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Chapter 1

General introduction






Climate change

Climate is unequivocally changing. In 2014, IPCC released the fifth assessment report on
climate change and stated that “the atmosphere and ocean have warmed, the amounts of snow
and ice have diminished and sea level has risen” (IPCC 2014). The main cause for this global
warming is extremely likely to be due to anthropogenic activities that are widely acknowledged
by climate specialists (Cook et al. 2013). Heat waves and extreme temperatures are expected to
be more frequent and to last longer (Meehl and Tebaldi 2004). This climate change is expected
to affect the world of today in many ways, including the extinction of species that cannot escape
their environment and a decrease in food productivity. For instance, the well documented heat
wave of 2003 in Europe led to a yield loss of 25% and 21% for maize and wheat in France,
respectively, with an overall economic loss in the European Union estimated at 13 billion euros
(IPCC 2007). The direct effect on the human population is not to be underestimated, especially
if one takes into account that the world population is predicted to rise from 7.3 billion up to 11
billion by the middle of the 21% century, thus alarming the decision-makers (Porter and
Semenov 2005). From the reduction of greenhouse gas emission with the Kyoto protocol
(Oberthur and Hermann 1999) to the recent COP21 agreement to limit the temperature increase
of 2°C (Iyer et al. 2015), policymakers mull over mitigation options. A synergy of policies and
adaptation strategies may enhance the efficacy to respond to climate change and limit the
consequences on living organisms and ecosystems. The adaption of crops is nested in the
identification of genotypes tolerant to temperature increases and in a greater understanding of
high temperature plant responses that will sustain crop production under climate change.

Plant responses to high temperatures

The physiological response to heat stress depends on how an individual experiences the rise of
temperatures. High temperatures in Central Europe might not be qualified as “high” in another
part of the globe. The response to heat stress relies on the individual level of tolerance to
withstand high temperatures. Heat stress tolerance is determined by the threshold temperature
above which deleterious effects in an individual will appear (Wahid et al. 2007). For instance,
the threshold temperature of the crop cotton is 45°C, which is 15°C higher than the one of the
crop tomato, before the appearance of negative effects (Wahid et al. 2007). Lichtenthaler 1996
introduced the stress concept in plants and reviewed the different definition given to stress. For
instance, Levitt 1980 determined stress as “any environmental factor potentially unfavourable
to living organisms” and Larcher 1987 defined stress in a way that “every organism experiences
stress, although the way in which it is expressed differs according to its level of organization”.
In line with this, the stress response aimed to adapt to the adverse condition and to reach a new
level of homeostasis, in order to survive the stress condition (Figure 1). Tolerant genotypes are
those that succeed to adapt and survive, whereas sensitive genotypes fail to do so and experience
deleterious negative effects of the stress. In this thesis, heat stress and high temperatures are
considered as temperatures above the optimal growing temperatures that lead to biological
responses. Heat stress consequences do not only depend on the extent of the temperature
increase, but also on the duration of the stress (or degree days) (Mesihovic et al. 2016). A short
heat stress of 32°C for a few hours is not experienced in the same way as a long heat stress of
the same temperature for several days. Furthermore, consequences of a heat stress may differ



depending on the developmental stage of a plant at the moment when the stress takes place. For
example, plant reproduction has been demonstrated to be extremely sensitive to high
temperatures compared to the vegetative growth phase (Zinn et al. 2010). Different plant organs
and tissues may reveal different reactions in response to a heat stress. All these factors make
the heat stress response a complex system to investigate. In our research, we used multiple
stress treatments, ranging from a short acute heat stress to long moderate heat stress on two
reproductive organs: anther and pollen.

When a crop suffers from heat stress, a number of physical symptoms can easily be seen by
eye, such as leaves rolling, senescence, discoloration, low seed germination, slower plant
growth and a decrease of yield (Wahid et al. 2007). These physical symptoms are the result of
a complex mechanism called heat stress response (HSR) that takes place once the rise in
temperature has been detected by the plant (Mittler et al. 2012). Mittler et al. 2012 reviewed
how plants react to high temperatures by first adjusting the fluidity of their cell membranes (1).
The change of membrane fluidity leads to activation of calcium channels (2). The influx of
calcium into the cell induces a strong transduction signal that leads to the production of reactive
oxygen species (ROS) and the activation of transcription factors (3). Among these transcription
factors, the well-known heat shock factors (HSFs) are found (Scharf et al. 2012). They induce
the production of heat shock proteins (HSPs), one of the key players of the HSR mechanism.
HSPs are able to re-fold denaturated proteins that appear under high temperatures and also to
prevent protein aggregation (Vierling 1991). In addition to the rapid accumulation of HSPs and
ROS, specific metabolites are known to accumulate under heat stress, such as antioxidants and
osmolytes (Wahid et al. 2007) (4). ROS are important components of the stress signalling
cascade, but they are also harmful for the cell, since they are very reactive and can induce lipid
peroxidation and membrane oxidation (Driedonks et al. 2015). Hence, the production of
antioxidants that have ROS scavenging properties are needed to maintain ROS homeostasis.
Whether or not the response to the heat stress is sufficient for the plant to survive the
unfavourable conditions depends of its tolerance threshold.

Tolerance definition

Not all plants have the ability to survive heat stress. A large variation of tolerance is found
between species, within the accessions of a species and also between the organs and tissues of
a plant. The tolerance to high temperatures is divided in two categories (i) basal tolerance and
(i) acquired tolerance (Bokszczanin et al. 2013). The basal tolerance is described as the ability
to survive high temperatures without previous acclimation; it is also considered as an
evolutionary adaptation that can be observed in some species as specific phenotypic
characteristics, such as the thickness of the leaves which controls transpiration, changing leaf
orientation and a longer root system (Bita and Gerats 2013). The acquired tolerance differs from
the basal tolerance in the sense that an increased tolerance is obtained through acclimation,
which is induced by a non-lethal stress preceding a lethal stress, or by a gradual increase of
temperatures. Surviving heat stress has been linked to the ability to maintain a high
photosynthesis activity and to accumulate specific metabolites such as proline and glycine
betaine that are known to regulate the osmolarity within the cell, and also antioxidants as
previously mentioned (Wahid et al. 2007). A proper adaptation and acclimation of the plant’s



homeostasis under high temperatures is the key to maintain plant vigour and the production of
seeded fruits. The tolerance of a plant is often considered relative to another plant. For example,
under a constant day temperature of 32°C the tomato genotype Hazera 3042 produced on
average 5.9 fruits per plant with 53% of seeded fruits (Firon et al. 2006). This is therefore
considered to be a more tolerant genotype than the genotype Hazera 3017 that produced on
average only 2.6 fruits per plant that did not contain any seeds. Nevertheless, this does not mean
that the heat stress did not lead to a reduction of fruit production in Hazera 3042 compared to
the optimal growing temperatures. Hence, the absolute qualification of tolerance would be the
ability of a plant to set fruit under high temperatures as good as it would do at optimal growing
temperatures.
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Figure 1. Heat stress response and tolerance. When a plant is exposed to high temperatures the heat stress response
(HSR) is activated and leads to an alteration of plant organization at different levels including proteins, transcripts
and metabolites. Based on the tolerance threshold of the plant, the plant can either (i) adjust its homeostasis to
overcome the environmental stresses by accumulating HSPs, and protective metabolites (e.g. antioxidants) in order
to survive or (ii) fail adjusting its homeostasis that might result in accumulation of aggregating proteins, ROS and
higher energy demand that leads to permanent negative effects including death. TFs, Transcription Factors; HSP,
Heat Shock Proteins; HSF, Heat Shock Factors; ROS, reactive oxygen species

Tomato

Tomato belongs to the Solanaceae family that encompasses several other famous crops, such
as potato, eggplant and pepper. Tomatoes are native to South America and were introduced in
Europe in the 16™ century by the Spanish conquistador Cortés on his way back from the capture
of the Aztec city, Tenochtitlan, known as Mexico City (Bergougnoux 2014). During a long
time, tomatoes were used as ornamentals and thought to be toxic, but in the 17" century they
started to appear in the European cuisine. Today, tomatoes are eaten in diverse manners from
raw, cooked, dry to highly processed paste and can easily be found in kitchen gardens. The
domesticated tomatoes found on our plate have been extensively bred for diverse traits such as
yield, shape, shelf life, pest resistance and more recently taste and nutritional values
(Bergougnoux 2014). Tomatoes offer a rich source of vitamin A (lycopene) and C (ascorbate),
both antioxidants that have been shown to correlate with prevention of cancer and
cardiovascular diseases (Rao and Agarwal 2000). On the recent FAO data of 2013



(http://www.fao.org), tomato is the second most consumed vegetable in the world after potato.
The biggest tomato producers are found in Asia, which represents 60.3% of tomato production
(Figure 2), but the two countries with the highest yield per hectare are found in Europe, namely
Belgium and the Netherlands. In total, Europe represents 12.7% of the world tomato production,
with the top producers Spain and Italy. Besides to have invaded the crop market and our plates,
tomato is considered by researchers as a model crop due to its attractive traits (Foolad 2007):
(1) a relative short life cycle, (i) a high self-fertility that allows genetic stability over
generations, (iii) a sequenced genome and (iv) a large diversity present among wild accessions
that, all together, makes tomato an attractive and powerful resource to study tolerance to abiotic
and biotic stresses.

Americas
15%

<1% Asia

Europe 60%

13%

Figure 2. World tomato production in 2013 - FAO

Tomato and high temperatures

The optimal growing temperature of tomato is between 19°C and 25°C (Hurd and Cooper
1970). A temperature of a few degrees above this threshold can lead to serious deleterious
effects, such as flower abscission, decrease of pollen quality, abnormal growth, reduced fruit
set (Figure 3; Hasanuzzaman et al. 2013). In addition, this temperature stress has a direct impact
on the quality of the fruit, such as cracks, blossom end rot, immature fruit or watery tissue
(Abdulbaki 1991). For instance, tomato plants exposed to a long heat stress with an average
temperature of 34°C/19°C exhibit a flower drop of 34% and a decrease of fruit set up to 71%
(Hazra et al. 2009). The production of tomatoes requires fertilization of the female egg by the
pollen grain. The development of the pollen occurs inside the flowers, within the anthers (Honys
et al. 2006). Anthers are considered as the supportive tissue that supplies the pollen with
essential metabolites required for its development (Pacini 1996). Regarding the performance of
tomato under heat stress, the pollen grain was demonstrated to be the weakest point, due to its
vulnerability to high temperatures which results in a decrease of tomato fruit yield (Bokszczanin
et al. 2013). The sensitivity of pollen to high temperatures is associated with a disruption of
developmental processes that can occur at different stages was reviewed by Muller and Rieu
2016: (i) at meiosis stage with the alteration of cell division, (ii) at microspore stage with the
degeneration of anther tapetal cells which provide pollen nutrition and (iii) during the
microspore maturation stage with a failure to accumulate carbohydrates. Genotypes which are
tolerant to high temperatures have the ability to maintain a high pollen quality, which results in
a greater fruit production compared to sensitive genotypes (Dane et al. 1991). The ability to
maintain high pollen quality under heat stress has been mainly attributed to the high abundance
of sugars (Firon et al. 2006).



Considering the forecast of an increased incidence of heat waves in Europe, local European
producers may face critical situations with a decrease of yield (Meehl and Tebaldi 2004). For
instance, reports have mentioned that in Spain the heat wave of 2003 led to a reduction of
tomato yield (Pazos 2004). The FAO data between 2002 and 2003 showed a yield drop for
tomato of 7% (http://www.fao.org). Hence, the increased temperatures forecasted for the near
future (e.g. increase of heat waves), the importance of the tomato crop worldwide, the variation
in heat stress response of different tomato accessions and the applicability of tomato as a model
plant, makes it a valuable object for the study of the mechanisms of heat tolerance of the whole
plant and, in particular, of the male reproductive organs, whose high sensitivity is the bottleneck
of fruit production under high temperatures.

Figure 3. Impact of temperature on tomato flower buds. Pictures A and B are anther cross sections of the tomato
model cultivar MicroTom exposed to control (A) and mild long heat stress (B). Under control temperatures (A)
four locules are present and at maturity the stonium breaks to allow the release of pollen (yellow arrow) while
under heat stress (B) the number of locules are altered and deformed. Cross sections were stained with toluidine
blue. Picture C is tomato flower abscission observed under mild high temperatures

The SPOT-ITN consortium

As mentioned above, fertile pollen production has been demonstrated to be the critical point of
fruit production. Understanding the male gametophyte’s tolerance mechanisms to high
temperatures is necessary to ensure sustainable tomato reproduction and, therefore, tomato fruit
yield. Such a problem needs to be addressed at a multidisciplinary level, in order to cope with
the complexity of the heat stress response, which includes the reprogramming of gene
expression, induction of specific proteins such as HSPs, and the metabolic homeostasis
maintenance. In 2012, the Solanaceae Pollen Thermo-tolerance — Initial Training Network
(SPOT-ITN) consortium (http://spot-itn.eu/) was set up with different research groups from
Europe and Israel to address this issue at different levels using a multi-omics approach
involving; epigenomics, transcriptomics, proteomics and metabolomics tools. The role of Plant
Breeding, Wageningen University & Research in this project was to gain knowledge on the
metabolic response of pollen and anthers under changing environments, in order to identify
metabolites associated with the tolerance of tomato to high temperatures.

Metabolomics

Metabolites are important chemical components of the plant system. They are involved in many
processes, such as functioning as building blocks for more complex molecules, energy
generation, storage and distribution, signalling and regulation of development (Arbona et al.



2013). For example, the amino acids alone show a large diversity of use: they can be
incorporated into proteins (Pratelli and Pilot 2014), serve as precursor of metabolic pathways
(e.g. phenylalanine for phenylpropanoids (Fraser and Chapple 2011)), be part of signalling (e.g.
GABA (Ramesh et al. 2016)) or be involved in stress response (e.g. proline as compatible solute
(Hayat et al. 2012)). In the plant kingdom 200,000 metabolites are estimated to exist (Fiehn
2002). The expansion of metabolite analysis with the development of untargeted metabolic
profiling analysis — metabolomics, allowed a fast exploration of the metabolome in any given
tissue. For instance, analysis of a polar extract using a gas chromatography mass spectrometry
analysis platform (GC-MS) allows one to obtain an accurate profile of primary metabolome in
less than 40 min. Metabolomics platforms offer a valuable tool to explore the plant metabolome
and to gain knowledge on the metabolic response to heat stress. In bentgrass (Agrostis scabra)
leaves, for example, the use of metabolomics has been shown to lead to the identification of
metabolites associated with tolerance to high temperatures (Xu et al. 2013). The tolerant
accession showed a higher accumulation of hexose sugars, used as energy source, of branched
amino acids involved in alternative energy source, of the polyamine putrescine as antioxidant
and of diverse compatible solutes such as proline and sucrose to cope with osmolarity regulation
(Xu et al. 2013).
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Figure 1. Metabolomics workflow. Metabolomics analysis include (1) the sample preparation, sample analysis
with analytical platforms (2), data processing with peak picking, alignment and annotation (3,4), statistical analysis
(5) and the data interpretation.

6)Interpretation

The use of metabolomics approaches applied to male reproductive tissues, especially pollen, in
response to heat stress is not yet an established approach. However, particular metabolites have
been shown to play a major role in the stress response, as reviewed in Chapter 2 of this thesis.
Hence, in our research we used metabolomics approaches to obtain a wider picture of the
metabolome of different reproductive organs, including pollen and anthers in different tomato
genotypes exposed to heat stress (Figure 4). The reproductive tissues, in particular pollen,
possess certain morphological and physiological characteristics that are different from
vegetative tissues, for which many metabolomics methods have been developed, such as the



water content, tissue amount, size, diverse physiological states and different morphology during
development. We first assessed the suitability of several pollen isolation methods for our
metabolomics studies: we addressed the impact of anther contamination and pollen rehydration,
which both could occur during pollen isolation and might affect the reliability of the obtained
metabolic profiles. Although one metabolomic platform allows the detection of a large panel of
metabolites, it is clear that combinations of different platforms will provide a more
comprehensive view of the metabolome. In our approach, we mainly used two metabolomics
platforms: gas chromatography coupled to mass spectrometry (GC-MS) to study polar primary
metabolites (amino acids, sugars and organic acids) and liquid chromatography coupled to mass
spectrometry (LC-MS) to detect semi-polar secondary metabolites (phenylpropanoids,
polyamines and alkaloids).

Thesis outline

In this project, we used a metabolomics-based exploratory approach to study the metabolic
response of different tomato genotypes and their reproductive tissues to exposure of short and
long heat stress conditions. This allowed us to identify stress-responsive metabolites and
metabolites associated with tolerance to high temperatures. Such metabolites can be used as
metabolic markers in breeding.

In the second chapter, we reviewed the current state of the art of the research on pollen
metabolites involved in high temperature responses. We offered a breeding strategy to use
metabolic markers in the process of developing new tomato varieties tolerant to high
temperatures.

In chapter three, we assessed the suitability of available pollen isolation protocols for untargeted
metabolic profiling. We focused on drawbacks of the pollen isolation protocol such as (i) pollen
rehydration, (ii) enzymatic activities and (iii) anther contamination.

In chapter four, we studied the impact of short acute heat stress on secondary metabolites of
developing pollen of the tomato genotype MicroTom. This study revealed that (i) one hour heat
stress at 38°C was not sufficient to induce strong metabolic alterations in developing pollen and
that (ii) the developmental stages younger than polarized pollen seemed not to have a significant
metabolic content compared to later stages, at which the metabolic responses to heat stress are,
therefore, likely to occur. Nevertheless, in nature or in growing practice the heat stress condition
may take place at any stage of reproductive organ development and may affect the resulting
pollen quality. Hence, in order to be able to identify metabolites associated with pollen thermo-
tolerance, we conducted our studies under a milder but longer heat stress regime, which allowed
us to obtain clearer metabolic effects, without forcing complete tissue deterioration. Since the
pollen did not give a strong metabolic response under short heat stress while we have observed
such a response in anther, we decided to focus on anther tissue to assess further metabolic
changes in response to heat stress.

In chapter five, we phenotyped the pollen quality of 13 tomato accessions under long mild heat
stress by recording the amount of pollen produced and pollen viability, in order to identify
genotypes tolerant and sensitive to high temperatures.



In chapter six, two genotypes of the 13 described in chapter five with contrasting tolerance
background were selected to (i) determine the critical developmental stage that led to a decrease
of pollen viability under long mild heat stress and (ii) to explore the metabolome of developing
anthers under high temperatures and control temperatures. This approach allowed us to identify
metabolites associated with the tolerance to high temperatures.

In chapter seven, I discuss the integration of the different chapters of this thesis in view of
sustainable tomato production under changing climate conditions. I also give recommendations
on working with pollen in metabolomics and other —omics field. The thesis concludes with a
summary of the work and key messages.
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Chapter 2

The metabolic basis of pollen thermo-tolerance: perspectives
for breeding
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Abstract: Crop production is highly sensitive to elevated temperatures. A rise of a few
degrees above the optimum growing temperature can lead to a dramatic yield loss. A
predicted increase of 1-3 degrees in the twenty first century urges breeders to develop
thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-
tolerance is a challenge due to the low heritability of this trait. A better understanding of
heat stress tolerance and the development of reliable methods to phenotype thermo-
tolerance are key factors for a successful breeding approach. Plant reproduction is the
most temperature-sensitive process in the plant life cycle. More precisely, pollen quality
is strongly affected by heat stress conditions. High temperature leads to a decrease of
pollen viability which is directly correlated with a loss of fruit production. The reduction
in pollen viability is associated with changes in the level and composition of several
(groups of) metabolites, which play an important role in pollen development, for example
by contributing to pollen nutrition or by providing protection to environmental stresses.
This review aims to underline the importance of maintaining metabolite homeostasis
during pollen development, in order to produce mature and fertile pollen under high
temperature. The review will give an overview of the current state of the art on the role
of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible
use as metabolic markers to assist breeding programs for plant thermo-tolerance will be
discussed.

Keywords: pollen; heat stress; thermo-tolerance; high temperature; metabolite; breeding
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1. Introduction

Environmental stresses are important factors affecting worldwide crop production (Mittler
2006). Among them, high temperature plays a crucial role and this review will focus on this
specific abiotic stress (Ainsworth and Ort 2010). Heat stress is a complex trait which depends
on the duration, the fluctuation and the intensity of temperature rise above the optimal growth
temperature (Wahid et al. 2007). High temperature is one of the major factors limiting the
growth season in many parts of Asia, one of the most important producers of daily consumed
crops such as rice (Oryza sativa), wheat (Triticum aestivum), potatoes (Solanum tuberosum)
and tomatoes (Solanum lycopersicum). The expected global warming, with a predicted increase
of 1-3 °C during the twenty first century, could therefore have a major impact on agriculture
and may lead to significant decreases in crop production (IPCC 2012). Breeding for thermo-
tolerant genotypes is of major importance to maintain crop production under hot conditions.
This requires a thorough understanding of the mechanisms underlying heat stress tolerance.

Plants can respond to heat stress through different mechanisms. High temperature alters
plant growth, including rolling of leaves, leaf senescence, root and shoot growth inhibition as
well as seed germination reduction, fruit discoloration, decrease in pollen viability and decrease
in yield (Hasanuzzaman et al. 2013), as a result of severe alterations in basic physiological
processes, such as increased respiration, decreased photosynthesis, increased membrane
permeability and ROS production (Figure 1). A genotype is considered thermo-tolerant when
it can produce economic yield under heat stress. Several experimental parameters can be
measured to monitor thermo-tolerance (Wahid et al. 2007), including cell membrane
thermostability, photosynthesis activity, pollen viability and fruit set. These parameters will be

discussed below.
germination

Fruityleld Plant growth
Respiration
Photosynthesis
Parthenocarpy Y Rolling leaves
Membrane permeability
ROS production
Fruit Leave
discoloration senescence

Pollen viability

Figure 1. General effects of heat stress on plant physiology.
\

(i) The alteration of membrane structures under high temperature is a common response to
heat stress. High temperatures alter membrane permeability by increasing membrane fluidity.
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This leads to an increase of electrolyte loss which is an indication of decreased cell membrane
stability (Wahid et al. 2007).

(i) Photosynthesis is highly sensitive to high temperature (Allakhverdiev et al. 2008). The
alteration of the thylakoid membrane under heat stress is directly linked to a decrease of
photosystem II activity which affects the rate of photosynthesis (Yamamoto et al. 2008). In
addition, the sensitivity of the enzyme Rubisco to high temperature can lead to a decrease in
carboxylase activity which will also inhibit photosynthesis (Demirevska-Kepova and Feller
2004) and likewise CO?2 fixation. Consequently, the ability to assimilate CO2 under heat stress
conditions is associated with thermo-tolerance.

(ii1) Reproduction has been demonstrated as the most heat sensitive process in plants as
reviewed in two recent papers(Bokszczanin et al. 2013, De Storme and Geelen 2014) (Figure
2). Many studies have shown that pollen quality is the most important determinant of fruit
production under heat stress (Dane et al. 1991, Firon et al. 2006). Therefore, analysis of pollen
viability and fruit set under high temperature is a direct trait for the study of thermo-tolerance
in plants.

Control High
temperature temperature
| |

Figure 2. Effect of high temperature (34 °C/28 °C) on flowers of Solanum lycopersicum cv. Nagcarlang.
Pictures represent mature flowers under control conditions (a) and high temperature (b—c). Under high
temperature, anthers showed deformation, dark coloration of the anther tip and elongated pistils. Those
flowers had a low percentage of pollen viability (<10%).

Heat stress induces a reorganisation of the transcriptome (Frank et al. 2009), proteome (Li
et al. 2013) and metabolome (Kaplan et al. 2004) which can either lead to failures in plant
development, or instead to acclimation to high temperature (Bokszczanin et al. 2013). On the
one hand, metabolic alterations caused by heat stress can lead to severe damage in sensitive
plants compared to tolerant plants. For example, high temperature can lead to a decrease of
antioxidant enzyme activity (Djanaguiraman et al. 2010). This will decrease the plant’s ability
to protect itself against reactive oxygen species and leads to lipid peroxidation of cellular
membranes. In addition, the alteration of photosynthesis activity under high temperature can
lead to a decrease of sugar abundance (Chaitanya et al. 2001). Sugars are primary metabolites
essential as precursors for different metabolic pathways and plant nutrition. On the other hand,
plants have the ability to respond to heat stress by inducing or activating protective mechanisms.
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For example, most of the transcripts induced in response to high temperature encode heat shock
proteins (HSPs) (Rizhsky et al. 2004).

HSPs are proteins which are rapidly produced under heat stress and behave as protein
chaperones (Al-Whaibi 2011). HSPs are involved in protein homeostasis in order to avoid
protein misfolding, protein aggregation or protein degradation. They are closely linked with
thermo-tolerance and play a crucial role in stress signal transduction (Kregel 2002). In addition
to HSPs, plants can produce different osmolytes and antioxidants to protect themselves from
various abiotic stresses, including heat stress (Almeselmani et al. 2006); Proline, glycine
betaine and aminobutyric acid are key compounds in the osmolyte response under high
temperature (Hayat et al. 2012,Chen and Murata 2011,Kinnersley and Turano 2000).
Carotenoids, glutathione and ascorbate can act as reactive oxygen species scavengers in order
to prevent oxidative stress (Strzalka et al. 2003,Noctor and Foyer 1998,Caverzan et al. 2012).
So, the readjustment of cellular homeostasis under heat stress is an essential mechanism which
can provide resistance to high temperature and the ability to produce fruit under suboptimal
conditions.

In this review, we will focus on the impact of heat stress on the metabolome of pollen (one of
the most sensitive organs in plants). We will first review the metabolic changes occurring
during pollen development. Secondly, we will describe the impact of heat stress on pollen
quality and the metabolic changes associated with thermo-tolerance. Finally, we will discuss
various breeding strategies for pollen thermo-tolerance based on the use of metabolic markers.

2. Metabolite Profiles during Pollen Development

Pollen is the male gametophyte and its role is to deliver the genetic material to the embryo
sac through the double fertilisation as described by Twell 2002 and Honys et al. 2006. The
development of the pollen takes place inside the anthers (Figure 3). In early stages, the anthers
have several sporogenous layers. These primary layers lead to the development of meiocytes
which occur inside the loculus within the anthers. The loculus is surrounded by the tapetum
which provides nutrition, metabolites and enzymes required for the development and the
protection of the pollen before it degenerates during mitosis. Meiocytes undergo meiotic
division to produce haploid tetrads. The four microspores of the tetrad are released by the action
of a glucanase which is produced by the tapetum. At the microspore stage, the pollen coat is
synthesised. The pollen wall consists of two layers; an outer layer named the exine, which is
composed of sporopollenin and shows apertures where the pollen can germinate; the internal
layer is the intine, composed of pectin and cellulose. The pollen coat plays a protective role
during pollen dispersion and can also play a role in the attachment to a pollinator. Microspores
undergo mitotic divisions to produce the mature pollen, which are composed of a vegetative
nucleus and two sperm cells. Between the microspore stage and the mature stage, a phase of
vacuolisation occurs which leads to an increase of the pollen size and a polarisation of the
nucleus (Pacini et al. 2011). At mature stage, the pollen dehydrates which provides a level of
tolerance to environmental stresses (Taylor 1997). Rehydration of the pollen happens on a
compatible pistil and leads to germination and growth of the pollen tube inside the pistil to
deliver the male gamete for the double fertilisation.
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Figure 3. Pollen development from tetrad stage to mature pollen stage. Days before anthesis related to

developmental stages are based on Lycopersicon esculentum Mill. “Trust” from Sawhney and Bhadula 1988
and Pressman et al. 2002. A, anthesis, A-3, 3 days before anthesis, A-5, 5 days before anthesis, A-7, 7 days
before anthesis, A-9, 9 days before anthesis. Nuclei are stained with DAPI.

2.1. Carbohydrates and Acid Invertase

Carbohydrates are important substrates for plant growth which can be stored as energy
reserves and also serve as signalling molecules (Eveland and Jackson 2012). Male sterile lines
of Indian mustard showed an altered sugar metabolism in reproductive tissue, suggesting a
causal relationship between sugar metabolism and fertility (Banga et al. 1984). Pacini 1996
reviewed carbohydrate reserves in pollen of different species. The main soluble sugars in
mature pollen are fructose, glucose, sucrose and starch. Sucrose is produced in photosynthetic
tissue such as leaves which is considered as source tissue from which sucrose is transported via
the phloem to sink tissue (Roitsch 1999). Pollen is considered a sink tissue which needs sugars
for its own development, growth and protection against environmental stresses.

The conversion of sucrose into hexoses, which can be used by the pollen, requires its
hydrolysis by acid invertase and/or sucrose synthase (Koch 2004). Koch 2004 reviewed the role
of acid invertase in plants; Three different acid invertases can be identified according to their
location: vacuolar invertase (VIN), cytoplasmic invertase (CIN) and cell wall invertase
(CWIN). The function of acid invertases in reproductive tissues has been intensely studied in
different species such as lily (Singh and Knox 1984, Castro and Clement 2007), tobacco (Goetz
et al. 2001, Le Roy et al. 2013), tomato (Pressman et al. 2012) and chilli pepper (Garcia et al.
2013).

