally incorporated
errors to make properties false. We confirmed whether they
could be verified correctly. Furthermore, to show the
effectiveness of this method, we applied it to real applications
published on the Internet.

A. Experiment 1: Sample Applications

We show the page transitions of sample application 1
(hereafter “sample app1”) in Figure 3. First, we verified
sample app1 with no errors in all properties. Next, we
experimented using three of sample app2, sample app3, and
sample app 4, in which errors for each property were injected.

Figure 3. Page transition diagram of sample app1.

1) Verification Model

We applied sample app1 to the automated tool and checked
if the validation model was correctly generated automatically to
represent the page transitions in Figure 6. As a result, the
automatically generated verification model was correctly
generated. It was generated automatically, as assumed from
extraction to the modeling. Similarly, for sample app2, 3, and 4,
the assumed verification model was correctly generated. Next,
we verified the four properties using this verification model.

2) Verification without Injecting Errors

We verified property 1 against the verification model of
sample app1 automatically generated by (1). As a result, no
error was output, and it was confirmed that there was no
problem in its properties, as expected. Likewise, we verified
property 2, property 3, and property 4.

3) Verification with Injecting Errors

We verified sample app2, which intentionally injected the
error of property 1 into sample app1. Specifically, in sample
app2, there was no transition from “Complete Page” to “Top
Page” of sample app1. We confirmed that the result was an
error. As a result of verifying that property 1 was deadlock-free,
it was possible to detect an intended error. Furthermore, a
counter example was simulated using the output trail file. As a
result, it was confirmed that the transition from “Complete
Page” to “Top Page” was not completed and it stopped at
“Complete Page,” as expected.

Similarly, we verified sample app3, which intentionally
injected the error of property 2 into sample app1. Specifically,
in sample app3, there is no transition from “Confirm Page” to
“Complete Page.” Since the verification result of that part don't
result in an error, it is observed that there was no path to reach
“Complete Page” from the initial page “Top Page,” and the
intended error can be detected. As a result of the verification,
the verification was completed without verifying the transition
as an error. Therefore, it could detect the intended error.

Next, a bug injection experiment of property 3 was
performed using sample app2 above. In sample app2, there was
no transition from “Complete Page” to “Top Page” on the
initial page. Therefore, contrary to property 3, it could not
transition from all pages to the initial page. As a result,
verification was completed without causing errors for all pages.
Therefore, it was confirmed that an intended error was detected.

Finally, we tested sample app4, which intentionally injected
the error of property 4 into sample app 1. Sample app4 added
the transition from “Product Page” to “Payment Page” to
sample app1. We confirmed the pages that could transition
directly to “Payment Page.” From the verification results,
transitions from “Delivery Page,” “Gift Page,” and the
additional “Product Page” were possible. Specifically, we
verified that it was possible to transition from “Product Page”
to the next “Payment Page.” As a verification result, an
intended error was detected. Owing to the simulation of the
counter-example, we confirmed that it was possible to
transition from “Product Page” to the next “Payment Page,” as
intended.

B. Experiment 2: Real Applications

To further demonstrate the effectiveness of our method, we
applied the experiment to two different real applications
(hereafter “Small App” and “Large App”), whose source code
is published on GitHub [17]. We examined properties 1, 2, 3,
and 4. In the case of property 4, we selected one of the parent
component names defined in each routing and conducted the
experiment. The scale of the two applications is shown below.

TABLE II. SCALE OF REAL APPLICATIONS

 LOC Number of pages
Small App 1824 6
Large App 6893 23

In this experiment, we automatically generated the
automatic verification model and formulas using the automated
tool. The verification results using the automatically generated
verification model and formulas are shown below.

TABLE III. RESULTS OF EXPERIMENTS FOR REAL APPLICATIONS

 Property 1 Property 2 Property 3 Property 4

Small No error No error No error No error

Large No error 2 errors 2 errors No error

First, as a result of verifying property 1, it was confirmed
that there was no problem in its properties because no error was

complete

Top Page[initial]
(4components)

Payment Page
(3components)

Confirm Page
(3Components)

Complete Page
(5Components)

gift

top

Gift Page[Optional]
(3components)

confirm

payment

list List Page
(3components)

Product Page
(4components)

Delivery Page
(3components)

product

delivery

payment

679

output in either application. Similarly, we verified property 2.
As a result, in Large App, there were two pages for which no
error was output, and bugs were detected in the transition to
two pages. We confirmed that part of the application, the
reachable transition to that page, was described in none of the
pages.

Next, we examined property 3. As a result, similar to
property 2, in Large App, there were two pages wherein no
error was output, and an error was detected in the transition
from two pages. We confirmed that aspect of the application.
Finally, we verified property 4. For each Small App and Large
App, a single subsequent page was specified and verified. We
visually checked whether the SPA could actually transition
directly to that screen for pages that were made transition-
capable by the verification result.

In property 4, it was self-evident that no bug existed.
However, when the developer actually verifies it, it can be
considered effective because it can detect whether the SPA
directly transitions to an unintended page.

C. Discussion

We conducted experiments on several applications using
automated tools that we implemented. First, in the experiment
on sample applications, it was possible to automatically
correctly from the information extraction to verification of
Angular SPA. In experiments with applications that did not
inject bugs, and with applications that intentionally injected
bugs, we obtained the desired verification results. Furthermore,
even when we applied this method to applications published on
the Internet, we could perform the task correctly. In practice,
one application could detect multiple errors. Thus, our
approach showed greater effectiveness.

Based on several experimental results, we confirmed that
the proposed method enables correct generating and verifying
of the verification model for the page transitions of Angular
SPA. Moreover, by using our automated tool, it is considered
that this method can be applied, even by ordinary developers
who have minimal knowledge of model checking. As stated
above, this study assumed certain constraints. These constraints
mainly come from the first step of our method, i.e., the
extraction of information from Angular SPA. By improving the
analysis of SPA, these constraints can be decreased.

VI. CONCLUSION
In this paper, we proposed a model checking method for

page transitions of SPA using a component-based framework.
In addition, we implemented an automated tool that applies this
method of automatically generating verification models and
formulas from extraction from source code of SPA. The tool
additionally performs the verification. By using the tool, even
typical developers with minimal model checking knowledge
can apply the proposed method. Furthermore, it was confirmed
that there was no problem in the flow of the proposed method
by using real applications intentionally mixed with errors and
those that actually showed the source code.

Focus on the front-end page without reliance on the back-
end is a strength of our proposed approach. However, the

information extraction part of our implementation tool is
directed to Angular SPA and thus assumes certain constraints.
Therefore, it may be challenging to improve the tool and
expand the application scope. Our future work will address this
issue. Additionally, we will apply the method to various more
complex Angular SPAs. Moreover, the information extraction
part of the tool depends on Angular. Thus, we will consider
implementing automation tools for SPAs using other
component-based frameworks, such as Aurelia, or component-
based libraries, such as React.

REFERENCES
[1] Edmund M. Clarke; Orna Grumberg; Doron Peled, “Model Checking,”

The MIT Press, 1999.
[2] Madhuri A. Jadhav; Balkrishna R; Sawant, Anushree Deshmukh,

“Single Page Application using AngularJS,” International Journal of
Computer Science and Information Technologies (IJCSIT), Vol.6, No.3,
pp.2876-2879, 2015.

[3] Ning Zhang; Yizhen Cao; Shengyan Zhang, “Research of web front-end
engineering solution in public cultural service project,” Computer and
Information Science (ICIS), IEEE/ACIS 16th International Conference
on, pp.623-626, 2017.

[4] Web Components, https://www.webcomponents.org/, accessed: 2018-
03-01.

[5] Angular, https://angular.io/，accessed: 2018-03-01.
[6] Glenn E. Krasner; Stephen T. Pope, “A cookbook for using the model-

view controller user interface paradigm in Smalltalk-80,” Journal of
Object-Oriented Programming, Vol.1, No.3, pp.26-49, 1988.

[7] Kei Homma; Satoru Izumi; Kaoru Takahashi; Atsushi Togashi,
“Modeling, Verification and Testing of Web Applications Using Model
Checker,” IEICE Transactions on Information and Systems, Vol.94,
No.5, pp.989-999, 2011.

[8] Filippo Ricca; Paolo Tonella, “Analysis and testing of Web
applications,” Proceedings of the 23rd International Conference on
Software Engineering (ICSE), Vol.47, No.6, pp.25-34, 2001.

[9] Joseph P. Near; Daniel Jackson, “Rubicon: bounded verification of web
applications,” Proceedings of ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering(FSE), No.60,
pp.1-11, 2012.

[10] Joseph P. Near; Daniel Jackson, “Finding security bugs in web
applications using a catalog of access control patterns,” Proceedings of
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pp.947-958, 2016.

[11] Ivan Bocić; Tevfik Bultan, “Symbolic Model Extraction for Web
Application Verification,” Proceedings of IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp.724-734，2017.

[12] Heila van der Merwe, “Verification of android applications,”
Proceedings of the 37th International Conference on Software
Engineering (ICSE), Vol. 2, pp.931-934, 2015.

[13] Shoji Yuen; Keishi Kato; Daiju Kato; Daiju Kato; Kiyoshi Agusa, “Web
automata: A behavioral model of web applications based on the MVC
model,” Information and Media Technologies, Vol.1, No.1, pp.66-79,
2006.

[14] Alessandro Marchetto; Paolo Tonella; Filippo Ricca, “State-based
testing of Ajax web applications,” Software Testing, Verification, and
Validation (ICST), 1st International Conference on, pp. 121-130, 2008.

[15] Domenico Amalfitano; Anna Rita Fasolino; Porfirio Tramontana, “Rich
internet application testing using execution trace data,” Software
Testing, Verification, and Validation Workshops (ICSTW), Third
International Conference on, p. 274-283, 2010.

[16] Frederik Nakstad; Hironori Washizaki; Yoshiaki Fukazawa, “Finding
and Emulating Keyboard, Mouse, and Touch Interactions and Gestures
while Crawling RIAs,” International Journal of Software Engineering
and Knowledge Engineering (SEKE), Vol.25, pp.1777-1782, 2015.

[17] GitHub, https://github.com/, accessed: 2018-03-01.

680

A Systematic Mapping Study on Software

Comments Analysis

Amanda F. O. Passos

Federal Institute of Bahia and

Salvador University

Salvador, Brazil

amandainf@gmail.com

Manoel Mendonça

Department of Computer Science,

Federal University of Bahia

Fraunhofer Project Center @ UFBa

Salvador, Brazil

manoel.mendonca@ufba.br

Mário André de F. Farias

Federal Institute of Sergipe

Aracajú, Brazil

mario.andre@ifs.edu.br

Crescencio Lima

Federal Institute of Bahia and

Federal University of Bahia

Salvador, Brazil

crescencio@gmail.com

Rodrigo Oliveira Spínola
PPGCOMP, Salvador University

Fraunhofer Project Center @ UFBa

State University of Bahia

Salvador, Brazil

rodrigo.spinola@unifacs.br

Abstract—Context: Mining software repositories has been

used as an important tool to support software engineering

research. Recent studies indicate that code comments are one

of the most explored objects of analysis in the

area. Objective: This work investigates how analysis of

comments has been used to support software engineering

activities by identifying its purposes, focuses, techniques, tools,

evaluation methods, and the research type performed in the

area. Method: We performed a systematic mapping study of

the literature that considered papers from 1990 to

2016. Results: We analyzed 36 primary studies. The collected

data pointed out that comment analysis has been used mainly

for understanding and identifying the quality of software

artifacts. The Dictionary/Vocabulary and Natural Language

Processing are among the most used techniques, and most of

them are performed in a semiautomatic way. We also

organized a set of tools that have been used for mining

software comments. Most of the primary studies are a solution

proposal paper. Regarding evaluation methods, we found that

experiments and case studies are the most considered.

Conclusion: The results of this mapping study can help to

identify points that still require further investigation in

comment analysis research.

Keywords-Code comment analysis; mining software

repository; systematic mapping study.

1. INTRODUCTION

Software repositories contain large amount of historical
data embedded in different artifacts, such as source code,
commit data, logs, e-mails, and comments. These data
usually have rich cue to support the understanding of code
changes, defects, quality issues in the evolution of software
projects, and so on [10]. The Mining Software Repositories

(MSR) area focuses on analyzing and cross-linking the data
available in different types of repositories to discover useful
information about software projects [8].

MSR has been used as an important tool to support
research on Software Engineering (SE) with different
purposes such as prediction of defects analyzing commit
data, identification of defects analyzing bug track system,
comprehension of software evolution analyzing e-mail and
commit data, and identification of technical debt [1]
analyzing code comments. Recently, Farias et al. [4]
performed a systematic mapping (SM) study to analyze
studies on MSR by considering five editions of Working
Conference on Mining Software Repositories (MSRConf).
They reported that comments analysis is one of the most
explored objects of study in the MSR are.

Comments analysis can, for example, reveal information
such as the reason for adding new lines of code, knowing
the progress of a collective task, or even why relevant
changes were performed. Besides, code comments may also
describe the developers’ point of view about quality issues
in the software development [5][6]. Due to such diversity of
topics, our research group has faced some difficulty to have
a broad view of the area when was starting the development
of a new technology to support the identification of
technical debt through code comment analysis.

Although some secondary studies have been performed
in the MSR area [3][4][9][10], none of them has focused on
comments analysis as object of study. It would be beneficial
to have a broad view of the current research that has been
performed on the area, so new directions of research could
be better defined. In this context, this work presents the
results of a mapping study performed to investigate the DOI reference number: 10.18293/SEKE2018-013

681

following research question: “How has comments analysis
been explored with the purpose of supporting software
engineering activities?”. By answering this question, we
intend to identify which purposes, focuses, techniques,
tools, research types and evaluation methods have been
considered on the research on comment analysis to support
software engineering.

In total, 36 primary studies were selected for data
extraction. We identified that analysis of comments has
mainly been explored with the purpose of “Comprehension”
and “Identification” of software engineering artifacts.
Concerning the focuses, we observed that the most
considered was “Quality of Software Artifacts” followed by
“Technical Debt”. We also identified that the most
commonly used mining techniques are
Vocabulary/Dictionary, and they are usually performed in a
semiautomatic way. Our analysis also concluded that the
majority of studies can be characterized as "Solution
Proposal". However, we identified a rising number of
“Evaluation Paper” in the last few years. As for the
empirical evaluations, we verified that most of the studies
have carried out "Controlled Experiments" followed by
"Case Studies".

We believe that the results of this mapping study will be
beneficial for both researchers and practitioners. For the
research community, this mapping will provide information
about the current state of comments analysis research, as
well as topics that require further investigation. For
practitioners, the study presents a set of techniques and tools
that can be used to improve or develop new approaches to
explore comments analysis.

The remainder of this paper is structured as follows:
Section 2 presents some related works. Next, Section 3
describes the systematic mapping protocol. Section 4
discusses the main outcomes of the study. Section 5
considers the threats to the validity of this study. Finally,
Section 6 presents some concluding remarks.

2. RELATED WORKS

To the best of our knowledge, there are four secondary
studies on MSR area. Kagdi et al. [10] performed a
comprehensive literature survey on approaches for MSR in
the context of software evolution. As a result, the authors
proposed a taxonomy of different terms used by researchers
for presenting purpose, focus, and object of analysis into
categories. In another work, Hemmati et al. [9] analyzed
117 papers published in the MSRConf between 2004 and
2012. They codified a set of guidelines, tips, and
recommendations, and provided a set of best practices that
can be continuously used and updated as the MSR
community matures and advances.

Next, Demeyer et al. [3] aimed to identify how the
research on MSR evolved in the last decade. They focused
on: (i) outdated research topics, (ii) the most (and less)
frequently cited cases, (iii) emerging mining infrastructure,
and (iv) software engineering state-of-the-practice. Finally,

Farias et al. [4] investigated recent studies on MSR
approaches collecting data about software analysis goals
(purpose, focus and object of analysis), data sources,
evaluation methods, tools, and how the area is evolving.

The mapping study presented in this paper and the
works discussed above are complementary to each other.
Different from the others, our mapping study has a more
specific focus and intends to investigate how comments
analysis have been explored in MSR area with the purpose
of supporting software engineering activities.

3. SYSTEMATIC MAPPING PROTOCOL

This work follows a well-organized set of guidelines for

carrying out SMs in the context of software engineering [7], and

the defined protocol is presented in the next subsections.

A. Definition of Research Questions

For this study, a primary research question (RQ) was
defined: “How has comments analysis been explored with
the purpose of supporting software engineering activities?”.
The following complementary research questions were
derived from this main one. By answering these questions,
we will have a detailed characterization of the identified
studies.

RQ1. Which are the main purposes and focus of
researches on analysis of comments?

The objective of this question is to identify the goal of
MSR approaches in the area of analysis of comments. To
perform the classification of the extracted data, we used a
taxonomy (available at https://goo.gl/qO6nUa) discussed by
Farias et al. [4]. By identifying the purpose, we classify the
primaries goals of the studies (e.g., identification,
characterization, prediction). In complement, by identifying
their focuses (e.g., technical debt and defect), we classify
the main attributes of interest in the studies between the
purpose and the object of analysis (comment analysis).
Thus, for example, we could have: to identify (purpose)
technical debt (focus) exploring comments analysis (object
of analysis).

RQ2. What are the techniques used by researchers to
analyze comments?

This question intends to identify what techniques of
comments analysis have been used to extract, process, and
analyze comments. We also intend to categorize the
techniques as manual, semiautomatic and automatic.

RQ3. What are the tools used to extract, process, or
analyze comments?

This question aims to identify what tools have been used
to extract, preprocess, and analyze comments. The result of
this RQ is a set of tools that can be used in comments
mining process.

RQ4. Which empirical evaluations have been
performed in the area?

682

https://goo.gl/qO6nUa

Figure 1. Temporal view of the selected studies

This question aims to identify whether the proposed
approaches have been evaluated through empirical methods,
and if so, which method was used. To classify the types of
studies, we considered the empirical evaluation types
discussed by Farias et al. [4]. The taxonomy is available at
https://goo.gl/qO6nUa.

RQ5. What are the identified research types?

This question intends to categorize the studies according
to the research type facets defined by Wieringa et al. [11]:
evaluation research, experience papers, opinion papers,
philosophical papers, solution proposal, and validation
research. By doing this, we intend to understand the overall
contribution provided by the studies. In combination with
the answers of RQ4, it also allows the identification of gaps
and needs in the area.

B. Search strategy

In this study, we defined a generic search string:

((Software OR System OR Program OR Application)
AND ((Comment analysis) OR (Comment Identification)
OR (Code Comments) OR (Comment detection) OR
(Examination of comments) OR (Analysis of comment) OR
(Comments analysis) OR (Study of comments) OR
(Comments study)))

We applied this search string to Titles and Abstracts. We
chose not to do full text search because we found that it
resulted in a very large number of studies out of scope.

C. Data Source

In choosing data sources, we aimed to include important
journals and conferences regarding the research topic. For
this, we considered the list recommended by Brereton et al.
[2]: ACM Digital Library, IEEE Xplorer, Science Direct,
Engineering Village, Springer Link, Scopus, and Citeseer.

D. Study Selection

After applying the search strings in the digital libraries,
we filtered the relevant primary studies from the search
results using the following selection criteria:

Inclusion criteria: (i) Published works that describe
how comments analysis are used in software engineering
activities; (ii) when several papers reported the same study,
only the most recent was included; (iii) the publication date
of the article should be between 1990 and 2016; and (iv)
papers published in workshops, conferences or peer
reviewed journals;

Exclusion criteria: (i) Studies out of the scope of this
research; (ii) papers that are only available in the form of
workshop/conference reports, abstracts or PowerPoint
presentations; (iii) duplicated papers; and (iv) book chapters
and articles published without revisions (white papers).

E. Screening of Papers

The screening of papers process to identify the primary
studies comprises the following steps: (i) apply the selection
criteria by reading the paper title and abstract and select the

relevant studies from the search results; and (ii) read
introduction and conclusion in case the researcher needs
further information to decide on the study selection. A
master and a Ph.D. student performed these steps and other
two experienced researchers reviewed the results.

F. Data Extraction

Before the data extraction execution, we performed a
pilot extraction, aiming to align the researchers'
understanding of the research questions. During the
extraction process, researchers carefully read the primary
studies in a peer-reviewed process. Two researchers
extracted data for the same study and a third researcher
solved the possible disagreements. All relevant data of each
study was registered in a spreadsheet. At the end, one
experienced researcher reviewed the extracted data. The
complete data are available at https://goo.gl/PGFVim.

G. Data Analysis and Synthesis

We considered a quantitative method to analyze the
extracted data. Although we have done an analysis on the
results, most of them were summarized to present an
overview of the findings. Thus, this work is characterized as
a scoping study, which maps the primary studies on mining
code comments in the software engineering area.

4. RESULTS AND DISCUSSION

We selected the papers following four steps. First, we
searched papers in the digital libraries, resulting in 402
studies. Then, we removed the duplicated papers, resulting
in 240. Next, we read the title and abstract to remove the
studies out of the scope. This activity resulted in 68 studies,
which were fully read. During this last step, we removed 32
studies, resulting in 36 papers to perform the data extraction.
The complete list of selected studies is available at
https://goo.gl/q7nekb.

We have 24 papers published on conferences, 9 on
journals, and 3 on workshops. From a temporal point of
view (Fig. 1), the studies are more concentrated from 2011.
We also observed that 2015 was the year with more
publications (6 – 16.7%), followed by 2016 (5 – 13.9%),
2011 and 2014, both with the same number of studies (4 –
11.43%). The increasing number of publications in the last
two years (2015 and 2016) is partially justified by the
presence of works relating comments analysis and Quality
of Software Artifacts/Technical Debt. We can observe this
trend in Fig. 2.

683

https://goo.gl/q7nekb

Figure 4. Studies’ purpose vs Technique

Figure 3. Purpose vs Focus

Figure 2. Studies’ focus over the years

 A. Purposes and focus of researches (RQ1)

To analyze RQ1 and classify the studies according their
purpose and focus, we considered the taxonomy discussed
in [4]. We also considered that each study could be
categorized into more than one classification. For example,
a study can explore comments to identify and comprehend
(purpose) the quality of software artifacts (focus).

Purpose: “Comprehension” was considered in the
majority of the studies (29 – 80.6%), followed by
“identification” (10 – 27.8%). Studies related to the purpose
comprehension intend to understand the behavior of a
specific attribute by analyzing code comments (e.g.,
comprehension of the quality of software artifacts or
comprehension of defect using code comment analysis).
Whereas, studies with the purpose identification aim to
detect a specific attribute through comment analysis (e.g., to
identify defect). Only two studies had “improvement” as
main purpose and all other categories (“classification”,
“evaluation”, “localization”, “association”, and
“characterization”) were identified in only one study.

Focus: Fig. 2 shows the classification of the focus of the
studies over the years. The majority of studies focused on
“Quality of Software Artifacts” (19 – 52.8%) followed by
“Technical Debt” (6 – 16.7%). “Quality of Software
Artifacts” appeared nearly every year, but the number of
studies with this focus has increased in the last years. The
focus on “Technical Debt” only started to be considered
more recently, in 2014, and it has also increased in the last
years, revealing a new area of investigation.

Purpose x Focus: Fig. 3 presents a bubble chart
showing the relationship between the facets purpose and
focus. We can observe that “Comprehension” of “Quality of
Software Artifacts” is the most explored purpose and focus
in 16 out of 36 studies. The second most identified purpose
and focus is “Identification” of “Quality of Software
Artifacts”, “Comprehension” of “Technical Debt”, and
“Identification” of “Technical Debt” with 4 studies each.

The results also pointed out that, while the purposes
“Evaluation”, “Localization”, “Improvement”,
“Classification”, “Association”, and “Characterization”
explore just one focus, the purpose “Comprehension”
explores almost all focuses identified in this work.

Regarding technical debt, we can observe that the studies on
the area have been performed with the purposes of
“Comprehension” or “Identification”.

B. Techniques to analyze comments (RQ2)

We analyzed the techniques that have been used to mine
comments and identified 14 techniques at total. 80.6% of the
studies used: Dictionary/Vocabulary (13 studies – 36.1%),
NLP (10 – 27.8%), and Statistic/Statistic Analysis/Method
Statistic (6 – 16.7%).

Fig. 4 shows the relationship between the study purpose
and the technique used to explore comments analysis.
Comprehension and Dictionary/Vocabulary were the
purpose and technique most used together. Next, NPL was
used together with Comprehension and Identification. In the
following, we have Identification and
Dictionary/Vocabulary. We can also observe that
Comprehension and Identification were combined with
almost all techniques. On the other hand, some techniques
have been used by only one study (e.g. Dynamic analysis
and clustering).

684

Figure 5. Purpose vs Evaluation methods

TABLE 1. LIST OF TOOLS AND MINING STEP

Process Step | Tool References

Extraction (16) | CLOC, tComments,

@Randoop, Prototype Tool, RBG tool,

SLOCCount, Jdeodorant, srcML,

SSLdoclet, ConQAT, C-REX, Evolizer and

ChangeDistiller, eXcomment, iComments,

JavaMethodExtractor

S2 (2016), S36 (2012),

S14 (2010), S5 (2015),

S13 (2015), S1 (2014),

S9 (2016), S28 (2013),

S3 (2015), S7 (2011)

Processing (2) | iComments, LI Tools S33(2007), S3(2015

Analysis (14) | tComments,@Randoop,

QDA Analysis tool, RBG tool,

CommentCounter, LOCCounter,

COMTOR, Evolizer and ChangeDistiller,

iComments, Javadocminer, MineHEAD ,

Stanford Parser, next word prediction tool

S36 (2012), S4 (1994),

S5 (2015), S32 (2014),

S8 (2012), S10 (2009),

S33 (2007), S34

(2011), S17 (2015)

By analyzing how each technique works, we also
identified that 55.6% of them were semiautomatic, followed
by automatic (27.8%), manual (8.3%), and the other 8.3%
was not determined. A possible reason for the low usage of
manual techniques can be the cost to perform a manual
analysis in terms of effort and also the fact that the process
would be error prone.

C. Tools used to extract, process, or analyze comments (RQ3)

Table 1 presents the tools identified in this work by each
step of a mining process (extraction, processing, and
analysis). We identified 16 tools used in the extraction step,
14 for the analysis, and 2 for the processing. We did not
identify any tool in 50% of the selected studies.

By analyzing Table 1, we can see that most of the tools

were presented in recent studies. Another point is that only

one tool is used in more than one step (iComment). The

others were developed to support only one step of the

comment mining process. We also identified that most of

the tools are only presented in one study. Therefore, in

general, researchers develop new tools as a result of their

work. A possible explanation for this is that each study has a

specific need (not considered in existing tools) of exploring

comments in order to achieve its goals.

This set of information about tools might be useful for

researchers and practitioners to develop new approaches or

evolve the existing tools with the aim of exploring new

perspectives on comment analysis.

D. Empirical evaluations (RQ4)

In this mapping study, we found that 16 papers (44.4%)
performed controlled experiments, 8 (22.2%) case studies, 4
(11,1%) exploratory studies, and only 1 paper (2.8%)
performed a survey. We also identified 1 ethnographic study
(2.8%). The other 6 (16.7%) studies did not present any
evaluation. This result indicates that the works in the area of
software comments analysis are characterized by the use of
empirical methods to assess the proposed approaches.

Fig. 5 represents the evaluation methods performed per
purpose. We can observe that controlled experiment and
case study are the main research methods used for
evaluating “comprehension” and “identification” tasks.
“Classification”, “evaluation” and “characterization” were

the three categories in which researchers have not used
empirical methods to evaluate their approaches.

E. Research types (RQ5)

Considering the taxonomy of research types presented in
[11], we found that the majority of studies were a “Solution
Proposal” paper (19 – 52.8%), 12 were a “Evaluation
Research” (33.3%), and 3 were a combination of “Solution
Proposal” with “Evaluation Research” (8.3%). Only 1 study
performed a “Validation Research” (2.8%) and 1 study used
“Opinion Research” (2.8%). Solution proposal is paper
where a solution for a problem is proposed. The potential
benefits and the applicability of the solution are shown by a
small example or a good line of argumentation. On the other
side, evaluation research is a type of paper in which
techniques are implemented in practice and an evaluation of
the technique is conducted.

Fig. 6 presents the distribution of the performed research
types over the years. We can observe that while the number
of “Solution Proposals” published during the years is stable,
there is a rising number of “Evaluation Research” in the last
few years (2014, 2015 and 2016) indicating a tendency in
the area to perform and report more empirical studies.

Fig. 7 presents the relationship between research type
and focus. It shows that the types “Solution Proposal” and
“Evaluation Research” were widely adopted by researchers
to investigate "Quality of Software Artifacts". We can also
see that the focus "Technical Debt" is the second most
explored considering these same types. The other types of
research appear only as isolated initiatives.

5. THREATS TO VALIDITY

The results of this systematic mapping may have been

affected by some threats to validity, such as:

Search string: Even though our search string is broad, it

is possible that it did not address some studies. Our search

string was designed to find the maximum number of works

685

Figure 7. Focus vs Research type

Figure 6. Evolution of the research type over the years

on code comments, but it is possible that it missed studies

that did not used the term “comment” in their text. We tried

to mitigate this threat by a process of string calibration.

Selection Bias: We cannot ensure that all relevant
primary studies were selected for this mapping. We
addressed this threat during the selection step. We selected
each study based on the judgment of the inclusion and
exclusion criteria by more than one researcher. However,
some studies could still have been categorized incorrectly.
To mitigate this, we discussed the study protocol among the
researchers to guarantee a common understanding.
Moreover, this step was performed by two researchers and,
when both disagreed, we considered a third opinion.

Publication Bias: It is difficult to ensure that all
relevant work was returned as results in the performed
searches. To minimize this threat, the main digital libraries
in computing were considered.

Research Questions: The research questions
investigated in this study may not cover all software
comments analysis area. To address this risk, the defined
questions were analyzed by at least two researchers, one of
who acted as an external reviewer of the protocol.

Data Extraction: this threat can affect the analysis of
selected studies. To reduce this risk, initially, we performed
a pilot extraction, aiming to align the researchers'
understanding of the research questions. Next, two
researchers analyzed each paper to perform the data
extraction. A third researcher analyzed the issues on each
classification or extracted information to make sure that the
extracted data were valid and clear for further analysis.

6. CONCLUDING REMARKS

In this paper, we performed a systematic mapping study

on software comments analysis. We have extracted and

analyzed data from 36 papers. The results can guide

researchers in further studies in MSR area focused on code

comments. For practitioners, we catalogued a set of tools

and techniques to analyze comments with several purposes.

This information can help them avoiding reinventing the

wheel when developing approaches to extract, processing or

analyzing comments.

In our future research agenda, we intend to combine the
evidence identified in this work with new theories and
empirical studies developed by our group to create new
methods and tools to support comments analysis with focus
on technical debt identification and management activities.

ACKNOWLEDGMENT

This work was partially supported by the CNPq
Universal grant 458261/2014-9, by the State of Bahia's
SECTI-Fraunhofer-UFBa cooperation agreement 2012-1,
and by the RESCUER project Grant: 490084/2013- 3.

REFERENCES

[1] N.S.R. Alves, T.S. Mendes, M.G. Mendonça, R.O. Spínola, F. Shull,
and C. Seaman, Identification and management of technical debt: A
systematic mapping study. Information and Software Technology v.
70, p.100-121. 2016.

[2] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
Lessons from applying the systematic literature review process
within the software engineering domain", J. Syst. Softw. 80, 2007.

[3] S. Demeyer, A. Murgia, K. Wyckmans, and A. Lamkanfi, Happy
birthday! A trend analysis on past MSR papers, IEEE Int. Work.
Conf. Min. Softw. Repos., p. 353–362, 2013.

[4] M.A.F. Farias, R. Novais, M. Colaço, L.P.S Carvalho, M. Mendonça,
and R.O. Spínola, A systematic mapping study on mining software
repositories,” in 31st ACM/SIGAPP, 2016.

[5] M.A F. Farias, A.B. Silva, M.G. Mendonça, Spínola, R.O., and M.
Kalinowski, “Investigating the use of a contextualized vocabulary in
the identification of technical debt : A controlled experiment,” in
18Th Int. Conf. on Enterprise Information System, vol. 1, pp. 369–
378, 2016.

[6] M.A.F Farias, M.G. Mendonça, A.B.D. Silva, and R.O. Spinola, A
contextualized vocabulary model for identifying technical debt on
code comments,” in IEEE 7th Int. Work. on Managing Technical
Debt, MTD 2015.

[7] B. Kitchenham, Guidelines for performing systematic literature
reviews in software engineering. EBSE Technical Report, Software
Engineering Group, School of Computer Science and Mathematics,
vol. 3 (2). Keele University, Keele, UK. 2007.

[8] E. Hassan, “The road ahead for mining software repositories,” Front.
Softw. Maintenance. FoSM 2008., pp. 48–57, 2008.

[9] H. Hemmati, S Nadi, O. Baysal, O. Kononenko, W. Wang, R.
Holmes, M. W. Godfrey, “The MSR cookbook: Mining a decade of
research,” 10th Conference Mining Software. Repository., pp. 343–
352, May 2013.

[10] H. Kagdi, M.L. Collard, and J.I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of
software evolution,” Journal of Software Maintenance and
Evolution: research and practice pp. 77–131, 2007.

[11] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, Requirements
engineering paper classification and evaluation criteria: a proposal
and a discussion. Requirements Engineering, pp. 102–107, 2005.

686

Process metrics for system quality with specifications'
shifts from a bid phase to an operation phase

Noriko Hanakawa
Information management department

Hannan University
Matsubara, Osaka, Japan

hanakawa@hannan-u.ac.jp

Masaki Obana
Department of Information Science and Technology

Osaka Institute of Technology
Hirakata, Osaka, Japan
masaki.obana@oit.ac.jp

Abstract— Recently, large-scale computer system is important for

social human life. Such large-scale system is basically ordered

through a competitive bidding. A development company that won

the bidding starts developing. After that, customers use the

computer system on their business operations. However,

customers do not use some functions. Functions proposed in a

system proposal in a bid phase are not same functions that

customers frequently use in an operation phase. Functions change

in various phases. Therefore, we propose process metrics for

system quality. The feature of the metrics is target duration from

a bid phase to an operation phase. Specification shifts of functions

are clear in a simple rule. The metrics quantitatively measure

specification shifts. We check active or non-active of each function

on each phase. The total number of change of active or non-active

of all functions is an important element of the metrics. Moreover,

timing of the change of active or non-active of functions is also a

significant factor of the metrics. As a result of applying a real

project, we found that usage of the uncompleted package software

makes development process complicated.

Keywords-competitive bidding; usage frequency; active or non-

active function; unreasona-ble price and time; system proposal.

I. INTRODUCTION
Recently, large-scale computer system has been frequently

developed in industry. The large-scale computer system means
society infrastructure system such as public transportation
system, civic service system of government, banking system,
and education system of universities. The system is not only
important but also essential for our modern society.

In general, such large-scale computer system has difficulty
for development process including requirement analysis, design
software, programming techniques, test techniques, and
operation and maintenance. In addition, a bidding activity is
important for development of large-scale computer system. A
bid activity means that a customer organization chooses a system
development company using system proposals from
development companies. Customer organization selects the best
system proposal, then the customer organization orders the new
computer system from a development company that made a
successful bid. A system proposal includes not only system
functions (software and hardware) but also total price, and
schedule (due day). Customer organization contracts with the
development company on the basis of the prices and schedule

that are provided in the system proposal. Hence, system proposal
is very important in a view of company management. If system
proposal is inadequate or insufficient, implemented functions
may be inadequate, and cost may be unexpectedly increased, and
delivery day may be late.

In addition, it is more important to make use of new functions
by customers in real business activities. A system consultant
says that 64% functions of new system are not used by customers
[1]. Of course, new system must run without faults and errors.
However, if new system has many unnecessary functions,
customer organization wastes much money and time although
faults and errors do not occur. Implemented functions are based
on a system proposal that made a successful bid in a bidding
phase. There are deep relationships between a system proposal
and frequency of new function usage.

Therefore, we propose process metrics for system quality
from a bid phase to an operation phase. Especially, we focus on
specification shit during system development. System
specification shifts mean that functions of new system change as
new system is developed. For example, Function A is proposed
in a system proposal in a bid phase. However, customers realize
that Function A is unnecessary when a system design phase. In
contrast, Function B is not included in the system proposal.
However, at an operation phase, customers desire Function B
although Function B is not included design documents and total
prices. System specifications are changing on each development
phase. If a system proposal is perfect, specification shifts do not
occur because all specification are necessary and sufficient. If a
system proposal is not perfect, specification shifts frequently
occur. Our proposed metrics indicates system quality based on
such specification shifts.

In section 2, related work is shown. Section 3 shows the
proposed metrics in process model. In section 4, the metrics and
model are applied to real computer system development. Section
5 shows summary and future researches.

II. RELATED WORK
In top level process researches, Edward et al. shows a model

of the early estimating/planning stages of a project (EEPS

DOI reference number: 10.18293/SEKE2018-028

687

model) [2]. Because of unclear data in requirement analysis,
there were 30% budget error. Jamieson et al. gave a model for
pre- and post-contract phases in agile development [3]. These
researches mostly cover our research topics. However,
environment surrounding development computer system
continuously change. Such continuous changes have to be
considered in the present day.

On the other hand, in recently, “Chojoryu” for software
engineering has been proposed by Muroya [4]. Muroya also
provided a method of a contract for software development, and
important of customers’ activities in top level software
development process. Breiner et al. also discuss requirement
engineering in a bidding stage [5]. These researches claim
importance of competitive bidding. However, research of
competitive bidding process in software engineering just have
started. Concrete research results are not described. In addition,
Takano et al. show effective bidding strategy in a competitive
bidding simulation [6]. Pablo et al. propose effective competitive
bidding model in scoring and position probability graph [7].
Also the other researches discussed effective bidding and
accuracy of cost estimation. Management fields actively study
bidding way, bidding accuracy, and bidding simulation.
However, these researches discuss just ways of bidding. Our
research target is not bidding system. Our research target is
whole development process including competitive bidding in
software engineering research field.

III. PROCESS METRICS FOR SYSTEM QUALITY

A. Concept

Fig.1 shows our proposed metrics’ concept. The concept is
simple. We focus on specification shifts during a system
development period. The feature is the duration of a system
development period. The duration includes not only
development phases (analysis, design, implement, and test) but
also a bid phase (system proposals) and operation phase. In
operation phase, we check frequency of each function usage. In
Fig.1, “O” means that a function is active. “X” means that a
function is not active.

For example, "Function A" in Fig.1 is continuously active
from a bid phase to operation phase. That is, customers
recognized necessary of "Function A" at a bid phase. Then,
developers designed "Function A", implemented "Function A",
tested "Function A". Finally, customers frequently use "Function
A" in the operation phase. That is the perfect process because the
specification does not change. The case is the best process. In
contrast, "Function E" is the worst case. Customers needed
"Function E" at a bid phase. Then, developers developed
"Function E". However customers did not use "Function E".
This is the worst process because the specification changed in
the final development stage. Although “Function E” was
developed at great expense, customers did not actually need
“Function E”. Cost and time for “Function E” are wasteful.
Moreover, "Function C" is not a so bad case. At first, customers
recognized unnecessity of "Function C". However, at the design
phase, customers and developers perceived necessity of
"Function C". Development of "Function C" starts from the
design phase. That is no bad case because design activity is
useful to detect the lack of "Function C".

In short, our proposed metrics measure specification shifts
during a period from a bid phase to an operation phase. If
specification shifts do not occur, system quality is high. If
specification shifts frequently occur, system quality is low.
Especially, in our paper, specification shifts mean that a
function’s necessity changes from active "O" to non-active "X".
Or, specification shifts mean that a function’s necessity changes
from non-active "X" to active "O".

B. 3.2 A proposed process basic metric SQ(Fi) for each

function

We propose a basic metric SQ(Fi). SQ(Fi) measures a process
of a function “Fi” specification shift. A software is consists of
many functions. The proposed metric SQ(Fi) is as follows;

if 𝐴𝑖 = ∅ SQ(𝐹𝑖) = 1 (1)

if 𝐴𝑖 ≠ ∅ SQ(𝐹𝑖) = ∏(
(𝑛𝑛) − 𝑎𝑘 + 1

𝑛𝑛
)

𝑎𝑎

𝑘=1

 (2)

SQ(𝐹𝑖): 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑖-𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑎𝑎: 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑡 𝐴𝑖
𝑎𝑘: 𝑡ℎ𝑒 𝑘-𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑡 𝐴𝑖
𝐴𝑖 = {𝑎| 𝑎 𝑖𝑠 𝑝ℎ𝑎𝑠𝑒 𝑁𝑜. 𝑎𝑛𝑑 𝐹𝑖(𝑛) ≠ 𝐹𝑖(𝑛+1) }
𝐹𝑖(𝑛): Mark("O" or "X") of the n-th phase of the i-th function
nn: the total number of phase

Based on Fig.2, the SQ(Fi) is process quality of a function.
At first, a meaning of a set “Ai” is explained. Elements of the set
“Ai” are phase numbers that the current phase mark is different
from the next phase mark. The phase mark means “O” or “X”,
that is, “O” is the function Fi is active in the phase, “X” is the
function Fi is non-active in the phase. For example, in F2 of Fig.2,
the mark of the phase P1 is “O” although the mark of the phase
P2 is “X”. The marks of the phase P2 or later are “X”. Then, the
set Ai is {2}. Moreover, in the case of F20 of Fig.2, there are twice
changes the marks. The mark “X” of phase P2 changes to the
mark “O” of phase P3, the mark “O” of phase P9 changes to the
mark “X” of phase P10. Then, the set A is {3,10}.

Next, we explain equation (1) and equation (2). In the
equation (1), a value of SQ(Fi) is 1 if the set Ai is an empty set.
That is, all marks are same like F1 of Fig.2. The value of SQ(Fi)is
maximum. In equation (2), a value of SQ(Fi) is calculated. The
values of SQ(Fi) is basically more than 0 and less than 1. The
value of SQ(Fi) is influenced the position of marks’ changes. If
a mark changes at early phase like F2 of Fig.2, the value of
SQ(Fi) is large. If a mark changes at last phase like F4 of Fig.2,

time

Function A

Function B

Function C

Function D

Function E

System
proposal

Operation
phase

Delivery day Bidding

Analysis
phase

System
design

phase

Implement
phase

Detail
design

phase

Test
phase

Fig. 1. A concept of process metrics for system quality

Best

Worst

Bad

Good

No so bad

688

the value of SQ(Fi) is small. In addition, if there are several mark
changes like F20 of Fig.2, the value of SQ(Fi) is smaller and
smaller. The meaning of the calculation of equation (2) is that
the mark’s change at the early stage of development is not so bad,
the mark’s change at the last stage of development is bad,
frequent changes is worse than once mark’s change at the last
stage.

C. Features of the proposed metric SQ(Fi)

A most feature of the proposed metrics is the first phase and
the last phase of Fig.2. The first phase of Fig.2 means a bid phase.
The functions of the first phase are described in a system
proposal. The system proposal is written by a bid company. The
system proposal includes system development price and
development time based on the described functions [9].
Customers usually contract with the system development
company based on the prices and the time. The functions of the
first phase is very important at the view of business management.
On the other hand, the last phase is an operation phase. An
operation phase usually does not includes a development process.
However, the operation phase is important. Basically,
frequencies of new functions are counted by operational user
logs. If customers frequently use the new functions, the marks at
the last phase will be “O”. If customers do not use the new
functions, the marks at the last phase will be “X”. Of course, trial
use or test use of the new function is eliminated from the
frequencies. The new functions have to be useful for customers’
business processes.

The first phase mark and the last phase mark are very
important. Fig.3 shows a summary of process pattern on the first
phase mark and the last phase mark. A development process is
good when a mark of the first phase is same to a mark of the last
phase. A good system proposal may lead to a good process. That
is, a function is proposed in a system proposal, then, the function
is implemented in development phases. At last customers
frequently use the function. The proposed function in the system
proposal is valuable. However, if a mark of the first phase is
different from a mark of the last phase, the development process
has various problems. When a mark of the first phase is “O”
although a mark of the last phase is “X”, customers did not need
the function although the function is proposed. The cost of the
unnecessary function is added to the development price in the
system proposal. Customers wasted the cost of the function. In
contrast, when a mark of the first phase is “X” although a mark
of the last phase is “O”, customers need the function although
the function is not proposed. In this case, customers notice the
necessity of the function halfway through their development.
The cost of the necessary function is not included the
development price in the system proposal. Therefore, customers

need additional budget for the new function. In addition,
developers have to review influence of adding the new function
to the original functions. The development process may be
complicated, customers may raise money in order to add the
function.

In this way, the proposed metric have a potential of
significant problems such as process complexity and
development cost’s increment.

D. System metrics for all functions

SQavg is an average value of all SQ(Fi) . Of course, the best
value of SQavg is 1, worst value of SQavg is extremely near zero.

𝑆𝑄𝑎𝑣𝑔 = AVG(SQ(𝐹1), SQ(𝐹2), … , SQ(𝐹𝑖𝑖)) (3)

𝑖𝑖: 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑆𝑄𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖ℎ𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
 (4)

SQnormal means percentage of the number of functions with
normal process in the total number of functions. Normal process
means that all marks are “O”. That is, the function was included
in the system proposal, then the function was implemented. At
last, customers frequently use the function on business operation.
Of course, the best value of SQnormal is 1, the worst value of
SQnormal is 0. SQavg and SQnormal may be one of guides of system
quality from a bid phase to an operation phase.

IV. APPLICATION TO A REAL PROJECT

A. Target project

The target project is an educational system development
project. The system request was provided at November of 2015,
the competitive bidding was held at April of 2016, staring design
phase was at May of 2016, starting implement phase was at
September of 2017, and starting operation was at April of 2017.
Therefore, the number of phase (the value of nni of formula (2))
is 4. The system had 82 functions, then the number of function
(the value of ii of formula (3)) is 82.

B. Checking active functions and non-active functions

Judgement of active or non-active is based on objective data
such as development documents and operation log. In the system
proposal phase, we checked the system proposal documents. If
a function was described in the system proposal, the function is
active. If a function was not described in the system proposal,
the function is non-active. As same way, we checked all design
documents, and we confirmed the all implementations. In the
operation phase, user operation logs of the system is helpful. The

F
4

Phasen P
3
 P

4
 P

10

SQ(F
2
)=(10-2+1)/10=0.9

SQ(F
3
)=(10-4+1)/10= 0.7 F

3

F
2

F
1
 F

i

P
2
 P

1

......

......

SQ(F
1
) = 1

SQ(F
4
)=(10-10+1)/10=0.1

(1)

(2)

(3)

F
20

 SQ(F
20

)=(10-3+1)/10×

(10-10+1)/10=0.08

nn=10

ii=20

(4) (5)

Fig. 2. Calculation sample of the proposed metric SQ(Fi)

......
......

......
......

First phase Last phase

F1

F
2

F
3

Normal process

Waste money process

Complicated process for additional
cost and additional development

Fig. 3. Various process patterns on the first and the last phase

689

user operation log is recorded customers’ operations. A huge
amount of operation logs have been accumulated. If any users
used a function, the function is active. No one used a function,
the function is non-active.

C. Patterns of active “O” and non-active “X”

Fig.4 shows the results of active “O” and non-active “X”.
There are 7 patterns of the active and non-active on the target
project. Pattern A (OOOO) is normal and the best process
pattern. The number of functions with Pattern A is 36. Pattern B
(OOOX) is a waste process because users do not use functions
although the functions were developed consuming cost and time.
The number of function with Pattern B is 12. Pattern C (OOXX)
is a bad process. On the way of implement phase, developers
confirmed unnecessity of the functions. Pattern D (OXXX) is no
good process. However, the Pattern D is better than the Pattern
C because developers knew unnecessity of the functions at the
design phase. Pattern E (XOOO) is a problematic process in cost
management. System proposal was not included the functions,
however, the functions were developed in the development
phase. The cost was not included in the system proposal. Pattern
F (XXOO) is a troubled process because developers and
customers confirmed unnecessity of the functions at implement
phase. That is too late. Cost and time may be in serious trouble.
Pattern G is the worst process. No one knows necessity of the
functions until system running. Obviously, cost and time are
shorted in the Pattern G.

D. Measuring metrics

We measured the value of SQ(Fi) in equation (1) and (2),
SQavg in equation (3), SQnormal in equation (4). Fig.5 shows
SQnormal.. The value of SQavg is 0.747, the value of SQnormal is 0.44.
In the target project, only 44% functions had the normal process
“OOOO”. The 56% functions had any changes between active
and non-active. In short, the functions proposed in the system
proposal were not necessary and sufficient. The 30% functions
in the system proposal were not necessary, the 26% functions
that were not proposed in the system proposal were necessary.

In this way, functions proposed in a system proposal are
uncertain information. Development price and time are decided
based on such uncertain information in a system proposal. Then,
the price and the time often become a basic information for
making a contract with a development company. That is an
unreasonable procedure. This unreasonable procedure will be
discussed in the following section.

V. SUMMARY
We proposed process metrics SQ(Fi), SQnormal, SQavg for

system quality from a bid phase to an operation phase. The
concept of the metrics is simple. The best case is that functions
are always active in all phases. The worst case is that active
functions change to non-active functions at the last phase. The
metrics were applied to a real project. As a result, only 44% of
functions have the best process like pattern “OOOO”. 15% of
functions have the worst process like pattern “OOOX”. SQavg is
0.747. The 30% functions in the system proposal were not
necessary, the 26% functions that were not proposed in the
system proposal were necessary.

 In future, we will apply the metrics to several projects and
several organizations. The features of projects and organizations
will be clear using values of the metrics. Especially, system
development including package software [8] will be discussed.
Moreover, we will achieve a concrete way of estimating price
and time in a system proposal [10] using values of the metrics
on each organization.

ACKNOWLEDGEMENTS
This work was partially supported by JSPS KAKENHI Grant
Number JP26330093.

REFERENCES
[1] Rising sun consultation company HP http://risingsun-system.biz/pdca-

cycle-it-investment, last accessed 2017/6/3.
[2] J.S.Edwards, T.T.Moores, “A conflict between the use of estimating and

planning tools in the management of information systems”, European
Journal of Information Systems 3(2), 1994, pp.139-147.

[3] D. Jamieson, K. Vinsen, G. Callender, “Agile procurement: New
acquisition approach to agile software development”, Proceedings of 31st
EUROMICRO Conference on Software Engineering and Advanced
Applications, 2005, pp. 266-273.

[4] IPA Software Engineering Center: A "Cho-joryu" Approach. In The
Seventeen Principles for System Development.
http://www.ipa.go.jp/english/sec/reports/20120502.html, last accessed
2017/6/3.

[5] K.Breiner, M.Gillmann, A. Kalenborn, C. Müller, “Requirements
Engineering in the Bidding Stage of Software Projects – A Research
Preview”, In: Fricker, Samuel A., Schneider, Kurt (eds.) REFSQ 2015
21st International Working Conference, LNCS, vol. 9013, pp.270-276,
Springer (2015).

[6] Y.Takano, N.Ishii, M. Muraki, “A sequential competitive bidding strategy
considering inaccurate cost estimates”, Omega, vol. 42, issue 1, 2014,
pp.132-140.

[7] P.Ballesteros-Pérez, M. C. González-Cruz, A. Cañavate-Grimal, “On
competitive bidding: scoring and position probability graphs”,
International Journal of Project Management, vol. 31, issue 3, 2013,
pp.434-448.