The physiology of carbohydrate accumulation during anther and pollen development has been
studied in lily (Lilium auratum) (Clément and Audran 1995, Clement et al. 1996; Clément and
Audran 1995), showed that, in lily, the different cells which constitute anthers are connected
via plasmodesmata involved in symplasmic transport of carbohydrates from the phloem to the
internal anther layers. However, the transport of assimilates from internal anther layers to the
pollen follows an apoplastic pathway. The main carbohydrates found in lily anthers were
sucrose, glucose, fructose and starch (Clement et al. 1996). During the anther growth, starch
was used and this decrease correlated with a strong accumulation of soluble sugars. This was
also found by Pressman et al. 2002 in tomato. In addition, Castro and Clement 2007 studied the
content of carbohydrates in different fractions of lily anthers, such as anther wall, locular fluid
and pollen. The accumulation of soluble sugars in the locular fluid suggested that this tissue
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may play a role in sugar storage during pollen development, which is especially useful once the
tapetum is degraded. In lily, soluble sugars also accumulated in mature pollen, mainly in the
form of hexoses, while in tomato sucrose represented 80% of the carbohydrate fraction in
mature pollen (Pressman et al. 2012). Although we cannot exclude that the differential
accumulation of hexoses vs. sucrose may be species specific, Castro and Clement 2007, notified
that the lily pollen used for sugar analyses were hydrated. Using tomato pollen, we observed
that hydrated pollen grains have a higher abundance of hexoses than dried pollen grains, due to
the action of acid invertase upon (re-)hydration. Therefore, if the pollen isolation protocol
requires immersion into a germination solution, we strongly advise to freeze-dry the pollen
extract as soon as the harvest is done to prevent the action of acid invertase which may convert
sucrose into hexoses, or to incubate the extract in 80% ethanol at 75 °C as it was previously
described by Pressman et al. 2012 and Firon et al. 2006 . Nevertheless, Castro and Clement
2007 found a gradient of soluble sugars from the anther to the pollen underlying the strong sink
of the pollen. During pollen maturation in tomato, sucrose was the most abundant sugar in the
filament and in the pollen grain, whereas hexoses were the most abundant sugars in the anther
wall and in the locular fluid (Pressman et al. 2012). The higher abundance of hexoses in the
anther wall was supported with a high activity of acid invertase and a low activity of sucrose
phosphate synthase. The accumulated hexoses in anther wall could be used for general
metabolism or could move into the locular fluid. The distribution of hexoses among the
different stamen parts were mainly controlled by cell wall acid invertase. The high
accumulation of sucrose in mature pollen could serve as energy source for pollen germination,
but could also act as osmolyte to maintain membrane integrity during pollen dehydration
(Pressman et al. 2012). To summarize, soluble sugars can be delivered to the pollen by (i)
hydrolysis of starch (ii) transport of sucrose from photosynthetic tissues. The sucrose needs to
cross several compartments before it reaches the pollen in order to provide nutrition and
protection: sucrose has to be transported from the leaves via the phloem to reach the anther wall
or directly coming from the anther itself (Clément et al. 1997). Subsequently, it has to cross the
locular fluid to reach the male gametophyte. Acid invertases play a major role in supplying
hexoses, derived from sucrose, to the pollen grain to support nutrition, growth and protection
against environmental stresses.

2.2. Proline

Amino acids play an essential role during plant development: they are the building blocks
for protein synthesis. Proline is a free amino acid synthetized from glutamate, which can act as
a compatible solute to achieve osmotic adjustment (Lehmann et al. 2010, Szabados and Savoure
2009). Proline is one of the most abundant amino acids in the male reproductive part (Mutters
et al. 1989). The changes in amino acid content during pollen development in anthers has been
studied in devil’s trumpet (Datura metel), a Solanaceous species (Sangwan 1978). The content
of free amino acids in pollen was higher at mature stage compared to earlier developmental
stages. It was suggested that the lower level of amino acids during early developmental stages
was due to active protein synthesis at these stages. The accumulation of glutamic acid decreased
during pollen development, probably due to conversion into proline. Proline was one of the
most abundant amino acids at mature stage and represented 60% of the free amino-acids. In
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arabidopsis (Arabidopsis thaliana), a proline deficient mutant showed a decreased pollen
viability which indicates a role for proline in pollen development. The proline mutant could be
partially complemented by spraying proline on the mutant inflorescences. This led to an
improvement of pollen germination (Mattioli et al. 2012).

2.3. Lipids

In contrast to carbohydrates, the role of lipids during pollen development has not been
studied extensively. Lipids are important compounds for the stabilization of membranes and for
the hydration of pollen upon germination (Edlund et al. 2004). Rodriguez-Garcia et al. 2003
showed that lipids accumulated during pollen development in olive (Olea europaea). The
accumulation of lipids occurred after the vacuolisation of the microspore. During pollen
germination, lipids are located close to pollen apertures. This suggests that lipids may act as
energy reserve for pollen germination. The lipid profile of pollen at different developmental
stages has been studied in trumpet vine (Campsis radicans) (Bignoniaceae) (Tiitlincii Konyar
et al. 2013). Until the microspore mother cell stage, anthers contained low levels of lipids and
a high abundance of insoluble polysaccharides. At meiosis, insoluble polysaccharides
decreased whereas lipids started to accumulate. The authors suggested that anthers switched
from the use of polysaccharides to lipids as storage products. Additionally, lipids have been
showed to play a major role in directing the pollen tube to the stigma (Wolters-Arts et al. 1998).

2.4. Gluthatione

Glutathione is a thiol which participates in redox regulation and plays a role in storage,
transport, and regulation of metabolites. Furthermore, it is involved in the detoxification of
reactive oxygen species (May et al. 1998). The involvement of glutathione in redox regulation
plays a crucial role in withstanding environmental stresses (Szalai et al. 2009). The application
of buthionine sulfoximine, an enzyme inhibitor in the glutathione pathway, led to a 70%
decrease of in vitro pollen germination in arabidopsis (Zechmann et al. 2011) demonstrating
the crucial role of glutathione in pollen germination.

2.5. Flavonoids

Secondary metabolites produced in the tapetum, such as phenolic compounds, can diffuse to
the pollen and play a role in pollen colour, in the attraction of pollinators, in pollen tube
germination and in protection against abiotic stress of pollen. Flavonoids can be grouped into
different classes, such as flavonols, flavones, isoflavones and anthocyanins. Antioxidant
flavonoids play a role in plant development as ROS scavengers and may act as regulators under
environmental stress (Agati et al. 2012, Brunetti et al. 2013). Addition of flavonols to
germination medium resulted in higher levels of in vitro germination of tobacco (Nicotiana
tabacum) pollen (Ylstra et al. 1992). Down-regulation of chalcone synthase (CHS), the first
step in the flavonoid pathway, led to a decrease of flavonoids and subsequently to a reduction
of pollen germination in petunia (Petunia hybrida) and maize (Zea mays). The germination
could be restored by adding kaempferol to the germination medium (Mo et al. 1992). A
confirmation of the importance of flavonoids in pollen fertility has been given by (Napoli et al.
1999) who complemented a petunia chs mutant with a functional CHS transgene, thereby
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restoring the fertility of petunia pollen. In addition, RNAi-mediated silencing of CHS in tomato
resulted in male sterility, reduced fruit set and seed-less fruit development (Schijlen et al. 2007).
In arabidopsis, however, a mutation of CHS (tt4) did not affect pollen germination (Burbulis et
al. 1996). The role of flavonoids in pollen fertility is therefore species specific.

2.6. Polyamines

Polyamines, such as putrescine, spermidine and spermine are synthetized from ornithine,
arginine or methionine. They play a role in different aspects of plant development such as cell
division, embryogenesis, root development, floral initiation, floral and fruit development and
also pollen formation (Evans and Malmberg 1989). In tobacco pollen, the polyamine content
increased during development from microspore to mature stage, but decreased in germinated
pollen, probably due to their consumption during the germination process (Chibi et al. 1993).
Song et al. 2001 showed that, despite the decrease of polyamines in germinated pollen, a
transient increase of spermidine and spermine at the beginning of pollen tube growth was
needed for normal pollen germination in tomato. In the pollen of kiwi (Actinidia deliciosa),
polyamines were present from early stage (microspore) to mature pollen with spermidine as the
most abundant polyamine. Adding polyamine inhibitors led to abnormal pollen development
and a reduction in pollen viability, pollen germination and pollen tube growth (Falasca et al.
2010).

2.7. Hormones

Hormones are essential in plant development; they play a role in the regulation of flowering
time, leaf senescence, fruit ripening and also pollen development. Parish and Li 2010 underlined
the role of auxin, gibberelins and abscisic acid in the development of the tapetum which is
essential for the distribution of metabolites to the pollen. In addition, there is accumulating
evidence for a role of other hormones, such as ethylene, jasmonic acid and brassinosteroids in
pollen development. The current state of the art will be outlined below.

Auxin is involved in many aspects of plant development, such as plant growth, senescence,
fruit formation, leaf abscission and apical dominance (Ellis et al. 2005, De Jong et al. 2009,
Abeles and Rubinstein 1963, Tanaka et al. 2006). At the genetic level, the biosynthetic pathway
to auxin remains unclear and up to five possible pathways have been postulated (Mano and
Nemoto 2012). One of the evolutionary most conserved auxin pathways, the indole-3-pyruvic
acid (IPA) pathway, is controlled by members of the YUCCA flavin monooxygenase gene
family. Blocking the auxin biosynthesis pathway in arabidopsis by various combinations of yuc
loss-of-function mutants led to severe alterations in floral organ development and a lack of
pollen production (Cheng et al. 2006). In addition, mutations in auxin receptor encoding genes,
such as transport inhibitor response 1 (tirl) and auxin signalling F box (afb) genes, resulted in
early maturation of pollen due to pollen release before the filament was completely elongated
(Cecchetti et al. 2008, Cecchetti et al. 2013). Cecchetti et al. 2013 also proposed that auxin is
involved in the coordination of pollen maturation and anther dehiscence. This is supported by
the fact that expression of the indole acetic acid lysine synthetase (iaal) gene in anther tapetum
of transgenic tobacco plants led to a decrease of auxin levels and a concomitant decrease in in
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vitro pollen embryogenesis (Yang et al. 1997). Culture medium supplemented with auxin
restored pollen embryogenesis in transgenic iaal plants.

Gibberellins (GA) are known to act in hypocotyl elongation, floral transition, fruit patterning
and plant defence (Daviere and Achard 2013). gal-I, an arabidopsis mutant deficient in
gibberellin production resulted in an inhibition of stamen elongation and lack of mature pollen.
This phenotype could be restored by adding exogenous gibberellins (Goto and Pharis 1999).
The mutants GA-deficient rpel and GA-insensitive slr/-3 in rice are male sterile. rpel was
defective in pollen germination and elongation whereas s/ri-3 affected pollen development
(Chhun et al. 2007).

Jasmonic acid plays a role in fruit ripening, seed germination, root growth, resistance to
biotic stresses and protein storage (Creelman and Mullet 1997). The role of jasmonic acid in
pollen fertility has been studied by McConn and Browse 1996. A mutation in the biosynthesis
of jasmonic acid, defective in anther dehiscencel (dad1), led to an inhibition of pollen release.
The dadl mutation also led to a 68% decrease of pollen germination after manual pollen release.
Pollen germination could be recovered by addition of jasmonic acid (Ishiguro et al. 2001).

Ethylene is known to be involved in plant development, senescence, fruit maturation and
pollen germination (De la torre et al. 2006). An inhibitor of ethylene action (NBD)
demonstrated the role of ethylene in pollen development in petunia (Kovaleva et al. 2010). Two
ethylene peaks were observed during pollen development, at microspore development stage and
at maturation. Exogenous NBD completely inhibited anther development at early
developmental stages and delayed anther dehiscence. In tobacco, moreover, an ethylene-
receptor mutant showed a delay in anther dehiscence compared to the wild-type plants (Rieu et
al. 2003). Ethylene, therefore, plays a role in locule opening.

Abscisic acid is important in seed development, plant growth and in withstanding
environmental stresses (Xiong 2003).Frascaroli and Tuberosa 1993 showed that a low level of
abscisic acid (ABA) in the germination medium increased the germination of maize pollen
whereas a higher level decreased germination. In pomegranate (Punica granatum), Yang et al.
2003 also noticed that a high concentration of ABA in the germination medium decreased
pollen germination. However, a low exogenous ABA concentration in the germination medium
did not improve pollen germination. Nevertheless, inhibition of endogenous ABA biosynthesis
led to a decrease of pollen germination and it was concluded that a minimal ABA concentration
was needed for pollen germination.

Brassinosteroids are steroid hormones which play a role in plant growth and several mutants
of the brassinosteroid pathway show abnormal growth characteristics (Fridman and Savaldi-
Goldstein 2013). An arabidopsis mutant, transient defective exine 1 (tdel) is deficient in the
formation of the pollen exine, which is essential for protection and propagation of pollen. The
mutated gene has a high similarity to a gene involved in the biosynthesis of brassinosteroids
and supplementation with brassinosteroids led to restoration of exine layer formation (Ariizumi
et al. 2008).
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During pollen development, several metabolic changes occur leading to the accumulation of
reserves necessary for nutrition and protection of the pollen (Table 1). The pathways leading to
the production of carbohydrates, amino acids, phenolic compounds, polyamines, hormones and
lipids are interconnected and contribute to metabolic homeostasis required for growth and
viability of the pollen (Figure 4). This metabolic equilibrium is sensitive to environmental
stresses. The effect of heat stress on pollen development and fertility is likely resulting from an
altered metabolic homeostasis, caused by alterations in the levels and composition of the above
mentioned metabolites. This will be discussed in detail in the next sections.

Table 1. Overview of the role of different metabolites in pollen development and fertility among different

species.
Commun . . L
Latin name Metabolites Implication References
name
(Mattioli et
Proline Required for pollen germination al. 2012)
(Zechmann
Glutathione Required for pollen germination et al. 2011)
Required for floral organ development and pollen (Clhgg(g)ﬁe)t
al.
i : Auxin production
Arabidopsis (Cecchetti
arabidopsis . Required for pollen maturation and anther dehiscence et al. 2013)
thaliana
(Goto and
Pharis
Gibberellin Required for stamen elongation and pollen maturation 1999)
(McConn
and Browse
1996,Ishigu
ro et al.
Jasmonic acid  Required for pollen germination 2001)
(Ariizumi et
Brassinosteroid  Formation of pollen exine al. 2008)
(Burbulis et
Flavonoids Not required for pollen germination al. 1996)
Devil’s ) Accumulation during pollen development (Sangwan
Datura metel Amino acids 1978)
trumpet Proline represents 60% of the free amino-acids
Actinidia (Falasca et
kiwi Polyamines Required for pollen viability and pollen germination al. 2010)
deliciosa
(Clement et
Accumulation of soluble sugars during anther development al. 1996)
lily Lilium auratum  Carbohydrates Locular fluid is a sugar storage compartment (Castro and
Clement
2007)
Gradient of sugars from anther wall to pollen grain
(Mo et al.
Flavonoids Required for pollen germination 1992)
maize Zea mays High ABA concentration inhibited in-vitro pollen (Frasc;roli
an
Tuberosa
Abscisic acid o 1993)
germination
Accumulation of lipids during pollen development (Rodriguez-
Garcia et al.
olive Olea europaea Lipids Energy reserve for pollen germination 2003)
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(Mo et al.

1992,
Napoli et al.
. . . Flavonoids Required for pollen germination 1999)
petunia Petunia hybrida (Kovaleva
Ethylene Required in anther development and anther dehiscence et al. 2010)
High ABA concentration inhibited in-vitro pollen (Yang et al.
pomegrenate  Punica granatum  Abscisic acid o 2003)
germination
Required for pollen germination, stamen elongation and (Chhun et
rice Oryza sativa Gibberellin al. 2007)
pollen development
(Ylstra et
Flavonoids Improve in-vitro pollen germination al. 1992)
. Accumulation of polyamines during pollen development (Chibi et al.
Nicotiana Polyamines - - - . 1993)
tobacco Reduction of polyamines during pollen germination
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Auxin Required for pollen embryogenesis 1997)
(Rieu et al.
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Figure 4. Simplified metabolic pathways underlying the relationship between metabolites reported in this
review such as carbohydrates, proline, lipids, glutathione, polyamines, flavonoids and hormones. PEP,
phosphoenolpyruvate; TCA, tricarboxylic acid. Triose-P, triose-phosphate.

3. The Impact of Heat Stress on Pollen Quality
3.1. Pollen Viability

Pollen is one of the most sensitive organs to heat stress. This can lead to sterile pollen (Saini
et al. 1984) and subsequently a decrease of fruit set (Abdul-Baki and Stommel 1995). As a
consequence, crop yield is dependent on the temperature during pollen development (Ploeg Van
der and Heuvelink 2005). In tomato, the optimum temperature is between 18 °C and 25 °C
(Hurd and Cooper 1970). A few degrees higher than 25 °C already leads to a reduction of yield
(Peet et al. 1998). The impact of heat stress on pollen viability has already been demonstrated
in several species: tomato (Firon et al. 2006, Pressman et al. 2002, Abdul-Baki and Stommel
1995, Peet et al. 1998, Sato et al. 2006); barley (Hordeum vulgare) (Sakata et al. 2000), rice
(Prasad et al. 2006, Matsui and Omasa 2002), chickpea (Cicer arietinum) (Devasirvatham et al.
2012), maize (Herrero and Johnson 1980), arabidopsis (Kim et al. 2001), rapeseed (Brassica
napus) (Young et al. 2004), purple false brome (Brachypodium distachyon) (Harsant et al.
2013), common bean (Phaseolus vulgaris) (Porch and Jahn 2001), groundnut (Arachis
hypogaea) (Prasad et al. 1999), bell pepper (Capsicum annuum) (Aloni et al. 2001), soybean
(Glycine max) (Djanaguiraman et al. 2013), and strawberry (Fragaria x ananassa) (Ledesma
and Sugiyama 2005).

3.2. Pollen Development

At early stages of pollen development, high temperatures lead to an arrest in pollen
development (De Storme and Geelen 2014). In tomato, the most sensitive stage is between 10
and 7 days before anthesis (Iwahori 1965). This was confirmed by Sato et al. 2002, who showed
that a temperature regime of 32 °C/26 °C, 15-7 days before anthesis, corresponding to the stage
in which meiosis takes place, had a profound effect on pollen development. Heat stress during
meiosis also has a large effect in barley (Sakata et al. 2000). In cowpea (Vigna unguiculata),
however, heat stress during meiosis did not affect pollen quality, but when it was too hot after
the release of tetrads (between 9 and 7 days before anthesis) an effect on pollen quality was
observed (Ahmed et al. 1992). In peanuts, the most sensitive stages were during the
development of microspores (four days before anthesis) and at anthesis (Prasad et al. 2001). In
bell pepper, heat stress at microspore mother cell meiosis led to reduction of pollen viability,
fruit set and seed number, whereas heat stress at later developmental stages did not affect the
pollen viability (Erickson and Markhart 2002). The developmental sensitivity to heat stress in
pollen seems to be species-specific, with meiosis a common sensitive stage, for most crops.

3.3. Tapetum

The tapetum is the key organ that provides metabolites to the pollen; its development is very
sensitive to heat stress. In barley, for example, an elevated temperature of 30 °C led to an early
meiotic prophase I and a premature degradation of the tapetum (Oshino et al. 2007). A
degeneration of the tapetum under heat stress has also been reported in wheat (Saini et al. 1984),
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cowpea (Ahmed et al. 1992), purple false brome (Harsant et al. 2013) and common bean
(Suzuki et al. 2001). Asano et al. 2001 showed that heat stress 10 days before anthesis affected
the endoplasmic reticulum pattern of the tapetum showing structural abnormalities which
subsequently led to a premature degeneration of tapetum. In summary, it is clear that the
development of the tapetum is critically sensitive to heat stress and can lead to abnormal anther
development. In addition, heat-stress induced abnormalities in tapetum development will also
affect the provision of metabolites to the pollen, which can lead to severe effects on pollen
nutrition.

3.4. Opening of Loculi

In rice, heat stress affected the opening of the anther loculi which led to a decrease of pollen
fertility (Matsui and Omasa 2002). The same result was also observed in tomato (Figure 5). An
inhibition of anther loculi opening may therefore block the release of pollen grain.

Control temperature High temperature

Figure 5. Effect of high temperature (32 °C/26 °C) on anthers of Solanum Ilycopersicum cv. MicroTom.
Picture (a) shows an anther at mature stage of pollen development under control conditions. The opening
of the locule is indicated with an arrow. Picture (b) shows anther at mature stage of pollen development
under high temperature. The locule was not opened due to anther deformation and the presence of an extra
layer of cells. Picture (¢) shows a severe anther deformation under high temperature. The four distinct
locules were no longer visible.

3.5. Pollen Germination

In addition to pollen development, pollen germination is sensitive to heat stress, which can
prevent pollen tube growth. Hazra and Ansary 2008 established that the decrease of fruit set of
tomato under elevated temperature was mostly due to a reduction of pollen germination.
Reduction of pollen germination under heat stress can be due to earlier pollen development
failure. High temperatures also led to a decrease of in vitro pollen germination in cotton
(Gossypium hirsutum) (Kakani et al. 2005). The pollen germination starts to decrease at 30 °C
(tomato: (Vasil 1987) cucurbita (Cucurbita pepo): (Johannsson and Stephenson 1998), cotton:
(Kakani et al. 2005)). Pollen germination was altered in tomato under heat stress (Sato et al.
2000) and led to a delay in fruit development and parthenocarpy (Sato et al. 2001, Abdelmageed
and Gruda 2009). Plants that can be potentially parthenocarpic become visible when no viable
pollen are present; this has been observed in tomato, bell pepper (Aloni et al. 2001, Erickson
and Markhart 2002) and in rapeseed (Young et al. 2004).
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4. Impact of Heat Stress on Pollen Metabolites
4.1. Carbohydrates

The importance of carbohydrates for plant homeostasis is reflected on the one hand by their
function as energy source required for pollen development and germination and, on the other
hand, by their role in maintaining osmotic balance, in stress signalling and in protecting
membranes. As a consequence, a disruption in carbohydrate metabolism may affect plant
nutrition as well as protection against stresses, in both cases leading to a decrease in plant
performance and health. The influence of abiotic stresses such as cold, drought and heat on
sugar signalling has been recently reviewed (De Storme and Geelen 2014). The impact of heat
stress on pollen carbohydrates has been studied in tomato, chickpea, pepper and sorghum
(Sorghum bicolor) over the last years. In tomato, flowers developed under an elevated
temperature of 32 °C showed a decrease of pollen viability. These flowers showed a decrease
of soluble sugars in pollen and anther wall, but an increase of soluble sugars in the locular fluid
(Pressman et al. 2002). Pressman et al. 2002 suggested that since under high temperature pollen
was altered, the pollen’s need for soluble sugars was decreased, and therefore soluble sugars
were accumulated in the locular fluid. However, we can also speculate that under high
temperature soluble sugars are blocked into the locular fluid and cannot reach the pollen. The
authors also found that during normal pollen development, starch accumulated in pollen
reaching a maximum content three days before anthesis and from this moment onwards starch
was converted into soluble sugars. However, under hot conditions, starch concentration did not
increase and led to a lack of sugar conversion, explaining the decrease of soluble sugars in
mature pollen grains. This indicates that mild chronic heat stress leads to alterations in sugar
transport and/or metabolism and an altered distribution of soluble sugars over the different
anther tissues. In another study, it was shown that the activity of acid invertase in tomato flowers
that were, at 4 days after anthesis, exposed to high temperature (36 °C/28 °C) for 24 h was
lower in a sensitive genotype than in a thermo-tolerant genotype. High acid invertase activities
may, therefore, play a role in producing hexoses under stress conditions (Li et al. 2011). The
effect of heat stress on soluble sugar abundance may be an important factor contributing to the
decrease of pollen viability, since thermo-tolerant tomato genotypes, showing high pollen
viability under long heat stress exposure (32 °C/26 °C), did not show heat stress-induced sugar
alterations compared to thermo-sensitive genotypes (Firon et al. 2006). Alteration of
carbohydrate accumulation under high temperature would probably lead to a decreased
availability of energy resources and a decrease in the osmotic power of carbohydrates, leading
to a failure in pollen development. These results are supported by studies in sorghum in which
the decrease of pollen viability under long heat stress (36 °C/26 °C) was mainly correlated with
a decrease of starch and sucrose in late stages of pollen development, due to decreased
expression of several sugar metabolism genes (Jain et al. 2007). In chickpea, sensitive
genotypes had also a lower abundance of sugars in anthers and pollen than tolerant genotypes
in a warm season (above 32 °C/20 °C) (Kaushal et al. 2013). The low abundance of sugars was
due on one hand to a decrease of sucrose metabolism in leaves and on the other hand to a
decrease of sucrose synthase and acid invertase enzymes in anthers. Under high temperature,
hexose abundance increased in tolerant genotypes whereas it decreased in sensitive genotypes.
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The increase of hexoses may, therefore, have a protective role under high temperatures. A
contrasting effect was seen, in bell pepper pollen, where sucrose levels increased rather than
decreased when plants were, at eight days before anthesis, exposed to high temperature (32
°C/26 °C) until they reached anthesis. This was mainly due to a decrease of acid invertase and
hexokinase concentrations (Aloni et al. 2001, Karni and Aloni 2002). Despite the high levels
of sucrose, pollen viability decreased under high temperatures. This suggests that, at least in
this bell pepper variety, high levels of sucrose are not sufficient to provide a normal pollen
development under high temperature. The contrasting results found in bell pepper compared to
the other examples described above could be attributed to the different developmental stages at
which the heat stress was applied. In conclusion, activities of acid invertases and the abundance
of soluble sugars and starch play an important role in maintaining pollen quality under high
temperature.

4.2. Proline

Proline is a common amino acid which can accumulate in response to various environmental
stresses. Proline has been shown to play a role in the protection of membrane integrity, in ROS
scavenging and in maintaining cellular homeostasis (Hayat et al. 2012, Szabados and Savoure
2009). Incubation of pollen extract in germination medium at 40 °C during 10 min decreased
in vitro germination of lily pollen and this could be restored by adding proline to the medium
(Hong-Qi and Croes 1983). The hypothesis is that proline can stabilise proteins by maintaining
the hydration shells around molecules. In cowpea, the content of proline was analysed in anthers
of heat sensitive and heat tolerant cultivars developed under high temperature (the maximum
temperature per day was 45 °C). The mature pollen of the tolerant cultivars had a higher
abundance of proline compared to sensitive pollen, while heat sensitive cultivars accumulated
the highest proline levels in anthers (Mutters et al. 1989). The authors concluded that in heat
sensitive cultivars the transfer of proline from anthers to pollen was inhibited. The impact of
heat stress on proline transport was confirmed by Sato et al. 2006 who showed that the
expression of the proline transporter 1 gene decreased in anthers of tomato under long heat
stress (32 °C/26 °C). In contrast, in rice the proline content decreased in anthers of plants
exposed to 39 °C for 4 h per day during 5 days. This might be caused by another mechanism
involving the transport of proline from the vegetative part to the reproductive part of the plant
(Tang et al. 2008a).

4.3. Lipids

Lipids play an important role in membrane fluidity especially under stress conditions. In
sorghum, a high temperature of 32 °C/28 °C for 10 days led to an increase of ROS content and
membrane alterations in pollen (Prasad and Djanaguiraman 2011). This increase was correlated
with a decrease of pollen viability and an alteration in pollen phospholipid content. Under high
temperature the abundance of bound unsaturated fatty acids increased whereas the abundance
of saturated fatty acids decreased. The authors suggested that membrane damage caused by
high temperature could be resulting from the increase of unsaturated fatty acids which will lead
to an increase of membrane fluidity due to the presence of double bonds. The unsaturated fatty
acid moieties make the membrane more vulnerable to ROS attacks. Similar results were found
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in soybean from which the decrease of pollen viability was also correlated to an alteration of in
phospholipid saturation (Djanaguiraman et al. 2013).

4.4. Polyamines

Polyamines have been reported to act in tolerance to many stresses such as cold, heat, salt,
drought and high metal concentrations (Fariduddin et al. 2013, Gupta et al. 2013). They can act
as ROS scavengers and maintain membrane integrity (Alcazar et al. 2006). In tomato,
incubation of pollen extract in germination medium for 20 h at 33 °C decreased the in vitro
pollen germination and this could be reversed by adding spermidine or spermine to the medium
(Song et al. 1999). This observation suggested that heat stress decreased the level of
polyamines. Indeed, an incubation of pollen at 38 °C during 4 h lowered the content of
spermidine and spermine whereas the content of putrescine increased and these changes
correlated with a decrease of pollen germination (Song et al. 2002). Adding spermidine or
spermine to the medium restored the level of pollen germination. The change in polyamine
content and the decrease of pollen germination was mostly due to a decrease of SAMDC (S-
adenosylmethionine decarboxylase) under heat stress. Blocking SAMDC translation with
cycloheximide could phenocopy the effect of heat stress, leading to decreased pollen
germination under control conditions. However, we cannot exclude that other proteins affecting
pollen germination may have been inhibited by cycloheximide as well. Contrasting results were
found in Japanese apricot (Prunus mume), in which a heat stress of 24 h at 35 °C decreased
pollen germination, but this could not be restored by adding polyamines to the medium. It was
hypothesised that this may have been due to a toxic level of exogenous polyamines (Wolukau
et al. 2004). Nevertheless, results in many crops suggest that polyamines have an important role
in pollen germination under heat stress.