[8] N.Kataoka, H.Koizumi, K.Takasaki, N.Shiratori, “Remote joint
application design process using package software”, In ICOIN-12 Twelfth
International Conference on Information Networking, 1998, pp.495-500.

[9] C.Lopez-Martin, C. Isaza, A. Chavoya, “Software development effort
prediction of industrial projects applying a general regression neural
network”, International journal Empirical Software Engineering, vol.17,
num.6, 2012, pp.738-756.

[10] M. Usman , E. Mendes , F. Weidt , R. Britto, “Effort estimation in agile
software development: a systematic literature review”, Proceedings of the
10th International Conference on Predictive Models in Software
Engineering, 2014.

Fig. 4 The numbers of functions on
each pattern Fig. 5. A value of SQ

normal

690

Exploratory Recommender Systems Based on

Reinforcement Learning for Finding Research Topic

Li Yu

School of Information

Renmin University of China

Beijing, China

buaayuli@ruc.edu.cn

Wei Zhang

School of Information

Central University of Finance and

Economics

Beijing, China

kddzw@163.com

Zhuangzhuang Wang

School of Information

Renmin University of China

Beijing, China

w1194690657@ruc.edu.cn

Xuefeng Li

School of Information

Central University of Finance and

Economics

Beijing, China

xuefeng@cufe.edu.cn

Hongrun Xin

International School

Beijing University of Posts and

Telecommunications

Beijing, China

xinhongrun@bupt.edu.cn

Haiyan Wang

School of Information

Beijing Forestry University

Beijing, China

haiyan@bfu.edu.cn

Abstract—Traditional recommender systems try to select few

items from some candidate items to users. Unfortunately, a user

often hope recommender system help him to make a decision or

finish a task based on his uncertain preference. For example, a

researcher could hope recommender system to help him to find

an advanced research topic by recommending literatures paper

and refining his research interest and. In this paper, we develop

an exploratory paper recommender system based on

reinforcement learning, which can navigate a researcher to

identify research topic by recommending papers continuously. In

order to refine and focus user's research preference, as a

reinforcement learning method, Multi-Armed Bandit (MAB) is

employed for navigating recommendation paper. And two

improved MAB methods are proposed, including ε-Greedy

Stochastic Perturbation (ε-Greedy-SP) and Continuous Upper

Confidence Bound (Con-UCB). Also, a weighted-LDA method is

proposed for constructing the topic tree. A prototype system is

developed and used to make experiments. Empirical research is

made to analyze the change process of users' preference. The

results show that the system is very effective for focusing and

finding research topic.

Keywords- Recommender Systems; Multi-Armed Bandit;

Reinforcement Learning; Research Topic

I. INTRODUCTION

Along with the development of Internet and the explosive
growth of information, recommender system has become a hot
research issue in the past ten years. However, the goal of most
recommender systems is just to recommend some to user from
a lot of candidate items. A few researches are made on
recommender system oriented to task. For example,
recommender systems help a user to decide a research topic. It
is a fact that a researcher often needs to read a lot of literatures

in order to know state of the art and to find a research topic.
Although lots of researches on paper recommendation are
made, there are a few recommender systems whose goal is to
help a user to find a research topic.

In this paper, we explore the application of reinforcement
learning to exploratory recommender systems, whose goal is
to help user to find research topic. The contributions of this
paper are as follows: 1) A weighted LDA (Latent Dirichlet
Allocation) method is proposed to build multi-layer topic tree;
2) Two exploratory recommendation methods based Multi-
Armed Bandit (MAB) are proposed, respectively including ε-
Greedy Stochastic Perturbation (ε-Greedy-SP) and Continuous
Upper Confidence Bound (Con-UCB) ; 3) A paper
recommender system oriented to finding research topic is
developed, and its performance is tested and evaluated.

This paper is organized as following. Next, we survey the
state of art on reinforcement learning and recommender
system. In section 3, overall framework of developed paper
recommender system is proposed. In section 4, two
recommendation methods based on MAB are presented. In
section 5, the experiments are made and system performance
is tested. Finally, conclusions and future research is discussed.

II. RELATED WORK

Finding a research topic often starts by reading a large
number of papers, so paper recommender system is very
useful for scholars to select their research fields. Tang et al.
used focused collaborative filtering which is added with users
clustering for paper recommendations [1]. Lee used
collaborative filtering methods to develop a paper
recommender system [2]. Beel et al. compared several
different evaluations for research paper recommendation [3].
Melnick focused on how to display a research paper [4], and
the result showed that organic recommendations performed
better than commercial recommendations.

DOI reference number: 10.18293/SEKE2018-063
The research is supported by National Natural Science Foundation of China

(No.71271209, No.71331007).

691

mailto:w1194690657@ruc.edu.cn
mailto:xuefeng@cufe.edu.cn
mailto:xinhongrun@bupt.edu.cn

Personalized recommendation means to recommend
objects, such as goods, music, websites or papers, based on
analysis of unique user through the recommendation process.
In the past ten years, machine learning methods have been
introduced to recommendation field. Wang J. et al. [5]
combined Convolutional Neural Network and Wide & Deep
model to recommend articles and applied attention model to
solve the sequential problem. Tajima A et al. [6] used
Factorization Machine to extract features and Gated Recurrent
Unit to recommend news for large amount of users. Yang C. et
al. [7] combined CF and semi-supervised learning to
recommend POIs. However, all these methods assume that
there are some labeled data for filling the matrix (CF methods)
or training the network (NN methods), so the cold start
problem is still not solved very well and the fluctuation of
users’ preferences cannot be evidently detected.

The conception of reinforcement learning is firstly
proposed by Barto [8], who defined reinforcement learning as
a goal-oriented learning from interaction. Multi-Armed Bandit
problem is a classical problem in reinforcement learning, and
the research about MAB has lasted for decades. The latest
achievements are as follows. Xu [9] used MAB models to
balance exploiting user data and protecting user privacy in
dynamic pricing. Shahrampour [10] proposed a new algorithm
for choosing the best arm of MAB, which outperforms the
state-of-art. Lacerda [11] proposed an algorithm named as
Multi-Objective Ranked Bandits for recommender systems.

III. SYSTEM DESIGN OF EXPLORATORY RECOMMENDER

SYSTEM

A. System Overview

The overview of our proposed recommendation method is
shown in Fig.1. It includes three key modules, respectively
Topic Tree Building Module, Recommendation Module and
User Preferences Updating Module.

Figure 1. Exploratory Recommendation Process

In the topic tree building module, firstly, all literatures are
separated into N topics of 1

st
 layer based on Latent Dirichlet

Allocation (LDA) method and get the Distribution Matrix
(DM) and Belong Matrix (BM) of 1

st
 layer. Then, a weighted-

LDA method proposed in section 3.2 is used to subdivide each
topic of 1

st
 layer into N topics, so we get N*N topics at 2

nd

layer. We generalize weighted-LDA to more layers and get
DM and BM of all layers. So, a topic tree is built, in which
every non-leaf node has N child nodes. The process will be
described in detail in Section III(B).

Recommendation module is the core module of our system.
For a new user, we select papers from different topics at 1

st

layer randomly as the recommendation of 1
st
 round. Then we

obtain user’s preference distribution of N topics at 1
st
 layer

according to feedback (ratings to the recommended papers).
Afterwards, recommendations are carried out in the following
steps.

Step 1. Recommend papers based on preference distribution (Section 4);
Step 2. Obtain user’s ratings to the recommended papers;

Step 3. User has found research topic? If yes, move to Step 6; if no, move

to Step 4;
Step 4. Obtain user’s new preference distribution from User Preferences

Updating Module;

Step 5. Judge how the recommended layer should change (Section 3.4).

User preference conforms to tracking condition and no lower

layers? If yes, move to Step 6; if no, move to Step 1.
Step 6. Get user’s preference list and the process end

Figure 2. Process of Recommendation Module

The function of user preferences updating module is to
update user preferences of different layers according to user’s
ratings to the recommended papers, and its procedure is
detailed in Section 3.3.

B. Topic Modeling

The structure of the topic tree is shown in Fig. 3.

Figure 3. Structure of Topic Tree

Topic modeling of 1
st
 layer based on LDA. Latent

Dirichlet Allocation (LDA) is a topic discovery model for
documents. According to LDA, each word from a paper obeys
the following process: select a topic related to this paper with
some probability and select a word from the selected topic
with some probability. The process of LDA can be explained
as factorizing the known Document-Word Matrix.

692

So, each paper is mapped to a N-dimensional vector
using basic LDA method, represented by

(

). And we will get topic distribution

matrix (denoted by TDM) at 1
st
 layer, shown in Table 1.

TABLE I. TOPIC DISTRIBUTION MATRIX (1ST LAYER)

 … …

 …

 …

… … … … … …

 …

 …

… … … … … …

 …

 …

Based on topic distribution matrix, we can determine the
topic that paper belongs to as following,

 (

|

Thus, we get a belong-to matrix at 1
st
 layer (denoted by

BM(1
st
 layer)), where each row of BM (1

st
 layer) is a N-

dimensional vector contains of a one and N-1 zeros. It will be
used in randSelect() function in recommendation methods.

Subtopic modeling based on weighted-LDA. We
describe the process of 2

nd
 layer and it’s easy to promote to all

the lower layers. At first, which papers should be brought into
the subdivision of which topics is determined as follows: For
the distribution vector of

 (

) (2)

We sort it in descending order and get an adjusted vector

(

)

Then accumulate the vector until the sum is greater than a
threshold . And we can get the related topic of paper ,

Topic()={ ,…,
} (3)

TABLE II. AN EXAMPLE OF SUBDIVISION MEMBER DETERMINATION

𝒑𝒂𝒑𝒆𝒓_𝒊𝒅 𝒅
 𝒅 𝟐

 𝒅 𝟑
 𝒅 𝟒

 𝒅 𝟓

 0.072 0.113 0.496 0.236 0.083

 2 0.129 0.041 0.062 0.728 0.041

 3 0.192 0.137 0.253 0.283 0.136

For example, as shown in Table 2, when , is
related to topic 3 and , 2 is related to , 2 is related to
 , 3 and . After determining the participants, we use
weighted-LDA for topic discovery. In the topic discovery
process of basic LDA, every word in every document is not
separated by the conception of weight, and is considered just
as count 1. We assume that , 2 are both participants of

subdivision of , but
 and 2

 . In this

situation, and 2 should apparently be distinguished,
because belongs to more than 2 does. The rule is
defined as: the more a paper belongs to a topic, the higher
weight its words will get in subdividing the topic. This is the
thought of weighted-LDA. In subdivision of , for every

participant , its Document-Word Matrix is multiplied by

, and this adjusted matrix will be the input of LDA. In

this way, we will get N distribution matrices and N belong-to
matrices, denoted by DM (2

nd
 layer) and BM (2

nd
 layer).

C. User Preference Updating

We map the user’s ratings to the recommended papers to
user’s scores to topics through DM, which is also denoted as d.
Figure 4 shows the updating process. At the beginning of t

th

round, assume the current layer is L, which means the user has
got clear preference from layer 1 to L-1, we will get a

preference list with the length of L-1, denoted as .

 represents the most preferred topic at layer i. If

 , it means the user likes 2 at the end of (t-1)
th

round and the current recommendations are among the
subtopics of 2 , which are 2 2 .

Correspondingly, we maintain a L-length list named as

 , which stores the user’s preference scores to different

layers from 1 to L.

 represents the scores to the topics

at i
th

 layer. It should be noticed that _ just stores the
scores alongside the user’s preference path, so every element
in is an N-dimensional vector and _ should be
explained in conjunction with . When ,
represents the scores to , _ 2 represents the
scores to 2 2 , and _ 3 represents the scores to

 2 2 . is the union of the recommended papers
at t

th
 round, which consists of K papers denoted as

 2

The distribution of

 at i
th

 layer is

(

),where

means the id of

. At the situation of , the

distributions of

 from 1
st
 layer to 3

rd
 layer are

,

 and

.

User’s ratings to the K papers are

 2

 , and ac is the

attenuation coefficient.
Input: (the shorthand of DM)

 (user’s preference path at (t-1)th round)

 (user’s preference score at (t-1)th round)

 (user’s ratings to recommended papers at tth round)

 (attenation coefficient)

Output:

For to K

 ̂

− 5

End for

𝐿 𝑙 ℎ() +

For 𝑙 to 𝐿

 _ 𝑙

 ∑
 ̂

 𝑝𝑟𝑒 𝑝𝑟𝑒 𝑝𝑟𝑒𝑙

 =

 ∑
 ̂

 𝑝𝑟𝑒 𝑝𝑟𝑒 𝑝𝑟𝑒𝑙

 =

 𝑙

 𝑙

 + _ 𝑙

 −

End for

Return

Figure 4. Preference Updating

693

It is important to notice that

 is limited in [0,1,2,3,4,5]

and
 ̂

 is a revise of

. Without this process, if the score

of a specific topic is close to 0, we can hardly distinguish that
whether the user dislikes the topic or there are not enough
recommendations from this topic, and these two situations
cannot be confused. After the revise, when the score is close to
0, the confusion is the user neither likes nor dislikes the topic
or not enough chances for the topic, and it’s acceptable. The
key is we can easily separate the topics which are preferred by
the user (a relatively large positive number) and those topics
the user dislikes (a relatively small negative number).

D. Backtracking and Tracking

Backtracking condition indicates that user’s preference
becomes not so clear at the upper layer, so the
recommendation process should trace back to upper layer. On
the contrary, tracking condition shows that user’s preference at
current layer is clear enough and the recommendation process
should traverse down alongside the topic tree. The two
conditions are defined as follows: Backtracking condition. At
the end of t

th
 round, if 𝐿 and

 =

− =
 2

which means the score of the most preferred topic at upper
layer is not obviously larger than the second one, we pop the
last element of and the last N-dimensional vector of
 _ , and let 𝐿 𝐿 − . Tracking condition. At the end
of round t, if 𝐿 _𝑙 and

 =

− =
 3

which means the difference between the score of the most
preferred topic at current layer and the score of the second one
is clear enough, the recommendation process remote to lower
layer, and should be added with

 =

 and we add an N-dimensional zero

vector to the tail of , 𝐿 𝐿 + , 2 and 3 are the
thresholds of the two conditions.

E. System Interfaces

Several interfaces of our system are shown as follows.
Fig.5 shows the login interface. Fig.6 is the main
recommendation interface, which contains of the information
of recommended papers and the buttons for user to give the
rating. Fig. 7 shows the word cloud generated after each round
of recommendation.

Figure 5. Login Interface of System

Figure 6. Recommendation Interface of System

Figure 7. Generated Word Cloud for Each Round

IV. EXPLORATORY RECOMMENDATION METHODS BASED

ON MAB

A. ε-Greedy Stochastic Perturbation (ε-Greedy-SP)

ε-Greedy is a classic method of solving MAB model. Give
a threshold named as ε, and generate a random number named
as ξ, if , the arm with the highest average profit will be
chosen, when , a random arm will be selected. We apply
ε-Greedy method to the situation of exploratory
recommendation in the following two ways.

Classic ε-Greedy. Fig.8 shows the process of ε-Greedy. L
is the current layer, if the generated random value , the
most preferred topic at current layer will be chosen as , else
if , one of the N topics at current layer will be chosen
randomly as . The purpose of randSelect() function is to
determine related topics which a paper which belongs to.

Input: 𝑏 (the shorthand of BM)，

 (user’s preference path at (t-1)th round)，

 _ (user’s preference score at (t-1)th round)，

 (threshold of ε-Greedy)

Output: 𝑢𝑙

 𝑢𝑙

𝐿 𝑙 ℎ() +

For to K

 ;
 If Then

𝑝𝑟𝑒 𝑝𝑟𝑒 𝑝𝑟𝑒𝐿 | max = 𝑈𝑠𝑒r_𝑠𝑐𝑜𝑟𝑒𝐿

 Else 𝑝𝑟𝑒 𝑝𝑟𝑒 𝑝𝑟𝑒𝐿 𝑟 𝑜

 𝑢𝑙 ← 𝑙 𝑏

End for

Return 𝑢𝑙

Figure 8. Classic ε-Greedy Algorithm

694

ε-Greedy_SP. Based on classic ε-Greedy algorithm, we
add a stochastic perturbation to the current preference scores
in ε-Greedy_SP for catching user's preference as soon as
possible. As show in Fig.9, the function randVector(ε) is used
to generate a N-dimensional vector, consist of one ε and N-1
zeros. The design of randVector(ε) ensures the exploration of
the recommendation process.

Input: 𝑏 (the shorthand of BM)

 (user’s preference path at (t-1)th round),

 (preference score at (t-1)th round)

 (threshold of ε-Greedy)

Output: 𝑢𝑙

 𝑢𝑙

𝐿 𝑙 ℎ() +

For to K

 ′

+ 𝑉

𝑝𝑟𝑒 𝑝𝑟𝑒 𝑝𝑟𝑒𝐿 |max = 𝑈𝑆′

𝐿

 𝑢𝑙 ← 𝑙 𝑏

End for

Return 𝑢𝑙

Figure 9. ε-Greedy_SP Algorithm

The design of ε. For any method derived from ε-Greedy,
the value of ε is apparently an important aspect. We believe
that there is a close connection between the value of ε and
user’s preference. When the preference is not so clear, ε
should be relatively large for a greater degree of exploration.
On the contrary, with the difference between the preferred
topics and the disliked ones is large enough, ε should decrease
to a relatively small value. We design ε as follows in our
system.

 − (6)

 ma
 =

− Ma
 = on

 (7)

where is the Sigmoid function. can be stretched or
shrunk in both axes according to the actual situation.

B. Continuous Upper Confidence Bound (Con-UCB)

The classic Upper Confidence Bound (UCB) method is to
express exploitation and exploration as two parts of a total

score. The basic formula of UCB is a
̅̅ ̅̅ ̅̅ ̅ + √

2 n

,

in which the first part represents the average gain of an arm
and the second part represents the possibility of the arm,

where t is the round numbers, a
̅̅ ̅̅ ̅̅ ̅ denotes the average

gain of arm i and is the times that arm i used. For

exploratory recommendation, UCB method needs to
combining the average and how many times the
topics are recommended which is calculated through BM. For
example, if a recommended paper belongs to according to

BM (1
st
 layer), the of in the basic UCB formula will be

added by 1.

Continuous-UCB. Continuous-UCB is a UCB based
method by considering the weights of topics. The difference in
Continuous-UCB is that we alternate BM in classic UCB with
DM, that is to say in Continuous-UCB, we sum the

distributions on of all the recommended paper as the of

 in the UCB formula. The process is shown in detail in
Figure 10. This method also gives an idea to the situation that
there are complicated matches between recommendation items
and categories.

Input: (the shorthand of DM)

 𝑏 (the shorthand of BM)

 (user’s preference path at (t-1)th round)

 (user’s preference score at (t-1)th round)

 𝑢 (rounds made at current layer)，

 (all the recommended papers)

Output: 𝑢𝑙

 𝑢𝑙

𝐿 𝑙 ℎ() +

For to K

 For to N

 𝐶𝐵_

 _

+ √
 l 𝐾 𝑢

∑ ∑
𝑝 𝑝𝑒𝑟 𝑚

 𝑚
 𝐿

 𝑢 =

 𝑒= 𝑟𝑜𝑢

End for

𝑝𝑟𝑒 𝑝𝑟𝑒 𝑝𝑟𝑒𝐿 |max = 𝑈𝐶𝐵_𝑠𝑐𝑜𝑟𝑒𝐿

 𝑢𝑙 ← 𝑙 𝑏

End for

Return 𝑢𝑙

Figure 10. Con-UCB Algorithm

In Fig.10, round represents order of rounds when
recommendation are made at current layer, represents

the set of all the recommended papers,

 represents the

k
th

 paper at round t.

V. EXPERIMENTS

A. Experiment Dataset and Design

In this paper, Web of Science journal articles in from 2009
to 2013 are used, and they are from the Science Citation Index
Expanded (SCI- EXPANDED), Social Sciences Citation Index
(SSCI) and Arts and Humanities Citation Index(AHCI).

In order to preliminarily test our developed system and
compare two proposed MAB methods, 5 undergraduates are
invited to participate in experiments and to determine their
research topics. Three of them use recommender system based
on ε-Greedy_SP while other two students use recommender
system based on Con-UCB.

Number of topics at every layer is set to 5, Max_layer is 2
and K is 5. We will compare the two methods in several
indices and analyze the focusing process of user preferences
through the change of their ratings in Section 5.2. Besides, the
empirical analysis of two typical user shows the flexibility of
our system to difference type of users.

B. Experiment Result

Overall Result. First, average ratings of five invited
students are shown in Figure 11, where user1, user2 and user3
employ ε-Greedy_SP while user4 and user5 employ Con-UCB.

695

It is easy to find that users’ ratings increase gradually and the
preferences are focused little by little. It shows that the
proposed paper recommender systems can catch and focus
user's preference gradually.

Figure 11. Average ratings of five students

More detailed result is shown in Table 3. It shows that ε-
Greedy_SP performs better than Con-UCB in the case of
insufficient samples. Due the lack of samples, the result can be
also caused by the individual difference, so the result of the
algorithm comparison here is just for reference and is not on a
high confidence level.

TABLE III. COMPARISON OF Ε-GREEDY_SP AND CON-UCB

Algorithm
Average

round

Average

rating

Average

variance ratio

ε-Greedy_SP 11 3.491 6.250%

Con-UCB 16.5 3.2 5.455%

Empirical Analysis. In order to understand focusing
processing of user's preference, we select user 3 as for
empirical analysis. The recommendation process will promote
to 2

nd
 layer only if conforms to tracking condition at least

once, the preference at 2
nd

 layer has no value at 1
st
 round, and

it could be discontinuous because of backtracking condition,
so we choose the topics at 1

st
 layer to analyze the focusing

process. of user3 to is shown in two
diagrams from Figure 12 to Figure 13. It is visible that after
2

nd
 round, user3 has a comparatively preference of . The

score of is growing steadily and opens up a gap with other
topics gradually until user3 finds the direction of research.
This result shows that user3 has a roughly concept of his
research topic, and our system here is a concrete refinement
tool for user3.

Figure 12. Line chart of user3’s preference score

Figure 13. Radar chart of user3’s preference score

VI. CONCLUSION

Recommender system devote to finding individual items to
users. Traditional recommender system does not work well
when helping users to finish a task. In this paper, we propose a
novel paper recommender system for finding research topic,
where the user only needs to give feedbacks of recommended
items. Two exploratory recommender methods based on MAB
models are proposed. A prototype system is developed, and
show good performance. In the future, the system will be
tested by more invited students.

REFERENCES

[1] Tang T. Y., Mccalla G.: Mining implicit ratings for focused collaborative

filtering for paper recommendations. The Workshop on User and Group
MODELS for Web-Based Adaptive Collaborative Environments,

International Conference on User Modeling, 45-56 (2003)

[2] Lee J., Lee K., Kim J. G.: Personalized Academic Research Paper

Recommendation System. Computer Science (2013).

[3] Beel J., Langer S.: A Comparison of Offline Evaluations, Online
Evaluations, and User Studies in the Context of Research-Paper

Recommender Systems. Research and Advanced Technology for Digital

Libraries (2015).

[4] Melnick S. L., Shahar E., Folsom A. R.: Sponsored vs. Organic (Research

Paper) Recommendations and the Impact of Labeling. International
Conference on Theory and Practice of Digital Libraries, 395-399 (2013).

[5] Wang J.: Dynamic Attention Deep Model for Article Recommendation by

Learning Human Editors' Demonstration. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2051-2059

(2017).

[6] Tajima A.: Embedding-based News Recommendation for Millions of

Users. ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 1933-1942 (2017).

[7] Yang C., Bai L., Zhang C.: Bridging Collaborative Filtering and Semi-

Supervised Learning: A Neural Approach for POI Recommendation.
ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 1245-1254 (2017).

[8] Barto A. G.: Reinforcement learning. Springer Berlin Heidelberg, 665-
685 (1998).

[9] Xu L., Jiang C., Qian Y.: Dynamic Privacy Pricing: A Multi-Armed
Bandit Approach With Time-Variant Rewards. IEEE Transactions on

Information Forensics & Security 12(2), 271-285 (2017).

[10] Shahrampour S., Noshad M., Tarokh V.. On Sequential Elimination
Algorithms for Best-Arm Identification in Multi-Armed Bandits. IEEE

Transactions on Signal Processing, (2017).

[11] Lacerda A.: Multi-Objective Ranked Bandits for Recommender Systems.

Neurocomputing (2017), 246.

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ra
ti

n
g

s

round

user1 user2
user3 user4

-2

-1

0

1

2

3

4

1 2 3 4 5 6 7 8

U
se

r_
sc

o
re

round

topic1

topic2

topic3

topic4

topic5

topic1

topic2

topic3topic4

topic5

round
1

2

3

4

5

6

7

8

696

Evaluating Multiple User Interactions for Ranking
Personalization Using Ensemble Methods

Frederico Araújo Durão, Bruno Souza Cabral
Department of Computer Science

Federal University of Bahia
Salvador, BA – Brazil

fdurao@ufba.br, bruno.cabral@ufba.br

Renato D. Beltrão, Marcelo G. Manzato
Mathematics and Computing Institute

University of São Paulo
São Carlos, SP – Brazil

rdompieri@usp.br, mmanzato@icmc.usp.br

Abstract—The variety of interaction paradigms on the Web,
such as clicking, commenting or rating are important sources that
help recommender systems to gather accurate information about
users’ preferences. Ensemble methods can be used to combine all
these pieces of information in a post-processing step to generate
recommendations that are more relevant. In this paper, we
review the application of existing ensemble methods to improve
ranking recommendations in the multimodal interactions context.
We compared four ensemble strategies, ranging from simple
to complex algorithms including Gradient Descent and Genetic
Algorithm to find optimal weights. The evaluation using the
HetRec 2011 MovieLens 2k dataset with three different types
of interactions shows that a considerable 7% improvement in
the Mean Average Precision can be achieved using ensembles
when compared to the most performant single interaction.