4.5. Hormones

Brassinosteroids are steroidal hormones which play a role in responses to various abiotic
stresses, such as heat, salt and drought stress. They interact with heat shock proteins and also
play a role in ROS scavenging (Mazorra 2011). Under heat stress (35 °C for 4 h), the in vitro
pollen germination of tomato was increased in the presence of 24-epibrassinolide, a
brassinosteroid (Singh and Shono 2005), demonstrating a role for brassinosteroids in pollen
germination under high temperatures.

Ethylene is also involved in the response to heat stress (Larkindale and Knight 2002). A
mutation of the ethylene receptor (nr) increased the number of non-viable pollen under long
heat stress (32 °C/26 °C) and treatment of the plants with ethylene increased pollen viability
under long heat stress (Firon et al. 2012b).

A role for auxin under environmental stresses has been demonstrated in rice under drought
conditions (Zhang et al. 2009) and several genes involved in the auxin pathway are known to
have a role in withstanding abiotic stress (Jain and Khurana 2009). Under heat stress (30 °C/25
°C for 5 days), the level of auxin decreased in anthers of barley and arabidopsis, which
correlated to male sterility (Sakata et al. 2010). The application of exogenous auxin reversed
male sterility. Auxin content decreased in anthers of rice plants exposed to 39 °C for 4 h per
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day during 5 days and was correlated with a decrease of pollen viability and pollen germination
(Tang et al. 2008b). In this same study, the content in abscisic acid (ABA) and gibberelins (GA)
was also analysed. GA concentrations decreased under high temperatures and ABA
concentrations increased. High levels of ABA were already known to be associated with a
decrease of pollen germination (Frascaroli and Tuberosa 1993).

To tolerate heat stress, plants have to maintain metabolic homeostasis in order to avoid
disruption of pathways which could lead to abnormal accumulation or reduction of compounds
essential for pollen development (Figure 6). A high temperature can affect several compounds
at the same time; however, most of the studies are based on the analysis of one group of
compounds only (Table 2). Analysis of metabolites in pollen with untargeted approaches could
provide a global view on the metabolic responses to heat stress and may lead to the
identification of additional, novel compounds involved in the response to heat stress and
thermo-tolerance.

High temperature

Carbohydrates Proline Lipids Polyamines Hormones
* Pollen nutrition * A a.metabolism + Pollen germination * Pollen germination o Growth

* Osmo protection * ROSscavenging + Membeane fluidity * ROS scavenging + signalling

« Signalling * Signalling * Signalling

Pollen
viability

Fruit production

Figure 6. Metabolites affected by heat stress and their role in providing viable pollen.
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5. Breeding for Pollen Thermo-Tolerance
5.1. Heritability of Thermo-Tolerance

Since domestication started, humans tried to improve different plant traits such as disease
resistance and fruit production, by selecting the most promising plants for the next generation.
Nowadays, breeding for a reliable stable yield under environmental stress conditions is an
important target for breeders. Global warming has increased breeder’s awareness that they
should try to improve plants for tolerance to high temperatures. They do that by studying
different traits such as fruit set, photosynthesis activity, and pollen quality and by looking for
variation in these traits. Rudich et al. 2013 studied thermo-tolerance of different tomato
genotypes by analysing fruit set, pollen germination and pollination. Contrasting responses to
heat in the diverse genotypes made it possible to identify thermo-tolerant and thermo-sensitive
genotypes. It was also shown that the tolerance can be transferred to sensitive genotypes
through classical breeding. The heritability of a trait is a measure for a stable inheritance. The
heritability depends on the genetic and the environmental variance in a population (Nyquist and
Baker 1991). The heritability will be high if the genetic variance plays a relatively big role
compared to the environmental variance (Acquaah 2007). For a breeder, a high heritability
means that a trait will be stably expressed in the next generations. Several studies on the
heritability of thermo-tolerance have been conducted especially in tomato. Hanson et al. 2002
analysed the heritability of thermo-tolerance in an F2 population derived from a cross between
a thermo-tolerant and a thermo-sensitive tomato cultivar. They analysed the fruit set and found
a low heritability which implies that environmental conditions have a relatively big influence
on thermo-tolerance compared to the genetic background of the plant. Alternatively, the low
observed heritability may be due to the use of suboptimal, less robust phenotyping methods
which reduces the precision of phenotyping and therefore the discriminative power to detect
differences. The heritability of different parameters influencing thermo-tolerance, such as
pollen viability, pollen germination and fruit set, was studied by (Hazra et al. 2009). They also
found low heritabilities for those traits, in line with the results obtained by Hanson et al. 2002.
Other studies, carried out with a segregating F3 population of tomato grown in two high
temperature environments showed a high heritability for fruit set and fruit weight, but a low
heritability for yield (Wessel-Beaver and Scott 1992). The authors concluded that the high
heritability of those traits suggested that they can be improved by breeding. However, they also
noticed that thermo-tolerance might allow fruit set, but might lead to small fruits. The challenge
is to find genotypes with enhanced fruit set and with the capacity to still produce fruits with an
acceptable quality. The mechanisms involved in these two processes might be different.

5.2. OQTL Mapping for Thermo-Tolerance

Molecular markers are a useful tool for breeders to follow the introgression of specific genomic
regions (Quantitative trait loci, QTL) associated with a specific trait (Jain and Brar 2009). The
first step is to find QTL. This can be done by using two different forward genetics approaches
(Figure 7). The first one is by crossing genotypes that are contrasting for the trait of interest and
by producing mapping populations (QTL mapping). The second one is by using an available
germplasm collection in which the variation of the trait of interest will be studied (association
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mapping). In such populations, associations can be found between molecular markers and the
trait of interest. In this way, the QTL analysis can pinpoint specific chromosomal regions on
which one or more genes are located that influence the trait. Subsequently, breeders can select
for this trait using molecular markers, based on sequence polymorphisms in the region of
interest. This is called indirect or marker-assisted selection (Acquaah 2007). Marker assisted
selection has already been used to screen wheat varieties with markers related to grain filling
duration under heat stress (Sadat et al. 2013). A marker associated with pollen thermo-tolerance
could also be used to introduce thermo-tolerance into a sensitive genotype by classical breeding
(Figure 7). QTL analyses for thermo-tolerance traits have been carried out (i) by measuring
pollen viability, in maize (Frova and Sari-Gorla 1994), rice (Xiao et al. 2011) and tomato
(Kardivel 2010), or (ii) by measuring fruit set, in tomato (Grilli et al. 2007, Lin et al. 2010) and
in rice (Ye et al. 2012, Jagadish et al. 2010b). QTL identification can be the starting point of
more detailed analyses, for example QTL fine-mapping, which might lead to the identification
of more closely-linked molecular markers which can be used by breeders to screen at the
seedling stage for thermo-tolerant genotypes without too much linkage drag. Eventually, fine
mapping can even lead to the isolation of the key genes underlying thermo-tolerance. In
cowpea, QTLs related to thermo-tolerance have been identified by determining the number of
pods per peduncle in a population of recombinant inbred lines (Lucas et al. 2012). This led to
the identification of several candidate genes encoding a heat shock protein, a heat shock
transcription factor and a proline transporter. The confirmation of candidate genes can be done
in two different, so called, reverse genetics approaches (Figure 7). The first one is by targeting
a specific gene in a tilling (targeting induced local lesions in genomes) population and analyse
its phenotype. A tilling population is made by randomly mutagenizing seeds (Colbert et al.
2001). The second approach is by producing transgenic lines in which the candidate gene can
be (i) silenced using for example an anti-sense construct or (ii) over-expressed using for
example a constitutive or tissue-specific promoter. The phenotypic analysis of such lines may
confirm that the candidate gene is indeed responsible for the variation of the trait of interest
among the population. For example, if a candidate gene involved in pollen thermo-tolerance is
over-expressed, a better performance under high temperature is expected compared to the wild-

type.

In addition to pollen viability or fruit set, metabolite profiles vary under different temperatures
as well, particularly in pollen. The variation in levels of specific metabolites associated with
thermo-tolerance can be mapped and used as an alternative way of phenotyping pollen thermo-
tolerance. Firon et al. 2006 showed that the sugar levels are maintained in pollen of thermo-
tolerant genotypes whereas in sensitive genotypes the sugar levels decreased. It was suggested
that sugar level could be a good parameter for thermo-tolerance since it can be easily measured
in a more accurate way than pollen viability. The identification of metabolite QTLs (mQTL)
associated with thermo-tolerance could therefore be a useful tool to get novel insight into the
mechanisms conferring thermo-tolerance (Arbona et al. 2013, Fernie and Schauer 2009). In this
review, several compounds that play a role in pollen thermo-tolerance, such as sugars,
polyamines and hormones have been described. By studying the segregation of such
metabolites in a mapping population, specific chromosomal regions can be identified which
may be associated with pollen thermo-tolerance. The complex inheritance, low heritability and
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difficult phenotyping of thermo-tolerance make this a difficult trait to improve. The
development of a good mapping population and easy and reliable phenotyping methods is the
key to find thermo-tolerant QTLs and predictive molecular markers. QTL analysis is not the
only way to identify candidate genes related to pollen thermo-tolerance Alternatively, detailed
knowledge regarding the trait of interest may pinpoint towards specific candidate genes, whose
role in pollen thermo-tolerance can be analysed through reverse genetics approaches in which
the candidate gene is over-expressed or down-regulated by transgenic or tilling strategies
(Figure 7). For example, in this review different metabolites have been listed for their role in
pollen thermo-tolerance, such as for example flavonoids. Over-expression and/or down-
regulation of genes involved in the flavonoid pathway could lead to the identification of key
genes playing a role in thermo-tolerance. Such genes could form the basis to find (in diversity
screens) or create (through tilling) novel genetic variation that can be used to breed for pollen
thermo-tolerance, using the candidate gene as marker.

Marker inside gene ,
QTL mapping I

Phenotyping thermo-tolerant and thermo-
sensitive genotypes

Introgression
Marker assisted Use gene to find
selection Confirmed gene — novel genetic
funﬁnon variation*

3 Tillin Transgenic lines
New variety L 8

thermo-tolerant X thermo-sensitive population ( AS/OE)
cross
‘ Molecular §ene A
F1 I confirmation
‘ Self-pollination (SNP...) .
F2 :
‘ S Phenotyping _an _ Candidate
; Genot‘yping identification gene

B n-pollination

' Germplasm collection Metabolite pathways

RIL population”

. [ Association mapping ]
Forward genetics Reverse genetics

Figure 7. Breeding approaches to improve crop thermo-tolerance and create new thermo-tolerant varieties. QTL,
quantitative trait loci; RIL, recombinant inbred lines; SNP, single-nucleotide polymorphism; AS, anti-sense; OE,
over-expression. * this approach is only used in the case of reverse genetics

6. Conclusions

Pollens are very sensitive to heat and can be affected by heat stress during different
developmental stages. Thermo-tolerant and thermo-sensitive genotypes respond differently to
heat stress. This is reflected in differences in metabolite accumulation profiles during
development of mature fertile pollen. This review aimed to summarize the current state of the
art in our understanding of the metabolic basis for pollen thermo-tolerance. To date, several
metabolites have already been shown to play a role in pollen thermo-tolerance. The availability
of efficient “non-targeted” metabolic screening methods make it possible to obtain a broad view
on the metabolic processes involved in pollen thermo-tolerance and may lead to the
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identification of metabolic markers for pollen thermo-tolerance. This will allow a more efficient
screening for pollen thermo-tolerance in diverse germplasm and available mapping populations
and may lead to the identification of genetic markers and key genes involved in thermo-
tolerance. These can be used in breeding programs aimed at improving this important trait in
crop plants.
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Abstract

Untargeted metabolomics analysis powerful tool to detect hundreds of metabolites within a
given tissue. However, metabolomics approaches are not well developed in the pollen research
field. Common pollen isolation procedures require the use of solution to isolate the pollen that
is tightly enclosed within the anthers of the flower. These isolation protocols raise a number of
concerns for their suitability to metabolomics analyses, including metabolic activity upon
rehydration and anther contamination. We assessed the effect of different sample preparation
procedures currently used for pollen isolation for their suitability to perform untargeted
metabolomics analyses of tomato pollen. Our results demonstrated that (i) pollen isolation with
a watery solution led to rehydration of mature pollen grains. This induced metabolic changes
in flavonoids, phenylpropanoids and amino acids and a metabolite profile that does not reflect
the real biological state of mature pollen, (ii) conversion of sucrose into hexoses took place
during the metabolic extraction of rehydrated pollen, but this could be prevented by freeze
drying rehydrated pollen and (ii) the presence of anther tissue during the pollen isolation led to
contamination of specific metabolites (i.e. alkaloids), most likely originated from anther walls.
These compromise the metabolic purity of the pollen fraction. We concluded that the current
method used to isolate pollen is suboptimal and give recommendations to improve the pollen
isolation protocol, in order to obtain the most reliable metabolic profile from pollen tissue.

Key words : Pollen, metabolome, metabolomic, metabolite, anther, tomato
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Introduction

Over the last two decades new technologies have arisen which allow the examination of
hundreds to thousands of molecules within a single analysis. Those breakthrough technologies
called “Omics” have changed the way research is performed and led to a more comprehensive
view of biochemical processes. Metabolomics platforms are used to measure the relative
abundance of a large range of metabolites in any given tissue. More than 200,000 different
metabolites are estimated to exist in the plant kingdom (Fiehn, 2002). A proportion of these
metabolites are specific to a certain tissue, a species, or a condition and this expands the use of
metabolomics analyses as a deep chemical phenotyping tool (Fritsche-Neto et al. 2015). For
instance, associations between genotype and metabolic phenotype have been studied to identify
related markers to for instance fruit and vegetable quality, and biotic and abiotic stress
resistance (Tikunov et al. 2005, Riedelsheimer et al. 2012, Wahyuni et al. 2013, Viquez-Zamora
et al. 2014 and Xu et al. 2013). Metabolomics analyses generally include the following five
major steps: (i) sample preparation, (ii) sample analysis, preferably using different analytical
platforms, such as Gas Chromatography and Liquid Chromatography coupled to Mass
Spectrometry (GC-MS and LC-MS, respectively), (iii) data processing, including peak picking,
peak alignment and compound annotation, as far as is possible, (iv) statistical analysis and (v)
data interpretation (Fiehn 2002).

In general, in order to compare the abundance of any metabolite in a set of biological samples
it is essential to accurately determine the amount of sample and use the same sample weight per
volume of extraction solvent. Therefore, usually between 10 mg dry weight up to 1 g of fresh
material, well powdered in liquid nitrogen, is used for a single analysis (De Vos et al. 2007).
However, when working with small plant organs or tissues, such as pollen grains or trichomes,
it can be highly challenging to obtain this amount of material and determine its exact weight.
For instance, the diameter of one pollen grain from tomato (Solanum lycopersicum), is only
about 20 um and pollen of at least 10 mature flowers are needed to obtain 4 mg of (dry) tomato
pollen.

In plants, pollen is a key organ for a successful reproduction. Its role is to deliver the two sperm
cells to the female gametophyte (Twell 2002). The development of mature and fertile pollen
grains is required to accomplish its fate, fertilisation of an ovule. Due to the sensitivity of pollen
to environmental stresses, which can lead to an alteration of pollen quality and therefore a
decrease of yield in many crops, the number of studies on pollen is rapidly expanding (e.g. rice
(Saragih et al. 2013), sorghum (Prasad and Djanaguiraman 2011) and tomato (Firon et al.
2006)). To understand the dynamic processes and key steps leading to the development of a
mature and fertile pollen grain, several studies focussed on the analysis of transcripts, proteins
and metabolites in pollen (Rutley and Twell 2015, Muschietti et al. 1994, Paupicre et al. 2014).
However, comprehensive metabolomics of pollen grains, such as large-scale untargeted LCMS
or GCMS approaches, is not well developed compared to other omics technologies (figure 1).
So far, several studies have applied targeted analytical approaches to study specific classes of
compounds, such as carbohydrates and polyamines, during pollen development or in relation to
environmental stresses, such as high temperature (Pressman et al. 2002, Falasca et al. 2010 and
Firon et al. 2006). The extension of such targeted analyses with comprehensive metabolomics
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approaches will contribute to a better understanding of the metabolic dynamics occurring in
pollen during its development and in response to environmental stresses.

The key to obtain reliable metabolic information of pollen is the development and
implementation of reliable methods and protocols for pollen sample preparation and metabolite
extraction. Available protocols for pollen isolation raise a number of concerns with regard to
the metabolome, that needs to be addressed in order to ensure their suitability for untargeted
metabolomics analyses and interpretation of data. Firstly, pollen is commonly isolated by
disclosing the anthers in a solution, which also allows the release of unripe pollen in order to
study pollen at different developmental stages (Honys and Twell 2004, (Chaturvedi et al. 2013,
Firon et al. 2006, Aouali et al. 2001, Castro and Clement 2007). This solution consists of water
supplemented with mannitol or salts to prevent bursting of the pollen during their isolation (e.g.
Honys and Twell 2004 and Firon et al. 2006). However, during their maturation the pollen
grains dry within the anthers (Firon et al. 2012a). Thus, upon extraction from the anthers using
a watery solution, the pollen may partially or fully rehydrate. This could lead to unwanted
activation of enzymes present in the pollen which consequently may affect the metabolic
content and, thus, this pollen isolated in water may no longer reflect its dry mature state.
Secondly, to release pollen from the stamen, anthers are cut and/or squeezed (Chaturvedi et al.
2013, Firon et al. 2006). Although filters and washing steps are often used to prevent
contamination from the surrounding tissue, these measures cannot fully prevent the release of
metabolites from the anthers into the isolation solution. Appropriate measures should be taken
to avoid these unwanted artefacts.

Although a great progress has been made in developing complex analytical instruments and
powerful data analysis methods for metabolomics, so far little attention has been paid to the
impact of the very first steps of any metabolomics experiment on pollen: the sample collection.
The objective of this study was to assess the effect of different sample preparation procedures,
currently used for pollen isolation, for their suitability to perform untargeted metabolomics
analyses of tomato pollen. We used three liquid chromatography-based analytical platforms,
HPLC-LTQ Orbitrap MS of aqueous-methanol extract, HPLC-Q Exactive Orbitrap MS of polar
extracts and Dionex HPLC-ECD with electrochemical detection, to detect semi polar
compounds, organic acids/amino acids, and sugars, respectively. Based on the metabolomics
profiles obtained, we provide insight into the benefits, limitations and pitfalls of various
approaches for pollen isolation, lyophilisation and metabolite extraction. We provide
recommendations to limit metabolic alterations during the whole process of sample preparation
and analysis. The present results are not only relevant for future metabolomics studies on pollen,
but also provide more insight into the biochemistry of pollen during methods currently used to
harvest the pollen for other analytical approaches, including targeted metabolite analyses,
proteomics and transcriptomics.
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Figure 1. Numbers of documented results from the search on-omics and pollen. The search was performed on
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Scopus data base (www.scopus.com) with “pollen transcriptome”, “pollen proteome” and “pollen metabolome”
Material and methods
Plant materials and growth conditions

Seeds of the tomato (S. lycopersicum) genotype M-82 were obtained from the Tomato Genetics
Resource Centre. M-82 plants were grown in the greenhouse of Wageningen University &
Research Centre (The Netherlands) at 25°C during the day and 19°C during the night under
approximatively 13 hours of natural day light.

Pollen isolation methods

Two pollen isolation methods were applied: (i) dry isolation by flower vibration, and (ii) wet
isolation by anther squeezing in isolation solution (figure 2).

For the flower vibration method (i), pollen were directly isolated by vibrating the flower still
attached to the plant, using a milk frother to let the dry mature pollen fall into a 1.5-mL
Eppendorf tube. This method was used in most of the experiments, in particular for the samples
isolated by (a) vibration and then directly lyophilised (VL) and the technical replicates of these
VL pollen (VLT), (b) vibration-derived pollen incubated in isolation solution before
lyophilisation (VS), and (c) vibration-derived pollen incubated in isolation solution and then
lyophilised (VSL). For the squeezing method (ii), the flowers were detached from the plants
and kept on a petri dish on ice before pollen isolation. This method was used for pollen samples
isolated by squeezing in solution and then lyophilised (AL). An overview of the different
samples used are shown in figure 2 and in table 1. VL and VSL samples were used to assess
the metabolic changes by the presence of ice cold isolation solution. VSL and V'S samples were
used to compare the impact of lyophilisation. AL and VSL samples were used to analyse
metabolite contamination from the anthers. VLT samples were used to determine the technical
reproducibility of the metabolite extraction and metabolomics profiling of exactly the same
pollen material. For VL and VS six biological replicates were used, whereas for AL and VSL
five biological replicates were used. Each biological replicate consisted of a pool of
approximatively 10 flowers from a single plant, resulting in the isolation of 4-8mg of mature
pollen. For VLT samples, the pollen of six plants were pooled and subsequently divided into
six aliquots for metabolite extraction.
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Figure 2. Schema of pollen isolation methods tested. VSL: sample isolated by vibration incubated for one hour in
germination solution (+S) and lyophilised; VL: sample isolated by vibration and lyophilised; VS: sample isolated
by vibration incubated for one hour in germination solution and non lyophilised; AL: sample isolated by anther
(A) squeezing in germination solution and lyophilised

The isolation solution used to isolate pollen is described by Firon et al. 2006. The solution
consisted of 1 mM KNOs, 3 mM Ca(NO3)2, 0.8 mM MgSO4 and 1.6 mM H3BO;3 in distilled
water. In both VSL and VS samples, 500 pL of ice cold solution was added to the 1.5-mL
Eppendorf tube containing the mature pollen, followed by vortexing for one minute and then
keeping on ice for one hour, corresponding to the approximate time necessary to isolate pollen
in a standard experiment (data not shown). Eppendorf tubes were then centrifuged at minimum
speed of 100 g for 2 minutes at 4°C, followed by short spin at maximum speed of 17,000 g to
spin down the pollen as a pellet. 400 pL of the supernatant was removed by pipetting and the
remaining sample was frozen in liquid nitrogen and stored at -80°C.

For AL samples, pollen was isolated using an adapted version of the protocol described by
(Firon et al. 2006). In short, sepals and pistil were removed from the flower, after which the
anther cone was cut into three pieces with a sharp razor blade and transferred into a 50-mL
falcon tube on ice. Then, 10 mL of ice cold solution was added and the anthers were gently
squeezed against the falcon tube wall with a 13-mL Sarstedt tube before to be vortexed for ten
seconds to allow pollen release. The liquid was filtered with two layers of miracloth
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Calbiochem® and transferred into a clean 50-mL falcon tube on ice. The sample was
centrifuged at a minimum speed of § g for 15 minutes at 4°C. During the centrifugation, the
layers of miracloth were kept in the top of the tube enclosed, in order to recover the solution
present in the miracloth. The supernatant was discarded and the pollen pellet was washed again
with 500 pL of ice cold solution to limit anther contamination. The sample was shortly vortexed
and the pollen suspension was transferred into a new 1.5-mL Eppendorf tube which was
centrifuged at minimum speed of 100 g for 2 minutes at 4°C followed by short spin. 400 pL of
supernatant was removed by pipetting and samples frozen in liquid nitrogen and stored in -
80°C.

After preparation, all samples were frozen in liquid nitrogen and stored at -80°C until metabolite
extraction. To obtain lyophilized samples, the material was subjected to lyophilisation for 72
hours.

Homogenizing of pollen material

Flowers of tomato were used to test different pollen homogenization methods for metabolite
extraction. Pollen isolated by the squeezing method and lyophilized for 72 hours were used.
Two different methods were used to grind pollen: (i) manual grinding with a pestle (pestle
samples) and (ii) mechanical grinding with a tissue-lyser II Qiagen. Lyophilised mature pollen
were used for each condition. For the pestle samples, pollen were ground with a polypropylene
Eppendorf micro pestle in liquid nitrogen, the pollen powder was transferred in a 1.5-mL
Eppendorf tube. 210 pL of 100% methanol and 90 pL of distilled water were added to the 1.5-
mL Eppendorf tube to reach a final concentration of 70% methanol. For the tissue-lyser
samples, methanol was added similarly as described above and three 2-mm stainless steel beads
were added to the Eppendorf tubes. Pollen were subsequently ground with a tissuelyser for 5
minutes, 10 minutes or 15 minutes, with a frequency of 25 Hz. From each homogenized extract
a 10 pL aliquot was loaded into a Fuchs-Rosenthal haemocytometer (W. Schreck Hotheim/Ts)
to count pollen grains that were still intact. Extracts were inspected under a light microscope
and pollen grains were scored as still intact when they had a round shape with no visible bursts.

Metabolite extraction for VL, VLT, VSL and AL samples

The preparation of both polar and semi-polar metabolite extracts from pollen materials was
carried out at room temperature using a protocol adapted from Wahyuni et al. 2013 and
Carreno-Quintero et al. 2012. Before the homogenization step described above, a 10 uL aliquot
of the aqueous-methanol extract was transferred into a new 1.5-mL Eppendorf tube containing
500 pL of isolation solution for pollen counting. The pollen counting was performed as
described above and the pollen number served to normalise the metabolic data. The presence
of 70% methanol did not disrupt the pollen cells, which allowed the pollen counting. Then,
pollen homogenization was performed as described above with a tissue lyser grinding for 15
minutes at 25 Hz. The ground sample was sonicated for ten minutes and centrifuged at
maximum speed of 17,000 g for ten minutes. Then 200 pL of the methanol supernatant was
transferred into a new 1.5-mL Eppendorf tube containing 200 pL of 70% methanol to avoid
metabolite saturation. The extract was then filtered over a 0.2 pm polytetrafluoroethylene
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(PFTE) filter. The filtered extract was divided in three parts for LTQ Orbitrap LC-MS, Q-
exactive LC-MS and HPLC-ECD analysis, respectively.

For the LTQ orbitrap LC-MS, 100 pL of filtered extract was transferred into a 2-mL crimp glass
vial with insert and directly used for analysis.

For both the Q-exactive LC-MS and the HPLC-ECD, 80 L of filtered extract was transferred
into a new 1.5-mL Eppendorf tube. Then, 80 pL of distilled water and 40 uL of chloroform
were added and the sample was mixed for five minutes followed by centrifugation at maximum
speed of 17,000 g for ten minutes. 100 pL of the supernatant was transferred into a new 1.5-mL
Eppendorf tube for HPLC-ECD, while 55 pL of supernatant was transferred into a new 1.5-mL
Eppendorf tube. Both aqueous-methanol extracts were dried overnight in a speed vacuum.

For the HPLC-ECD, the dried extract was re-suspended in 100 pL of distilled water by pipetting
and vortexing. Then 100 pL of a ion exchange resin was added (van Arkel et al. 2012). The
sample was mixed on a roller band at 1,000 rpm for five minutes at room temperature. The
mixture was centrifuged at maximum speed of 17,000 g for five minutes and 100 pL of
supernatant was transferred into a HPLC vial.

For the Q-exactive LC-MS, the dried methanolic extract was re-suspended in 55 pL of distilled
water by pipetting and vortexing. Then 50 pL was transferred into a 2-mL crimp glass vial with
a 100 pL insert.

Metabolic profiling

The LTQ Orbitrap LC-MS system was composed of a C18 column (phenomenex), a Water
Acquity HPLC connected to a photodiode array (PDA) detector and an LTQ/Orbitrap hybrid
mass spectrometer as previously described by van der Hooft et al. 2012 and by Moco et al.
2006. The ion source was set in negative ionization ion mode. For the measurements, 10 pL of
sample was injected into the system. The Xcalibur program was used for data collection.

The Q Exactive Orbitrap LC-MS analyses were carried out with a Dionex Ultimate 3000 Series
RS pump coupled with a TCC-3000RS column compartment and a WPS-3000RS auto sampler
(Thermo Fisher Scientific, Waltham, MA). A Discovery HS F5-3 (Supelco: 150*2.1 mm, 3 um
particles) column was used for chromatographic separation at 40 °C. Mobile phase A consisted
of water and mobile phase B of acetonitrile, both acidified with 0.1% formic acid. The gradient
started with 0% B for 5 min and was increased from 0% to 25 % in 20 min. Then the column
was washed by increasing mobile phase B to 80% in 5 min and held constant for 3 min. Finally,
the mobile phase returned to 0% B and maintained for 8§ min to equilibrate the column. A flow
rate of 0.1 mL/min and an injection volume of 5 pL was used. The detection of compounds was
performed using a Q-Exactive Plus mass spectrometer (Thermo Scientific). A heated
electrospray ionization source (HESI-II) in positive/negative ionization mode switching was
used for ionization. The ionization voltage was optimized at 3.5 kV for positive mode and 2.5
kV for negative mode; capillary temperature was set at 250 °C; the auxiliary gas heater
temperature was set to 220 °C; sheath gas, auxiliary gas and the sweep gas flow were optimized
at 36, 10 and 1 arbitrary units, respectively. Full scan data in both positive and negative mode
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was acquired at a resolving power of 35,000 FWHM at m/z 200. A scan range of m/z 90-1350
was chosen. The automatic gain control was set at 3e6 and the injection time was set to 200 ms.
External mass calibration was performed in positive and negative modes before each sample
series. The Xcalibur software was used for data collection.