Index Terms—recommender system, multimodal, user interac-
tion

I. INTRODUCTION

According to [1], from 2005 to 2020, the information in the
digital universe will grow by a factor of 300, from 130 ex-
abytes to 40,000 exabytes, or 40 trillion gigabytes (more than
5,200 gigabytes for every man, woman, and child in 2020). It is
simply not possible to grasp even a small percentage of it in a
single lifetime, there is too much information to process and to
choose. The expression Information Overload was introduced
to describe the sensation of fatigue and distress that follows the
cognitive surplus required to handle the volume of information
we have to deal with everyday [2].

Recommender Systems (RS) have emerged in response to
the information overload problem in order to support users
during content consumption decisions. They learn the users’
interests using their past interactions (ratings, votes, ranked
lists, mouse clicks, page views, product purchases, etc.) and
suggest products that are likely to be appreciable. In order
to obtain users’ interests, three different forms can be used:
explicit feedback; implicit feedback and hybrid approaches.
Implicit feedback is the kind of information collected indi-
rectly, such as mouse movements or clicks. In explicit feed-
back, the preferences are intentionally provided by the user,
such as a “like” option or a rating. This type of information is
considered more reliable, since the user is the one who exposes
his interests, rather than being inferred. The problem is that

10.18293/SEKE2018-0112

it requires an additional effort from the user to intentionally
provide the feedback, who is not always willing to cooperate
with the system [3]. Finally, the hybrid approach consists of
applying the implicit and explicit feedback together to obtain
more information about his preferences [4].

Despite the variety of ways to collect users’ preferences,
actual recommender algorithms are modeled based on a single
or a few types of interactions [5]. However, the accuracy can
be improved if the system utilizes all available information.
An approach for generically handling multimodal interactions
is with ensemble methods. An ensemble method combines
the predictions of different algorithms, or the same algorithm
with different parameters to obtain a final prediction. Ensemble
methods were the top performing solution in the Netflix Prize
contest [6].

The most simple ensemble method is to compute the final
prediction as the mean over all the predictions [3]. Better
results can be obtained if the final prediction is given by a
linear combination of the ensemble predictions. In this case,
the combination weights have to be determined by some
optimization procedure such as regularized linear and logistic
regressions. However, not all available ensemble methods are
practical for large-scale recommender systems because the
massive amount of data demands vast amount of time and
memory consumption.

In this paper, we analyze four ensemble strategies ranging
from simple rank list merging to advanced strategies using
Gradient Descent and Genetic Algorithm to find optimal
weights to unify different types of feedback. We provide
an experimental evaluation of those strategies with the Het-
Rec2011 MovieLens 2k [7] dataset, simulating and inferring
three classical users’ interactions: tagging, rating and browsing
history.

This paper is structured as follows: Section II depicts
the related work; Section III details the evaluated ensemble
framework and strategies; Section IV presents the evaluation
and validation of the approach with HetRec dataset with
800,000 ratings, along with an analysis of the performance
of the four strategies; and finally Section V discusses the final
remarks and future works.

697

II. RELATED WORK

Recommender systems can be extended in several ways
aiming at improving the understanding of users and items,
incorporating new types of interaction in the recommendation
process and making the combination of them. One of these
improvements is the support for multi-criteria interactions, so
as to provide greater flexibility and less obtrusive types of
recommendations [8]. In this context, with more studies in
the area of recommender systems, various algorithms enabled
the usage of more than one type of user interaction.

These studies resulted in works such as Johansson [9],
responsible for developing the MADFILM, a movie recom-
mendation system that addresses the integration of prediction
and organization of content, through explicit and implicit
user’s feedback. The work proposed by [10] developed a
recommendation system for online video based on explicit
and implicit feedback, plus feedback from relevant information
provided by the user. The used video was composed of
multimedia content and related information (such as query,
title, tags, etc.). The project aimed to combine these types of
interactions with the information provided by users in order
to generate a more precise rank of relevant items. In order to
automatically adjust the system, it was implemented a set of
adjustment heuristics given new user interactions.

The SVD++ algorithm proposed by [11] uses explicit and
implicit information from users to improve the prediction of
ratings. As explicit information, the algorithm uses the ratings
assigned by users to items, and as implicit information, it
simulates the rental history by considering which items users
rated, regardless of how they rated these items. However, it
use a stochastic gradient descent to train the model, which
requires the observed ratings from users. Thus, it is impossible
to infer preferences for those users who provided only implicit
feedback.

Ensemble is a machine learning approach that uses a com-
bination of similar models in order to improve the results
obtained by a single model, and can be used to combine
multiple interactions. In fact, several recent studies, such as
[12], demonstrate the effectiveness of an ensemble of several
individual and simpler techniques, and show that ensemble-
based methods outperform any single, more complex algo-
rithm. Most of the related works in the literature point out
that ensemble learning has been used in recommender system
as a way to combine the prediction of multiple algorithms
(heterogeneous ensemble) to create a more accurate rank [12],
in a technique known as blending. Furthermore, they have been
used with a single collaborative filtering algorithm (single-
model or homogeneous ensemble), with methods such as
Bagging and Boosting [3].

Cabral et al. [13] proposed three ensemble strategies that
combine predictions from a recommender trained with distinct
item metadata into a unified rank of recommended items. In
comparison, da Costa at al. [14], proposed a similar ensemble
strategy based on machine learning in order to combine differ-
ent types of interactions generated by multiple recommenders.

Those strategies differ from the aforementioned works because
they adopt a post-processing step to analyze the rankings
created separately by different algorithms. The advantage of
this approach is that it does not require the algorithm to be
modified, or to be trained multiple times with the same dataset,
and therefore, it is easier to extend the models to other types of
interactions and recommenders. We implemented all strategies
in a public available repository and evaluated three types of
interactions (Ratings, Tags and Visualized Items) using the
HetRec dataset [7].

III. ENSEMBLE MODELS

In this section, we describe four ensemble strategies used in
this work to combine multimodal interactions: Most Pleasure,
the simplest ensemble strategy, combines predictions based on
score; Best of All strategy, determines a preferred metadata
for a user and uses it to create the ensemble; Weighting
strategy, uses multiple metadata and weighs them with a
Genetic Algorithm, optimizing for maximum Mean Average
Precision (MAP); BPR Learning Strategy [15], which uses
the Learn BPR to learn the optimal weights, optimizing for
the Area under the ROC curve (AUC) .

A. Most Pleasure Strategy

Fig. 1. Most Pleasure Strategy.

The Most Pleasure strategy is a classical aggregation
method, often used for combining individual ratings for group
rating [16]. It takes the maximum of individual ratings for a
specific item and creates a unified rank. Figure 1 illustrates
the Most Pleasure strategy, in which the output comprehends
a ranked list of artists with highest ratings from two distinct
input sets. It only needs the generated prediction set as an
input, composed of the predictions from the recommender
algorithm trained with one of the item’s metadata. For each
user, a new prediction is created, selecting the highest score
of an item among all the individually-trained algorithms.

The idea behind this strategy is that differently trained algo-
rithms have a distinct knowledge about the user’s preferences,
and the predicted score can be considered an indicator of the
algorithm’s confidence. Consequently, the created ensemble is
a list of items in which the distinct algorithms have more
confidence to recommend.

https://github.com/wendelad/RecSys

698

B. Best of All Strategy

Differently from Most Pleasure, Best of All strategy assumes
that different types of metadata can affect users differently. It
considers the recommendation algorithm that provides the best
results for a specific user (as illustrated by Figure 2).

Fig. 2. Best of All Strategy.

The Best of All Strategy requires as input: i) the recommen-
dation algorithm, ii) a training dataset, iii) a probe dataset,
and iv) the set of item’s metadata. Unlike the Most Pleasure
strategy, this one requires a probe run to determine which is
the best performing algorithm. Therefore, the dataset is divided
in training and probe. The recommender algorithm is firstly
trained using each of item metadata individually. Then, for
each user, a probe run is made to determine the metadata
with the highest performance (in terms of MAP). Finally, the
recommender algorithms are retrained using all data (including
the probe set), and the final ensemble is the result of the
combination of predictions using, for each user, the prediction
from the algorithm with the highest performance in the probe
test.

The idea behind this strategy is that a single metadatum
can greatly influence the user’s preferences, and this should
be used for future predictions. For instance, if a User A
enjoys music from a particular genre such as “pop”, and
other User B enjoys music of some specific performer such
as “Metallica”, the ensemble will contain predictions from
the recommendation algorithm trained with both: the genre
metadatum for User A, i.e. “pop”, and a performer metadata
for user B, i.e. “Metallica”.

C. GA Weighting Strategy

One drawback of the Best of All strategy is that it considers
that only one type of metadata influences the user preference.
The GA Weighting strategy assumes that the interests of a user
may be influenced by more than one metadatum, and with
different levels. It considers all available metadata, assigning
different weights for each prediction as shown in Figure 3.

Fig. 3. Weighting Strategy.

Similarly to the previous strategy, it requires as an input
the i) recommendation algorithm, ii) a training and probe

dataset, and iii) the set of item metadata. After training the
algorithm using each of item metadata individually, a probe
run is needed; however, the objective is to determine the
optimal weights for each user. This is an optimization problem
that was solved using Genetic Algorithm (GA).

The probe part consists of running the GA to find out the
optimal weights. It was implemented using the GA Framework
proposed by Newcombe [17], where the weights are the
chromosomes, and the fitness function is the MAP score
against the probe dataset. Other GA characteristics includes
the use of 5% of Elitism, Double Point crossing-over, and
Binary Mutations. Finally, the algorithms are retrained using
all data (including the probe set), and the final ensemble uses,
as the item score, the sum of individual predictions multiplied
by the weights found in the probe phase and divided by the
total number of metadata.

The idea behind it is that the different types of interactions
influence differently the user preference. Still in the context of
music, let us consider that a User A enjoys songs of a specific
set of genres regardless of the performer and a User B that
does not care about music genre or country of production. For
the User A, the ensemble should give a higher weight for the
music genre, and a lower weight for the production country. In
contrast, to the User B, the ensemble should equally distribute
the weights between those metadata.

D. BPR Learning Strategy
In order to combine the output generated by each recom-

mendation technique trained with a different kind of interac-
tion, this ensemble strategy is based on a machine learning
algorithm [14].

Firstly, it extracts information about users’ interactions from
the database, such as sets of tags, ratings and browsing history.
With these interactions available, it runs the recommendation
algorithms, which receive as input the users’ interactions. In
this step, each algorithm runs with a particular set of feedback,
resulting in a feedback-specific personalized ranking (individ-
ual ranking) for each user. Thus, a feedback-specific ranking
contains the items and their associated scores, which represent
how much a user likes an item described by the considered
set of attributes. The final step consists of combining all
considered rankings into a final list of recommendations. To
do that, it assigns weights according to the relevance of each
type/set of attributes. This combination is performed according
to a linear function, represented by r̂finalu,i :

r̂finalui = βar
a
ui + βbr

b
ui + ...+ βn.r

n
ui (1)

where raui, r
b
ui, ..., rnui indicate the scores computed previously

by each individual recommendation algorithm for a (u, i) pair,
and βa, βb, ..., βn are the weights of each individual score for
the final prediction, learned using Learn BPR algorithm [18].
This is possible because of the natural strategy of BPR, which
in a each interaction, select randomly a couple of items i and
j for a user u, a known item i and one unknown item j.

Finally, the algorithm predicts scores for items not seen
by each user and sorted these scores in descending order

699

resulting in the final ranking, which will be recommended
in a top N ranking list. The underlying characteristic of
this algorithm is the ability to learn the users’ preferences
to employ this information to match the recommendations
generated individually for each type of interaction.

IV. EVALUATION

The evaluation consists in comparing the four ensemble
strategies as presented in Section 3, using a standard dataset
available in the literature. Three different interactions, his-
tory(watched movies), tags and ratings were trained indi-
vidually and combined using the ensemble techniques. The
combined results and individual interactions were evaluated
to check the contribution of each aspect to the final recom-
mendation improvement.

A. Dataset

In order to evaluate the performance of the ensemble
strategies, we used the HetRec MovieLens 2k dataset [7].
MovieLens 2k consists of 800,000 ratings, 10,000 interactions
tags applied to 2,113 users and 10,197 movies. As explicit
information, we used the ratings that users assigned to items,
and as implicit interaction, we considered: i) whether a user
tagged an item or not; and ii) the history of visited items,
which is simulated by boolean values (visited or not) generated
by the ratings and tagging activities.

In this paper, we adopted a classical methodology used by
the research community with regard to recommender systems
evaluation [8]. We divide the full dataset into two sets, 80%
for training and 20% for testing. The training set is used to
run the isolated algorithms and predict weights for each pair of
algorithms (simulate the real-time interaction from the user);
and test set is used with the All but One protocol to evaluate
the approaches.

B. Experimental Setup and Evaluation Metrics

In this evaluation we use the All But One [19] protocol
for the construction of the ground truth and the 10-fold-cross-
validation. We randomly divided the dataset into 10 disjoint
subsets of equal size and for each sample we use n − 1 of
data for training and the rest for testing. The training set tr
was used to train the proposed ensemble and test system Te
randomly split an item for each user to create the truth set
H . The remaining items form the set of observable O is used
to test the unimodal algorithms. We also evaluated using the
standard protocol, where all items are considered. To assess the
outcomes of the systems we use evaluation metrics Precision
and Mean Average Precision (MAP) [20]. Then, we compute
Precision and Mean Average Precision as follows:

Precision calculates the percentage of recommended items
that are relevant. This metric is calculated by comparing, for
each user in the test set Te, the set of recommendations R that
the system makes, given the set of observables O, against the
set H:

Precision(Te) =
1

|Te|

|Te|∑
j=1

|Rj ∩Hj |
|Rj |

(2)

Mean Average Precision computes the precision consider-
ing the respective position in the ordered list of recommended
items. With this metric, we obtain a single value accuracy
score for a set of test users Te:

MAP (Te) =
1

|Te|

|Te|∑
j=1

AveP (Rj , Hj) (3)

where the average precision (AveP) is given by

AveP (Rj , Hj) =
1

|Hj |

|Hj |∑
r=1

[Prec(Rj , r)×δ(Rj(r), Hj)] (4)

where Prec(Rj , r) is the precision for all recommended items
up to ranking r and δ(Rj(r), Hj) = 1, iff the predicted item at
ranking r is a relevant item (Rj(r) ∈ Hj) or zero otherwise.

The GA Weighting Strategy, which utilizes a Genetic Algo-
rithm (GA), uses a population of size 40 with 90 generations,
a crossover probability of 80% and a mutation probability of
8%. This is a small number of generations, and usually a
much higher number of generations is used for convergence;
however, due to the size of our dataset, we traded precision
for speed.

In this work we used Precision@N and MAP@N , where
N took values of 1, 3, 5 and 10 in the rankings returned by
the system. For each configuration and measure, the 10-fold
values are summarized by using mean and standard deviation.
In order to compare the results in statistical form, we apply
the two-sided paired t-test with a 95% confidence level [21].

C. Methodology

For implicit data interactions (history and tags), we used the
BPR-MF implementation available in the MyMediaLite library
[22]. It is an implementation of the Bayesian Personalized
Ranking (BPR) [23], a generic framework for optimizing
different kinds of models based on training data containing
only implicit feedback information. For explicit interactions
(ratings), we used SVD++ [4], also from MyMediaLite li-
brary. All four ensemble strategies were implemented using
MyMediaLite library and are publicly available.

All the runtime evaluations were executed in the same
machine, a Core i7-2670QM with 8GB of RAM, with the
.NET 4.5 framework with all avaliable patches applied. The
result is the average of 10 runs.

D. Results

Table 1 and Table 2 show the results of this evaluation for
single interactions and ensembles. We compared our results
to tags, the best performing interaction. As seen, the BPR
Learning strategy achieved statistically better results than the

https://github.com/wendelad/RecSys

700

Fig. 4. Precision@1, 3, 5, 10 using All But One Protocol.
baseline, as proven by the t-student analysis (with p < 0.05) in
Table 3. Figure 4 illustrates the algorithms’ precision@1, 3, 5
and 10 using the All But One Protocol.

TABLE I
ALGORITHMS’ PERFORMANCE IN PRECISION@1, 3, 5 AND 10.

Prec@1 Prec@3 Prec@5 Prec@10
History 0.000047 0.000047 0.000037 0.000033
Tags 0.002082 0.002035 0.001874 0.001628
Ratings 0.000094 0.000047 0.000037 0.000018
BestOfAll 0.001988 0.001988 0.001845 0.001614
GA 0.001988 0.001971 0.001845 0.001614
MostPleasure 0.000047 0.000047 0.000037 0.000033
BPR Learning 0.002366 0.002366 0.002271 0.001845
Ensemble improvement 12.0 % 12.1 % 21.1 % 13.3 %

TABLE II
ALGORITHMS’ PERFORMANCE IN MAP@1,10 AND MAP UNDER

STANDARD PROTOCOL.
MAP@5 MAP@10 MAP(Std)

History 0.000104 0.000120 0.000226
Tags 0.004569 0.005456 0.004729
Ratings 0.000119 0.000119 0.000047
BestOfAll 0.004458 0.005345 0.004956
GA 0.004441 0.005334 0.004999
MostPleasure 0.000104 0.000120 0.000239
BPR Learning 0.005229 0.006044 0.005075
Ensemble improvement 14.4 % % 10.7 % 7.2 %

The results from Table 1 and Table 2 indicate that in some
cases, ensembles got significantly higher scores than single
interactions. The improvement level was between 7.2% and
21.1% compared to the best performing interaction. These
improvements were significant as increasing the MAP and
precision is a challenge, and every increment in MAP is
hard to achieve. Surprisingly, the tags interaction achieved
higher scores compared to other single interactions. This is
an interesting result, because tags contain a more diverse set
of information, which probably simulate an ensemble. The
BPR Learning strategy was optimal for all given scenarios
since it uses all interactions to make predictions, and it assigns
different weights to the most relevant metadata according to
the taste of each individual user. On the other hand, the
MostPleasure strategy achieved the lowest performance among
the ensemble strategies.

TABLE III
T-TEST COMPARING MAP@5 USING BPR LEARNING WITH TAGS.

BPR Learning Tags
Mean 0.005115 0.004569
Variance 3.16E-07 1.07E-07
Observations 10 10
df 14
t Stat -2.65099
P(T<=t) one-tail 0.009496
t Critical one-tail 1.76131
P(T<=t) two-tail 0.018992
t Critical two-tail 2.144787

The GA Weighting and Best of All strategies obtained a good
performance, close to the best performing interaction, except
in MAP with the standard protocol, where it archived a better
result. The Best of All strategy is simple to implement and
does not require weight optimization, an expensive step in the
process required for BPR Learning and GA Weighting. Alter-
natively, GA Weighting does requires a weight optimization
step, but as it uses a Genetic Algorithm, one can manually set
the parameters and tradeoff speed or performance.

TABLE IV
COMPARISON OF ENSEMBLE ALGORITMS RUNTIME IN MINUTES AND
IMPROVMENT (IN MAP) OVER THE BEST PERFORMING INTERACTION

(TAGS).

Ensemble Probe Run Time(min) Improvement
MostPleasure No ¡ 0.1 -94%
BestOfAll Yes ¡ 0.1 4.7%
GA Yes 43.2 5.6%
BPR Learning Yes 52.1 7.2%

Table IV lists the ensemble strategies runtime and the need
for a probe run. Most Pleasure has the advantage of not
requiring a probe run, but in our evaluation achieved the worst
result of all compared strategies with a 94 % lower perfor-
mance. BPR Learning and GA Weighting achieved 5.6 % and
7.2 % MAP improvement respectively with a slight runtime
advantage for GA Weighting. Best of All achieved a good
performance improvement compared to the best performing
single interaction with the advantage of being fast to compute.

The overall absolute scores obtained and described in this
paper are small because of the Sparsity and evaluation protocol
used in the experiments. The All But One protocol hides
one item from each user in the test set and considers it as
the ground truth. As we are recommending top N items, the
precision and MAP will decrease because the system considers
there are N relevant items, although the protocol has set
only the hidden item as relevant. The high sparsity stands
as another challenge, as many movies were not rated, only
tagged. In this case, the rating prediction cannot be made.
Another issue is that the rating rank is build using the rating
predictions in a decreasing order from the SVD++ algorithm
and the dataset can contain items with a low score, lowering
the metrics related to this interaction as the test dataset is
generated randomly. In this way, it is important to rely only
on the differences among the approaches, and we managed
to increase the results of our proposal when compared to the
baselines.

Finally, we conclude that ensemble algorithms significantly
improved the recommender prediction performance, with the

701

BPR Learning strategy standing out with higher performance
improvement on most of the scenarios followed by GA Weight-
ing strategy with a lower performance but with a slight smaller
runtime and the Best of All strategy, whose the highlight is
being almost instantaneous to compute.

V. CONCLUSION

In this paper we evaluated four ensemble strategies to
unify different types of feedback from users when consuming
content in order to provide better recommendations. The
advantage is that more information about the interests of
the user can be obtained when analyzing multimodal inter-
actions. All strategies evaluated do not require modification
of the recommender algorithm, namely Most Pleasure, Best
of All, Genetic Algorithm Weighting and BPR Learning. The
considered recommender algorithms did not take advantage
of multiple types of interactions and the evaluated ensemble
algorithms were able to enable those recommenders to take
advantage of all interactions. Most Pleasure, the simplest
strategy, consisted of combining the predictions based on
score. Best of All determined a single metadata that was more
preferred for a user, and the Weighting strategy uses multiple
interactions and weights them with a Genetic Algorithm that
optimizes the MAP and finally, BPR Learning uses LearnBPR
to optimize the weights related to AUC. Results from the
experiments show the effectiveness of combining various types
of interactions in a single model for recommendation using
ensemble learning. Our evaluation showed a considerable
MAP improvement between 10.7% and 21.1% when using
the ensemble algorithms, with the BPR Learning producing
the best recommendation for the majority of scenarios. These
encouraging results indicate that ensemble algorithms can be
used to enhance the recommender algorithms with multiple
interactions.

As future work, we plan to implement more complex
ensemble strategies and evaluate the algorithms with a higher
number of metadata in order to verify whether multimodal
information can generate better recommendations. In order to
do so, it will be necessary to find a more extensive dataset
and to evaluate the algorithms runtime performance with this
increased work.

ACKNOWLEDGMENT

The authors would like to thank the financial support from
FAPESP (proc. number 2016/2028-6).

REFERENCES

[1] I. Management Association, Big Data: Concepts, Methodologies,
Tools, and Applications: Concepts, Methodologies, Tools,
and Applications. IGI Global, 2016. [Online]. Available:
https://books.google.com.br/books?id=BKEoDAAAQBAJ

[2] C. Musto, “Enhanced vector space models for content-based
recommender systems,” in Proceedings of the Fourth ACM
Conference on Recommender Systems, ser. RecSys ’10. New
York, NY, USA: ACM, 2010, pp. 361–364. [Online]. Available:
http://doi.acm.org/10.1145/1864708.1864791

[3] A. Bar, L. Rokach, G. Shani, B. Shapira, and A. Schclar, “Improving
simple collaborative filtering models using ensemble methods,” in Mul-
tiple Classifier Systems. Springer, 2013, pp. 1–12.

[4] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’08. New York, NY, USA: ACM, 2008, pp. 426–434.
[Online]. Available: http://doi.acm.org/10.1145/1401890.1401944

[5] D. Wolpert and W. Macready, “No free lunch theorems for optimization,”
Evolutionary Computation, IEEE Transactions on, vol. 1, no. 1, pp. 67–
82, Apr 1997.

[6] A. Töscher, M. Jahrer, and R. M. Bell, “The bigchaos solution to the
netflix grand prize,” Netflix prize documentation, 2009.

[7] I. Cantador, P. Brusilovsky, and T. Kuflik, “2nd workshop on information
heterogeneity and fusion in recommender systems (hetrec 2011),” in
Proceedings of the 5th ACM conference on Recommender systems, ser.
RecSys 2011. New York, NY, USA: ACM, 2011.

[8] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender
systems handbook,” in Recommender Systems Handbook. Springer,
2011, pp. 1–35.

[9] P. Johansson, “Madfilm - a multimodal approach to handle search and
organization in a movie recommendation system,” Proceedings of the 1st
Nordic Symposium on Multimodal Communication, pp. 53–65, 2003.

[10] B. Yang, T. Mei, X.-S. Hua, L. Yang, S.-Q. Yang, and M. Li, “On-
line video recommendation based on multimodal fusion and relevance
feedback,” in Proceedings of the 6th ACM International Conference on
Image and Video Retrieval, ser. CIVR ’07. New York, NY, USA: ACM,
2007, pp. 73–80.

[11] Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization Techniques
for Recommender Systems,” IEEE Computer, vol. 42, no. 8, pp. 30–37,
2009.

[12] M. Jahrer, A. Töscher, and R. Legenstein, “Combining predictions
for accurate recommender systems,” ser. KDD ’10. New York,
NY, USA: ACM, 2010, pp. 693–702. [Online]. Available:
http://doi.acm.org/10.1145/1835804.1835893

[13] B. Souza Cabral, R. Dompieri Beltrao, M. Garcia Manzato, and
F. Araújo Durão, “Combining multiple metadata types in movies
recommendation using ensemble algorithms,” in Proceedings of the
20th Brazilian Symposium on Multimedia and the Web, ser. WebMedia
’14. New York, NY, USA: ACM, 2014, pp. 231–238. [Online].
Available: http://doi.acm.org/10.1145/2664551.2664569

[14] A. da Costa Fortes and M. G. Manzato, “Ensemble learning in rec-
ommender systems: Combining multiple user interactions for ranking
personalization,” in Proceedings of the 20th Brazilian Symposium on
Multimedia and the Web, ser. WebMedia ’14. New York, NY, USA:
ACM, 2014, pp. 47–54.