The HPLC-ECD (Dionex) was composed of a Carbopac™ PA-100 guard column, a
Carbopac™ PA-100 (4 x 250) column and an ED40 Electrochemical detector (Dionex). The
sugar elution was previously described by (van Arkel et al. 2012).

Metabolomics data processing

For the LQT Orbitrap LC-MS, data were processed using MetAlign software (available from
www.metalign.nl; (Lommen 2009), to correct for baseline, peak picking, and mass alignment
of chromatograms as previously described by Tikunov et al. 2005 and De Vos et al. 2007,
respectively. The mass peaks were extracted and aligned by MetAlign sofware at a signal cut-
off threshold setting of 12,500 ion counts per scan. Processed mass signals were kept for further
analysis when they were present in at least all the biological replicates per treatment. MSClust
software (Tikunov et al. 2012) was then used to group mass features originating from the same
molecule and to extract quantitative ions of compounds represented by the highest intensity ion
within the feature group. If a quantitative ion selected by MSClust showed saturation of the MS
detector, this ion was replaced by its second or third isotopic ion. Putative annotation of
metabolites detected was performed using an in-house accurate mass/retention time database
generated by previous LCMS experiments on tomato tissues (Moco et al. 2006; van der Hooft
et al. 2012) and the online database METLIN (http://metlin.scripps.edu/). The level of
identification was performed according to The Metabolomics Standards Initiative requirements
(Sumner et al. 2007): identified compounds got level I when Nuclear Magnetic Resonance was
previously performed or an authentic standard has been used for unambiguous identification,
level II when no authentic standard was used but annotation was made with both
physicochemical property and spectral similarities, level III when the (class of the) compound
has previously been reported for tomato, and finally level IV in case further annotation of the
detected metabolite was impossible.

For the Q exactive LC-MS authentic standards of the organic acids malic acid, succinic acid
and the amino acids proline, serine, asparagine, glutamine, threonine, glutamate, lysine,
histidine, arginine, GABA, valine, isoleucine, leucine, and phenylalanine were used to ensure
unambiguous identification. Chromatograms were extracted with Xcalibur software. A
processing method was established using a ICIS peak integration based on the authentic
standards that considered the mass (m/z) at 5 ppm window, the retention time, the smoothing
points, baseline window, area noise factor and peak noise factor. The parameters were
optimized for each detected metabolite. The height of the peak was then retrieved from the peak
integration file.

For the HPLC-ECD (Dionex), sugars were identified and quantified (in mg/ml) using a
calibration curve of authentic fructose, glucose and sucrose standards.
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Statistical analysis

We used between five and six biological replicates for VL, VSL, VS and AL samples and six
technical replicates for TL samples. All the metabolites were normalised by pollen number
which varied between 156 and 56. To determine which metabolites were different between
conditions, a one-way anova per single metabolite was carried out on log2 transformed values
using the IBM SPSS statistic software package 20 (www.ibm.com). Performing a large number
of statistical tests can lead to an increase of type I errors (false positives). For instance, with a
classical significance threshold alpha of 0.05 per single test and the number tests equal to the
number of detected metabolites (57), 0.05*57 =~ 3 metabolites could be expected to be false
positives when no real differences exist. Hence, due to this high number of variables, we used
a lower significance threshold alpha of 0.005. Metabolites showing significance in the one-way
anova test were followed up using a Tukey’s HSD post hoc test (alpha=0.05).

Results

In the procedure from pollen isolation to the final analysis of analytical data, the following steps
were distinguished and examined:

a) Pollen isolation and release
b) Lyophilisation

¢) Pollen homogenisation

d) Technical reproducibility

Figure 2 gives a schematic overview of the different steps in this procedure. An overview of
the different parameters tested and samples used is shown in table 1. In total, we annotated 56
metabolites including secondary metabolites detected by the HPLC-LTQ Orbitrap MS
(Supplementary data table 1), amino/organic acid detected by HPLC-Q Exactive Orbitrap MS
(Supplementary data table 2) and sugars by Dionex HPLC (Supplementary data table 3).

Table 1. Overview of samples used in this study

Abb. Pollen isolation method Incubation in germination solution Lypophilisation Purpose
VLT Vibration No Yes Reproducibility
VL Vibration No Yes Rehydration
VS Vibration Yes No Sugar conversion

Contamination
VSL Vibration Yes Yes Sugar conversion
Rehydration

AL Squeezing Yes Yes Contamination

It is worth mentioning that the possible influence of the resulting differential sample matrix,
due to adding salt-containing solution or not, was firstly assessed: from all the compounds
detected by the three metabolomic platforms, only malate and arginine showed a decreased
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peak intensity in the presence of the salty solution, most likely due to ion suppression caused
by solution components that co-eluted with these two metabolites (Data not shown). Therefore,
the interpretation of differential pollen isolation effects on these two compounds must be
addressed with care. We did not use a Gas Chromatography-Mass Spectrometry platform to
detect polar metabolites (e.g. sugars, amino/organic acids), because most of these metabolites
showed a decreased derivation efficiency when isolated in solution, due the presence of salts
(data not shown). This made it impossible to compare samples isolated with different methods.

Pollen isolation and release methods

Pollen can be isolated by different methods. The most easy and direct manner to isolate pollen
was vibrating the flowers, leading to the release of mature dry pollen. However, flower
vibration does not allow the isolation of pollen at earlier stages of development, since they are
still attached to the anther tissue. Isolation of unripe pollen is therefore usually achieved by
cutting anthers of different sizes (i.e. different developmental stages) into pieces with a razor
blade and subsequently releasing their pollen by squeezing the anthers in an isotonic solution
(Chaturvedi et al. 2013). This method was called “anther squeeze method”. After its isolation,
the pollen was lyophilised, if applicable, and stored at -80°C until further use.

Figure 3. Pollen shape. Pictures of imbibed (A) and dry (B) mature pollen of M-82 observed under a light
microscope. Dry pollen was observed in oil to avoid imbibition

Pollen rehydration during isolation

When dry mature pollen was isolated in solution, the pollen underwent a rehydration process
which was clearly visible under a light microscope (figure 3). Pollen increased their volume
and obtained a round shape. To determine if these morphological transformations was
accompanied with metabolic changes, freshly harvested dry mature pollen (VL) were compared
with the same pollen incubated for one hour in solution (VSL). To correct for their differential
water contents, both samples were freeze-dried before metabolite extraction. Six metabolites,
out of the total of 56 annotated showed a significant difference of more than 2-fold between
VSL and VL samples (Supplementary data tables 1 and 2). The amino acid glutamate, two
flavonoids (i.e. kaempferol aglycone and kaempferol-glucoside-rhamnoside) and the phenolic
acid 5-caffeoylquinic acid were 1.8, 2.3, 2.4 and 4.7-fold more abundant in VL samples than in
VSL samples, respectively (figure 4A and B), whereas the amino acids serine, glutamine, and
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the organic acid malate were 4.7, 2.0 and 3.2-fold more abundant in VSL samples than in VL
samples, respectively (figure 4B). This comparison indicates that isolation of mature pollen in
solution, as compared to vibration derived pollen, leads to metabolic changes likely due to
rehydration, and therefore should be regarded as “imbibed pollen”.
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Figure 4. Metabolites affected by rehydration. A, compounds detected by the Orbitrap LC-MS method and B,
compound detected by Q-Exactive LC-MS. VL: vibrated pollen directly lyophilised; VSL: vibration derived pollen
firstly incubated in germination solution and then lyophilised. Kaemp-glu-rham: Kaempferol 3-alpha-D-glucoside-
7-rhamnoside; Kaemp, kaempferol; 5-Caff-Q, 5-Caffeoylquinic acid. Error bars represent the standard deviation
of the means (n= 5-6)

Effect of pollen release from anthers

When anthers are squeezed in a solution, contamination by anther tissue may take place (figure
5), but these anther pieces are mainly removed by filtering through miracloth.

Nevertheless, upon squeezing, metabolites from the anther tissues may be dissolved in the
isolation solution. We therefore compared the metabolite profile of mature pollen released by
squeezing (AL) with that of mature pollen released by vibration followed by a one hour
incubation in isolation solution (VSL). Thus, both pollen samples were rehydrated in isolation
solution for the exact same time, and were then lyophilised. All sugars, amino acids and organic
acids, detected with both the Q exactive LC-MS and the Dionex HPLC system, showed less
than 2-fold differences between the two pollen release methods (Supplementary data table 1
and 2). However, more than half of the annotated semi-polar compounds, detected
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Figure 5. Contamination from anther tissue during pollen isolation. Pollen grains were stained with Alexander
dye for a better visualisation under light microscope. P, pollen grain and C, anther contamination

by LTQ orbitrap LC-MS, showed at least a 2-fold difference between the two release methods
(Supplementary data table 1, figure 6). Most of the alkaloids present in the AL samples were
not detectable in the VSL samples. The same was true for the phenylpropanoid feruloyl quinic
acid. In addition, several other compounds were significantly higher in AL than in VSL
samples, such as the flavonol glycoside kaempferol-glucoside-rhamnoside (5.1-fold), two
forms of caffeoyl-dicoumaroyl spermidine (up to 4.2-fold) and dicoumaroyl spermidine (2-
fold) (figure 6B and 6C); the flavonol quercetin-glucoside was detected in VSL samples only.
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Figure 6. Metabolites affected by the release method. VSL: Vibration derived pollen incubated in germination
solution and then lyophilised; AL: pollen isolated by squeezing and then lyophilised. A, alkaloids; B, polyamines;
C, flavonoids and phenolic acids; D, flavonoid. caff, caffeoyl; dicoum, dicoumaroyl; spm, spermidine; fer,
feruloyl; tricoum, tricoumaroyl. Kaemp, kaempferol aglycone; glu, glucoside; rham, rhamnoside; Q, quinic acid.
Error bars represent the standard deviation of the means (n=5-6)
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In contrast, the flavonoids kaempferol diglucoside 1 (8.4-fold), kaempferol aglycone (1.8-fold),
three forms of the polyamines feruloyl-dicoumaroyl spermidine (up to 25-fold) and
tricoumaroyl spermidine (15-fold) showed a lower accumulation in AL samples compared to
VSL samples (figure 6B, 6C and 6D). These results clearly indicate that the two different pollen
isolation methods lead to samples with a markedly different metabolite composition.

The effect of lyophilisation on the metabolic profile of tomato pollen

Pollen released into isolation solution are rehydrated and can be dried again by lyophilisation
(freeze drying), in order to correct for variable pollen water contents, for instance due to
differential development stage or germination time. Tomato pollen is known to contain a very
active acid invertase that may lead to conversion of sucrose into glucose and fructose during
isolation of pollen in solution and subsequent downstream processing (Pressman et al. 2002).
To test whether lyophilisation might help in preventing such enzyme-related metabolic
conversions, dry pollen was isolated by flower vibration and incubated for one hour in solution,
to mimic the isolation in solution with squeezing, and subsequently frozen in liquid nitrogen.
Half of the sample was dried by lyophilisation for 72 hours before metabolite extraction (VSL
samples), while the other half was extracted “wet” (VS). During tissue homogenisation and
metabolite extraction, the ratio solvent/water used for lyophilised (VSL) and non-lyophilised
samples (VS) was adjusted to correct for their differential water contents.
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Figure 7. Metabolites affected by lyophilisation. VSL, Vibration derived pollen incubated in germination solution
and lyophilised; VS, vibrating pollen incubated in germination solution and non-lyophilised. Error bars represent
the standard deviation of the means (n=5-6)

Among the annotated metabolites detected by the three metabolomics platforms, only the three
sugars sucrose, fructose and glucose showed a statistically significant and more than 2-fold
difference between the two samples (Supplementary data table 3). The hexoses glucose and
fructose were present at 5.7 and 3.5-fold higher levels, respectively, whereas sucrose levels
were 2-fold lower in VS samples compared to VSL samples (figure 7). We obtained similar
results when pollen was isolated with the standard isolation protocol using anther squeezing
method (data not shown). These results revealed that lyophilisation of rehydrated mature or wet
unripe pollen is an important step to avoid conversion of sucrose into hexose sugars. These
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results also suggest that this conversion can still take place after the pollen isolation step, i.e.
during their homogenisation and/or extraction.
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Figure 8. Number of intact pollen grains remaining after different grinding methods. Pestle: manual grinding with
an Eppendorf micropestle; 5,10,15min: grinding with three stainless steel beads and an automatic tissuelyser.
Number of pollen grains remaining after treatments were counted under a light microscope. Error bars represents
the standard deviation of the mean

The effect of pollen homogenization

To determine the optimal method to obtain homogenized pollen material for
metabolomics studies, we compared two different homogenization techniques for mature
pollen: (ii) manual grinding using an Eppendorf micro pestle and (ii) mechanical grinding using
a tissue-lyser. The latter was tested at increasing duration of grinding (figure 8). Subsequent
counting of the number of intact pollen under the microscope (figure 8) revealed that the
grinding with a micro pestle gave always more intact pollen per pL than with the tissue-lyser:
intact pollen were clearly visible in the pestle samples, while grinding with the tissue-lyser for
only 5 minutes already broke most pollen and after 15 minutes no intact pollen was observed
at all. Thus, the mechanical grinding for 15 min was the optimal homogenizing method for
mature pollen.

Technical reproducibility

Dry pollen of different tomato plants was pooled and divided into six aliquots in order to assess
the technical reproducibility of metabolite extraction of pollen tissue. In total 50 metabolites
could be annotated in these pollen (Supplementary data table 1,2,3). A high correlation
coefficient of 0.99 was found in the different aliquots with a Cronbach’s alpha coefficient of
0.997 indicating a strong reproducibility between the technical replicates (table 2). Individual
coefficients of variation were determined for each compound and 94% of the compounds (47
compounds) showed a coefficient of variation less than 35% (Supplementary data table 4). The
glycoalkaloid alpha-tomatin, the flavonoid quercetin 3-O-glucoside and feruloyl-dicoumaroyl
spermidine 1 had a coefficient of variation larger than 45%, suggesting that the extraction
method used may be further optimized, at least for these three compounds.
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Table 2. Coefficient of correlation between the technical replicates based on Person correlation

Correlation Matrix
ltem | VLT1 VLT2 VLT3 VLT4 VLTS5 VLT6
VLT1 | 1.0000
VLT2 | 0.9993 1.0000
VLT3 | 0.9992 0.9988 1.0000
VLT4 | 0.9996 0.9998 0.9988 1.0000
VLTS5 | 0.9996 0.9998 0.9992 0.9997 1.0000
VLT6 | 0.9990 0.9997 0.9981 0.9996 0.9997 1.0000
Cronbach's alpha : 0.997

Discussion

We have shown that diverse aspects of the pollen isolation procedure can influence the final
result of the pollen metabolome analysis, independently from the variables under study, such
as growing conditions, developmental stage or genetic background. These aspects will be
discussed below and recommendations will be given in order to obtain the most reliable
metabolic data from pollen.

Imbibed versus dry pollen

During pollen development, the pollen of tomato undergoes a desiccation process in the final
stage of its maturation (Firon et al. 2012a), thereby conferring tolerance to abiotic stresses. We
observed that the incubation of pollen in solution during isolation led to pollen rehydration.
Therefore, pollen isolated in such a way needs to be considered as imbibed pollen (with analogy
to seed). Although isolation in a solution is the most widespread method, isolation of dry mature
pollen without solution is also found in literature (Song et al. 2001, Song et al. 2002). We called
this isolation method flower vibrating with further pollen lyophilisation (VL). The comparison
of VL with VSL (when pollen is exposed to isolation solution) showed specific metabolic
differences, even when both samples were harvested by vibration to avoid any possible anther
tissue contamination and were lyophilised to correct for the differences in water content.
Rehydration of pollen is known to have consequences on the metabolic dynamics. A study with
Capsicum annuum pollen showed that only 30 minutes incubation in an osmotic solution at
room temperature led to significant pollen rehydration and changes in sugar content (Garcia et
al. 2013). Furthermore, Ricinus communis seed, which, like pollen, is dry at maturity, showed
marked metabolic changes upon rehydration at room temperature, with an accumulation of
TCA metabolites (Ribeiro et al. 2015). In our experiments, we did not observe changes in sugar
content in pollen collected and kept in the solution, but imbibed pollen accumulated a large
amount of malate. Since we also observed that the detection of malate can be hindered by co-
eluting salt components of the isolation solution, the increase in malate content in the rehydrated
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VSL samples, as compared to the dry VL samples, might even be an underestimation. In
addition, dry pollen contained more glutamate, while imbibed pollen contained more glutamine.
Since glutamate is the precursor of glutamine, we speculate that pollen rehydration led to a
conversion of glutamate into glutamine by a yet unknown physiological mechanism. Although
we performed the isolation of pollen on ice cold solution, in order to inhibit enzymatic activities
as much as possible, these results suggest that this 1 hour pollen incubation in solution, i.e. the
approximate time needed to isolate (ripe or unripe) pollen from anthers, is sufficient to allow
significant enzyme-mediated metabolic changes in the pollen. Support for metabolic activities
even at low temperatures can also be drawn from the proteomics study on imbibing Glycine
max seeds, in which an imbibition at 4°C for 24h showed marked changes in the protein profiles
(Cheng et al. 2010). In addition to malate and glutamate/glutamine, several other compounds
were altered by the one hour incubation in isolation solution, such as flavonoids, a
phenylpropanoid and the amino acid serine. The use of mature dry pollen without further
contact with water (i.e. isolation using the flower vibration method) thus will optimally ensure
the analysis of pollen in their actual biochemical state. However, pollen at earlier stages of
development cannot be released by simply vibrating the flower, as immature tomato pollen is
tightly enclosed in the anther locule. Hence, cutting and squeezing anthers in an osmotic
solution is unavoidable if the research aim is to collect and compare pollen of different
developmental stages. Based on the above, we recommend using the terminology ‘imbibed
pollen’ when pollen isolation is performed in any water-containing solution, to discriminate
with the data from naturally dry mature pollen.

The isolation of pollen by anther squeezing causes metabolic contamination

To force the release of pollen, anthers may be cut, squeezed and vortexed. Hence, several anther
tissue fractions are present in the isolation solution, such as pollen cells, locular fluid and anther
walls. Even if washing steps and tissue filtration are performed, contamination of the pollen
fraction by metabolites released from anther cells other than pollen cannot be excluded. We
compared mature pollen isolated by vibration (VSL) and by anther squeezing (AL), which both
had been incubated for the same period of time in isolation solution to prevent rehydration
disparity. We observed that alkaloids and the phenolic acid feruloyl quinic acid were only
present in pollen from squeezed anthers as compared with imbibed vibrated pollen. Such a
difference in metabolites could reflect a contamination from anther fractions other than the
pollen cells. Interestingly, some compounds, i.e. kaempferol diglucoside, feruloyl dicoumaroyl
spermidine, tricoumaroyl spermidine and quercetin glucoside, were much less abundant in
squeezed anthers than in imbibed vibrated pollen. This suggests that other processes than anther
contamination may also affect the metabolic composition of obtained pollen using these two
isolation procedures. Recently, Fragkostefanakis et al. 2016 mentioned that the collection of
pollen from anthers can be sorted in two categories: the “released pollen”, that is easily released
by simple vortexing of the anthers in a solution, and the “unreleased pollen”, which represents
the pollen grains that remained on the anther wall after vortexing and need mechanical
disruption (squeezing) for its release. This distinction makes us speculate that the two releasing
methods applied in our study, VSL and AL, may lead to isolation of different pollen types,
analogous to the released and unreleased pollen fractions mentioned by Fragkostefanakis et al.
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2016. We cannot exclude that our AL samples include unreleased pollen, in addition to the
released pollen. The latter may metabolically differ from the fraction of released pollen, which
is likely the major fraction in the VSL samples. The difference of pollen fraction might also
explain the strong difference in the presence of alkaloids. However, we previously assessed the
metabolic composition of released pollen isolated with cut anthers in solution, but without the
squeezing step, and observed similar alkaloid accumulation. This implies that alkaloids are
more likely to come from the anther fraction than from another pollen population. Besides,
several studies have also shown that metabolites can be found at the surface of the pollen, such
as flavonoids and polyamines (Vantunen et al. 1991, Grienenberger et al. 2009). The filtration
and washing step used to isolate AL samples could lead to a decrease of these specific
metabolites. In conclusion, the pollen isolation method based on squeezing of anthers in
germination medium should be addressed with care, since it could lead to anther contamination,
isolation of different pollen fractions or washing away of surface compounds, in addition to the
above-mentioned metabolic effect of imbibition.

Lyophilisation of pollen may prevent metabolic changes during subsequent homogenisation
and extraction.

The final step of the pollen isolation procedure in solution results in a pellet of wetted pollen
cells submerged in solution. There are two reasons to remove this solution and dry the pollen
sample by lyophilisation: (1) pollen have different levels of water status during their
development (Firon et al. 2012a). Lyophilising samples is thus required to avoid possible
metabolite differences related to differential water content of developmental stages; (2) pollen
contains a very high invertase activity that may lead to conversion of sugars in an aqueous
environment (Pressman et al. 2002). We compared the metabolite profile of Iyophilised (VSL)
and non-lyophilised (VS) mature tomato pollen wetted with isolation solution as normally used
for isolating pollen from different developmental stages (Pressman et al. 2012). Non-
lyophilized VS samples showed a marked decrease in the disaccharide sucrose and a
concomitant increase in the monosaccharides glucose and fructose, due to the higher activity of
acid invertases in VS samples, most likely happening during homogenisation of the isolated
pollen and/or metabolite extraction. In VS samples the mature pollen was wet and surrounded
by solution, although frozen in liquid nitrogen, when pure methanol (at room temperature) was
added that might thaw the tissue prior to tissue homogenization, while in VSL samples the
pollen was dry before addition of methanol. We speculate that it was at this thawing step in
methanol or during homogenisation when the acid invertase can be temporally activated at least
in the case of the non-lyophilized pollen. Hence, we recommend to always lyophilise isolated
pollen samples before metabolite extraction. As Obermeyer et al. 2013 have performed
extraction of pollen metabolites of Lily (Lilium longiflorum) with methanol precooled at -20°C,
adding a cold extraction solution can be an alternative to lyophilisation in order to prevent acid
invertase activity. However, extraction at low temperatures needs further investigation, since it
might also affect the extraction efficiency of less-soluble metabolites.
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Tissue lyser ensures the complete homogenisation of tomato pollen

Before performing a metabolomics analysis, it is recommended to grind the tissue in order to
facilitate and optimize the release of metabolites into the extraction solvent. Our results showed
that manual grinding pollen using a pestle led to a relative high number of still intact pollen
grains per uL, as compared to using an automatic tissue lyser with stainless steel balls. We
previously observed that the presence of a high number of intact cells leads to a lower
abundance of metabolites in the methanolic extracts (data not shown), suggesting that 70%
methanol is not sufficient to open the intact pollen cells, due to the thick wall that surrounds the
pollen. Hence, we recommend the use of a tissue lyser to grind the pollen for at least 15 minutes.

Conclusions

We have shown that different steps in the pollen isolation and extract preparation protocols
usually applied in transcriptomics and proteomics research significantly influence the tomato
pollen metabolome. To summarize (i) we recommend the use of a tissue lyser for grinding
pollen for at least 15 minutes to ensure the optimal breaking of pollen cells, (ii) to use only
pollen isolated by vibration to study the metabolic composition of mature pollen, (iii) if mature
pollen is to be compared with earlier stages of development, an isolation solution is needed and
the pollen should thus be qualified as imbibed, (ii) more efforts should be put on finding an
isolation solution that prevents pollen rehydration. However, the suitability of any new isolation
solution for metabolite extraction and metabolomics analysis needs to be assessed, (iv) the
matrix effect must be verified when samples contain salts as used in standard pollen isolation
solution. Alternatively, a different isolation solution should be used to prevent matrix effects
(i.e. mannitol supplemented water), (v) the experimentalist needs to be aware that anther
contaminations can occur during the squeezing step to release its pollen. More investigations
are required to improve the purity of the pollen fraction either by increasing the washing and
filtration step, or by determining the metabolic specificity of each fraction. Although we made
progress to achieve a reliable metabolic profile of pollen cells, several aspects remain
unanswered and deserve further investigations: How might pollen at young developmental
stages react to the incubation in ice cold isolation solutions? How can we assess the purity of
pollen samples? Do different fractions of pollen derived from the same anther differ
metabolically? And why the conversion of sugars did not occur during pollen isolation that
lasted for one hour, but apparently occurred rapidly during extraction?
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Abstract

Developing pollen are among the plant structures most sensitive to high temperatures and a
decrease of pollen viability is often associated with an alteration of metabolite content. Most of
the metabolic studies of pollen have focused on a specific group of compounds, which limits
the identification of physiologically important metabolites. To get a better insight in pollen
development and the pollen heat stress response we used a liquid chromatography mass
spectrometry platform to detect secondary metabolites in pollen of tomato (Solanum
lycopersicum L.) at three developmental stages under control conditions and after a short heat
stress at 38 °C. Under control conditions, the young microspores accumulated a large amount
of alkaloids and polyamines whereas the mature pollen strongly accumulated flavonoids. The
heat stress treatment led to accumulation of flavonoids in the microspore. The biological role
of the detected metabolites is discussed. This study provides the first untargeted metabolomic
analysis of developing pollen under a changing environment that can serve as reference for
further studies.

Key words: Pollen development, metabolomics, untargeted analysis, heat stress, high
temperature

64



Introduction

Sexual reproduction is a critical process in the plant life cycle and results in the production of
seeds and fruits, major components of the human diet. The plant life cycle can be divided into
two phases, sporophytic and gametophytic. In angiosperms, the embryo sac is the female
gametophyte and is embedded within the ovule, whereas the pollen grain is the male
gametophyte and is located inside the anther (Drews and Yadegari 2002; Borg et al. 2009).
Pollen development is a complex process that ends with the release of mature pollen grains
from the anthers at flower anthesis (Twell 2002; Honys et al. 2006; Hafidh et al. 2016). A major
event during pollen development is the meiosis of the pollen mother cell, which results in
formation of a tetrad of haploid microspores. Microspores are then released from the tetrads
and during further microspore development, the vacuole expands and the nucleus migrates to
one side of the cell. This polarization is the signal for the nucleus to undergo an asymmetrical
mitotic division and produce the early bicellular pollen. The two cells of the bicellular pollen
have different forms as well as different functions: the smaller, generative cell will later on give
rise to the two sperm cells, whereas the surrounding, larger, vegetative cell will produce the
pollen tube to ensure delivery of the sperm cells to the female gametophyte.

Tomato (Solanum lycopersicum L.) is an economically important crop. Pollen development of
this plant is susceptible to various abiotic disturbances (Dominguez et al. 2005; Sato et al. 2000;
Sato et al. 2006; Kamel et al. 2010). The development of mature and fertile pollen is one of the
key processes for successful fertilization. A decrease of pollen fertility has major consequences
for fruit yield (Kartikeya et al. 2012). Pollen development is particularly sensitive to high
temperatures (Bokszczanin et al. 2013). A few degrees above the optimal growing temperature
of tomato (18-25 °C) can already lead to a decrease of pollen viability. This is often associated
with aberrations occurring during pollen development such as premature degeneration of the
tapetum and inhibition of anther dehiscence (Suzuki et al. 2001; Matsui and Omasa 2002). In
addition, the decrease in pollen viability upon heat stress is associated with a reduction of
specific metabolites, such as carbohydrates and polyamines (Pressman et al. 2002; Song et al.
2002).

During its development, the young developing pollen is nurtured with metabolites coming from
the tapetum and the locular fluid. Studies with specific mutants, sterile lines and biosynthetic
inhibitors have shown that a decrease in the level of particular metabolites, such as the amino
acid proline, glutathione, polyamines, and certain hormones is associated to a decrease of pollen
fertility. These effects could be (partly) complemented through addition of the respective
metabolites (Mattioli et al. 2012; Zechmann et al. 2011; Falasca et al. 2010; Cheng et al. 2006;
Goto and Pharis 1999; Ishiguro et al. 2001). Besides their role in pollen nutrition or signaling,
metabolites can serve as protectants against environmental stresses. For instance, flavonoids
and polyamines can act as scavengers of reactive oxygen species (ROS) (Rice-Evans et al.
1996; Ha et al. 1998). Despite these examples, the current knowledge on the role and
importance of primary and secondary metabolites during pollen development is still limited
(reviewed by Paupicre et al. 2014).

Most studies addressing metabolic changes during pollen development have focused on the
detection of a restricted group of target compounds. Over the last decade, the use of mass
spectrometry-based metabolomics approaches, e.g. gas chromatography-mass spectrometry
(GC-MS) and liquid chromatography-mass spectrometry (LC-MS), made it possible to detect
simultaneously hundreds to thousands of metabolites in a single extract. This has provided a
more comprehensive insight in various aspects of plant development and stress responses
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(Kaplan et al. 2004; Kim et al. 2007; Osorio et al. 2011), including the dynamics of the primary
metabolome during pollen germination in lily (Lilium longiflorum) (Obermeyer et al. 2013).

Our current understanding of the physiological processes occurring during tomato pollen
development under optimal conditions and in response to heat stress is largely based on
proteomics and transcriptomics data (Chaturvedi et al. 2013; Honys and Twell 2004).
Metabolomics approaches are necessary to complement the omics-derived knowledge and
enable developing models for the system as a whole. The objective of this study was to explore
the composition and dynamics of the secondary metabolome of tomato pollen, under a normal
temperature of 22 °C and after a short heat stress of two hours at 38 °C. Our results show that
the most significant metabolic changes involved the conjugation and relative abundance of
flavonoids, polyamines and alkaloids.

Materials and Methods
Plant materials and growing conditions

Tomato (Solanum lycopersicum L.) seeds, cultivar Micro-Tom, were obtained from the
National Bioresource Project in Japan (TOMJPF00001). Plants were grown in a climate
chamber (MC1600 Snijders Labs, The Netherlands) under constant temperature of 22 °C, with
12/12 hour photoperiod and a relative humidity of 60%. Light was provided by LED lamps
(Philips Green Power LED DR/B/FR 120, = 250 pmol/m?s).

When approximatively five to eight flowers had appeared on the plants, they were subjected to
a heat stress of 38 °C or kept at control conditions. After 2 hours of treatment pollen were
harvested as described below. Treatments were performed in a staggered fashion, with 30-
minute gaps between plants to reduce the time that samples were kept on ice during pollen
isolation and were done over a six-day period such that three biological repetitions were
collected for each of the heat stress and the control conditions, each consisting of a pool of
pollen derived from flower buds of 10 plants.

&mim 8mm mature

Figure 2. Pollen development of S. lycopersicum Micro-Tom cv. Pollen of polarized microspore stage is
represented in Fig. A-A’; Pollen of early bicellular stage is represented in Fig. B-B’; Pollen of mature pollen stage
with a vegetative nucleus (V) and a generative nucleus (G) is represented in Fig. C-C’. Sizes of the anther are
indicated above the pictures. A-C, fluorescence microscopy after DAPI staining to visualize the nucleus; A’-C’,
light microscopy

Determination of pollen developmental stages

To determine pollen developmental stages, flower buds of Micro-Tom were measured, and
anthers were cut into 2-3 pieces and subsequently placed in a 0.3 M mannitol solution. Pollen
were released from the anther by vortexing, precipitated by centrifugation at 1000 rpm and
incubated with 70% ethanol at room temperature for 30 minutes. The supernatant was removed
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after one minute of centrifugation, and pollen were incubated with 10-30 ul of DAPI 2-5 pg/ml
in the dark for one hour. One droplet of DAPI-stained pollen suspension was transferred to a
glass slide and analysed with a Leica TCS SP2 AOBS Confocal Laser Scanning Microscope.
Three pollen developmental stages were used for this study: polarized microspore, early
bicellular pollen and mature pollen (Figure. 1).

Pollen harvesting

The pollen harvesting procedure was adapted from the protocol of Firon et al. 2006. Flower
buds were removed from the plants and kept on ice. The bud size was determined with a ruler
from the base of the anther until the tip including the sepals. Petals, pistil and sepals were
removed with forceps before the anther cone was cut into pieces. Anther pieces were transferred
into a 1.5-ml Eppendorf tube containing 500 pL ice cold germination solution and stored on
ice. The germination solution consisted of 1 mM KNOs, 3 mM Ca(NO3)2.4H20, 0.8 mM
MgS04.7H20 and 1.6 mM H3BO3 dissolved in distilled water. Anthers were squeezed with a 1
ml pipette tip to release the pollen. After vortexing, the solution was filtered through four layers
of miracloth (Calbiochem) and then centrifuged at 300 g for two minutes at 4 °C followed by a
short spin at maximum speed of 17000g. Supernatant was removed and the pollen pellet was
washed with 100 pL of ice cold germination solution, followed by centrifugation. This was
repeated once and then the pollen pellet was transferred into a pre-weighted 2-ml Eppendorf
tube, frozen in liquid nitrogen, stored at -80 °C and then freeze dried. Pre-weighted 2-ml
Eppendorf tubes containing the freeze dried pollen were subsequently weighted to determine
the weight of the pollen.

Pollen viability

Pollen quality was analysed by in-vitro pollen germination and pollen viability tests. Flower
buds of 6 and 8 mm were treated as described above, labelled and analysed upon anthesis. Open
flowers were analysed directly after treatment. Five plants were used per treatment and stage;
per plant one to four open flowers were analysed. Petals, pistil and sepals were removed and
the anther cone was cut into slices and incubated in a humid atmosphere at room temperature
for 30 minutes to allow slow hydration of dry pollen. Anther pieces were transferred to an
Eppendorf tube containing germination solution, as described above, supplemented with 5%
sucrose and 25% polyethylene glycol 4000. The sample was vortexed for 10 seconds to release
pollen and incubated for two hours at room temperature while rotating slowly. Per open flower
at least 100 pollen grains were counted and scored as germinated, viable or dead. Pollen were
considered as germinated when the pollen tube length exceeded the pollen diameter, as viable
when pollen were hydrated and as dead when pollen grains did not hydrate. A plant was taken
as a biological replicate, leading to at least five biological replicates per developmental stage
and per treatment.

Metabolite extraction

Semi-polar metabolites extractions were carried out at room temperature using
water:methanol:chloroform separation, as previously described by Wahyuni et al. 2013. 300 pL
of 70% methanol was added to each pollen extract as well as three 2-mm stainless steel beads.
Samples were homogenized for 15 minutes using a Tissuelyser (Qiagen®) followed by
sonication for 10 minutes and centrifugation for 10 minimum at maximum speed of 17000g.
200 pL of the supernatant was transferred into a new 1.5 ml Eppendorf tube containing 200 pL
of 70% methanol and filtered with a 0.2 um polytetrafluoroethylene filter. The weight of
original freeze dried pollen samples varied from 1.96 to 4.8 mg. To avoid a situation where the
sample weight-related quantitative metabolic differences would go beyond the linear detection
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range of the mass spectrometer detector, each extract was diluted with 70% methanol
proportionally to the difference between the weight of its original freeze dried sample and the
sample with the minimal weight. The final extract was transferred into a 2 ml crimp glass vial
with insert.

Metabolic profiling

Semi-polar metabolites were separated using a C-18 reversed phase liquid chromatography
column and detected by quadrupole time of flight mass spectrometry (LC-QTOF-MS) with
negative electrospray ionization. The LC-MS was also coupled to a photodiode array detector
allowing spectrophotometric detection. 10 pL of extract were injected and separated using a
binary gradient of water (A) and acetonitrile (B), both acidified with 0.1% formic acid, with a
flow rate of 0.19 ml/min. The initial solvent composition consisted of 95% of A and 5% of B;
increased linearly to 35% A and 65% B in 45 min and maintained for 2 min. The column was
washed with 25% A and 75% B for 5 min and equilibrated to 95% A and 5% B for 2 min before
the next injection as previously described by De Vos et al. 2007 and Wahyuni et al. 2013. The
data were recorded with MassLynx software.

Metabolite data processing

LC-QTOF-MS data were processed using MetAlign software (available from
www.metalign.nl) to correct for the baseline and noise and to perform a mass spectral alignment
of chromatograms as previously described by (Tikunov et al. 2005 ; De Vos et al. 2007).
MetAlign output was reduced by omitting mass data showing values lower than the detection
threshold (20 ion counts) in more than two samples once the estimated peak signal was
subtracted to the estimated noise signal. Compound mass spectra and quantitative ions were
extracted from the modified MetAlign outputs using a method described in (Tikunov et al.
2012) by MsClust software (available from www.metalign.nl). MSClust output was reduced by
keeping compounds that were quantitatively present in all the replicates of one of the
experimental treatments: heat stress or control. LC-QTOF-MS masses were kept for analysis
when at least one sample had a relative abundance higher than 200 counts. If a quantitative ion
automatically selected by MSClust showed saturation of the MS detector, this ion was replaced
by its second or third isotopic ion. MSClust output files were then used for compound
annotation. Putative annotation of ions was performed with an in-house metabolite database
and metabolite online databases Dictionary of Natural Products (http://dnp.chemnetbase.com/)
and METLIN (http://metlin.scripps.edu/). The annotation of compounds was performed
according to the Metabolomics Standards Initiative requirements (Sumner et al. 2007).
Identified compounds were annotated level I when NMR was performed on annotated
compounds from the in-house library, level Il when an analytical standard was used to annotate
the compounds from the in-house library, or when a tandem mass spectrometry was performed
and level III when compounds were annotated based on their mass. Annotation level of
compounds are indicated in the supplementary data Table 1.

Tandem mass spectrometry

An MS? analysis was performed using Acquity UPLC — PDA e Detector (Waters) coupled to
LTQ Orbitrap XL mass spectrometer (Thermo Scientific). The MS? analysis was performed as
previously described by van der Hooft et al. 2011 and Wahyuni et al. 2011. Negative masses
598.25, 612.27, 582.26 and 785.35 have been submitted to MS/MS and MS? using the most
intense ion within a 3 Da window around the selected masses, a CID activation type and a
normalized collision energy of 35.0. Fragmentation outputs were analysed in Excalibur to
establish a fragmentation tree of each mass and allow the identification.
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Determination of flavonoids and polyamines total abundance

The UV spectrum was obtained from the photo diode array detector of the LC-QTOF-MS. Peak
areas of flavonoids were obtained by integration at 340 = 15 nm. Peak areas of conjugated
polyamines were obtained by integration at 260 + 15 nm.

Statistical analysis

All the statistical analyses were performed with Genstat 18" Edition except mentioned
otherwise. For the metabolomics analysis three biological replicates per developmental stage
and treatment were used. Statistical analyses were performed on log2 transformed values. A
univariate ANOVA analysis was performed for each annotated metabolite with a treatment
structure: condition factor x development factor and a block structure considering the number
of observations within plants. This block structure was introduced in order to overcome the
dependency between stages, since the samples at the three developmental stages were taken
from the same pool of plants. Due to the large number of variables generated by metabolomics
analysis, 41 secondary metabolites, the statistically significant p-value threshold was adjusted
for multiple testing. A P-value of 0.01 was used as a threshold. The ANOVA of metabolites
with a statistically significant p-value was followed by a Bonferroni’s post hoc test to correct
for the number of analysed pair-wise comparisons; p-values lower than 0.05 were considered
statistically significant. A principal component analysis was performed on log2 transformed
and mean centered values for both metabolomics platforms with GeneMaths XT v.2.12. For the
short heat stress pollen viability test, at least five biological replicates per developmental stage
and per treatment were used. The IBM SPSS statistic software package 20 (www.ibm.com) was
used to perform the ANOVAs on the ratio of viable and germinated pollen followed by a
Tukey’s post hoc test; p-values lower than 0.05 were considered statistically significant.

Pollen viability

0.90

0.6
Germinated pollen
H Viable pollen
0.30
0.00

6mm-C 6mm-HS 8mm-C 8mm-HS

Ratio
[=]

Figure 2. Pollen viability under control and heat stress treatments. 6mm, polarized microspore; 8mm, early
bicellular pollen; M, mature pollen; C, control condition; HS, heat stress treatment. No statistically significant
differences were found between control and heat stress treatments for each of the developmental stages (Tukey
test, p-value <0.05). Bars represent the standard error of the mean.

Results

Pollen viability

In order to determine the impact of a short heat stress on tomato pollen quality, plants were kept
in control temperature or exposed to 38 °C for two hours. Buds of different developmental
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stages were labeled and analysed upon anthesis: 6 mm buds, i.e. containing mostly polarized
microspores, 8§ mm buds, containing early bicellular pollen and open flowers, containing mature
pollen (Figure. 1). The heat treatment did not lead to statistically significant changes in the
proportion of germinated or viable pollen in the three pollen developmental stages tested
(Figure 2, p-value >0.05). This means that potential differences in metabolite abundance are
likely to reflect the cellular heat stress response, rather than deterioration of (part of) the pollen
grains.

Table 1 Identification of hydroxycinnamic acid conjugated polyamines by MS?? identification. Sperm,
spermidine; coum, coumaroyl; caff, caffeoyl; fer, feruloyl; spn, spermine.

Compound  [M-H] MS2 MS3 Name Formula

358,436 [sperm + coum + coum -HJ, 462, 478, 452 [ 358—315,358—300, 452—332 [sperm + caff+ CO-HJ,

Compound 1 598 )
spernr+count+caff-H] 452—316,462—342, 478—342. 478358

Caffeoyl dicoumaroyl spermidine C;4H;7N;04

492299, 492—161, 492—372 , 492316

492,372, 476, 466  fer + coum -HJ', 462 coun+CO-HY, 492342, 492175 [feruloyl-2H ) .
Compownd2 612 [sperm + for + coum -H] [spermtcourn T, 492~ — 175 [ferdloyk2H] o dicoumaroyl spermidine. CasHioN50,
[sperm -+ coum -+ coun+CO -H] 492145 [sperm], 372175 [feruloyh-2H]', 476145,

466320, 462—145 , 462342
545, 639 [spntcounrtcounrtcoum-H]-, 665 [spn . ,
Compound 3 785 . 545—399, 665—545 [sprr+counr+count2CO-H] Tetracoumaroyl spermine Cy6HsoN4Og
“+coun+counr+coun+CO-H]’,
462342 ° 462316 [sperm+coum+CO-H]’, 462—299.
462 [spermtcountcoum+CO-HT, 436 - —316 [spermtcoum?CO-H, 462299,

Compound 4 582 countcoun-HY, 342 436-316[sperm+count+CO-HY, 436273, Tricoumaroylspermidine CuliNs0s
[spermtcounrtcoum-HJ', 342-299,342-256

To analyse changes in secondary metabolites during pollen development and upon high
temperature stress a LC-QTOF-MS analysis was performed on semi-polar extracts of tomato
pollen. In total 41 putative compounds were detected in different pollen samples of which 38
could be annotated. Most of the putatively identified secondary metabolites belonged to three
major groups: flavonoids, polyamines and alkaloids (Supplementary data Table 1). Polyamines
showed a large structural diversity and their peaks were the most intense in the chromatograms
(Supplementary data Figure. 1). To shed light on the structural variation of the polyamines in
tomato pollen, the major parent ions of 598.25 Da, 612.27 Da, 785.35 Da and 582.26 Da,
representing the most abundant unknown polyamines, were subjected to MS? fragmentation
(Table 1). We found that spermidine was conjugated with coumaroyl (coum), caffeoyl (caff)
and feruloyl (fer) moieties, while spermine was conjugated with coumaroyl moieties only. The
fragmentation of the mass 598 gave three relevant fragments: 436 [sperm+coum+coum-H],
452 [sperm+coum+caff-H]" and 332 [sperm+caff+CO-H]", which led to the identification of
caffeoyl dicoumaroyl spermidine, C34H37N307. The fragmentation of the mass 612 gave four
relevant fragments: 466 [spermtfert+coum-H], 462 [sperm+coum+coum+CO-H], 316
[sperm+coum+coum+CO-H], 175 [feruloyl-2H] and 145 [sperm], which led to the
identification of feruloyl dicoumaroyl spermidine, C3sH39N307. The fragmentation of the mass
785 gave three relevant fragments: 639  [spntcoum-+coum+tcoum-H], 665
[spnt+coum+coum+coum+CO-H]" and 545 [spnt+coum+coum+2CO-H],, which led to the
identification of tetracoumaroyl spermine. The fragmentation of the mass 582 gave three
relevant fragments: 462 [sperm+coum+coum+CO-H], 436 [sperm+coum-+coum-H]  and
316[sperm+coum+CO-H], which led to the identification of tricoumaroyl spermidine.

Developmental changes in secondary metabolism of Micro-Tom pollen

Principal component analysis (PCA) of the LC-QTOF-MS data revealed three groups
corresponding to the three pollen developmental stages (Figure 3A). The first principal
component represented most of the differences among the samples explaining 74.8% of the
variance. This was due to the difference between the earliest of the three stages, the polarized
microspores, and the two later developmental stages. The variance of the first component was
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mainly due to two compounds, the flavonol kaempferol dihexoside and the alkaloid beta-
tomatine, which showed a contrasting accumulation pattern during pollen development.

Figure 3. Principal component analysis (PCA) of secondary metabolism. The PCA of the samples is represented
in plot A with light green dots for 6mm control (C) sample, dark green dots for 6mm heat stress (HS) sample, light
blue dots for 8mm-C, dark blue dots for 8mm-HS, light pink dots for M-C, and red dots for M-HS. Component 1
(C1), component 2 (C2) and component 3 (C3) explain 74.8%, 10.3% and 4.3% of the observed variation,
respectively. The metabolites responsible for the variation among the samples are represented in plot B with grey
dots for unknown compounds, red dots for alkaloids, yellow dots for conjugated polyamines, and green dots for
flavonoids. 46, beta-tomatin; 47, tomatin and 48 kaempferol dihexose. The PCA was performed on log2
transformed and mean centred values.

Sixteen annotated metabolites showed significant differences between the developmental stages
under control conditions (p-value <0.005, Supplementary data Table 1). During pollen
development the alkaloids alpha and beta-tomatin significantly decreased between polarized
microspore and mature pollen stage by 2.3-fold and 16.6-fold, respectively (Figure 4A).
Kaempferol dihexoside significantly increased by 16.7-fold in mature pollen compared to
polarized microspores (Figure 4B). Nineteen (out of 25) different spermidine conjugates
significantly decreased during pollen development: four isomers of dicoumaroyl spermidine
and two isomers of feruloyl coumaroyl spermidine significantly decreased between polarized
and bicellular stage (Figure 4C and D). Different isomers of other conjugated polyamines such
as caffeoyl dicoumaroyl spermidine, tricoumaroyl spermidine, diferuloyl coumaroyl
spermidine and feruloyl dicoumaroyl spermidine also showed a significant decrease during
pollen development (Supplementary data Table 1). In general, the abundance of all the alkaloids
and most of the polyamines showed a tendency to decrease during pollen development,
although the majority of those differences were not significant (Supplementary data Table 1).

Differences in ionization efficiency make a quantitative comparison of different flavonoids and
spermidines impossible. However, the use of a photodiode array (PDA) detector allowed us to
compare the relative abundance of the individual and the total abundance of all flavonoids and
polyamines within each sample, by measuring their absorbance at 340 + 15 nm and 260 + 15
nm, respectively (Figure 5, Supplementary data table 2). During pollen development, the total
abundance of flavonoids increased significantly by 8.5-fold from polarized microspore to
mature pollen stage (Figure 5A). Kaempferol dihexoside was the most abundant flavonoid form
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among the detected flavonoids in mature pollen and significantly increased from polarized
microspores to mature pollen. The total abundance of conjugated polyamines decreased with
37% from polarized microspore to early bicellular pollen stage (Figure 5B). At the level of
individual compounds, the total abundance of dicoumaroyl spermidine, diferuloyl coumaroyl
spermidine, feruloyl coumaroyl spermidine, feruloyl dicoumaroyl spermidine and tricoumaroyl
spermidine forms significantly decreased between polarized and early bicellular pollen stage
while the total abundance of caffeoyl dicoumaroyl spermidine forms significantly decreased
from early bicellular to mature pollen stages (Figure 5B).
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Figure 4. Secondary metabolite profiles during pollen development under control condition. The values per stage
represent the average value per stage of both control and heat conditions. Only metabolites showing statistically
significant differences between the developmental stages are represented. Abundances of alkaloids are represented
in panel A, flavonoids in panel B, dicoumaroyl spermidine isomers in panel C and caffeoyl dicoumaroyl
spermidine isomers in panel D. 6mm, polarized microspore; 8mm, early bicellular pollen; M, mature pollen; C,
control condition; Dicoum, dicoumaroyl; Sperm, spermidine; Fer, feruloyl. Letters show statistically significant
differences between the developmental stages per metabolite. Similar letters per metabolite indicate that there was
no significant difference between the stages. Differences were considered statistically significant when the p-value
of the ANOVA test was lower than 0.01 and the p-value of the Bonferroni post hoc test was lower than 0.05.

The effect of a short heat stress on pollen secondary metabolism

The PCA of the secondary metabolites did not show a clear separation of the two temperature
treatments, neither in the first, nor in the second or third principle component (Figure 3A). In
line with the PCA, two-way ANOVA revealed that among the 38 putatively annotated
compounds, none showed significant differences between control and heat stress
(Supplementary data Table 1). However, the total level of flavonoids was significantly, 2-fold,
higher after the short heat stress compared to control conditions in polarized microspores
(Figure 6, Supplementary data Table 3). Although the unidentified flavonoid 1 showed a
significant two-way interaction (Supplementary data Table 2), it did not meet the criteria of the
Bonferroni post hoc test (Supplementary data Table 3) The individual flavonoids all showed
the same trend, but did not reach our statistical threshold. Neither polyamine levels nor alkaloid
levels seemed to be affected by the heat stress applied.
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Discussion

The objective of this study was to obtain a broad overview of the changes in the secondary
metabolome during tomato pollen development under control conditions and after a heat stress
treatment, by using a non-targeted metabolomics approach. Data on secondary metabolites in
developing pollen are still limited and only a few targeted approaches have been used in the
past (Paupiére et al. 2014).
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Figure 5. Absorbance profiles of secondary metabolites during pollen development under control condition. The
values per stage represent the average value per stage of both control and heat conditions. The absorbance of
flavonoids detected using photodiode array (PDA) at 340 + 15 nm are represented in panel A. The abundance of
polyamines detected by PDA at 260 + 15 nm are represented in panel B. Isomers of each conjugated polyamine
were summed up to represent the total abundance of each conjugated form. 6mm, polarized microspore; 8mm,
early bicellular pollen; M, mature pollen; C, control condition. K, kaempferol; Q, quercetin; rut, rutinoside; coum,
coumaroyl; caff, caffeoyl; fer, feruloyl; spm, spermidine; spn, spermine; total conj. Pol, total conjugated
polyamines. Letters show statistically significant differences between the developmental stages per metabolite.
Similar letters per metabolite indicate that there was no significant difference between the stages. Differences were
considered statistically significant when the p-value of the ANOVA test was lower than 0.01 and the p-value of
the Bonferroni post hoc test was lower than 0.05.

Metabolomics analyses were performed on three pollen developmental stages: polarized
microspores, early bicellular pollen and mature pollen. It is worth mentioning that young,
developing pollen such as at the polarized microspore and early bicellular pollen stages, are
tightly enclosed in the anthers and cannot be easily released from them. As was done in previous
studies, to achieve the release of early stage pollen, they were collected in an osmotic
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germination solution (Firon et al. 2006; Pressman et al. 2002; Chaturvedi et al. 2013). However,
the incubation of mature dry pollen in a solution during pollen isolation leads to pollen
rehydration and therefore the studied mature pollen needs to be considered as imbibed pollen.
Also, despite the precautions taken during isolation, we cannot exclude that the squeezing of
anthers in the germination solution to release young microspores may lead to some
contamination from the anther tissue and/or the locular fluid.

Pollen development
Polyamines

Polyamines are known to be widely present in the plant kingdom. They can be found in a free
form, bound to proteins or conjugated with other metabolites such as phenolic acids (Aloisi et
al. 2016). The majority of the polyamine forms detected in this study of developing pollen were
spermidine acylated with hydroxycinnamic

Flavonoids

Tetal absorbance
=
v
o
=]
o

6mm-C 6mm-HS

Figure 6. Total absorbance of flavonoids under control and heat stress treatments. The total abundance of
flavonoids was determined by the sum of the photodiode array absorbance of individual flavonoids at 340 nm +
15. Stars underline statistically significant differences between 6mm-C and 6mm-HS. Letters show statistically
significant differences between the developmental stage per metabolite. Similar letters per metabolite indicate that
there was no significant difference between the stages. Differences were considered statistically significant when
the p-value of the ANOVA test was lower than 0.01 and the p-value of the Bonferroni post hoc test was lower than
0.05.

moieties such as coumaroyl, caffeoyl and feruloyl groups, commonly known as
hydroxycinnamic acid amides. These compounds have also been found in Arabidopsis thaliana
mature pollen (Handrick et al. 2010). The total level of conjugated polyamines was 37% lower
in late pollen developmental stages compared with polarized microspores. The conjugated
forms of polyamines are considered to be relatively inactive compared to free forms (Bagni et
al. 1994), although the physiological role of acylated polyamines has not been clarified
completely yet. It has been suggested, for example, that acylation may promote the stability and
compartmentation of polyamines (Bassard et al. 2010), which is of importance for cell types,
such as pollen, in which preservation of resources plays a crucial role. Recently, it was shown
that a mutation of a spermidine hydroxycinnamoyltransferase in Arabidopsis thaliana resulted
in a lower level of conjugated spermidine together with pollen wall irregularities
(Grienenberger et al. 2009) and defects in seed set (Fellenberg et al. 2008). Our limited
understanding of the role of conjugated polyamines in plant development and stress response
might, at least in part, be due to the fact that most of the genes involved in their conjugation
have not been identified yet (Tiburcio et al. 2014). Nevertheless, several roles of polyamines
have been demonstrated. With two to four nitrogen atoms, polyamines may play a role in the
nitrogen metabolism, as was already suggested by Altman and Levin 1993. Additionally,

74



polyamines act in the protection against environmental stresses, since they scavenge reactive
oxygen species and preserve the integrity of membranes (Ha et al. 1998; Das and Misra 2004).
Polyamines are also known to be important compounds for pollen development. For instance,
inhibition of the polyamine pathway by pharmacological or genetic means led to a reduction of
pollen viability in kiwi (Actinidia deliciosa), rice (Oryza sativa) and tomato (Falasca et al. 2010;
Chen et al. 2014; Song et al. 2001). Finally, polyamines play a role in pollen tube growth
through the organization of the cytoskeleton and the cell wall deposition of the pollen tube
(Aloisi et al. 2016). A proper cytoskeleton organization is required to ensure the cell expansion
and transport of the two sperm cells. Incorporation of polyamines in actin filaments directly
affects actin polymerization and subsequent pollen tube growth. In addition, proteins
conjugated with polyamines were found in the cell wall of the growing pollen tube, which is
another indication that polyamines are involved in pollen tube growth (Di Sandro et al. 2010).
It is currently unclear if the observed changes in the relative abundance of specific polyamine-
conjugates during pollen development and the small, but significant (37%) decrease in the total
level of conjugated polyamines have functional consequences in relation to pollen development
and the subsequent fertilization processes, such as pollen tube growth.

Flavonoids

We observed a strong increase in the total abundance of flavonoids during tomato pollen
development. Kaempferol, conjugated with two yet unknown hexose sugar moieties, was found
to be the predominant compound of this class. In line with our study, kaempferol glycosides
were the most abundant flavonoid forms in pollen of petunia (Petunia hybrida L.) (Zerback et
al. 1989). Many studies have shown the importance of flavonoids for pollen viability, especially
through the characterization of CHALCONE SYNTHASE (CHS) mutants, which show
decreased pollen germination in many species, including petunia (Taylor and Jorgensen 1992),
maize (Zea mays) (Coe et al. 1981) and tomato (Schijlen et al. 2007). The strong accumulation
of flavonoids observed in imbibed mature pollen suggests an important role for these
compounds in pollen development, pollen germination or pollen tube growth. Although the
mechanisms of flavonoid action are still unclear, it has been suggested that flavonoids
contribute to pollen wall plasticity to allow for fast pollen tube growth (Derksen et al. 1999).
Flavonoids are also powerful antioxidants that protect against environmental stresses by
scavenging reactive oxygen species (Rice-Evans et al. 1996). It is important to note that only
conjugated forms of flavonoids were detected. These conjugated forms are considered as the
storage form of flavonoids. In the petunia CHS mutant, pollen germination could only be
rescued by adding flavonol aglycones to the in-vitro germination medium, while flavonol
glycosides were not effective (Mo et al. 1992). It has been hypothesized that flavonol glycosides
act as a reserve to provide the aglycone form when needed through the action of a glycosidase.
In line with this, we assume that the conjugated flavonoids accumulated in mature pollen will
be converted into aglycone forms and used during pollen germination and pollen tube growth.

Alkaloids

The two glycoalkaloids o and B-tomatin were profoundly accumulated in young polarized
microspores compared to mature stages. Glycoalkaloids are well known for their ability to
protect against biotic stresses, they inhibit the growth of fungi and are toxic for insects
(Friedman 2002). The knowledge on the role of glycoalkaloids in pollen is scarce, but the
different levels of glycoalkaloids observed in different stages of pollen development might be
important to ensure an optimal defense against biotic attacks during plant reproduction. This
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idea would agree with the finding that the concentration of a-tomatin has been reported to be
2-fold higher in flowers than in leaves of tomato plants (Kozukue et al. 2004).

In addition to the annotated compounds discussed above, three unknown compounds showed
statistically significant differences between the different developmental stages. Elucidating
their identities might be relevant to increase the knowledge of the metabolic dynamics occurring
during pollen development.