[15] A. F. d. Costa and M. G. Manzato, “Multimodal interactions in
recommender systems: An ensembling approach,” in 2014 Brazilian
Conference on Intelligent Systems, Oct 2014, pp. 67–72.

[16] J. Masthoff, “Group recommender systems: Combining individual mod-
els,” in Recommender Systems Handbook. Springer, 2011, pp. 677–702.

[17] J. Newcombe, “Intelligent radio: An evolutionary approach to general
coverage radio receiver control,” Master’s thesis, DeMontfort University,
UK, 2013.

[18] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
ser. UAI ’09. Arlington, Virginia, United States: AUAI Press, 2009,
pp. 452–461.

[19] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis
of predictive algorithms for collaborative filtering,” ser. UAI’98,
San Francisco, CA, USA, 1998, pp. 43–52. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2074094.2074100

[20] E. M. Voorhees and D. K. Harman, TREC: Experiment and Evaluation
in Information Retrieval (Digital Libraries and Electronic Publishing).
The MIT Press, 2005.

[21] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[22] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme,
“MyMediaLite: A free recommender system library,” in Proceedings
of the 5th ACM Conference on Recommender Systems, ser. RecSys ’11,
New York, NY, USA, 2011, pp. 305–308.

[23] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-
Thieme, “Learning attribute-to-feature mappings for cold-start recom-
mendations,” in 2010 IEEE 10th International Conference on Data
Mining (ICDM), dec. 2010, pp. 176–185.

702

DOI:10.18293/SEKE2018-053

Weighted Data Set Reduction for Bug Triaging
Miaomiao Wei, Shikai Guo and Rong Chen

 Dalian Maritime University, Dalian, China

{weimiaomiao, shikai.guo, rchen}@dlmu.edu.cn

Abstract—Despite the great potential to save the labor cost

of developers, automated bug triaging as a text classification

problem has not been thoroughly investigated on long

descriptions, which are informative but often noisy. In this

paper an effective bug triage technique is proposed to build a

high quality set of bug data by removing the noisy and non-

informative bug reports while assigning new bugs to an

appropriate developer. The proposed technique – weighted

data set reduction – is built upon three feature selection

algorithms and four instances selection algorithms with

intention to recommend the bug and to automatically assign it

more accurately even with noisy bug descriptions. Several

experiments are conducted and the experimental results show

that the reduced training sets by the proposed approach can

achieve better accuracy in several cases, about 2-3% on

average better than the original ones.

Keywords—Bug Triaging; Bug Reports; Machine Learning;

I. INTRODUCTION

With the huge information about bugs reported [1] by
today’s bug tracking systems (e.g. , Buzilla, JIRA, mantis),
there is an increasing need to introduce some form of
automation within the bug triaging process, so that no time is
wasted on the assignment of new issues to appropriate
developers. In this paper, we propose a weighted data
reduction technique that combines feature selection and
instance selection algorithms to yield a small size and high-
quality training set that can enhance mainstream classifiers.

In doing so, three feature selection algorithms (CHI,
Information Gain (IG), and One Rule (OneR)) can
distinguish important attributes with meaningless ones, while
four instance selection algorithms ICF, Condensed Nearest
Neighbor (CNN), Minimal Consistent Set (MCS) and Edited
Nearest Neighbor (ENN) can choose more representative
examples.

II. MODEL

Figure 1 shows our bug triaging model based on data set
reduction and text classification. The present approach is
conducted in four steps: (1) Part of bug reports with the label
are selected from the original data. (2) Data preparation. The
selected bug reports are transformed into standard data set. (3)
Data set reduction. The data set is reduced with feature
selection and instances selection algorithms. (4)
Classification. When a new bug report is submitted, a size of
K recommendation list is generated by a concrete classifier.

Before data set reduction, the data are prepared as
follows: first, select the bug not empty. Second, select the
fixed bugs and duplicate bugs. Third, label the bugs and
delete the console information. Fourth, remove the inactive
developers. Fifth, separate words and remove stop words. At
last, generate a feature matrix as the standard data.

Bug1

Bug2

Bug3

Bugn

Original data

developer 1

developer 2

developer 3

Data preparation

Select the fixed bugs

and duplicate bugs.

Select the bug is not

empty.

Label the bugs
Remove the inactive

developers

Separate words and

remove stop words

Generate a feature

matrix

Instance selection

algorithm

Feature selection

algorithm

Reduction the

training set

Classifier
A new

bug

report

Recommended list

1st developer K1

2nd developer K2

kth developer Kk

Figure 1. The text categorization approach for bug triaging.

Algorithm 1. Weighted Reduction training set algorithm.

Input：training set X,

Output: X*

1. for each bug report in training set

2. for each word in short description

3. word frequency*η

4. end for

5. end for

6. generate a weighted feature matrix

7. while not approach the scale of reduction

8. apply FS →IS or IS →FS to weighted feature matrix

9. return X*

III. EXPERIMENT AND CONCLUSION

20

25

30

35

40

45

50

55

60

65

70

1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y

Recommendation list size

Ordinary (originnal) Weighted (original) FS-IS IS-FS

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y

Recommendation list size

NaiveBayes J48 ComplementNaiveBayes RandomTree

Figure 2 the results of dataset reduction.

Figure 2 shows the results of our approach. NB classifier
has the best triaging effect in our study compared with the
other three bug classification algorithms. Therefore, FS-IS is
a good choice for the training set reduction.

REFERENCES

[1] Zhang J, Wang X Y, Hao D, et al, “A survey on bug-report analysis,”
Science China Information Sciences, 2015, 58(2):1-24.

703

Integrating Challenge Based Learning Into a Smart
Learning Environment: Findings From a Mobile

Application Development Course

Rafael Chanin, Alan R. Santos, Nicolas Nascimento, Afonso Sales, Leandro Pompermaier and Rafael Prikladnicki
Pontifical Catholic University of Rio Grande do Sul, School of Technology

Av. Ipiranga 6681, Porto Alegre, Brazil, CEP: 90619-900
{rafael.chanin, alan.santos, nicolas.nascimento, afonso.sales, leandro.pompermaier, rafaelp}@pucrs.br

Abstract—Training students on mobile application develop-
ment inherits the challenges of teaching software engineering
where the target computer is a device that has a large number
of features accessible by software. Furthermore, the most related
experience in teaching students reveals difficulties in developing
software engineering competencies. In this paper we present
results from an iOS course held in a smart learning environment
that adopted the Challenge Based Learning framework as the
teaching methodology. Our results indicate that combining an
active methodology along with an engaging environment can
foster and improve software development learning.

Keywords—Smart Learning Environments, Challenge Based
Learning, Mobile Software Development, Teaching.

I. INTRODUCTION

Active learning methodologies like Problem-Based Learn-
ing, Project-Based Learning (PBL) and Challenge Based
Learning (CBL) engage students and improve their perfor-
mance. These approaches moves students to a different role
when compared to traditional classes, engaging students in real
problems [6]. In this study, we focus on the use of CBL in a
smart learning environment. CBL enables students to conduct
research by integrating practices with theory and application
of knowledge and skills, such as collaboration and problem
solving, and taking action in the community context [5].

Moreover, the educational context is changing due to the
advancements in technology [4]. Tradicional classes, often
perceive as formal, passive, and not engaging, have been
slowly replaced by student-centric approaches. This new way
of perceiving education, combining active methodologies,
technology and modern infrastructure has led to the creation
of the term “Smart Lerning Environments” [3].

In this sense, this paper presents findings from a 6-weeks
mobile application development course that uses CBL as a
teaching methodology. Our preliminary results indicate that
applying a pro-active pedagogy framework that fosters col-
laboration and personalized learning within a smart learning
environment can be beneficial to students.

The remainder of this paper is organized as follows.
Section II presents the background on smart learning en-

DOI reference number: 10.18293/SEKE2018-058

vironments. In Section III the concept of Challenge Based
Learning is explained and, in Section IV, we describe the
mobile application course in detail. Section V depicts the
methodology used in this research. In Section VI we present
our preliminary results and, finally, we draw our conclusion
and future works in Section VII.

II. SMART LEARNING ENVIRONMENTS

There are several definitions for Smart Learning Environ-
ments (SLE) in the literature. However, in the context of this
paper, we use the one from Koper [3], which is “physical
environments that are enriched with digital, context-aware
and adaptive devices, to promote better and faster learning”.
Even though the word “smart” relates to the use of smart
technologies, the main goal of a SLE is to provide learning
guidance and all the necessary infrastructure to make the
learning process effective, efficient and engaging [2].

One of the main goals of a SLE is to meet the educational
needs from current students. Tradicional classes, in which
instructors are in the center of the process and students do
not actively participate, have been replaced by approaches that
foster collaboration, action and engagement. However, in order
to effectively implement this change, not only the physical
environment needs to be adapted, but also instructors need to
put in place a different teaching methodology [4].

In this new context, instructors are no longer the only
source of knowledge. Similarly, students are not only knowl-
edge consumers. In fact, the roles of instructors and students
may become less distinct and could be interchangeable [4].

III. CHALLENGE-BASED LEARNING

Experiential learning is the source of a variety of learning
frameworks that are used all over the world. Problem-Based
Learning, Project-Based Learning, Task-Based Learning and
Challenge Based Learning are just a few examples of these
frameworks. “The foundations of experiential learning can be
found within the history of most cultures, but were formally
organized and presented by David Kolb drawing heavily on
the works of John Dewey and Jean Piaget” [6]. Challenge
Based Learning (CBL) [5] is a learning framework based on
solving real world challenges.

704

The CBL process begins with the definition of a big idea,
which is a broad concept that can be explored in several ways.
The big idea has to be engaging and important to students
and society. Once the big idea is chosen and the essential
question is created, the challenge is defined. From this point,
students must come up with the guiding questions and guiding
activities and resources, which will guide them to develop a
successful solution. The next step is analysis, which will set the
foundation for the definition of the solution. Once the solution
is agreed upon, the implementation begins. Finally, evaluation
is undertaken in order to check out the whole process and
verify if the solution can be refined.

IV. THE COURSE

The course curriculum applied in this work can be divided
into two portions: iOS Programming and User Experience.
All participants received CBL training and were required to
dedicate 20 hours per week during six weeks. The learning was
facilitated by instructors, which had different levels of industry
and academic experience. All instructors had previous iOS
development training and CBL training, and more than four
years experience. In addition, the course was held in a smart
learning environment, which provided not only all necessary
equipment, but also a modern infrastructure that allow students
to be creative and comfortable during the learning process.

TABLE I. CLASSES ACTIVITIES

Class Activities Deliverable

1 Equipment assignment to students. Student’s and
Instructors presentations. Quick introduction to
important tools and shortcuts.

Reflection

2 Introduction to Coding, Introduction to Story-
boards, UILabel and UIButton.

Exercise

3 UIView, UIViewController and the Model-View-
Controller (MVC) paradigm.

Exercise

4 Introduction to UX (User-Experience) in iOS, Per-
sonas and Paper Prototyping.

Exercise

5 UIImageView, UIPicker, UIDatePicker. Exercise
6 Navigation using multiple ViewControllers,

UINavigationController and UITabBarController.
Exercise

7 UISlider and UIScrollView. Exercise
8 Challenge Based Learning. CBL Process Do-

cumentation
9 AutoLayout. Exercise

10 UITableView and Nano-Challenge. None
11 Nano-Challenge Development and Deliver. Nano-Challenge

Solution
12 UserDefaults and CoreData. Exercise
13 Design Guidelines. Exercise
14 MapKit. Exercise
15 Mini-Challenge - Engage. None

16-17 Mini-Challenge - Investigate. None
18-29 Mini-Challenge - Act. None

30 Mini-Challenge Presentations. Mini-Challenge
Solution Keynote,
Reflection

The deliverables described in Table I are related to items
used for students development and assessment as described by
Nichols et al. [5]:

• Reflection: It is a video, audio or text file where
students reflect on the content and on the process. As
described in [5]: “Much of the deepest learning takes
place by considering the process, thinking about one’s

learning, and analyzing ongoing relationships between
the content and concepts.”.

• Exercise: Students are encourage to follow a devel-
opment rule (such as using a specific framework) but
are free to increment the solution and to develop it.

• CBL Documentation: During the course, learners
produce contents using text, video, audio and pictures.
These artifacts are helpful, as they expose information
of the learning process. These can serve many uses,
such as reflections, assessments, evidence of learning,
portfolios and for telling the story of their challenges.

• Nano-Challenge: One type of CBL activity. These
are shorter in length, focused on a particular content
area or skill, have tight boundaries and are guided by
the instructor. Both Big Idea and Essential Question
are provided to the students. The process includes
some level of investigation, but at a lower level of
intensity and often stop short of implementation with
an external audience.

• Mini-Challenge: Another type of CBL activity. It has
a longer duration (2-4 weeks) and allows learners
to start with a Big Idea and work using the entire
framework. The research depth and the reach of their
solutions increases and the focus can be content spe-
cific or multidisciplinary. Mini-Challenges are good
for intense learning experiences that stretch learners
and prepare them for longer challenges.

V. METHODOLOGY

The research methodology for this study was based on a
process proposed by Eisenhardt [1]. The proposed research
question was: “Can mobile application development be more
effectively learn if taught in a smart learning environment
using an active methodology, such as Challenge Based Learn-
ing?”. The rationale behind this question was to find out
whether students can take advantage of the environment as
well as of the methodology in order to better learn the content.

A. Data Collection & Analysis

Throughout the course, we collected several data regarding
students deliverables. In addition, we conducted a survey
with all students that have completed the course described
in Section IV. In total, 25 students were interviewed. All
questions were open-ended and focused on the following
areas: (i) teaching environment; (ii) teaching methodology; (iii)
content; and (iv) instructors.

Once all data was collected, we grouped and categorized
the information. It is important to point out that part of our
evaluation was based on data collected from students. In order
to mitigate eventual flaws during data collection, the interviews
were conducted by two people that did not directly participate
in the course.

VI. RESULTS

We found indicatives that the combination of an innovative
environment with an active learning methodology was key to
the success of the course. Students felt engaged and motivated
to learn and even to go beyond the course content.

705

Regarding the environment, 90% of the students empha-
sized how impressed they were when they first enter the
classroom. The infrastructure, a coworking space equipped
with comfortable and adjustable chairs and tables and several
spaces to brainstorm and to sketch ideas, not only provided
everything students needed, but it was also inspiring.

One key point the final survey allowed us to perceive was
regarding the teaching methodology. Some of the students
reported feeling uncomfortable with the dynamics used in class
at first, as the lecturing (where the instructor would present the
content) was not long and the students were quickly given a
challenge. However, as the course progressed, they understood
that this approach was beneficial, as they reported being more
engaged with the content.

None of the students knew Challenge Based Learning prior
to the course. Nonetheless, all of them pointed out that the
methodology was key to keep them focused and engaged
throughout the course. Several students, however, mentioned
that the methodology could have been introduced in the first
week of the course. As can be noticed in Table I, CBL was
only presented to students on the 8th class.

The Mini-Challenge delivered and presented at the end
of the course proved (according to the evaluation of the
instructors) that students learned the content. Even though
some students mentioned that having one or two more weeks
would be beneficial to the learning process, they were all able
to create a complete mobile application, with some having
developed features that were not even covered during classes,
such as Speech Recognition.

Regarding the instructors, 50% of the students pointed out
that the different teaching styles was a problem. For example,
while one instructor explained a specific content in detail,
the other chose to give just a quick overview and then let
students search for other information. In total, four instructors
participated in the course. It became clear that it was not
necessary to have that many instructors in this course.

Another set of data collected was students’ deliverables.
A Delivered task (85%) is one that is completed in terms
of scope, quality and deadline. A Partially Delivered task
(2%) is one that fail in scope, quality or deadline. Finally,
a Not Delivered task (13%) is one that was not delivered. The
evaluation for each task was made by at least two instructors.

This information was somehow intriguing to the authors,
since they understood that having 13% of the tasks not deliv-
ered was too much. By analysing task by task (see Fig. 1) it can
be seen that tasks 10 and 11 are the outliers. By talking to the
instructors, we found out that since students were performing
really well, they decided to raise the bar after task 9. It turned
out that almost half of the students were not able even to
partially deliver these challenges.

A lesson learned about this approach is that to push
students in order to see where they can get can be good.
However, this needs to be strategically done in order not to
disengage students. For instance, a given challenge can have
three different achievement levels (for example, bronze, silver
and gold). By doing so, not only instructors can measure how
far students can go, but it also keeps students motivated into
achieving the highest level.

Fig. 1. Deliverables During the Course

VII. CONCLUSION AND FUTURE WORK

The traditional educational landscape is changing to a more
pro-active and collaborative one. In this scenario, instructors
also need to adapt themselves in order to better help students
throughout the learning process.

This work presented a case study that represents this new
trend. We provided findings from a mobile application devel-
opment course that took advantage of a modern environment,
new technologies, and a pro-active teaching methodology -
Challenge Based Learning. Our results, although preliminary,
reveal that students in fact learn and engage more when they
are put in the center of the learning process. Moreover, the use
of challenges kept students motivated to find solutions, which
makes the learning process more fun and less tedious.

As future work we intend to monitor and evaluate more
courses in similar contexts that the one presented in this paper.
In addition, we are planning to extend the duration of the
course from six to eight weeks in order to give more time
for the students to practice the concepts learned as well as
more time in the Mini-Challenge activity to develop a more
robust mobile application.

ACKNOWLEDGMENTS

This project is partially funded by FAPERGS, project
17/2551-0001/205-4.

REFERENCES

[1] K. Eisenhardt. Building theories from case study research. Academy of
management review, 14(4):532–550, 1989.

[2] B. Gros. The design of smart educational environments. Smart Learning
Environments, 3(1):1–11, 2016.

[3] R. Koper. Conditions for effective smart learning environments. Smart
Learning Environments, 1(1):1–17, 2014.

[4] J. Ng, D. Ruta, A. Al Rubaie, D. Wang, L. Powell, B. Hirsch, L. Ming,
C. Ling, and A. Al Dhanhani. Smart learning for the next generation
education environment. In 2014 International Conference on Intelligent
Environments, pages 333–340. IEEE, 2014.

[5] M. Nichols, K. Cator, and M. Torres. Challenge Based Learning Guide.
Digital Promise, Redwood City, CA, USA, 2016.

[6] A.R. Santos, A. Sales, P. Fernandes, and M. Nichols. Combining
Challenge-Based Learning and Scrum Framework for Mobile Application
Development. In Proceedings of the 2015 ACM Conference on Innova-
tion and Technology in Computer Science Education (ITiCSE’15), pages
189–194, Vilnius, Lithuania, July 2015.

706

IM Search: An Agent-based Personalized

Metasearch Engine

Meijia Wang, Qingshan Li, Yishuai Lin

Software Engineering Institute, Xidian University, Xi’an, China

shuilingyi@126.com; qshli@mail.xidian.edu.cn; yslin@mail.xidian.edu.cn

Abstract—Metasearch engine integrates search results from

multiple underlying search engines, improving recall ratio in the

big data environment. Multi-agent system is an important way to

implement metasearch engine. Great progress has been made in

this area, however the previous studies are still short of

personalization level. To improve the precision ratio, this paper

proposes a personalized metasearch engine which of Agent-based

architecture. According to click-through data, the metasearch

engine has the ability to schedule the appropriate search engines

based on the expertness model, merge all of results into a single list

by taking user interest into account, and provide personalized

recommendation. Experimental results show that the proposed

personalized metasearch engine performs better on precision. It is

feasible to provide the required search results more effectively.

Keywords: metasearch engine; multi-agent system; personalized

search

I. INTRODUCTION

With the widespread use of Internet, information manifests
an explosive growth. A search engine is a tool that helps users
to find useful information on the Internet. However, the
number of web documents is daily increasing, consisting more
than 10 billion web documents distributed on millions of
servers [1]. An individual search engine only indexes a small
coverage of web pages., Furthermore, the overlapping
documents among different individual search engines is very
low. Therefore, metasearch engine has been proposed to solve
this problem. By combining multiple search engines,
metasearch engine has the potential to extend the information
retrieval coverage, providing convenience to users [2].
Although metasearch engine improves recall ratio in the big
data environment, it is still limited by the precision ratio. The
reason is that most of the existing metasearch engines are
content-oriented, they use the similarity between the query and
returned documents to search, ignoring the perspectives of
users. To reach high precision, a personalized metasearch
engine which takes user interest into consideration is needed.
Generating schedule strategy and providing returned results
according to user interest is very helpful to meet user’s
requirements.

An intelligent agent is an autonomous entity which
observes and acts upon an environment, it is proactive and
perceptible. A multi-agent system is a computerized system
composed of multiple interacting intelligent agents within an
environment [3]. Modeling metasearch engine based on multi-

agent system has notable advantages. User interest changes
overtime, metasearch engine which based on multi-agent
system has the ability to perceive the change of user interest
actively because of the characteristics of agent. It is helpful to
analyze user intent, schedule underlying search engines and
merge results more flexibly according to search context. Multi-
agent system improves the adaptability of metasearch engine.

In this paper, we implement a metasearch engine based on
multi-agent architecture to improve the personalization level,
named “IM search”. Agent is utilized to mine user interest from
the click-through data, generate schedule strategy, merges
results returned by underlying search engines and recommends
results which user might be interested in. DCG@N [4] is used
to evaluate the proposed metasearch engine.

II. PROPOSED ARCHITECTURE

The proposed multi-agent architecture is composed of
seven kinds of agents. Interface Agent is responsible for
interacting with users, including receiving queries from users
and displaying the returned results to users. Search Agent is
utilized to evaluate the expertness of underlying search engines
and generate the schedule strategy, the offline search engines
will be never invoked. It is also in charge of managing the SE
Agent. SE Agent is responsible for communicating with
underlying search engines. Particularly, each SE Agent
corresponds to a search engine. The SE Agents detect the states
of underlying search engines. If some search engines are offline,
SE Agents perceive the offline state and send the signal to
Search Agent. UserInterest Agent analyzes the click-through
data and obtains user interest. User Group Agent clusters
users into different groups according to the query data.
ResultRecommended Agent provides recommended results
for a specific query that user might be interested in.
ResultMerge Agent merges all of returned results into a single
list.

The multi-agent architecture works as shown in Figure1: a
user submits a query to the InterfaceAgent. The Interface Agent
sends the query to the Search Agent and ResultRecommended
Agent. The Search Agent receives the query, generates the
schedule strategy and sends the query to the SE Agents which
will be scheduled. The SE Agents communicate with
underlying search engines to complete the search task, and then
pass on the returned results to the ResultMerge Agent.
Meanwhile, the Interface Agent also passes on user information
to the UserGroup Agent and UserInterest Agent. The

DOI: 10.18293/SEKE2018-082

707

UserGroup Agent gets the information of group to which the
current user belongs based on the Query data, and sends it to
the ResultRecommended Agent. After getting the query and
user group information, the ResultRecommended Agent
generates the recommended results and sends them to the
InterfaceAgent. According to user information, the UserInterest
Agent obtains user interest factor and passes it on to the
ResultMerge Agent. Then the ResultMerge Agent merges all of
results returned by SE Agents into a single list, and returns the
list to the InterfaceAgent for displaying. The UerInterest Agent
analyzes the query data to obtain user interest. After obtaining
all of results, the Interface Agent displays results to users.

Figure 1. Working diagram of the proposed multi-agent architecture

III. USER INTEREST MODEL

UserInterest Agent is designed to obtain user interest based
on query data. Our previous work [5] describes how to obtain
user interest model .

IV. SCHEDULE STRATEGY

Search Agent is utilized to generate the schedule strategy.
In order to evaluate the ability of underlying search engines,
According to [6], the expertness model is constructed. When
user submits a query, metasearch engine obtains the topic to
which the query belongs, then based on the expertness model,
the appropriate underlying search engines are selected to
complete the search task.

V. RESULT MERGING METHOD

ResultMerge Agent is utilized to merging the results
returned by underlying search engines. When the underlying
search engines returns results, the metasearch engine conducts
word segmentation for each document and identifies the topic
to which document belongs. The topic of user interest is
matched with the topic of each returned document so that the
user interest factor about the document can be obtained. The
final score assigned to a document with user interest can be
found in our previous work [5].

VI. RESULT RECOMMENDATION

Providing result recommendation will help users to find
useful information with less effort. ResultRecommended Agent
is responsible for recommending user wanted results. Both
explicit information and implicit information are used to
generate recommendation. This paper obtains explicit
information based on the registration of a user, which is helpful
to find the similar users in the system. The click-through data is
the implicit information. From the click-through data, the
relevant documents for a query will be found. The
recommendation is generated among similar users. The details
can be found in our previous work [7].

VII. EXPERIMENTAL RESULTS

In this section, the performance of the proposed methods is
discussed. “IM search” is a WWW metasearch engine which
combines the search engines “Youdao”, “Baidu”, “Bing”,
“Yahoo”, and “Sogou”. Two users with different interests are
designed to log in IM Search, User1 and User2. For the same
query “lincoln”, the results pages for User1 and User2 are
shown in Figure 3 and Figure 4 respectively. It is obvious that
these two users have different retrieval results. What’s more,
IM Search recommends some results for User1. The
recommended results are at the top of the result list.

Figure 3. The returned pages for User1

708

Figure 4. The returned pages for User2

DCG@N (Here, N=10) is utilized to evaluate the precision
of the personalization mechanism. Five users are invited to use
IM Search for a period of time. Then each user is asked for
request 10 queries with login and logout status respectively,
and the mean value of DCG@N for the 10 queries is calculated.
The results are shown in TABLE. 1. We can see, Users get
better results after logging in the system. Because the
personalized mechanism only available with login status.