Impact of heat stress

It is well known that a rise of temperature leads to a decrease of pollen viability (Muller and
Rieu 2016). In tomato for instance, both a short heat shock and a long-term mildly elevated
growth temperature can lead to a significant reduction of pollen numbers and germination
potential (Firon et al. 2006; Dane et al. 1991; Fragkostefanakis et al. 2016). To be able to study
the effect of heat treatment on pollen metabolome, we applied a heat treatment that did not
affect the viability of resulting mature pollen. Indeed, a more severe heat shock would be
required to affect pollen development (Iwahori 1965). However, short-term exposure to non-
damaging high temperatures is known to lead to acquired thermo-tolerance, i.e. improved
ability of pollen to withstand subsequent damaging temperatures (Firon et al. 2012; data not
shown). Thus, it might be expected that the treatment applied here elicits adaptive metabolic
responses in pollen. We did not observe a strong impact of our heat treatment on the pollen
metabolome after two hours of heat stress; an increase in the total abundance of flavonoids in
polarized microspore stage was the only significant metabolic alteration detected. Flavonoids
play an important role in the detoxification of ROS (Rice-Evans et al. 1996). Under temperature
stress, ROS often accumulate and play a role in signaling (Driedonks et al. 2015). However, at
the same time their accumulation is harmful for the cell, explaining why temperature stress is
often associated with accumulation of ROS scavengers (Suzuki and Mittler 2006). We therefore
suggest that the accumulation of flavonoids upon heat is involved in the protection against ROS.

The weak metabolic response in the three pollen developmental stages contrast with the
findings of Kaplan et al. 2004, who showed that a short heat stress of 40 °C led to a dynamic
response of the primary metabolome in leaves of Arabidopsis. Given that we analyzed the
pollen directly after heat application, it is likely that the increase in flavonoids is part of the
very initial metabolic response to heat stress and that further responses occur at later time points.
The use of earlier developmental stages such as meiotic microspore, known to be most sensitive
to short heat stress, could potentially offer a stronger metabolic response. However, the low
metabolite content of this stage makes the use of metabolomics analysis challenging (data not
shown). As summarized by Mesihovic et al. 2016 the determination of a heat stress regime is a
critical aspect when studying heat stress responses and this strongly influences the final
outcome. This study was a first attempt to study the influence of heat stress on the secondary
metabolome in pollen. In future studies, we aim to determine the metabolic response of pollen
to heat stress at several time points after a given heat treatment and at different developmental
stages. This should lead to a more comprehensive picture of the dynamics in the secondary
metabolite response of tomato pollen to heat stress.

To summarize, this study was the first attempt to unravel secondary metabolites changes from
microspore to mature pollen stage under changing environment and can serve as reference for
future investigation of these processes. We provided an untargeted analysis of secondary
metabolites in developing tomato pollen grains. Young pollen stages accumulated specific
conjugated polyamines and alkaloids whereas mature pollen stage accumulated more
flavonoids. The short heat stress of 2 hours at 38 °C led to an increase in total content of
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flavonoids upon stress in the microspore stage. The accumulation of flavonoids may protect
against oxidative damage induced by the temperature increase.
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Supplementary data table 3. Fold changes of compounds that showed a statistically significant difference at the
two way interaction stage x condition (p-value of the ANOVA < 0.01). Stars indicate statistically significant fold
change at the Bonferroni post hoc test. 6mm, polarized microspore; 8mm, early bicellular pollen; M, mature; C,
control condition; HS, short heat stress condition

6mm-C 6mm-C  8mm-C 6mm-C 8mm-C  M-C

Compound VS VS. VS. VS VS Vs
8mm-C M-C M-C 6mmHS 8mm-HS M-HS
Flavonoid 1 1.30 -1.67 -2.16 -1.66 -1.26 1.19
Total flavonoids -9.25 * -13.42 * -1.45 -2.05 * -1.06 1.08
By T8
T
f
|
66
rd
45'
| f.‘-l
| 77
56 N 53T |
= ssq 1 TE 73
“Z\‘icﬂ\\lﬁs g o] L L

Supplementary data Figure 1 Total ion count chromatogram of mature pollen obtained by LC-QTOF-MS
negative mode. Peaks are labelled with compound numbers that can be found in supplementary data Table 1
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Abstract

Among the abiotic stresses affecting plant reproduction, high temperature is one of the most
prominent ones because it directly affects fruit set. So far, little attention has been paid to the
investigation of the variation in high temperature tolerance among wild tomato germplasm. The
objective of this study was to determine the tolerance of 17 different cultivated and wild tomato
accessions to high temperature, using a pollen viability screening approach. Each of the 17
genotypes of tomato was analysed for their pollen quality under a 32°C (day) / 26°C (night)
regime. The total number of pollen per flower and the fraction of viable pollen were recorded.
The number of pollen per flower varied between 35,547 and 109,490 whereas the fraction of
viable pollen varied between 0.03 and 0.71. No correlation was found between these two traits.
However, the combination of these traits could provide the best reproductive capability under
high temperature. In this study, thermo-tolerant (LA2854, LA1478 and LA0417) as well as
thermo-sensitive (LA1719, LA1580, and SWEET4) genotypes have been identified. Those
genotypes can be used as novel genetic resources to get more insight into pollen thermo-
tolerance mechanisms and be included in breeding programs.

Key words: pollen viability, heat stress, high temperature, tomato, screening, breeding,

tolerance
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Introduction

High temperature is one of the major abiotic stresses affecting plant reproduction, and
therefore, fruit set (Dane et al. 1991). Most commercial tomato genotypes are not tolerant to
high temperatures. A rise of a few degrees above the optimum growing temperature will,
consequently, lead to a decrease of fruit set. Optimum growing temperatures for tomato are
between 18°C and 25°C (Hurd and Cooper 1970). The predicted increase of 1 to 3°C during the
twenty-first century (IPCC 2012) may lead to a decrease of tomato production. Developing
tomato genotypes tolerant to high temperature may be a valuable strategy to cope with these
environmental changes. Tolerance to high temperature is not an easy trait to improve due to its
low heritability (Hanson et al. 2002, Hazra et al. 2009), possibly due to its sensitivity to other
environmental factors such as humidity (Abdulbaki 1991). To determine the tolerance of a plant
to high temperature different parameters (Wahid et al. 2007) can be recorded, such as cell
membrane thermo-stability, photosynthetic activity, pollen viability and fruit set. Fruit set is the
ultimate measure for the tolerance of a genotype to high temperature and has been shown to
correlate with a decrease of pollen viability in tomato (Firon et al. 2006). In general, genotypes
tolerant to high temperature maintain a higher level of pollen viability under high temperatures
than sensitive genotypes (Dane et al. 1991). The use of pollen viability as a screening tool will
provide valuable information about the male gametophytic tolerance of different tomato
genotypes to high temperatures. It is expected that focus on one aspect of the heat tolerance
mechanism, pollen, will have simpler genetics, compared to screening for fruit production,
which is a much more complex trait, determined by many more factors, such as flower
formation, male and female tolerance, fruit set and fruit development. This is much more
difficult to dissect genetically.

Several studies have focused on the identification of tomato cultivars tolerant to high
temperature (Abdulbaki 1991, Abdelmageed and Gruda 2009, Da Costa et al. 2011, Kartikeya
et al. 2012, Kugblenu et al. 2013). However, due to domestication and intensive breeding, the
cultivated tomato germplasm has a rather narrow genetic basis. In contrast, there is a much
larger genetic diversity in related wild relatives of tomato (Viquez-Zamora et al. 2013) and,
hence, these may form an alternative source of thermo-tolerant genotypes. To date, little
attention has been paid to the investigation of the variation in high temperature tolerance among
the wild tomato germplasm. The identification of tolerant wild accessions may provide an
additional valuable resource to develop tolerant tomato genotypes through classical breeding.

The objective of this study was to determine the tolerance of different cultivated and wild
tomato accessions to high temperature, using a pollen viability screening approach.

Materials and methods
Plant materials

17 different tomato genotypes were tested under heat stress conditions in this study. Six
wild S.pimpinellifolium accessions: LA0417, LA1478, LA1719, LA1580, LA1584 and
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LA2854 were obtained from the Tomato Genetics Resource Centre (TGRC). These accessions
were selected based on the environmental temperature and the altitude of the geographic
locations they were collected from (Figure 1). All the S. pimpinellifolium accessions originated
from locations with low altitude and hot environmental conditions — maximum average day
temperature 28°C to 31°C. Seven S.lycopersicum genotypes: CLN1621F, CL5915-93D4-1-0-
3, CL1131-0-0-13-0-6, CLN475BC1F2-265-4-19, CLN65-349D5-2-0, CL5915-206D4-2-2-0-
4 and CL5915-153D4-3-3-0 were obtained from the Asian Vegetable Research and
Development Centre (AVRDC) where they were annotated as ‘tolerant to heat stress’.
S.lycopersicum varieties Saladette and Nagcarlang were obtained from Radboud University,
Nijmegen, The Netherlands and were annotated ‘tolerant to heat stress’ in the database of
TGRC. SWEETH4 is an introgression line developed at Wageningen UR Plant Breeding, The
Netherlands, from a cross between S. lycopersicum cv. Moneymaker and Solanum chmielewskii
LA1028. This introgression line was selected for its general vigour. S.lycopersicum variety M-
82 obtained from TGRC was used as thermo-sensitive control.
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Figure 3. Geographical origins of S. pimpinellifolium accessions. X,X,X,X represents accession number from
TGRC, site of collection, metres above sea level, average temperature. 'Data temperature of Guayaquil, Ecuador.

’Data temperature of Chulucanas, Peru (http://en.climate-data.org/)

Experimental growth conditions

The experiment was conducted in two periods. In the first period (March 2013), eight
genotypes (CLN1621F, CL5915-93D4-1-0-3, CL1131-0-0-13-0-6, CLN475BC1F2-265-4-19,
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CLN65-349D5-2-0, CL5915-206D4-2-2-0-4, CL5915-153D4-3-3-0 and M-82) were used and
in the second period (April 2013), nine additional genotypes were used (LA2854, LA1478,
LA0417,LA1584, LA1580, LA1719, Nagcarlang, Saladette and SWEET4). Plants were grown
in the greenhouse of Unifarm (Wageningen University & Research Centre, The Netherlands)
at 25°C day and 19°C night under 12 to 18 hours of natural day light for one month (Control
condition). When the first flowers appeared, plants were moved and placed into a 15m? climate
chamber using a randomized design. The climate chamber was conditioned at 32°C/26°C, with
12 hours of day light provided with fluorescent tubes at a photon flux density of 500 umol and
60% humidity. All flowers and buds from each plant were removed with forceps to assure that
new flowers have been completely developed under the climate chamber conditions. Two
weeks were needed to produce new open flowers.

Pollen viability test

For the pollen viability screening analysis, newly opened flowers were collected each morning
from 9 to 11 am under the heat stress. In total, ten flowers per plant were collected and six
plants were used per genotype. Flowers were collected into a petri dish filled with a wet paper.
From each flower, anthers were cut into three to four pieces with a razor blade on a glass and
put in an Eppendorf tube of 1.5mL . Then 0.5 mL of germination solution consisting of 1 mM
KNOs3, 3 mM Ca (NO3)2 « 4H>0, 0.8 mM MgSOs * 7 H20, 1, 6 mM H3BO3 was added to the
Eppendorf tube (Adapted from Pressman et al. 2002, followed by 20 pL of Alexander dye. The
Alexander dye consisted of 10 mL of 95% alcohol, 1 mL of malachite green (1% solution in
95% alcohol), 54.5 mL of distilled water, 25 mL of glycerol, 5 mL of Acid fuchsin (1% solution
in water), 0.5mL of Orange G (1% solution in water) and 4 mL of glacial acetic acid for a 100
mL solution (Alexander 1980, Peterson et al. 2010). The Eppendorf tube was then vortexed for
ten seconds and kept overnight at room temperature. The day after, pollen number was counted
using a Fuchs-Rosenthal haemocytometer (W. Schreck Hofheim/Ts). 10puL of pollen solution
was loaded into the haemocytometer and the number of viable pollen (stained purple) and non-
viable pollen (stained green) were counted in eight squares of the haemocytometer for each
sample using a light microscope. The counted number of pollen was then transformed in
number of pollen per flower using the following formula:

Number of pollen per flower = Number of pollen per square * 2500?

a was calculated based on the fact that each square contained 0.2uL of pollen solution, and the
pollen of one flower was isolated in 500pL. Hence to determine the number of pollen per
flower, the number of pollen per square was multiplied by 2500.

Pollen number counting for the first part of the experiment was performed in May 2013 whereas
pollen number counting for the second part of the experiment was performed in July 2013.

Statistical analysis

Six biological replicates were used for each of the genotypes tested except for LA1478 for
which four biological replicates were used. Each replicate represented a pool of pollen derived
from ten flowers from the same plant. The fraction of viable pollen was determined by dividing
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the number of viable pollen by the total number of pollen. Subsequently, an ANOVA test was
performed together with a Tukey test. Genotypes from different growing periods were analysed
independently. All analyses were done using SPSS 20ed.
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Figure 2. Number of pollen produced per flower per genotype under heat stress (32°C/26°C). Light bars represent
genotypes grown in the first period whereas dark bars represent genotypes grown in the second period. Error bars
represent standard error of the biological replicate mean. The letter above the bar represents the statistical
difference based on a one way ANOVA with a Tukey’s post-hoc test for the number of pollen per flower and per
period. Statistics were performed independently for both periods. Genotypes with the same letter did not show

statistically significant differences between each other ( p-value > 0.05)

Results
Genotypic variation in total pollen production under heat stress

The total number of pollen produced under the high temperature (32°C/26°C) varied between
the 17 accessions tested (Figure 2). Among the genotypes of the first period, the highest pollen
number per flower was 109,490 (CLN1621F) and the lowest pollen number per flower was
60,266 (CL1131-0-0-13-0-6) under high temperature. The genotype CLN1621F showed
significantly more pollen number per flower than the genotypes CL1131-0-0-13-0-6,
CLN475BC1F2-265-4-19, CL5915-153D4-3-3-0. Among the genotypes of the second period,
the highest pollen number per flower was 96,157 (LA1580) and the lowest pollen number per
flower was 35,547 (LA1719) under high temperature. The genotype LA1580 showed
significantly higher pollen number per flower than the genotypes LA1719, SWEET4 and
Saladette. For instance, LA1580 produced two times more pollen than Saladette under high
temperatures.
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Figure 3. Fraction of viable pollen per genotype under heat stress (32°C/26°C). Light bars represent genotypes
grown in the first period whereas dark bars represent genotypes grown in the second period. Error bars represent
standard error of the biological replicate mean. The letter above the bar represents the statistical difference based
on a one way ANOVA with a Tukey’s post-hoc test for the fraction of viable pollen. Statistics were performed
independently for both periods. Genotypes with the same letter did not have statistically significant differences

between each other (p-value > 0.05)

Genotypic variation in pollen viability under heat stress

The fraction of viable pollen under the high temperature (32°C/26°C) varied between the 17
accessions tested (Figure 3). Among the genotypes of the first period, the highest ratio of viable
pollen was 0.58 (CL5915-153D4-3-3-0) and the lowest ratio of viable pollen was 0.28 (M-82)
under high temperature. The genotypes CL5915-153D4-3-3-0, CL1131-0-0-13-0-6,
CLN1621F and CL5915-93D4-1-0-3 had a significantly higher ratio of viable pollen than M-
82. In general, all seven genotypes obtained from AVRDC showed no statistically significant
difference in pollen viability, which varied within 10% between them. More variation in pollen
viability was observed in the second growing period. The highest ratio of viable pollen under
the heat condition was 0.71 (LA2854) and the lowest ratio of viable pollen was 0.03 (SWEET4).
The genotypes LA2854, Nagcarlang, LA1478, Saladette, LA0417 showed a significantly
higher ratio of viable pollen than SWEET4, LA1719 and LA1580 under high temperature.
There was no significant correlation observed between the total number of pollen and the viable
fraction of pollen produced under high temperature (Figure 4). The Pearson correlation between
these two traits is 0.19.

Based on their response to the two parameters tested, the genotypes can be considered at four
different levels, with genotypes producing (i) a high total number of pollen with a high fraction
of viable pollen (e.g. LA2854 and CLN1621F), (ii) a high total number of pollen with a low
fraction of viable pollen (e.g. LA1580), (iii) a low total number of pollen with a high fraction
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of viable pollen (e.g. Saladette), (iv) a low total number of pollen with a low fraction of viable
pollen (e.g. SWEET4).
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Figure 4. Correlation between the number of pollen per flower and the fraction of viable pollen produced under
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Discussion

Wild tomato germplasm has been successfully used in breeding programs to introduce
different traits, such as various disease resistance genes, into cultivated tomato (Labate and
Robertson 2012). In this study we have selected six S. pimpinellifolium accessions, which
originated from geographical regions with high average temperatures. All the selected S.
pimpinellifolium accessions originated from a similar environment in terms of average
maximum temperature ranging from 28°C to 31°C, which is higher than the optimal growing
temperature for cultivated tomato (which is between 18°C and 25°C). These accessions were
tested for total pollen number and pollen viability under high temperatures (32°C during the
day and 26°C during the night) together with nine tomato genotypes, which have been reported
to be tolerant to high temperature. Despite the similarity in their original growing environment,
the S. pimpinellifolium accessions showed a high variation in both the total number of pollen
and the fraction of viable pollen produced under high temperature. Among these six genotypes,
three had a viable pollen fraction higher than 0.5. LA2854 and LA 1478 belonged to the group
with the highest fraction of viable pollen whereas LA1719 and LA1580 did not differ
significantly from SWEET4 which had a pollen viability close to zero. This might suggest that
different accessions may use different strategies to ensure a successful pollination in similar
high temperature environments. This can be achieved e.g. by increasing the total number of
pollen produced by a flower, by keeping the fraction of viable pollen high under high
temperature, or a combination of both. Besides, although we did not assess the number of
produced flowers, this trait might be of interest for the tomato production under high
temperature.

The analysis of the two parameters ‘the total number of pollen produced per flower’ and
‘the fraction of viable pollen’ indicated that different genotypes vary in their response to high
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temperatures. For example, accession LA 1580 was among the best total pollen producers under
high temperature, but did not belong to the group of genotypes with the highest fraction of
viable pollen. Saladette belonged to the cluster with the highest fraction of viable pollen, but
on the other hand it was one of the lowest total pollen producers. No significant correlation was
found between the total number of pollen and the fraction of viable pollen. This suggests that
the two parameters can represent independent pollen quality traits. Combining these traits could
provide the best reproductive capability under high temperature. Considering these two
parameters, S. pimpinellifolium LA2854, CLN1621F, and Nagcarlang, seem to be potentially
the most heat tolerant accessions of the 17 genotypes tested, since they showed the highest
fraction of viable pollen and a high total number of pollen. The analysis of pollen viability of
the 17 genotypes was however performed only under high temperature, therefore we cannot
exclude that under control conditions (e.g. optimal temperature for cultivated tomato) these
genotypes may also show variation of these two parameters. Nevertheless, the ability to provide
a good pollen quality under high temperature remains primordial to produce fruit.

Genotypes LA2854, Nagcarlang, CL5915-153D4-3-3-0, and CL1131-0-0-13-0-6,
CLN1621F and CL5915-93D4-1-0-3 were the best genotypes regarding the fraction of viable
pollen (from 0.50 to 0.71). A high fraction of viable pollen, in general, is correlated with a high
fruit set in tomato (Firon et al. 2006). Recently, Kartikeya et al. 2012 analysed the percentage
of fruit set relative to the number of total flowers and the percentage of viable pollen among 36
tomato varieties grown under high temperature and a high positive correlation between fruit set
and pollen viability was observed. Based on this observation, we can speculate that the five best
genotypes for the fraction of viable pollen may also have a high fruit set under high
temperatures.

Indeed, some of the tested genotypes with a fraction of viable pollen higher than 0.5,
such as CLN1621F, CL5915-93D4-1-0-3 and Saladette have already been shown to be tolerant
to high temperatures in other studies (Da Costa et al. 2011, Lin et al. 2010, Abdulbaki 1991).
For example, CLN1621F produced a high number of fruits per plant under high temperature,
but these fruits generally had a small fruit weight (Da Costa et al. 2011). Tolerance to high
temperature has indeed been shown to negatively correlate with fruit size (Wessel-Beaver and
Scott 1992). The line CL5915-93D4-1-0-3 has already been used as a heat tolerant parent in a
mapping population to identify quantitative trait loci (QTL) related to fruit quality, seed set and
Brix under high temperature (Lin et al. 2010). Additionally, our results confirmed that M-82 is
sensitive to high temperature with a fraction of pollen viability of 0.27. These results are
consistent with those of Mazzeo et al. 2010. Although the environmental conditions of the two
screening experiments we performed were kept identical, they were performed during two
different adjacent time periods. Therefore, we cannot exclude that the growing period could
have an effect on the total pollen production and pollen viability. Nevertheless, this study
allowed us to discriminate between genotypes with a high pollen viability and genotypes with
a low pollen viability.

Pollen development is one of the most sensitive processes in plants (Dane et al. 1991)
and pollen quality is a major determinant of fruit production under high temperature. Several
mechanistic studies have been conducted to get more insight in pollen thermo-tolerance
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mechanisms. These studies focussed on different aspects of pollen development, such as pollen
germination (Firon et al. 2006), thermo-sensitivity of pollen developmental stages (Sato et al.
2002), as well as monitoring temperature-induced changes in transcriptomic and proteomic
profiles (Frank et al. 2009, Jagadish et al. 2010a (in anthers)). The identification of tomato
genotypes with high pollen viability under high temperature conditions not only forms a
valuable resource to study pollen thermo-tolerance mechanisms, but also helps to understand
the underlying genetics and to breed for thermo-tolerance. Recently, a QTL study of pollen
viability under high temperature has been carried out using a mapping population derived from
CLN 1621L (tolerant) and CA4 (sensitive) tomato genotypes (Kardivel 2010). In this study,
QTL LOD scores for pollen viability were low, suggesting a high complexity of this trait,
where, besides genetic, many other factors may play a role. This is in line with the low
heritability of tolerance to high temperature observed previously in tomato from a cross of
CL5915-93D4-1-0-3 (tolerant) with UC204A (sensitive) (Hanson et al. 2002) and from cross
combinations between CLN 2413R, CLN 2116B and COML CR-7 (tolerant) with the cultivars
Patharkuchi and Ratan (sensitive) (Hazra et al. 2009). In agreement with the fact that other
environmental factors than high temperature may play a role in the tolerance to high
temperature, we noticed that the viable pollen fraction of tomato plants under high temperature
may be variable regarding the time of the year in which the plants were grown before their
transfer to the climate chamber (data not shown). These observations underlined the fact that
other environmental factors influence the effect of high temperature stress on pollen viability.

Unravelling the genetics of a complex trait like pollen thermo-tolerance requires good insight
in the mechanisms underlying pollen thermo-tolerance, in order to dissect this complex trait
into sub-traits with simpler genetics. Furthermore, the success of such genetic studies is
dependent on the availability of well characterised plant materials displaying variation in
different parameters contributing to thermo-tolerance. Therefore, every new accession tolerant
to high temperatures deserves to be studied for thermo-tolerance in detail. In this study, new
thermo-tolerant (LA2854, LA1478 and LA0417) as well as thermo-sensitive (LA1719,
LA1580, and SWEET4) genotypes have been identified. These can be used as novel genetic
resources to get more insight into pollen thermo-tolerance mechanisms.
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Abstract

Developing pollen of tomato (Solanum lycopersicum) are sensitive to high temperatures, which
leads to a reduction of fruit set when plants are cultivated under this type of stress. The decrease
in pollen viability under high temperatures is strongly associated with metabolite alterations in
anthers and pollen. In order to obtain a more comprehensive overview of metabolites associated
with thermo-tolerance of the male reproductive organs we assessed the primary and secondary
metabolomes of anthers of genotypes showing contrasting levels of pollen thermo-tolerance,
MS82 and Nagcarlang. Our results showed that under high temperatures the pollen viability of
the more sensitive genotype M82 started to decrease during microsporogenesis and reached a
minimum level at polarized microspore stage. The metabolic analysis of the anther development
revealed that impairment of metabolism around that stage might explain the loss of fertility in
M&82 under high temperatures compared with Nagcarlang. The putative metabolites associated
with this phenotype were the hexose sugars fructose and glucose, the amino acid proline,
specific flavonoid glycosides, several conjugated polyamines and alkaloids. The role of these
metabolites in providing a better thermo-tolerance to the male reproductive organs is discussed.

Key words: Anther development, metabolomics, untargeted analysis, heat stress, high
temperature, tolerance
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Introduction

Pollen grains are the male gametophyte, which develop inside the anther locules within the
flower. At early developmental stages, the developing microspores receive nutrition via the
tapetum cells that surround the anther locules (Pacini et al. 2006). During the polarization of
the microspore, the tapetum degenerates and the locular fluid surrounding the developing pollen
grains becomes the main nutritional source for the pollen grains (Pressman et al. 2012). One of
the most studied metabolic pathways in the male reproductive tissue is the sugar metabolism.
For instance, during the development of tomato pollen (Solanum Iycopersicum), sucrose
follows a gradient from the anther wall to the pollen grain, and represents 80% of the total
soluble sugars in mature pollen grains (Pressman et al. 2012). The accumulated sugars are then
used during pollen germination (Stanley 1971). Hence, their accumulation is pivotal to ensure
proper fertilization. However, the tapetum cells are extremely sensitive to abiotic stresses
(Parish et al. 2012). Although there is no data from tomato, in several plant species high
temperatures lead to an early degeneration of the tapetum and shrinkage of the cells that might
have a direct effect on the pollen nutrition. Under optimal growing conditions (28°C/22°C
day/night), starch accumulation in developing tomato pollen reached a maximum three days
before anthesis followed by a decrease until a minimum level at anthesis, while in the anther
walls the starch concentration gradually decreased upon pollen maturation (Pressman et al.
2002). This decrease of starch concentration correlated with an increase of soluble sugars in
both tissues. However, under high temperatures (32°C/26°C), the pollen grains did not
accumulate starch which led to a strong decrease of soluble sugars in both anther walls and
pollen grains. This metabolic impairment was accompanied by a reduction in pollen fertility
(Pressman et al. 2002). Tomato genotypes that are tolerant to high temperatures regarding
pollen development have been shown to maintain a higher level of sugars in pollen compared
to sensitive genotypes (Firon et al. 2006). An exploration of the primary metabolome of mature
anthers of rice genotypes with contrasting tolerance to heat and drought stress also suggested
that the sugar metabolism is a key factor in maintaining fertility under changing temperatures
(Li et al. 2015). Although great attention has been paid to sugar metabolism, other metabolites
such as flavonoids and polyamines also play an important role in the development of a mature
and fertile pollen grain (Paupiére et al. 2014). The ability of the anther to maintain metabolic
homeostasis during abiotic stress is likely to be one of the main factors affecting the final quality
of the mature pollen. Hence, the analysis of the metabolic composition of the whole anther
tissue may provide a greater understanding of the physiological basis of decreased pollen
fertility under elevated growth temperatures.

The sensitivity of pollen to high temperatures varies over the course of their development. It is
thought that meiosis and the microsporogenesis are the critical developmental stages with
respect to high temperature tolerance (Muller and Rieu 2016). Iwahori (1965) demonstrated
that in tomato, the most sensitive stage of pollen development to several hours of extreme heat
of 40°C was meiosis. Despite the high sensitivity of the meiosis stage to high temperatures,
Pressman et al. 2002 did not observe an alteration of soluble sugars content at this stage under
a long-term mild heat stress whereas the relatively tolerant mature stage showed a strong
decrease in sugar content. Thus, it seems possible that under milder heat stress, later stages of
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tomato pollen development, that accumulate essential metabolic resources, are most critical for
the production of fertile pollen. Indeed, the microspore stage was identified as most sensitive
to long-term mildly elevated growth temperatures in cowpea (Vigna unguiculata) (Ahmed et
al. 1992). The current available studies on metabolites associated with temperature tolerance of
the male reproductive tissue of tomato are limited and often focused on specific compounds
(Paupicere et al. 2014). This narrows down the possibilities to identify metabolites associated
with heat stress tolerance and hampers our understanding of the complex biochemical processes
of the stress response and the genetic factors that control them. A combination of untargeted
metabolic profiling approaches such as Gas Chromatography coupled to Mass Spectrometry
(GC-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-MS) may provide a
better insight in the biochemistry of heat tolerance and make it possible to identify metabolic
processes associated with thermo-tolerance in tomato.

We have previously identified tomato genotypes tolerant and sensitive to mild high
temperatures (Chapter 5 of this thesis). In the present study, the whole anther metabolome of
these genotypes was assessed under control and mildly elevated temperatures. Specific
objectives of this study were (i) to characterize viability of developing pollen at different stages
under control and high temperatures (ii) to explore the primary and secondary metabolome of
anthers at different developmental stages under the two temperature regimes and (iii) to identify
anther metabolites associated with high temperature tolerance of tomato.