TABLE I. THE MEAN VALUES OF DCG@N

 user1 user2 user3 user4 user5

Login 18.12 17.25 17.93 18.57 16.35

Logout 17.72 16.75 16.31 16.52 16.10

VIII. CONCLUSIONS

This paper presents a personalized metasearch engine based
on multi-agent architecture. By collecting user’s click-through
data, the metasearch engine has the ability to mining user

interest, schedule the appropriate underlying search engines
and obtain the personalized results. According to the group
members’ behaviors, it can also generate recommended results
for users. Experimental Results show that the proposed
metasearch engine performs better on precision. But there are
still open issues ahead needed to address: 1).User interest is
obtained based on the click-through data. But others user
behaviors, such as the browsing time, download history are
also significant for analyzing user interest. 2).Recommending
personalized query words for different users is also necessary.

ACKNOWLEDGMENT

This work is supported by the Projects (JBZ171001) supported
by the Fundamental Research Funds for the Central
Universities of China, Projects (2017073CG/RC036
(XDKD004)) supported by the Technology Program of Xi’an,
Projects (JB171004, BDY221411, K5051223008) supported by
the Fundamental Research Funds for the Central Universities
of China, Projects (61373045, 61672401) supported by the
National Natural Science Foundation of China; Project
(315***10101) supported by the Pre-Research Project of the
“Thirteenth Five-Year-Plan” of China.

REFERENCES

[1] A. H. Keyhanipour , et al. "Aggregation of web search engines based on
users’ preferences in WebFusion." Knowledge-Based Systems. vol.20,
no.4, pp.321-328, 2007

[2] W. Meng, C. Yu, and K. L. Liu. "Building efficient and effective
metasearch engines." Acm Computing Surveys. vol.34, no.1, pp.48-89,
2001

[3] Y. Lin, P. Descamps, N. Gaud, et al. “Multi-Agent System for intelligent
Scrum project management.” Integrated Computer Aided Engineering,
vol. 22, no. 3, pp.281-296, 2015.

[4] K. Zhou, et al. "Learning the Gain Values and Discount Factors of
DCG." IEEE Transactions on Knowledge & Data Engineering ,2012.

[5] M. Wang, Q. Li, Y. Lin, et al. “A personalized result merging method
for metasearch engine.” The International Conferenceon on Software
and Computer Applications. pp.203-207, 2017.

[6] Li Q, Wang J, Chu H, et al. “Personalization mechanism in an intelligent
agent-based meta-search engine.” Scientia Sinica, vol.45, no.5, pp.605-
622, 2015

[7] Y. Li , Q. Li, Y. Lin. “A Personalized Result Recommendation Method
based on Communities.” International Conference on Data Mining,
Communications and Information Technology. pp. 6-11, 2017.

709

Interval-valued Data Clustering Based on Range

Metrics

Sérgio Galdino

Polytechnic School

UPE

Recife, PE, Brazil

sergio.galdino@ieee.org

Wellington Pinheiro dos Santos

Department of Biomedical Engineering

UFPE

Recife, PE, Brazil

wellington.santos@ufpe.br

Ricardo Paranhos Pinheiro

Polytechnic School

UPE

Recife, PE, Brazil

paranhos@gmail.com

Abstract—This paper introduces new approach to Data Clus-
tering on interval-valued data. We introduce the Width of Range
Distance (City Block and Euclidean) matrix dissimilarity to
process hierarchical clustering using Ward method. Both width
of Range Distances has good clustering results while preserving
the topology of the data.
Index Terms—Clustering, Interval-valued Data, Interval Arithmetic

I. INTRODUCTION

Typically, data we analyse are classical data, which means

each observation is a single point in a n-dimensional space.

However, sometimes the data are represented intervals [1].

Traditional clustering techniques can be easily applied to

interval data types by replacing each interval with a rep-

resentative (e.g, the median of the points in the interval).

However, we have limitations of using representative centroids

to replace intervals [2]. We introduce the Width of Range

distance (City Block and Euclidean) matrix dissimilarity to

process hierarchical clustering using Ward method.

II. RANGE DISTANCES

The set of real numbers x satisfying x ≤ x ≤ x is the

closed interval [x] = [x, x]. The width of [x] are defined as,

w([x]) = (x− x) (1)

The magnitude and the mignitude can both be calculated using

the end points of [x],

mag([x]) = max {|x| , |x|} , (2)

mig([x]) =

{
min (|x| , |x|) if 0 /∈ [x]
0 otherwise

(3)

1) Range City Block Distance:

range[d1([x], [y])] =
n∑

i=1

|[xi]− [yi]|

=

[
n∑

i=1

mig([xi]− [yi]),
n∑

i=1

mag([xi]− [yi])

] (4)

2) Range Euclidean Distance:

d2([p], [q])) = d2([q], [p])) =

√√√√
n∑

i=1

([qi]− [pi])2 (5)

DOI reference number: 10.18293/SEKE2018-113

(a) Width of Range City Block
Dissimilarity.

(b) Width of Range Euclidean
Dissimilarity.

Fig. 1: Interval-valued Data Hierarchical Clustering - R hclust

function (method = ”Ward.D”).

III. INTERVAL-VALUED CLUSTERING

The data set concerns minimal and maximal of monthly

temperatures observed in 50 meteorological stations mounted

all over Brazil Northeast from 2017 year (January

to November).http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep

(2018/12/02). Figure 1 represents the Brazil Northeast map

containing the 50 stations over 9 clusters. All stations of the

same cluster are drawn with the same line colour.

IV. CONCLUSIONS

Wards method was used with the dissimilarities matrix using

the width from Range City Block Distance Matrix and from

Range Euclidean Distance Matrix. We can conclude that the

stations located near each other geographically tend to be

assigned to the same cluster or to a neighbour cluster.

REFERENCES

[1] Billard, L. and Diday, E.: Symbolic Data Analysis: Conceptual Statistics
and Data Mining. Wiley, Chichester, (2007)

[2] S. M. L. GALDINO: Interval-valued Data Clustering Based on the

Range City Block Metric. In: SMC 2016, 2016, Budapest. The 2016
IEEE International Conference on Systems, Man, and Cybernetics, 2016.

710

http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep

A Revisit of Fault-Detecting Probability of
Combinatorial Testing

Min Yu Feiyan She Yuanchao Qi Ziyuan Wang∗ Weifeng Zhang
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China

∗Corresponding: wangziyuan@njupt.edu.cn

Abstract—The lower bound of fault-detecting probability of τ -
way combinatorial test suite for Boolean-specification testing have
been proposed [1]. However, the formula neglected the situation
that for different minimal failure-causing schemas, the coverage
of test suites may be non-independent events. Hence, multiplying
directly the probabilities of non-independent events is incorrect,
which causes that the result calculated by previous formula may
be greater. In this paper, we give counterexamples to demonstrate
the mistakes in the formula derivation. Furthermore, two exper-
iments are designed to illustrate that the actual fault-detecting
probabilities and ratios are usually less than the theoretical fault-
detecting probabilities calculated from the previous formula.

Index Terms—Software testing, combinatorial testing, fault-
detecting probability, minimal failure-causing schema.

I. INTRODUCTION

Combinatorial testing is a well-accepted testing method
which has been widely studied and applied [2]. There are grow-
ing concerns about the fault-detecting ability of combinatorial
testing, due to a controversy about combinatorial test suites
effectiveness of detecting faults.

The fault-detecting probability was proposed to evaluate
the ease of a combinatorial test suite detecting a fault. Previous
works have put forward formulas for fault-detecting probability
of combinatorial testing [1][3]. The lower bound of the fault-
detecting probability of fixed-strength combinatorial test suite
for 2-level system has been raised in [1]. On this basis, the
article [3] further proposed the lower bound of the probability
that fixed-strength combinatorial test suite detects faults for
mixed-level system. However, we find that the events that
combinatorial test suites detect faults under different minimal
failure-causing schemas may be non-independent sometimes.
So it is incorrect to multiply directly the probabilities of non-
independent events in the formula. In terms of this mistake,
we carry out some relevant researches and experiments.

In this paper, we take Boolean expressions from TCAS
system as study object to find counterexamples of the formula
and generate combinatorial test suites with different strengths
by some classic combinatorial test generation algorithms. By
analyzing the test suites of boolean expressions, the fault-
detecting probabilities and ratios of the combinatorial test
suites are calculated. A contrast of experimental results and
theoretical values calculated by the formula is made by us.

The rest of this paper is organized as follows. The 2nd
section proposes the formula of fault-detecting probability and
puts forward the counterexample of the formula. The 3rd

DOI reference number: No.10.18293/SEKE2018-139

section is the description of experiments and gives experimen-
tal results to illustrate the differences with theoretical values.
There is a conclusion finally.

II. FAULT-DETECTING PROBABILITY

A. Existing formula of fault-detecting probability

Suppose there are m minimal failure-causing schemas, with
strength k1, k2, ..., km respectively, for a fault. For an arbitrary
2-level τ -way combinatorial test suite T , the probability of
event that T detects this fault should be [1]:

p(τ) =

 1 : τ ≥ minmi=1{ki}

1−
∏m

i=1
(1− 1

2ki−τ
)C

τ
ki : τ < minmi=1{ki}

B. Counter-example

There is Lemma 6 in [1]: “Suppose there are totally m
schemas, and their strengths are k1,k2, ..., km respectively.
Let T be a 2-level suite, in which all possible τ -value sub-
schemas of all m schemas are covered by at least test case
(τ < minmi=1{ki}). The probability of event that none of
these m schemas are covered by T is equal to or less than∏m
i=1(1−

1
2ki−τ

)C
τ
ki .”

If there are multiple minimal failure-causing schemas, the
lemma 6 calculates probability for each and multiply them.
However, only when events are mutually independent, they can
be multiplied in probability theory. If a test case covers current
minimal failure-causing schema, it may cover others. That is,
many overlapping test cases are repeatedly calculated when
taking each minimal failure-causing schema as a independent
event. The actual probability should discard overlaps.

For instance, there are 2 minimal failure-causing schemas
S1=(1 1 1- -), S2=(- 1 1 1 -), k = 3. Their τ = 2-value sub-
schemas are (1 1 - - -), (- 1 1 - -), (1 - 1 - -), (- 1 - 1 -) and
(- - 1 1 -). Let A be the event that S1 is not covered by a
2-way combinatorial test suite, and B the same event for S2.
According to Lemma 5 in [1], P (A) = P (B) ≤ (1− 1

2)
3 = 1

8 .
According to Lemma 6 in [1], P (AB) = P (A)×P (B) ≤ 1

64
and Pτ=2 = 1− P (AB) ≥ 63

64 .

However, since A and B are not independent, P (AB) =
P (A) × P (B) can’t be used to calculate the probability that
A and B occur at the same time. In fact, if A occurs, there
should be 3 test cases (1 1 0 x x), (1 0 1 x x), (0 1 1 x x) in
combinatorial test suite, in which only (0 1 1 x x) has chance
to cover schemas (- 1 1 1 -). P (AB) = P (A) × P (B|A) ≤

711

1
8 ×

1
2 = 1

16 since P (B|A) ≤ 1
2 . There should be Pτ=2 =

1 − P (AB) ≥ 15
16 . It means that, the formula in [1] gives an

overvalued low bound of fault-detecting probability.

III. EXPERIMENTS

A. Research questions

RQ1 (fault-detecting frequency): In a large number of
runnings of combinatorial testing, for each mutant, is the fault-
detecting frequency approximate to theoretical fault-detecting
probability?

RQ2 (fault-detecting ratio): In a large number of runnings
of combinatorial testing, for some grouped mutants (from the
same original version), is the mean value of the ratios of
detected faults approximate to the mean value of theoretical
fault-detecting probabilities?

B. Experiment setup

We take 20 Boolean expressions that extracted from the
TCAS system as the experimental subjects. For each expres-
sion, we create mutants by 10 fault types and get 19131 non-
equivalent mutants.

Combinatorial test suites with different strengths are gener-
ated by some classic combinatorial test generation algorithms
including Greedy algorithm [4], DDA algorithm [5], and IPO
algorithm [6]. And besides, two algorithms named ReqMerge
[7] and DensityRO [8], which were mainly designed for
variable strength combinatorial testing, are also utilized in our
experiment. When running an algorithm, a random generated
seeding test case will be assigned in order to output the
rich diversity combinatorial test suites in the large number of
runnings of combinatorial testing.

In the first step, for each mutant, the theoretical fault-
detecting probability of combinatorial test suite will be cal-
culated according to the formula in [1]. In the second step,
for each original Boolean expression from TCAS system,
each combinatorial test generation algorithm will generate
100 different τ−way combinatorial test suites for τ=2, 3, 4.
By the running of large number of combinatorial test suites,
experimental results could be obtained:

• To answer the 1st research question, for each mutant,
the fault-detecting frequency in the large number of
the running of combinatorial testing should be col-
lected.

• To answer the 2nd research question, for each combi-
natorial test suite, the ratio of the number of killed
mutants to the total number of mutants should be
collected.

C. Experimental results

1) Results for RQ1: In Fig.1, there are 20 groups of box-
graphs in each figure, where each group stands for an orig-
inal Boolean expression from TCAS. Besides the theoretical
faulting-detecting probabilities in the first box-graph of each
group, the last 5 box-graphs in each group illustrate fault-
detecting frequencies of mutants, which are mutated from
current original Boolean expression, in the running of τ−way

combinatorial test suites that generated by Greedy algorithm,
DDA algorithm, IPO algorithm, DensityRO algorithm, and
ReqMerge algorithm respectively, where τ =2, 3, 4.

2) Results for RQ2: In Fig. 2, there are 20 groups of
box-graphs in each figure, where each group stands for an
original Boolean expression from TCAS. Besides the theo-
retical faulting-detecting probabilities in the first box-graph
of each group, the last 5 box-graphs in each group illustrate
the ratios of killed mutants, which are mutated from current
original Boolean expression, by each τ -way combinatorial test
suite that generated by Greedy algorithm, DDA algorithm,
IPO algorithm, DensityRO algorithm, and ReqMerge algorithm
respectively, where τ =2, 3, 4.

These results indicate that, the mutants’ actual fault-
detecting frequencies and the mean values of the ratios of
detected faults are usually less than the mean values of
mutants’ theoretical fault-detecting probabilities calculated by
formula in [1].

IV. CONCLUSION

There have been formula about the fault-detecting proba-
bility of combinatorial in previous researches. Due to over-
looking the independence of probability event, the formula
is inaccurate. In this paper, we take 20 boolean expressions
as experimental subject to research fault-detecting frequencies
and ratios of combinatorial test suites generated by five classic
combinatorial test generation algorithms. From the results we
come to a conclusion there are obvious deviations between
theoretical and real value of fault detection. Because of higher
theoretical values than experimental results, the formula in [1]
is mistaken.

In future, we will correct the mistakes in the formula and
figure out the accurate theoretical fault-detecting probability.

ACKNOWLEDGMENT

This work is supported by the National Nature Science
Foundation of China (61772259).

REFERENCES

[1] Ziyuan Wang, Yuanchao Qi. Why Combinatorial Testing Works: Ana-
lyzing Minimal Failure-Causing Schemas in Logic Expressions. 2015
IEEE 8th International Conference on Software Testing, Verification
and Validation Workshops (ICSTW2015): 4th International Workshop
on Combinatorial Testing (IWCT2015).

[2] C. Nie, H. Leung. A survey of combinatorial testing. ACM Computing
Surveys (CSUR), 2011, 43(2): 11.

[3] Chiya Xu, Yuanchao Qi, Ziyuan Wang, Weifeng Zhang. Analyzing
Minimal Failure-Causing Schemas in Siemens Suite. 2016 IEEE 9th
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW2016): 5th International Workshop on Combinatorial
Testing (IWCT2016).

[4] P. J. Schroeder. Black-box Test Reduction Using Input-Output Analy-
sis: [Dissertation for PhD]. Department of Computer Science, Illinois
Institute of Technology, Chicago, IL, USA, 2001.

[5] Renee C Bryce, Charles J Colbourn. A density-based greedy algorithm
for higher strength covering arrays. Software Testing, Verification and
Reliability, 2009, 19(1): 37-53.

[6] Yu Lei, Raghu N Kacker, D Richard Kuhn, Vadim Okun, Jim Lawrence.
IPOG-IPOG-D: efficient test generation for multi-way combinatorial
testing. Software Testing, Verification and Reliability, 2008, 18(3): 125-
148.

712

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

Fig.1 Compare Fault-Detecting Probabilities and Frequencies of τ -way Combinatorial Test Suite for 20 Boolean Expressions(τ = 2, 3, 4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

Fig.2 Compare Fault-Detecting Probabilities and Ratios of Detected Faults of τ -way Combinatorial Test Suite for 20 Boolean Expressions(τ =
2, 3, 4)

[7] Wang Ziyuan, Nie Changhai, Xu Baowen. Generating Combinatorial Test
Suite for Interaction Relationship. In Proceedings of the 4th Interna-
tional Workshop on Software Quality Assurance (SOQUA2007), Croatia,
September 3-4, 2007: 55-61

[8] Wang Ziyuan, Xu Baowen, Nie Changhai. Greedy Heuristic Algorithms
to Generate Variable Strength Combinatorial Test Suite. In Proceedings

of the 8th International Conference on Quality Software (QSIC2008),
Oxford, UK, August 12-13, 2008: 155-160.

713

Big Data ETL Implementation Approaches: A
Systematic Literature Review

Joshua C. Nwokeji∗, Faisal Aqlan†, Anugu Apoorva∗, and Ayodele Olagunju†
∗Comp. & Info. Sys. Dept. Gannon Uni. † Indus.Engr., Dept., Penn. State Uni. ‡ Uni., of Saskatchewan;

Email: Nwokeji001@gannon.edu

Abstract—Extract, transform, load (ETL) is an essential tech-
nique for integrating data from multiple sources into a data
warehouse. ETL is applicable to data warehousing, big data,
and business intelligence. Through a systematic literature review
of 97 papers, this research identifies and evaluates the current
approaches used to implement existing ETL solutions. We found
that conceptual modeling such as UML, BPMN, and MDA is
the most popular approach used to implement ETL solutions.
However, innovative approaches such as machine learning, arti-
ficial intelligence, and robotics are either under-utilized or not
used at all to develop ETL solutions. Additionally, we discuss the
implications of these to ETL research and practice.

I. INTRODUCTION

Organizations are rapidly generating ’big data’ from various
sources, e.g., social media and e-commerce systems. The
term big data is used to define data that are too voluminous
and complex to be processed by traditional data processing
systems [1]. Big data becomes more meaningful to organi-
zations when analyzed to derive business intelligence that
support decision making. Normally, big data analytics starts
with integrating the generated data into a data warehouse using
various techniques; ETL (extract, transform, load) is a popular
technique used for this purpose [1].

A typical ETL process is carried out in three steps. In
the first step, data in various formats (e.g., txt, csv, xls)
are extracted from different data sources. The second step
involves applying transformation techniques such as normal-
ization, filtering, and sorting to clean these data. Finally, the
cleaned data are migrated (loaded) into a data warehouse to
be processed and analyzed to derive inteliigence, knoweledge,
and wisdom [1]. In this era of big data, ETL research is
becoming increasingly important and a means to developing
new approaches to solve the growing challenges of data
integration in organizations.

As ETL evolve, researchers and practitioners should be
aware of the current techniques used to implement ETL solu-
tions, and the implications of these to research and practice.
Hence, this paper identifies and evaluates existing ETL imple-
mentation techniques from 97 papers selected using systematic
literature review (SLR) method. In sections II, III, and IV we
respectively discus SLR method, present and discuss result,
and conclude our research.

DOI reference number: 10.18293/SEKE2018-152

II. METHOD

To meet the objectives of this research, we adopt the method
for conducting SLR in software engineering proposed by
Kitchenham and Charters [2]. In the paragraphs that follow,
we discuss how this research conforms to this method.

a) Define Review Objectives and Question: The main
objective of this review is to identify and evaluate approaches
used in implementing existing ETL solutions. We identified a
review question that closely align with this objective:
RQ: What approaches are currently used to implement ETL

solutions?
b) Develop Search Strategy: This include selecting data

sources, identifying search keywords, and conducting the
search [2]. We selected the following data sources based on
their relevance to software engineering and computer science:
IEEE Xplore, ACM Digital Library, Science Direct, ProQuest,
and Google Scholar. After a series of pilot searches, we
identified and selected the keywords shown in Table I. To
conduct the search, we combined each keywords in concept
[A] with the keywords in concepts [B], and [C] using boolean
operators (and/or).

TABLE I: SLR Keywords

Main Concept Corresponding Keywords
[A] Extract Transform Load [A1] Extract*, Transform*, Load*; [A2] ETL
[B] Approach [B1] Framework; [B2] Models; [B3] Tools; [4]

Technology; [B5] Software
[C] Quality [C1] Quality Attributes; [C2] Quality Measures;

[C3] Quality Features; [C4] Quality Characteris-
tics; [C5] QoX

c) Specify Selection Criteria:: After developing the
search strategy, the authors discussed and agreed on a set of
criteria for including and excluding papers from review. These
criteria are described in Table II.

TABLE II: Selection Criteria

Criteria Include Exclude
Year Papers must be published between

2006 and 2016
Papers published before
2006

Relevance Papers whose title and abstracts
are relevant to ETL and its related
concepts, as well as the review
objectives and questions.

Papers that do not relate to
the ETL and other key con-
cepts of this research

Quality Peer reviewed papers in journals,
conferences, and workshops.

Non-peer reviewed papers.
Also keynotes and presenta-
tions.

Rigor Papers that demonstrate rigor
through the use of appropriate
scientific research and validation
methods.

Papers that do not use ap-
propriate scientific research
and validation methods

714

d) Extract Data:: We searched the data sources with
the keywords shown in Table I, this returns a total of 865
papers. Then, we removed duplicate papers and we excluded
papers that do not meet the year criterion described in Table II.
Afterwards, we applied the relevance criteria to exclude papers
whose titles and abstracts are not related to the main concepts
of the review. Finally, we selected a total of 97 papers as
primary studies, after we applied the quality and rigor criteria.
Please note that we did not show these primary studies due to
space restrictions.

III. RESULT AND DISCUSSION

Fig. 1: Approaches used to Implement ETL Solutions

a) RQ: What approaches are currently used to imple-
ment ETL solutions?: We found nine (9) popular implemen-
tation approaches from selected papers (primary studies). As
shown in Figure 1, these approaches are plotted in the vertical
axis, while the horizontal axis shows the number of papers
that reported them. For clarity, we also listed them here as fol-
lows : (i) Service oriented architecture (SOA) (ii) Web-based
technologies, e.g., semantic web (iii) Fault-tolerant algorithm.
(iv) Structured query languages (SQL). (v) Parallelization
(parallel computing paradigm), e.g., Map Reduce. (vi) Domain
ontology (vii) Multi-agent system (MAS).(viii) Conceptual
modeling e.g., unified modeling language (UML) and business
process modeling (BPMN) (ix) Meta-data repository.

b) Variety of Approaches: The results from this sys-
tematic literature review reveal that a variety of approaches
are used to develop ETL solutions, see Figure 1. The leading
among these is conceptual modeling approaches, such as the
unified modeling language (UML), business process model
and notation (BPMN), and model driven architecture (MDA)
or model driven development (MDD). Conceptual models tend
to represent real world concepts at level of abstraction that
facilitates easy comprehension and analysis [3].

Although the application of conceptual modeling to ETL
offers some advantages such as automatic code generation [4];
the overly emphasis on this, at the expense of other ap-
proaches, calls for concerns. For instance, while conceptual
modeling approaches appear useful in present times; there is
no clear research direction and indication of how conceptual
modeling approaches can be applied to develop effective solu-
tions to address future exponential increase in data complexity,
volume, and heterogeneity.

More so, the focus on conceptual modeling appears to
overshadow the application of new and innovative approaches
such as artificial intelligence, machine learning, and robotics
to developing ETL solutions. It is clear if or how these
innovative can be applied to develop ETL solutions. This calls
for research questions that should be focus of current studies
in ETL. For instance, can artificial intelligence be used to
automate data extraction from heterogeneous sources, or can
machine learning and robotics be applied to transform and load
data? Hence, we expect the future directions of ETL research
to be in the area of developing new approaches based on
current innovative technologies such as machine learning and
artificial intelligence. These new approaches will be driven by
the new data requirements, and the technology advancements.

IV. CONCLUSION AND FUTURE WORK

This paper presents a systematic literature review, conducted
to identify and discuss current approaches used to imple-
ment ETL solution; quality attributes to be considered when
selecting ETL approach; and prevailing challenges in ETL
research. In addition, we identify and discuss current trends
in ETL research focusing on application domain, frequency or
articles published per year and number of articles published
per region. Based on the results identified from 96 papers,
published between 2006 and 2016, we found that approaches
for implementing ETL solutions overly focus on conceptual
modeling, neglecting emerging and innovative approaches
such as machine learning.

These challenges should call for concerns and questions
among big data researchers and practitioners. The concern,
for instance, would be if we (humans and machines) will ever
catch up with the demands, and solve the problems, of big
data integration and management. The questions are: Will big
data eventually over grow human intelligence and machine
capacity? Can we invent newer approaches (beyond what we
currently have) to dealing with big data management? certainly
these questions can be answered through intensified concerted
effort by ETL researchers and practitioners. These should be
the focus of future work.

REFERENCES

[1] V. N. Gudivada, R. A. Baeza-Yates, and V. V. Raghavan,
“Big data: Promises and problems.” IEEE Computer,
vol. 48, no. 3, pp. 20–23, 2015.

[2] B. Kitchenham and S. Charters, “Guidelines for perform-
ing Systematic Literature reviews in Software Engineering
Version 2.3,” Engineering, vol. 45, no. 4ve, p. 1051, 2007.

[3] J. C. Nwokeji, F. Aqlan, B. Barn, T. Clark, and V. Kulka-
rni, “A modelling technique for enterprise agility,” Pro-
ceedings of the 51st Hawaii International Conference on
System Sciences, 2018.

[4] Z. El Akkaoui, E. Zimanyi, J. N. Mazon Lopez, J. C.
Trujillo Mondejar et al., “A bpmn-based design and
maintenance framework for etl processes,” International
Journal of Data Warehousing and Mining, 2013.