Materials and methods
Plant materials and growth for pollen viability test

The Solanum Iycopersicum tomato variety Nagcarlang was obtained from Radboud University,
Nijmegen, The Netherlands and the genotype M82 from TGRC. M82 was previously identified
as a high-temperature sensitive genotype regarding pollen viability and Nagcarlang was
identified as a tolerant genotype (Chapter 5). The genotypes M82 and Nagcarlang were sown
in September 2014 and grown in the greenhouse (Unifarm, Wageningen University & Research,
The Netherlands) at 25°C day and 19°C night temperatures under 12 to 18 hours of natural day
light for one month (control condition). When flowers appeared on plants, all the flowers and
buds were removed and for each genotype eight plants were transferred in both, the control
climate chamber (25°C day and 19°C night) and the heat stress chamber (precooled at
25°C/19°C). The following day, the temperature of the heat stress chamber was raised to
32°C/26°C, with a three hour period at 34°C in the middle of the day (heat condition) to mimic
natural daily temperature fluctuations. Light was provided for 12 hours per day with fluorescent
tubes at a photon flux density of 500 pmol and 60% relative humidity. Two days after transfer
into the growth chambers, plants of both chambers were sprayed with Mesurol® and
Vertimec® to prevent thrips and spider mite infestation.
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Pollen viability test

Pollen was harvested three to four weeks after plants were transferred to the climate chambers.
Ten opened flowers per plant were harvested, and flowers of two plants were pooled to reach
20 opened flowers per biological replicate. Flowers were collected into Petri dishes on ice.
From each flower, stigmas were removed, anthers cut into two pieces and transferred into a 50-
mL falcon tube on ice. 10mL of cold germination solution (1 mM KNO3, 3 mM Ca (NO3)2 *
4H>0, 0.8 mM MgSO4 * 7 H,0, 1.6 mM H3BOs3) was added (Adapted from (Pressman et al.
2002). Anthers were gently squeezed against the tube wall to promote pollen release. The
sample was vortexed for ten seconds and the liquid was filtered through two layers of miracloth
Calbiochem® and transferred into a new falcon tube on ice. The sample was centrifuged at 300
rpm for 15 minutes at 4°C. Supernatant was discarded and the pollen pellet was washed with
500 pL of cold germination. 20 uL of pollen solution was diluted with 500 pL of cold
germination solution and 20 pL of Alexander dye was added to stain the pollen grains. The
Alexander dye consisted of 10 mL of 95% alcohol, 1 mL of malachite green (1% solution in
95% alcohol), 54.5 mL of distilled water, 25 mL of glycerol, 5 mL of Acid fuchsin (1% solution
in water), 0.5mL of Orange G (1% solution in water) and 4 mL of glacial acetic acid for 100
mL solution (Alexander 1980), (Peterson et al. 2010). The sample was then vortexed for ten
seconds and kept overnight at room temperature. Pollen viability counting was assessed as
previously described in Chapter 5.

Experimental growth conditions for anther metabolome analyse

To explore the anther metabolome of M82 and Nagcarlang genotypes under control and heat
stress, 20 plants per genotype were sown in December 2015 and grown under control
conditions. After two months, plants were moved to climate chambers with control and high
temperature conditions as previously described. For each treatment ten plants per genotype
were used and a biological replicate was considered as a pool of two plants. After one month,
the pollen developmental stages were assessed and anthers were harvested for metabolomics
analysis.

Bud Size
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Tetrad Microspore  Polarized Bicellular Mature
Figure 1. Relation between bud size and pollen developmental stage in tomato. Pollen were stained with DAPI

and observed under a fluorescent microscope.
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Pollen development determination

To determine pollen developmental stages of M82 and Nagcarlang flowers under control and
heat stress, six flowers of different sizes were randomly harvested for each condition per
genotype. Buds with sepals still closed were grouped by size from 4 mm to 13 mm, and buds
with opened sepals were grouped in three categories: S, opened sepals with closed petals; P,
opened sepals with opened petals; and F, fully opened flowers (Figure 1). Bud size was
determined with the whole flower from the length of the anther tip (including sepal) to the base
of the anther. Petals and sepals were removed. Buds of the same size were pooled and put into
a 1.5-mL Eppendorf tube with 500 pL of ice cold germination solution. Anthers were gently
squeezed against the Eppendorf tube wall before to be vortexed. 5 puL of pollen solution was
mixed with 5 pL of DAPI staining solution were loaded on a slide and observed using a
fluorescent microscope. Pollen were scored according to their developmental stages: tetrad,
microspore, polarized microspore, bicellular pollen and mature pollen.

Harvest of developmental stages of anthers

Anthers of M82 and Nagcarlang at different developmental stages were harvested for
metabolomics analysis. The harvest was spread over four days with each day representing a
condition per genotype. Buds were organized by sizes and stages on ice. Different numbers of
buds were used per biological replicate: 30 for tetrad stage, 26 for microspore, 12 for polarized
microspore and eight for bicellular pollen and mature pollen. Stages were obtained by pooling
different bud sizes, dependent on genotype and treatment. For Nagcarlang under control
conditions, 4 mm buds were harvested for tetrad stage; 5-6 mm for microspore; 7 mm for
polarized microspore; 8-9 mm and S for bicellular pollen. For Nagcarlang under heat stress, 6
mm bud corresponded to tetrad stage; 7 mm for microspore; and 9-10 mm for bicellular pollen.
For M82 under control conditions, 4-5 mm corresponded to tetrad stage; 6-8 mm for
microspore; 9-10 mm for polarized microspore; 13 mm and S for bicellular pollen. For M82
under heat stress, 6 mm buds were harvested for tetrad stage; 7-9 for microspore; 10-12 for
polarized microspore; S for bicellular. Open flowers were used for mature pollen stages for
each condition and genotype. Petals and sepals were removed from buds and flowers of 5 mm
to F, and only sepals were removed from buds of 4 mm. Pistil was removed from each bud and
flower. Anther cones were transferred into a 2-mL Eppendorf tube frozen in liquid nitrogen and
stored at -80°C. Frozen anthers were then grinded with a pestle and mortar in liquid nitrogen,
and weighed before being used for metabolite extraction.

Metabolite extraction

Extraction of polar and semi-polar metabolites from anther and pollen materials was carried out
at room temperature. Extraction of samples was done randomly and divided over three days.
To each sample 350 pL of 100% methanol containing ribitol as internal standard and 150 pL of
distilled water were added. Samples were sonicated for 15 min followed by a centrifugation at
17,000 g for ten minutes. The supernatant was used for orbitrap LC-MS and GC-MS analyses.

For LC-MS orbitrap, 200 puL of the methanol-supernatant was centrifuged at 17,000 g
for ten minutes. The extract was then filtered over a 0.2 um polytetrafluoroethylene (PFTE)
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filter. 100 pL of filtered extract was transferred into a 2 mL crimp glass vial with insert for LC-
MS analysis.

For GC-MS, 250 pL of the methanol-supernatant was mixed with 250 pL of distilled
water and 125 pL of chloroform. The sample was vortexed for five minutes and centrifuged at
17,000g for ten minutes. 40 uL of the supernatant was transferred into a crimp vial with insert
and dried overnight in a centrifugal evaporator until complete dryness before GC-MS analysis.

Additionally to the experimental samples, quality control samples (QCs) were produced
for the metabolomics platforms. These QCs consisted of aliquots of a pool of the final extracts.
These QCs were used to estimate the technical variation of the analytical platforms, including
extract analysis and untargeted data processing.

Metabolic profiling

Polar primary metabolites of anthers were analysed with an Optic 3 high-performance
injector (ATAS) and an Agilent 6890 gas chromatograph coupled to a Pegasus III TOF mass
spectrometer (Leco) as previously described by Carreno-Quintero et al. 2012. Dried extracts
were derivatized using an on-line automatic procedure performed by a Combi PAL autosampler
(CTC analytics). 12.5uL of O-methylhydroxylamine hydrochloride (20 mg mL—1 pyridine)
was added to the samples and incubated for 30 min at 40°C. Then, the samples were derivatized
with 17.5uL of N-methyl-N-trimethylsilyltrifluoroacetamide (TMS) for 30 min. Then 5 pL of
alkane mixture was added and the derivatization process continued for an additional 30 min.
For measurement, 2 puL of extract was introduced to the injector at an initial temperature of
70°C in a split injection mode (vent flow 40 mL/min; split flow 19 mL/min). The injector was
heated with 6°C s™! to 240°C. The chromatographic separation was performed using a VF-5ms
capillary column (Varian; 30 m x 0.25 mm x 0.25 pm) including a 10-m guardian column with
helium as carrier gas at a column flow rate of 1 mL min !, The temperature was isothermal for
2 min at 70°C, followed by a 10°C min ™! ramp to 310°C, and was held at this temperature for
5 min. The transfer line temperature was set at 270°C. The column effluent was ionized by
electron impact at 70 eV. Mass spectra were acquired at 20 scans s ! within a mass-to-charge
ratio range of 50 to 600 at a source temperature of 200°C. A solvent delay of 295 s was set. The
detector voltage was set to 2000V. The data were recorded with ChromaTOF software 2.0.

Semi-polar secondary metabolites of anthers were analysed with a LTQ orbitrap LC-
MS (Thermo Fisher Scientific) using a C18 column (Phenomenex), an Accela HPLC tower
connected to a photodiode array (PDA) detector and an LTQ/obritrap hybrid mass spectrometer
as previously described by van der Hooft et al. 2012 and by Moco et al. 2006. Mass
spectrometry was performed using a negative ionization mode. For the measurements, 10 uL
of sample was injected into the system. The Xcalibur software was used for data acquisition.
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Metabolomics data processing

Both GC-MS and LC-MS data were processed using MetAlign software (www.metalign.nl;
(Lommen 2009)), to correct for baseline, peak picking and mass alignment of chromatograms
as previously described by Tikunov et al. 2005 and De Vos et al. 2007, respectively.

For GC-MS, the MetAlign output was reduced by omitting mass data showing peak
intensity values lower than the detection threshold, i.e. >125 in more than five samples. Masses
below 85 Da were deleted due to their low specificity. Mass spectra and quantitative ions of
compounds detected were extracted from the modified MetAlign outputs using MSClust
software (www.metalign.nl) (Tikunov et al. 2012). The MSClust output was normalised by
ribitol abundance for values higher than the detection threshold to correct for batch effect and
then normalised by sample weight.

For LC-MS, the mass peaks were extracted and aligned by MetAlign software. MSClust
software (Tikunov et al. 2012) was then used to group masses originating from the same
molecule and extract quantitative ions of compounds detected. If a quantitative ion selected by
MSClust showed saturation of the MS detector, this ion was replaced by its second or third
isotopic ion. Data were normalised by sample weight.

Compound annotation

The MSClust outputs of GC-MS and LC-MS were used for compound annotation. Annotation
of compounds detected by LC-MS was performed using an in-house metabolite database
generated by previous experiments on tomato tissues (e.g. Moco et al. 2006, van der Hooft et
al. 2012) and online databases such as METLIN (http://metlin.scripps.edu/). The annotation of
compounds was performed according to The Metabolomics Standards Initiative requirements
(Sumner et al. 2007): identified compounds got level I when Nuclear Magnetic Resonance was
performed or an authentic standard has been used for unambiguous identification, level Il when
no authentic standard was used but annotation was made with both physicochemical property
and spectral similarities, and level III when the (class of the) compound has previously been
reported for tomato, and finally level IV in case further annotation of detected metabolite was
impossible. The definition of unknown compounds was based on the mass clustering
determined by MSClust, fragmentation and adduct information. Annotation of GC-MS
compounds was done through automatic matching of the mass spectra generated by MSClust
with the spectra provided by the National Institute of Standards and Technology (NIST) and
the Golm Metabolome Database (http://gmd.mpimp-golm.mpg.de/) using MS Search software
(NIST). Compound annotation was based on both mass spectra matching and the difference in
retention index between the library entries and the experiment data. Compound annotation for
primary metabolites and secondary metabolites are listed in Supplementary data table S1 and
table S2, respectively.

Statistical analysis

Most of the statistical analyses were performed with SPSS software, except when mentioned
otherwise. For the pollen viability data, a univariate ANOVA was performed followed by a
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post-hoc Tukey test (¢=0.05) to correct for multiple pairwise comparisons. For the
metabolomics data, the principal components analysis (PCA) was performed with Genemaths
software (http://www.applied-maths.com/) on log2 transformed and mean-centred values. To
identify statistical differences between samples a univariate ANOVA analysis was performed
for each annotated metabolite on log2 transformed values with the following model

Yir=p+ it B+ yet (aB)y+ (oy)iet (By)+ (aBy)ix+ 8 + &g,

where p = overall mean , a; = main effect of conditions 7,; = main effect of genotypes j, yi=
main effect of developmental stages &, (af);; = interaction between conditions i and genotypes
J ., (ay)ix = interaction between conditions i and developmental stages &, (By) = interaction
between genotypes j and developmental stages &, (afy)ix = three-way interaction between
conditions /, genotypes j and developmental stages &, & = random effect of observations within
plants, €;x = random error term. The random effect was introduced in order to overcome the
dependency between stages, since the samples at the five developmental stages were taken from
the same plant. A significance threshold of 0.001 was chosen to account for the large number
of variables (99 annotated metabolites) tested. Metabolites with a p-value lower than 0.001 were
then followed by a post-hoc Bonferroni test (at 0=0.05) to correct for multiple pairwise
comparisons among treatment combinations.
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Figure 2. Viability of mature pollen of M82 and Nagcarlang under control and heat stress conditions. Nag,
Nagcarlang; C, control condition; HS, heat stress condition.

Results
Genotypic variation in pollen viability under heat stress

Since the pollen viability of Nagcarlang and M82 was previously assessed during two different
periods of time (Chapter 5), the pollen viability screening was repeated with both genotypes
growing at the same time. Under control conditions, pollen viability of M82 and Nagcarlang
were comparable - about 87% for both genotypes. Under the heat conditions Nagcarlang
showed a statistically significant (p<0.05) higher percentage of viable pollen (60%) than M82
(30%) (Figure 2), which was comparable to the viability ratio reported in Chapter 5.
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Development of M82 and Nagcarlang pollen under heat

To study the effect of heat on the morphological development of pollen, flower buds were
collected from M82 and Nagcarlang plants at control conditions and at heat stress conditions.
Buds of each variety were grouped by average size, ranging from 4 mm to open flower and the
composition of pollen developmental stage present within each group was then determined for
each of the 13 size categories. Five pollen development stages were discriminated (from young
to mature): tetrad, microspore, polarized microspore, bicellular pollen and mature pollen
(Figure 1). The transition between pollen developmental stages was not fully synchronised and
appeared as a gradual change in the ratio between the developmental stages within different
bud size groups (Figure 3). Pollen stage counting started in that bud size group, in which clear
tetrads became visible. Hence, the minimum bud size at which pollen stages were counted
differed depending on the different combinations of genotype and condition. The
developmental stages were determined among viable cells. With DAPI staining a cell was
considered viable if it was roundly shaped and not shrunken.

In M82 under control conditions, 4 and 5 mm buds contained developing pollen at tetrad stage
(Figure 3). Microspore stage pollen constituted 86-98% of 6 to 8 mm buds and were still present
in 9-10 mm buds (25-32%), along with polarized microspores (53-67%) and 6-15% of bicellular
pollen. The number of bicellular pollen then increased to a maximum of 79% in 13 mm buds
and 18% of them were still present in open flowers, whose anthers consisted for 82% of fully
mature pollen. The viability of M82 pollen during development under control
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Figure 3. Pollen development profile and pollen viability per bud size. Nag, Nagcarlang; C, control condition; HS,
heat stress condition; T, tetrad stage; Mi, microspore stage; P, polarized stage; B, bicellular stage; Ma, mature
stage. From 4 to 13 are the bud sizes in mm; with S, sepal open; P, petal open and O, complete open flower.

conditions showed a slight decrease, but still was about 80% in open flowers. The maximum
length of Nagcarlang buds before sepal opening was 9 mm, thus, 4 mm shorter than in M82.
This explains why the pollen stage ratios observed in Nagcarlang buds and flowers at the control

104



condition were shifted towards shorter bud sizes. As with M82, the viability of Nagcarlang
pollen did not change considerably during development at control condition and was about 90%
in open flower. For both cultivars, the pollen stage ratios changed under heat conditions. All
the development stages were observed in larger buds compared to the control conditions,
indicating decoupling of developmental progression and floral organ growth under the heat
condition. For example, 6 mm buds of M82 still fully consisted of tetrads at heat condition
whereas at control condition buds of the same size had more than 90% of the developmentally
more advanced microspores. Similarly, 11 and 12 mm buds of M82 had about 91-97% polarized
microspores at heat, while in buds of equal size at control condition their number already
decreased to 25-31% and they were mostly developed into bicellular pollen. A similar heat
induced delay in pollen development relative to flower size could be observed in Nagcarlang
buds. Interestingly, the number of polarized microspores in Nagcarlang buds of any of the sizes
never exceeded 21%, whereas at control condition they constituted about 66% of the content of
7 mm buds. In contrast, 10-12 mm buds of M82 accumulated up to 83-97% of polarized
microspores at the heat condition, compared to 25-53% in M82 buds of similar size under
control conditions.

In both genotypes, a decrease in pollen viability was observed under heat conditions. Under
control condition, all developmental stages of M82 and Nagcarlang showed high pollen
viability. At the heat condition, however, viability dropped in M82 by 22%, already in 9 mm
buds — the bud size where also the percentage of polarized pollen began to increase quickly
(Figure 3). The viability in M82 continued to decline to 44% in 10 mm buds and then remained
at this level until flowers opened. In Nagcarlang the decrease of pollen viability was more
gradual and reached 70% at maturity.

Thus, the pollen development process occurs in a genotype-dependent manner, both under
control and under heat conditions relative to the bud size. The heat condition led to a 2-fold
stronger decrease in viability of M82 pollen compared to Nagcarlang, which seemed to correlate
with a slower nucleus polarization process observed in M82.

Metabolic composition depends on developmental stages rather than condition

To study how heat stress affects the metabolic composition of tomato pollen and its surrounding
tissue and how this differs between genotypes with contrasting pollen thermo-tolerance levels,
we analysed whole anthers of the two tomato genotypes M82 and Nagcarlang. Anthers of M82
and Nagcarlang, containing particular pollen developmental stages, were collected from
flowers developed under control or heat stress conditions and their composition of primary and
secondary metabolites was analysed by GC-MS and LC-MS, respectively. The average
abundance of each metabolite per sample is shown in Supplementary data table 1 and 2.
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Figure 4. Principal component analysis of the primary metabolome (PCA). PCA plots A and B represent the PCA
with component 1,2 and 3 which are the axes X, Y and Z, respectively. The PCA plots C and D represent the PCA
with component 2, 3 and 4 which are the axes X, Y and Z, respectively. The PCA plots A and C represent the
distribution of samples. Light green, M82 control condition; dark green M82 heat stress condition; pink,
Nagcarlang control; red, Nagcarlang heat stress. The PCA B and D represent the distribution of metabolites
responsible for the variation of samples in PCA A. With red dots, amino acid; green, organic acid; blue, phenolic
acid; light pink, sugars; orange, other class and yellow unknown. The metabolite numbers to the annotation are
provided in Supplementary data table 1.

Primary polar metabolites

A Principal Components Analysis (PCA) was performed with the 36 primary metabolites
detected and showed that most of the variation present among the samples (Principal
Component 1, PC1=60%) was due to the metabolic differences between the five developmental
stages: tetrad, microspore, polarized, bicellular and mature (Figure 4A). On the one hand, most
of the amino acids were more abundant in the younger developmental stages than in mature
stages, except for proline which was 28-fold higher in mature stage than in tetrad stage (Figure
4B, Supplementary data table 3). On the other hand, the sugars and organic acids were less
abundant in younger developmental stages than in the bicellular stage. For instance, fructose
(Metabolite number 21) and malic acid (10) were 10-fold and 6-fold higher in bicellular stage
than in tetrad stage, respectively (Supplementary data table 3). The heat stress treated
Nagcarlang sample separated on the Y-axis (PC2) from the rest of the samples indicating a
specific heat stress response in Nagcarlang (Figure 4A). In addition, analysis of PC2 and PC3,
which represented 14% and 11% of the total variation, respectively, showed a clear heat stress
effect on the anthers (Figure 4C). Most of the organic acids accumulated more in the heat stress
condition, whereas the level of the specific organic acid glucaric acid (16) was 3.4-fold lower
under control than under heat stress conditions (Figure 4D, Supplementary data table 3). Also
the amino acid glutamine (9) accumulated more (3.2-fold) under heat stress than under control
conditions (Supplementary data table 3). Hence, although most of the variation was due to
developmental stages, the heat stress clearly affected the primary metabolome of anthers.
Nagcarlang, which showed higher pollen viability under heat stress, also showed a metabolic
response in this condition which was different from the response of the sensitive M82.
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Figure 5. Principal component analysis of the secondary metabolome (PCA). The PCA plot A represents the
distribution of samples with light green, M82 control condition; dark green M82 heat stress condition; pink,
Nagcarlang control; red, Nagcarlang heat stress. The PCA plot B represents the distribution of metabolites
responsible for the variation of samples in PCA A. Red dot, alkaloid; green, flavonoid; blue, phenolic acid; orange,
polyamine; white, other class and yellow unknown. The metabolite number to the annotation in Supplementary
data table 2.

Secondary semi-polar metabolites

Similar to the primary metabolites, the PCA performed on the secondary metabolites showed
that the metabolic differences between the developmental stages represented most of the
variation in the data (PC1=51%) (Figure 5A, B). Most of the flavonoids and phenolic acids
were present at higher levels in later developmental stages than in polarized stages. For instance,
kaempferol 3,7-di-O-glucoside (58) strongly accumulated from tetrad stage to mature stage
(3.5-fold, Supplementary data table 3). It is also important to notice that a large number of
unknown metabolites played a role in the separation of the developmental stages. Unlike what
was observed for primary metabolites, the second principal component, which explained 18%
of the variation among the samples, was due to metabolic differences between the two
genotypes. The polyamines tended to accumulate more in M82 compared to Nagcarlang, e.g.
dicoumaroyl putrescine (105) which was 2-fold higher in MS82 than in Nagcarlang
(Supplementary data table 3). PC5 and PC6 separated the control condition from the heat stress
condition, but these components represented only a low percentage of the variation present
within the data (PC5=3.2% and PC6=2.3%).

Identification of metabolites linked with tolerance

To determine which metabolites were associated with thermo-tolerance we decided to focus
our statistical analyses on metabolites that showed contrasting patterns between the thermo-
tolerant Nagcarlang and the thermo-sensitive M82 with a minimum difference of at least 2-fold.
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Table 1. The table represents the metabolites that showed a specific heat stress response between the development
stage per genotype (CxGXD). Crosses represent the statistical significance at the ANOVA test for the different
factors tested (¢=0.001).

Name ANOVA
C G D CxG CxD GxD CxGxD
3_L-Proline XX X X X X
6_L-Aspartic acid X X X X X
10_Malic acid XXX X X X
11_Threonic acid X X X X X
12_2,3-Dihydroxybutanedioic acid X X X X X
15_Galactonic acid X X X X
21_Fructose X X X X X
22_Glucose X X X X
23_myo-Inositol X X X X X X
37_Hydroxytomatine | + FA XXX X X X X
40_Dehydrotomatine FA X X X X X X
41_Dehydrotomatine FA isomer | X X X X
42_Dehydrotomatine FA isomer Il XX X X X X
43_alpha-Tomatin + FA X X X X
44_Hydroxytomatine + FA isomer | X X X X X
45 Hydroxytomatine + FA isomer || XXX X X X
49_Hydroxytomatine isomer | XXX X
55_beta-tomatine XXX X X X X
58_Kaempferol 3,7-di-O-glucoside X X X X X
60_Kaempferol 3-O-rutinoside XXX X X X
61_Narginin-hexoside, -deoxyhexoside X X X X
62_Kaempferol-hexoside-deoxyhexoside, -pentoside XXX X X X
63_Quercetin-hexoside-deoxyhexoside, -pentoside X X X X X X
66_Dihydrokaempferol-hexoside or Eriodictyol chalcone-hexoside2 X X X X X X
67_Kaempferol 3,7-di-O-glucoside isomer | XXX X X X X
68_Kaempferol-Hexoside XXX X X X
74_Benzyl alcohol-hexoside-pentoside isomer Il X X X X
81_Homovanillic acid-O-hexoside isomer | XXX X X X
82_Homovanillic acid-O-hexoside isomer Il XXX X X X
91_Coumaroylquinic acid isomer XXX X X X
98_Dicoumaroylspermidine isomer Il XX X X X
102_Caffeoyl dicoumaroyl spermidine isomer Il X X X
105_Dicoumaroylputrescine XXX X X X
106_Dicoumaroylspermidine IV X X X X X

C, condition; G, genotype; D, development; CxG and GxD, two-way interaction and CxGxD three-way
interaction

We focused on those metabolites that: (i) showed a differential response to the heat
stress between the genotypes at a specific developmental stage (GxCxD interaction, table 1).
Among the 99 annotated metabolites, including primary and secondary metabolites, 34 showed
a statistically significant interaction effect of the conditions, the developmental stages and the
genotypes (p-value <0.001, Supplementary data table 4).
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(i1) showed different developmental accumulation patterns between genotypes (GxD).
In total 33 metabolites showed a significant difference at the interaction GxD excluding
metabolites that appeared at the CxGxD interaction (Supplementary data table 6).

(iii) showed a genotype dependent response to the condition (GxC). In total eight
metabolites showed a statistically significant difference at the interaction GxC excluding
metabolites that appeared at the CxGxD interaction (Supplementary data table 5).
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Figure 6. Abundance of the amino acid proline at different developmental stages under control and high
temperatures for both genotypes. Nag, Nagcarlang; C, control condition; HS, heat stress condition. Error bar
represents the standard deviation of the mean (n=4-5). Notice the different scales used in each panel.

Amino acids and organic acids

Of the eight detected amino acids, seven showed a significant difference in the ANOVA (p-
value <0.001, Supplementary data table 1), but only the amino acid proline (3) showed a strong
significant association with the heat stress condition (>2-fold, Supplementary data table 4). In
general, proline accumulated during anther development in both M82 and Nagcarlang (Figure
6), but the initial level of proline at tetrad stage was higher in Nagcarlang compared to M82,
irrespective of the heat condition (Figure 6A). Under heat stress condition the proline
accumulation dynamics was strongly delayed, which resulted in about 7-fold lower abundance
in the heat stressed bicellular pollen of both genotypes (Figure 7C), though this was much less
obvious in mature pollen (Figure 4D). At microspore stage, which was identified as the most
critical stage for pollen quality, the proline level in the heat-sensitive M82 was strongly
decreased, by 2.9-fold, under heat stress compared with control condition, whereas no
significant difference between the conditions was observed for Nagcarlang at this
developmental stage (Figure 7B, Supplementary data table 4). As a result, Nagcarlang, whose
pollen viability was not significantly affected under heat stress, accumulated 5-fold more
proline than M82 at this specific stage. Interestingly, at microspore stage the biosynthetic
precursor of proline, glutamic acid, was 1.5-fold less abundant in M82 than in Nagcarlang
(Supplementary data table 6).

The amino acids serine (4) and p-alanine (5) showed similar quantitative patterns
(Supplementary data table 1). Both amino acids were more abundant at the early — tetrad and
microspore - stages, and their concentration decreases at later developmental stages in both
genotypes. In Nagcarlang heat stress led to a dramatic increase of these amino acids at bicellular
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stage, compared to the control condition, whereas in M82 they did not reveal a quantitative heat
stress response at this developmental stage. Neither of the two compounds passed the
significance threshold in the interactions with condition, most likely due to the presence of non-
detectable levels in some replicates and the corresponding loss of statistical power.