715

DOI reference number: 10.18293/SEKE2018-323

Research on Crowd-based mobile application testing

platforms

Wenguang Xie

School of Airworthiness

Civil Aviation University of China

Tianjin, China

caucxwg@foxmail.com

Kenian Wang

School of Airworthiness

Civil Aviation University of China

Tianjin, China

wangkenian@126.com

Abstract—In recent years, mobile applications market develop

rapidly. In this paper, a research is provided for platforms of

crowd-based mobile app testing.The infrastructure, framework,

work flow of crowdsourcing for mobile applications are

explained in this paper.

Keywords-Crowdsourcing; testing platforms; work flow

I. INTRODUCTION

Because of the wide application of crowdsourcing, it

has received extensive attention in the academic circle in

recent years. Many experts and scholars have made a

summary of the relevant research work on crowdsourcing in

top conferences and periodicals. Ke Mao studied the

applications of the crowdsourcing in the life cycle of

software engineering[2]. Doan categorized the

crowdsourced systems according to the type of problem and

the way of cooperation[3]. Zhao Y summarized the research

status of crowdsourced technology and predict the future

research area[4]. Additionally, there is a small amount of

content related to mobile application testing. Jerry Gao[5],

Kirubakaran[6] gave the basic concepts of mobile

application testing, and analyzed the needs, challenges and

main problems of mobile application testing. However, they

didn’t combine mobile application with crowdsourced

testing. In this paper, we focus on the applications of

Crowdsourced testing technology in mobile applications.

We then introduce the concept and advantage of crowd-

based mobile application testing. Next, we study three key

issues, and conclude open issues and opportunities for future

research on crowd-based mobile application testing.

II. NORMAL CROWDSOURCED TEST INFRASTRUCTURE

Crowdsourced testing needs intermediary to connect

mobile app developers with thousands of crowdsourced testers.

The normal infrastructure for most of crowdsourced mobile

test platforms is shown in Figure 1.

Figure 1. Crowdsourced Test infrastructure

Crowdsourced test customers upload under-test mobile

apps, assign test requirements & criterion, and submit test

tasks to crowdsourced test servers.

Crowdsourced mobile testers apply and execute mobile

test tasks, and report test results to crowdsourced test servers.

Crowdsourced mobile testers may be professional test

engineers, or normal mobile users.

Crowdsourced test servers manage under-test apps, test

tasks, and crowdsourced testers, assign test tasks to

crowdsourced testers, collect test results, and generate test

bills.

Mobile app servers communicate with mobile apps on

mobile devices through wireless networks, and provide

information and services for mobile apps.

III. CROWDSOURCED TEST FRAMEWORK

Crowdsourced test server provides test services using

crowdsourced test approaches. As shown in Figure 2 below,

we present a recommended framework for Crowdsourced

test server, which includes a set of management services, a

set of test services, and mobile test device cloud.

716

Figure 2. Recommend architecture for crowdsourced test framework

There are seven management services: crowdsourced

test task manager, crowdsourced tester manager,

crowdsourced customer manager, crowdsourced test process

manager, crowdsourced trust manager, crowdsourced test

resource manager and crowdsourced test bill manager.

Crowdsourced test server provides various types of

crowdsourced test services, including function testing,

usability testing, performance testing, security testing,

location testing, and compatibility testing. There are also

three supporting services, including test results analyzer, test

context collector, and test reporter.

Mobile test device cloud provides test resources for

crowdsourced test services. Crowdsourced mobile testers

can use test devices in cloud to perform test tasks.

IV. WORK FLOW

Tthe main steps of crowd-based mobile application
testing are: crowdsourced tester management, crowdsourced
customer management.

A. Crowdsourced Tester Management Process

As shown in Figure 3, there are five core steps for

crowdsourced mobile tester management.

Figure 3. Core steps for crowdsourced mobile tester management

Step 1, crowdsourced mobile tester register. Testers

submit basic personal information and test experiences, and

apply to be crowdsourced mobile testers.

Step 2, approve crowdsourced mobile tester.

Crowdsourced test server investigates information about

crowdsourced mobile testers, and approves or denies the

applications.

Step 3, certify crowdsourced mobile tester.

Crowdsourced test server evaluates the abilities of

crowdsourced mobile testers, and then certifies the levels for

testers. The levels of testers will affect their payments.

Step 4, educate crowdsourced mobile tester.

Crowdsourced test server provides training courses for

crowdsourced mobile testers to improve their test skills.

After they have finished the training courses, crowdsourced

mobile testers can apply for certifying higher levels.

Step 5, trust evaluation for crowdsourced mobile tester.

Trustworthiness of crowdsourced mobile testers will be

evaluated by checking dishonesty in test results.

B. Crowdsourced Test customer management process

Crowdsourced test customer management include three
core activities:

Step 1, crowdsourced test customer application.
Customers submit basic personal or corporate information,
and apply to be crowdsourced test customers.

Step 2, crowdsourced test customer approving.
Crowdsourced test server investigates information about
crowdsourced test customers, and approves or denies the
applications.

Step 3, trust evaluation for crowdsourced test customer.
Trustworthiness of crowdsourced test customer will be
evaluated by checking if he is paying for crowdsourced
mobile testers honestly.

V. CONCLUSION

The infrastructure, framework, work flow of

crowdsourcing for mobile applications are explained in this

paper.As there are more constructions and deployments of

mobile apps on devices, more research on key technology of

crowdsourced testing should be given.

ACKNOWLEDGMENT

REFERENCES

[1] Ke Mao, Licia Capra, Mark Harman, Yue Jia, “A survey of the use of

crowdsourcing in software engineering.” The journal of systems and
software,vol.126, pp.57-84. May 2016.K. Elissa, “Title of paper if
known,” unpublished.

[2] Doan A, Ramakrishnan R, Halevy A Y, “Crowdsourcing systems on
the word-wide web.” Communications of the ACM,vol.54, pp.86-96,
February 2011.

[3] Zhao Y, Zhu Q, “Evaluation on crowdsourcing research: Current status
and future direction.” Information Systems Frontiers, vol.16, pp.417-434,
October 2014.

[4] Jerry Gao, X. Bai, W. T. Tsai, and T. Uehara, “Mobile application
testing: a tutorial”, IEEE Computer, vol.47(2), pp.26-35, April 2014.

[5] .Kirubakaran, B., and Karthikeyani, V., "Mobile application testing —
Challenges and solution approach through automation,"In: Proceedings
of the 2013 International Conference on Pattern Recognition,
Informatics and Mobile Engineering (PRIME). 2013, pp.79-84.

717

Mobile App Development Using Software Design Patterns
Nicole Barakat, Doan Nguyen

California State University, Sacramento 95819

10.18293/SEKE2018-324

I. Introduction

Computer Science (CSC) 133 course is an Object-Oriented

Computer Graphics Programming class offered at California

State University, Sacramento. This poster paper describes a

class project utilized in Spring 2018. The course materials

where this assignment was based from the pedagogical

study [2] that redesigned CSC 133 by utilizing

CodenameOne (CN1) [1], a cross-platform mobile

application development environment, to teach topics of

this course that originally utilized Java Standard Edition and

desktop application development. With the purpose of

incorporating mobile application development experience

to the existing course, this pedagogical study updated the

course content and modified the original course materials

[3] (e.g., slides, projects, and code samples) developed

mainly by colleagues who previously taught CSC 133. The

specification and design of this class project in Spring 2018

(i.e., Asteroid game) are also originated from the original

CSC 133 course materials. The work here converted the

Asteroid game from Java into CN1 by using the converted

project (Race Car game) from [2] as its model. The most

challenging aspect was to find the proper components in

CN1 which can perform the comparable functions and at the

same time preserving the core design of the system [3].

As inferred by the class title, this class focuses on the

fundamental concepts of the object-oriented (OO)

paradigm, introduction to Computer Graphics, as well as

Mobile App Development. The object-oriented paradigm

encompasses many pertinent topics such as: polymorphism,

inheritance, encapsulation, and abstraction. These concepts

are supported through formalisms such as UML diagrams

and software design patterns. Emphasis is put on

implementing event-driven systems through the study of

computer graphics.

These concepts are all tied together through the

construction of an enticing cross-platform mobile

application. CN1 is the mobile app development

environment tool chosen due to its Java focus and cross-

platform capabilities. The Java programming language

works exceptionally well for the purpose of this course,

being that it is an object-oriented, ubiquitous, and versatile

language. Many applications are limited to Android/IOS,

which makes this deployment even more salable and overall

appealing. Throughout the semester, the students are

taught how to develop a mobile application given the

knowledge of efficient structuring principles and tools.

Incentive for hard work is encouraged by the semester end

goal, the creation of an “Asteroid Game.” This paper is

organized into three parts. The first part describes the

design aspects of the application. The second part highlights

the testing areas. The paper ends with remarked conclusion

and future work.

II. Design

A specification is given for the assignment [2,3],

requirements are analyzed, then a UML class diagram is

created. This diagram gives an excellent visualization of the

organization and basic structure needed. It shows many of

the important relationships and concepts needed to

structure and execute an effective system. The underlying

structure of this application is largely inspired by, and

incorporates, many software design patterns including an

emphasis on the Model View Controller (MVC) architecture.

The MVC architecture allows for the organization and

compartmentalization of code into three main modules,

which in turn largely contributes to scalability and

maintainability. In the context of this course, an interactive

game application is created with the following modules: the

Game class is the user’s “controller”, the GameWorld class

is the “model” that holds the majority of the complex data

which is accessed and manipulated by the controller, and

the PointsView and MapView are the views through which

the game state may be conveyed to the user. Figure 1

shows a condensed UML class diagram of the overall system

architecture.

Figure 1. Condensed UML of the game’s overall architecture

This application is further coordinated using various

creational, structural, and behavioral design patterns such

as the Proxy, Composite, Command, and

Observer/Observable patterns.

718

Proxy Design Pattern: The Proxy structural pattern is used

as a protection proxy to protect the game’s state by

prohibiting the views from modifying the game world. This

structure defines an interface which strictly specifies what

methods and actions a client program may perform. For

example, IGameWorld contains the restricted methods

which will be implemented by both the real GameWorld

class, as well as the GameWorldProxy class.

Composite Design Pattern: The objects of the “Asteroid

Game” are organized in a hierarchical manner: a

GameObject can be a FixedObject or a MoveableObject, a

MoveableObject can then be further divided into: Ship,

Asteroid, FlyingSaucer, or Missile. As can be seen, some

objects, such as MoveableObject are groups of other

objects. Additionally, these moveable objects, which are all

moveable, are treated uniformly through inheritance and

implementation of an IMoveable interface.

Command Design Pattern: A user has a multitude of

commands available upon beginning the game.

Maintenance of state information of each command is done

by encapsulating the various commands that the player may

invoke. The constructor of the main Game class creates

strictly one instance of each command object, and reuses

that object as needed. Despite the origin of invocation of

the command, the execution of a code block is the same.

This strategy, therefore, avoids the need for multiple copies

of code that perform the same task.

Observer/Observable Design Pattern: The MapView and

PointsView classes are registered as observers of the

observable, GameWorld. Whenever any changes are made

that would affect the state of the views, GameWorld

notifies its observers of updates. This relationship allows for

proper coordination and communication between

participating classes when changes occur.

Animation, Objects Interaction, Sound

A system timer’s tick function is generated. For each tick, an

object movement is computed using its current positions,

headings, and speeds. Collisions are detected and handled

polymorphically through the use of an ICollider interface

containing collidesWith and handleCollision methods which

are implemented by all objects that have the capability of

colliding. The collidesWith method checks whether or not

two given objects are colliding or not by using either a 2D

bounding circle. If a collision is confirmed, it must be

handled appropriately in the handleCollision method; for an

example, if a missile hits an asteroid, both objects must be

deleted from the world and the user score increases.

III. Testing:

The verification and validation of this program is done using

the test cases derived from the system specification [2,3].

We are focusing on black box testing. Additionally, a few

model based models were also using to verify different

stages of the game. For an example a sequence of the

following actions: pressing pause, turning off sound, and

pressing play, should yield a result of the sound not coming

back on. A sample of Asteroid Game GUI is shown in Figure

2.

Figure 2. A sample of the Asteroid Game running under a CN1 simulator.

IV. Conclusion:

A project such as this, provides invaluable knowledge and

skills to participating students, consequently building them

up for future success. The production of a game showcases

a rich understanding of vital concepts needed for being

prosperous in the Computer Science field. No matter what

area of expertise one pursues, the lessons learned in a class

like this aids in a stronger resume, larger repertoire, and

well-rounded abilities.

References

[1] CodenameOne Guide: Build Cross Platform Apps using

Java, http://codenameone.com/manual/index.html,

Accessed May 2018.

[2] Pinar Muyan-Ozcelik, A Hands-on Cross-Platform Mobile

Programming Approach to Teaching OOP Concepts and

Design Pattern, In Proceedings of Software Engineering

Curricula for Millennials (SECM) Workshop at ACM/IEEE

39th International Conference on Software Engineering

(ICSE), May 20-28, 2017, Buenos Aires, Argentina, doi:

10.1109/SECM.2017.12.

[3] J. Clevenger and S. Gordon, “CSC 133 - Object-oriented

Computer Graphics Programming Lecture Notes and

Assignments,” Spring, 2014, California State University,

Sacramento.

719

BoolMuTest: A Prototype Tool for Fault-Based
Boolean-Specification Testing

Ziyuan Wang∗ Min Yu
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China

∗Corresponding: wangziyuan@njupt.edu.cn

Abstract—In order to perform mutation testing for general-
form Boolean specifications, a prototype tool called BoolMuTest
is designed for fault-based Boolean-specification testing. There
are several function modules including generating mutants for
general-form Boolean expressions, finding all possible test cases
to kill a mutant, analyzing minimal failure-causing schemas for a
mutant, calculating mutation score for a give set of mutants, and
etc. All these functions are provided via command-line programs.

Index Terms—Software testing, Boolean-specification testing,
mutation testing, fault-based testing, prototype tool.

I. INTRODUCTION

Fault-based Boolean-specification testing is one of impor-
tant weak mutation testing techniques, since the running paths
of program are usually dependent on Boolean-specifications in
predicates. People usually pay their attention on 10 mutation
types including ASF, CCF, CDF, ENF, LNF, LRF, MLF, ORF,
SA0, and SA1 in the field of Boolean-specification testing
[1]. In order to perform mutation testing for general-form
Boolean specifications, a prototype tool called BoolMuTest is
designed. It can be utilized to generate mutants for general-
form Boolean expressions, find all possible test cases to kill a
mutant, analyze minimal failure-causing schemas for a mutant,
calculate mutation score for a give set of mutants, and etc.

II. FUNCTION MODULES

A. CreateBoolMutant

CreateBoolMutant can be utilized to generate mutants for
given general-form Boolean expressions with given mutation
types. The command format is:

CreateBoolMutant origin expr file mutant type file
mutant expr file [-disp]

Where the origin expr file is an input file including original
Boolean expressions. The mutant type file is an input file
including mutation types. The mutant expr file is output file
including mutant expressions with given mutation types. And
the [-disp] is an option parameter to print all the expressions
(include original and mutant expressions) on the screen.

An example input file including original Boolean expres-
sions is shown as follow, where there are two original Boolean
expressions. To represent Boolean expressions by plain text,
operators ∧, ∨, and ¬ are replaced by *, +, and ! separately.

a*(!b+!c)*d+e
a1*!a5+(!a2+!a3+!a1)*a4+a5

An example input file including mutation types is shown
as follow, where there are two types ASF and ENF.

ASF
ENF

The output file generated by CreateBoolMutant for above
two input files should is shown as follow.

#Original Expression File: input.txt
#Original Expression 1: a*(!b+!c)*d+e
#Mutation Type: ASF
a*!b+!c*d+e
#End Mutation Type
#Mutation Type: ENF
a*!(!b+!c)*d+e
#End Mutation Type
#End Original Expression
#Original Expression 2: a1*!a5+(!a2+!a3+!a1)*a4+a5
...

B. BoolCodeTransform

BoolCodeTransform can be utilized to translate original
Boolean expressions or mutant Boolean expressions in a given
file to C language codes. The command format And is:

BoolCodeTransform expr file code file [-mu]

If [-mu] is used, mutant expressions will be translated; other-
wise, original expressions will be translated. The expr file is an
input file that includes Boolean expressions, and the code file
is a C language header file.

By assuming the name of file that contain original ex-
pressions is “input.txt”, the C code file for original Boolean
expressions in section III.A should be:

bool input1(bool a, bool b, bool c, bool d, bool e)
{
return a&&(!b||!c)&&d||e;
}
bool input2(bool a1,bool a2,bool a3,bool a4,bool a5)
{
return a1&&!a5||(!a2||!a3||!a1)&&a4||a5;
}

And the code file for first two mutant Boolean expressions
in section III.A should be:

bool input1ASF1(bool a, bool b, bool c, bool d, bool e)
{
return a&&!b||!c&&d||e;
}
bool input1ENF1(bool a, bool b, bool c, bool d, bool e)
{
return a&&!(!b||!c)&&d||e;
}

DOI reference number: 10.18293/SEKE2018-325
720

Third-

party

compiler

Original Boolean
Expression

Mutant Boolean
Expression

CreateBoolMutant

BoolCode
Transform

RandExpressionGen

BoolCode
Transform

C File for Original
Expression

C File for Mutant
Expression

CreateProgram_AllFailTests

C File To Get All
Fail TestCases EXE File

Failed
Tests

Passed
Tests GetBoolMFS MFS

MutantCover
TestReport

(Mutant Kill Percent)

Third-party
Tests

option

Figure.1 Work process of BoolMuTest

C. CreateProgram AllFailTests

CreateProgram AllFailTests can be utilized to create a C++
program that finds all possible test cases to kill given mutants.
The command format is:

CreateProgram origin expr code file
mutant expr code file cpp program file
[-W]|[-WO]|[-L]|[-LO]

Where both origin expr code file and mutant expr code file
are input files generated by BoolCodeTransform. If [-W] or
[-WO] is used, the created C++ program could be compiled
and run in the Windows environment. If [-L] or [-LO] is used,
it could be compiled and run in the Linux environment.

The C++ program, we named as GetAllFailTests, could be
run as the following format on Windows/Linux console:

GetAllFailTests [-i]|[-b] target directory

Where the [-b] means that test cases are stored as binary string,
and [-i] means that test cases are stored as an integer. For each
mutant, all test cases that kill such a mutant are stored in an
independent file in the folder arget directory.

D. GetBoolMFS

The minimal failure-causing schemas reflect characteristic
of failed test cases [2]. GetBoolMFS can be utilized to find
minimal failure-causing schemas by comparing passed test
cases and failed test cases. The command format is:

GetBoolMFS expr common name min expr index -
max expr index test directory target directory
[{ASF | CCF | CDF | ENF | LNF | LRF | MLF |
ORF | SA0 | SA1 | VNF | VRF} [min mutant index
- max mutant index] | [min mutant index –] |
[mutant index]]*

Where expr common name is used to identify input files.
Parameters min expr index and max expr index indicate
the range of index of original expressions. Parameters
test directory and target directory indicate folders that
store failed test cases and final results. And parameters
min mutant index and max mutant index indicate range of
index of mutant expressions.

E. MutantCover

In mutation testing, the mutation score is used to evaluate
quality of given test cases. MutantCover can be utilized to

evaluate percent of killed mutants in Boolean-specification
testing. The command format is:

MutantCover origin expr name mutant type
all fail tests dir input tests file

Where parameter origin expr name and mutant type are used
to indicate mutations. The folder all fail tests dir store files
that contain all failed test cases for each mutant. Test cases
under evaluation are stored in input tests file.

F. RandExpressionGen

There is a program called RandExpressionGen to generate
Boolean expressions randomly according to given configura-
tions. The usage of RandExpressionGen is omitted here since
the limitation of the length of pages.

III. CONCLUSION

The work process of BoolMuTest, which is a prototype tool
for fault-based Boolean-specification testing, could be found in
Figure 1. The BoolMuTest, which provides six command-line
programs, supported many previous experimental studies in
the field of fault-based Boolean-specification testing [3][4][5].
There should be some future works of making the tool user
friendly by design graphic user interface. The current version
could be found in https://github.com/princeyuan/BoolTest/.

ACKNOWLEDGMENT

This work is supported by the National Nature Science
Foundation of China (61772259).

REFERENCES

[1] Z. Chen, T. Y. Chen, B. Xu. A Revisit of Fault Class Hierarchies
in General Boolean Specifications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2011, 20(3): 13.

[2] C. Nie, H. Leung. The Minimal Failure-causing Schema of Combinatorial
Testing. ACM Transactions on Software Engineering and Methodology
(TOSEM), 2011, 20(4): 15.

[3] Ziyuan Wang, Yuanchao Qi. Why Combinatorial Testing Works: Ana-
lyzing Minimal Failure-Causing Schemas in Logic Expressions. 2015
IEEE 8th International Conference on Software Testing, Verification
and Validation Workshops (ICSTW2015): 4th International Workshop
on Combinatorial Testing (IWCT2015).

[4] Chunrong Fang, Zhenyu Chen, Baowen Xu. Comparing Logic Coverage
Criteria on Test Case Prioritization. Science China Information Science,
2012, 55(12): 2826-2840.

[5] Min Yu, Ziyuan Wang, Yuanchao Qi, Feiyan She, Weifeng Zhang.
A Revisit of Fault-Detecting Probability of Combinatorial Testing for
Boolean-Specifications. 30th International Conference on Software En-
gineering and Knowledge Engineering (SEKE2018).

721

SEKE2018 Author Index

Author Index

Abuaiadah, Diab 368
Acco Tives Leão, Heloise 502
Acuña, Silvia T. 182
Affonso, Frank 286
Aguiar, Rui 276
Akram, Junaid 354
Alam, Dewan Mohammad Moksedul 397
Albuquerque, Regina 560
Almeida, Hyggo 40, 149, 474, 496
Angeles, Maria Del Pilar 225
Antonelli, Leandro 524
Anugu, Apoorva 714
Aqlan, Faisal 714
Arshad, Rehman 572
Assunção, Joaquim 364

Badri, Mourad 653
Bakhti, Khadidja 131
Barakat, Nicole 718
Baset, Selena Sohaila 29
Benferhat, Salem 64
Bennin, Kwabena 368
Bhushan, Bharat 256
Bi, Zhongqin 11
Bischoff, Vincius 304
Bischoff, Vinicius 326, 372
Blanc, Xavier 518
Bosu, Michael 368
Bouraoui, Zied 64
Busch, Kiana 104

Caetano, Josemar 445
Caires, Vivyane 506
Calegari, Daniel 330
Campos, Ursula 298
Cao, Gaofeng 50
Cao, Min 7
Carreiro Da Silva, Bruno 304, 372
Castro, John W. 182
Chang, Shikuo 622
Chanin, Rafael 704
Chen, Hui 56
Chen, Rong 703
Chen, Xiao Hong 292

A-1

SEKE2018 Author Index

Chen, Yuxin 1
Cheng, Can 193
Chondamrongkul, Nacha 23
Chu, William 397
Chunhua, Li 427
Clancy, Kadie 622
Conte, Tayana 68, 298, 376, 451
Costa, Alexandre 474
Cristo, Marco 68
Cunha, Francisco 221

D’Ornelas Filipakis Souza, Cristina 502
Da Costa, Arthur Fortes 697
Da Silva, Raissa 40
de Lima Silva, Lúıs Alvaro 74
de Oliveira Cardoso, Maxwell 34
de Souza, Clarisse 298
Delahaye, David 199
Delgado, Andrea 330
Deng, Lin 542
Di, Zhang 165
Dias Canedo, Edna 34
Dilorenzo, Ednaldo 496
Do, Thanh-Nghi 64
Dong, Wei 604
Dong, Zhijiang 456
Dorneles Soares, Heder 215
Du, De Hui 292
Du, Dongdong 263
Du, Qingfeng 175
Duan, Yucong 46
Durao, Frederico 697

Escalante Ramı́rez, Boris 225
Exman, Iaakov 110, 122

Fakhfakh, Faten 348
Fan, Yuyou 50
Fang, Yucheng 342
Far, Behrouz 360
Farias, Kleinner 304, 326, 372
Farias, Mário 681
Fei, Yuan 169, 659
Fernandes, Paulo 364
Figueiredo, Eduardo 314
Filho, Emanuel Dantas 496
Fontoura, Lisandra 161
Freire, Arthur 40, 474

A-2

SEKE2018 Author Index

Fu, Yujian 456
Fuchs, Andreas 647

Galdino, Sérgio 710
Gao, Honghao 7
Gao, Jerry 256
Gao, Qing 263
Garćıa, Félix 330
Ge, Ning 512, 518
Giachetti, Giovanni 116
Gonçales, Lucian 304, 326, 372
Gorgônio, Kyller 40
Guimarães, Everton 304, 372
Guimarães, Gleyser 40
Guo, Junxia 548
Guo, Shikai 703
Guo, Yao 665
Guo, Yi 80

Hackney, William 409
Hadj Kacem, Ahmed 348
Hanakawa, Noriko 687
Harush, Avihu 122
He, Hui 137
He, Xudong 397, 456
He, Yu 175
Heinrich, Robert 104, 336
Heitor Bordini, Rafael 74
Hendijani Fard, Fatemeh 360
Higashi, Kazuyuki 125
Holvitie, Johannes 506
Hong, Zhong 381
Hou, Fu 236, 282
Hu, Vincent 586
Huai, Beibei 320
Huang, Congyu 1
Huchard, Marianne 199

Ibarguengoitia González, Guadalupe 225
Ieti, Michael 246
Ishii, Nobukazu 641

Jang, Dongsoo 155
Jia, Weixi 604
Jiang, Hao 17
Jiang, Jianmin 381
Jiang, Jing 512
Jin, Hai 616

A-3

SEKE2018 Author Index

Jin, Peiquan 230

Kacker, Raghu 586
Kagdi, Huzefa 598
Kais, Ben Salah 530
Kassarnig, Valentin 629
Khaled, Ghedira 530
Khan, Mohammed Salman 486
Kishi, Tomoji 675
Kolp, Manuel 468
Kuang, Li 50
Kuhn, Rick 586
Kumar, Lov 421

Larenas, Felipe 116
Lau, Kung-Kiu 572
Le Borgne, Alexandre 199
Lehmbecker, Turner 188
Lei, Jeff 586
Leppänen, Ville 506
Li, Bing 165, 193
Li, Chunlei 1
Li, Gaofeng 616
Li, Haoming 480
Li, Jiechu 175
Li, Qingshan 707
Li, Shenzhi 604
Li, Tao 610
Li, Wenbo 320
Li, Wenrui 256
Li, Xiao 566
Li, Yanhui 415
Li, Ying 56
Li, Youhuizi 7
Li, Zengyang 165, 193
Li, Zheng 548
Li, Zhixing 143
Liang, Bin 433
Liang, Peng 165, 193
Lima, Crescencio 681
Lin, Lan 635
Lin, Li 671
Lin, Yishuai 707
Lin, Yiwei 578
Litvak, Claudia 524
Liu, Chiyu 610
Liu, Jinze 143
Liu, Kaixin 86

A-4

SEKE2018 Author Index

Liu, Lifei 598
Liu, Peini 236, 282
Liu, Yan 578
Liu, Zhe 209
Liu, Zheng 610
Llerena, Lucrecia 182
Longo, Douglas Hiura 592
Lopes Leite, Leticia 34
Lopes, Adriana 298
Lu, Yuteng 270
Lucena, Carlos 203, 221
Luo, Ping 354
Lyu, Mengyuan 230

M Sunil, Jinu 421
Ma, Truong-Thanh 64
Malucelli, Andreia 560
Man, Wu 427
Manica, Mateus 304
Manoel, Fabian 242
Manzato, Marcelo 697
Manzoni Fontoura, Lisandra 74
Mao, Xinjun 209, 236, 282
Mao, Xinya 671
Marijan, Dusica 536
Marques, Anna Beatriz 376
Marques, Leonardo 451
Marques-Neto, Humberto 314
Martinuzzi De Lima, Renata 161
Martoglia, Riccardo 98
Maŕın, Beatriz 116
Massitela, Ildo 364
Meireles, André 40
Mendonça, Manoel 462, 506, 681
Mensah, Solomon 368
Morales Trujillo, Miguel Ehécatl 225

Mortágua Pereira, Óscar 276
Mosbah, Mohamed 348
Moura Costa, Antonio Alexandre 149
Mumtaz, Majid 354
Máximo, Eduardo 492

Nakagawa, Hiroyuki 125, 641
Nakamura, Walter 451
Nascimento, Nicolas 704
Nawaz, M. Saqib 391
Neti, Lalita Bhanu Murthy 421
Neumann, Milena 104

A-5

SEKE2018 Author Index

Nguyen Huynh Anh, Vu 468
Nguyen, Doan 718
Nguyen, Huu-Hoa 64
Ni, Jian 671
Niu, Zhendong 131
Nogle, Jacob 372
Nwokeji, Joshua 714
Nyamawe, Ally 131

Obana, Masaki 687
Offutt, Jeff 542
Oktaba, Hanna 225
Olagunju, Ayodele 714
Oliveira, Edson 68
Oliveira, Johnatan 314, 445
Oshima, Naito 675

Pantoja, Carlos 215, 242
Paranhos, Ricardo 710
Parente Da Costa, Ruyther 34
Passini, William 286
Passos, Amanda 681
Pathirage, Don 155
Peng, Shuai 188
Pereira Aranha, Dandara 34
Perkusich, Angelo 40, 149, 474, 496
Perkusich, Mirko 40, 149, 474, 496
Pinheiro, Vladia 492
Pompermaier, Leandro 704
Prikladnicki, Rafael 704

Qi, Tianmei 80
Qi, Yong 137
Qi, Yuanchao 711
Qian, Ju 582
Queiroz, Randerson 376

Raghunathan, Janani 598
Ramos, Felipe 149, 474
Rao, Qifan 137
Rechia Machado, Nielsen Luiz 74
Reddivari, Sandeep 409, 486
Regateiro, Diogo 276
Reinehr, Sheila 560
Rios, Nicolli 462, 506
Rivero, Luis 451
Rodŕıguez, Nancy 182
Rohella, Anshuman 308

A-6

SEKE2018 Author Index

Rosemberg, Marcio 221
Rossi, Gustavo 524
Rouahi, Aouatef 530

Sales, Afonso 704
Santos, Alan 364, 704
Santos, Danilo 496
Santos, José Amâncio 462
Santos, Mateus 314, 445
Santos, Welligton 710
Sastre, Jefry 203
Seghrouchni, Amal El Fallah 215
Sen, Sagar 536
Shanly, Catherine 246
She, Feiyan 711
Shi, Kun 175
Shi, Zhendong 354
Shin, Michael 155
Shrestha, Roshan 188
Sirqueira, Tassio 221
Siyao, Wang 92
Sizhe, Ye 427
Slama, Anja 360
Song, Fengguang 635
Song, Zhengyang 46
Souza Cabral, Bruno 697
Souza de Jesus, Vinicius 242
Spinola, Rodrigo 462, 506, 681
Stoffel, Kilian 29
Sun, Caihong 439
Sun, Jing 23, 60, 246
Sun, Linjie 548
Sun, Meng 270, 385, 391
Sun, Xiaobing 46
Sun, Xin 635

T. Marques-Neto, Humberto 445
Tabia, Karim 64
Takada, Shingo 308
Tian, Bing 86
Tounsi, Mohamed 348
Toure, Fadel 653
Tsuchiya, Tatsuhiro 125, 641

Urtado, Christelle 199

Valentim, Natasha 68, 451
Vauttier, Sylvain 199

A-7

SEKE2018 Author Index

Viana, Marx 203, 221
Viggiato, Markos 314
Vilain, Patŕıcia 592
Virgulino Ribeiro, Tayse 502
Viterbo, José 215, 242
von Hof, Vincent 647

Wan, Shouhong 230
Wang, Chuanqi 415
Wang, Hao 433
Wang, Haoyu 665
Wang, Huaimin 566
Wang, Huiwen 169, 342, 659
Wang, Kenian 716
Wang, Long 582
Wang, Meijia 707
Wang, Meiling 320
Wang, Ran 665
Wang, Tao 143, 566
Wang, Weiwei 548
Wang, Xin 175
Wang, Yan 292
Wang, Yi 60
Wang, Zhihong 80
Wang, Zhuangzhuang 691
Wang, Ziyuan 480, 711, 720
Warren, Ian 23, 246
Wautelet, Yves 468
Wei, Bingyang 60
Wei, Miaomiao 703
Wen, Junye 554
Winograd, Yakir 122
Wotawa, Franz 629
Wu, Qiansheng 320

Xi, Meng 17, 56
Xia, Bin 610
Xiangyu, Xi 263
Xiao, Lili 169
Xie, Wenguang 716
Xing, Chunxiao 86, 250
Xu, Baowen 415, 433
Xu, Dianxiang 188
Xu, Guoai 665
Xu, Jie 250
Xu, Jincheng 175
Xu, Luhang 604
Xu, Rongfei 512, 518

A-8

SEKE2018 Author Index

Xue, Yufeng 635

Yaga, Dylan 586
Yan, Jinpei 137
Yang, Chen 578
Yang, Guowei 554
Yang, Qing 11
Yang, Shuo 209
Yang, Xiaoxian 46
Yao, Xianhe 11
Yendluri, Akhil 622
Yin, Gang 143
Yin, Jianwei 56
Yin, Liangze 604
Yin, Yuyu 17
Yu, Jia 578
Yu, Jie 566
Yu, Li 691
Yu, Min 711
Yu, Xiaofei 381
Yu, Yue 143
Yuan, Pingpeng 616
Yue, Lihua 230

Zeng, Lingbin 566
Zhang, Chengpeng 665
Zhang, Chuan 1
Zhang, Gefei 403
Zhang, Guigang 250
Zhang, Huan 50
Zhang, Jianbiao 671
Zhang, Jingwei 11
Zhang, Li 512, 518
Zhang, Meina 439
Zhang, Rong 17
Zhang, Shikun 263
Zhang, Shuai 236, 282
Zhang, Tao 480
Zhang, Tong 263
Zhang, Xiaofang 433
Zhang, Xinyue 46
Zhang, Xiyue 385
Zhang, Xunhui 566
Zhang, Yong 86, 250
Zhang, Zhou 230
Zhang, Zijian 1
Zhao, Guoliang 263
Zhao, Jianjun 403

A-9

SEKE2018 Author Index

Zhao, Ruilian 548
Zhao, Wen 263
Zhong, Wen 292
Zhongwang, Fu 427
Zhou, JinPeng 622
Zhou, Qian 433
Zhou, Sijing 7
Zhou, Xiaoyu 582
Zhu, Huibiao 169, 342, 659
Zhu, Liehuang 1
Ziyi, Ma 427
Zou, Quan 46
Zuo, Meiyun 439

A-10

SEKE2018 Program Committee

Program Committee

Silvia T. Acuña Universidad Autonoma de Madrid
Shadi Alawneh Oakland University
Taisira Albalushi Sultan Qaboos University
Mark Allison University of Michigan-Flint
Vaibhav Anu North Dakota State University
John Anvik Department of Mathematics and Computer Science, Univer-

sity of Lethbridge
Doo-Hwan Bae Korea Advanced Institute of Science and Technology
Hamid Bagheri University of California, Irvine
Xiaoying Bai Tsinghua University
Ellen Barbosa ICMC/USP
Fevzi Belli Univ. Paderborn
Ateet Bhalla Independent Consultant, India
Alessandro Bianchi Department of Informatics - University of Bari
Guoray Cai The Pennsylvania State University
Keith C.C. Chan The Hong Kong Polytechnic University
Chih-Hung Chang College of Computing and Informatics, Providence University
Lily Chang University of Wisconsin, Platteville
Rong Chang IBM
Shikuo Chang Uinversity of Pittsburgh
Wen-Hui Chen National Taipei University of Technology
Kim-Kwang Raymond Choo The University of Texas at San Antonio, USA
William Chu Department of Computer Science and Information Engineer-

ing, TungHai University
Stelvio Cimato University of Milan
Fabio Costa Federal University of Goias
Jose Luis de La Vara Carlos III University of Madrid
Peng Di The University of New South Wales
Zhijiang Dong Middle Tennessee State University
Weichang Du University of New Brunswick
Christof Ebert Vector
Ali Ebnenasir Michigan Technological University
Magdalini Eirinaki Computer Engineering Dept, San Jose State University
Omar El Ariss Texas A&M University-Commerce
Abdelrahman Elfaki University of Tabuk
Ruby Elkharboutly Quinnipiac Univesity
Iaakov Exman JCE - The Jerusalem College of Engineering - Azrieli
Behrouz Far University of Calgary
Liana Fong IBM T. J. Watson Research
Honghao Gao Shanghai University
Kehan Gao Eastern Connecticut State University
Kun Gao zhejiang business technology institute
Ignacio Garćıa University of Castilla-La Mancha
Raúl Garćıa-Castro Universidad Politécnica de Madrid
Swapna Gokhale Univ. of Connecticut
Wolfgang Golubski Westsächsische Hochschule Zwickau

A-11

SEKE2018 Program Committee

Anurag Goswami Bennett University
Des Greer Queen’s University Belfast
Christiane Gresse von Wangen-
heim

Federal University of Santa Catarina - UFSC

Katarina Grolinger University of Western Ontario
Hao Han The University of Tokyo
Xudong He Florida International University
Rubing Huang Jiangsu University
Shihong Huang Florida Atlantic University
Bassey Isong University of Venda
Clinton Jeffery University of Idaho
Jason Jung Chung-Ang University
Pankaj Kamthan Concordia University
Ananya Kanjilal Department of CSE, B.P.Poddar Institute of Management &

Technology, Kolkata-52
Ajay Kattepur TCS
Taghi Khoshgoftaar Florida Atlantic University
Jun Kong North Dakota State University
Aneesh Krishna Curtin University, Australia
Li Kuang Central South University
Vinay Kulkarni Tata Consultancy Services Research
Olivier Le Goaer LIUPPA, Université de Pau et des Pays de l’Adour
Meira Levy Shenkar Engineering, Design, Art
Bixin Li SOUTHEAST UNIVERSITY
Yuan-Fang Li Monash University
Zhi Li College of Computer Science and Information Technology,

Guangxi Normal University
Jianhua Lin Eastern Connecticut State University
Lan Lin Department of Computer Science, Ball State University
Shih-Hsi Liu California State University, Fresno
Ting Liu Xi’an Jiaotong University
Xiaodong Liu Edinburgh Napier University
Luanna Lopes Lobato Universidade Federal de Pernambuco - UFPE
Baojun Ma School of Economics and Management, Beijing University of

Posts and Telecommunications
Ivan Machado UFBA - Federal University of Bahia
Marcelo Maia UFU
Riccardo Martoglia FIM - University of Modena
Beatriz Maŕın Universidad Diego Portales
Santiago Matalonga University of the West of Scotlannd
Andre Menolli Universidade Estadual do Norte do Paraná - UENP
Ali Mili NJIT
Alok Mishra Atilim University, Incek 06836, Ankara - Turkey

Óscar Mortágua Pereira University of Aveiro
Hiroyuki Nakagawa Osaka University
Nanjangud Narendra Ericsson Research
Alex Norta Department of Informatics, Tallinn University of Technology
Amjad Nusayr UHV

A-12

SEKE2018 Program Committee

Edson Oliveirajr State University of Maringá
Angelo Perkusich Electrical Engineering Department, Federal University of

Campina Grande
Antonio Piccinno University of Bari
Alfonso Pierantonio University of L’Aquila
Rick Rabiser Christian Doppler Lab. MEVSS, Johannes Kepler University

Linz
Claudia Raibulet University of Milano-Bicocca
Damith Rajapakse National University of Singapore
Rajeev Raje IUPUI
Henrique Rebêlo Federal University of Pernambuco - UFPE
Marek Reformat University of Alberta
Stephan Reiff-Marganiec Department of Computer Science, University of Leicester
Hassan Reza University of North Dakota
Ivan Rodero Rutgers University
Daniel Rodriguez The University of Alcalá
Samira Sadaoui University of Regina
Seyed Masoud Sadjadi Florida International University
Claudio Sant’Anna Federal University of Bahia
Klaus-Dieter Schewe Software Competence Center Hagenberg
Abdelhak Seriai Lirmm/université Montpellier 2
Michael Shin Texas Tech University
Martin Solari Universidad ORT Uruguay
George Spanoudakis Department of Computer Science, City University
Vijayan Sugumaran School of Business Administration, Oakland University,

Rochester, MI 48309, USA
Jing Sun The University of Auckland
Meng Sun Peking University
Yanchun Sun Peking University
Gerson Sunyé Université de Nantes
Kumiko Tadano NEC Corporation
Chuanqi Tao Nanjing University of Aeronautics and Astronautics
Joe Tekli Lebanese American University
Mark Trakhtenbrot Holon Institute of Technology
Burak Turhan Brunel University
Christelle Urtado LGI2P - Ecole des Mines d’Alès
Sylvain Vauttier LG2IP / Ecole des Mines d’Alès
Gennaro Vessio University of Bari
Sergiy Vilkomir East Carolina University
Arndt Vonstaa PUC-Rio
Huanjing Wang Western Kentucky University
Xiaoyin Wang University of Texas at San Antonio
Ye Wang Zhejiang Gongshang University
Yong Wang Texas A&M University
Zhongjie Wang Harbin Institute of Technology
Ziyuan Wang Nanjing University of Posts and Telecommunications
Hironori Washizaki Waseda University
Bingyang Wei Midwestern State University

A-13

SEKE2018 Program Committee

Xiao Wei Shanghai University
Guido Wirtz University of Bamberg
Franz Wotawa Technische Universitaet Graz
Peng Wu State Key Laboratory of Computer Science, Institute of Soft-

ware, Chinese Academy of Sciences
Qing Wu College of Computer Science and Technology, Hangzhou Di-

anzi University
Dianxiang Xu Boise State University
Haiping Xu University of Massachusetts Dartmouth
Lai Xu Bournemouth University
Weifeng Xu Bowie State University
Guowei Yang Texas State University
Hongji Yang Bath Spa University
Yuyu Yin HDU
Huiqun Yu East China University of Science and Technology
Du Zhang California State University
Pengcheng Zhang College of Computer and Information,Hohai University
Shunxiang Zhang Anhui University of Science & Technology
Yong Zhang Tsinghua University
Zhenyu Zhang State Key Laboratory of Computer Science, Institute of Soft-

ware, Chinese Academy of Sciences
Xu Zheng Shanghai University
Zhigao Zheng HUST
Nianjun Zhou IBM
Hong Zhu Oxford Brookes University
Huibiao Zhu East China Normal University
Xingquan Zhu Florida Atlantic University
Eugenio Zimeo University of Sannio

A-14

SEKE2018 Additional Reviewers

Additional Reviewers

Alharbi, Mohammed
Allian, Ana Paula

Baek, Youngmin
Barat, Souvik
Basciani, Francesco
Bauder, Richard
Bublitz, Frederico

Carbonnel, Jessie
Cassano, Fabio
Castro, John W.
Cheng, Yuxia

de Andrade, Paulo Roberto Martins
de Groof, Richard
Deval, Vipin
Di Rocco, Juri
Dı́az-Vico, David

Elkharboutly, Ruby

Fioravanti, Maria Lydia

Gallege, Lahiru
Ge, Ruiquan
Ghosh, Aritra

Kane, Shridhar
Kang, Taeghyun

Le Borgne, Alexandre
Li, Yi
Li, Zijie
Liu, Yuzhen

Magües, Daniel A.
Malhotra, Ruchika
Marcolino, Anderson
Mujumdar, Anusha

Pandey, Saurabh
Perkusich, Mirko

A-15

SEKE2018 Additional Reviewers

Qayumi, Karima

Reza, Hassan
Richter, Aaron
Rocca, Ignacio
Russo, Juan Pablo

Saay, Salim
Sunkle, Sagar

Tibermacine, Chouki

Umuhoza, Eric

Villalobos, J. J.

Wen, Junye
Wu, Xundong

Yan, Jun
Yan, Rongjie

Zhang, Donghong
Zhang, Long
Zhang, Xiyue

A-16

	. Introduction
	. Planning and Estimating Software Projects
	Planning and Estimating Agile Software Projects
	Planning Poker
	Ideal Day

	Systematic Literature Review
	Study Selection Criteria
	Results

	. Conclusions and Future Work
	I.INTRODUCTION
	II.PRIVACY PROTECTION ARCHITECTURE
	A.Definitions of Typed Resources
	B.Schemas for using DIKW Graphs
	C.Privacy Protection Architecture

	III.RUNNING EXAMPLE
	A.Protection strategies of LSI
	1)Protection of linked IDIK without branched structu
	2)Protection of linked IDIK with branched structure

	B.Protection strategies of ASI
	1)Protection of aggregative nodes with equal value
	2)Protection of aggregation nodes with unequal node

	IV.FRAMEWORK OF VALUE DRIVEN PRIVACY PROVISION
	A.Calculation of User Investment
	1)Cost of damaging nodes:We assign that 1C is atomic
	2)Cost of transforming TRPC into SS : SS is a securi
	3)User investment computaion

	B.Privacy Level Computation

	V.SIMULATION
	VI.CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	Introduction
	The UML Ontology
	UML Class Diagram in OWL
	UML Sequence Diagram in OWL
	UML State Diagram in OWL
	Querying UML Models Using SPARQL
	Related Work and Discussion
	Conclusion
	References
	Introduction
	Overview and Related Works
	Vietnamese Traditional Dance Overview
	Related Works

	VTD Expert Knowledge
	Expert Knowledge Congregation
	Non-story dances - (dư-hứng)
	Bare-handed dances
	Historical dances
	Dances regarding traditional manual labor
	Dances in festival and daily life

	Structure of Vietnamese Traditional Dances

	Conclusion and Future Works
	Acknowledgements
	REFERENCES
	Introduction
	Related Work
	Automatic Keywords Extraction from Chinese Patents
	Overview of the Framework
	Domain Dictionary Cunstruction
	Sentence-Ranking based Keywords Extraction Model
	Sentence Embedding
	Multi-feature Fusion based Sentence-Ranking Model
	Sentence-Ranking based Keywords Extraction Algorithm

	Performance Evaluation
	Datasets and Metrics
	Parameters Selection
	Keywords Extraction Results and Discussion

	Conclusions
	References
	Introduction
	Related Work
	Framework Architecture
	Clinical Entity Recognition
	Features
	CRF-based Model

	Relation Extraction
	CNN-based Model Architecture

	Evaluation
	Experimental Settings
	Experimental Results on Clinical Entity Recognition
	Experimental Results on Relation extraction

	Conclusion
	 INTRODUCTION
	RELATED WORK
	PROPOSED METHOD
	Definition of Micro-Blog Heat
	Word2Vec model
	Word2Vec based on micro-blog heat
	Document Semantic Coding Based on LSTM
	Hot topic clustering
	RESULT EVALUATION
	CONCLUSION
	REFERENCES
	I. Introduction
	II. Background
	A. Multiagent Systems and Machine Learning
	B. KDD Methodologies

	III. Related Work
	A. Auto ML

	IV. Proposed Solution
	A. The Archicteture
	B. Data Model
	C. Agents Model
	D. Optimizers
	E. Details of the API

	V. User Scenario
	A. The Dataset
	B. Results

	VI. Conclusion and Future Work
	References

	Introduction
	Motivation
	Contribution
	Organization of the paper

	Algorithm for computing maximal cliques in dynamic networks : CMCDN
	The first rule: R1
	The second rule: R2
	The third rule: R3
	The fourth rule: R4
	The fifth rule: R5
	The sixth rule: R6

	Formal specification of the algorithm CMCDN using the Event-B method
	Formal specification of the contexts
	Formal specification of the machines
	Proof statistics

	Conclusion
	References
	Introduction
	Event and movement event
	The relationship of ambients
	Communication model
	Dependency structure
	Conclusion
	References
	I. Introduction
	II. Related work
	A. Hybrid Petri net Formalism
	B. Modeling and Analysis Tools

	III. Hybrid Predicate Transition Nets
	IV. Modeling Hybrid Systems
	A. Modeling Continuous Components
	1) Continuous Places
	2) Continuous Transition
	3) Dynamic Semantics

	B. Modeling Time
	C. Conflict Resolution
	1) Conflict Between Discrete and Continuous Transitions
	2) Between Continuous Transitions

	D. Analysis
	1) Evolution Graph
	2) Export of Results

	V. Case Study
	A. Bouncing ball
	B. Air Traffic Collision Avoidance

	VI. Conclusions and Future Directions
	Acknowledgement
	References
	Introduction
	Version-based Bug Lifecycle
	Linking Jira and Github
	The Studied Projects
	Definition of bug lifetime

	Prediction Methodology
	Text Feature Extraction
	Prediction Settings
	Evaluation

	Prediction Result
	Threats to Validity
	Conclusion
	References
	I. Introduction
	II. Cyber Physical System Modeling
	A. Modeling Individual Behaviors
	B. Modeling Individual Components
	C. Modeling the Whole System

	IV. Model Realization
	V. Runtime Verification
	VI. Related work
	VII. Conclusion
	Acknowledgment
	References

	INTRODUCTION
	THEORETICAL FRAMEWORK
	METHODOLOGY
	QUALI-QUANTITATIVE RESEARCH
	SCRUM ITERATION DRIVEN DEVELOPMENT
	CONCLUSION
	I. Introduction
	II. Related Work
	III. Conflicts In The Collaboratively Developed LEL Model
	A. Our Approach in a Nutshell
	B. Catalogue of Conflicts and their Solutions
	1) The same identification for elements with different meaning and the same syntactic classification (Homonym).
	2) The same identification for elements with different syntactic classification (Homonym).
	3) Different identification for elements that refer to the same concept in the same way (Synonym).
	4) Different identification for elements that refer to the same concept in different way (Overlapping).
	5) Different level of detail.
	6) Different identification for elements that refer to the same concept with complementary information (Synonym with complementary information).
	7) Descriptions duplicated in in hierarchies

	C. Preliminary Evaluation

	IV. Conclusions And Further Work
	References

	Introduction
	Motivating Example
	Approach
	Evaluation
	Artifacts
	Experiment Setup
	Results and Analysis

	Related Work
	Conclusions and Future Work
	References
	Introduction
	Research Scope
	Case Study
	Study Scope

	Exploration Process
	Observations from the Aerial View
	Feature Selection and Case Exhibition
	Discovery

	Insights from the Architectural Elements Level
	A Four-Category Classification of Front-End Components
	Findings from the Case Study
	Conclusion

	Related Work
	Conclusion and Future Work
	References
	I. Introduction
	II. Background
	A. Single-Page Application (SPA)
	B. Component-based Framework
	C. Angular

	III. Related Work
	IV. Methods
	A. Extraction of Information from Angular SPA
	B. Construction of Static Page Information
	C. Translation to the Promela Model
	D. Translation to LTL Formulas
	E. Verification by SPIN

	V. Experimental Results
	A. Experiment 1: Sample Applications
	1) Verification Model
	2) Verification without Injecting Errors
	3) Verification with Injecting Errors

	B. Experiment 2: Real Applications
	C. Discussion

	VI. Conclusion
	References

	Introduction
	Range Distances
	Range City Block Distance
	Range Euclidean Distance

	Interval-valued Clustering
	Conclusions
	References
	Introduction
	Method
	Result and Discussion
	Conclusion and Future Work
	References
	xx.pdf
	Blank Page

	Blank Page
	Blank Page