None of the detected organic acids showed a clear difference in response to the heat stress
between the two genotypes (Supplementary data table 1).
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Figure 7. Abundance of glucose at different developmental stages under control and high temperatures for both
genotypes. Nag, Nagcarlang; C, control condition; HS, heat stress condition. Error bar represents the standard
deviation of the mean (n=4-5)

Sugars

Hexoses — glucose (22) and fructose (21) — showed overall higher basal abundance in anthers
of Nagcarlang (Supplementary data table 1). For example, at the most sensitive microspore
stage, Nagcarlang accumulated two-fold more glucose and fructose than M82, even in the
control condition, although these differences did not reach our statistical threshold (Figure 7B,
supplementary data table 4). Upon the heat stress, their abundance dropped in M82 anthers by
2.9-fold (for glucose) compared with control condition (Figure 7B, Supplementary data table
4). As aresult, under heat stress condition, Nagcarlang accumulated up to 4.5-fold more hexoses
than M82 at both early stages (Figure 7A and B, supplementary data table 4). Under heat stress
condition, mature stage anthers of Nagcarlang accumulated up to 6-fold of the hexose sugars
(Figure 7D) and almost 4-fold of the sugar alcohol myo-inositol (23) compared to M82 (Figure
8). No differences were found for their precursor, sucrose (Supplementary data table 1).
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Figure 8. Abundances of selected metabolites that showed significant interaction (GxCxD) in the ANOVA
(p<0.001). Blue bar, tetrad stage; green bar, microspore stage; red bar, polarized stage; orange bar, bicellular stage;
purple bar, mature stage; Nag, Nagcarlang; C, control condition; HS, heat stress condition; T, tetrad stage; Mi,
microspore stage; P, polarized stage; B, bicellular stage; Ma, mature stage. Error bar represents the standard
deviation of the mean (n=4-5)

Alkaloids

Most of the detected alkaloids accumulated at higher levels in Nagcarlang compared to M82
under both control and heat stress conditions and did not show a different heat stress response
between the genotypes (Supplementary data table 2 and 4). For instance, the hydroxytomatine
isomer 1 (44), II (45), Il (48) and IV (50) accumulated up to 14-fold more in Nagcarlang
compared with M82 (Figure 8, Supplementary data table 4 and 6). A similar accumulation was
also observed for leptinidine trihexoside (38), dehydrotomatine (40), and dehydrotomatine
isomer [ (41) and II (42), especially at young anther stages. Acetoxy-tomatine isomer II (46),
however, accumulated at 2-fold higher levels in M82 compared to Nagcarlang at microspore
stage (Figure 9, Supplementary data table 6). Interestingly, the precursors alpha-tomatin (43)
and beta-tomatin (55) did not show a differential accumulation pattern between the two
genotypes (Supplementary data table 4).
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Figure 9. Abundances of selected metabolites that showed significant statistical differences at the GxD interaction
in the ANOVA (p<0.001). The value represent the average per stage of both conditions. Blue bar, tetrad stage;
green bar, microspore stage; red bar, polarized stage; orange bar, bicellular stage; purple bar, mature stage; Nag,
Nagcarlang; C, control condition; HS, heat stress condition; T, tetrad stage; Mi, microspore stage; P, polarized
stage; B, bicellular stage; Ma, mature stage. Error bar represents the standard deviation of the mean (n=5-10)

Flavonoids

At early stages, two flavonoid glycosides responded differently to the heat stress in the two
genotypes: levels of kaempferol hexoside deoxyhexoside pentoside (62) and quercetin hexoside
deoxyhexoside pentoside (63) decreased by 2-fold upon heat stress at tetrad and microspore
stage in M82, while such a strong decrease was not observed in Nagcarlang (Figure 8§,
Supplementary data table 4). This difference in heat stress response resulted in a higher
abundance of these two flavonoids at tetrad and microspore stage in Nagcarlang compared to
M&82 under heat stress. At all stages except mature pollen, kaempferol hexoside (68) levels
decreased upon heat stress in both genotypes, but Nagcarlang accumulated 2.1-fold more of
this flavonoid glycoside compared to MS82 at tetrad stage under heat stress (Figure 8§;
Supplementary data table 4). In anthers at mature pollen stage, levels of this flavonoid were
significantly higher in Nagcarlang compared to M82 and increased even more in Nagcarlang
upon heat stress. Interestingly, during all stages of anther development, kaempferol 3-O-
rutinoside-7-O-glucoside (69) accumulated to a higher level in Nagcarlang compared to M82,
independent of the condition (up to 7-fold at microspore stage, Figure 10). In general, the other
flavonoids decreased upon heat stress in both genotypes (e.g. kaempferol 3,7-di-O-glucoside
and its isomer I (58, 67), kaempferol 3-O-rutinoside (60), but their levels were not different
between the two genotypes (Supplementary data table 4).

Acids conjugated with hydroxycinnamic acid

Several acids conjugated with hydroxycinnamic acids showed a significant statistical difference
in the ANOVA analysis, but many of these differences were less than 2-fold. In general, the
most profound changes in the levels of these metabolites occurred at late anther developmental
stages (Supplementary data table 1 and 2). For instance, levels of coumaroylquinic acid (75)
accumulated 4.3-fold higher in Nagcarlang compared to M82 at bicellular stage, and
feruloylquinic acid-O-hexoside isomer I (76) was 2.9-fold more abundant in M82 than in
Nagcarlang at mature stage (Supplementary data table 6). The caffeoylglucaric acid isomer (80)
was the only hydoxycinnamic acid conjugate showing a strong differential accumulation at
early stages: up to 4.3-fold higher levels in M82 compared to Nagcarlang (Figure 9).
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Figure 10. Abundance of the flavonoid kaempferol 3-O-Rutinoside-7-O-glucoside at different developmental
stages for both genotypes. The values represent the average per stage of both conditions. Nag, Nagcarlang; Error
bar represents the standard deviation of the mean (n=5-10).

Conjugated polyamines

In total 18 conjugated polyamine forms were detected. Three of them showed a genotype-
dependent difference in abundance at microspore stage: upon heat stress dicoumaroyl
spermidine isomer II (98), caffeoyl dicoumaroyl spermidine isomer II (102), and dicoumaroyl
spermidine IV (106) decreased by 2.2, 6.6 and 3-fold in abundance, respectively, in M82 only
(Figure 8, Supplementary data table 4), while the levels of these compounds in Nagcarlang did
not change significantly upon heat stress. At tetrad stage, M82 accumulated feruloyl
dicoumaroyl spermidine isomer III (108), which was not detectable in Nagcarlang at that stage.
Nagcarlang started to accumulate this compound from microspore stage onwards, at which its
abundance was still 2.3-fold lower than in M82. At later developmental stages, the abundance
of this compound was similar in both genotypes (Supplementary data table 6).

Discussion

Metabolites are known to have a large diversity of functions. They can be used as energy source,
e.g. sugars (Eveland and Jackson 2012), to build proteins, e.g. amino acids, to constitute a
membrane, e.g. lipids (Quinn and Williams 1978), to protect against herbivores, e.g. alkaloids
(Friedman 2002), and oxidative stress, e.g. flavonoids (Agati et al. 2012), and to serve as signal
molecules, e.g. volatile methyl salicylate (Cojocariu et al. 2004). The homeostasis of
metabolites is a fragile balance that can be disturbed by external parameters such as
environmental stresses. In our study, we have shown that anthers of tomato which developed
under high temperatures showed a decrease of pollen viability. The corresponding quantitative
metabolic responses observed might be an acclimation response, by which the cells attempt to
regain homeostasis or activate protection mechanisms, or a passive consequence of the
changing physiology of the cells, which could include the underlying cause of the reduced
pollen fertility. Further studies will be needed to demonstrate if there are functional
relationships between the pollen fertility and the metabolic changes observed in our study. In
the following part of our discussion, we will focus first on the transition between microspore
stage and polarization, as a critical step of the developing pollen. Secondly, we will discuss
how differences between the two genotypes in their metabolic response to stress might explain
the better tolerance of Nagcarlang to high temperatures.

Microspore — polarization as a critical developmental step

In Chapter 5 of this thesis we have shown that Nagcarlang is a more tolerant genotype compared
to M82 under mild heat stress. However, in that experiment the two genotypes were grown in
two different periods of time, and we have mentioned that different growing periods can have
a slight effect on the pollen quality of the flower (Chapter 5). In the present study, the two
genotypes were grown at the same period of the year and our results confirmed that Nagcarlang
performed better than M82 under high temperature. In order to determine at which stages the
viability of the developing pollen dropped under high temperature and led to the low pollen
viability at anthesis in M82, we have recorded the pollen viability during development.
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In the middle 1960’s meiosis was identified as a stage of pollen development which was the
most sensitive to heat stress (Iwahori, 1965b). Since then, the number of studies on this topic
have grown and as reviewed by Muller and Rieu 2016 different aspects of the pollen
development have been demonstrated to be sensitive to high temperatures such as alteration in
chromosome behaviour and cytoskeleton dynamics occurring during the meiosis, and a defect
of microsporogenesis with an alteration of the tapetal cells. The tapetum is a key tissue that
provides nutrition to the pollen at early stages before it degenerates when the microspore cell
starts to vacuolate and form the polarized microspore (Sawhney and Bhadula 1988). Once the
tapetum is degenerated the metabolites are delivered to the pollen from the locular fluid
(Pressman et al. 2012). Interestingly we found that the pollen viability of the sensitive genotype
started to decrease during microsporogenesis which is in line with observations in cowpea
anthers developed under mild heat stress (Ahmed et al, 1992a). Furthermore, they observed that
just after the release of the tetrad, the tapetum layer degenerated prematurely and suggested that
this was the underlying cause of the cowpea sterility under high temperatures. It is tempting to
speculate the same occurs in tomato and leads to a decrease of nutrition to the pollen. This idea
is supported by our observations that several metabolites showed a drastic drop in accumulation
rate during the microspore stage, specifically the sugars, recognised as the main energy resource
for the pollen. At the microspore stage, tapetum is considered to be metabolically extremely
active due to the increase of the number of mitochondria per cell (Parish et al. 2012, De Storme
and Geelen 2014). The high number of tapetal mitochondria might increase the demand for
sugars, which could lead to an unbalanced homeostasis under heat stress. Interestingly, at these
specific stages the tolerant genotype Nagcarlang accumulated more sugars than the sensitive
genotype M82, in particular under heat stress at which M82 was unable to maintain its sugar
levels. Tolerant tomato genotypes have already been associated with higher levels of sugars
(Firon et al. 2006). Hence, we can also hypothesise that the level of sugars present in M82 might
be insufficient to cope with the higher demand for sugars from the tapetal cells, leading to
starvation. Although in our case, the mature anthers did not show a difference in sugar levels
between control and heat stress, it was previously demonstrated that, under similar mild heat
stress condition, the final mature pollen of the sensitive genotype was sugar deficient (Firon et
al. 2006). The question whether the decrease of pollen viability is due to an early degeneration
of the tapetum which impairs the metabolism or to energy starvation still remains open and
requires further studies.

Metabolites that promote the tolerance of Nagcarlang

We have shown that in our study the microsporogenesis is a critical step to maintain high pollen
viability under a mild heat stress of 32°C-34°C during the day and 26°C during the night.
Therefore, the metabolic profiles observed at this stage of development may help to find out
the biochemical and physiological processes that cause the difference in tolerance between the
two genotypes. We carried out two types of metabolomics analyses, and although most of the
differences present among the samples were due to the developmental stages, we also found
differences in the heat stress response and in the basal level of metabolite abundance. Studies
on the effect of heat stress on the primary metabolome have already been performed in floral
organs of rice (Li et al. 2015) and leaves of Bentgrass (Xu et al. 2013). This allowed the



identification of sugar metabolism, branched amino acids and proline as metabolite markers for
tolerance, but the secondary metabolome remained unexplored. Here, we detail the specific
metabolic signatures of different metabolic classes in relation to the difference in heat tolerance
between M82 and Nagcarlang.

Amino acids

The amino acid proline is known to be the most abundant amino acid in anthers (Mutters et al.
1989). It has been demonstrated to be stress-responsive and associated with tolerance (Hayat et
al. 2012). It is pivotal to the pollen viability of tomato (Mattioli et al. 2012). During the
development of anthers under heat stress, the proline content of Nagcarlang was not affected
by the heat stress and showed a higher accumulation compared to M82. In anthers of M82, the
heat stress led to a reduction of proline content. Our observations slightly differ from those of
Mutters et al. 1989 who demonstrated in cowpea a strong accumulation of proline in anther
walls, and a decrease of proline in pollen, suggesting an inhibition of proline translocation from
the anther wall to the pollen. While we did not study tissue-specific distribution, the overall
reduction in level of proline in M82 compared with Nagcarlang might be associated to the
inability to protect itself, since proline is known to be involved in (i) ROS scavenging, (ii)
stabilizing protein and (iii) promoting a cell redox balance (Verbruggen and Hermans 2008). It
is interresting to mention that proline is directly synthetised from the amino acid glutamate
(Forde and Lea 2007). During the early development stages, Nagcarlang showed a higher level
of glutamate than M82, which correlates with the higher level of proline. Therefore, we can
speculate that the alteration of the proline level in early developmental stages in M82 anthers
in response to heat stress might be partly due to differences in the metabolism of its precursor
glutamate.

The two genotypes showed a strong difference in the accumulation of the amino acids serine
and alanine at bicellular stage under heat stress. Since these differences occurred after the drop
in pollen viability, it is most likely that they did not play a major role in the maintenance of
microspore viability. However, we cannot exclude that these two amino acids might play a role
in maintaining metabolite homeostasis under high temperatures at later developmental stages.

Sugars

Sugars are often considered as key metabolites in the maintenance of high pollen quality under
heat stress (De Storme and Geelen 2014, Muller and Rieu 2016). De Storme and Geelen (2014)
proposed that the decrease of pollen viability is due to reduction of sucrose utilization rather
than to a decrease in sucrose availability under heat stress. As previously mentioned higher
levels of sugars have been associated with temperature tolerance of reproductive organs (Firon
etal. 2006, Li et al. 2015). They are used as energy source for the developing pollen (Obermeyer
et al. 2013) and pollen tube growth, but also as osmolyte (Hare et al. 1998). In line with this,
the tolerant genotype Nagcarlang accumulated more glucose and fructose and the sugar alcohol
myo-inositol than M82 under heat stress. The ability to have a higher energy resource might be
of great help to survive unfavourable conditions.
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Flavonoids

Among the secondary metabolites, the flavonoids are well studied compounds in reproductive
organs, since chalcone synthase mutants are sterile in many crops, as was demonstrated in maize
(Zea mays), petunia (Petunia hybrida) (Mo et al. 1992) and later in tomato (Schijlen et al. 2007).
Flavonoids are antioxidants that scavenge reactive oxygen species (ROS) (Agati et al. 2012).
High temperatures are known to induce ROS production (Agati et al. 2012), and therefore a
well running antioxidant system is crucial to avoid oxidative damage. As previously mentioned
the anther tapetum cells of the microspore stage are metabolically very active as reflected by
the extremely high number of mitochondria present in these cells (Parish et al. 2012). Since
ROS are highly produced in the mitochondria, Muller and Rieu 2016 suggested that under high
temperatures, these cells might be prone to accumulation of ROS. Under heat stress, Nagcarlang
maintained a higher abundance of some flavonol glycosides, such as kaempferol-hexoside-
deoxyhexoside, -pentoside (62), quercetin-hexoside-deoxyhexoside, -pentoside (63) and
kaempferol-hexoside (68) compared with M82. Therefore, we can speculate that M82 has a less
efficient antioxidant system to deal with high-temperature induced ROS accumulation during
microsporogenesis and that this, in turn, leads to developmental failure.

Polyamines

Besides flavonoids, polyamines are also important secondary metabolites in anthers and pollen.
The inhibition of polyamine synthesis by cycloheximide or RNAi-mediated down-regulation
of the pathway genes led to a reduction of pollen viability (Chibi et al. 1993, Sinha and Rajam
2013). As recently reviewed by Tiburcio et al. 2014 and Aloisi et al. 2016, polyamines are
involved in modelling the pollen cell wall, regulating the level of ROS and promoting pollen
tube growth. Although depletion of polyamines led to deleterious effects, it has also been
demonstrated that a high concentration of polyamines in the germination medium decreased the
pollen fertility of Japanese apricot (Prunus mume) (Wolukau et al. 2004). For instance, the male
sterile stamenless-2 mutant showed a high content of polyamines that might be associated with
an abnormal anther pattern (Rastogi and Sawhney 1990). Hence, a homeostatic balance of the
polyamine metabolism is essential to ensure flower fertility. Although the PCA seemed to
indicate that M82 accumulated a larger pool of polyamines, the statistical analysis revealed that
most of the polyamines did not show a different level of polyamines, neither between the
genotypes at different anther development stages, nor in response to heat stress. As for other
metabolites discussed above, the specific caffeoyl dicoumaroyl spermidine isomer,
dicoumaroyl spermidine IV and dicoumaroyl spermidine isomer II showed a decrease in
abundance in the less tolerant M82 under heat stress at microspore stage. Therefore, it is
tempting to make the association that higher level of these conjugated spermidine forms might
be linked with the better tolerance of Nagcarlang but further experiments are necessary to
confirm the specific role of these polyamines in the tolerance to high temperature.
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The alkaloids are mainly known for their protective role against biotic stresses (Friedman 2002)
and to our knowledge little attention has been paid to the involvement of these metabolites in
the protection to temperature stresses. Interestingly, Nagcarlang accumulated a large amount of
alkaloids under both control and heat stress conditions, compared to MS82. Therefore,
investigations are required to determine if high levels of alkaloids might help Nagcarlang to
withstand high temperatures better than M-82.

Conclusions and perspectives

We have established a list of metabolites (Table 1) that might be associated with the thermo-
tolerance of Nagcarlang and discussed their putative role in this process. Their position in a
metabolic network are shown in Figure 11. Both primary and secondary metabolism were
putatively associated with the thermo-tolerance, involving different groups of metabolites,
including sugars, amino acids, flavonoids, polyamines and alkaloids. In agreement with the
current literature, we have (i) confirmed that the sugars and the amino acid proline are
associated with thermo-tolerance in reproductive organs (ii) proposed specific flavonoids and
polyamines to contribute to the tolerance, and (iii) identified a new class of metabolites, the
alkaloids, that might be involved in the tolerance. Further analysis of these metabolic thermo-
tolerance markers needs to be assessed before they can be widely used in breeding strategies to
develop tomato varieties more tolerant to high temperatures.
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Chapter 7

General discussion
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Pollen quality is a determining factor for the production of fruit. The sensitivity of pollen
fertility to high temperatures has been associated with alterations of metabolite profiles
(Chapter 2). Since most of the studies published previously were carried out using targeted
analytical approaches we hypothesised that the use of untargeted metabolomics approaches
would broaden the identification of metabolites that play a role in the heat stress response of
male reproductive organs, and of metabolites that are associated with thermo-tolerance. To
achieve this goal, we first assessed the suitability of the common pollen isolation procedure for
different metabolomics platforms and used them to identify metabolites that are associated with
thermo-tolerance. In the following part of this thesis I discuss different aspects of the knowledge
that we gained on the topic and how this might serve future research in this and in related
research fields.

Metabolomics and pollen, how far can we go?

The analyses of metabolites, as well as that of proteins and transcripts, in developing pollen
requires the isolation of pollen which is tightly enclosed within the anthers. To achieve this, the
pollen is isolated in a solution (Honys and Twell 2004, Chaturvedi et al. 2013, Firon et al. 2006).
In chapter two, we showed that such an isolation method applied to tomato pollen not only led
to contamination with metabolic content of the anther mother tissue, but also to rehydration of
the pollen grains, which impairs the metabolic steady-state of the mature pollen. We did not
find any literature addressing how the common way to isolate pollen, which requires pollen
incubation in a solution, affects the metabolic composition of this specific plant tissue. The
purity of a pollen sample is a major concern when using this method, which is supported by our
results showing metabolite contamination, for instance, with alkaloids. The assessment of cross
contamination upon isolation of specific tissues with metabolites from surrounding tissues
remains difficult due to analytical limitations. Different research groups determined the
abundance of sugars and the amino acid proline in different fractions of the male reproductive
organs, including (i) pollen grains, (ii) locular fluid and (iii) the anther walls (Pressman et al.
2012, Castro and Clement 2007, Mutters et al. 1989). Although precautions were taken to
prevent cross contamination of the samples isolated from adjacent tissues (e.g. filtration,
washing, microscopic observations), our data suggest that the purity of such preparations might
have been overestimated. Also, the current method used to isolate pollen grains needs to be
considered as suboptimal, especially in studies of pollen development, when morphology of the
pollen and the supportive tissues undergo changes that may have an effect on the efficiency of
the isolation procedures. Therefore, greater attention should be payed to the development of
methods that prevent isolation drawbacks such as the above-mentioned rehydration and cross
contamination.

Another issue, yet to be addressed, is on the study of metabolic changes that occur in response
to high temperature using samples with different proportions of viable and non-viable pollen
(viability ratios). Analysis of sugar content has already been performed on pollen that showed
different pollen viability due to exposure to high temperatures (Firon et al. 2006). Non-viable
pollen are qualified as empty cells that do not contain cytoplasm (Iwahori 1965). Therefore, a
lower abundance of metabolites in samples with lower pollen viability might then be largely
caused by a higher number of empty cells in these samples. This effect can mask the metabolic
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changes that take place in response to high temperature the fraction of intact pollen. We found
that the amount of sugars positively correlated with a high viability of pollen samples created
artificially by pooling viable and dead pollen in different proportions (data not-shown).

This issue raises the question — how to assess the relative quantitative contribution of
morphological (e.g. empty pollen) and physiological (e.g. stress response) effects when
studying metabolic processes in pollen subjected to heat stress?

Current method improvement

(i) Anthertissue contamination
* Washingand filtrationincrease
* Contamination quantification (e.g. debris)
* Determination of compounds originated from anther tissue

(ii) Pollen rehydration
* Determination of compounds affected by rehydration
* Determine if differentlength of incubation matters
* New medium identification to prevent rehydration

New method development

(i) Single cell analysis
(ii) LAESI-MSI and MALDI-MSI to pollen
(iii) Pollen viability sorting

Figure 1. Toward an optimal method to analyse pollen

Metabolomics approaches are growing technologies. In the last decade the use of metabolomic
platforms have broadened their applications towards the localisation of metabolites within plant
organs or within cells (Etalo et al. 2015). Platforms such as MALDI-MSI (Matrix-Assisted
Laser Desorption/lonization — Mass Spectrometry Imaging) (Cornett et al. 2007) and LAESI-
MSI (Laser Ablation Electrospray Ionization - Mass Spectrometry Imaging) (Etalo et al. 2015)
might be the future for the analysis of reproductive organs. Pioneer experiments were performed
in flower buds of Arabidopsis thaliana, to identify the spatial localization of glucosinolates
(Sarsby et al. 2012). A similar approach within the different fractions of the anthers, including
the anther wall, tapetum cells, and pollen grains might allow following the repartition of
metabolites during pollen development or in response to heat stress. It might even be possible
to target specifically the metabolome of pollen at a normal temperature condition compared to
pollen that are exposed to different lengths and strengths of temperature stresses. However, the
lack of resolution of current analytical platforms and the complex preparation of pollen samples
may still be limiting factors. The resolution of LAESI-MSI, which can be used to analyse fresh
plant material, is not sufficient yet to analyse the metabolic profile within the single pollen
grains, whereas the MALDI-MSI, which has a resolution of 5-9 pm (Korte et al. 2015), might
be more suitable for tomato pollen of 20pm size, although sample preparation is required in this
case and must be adapted to minimize its impact on the metabolic composition.
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To date, the most reliable method to analyse the pollen metabolome remains the analysis of dry
mature pollen that is not altered by any sample preparation, and therefore represents its real
biological state. If other, less optimal, methods are used (e.g. solution incubation) the possible
drawbacks and limitations should be mentioned and taken into account carefully when
interpreting such results. We summarized the different concerns of the pollen isolation and gave
suggestions for further improvement toward an optimized method for the use of metabolomics
in pollen research (Figure 1).

Metabolites associated with tolerance of reproductive tissue, what have we learnt?

To determine metabolites responsive to high temperatures and possibly associated with
tolerance we started our investigation on the pollen cell (Chapter 3), the quality of which is
directly linked to fruit production. We observed that short heat stress did not induce a strong
metabolic change in the pollen grain, while we had evidence that it did in the whole anther (data
not shown). Anthers are the main tissues that support pollen during development and we
hypothesized that the metabolic changes in response to heat stress occur in anthers first and
then affect the metabolic composition of pollen. In Chapter 5 we performed metabolic profiling
of the whole anther of thermo-tolerant and thermo-sensitive tomato varieties in order to identify
metabolites associated with pollen thermo-tolerance.

In Chapter 5, we identified specific metabolites that might be involved in the tolerance of
tomato cultivar Nagcarlang, such as sugars, proline, specific flavonoids and polyamines and
alkaloids. Our data suggest that the microspore stage of the pollen development is the most
sensitive to mild chronic high temperatures, which could be either due to degeneration of the
tapetal cells that might alter the pollen nutrition or to lower energy availability under heat stress
that might lead to starvation. Final proof for a causal-effect relationship needs to be further
addressed; as it might be that the metabolome alteration is the consequence of upstream events
(e.g. early tapetum degeneration) rather than the cause of fertility loss. Although, as I mentioned
above, we did not observe a strong metabolic response in pollen of another thermo-sensitive
tomato variety MicroTom upon a short heat stress; a total pool of flavonoids tended to increase
(Chapter 3). This contrast with the observations of Chapter 5 might indicate several points that
will require further investigation: genotypic variation, different response to different stress
durations or even relocation of some metabolites between different generative tissues.

Nevertheless, the use of untargeted metabolomics approaches allowed us to identify new
metabolic candidates such as alkaloids, and specifically flavonoids and polyamines that might
play a role in the protection from oxidative stress. Hence, taken all together, the results from
Chapter 3 and Chapter 5 strongly indicate that a well-running antioxidant system and the
presence of osmolytes are essential to overcome high temperatures and that a higher basal level
of sugars might provide better resources to face high energy demands.
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From exploratory to targeted analyses

Metabolomics analysis is a powerful tool that allows the detection of hundreds of metabolites.
While the detection of metabolites involved in a stress response is relatively easy, their
identification requires far greater efforts. We have identified new metabolites associated with
the heat tolerance of Nagcarlang, including flavonoids, polyamines and alkaloids. The
secondary plant metabolome is extremely diverse and metabolite annotation strongly depends
on the availability of mass spectra information in related databases. One of the critical points
that influences the informativeness of the metabolomics data derived using LC-MS is the
annotation precision. In our study of generative tomato organs we annotated the LC-MS-
derived metabolites by comparing the experimental fragmentation and retention characteristics
of metabolites analysed in pollen and anthers with an in-house database, which was developed
in a large part based on metabolic profiling of tomato fruit (Moco et al. 2006). Hence, more
investigations should be carried out to confirm the annotation of the specific metabolites
associated with thermo-tolerance and, especially, to discover the structure of many unknown
compounds correlated with pollen viability to ensure a proper understanding of the metabolic
response under high temperatures.

Untargeted metabolomics approaches aim to detect as many as possible metabolites in a given
extract. However, the initial step of any metabolomic profiling experiment - the extraction
procedure - might not be optimal for all the compounds in the extract. This may limit the
detection and realistic quantification of specific metabolites. We have identified several
metabolites associated with thermo-tolerance. The use of adapted extraction protocols for
specific classes of metabolites (e.g. flavonoids) might allow the detection of a larger number of
metabolites involved in the related pathways. Such an approach could pin point the metabolic
steps which are critical for the different levels of metabolites found at different environmental
conditions.

Production of tomato even under global warming conditions

In view of maintaining a sustainable tomato production under hot conditions as a result of
climate change, every strategy is worth to be exploited in order to develop or to find tomato
genotypes tolerant to high temperatures. In Chapter 2 of this thesis we proposed a strategy to
use metabolic markers in order to develop tomatoes that are more tolerant to high temperatures
(Paupiere et al. 2014). We have identified several metabolites that might be used as markers
due to their association with the tolerance such as glucose and fructose, the amino acid proline,
flavonoids and polyamines. In our study, we only used two genotypes, hence we cannot exclude
that the metabolic profile was specific to these two genotypes tested at the specific conditions
used, rather than to be attributed to a general tolerance response. Therefore, further validation
of the robustness of the metabolic markers is required. Some associations can however be
supported by other independent studies. Considering the hexose sugars, several independent
studies showed that impairment in their metabolism cause a failure in pollen development
(Pressman et al. 2002, Firon et al. 2006, Li et al. 2015) supporting the idea that these metabolites
are good candidate metabolic markers for thermo-tolerance. Regarding the other groups of
metabolites, such as the alkaloids, specific polyamines and flavonoids, further assessments need
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to be done, using a wider panel of genetic variation and different conditions (e.g. genotypes
from Chapter 4). Segregating populations (e.g. cross between M82 and Nagcarlang) are another
type of material which can be used for genetic analysis to confirm the ability of certain
metabolic processes to provide better tolerance under high temperatures.

In Chapter 4, we have screened the pollen viability of different genotypes to high temperatures.
This led to the identification of M82 and Nagcarlang as genotypes with contrasting heat
tolerance. In our screening, we have only assessed the pollen viability since it is known to be
highly correlated with fruit production (Kartikeya et al. 2012). However, to ensure the
production of tomatoes under changing environments, one of the main concerns of a breeder is
the actual production of tomato fruit. As mentioned in Chapter 4, the tolerance to high
temperatures is positively correlated with small fruit size, indicating a possible linkage between
these two traits (Wessel-Beaver and Scott 1992). In line with that we observed that fruits of
M82 (sensitive genotype) were bigger than the ones of Nagcarlang (tolerant genotype).
Performing a genetic analysis on offspring plants from a cross between Nagcarlang and M82
might allow the identification of chromosomal regions linked with the heat stress tolerance. In
case the genetic loci responsible for thermo-tolerance and fruit size are genetically linked it will
be very difficult to separate the fruit size and thermo-tolerance trait. This remains however, to
be determined.

Metabolic markers

6
GC-MS| e.g. Proline & fructose 2 Molecular marker
Reproducibility 1 (screen at seed level)
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Figure 2. Work flow for a breeding approach for temperature tolerant tomatoes using different
marker types. °C, temperature; HS, heat stress; QTL, quantitative trait locus.

A schematic overview of the various steps needed to breed for thermo-tolerance using
metabolic markers is shown in Figure 2. We identified putative metabolites associated with
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thermo-tolerance that can be integrated into a breeding program. At first, the annotation of
metabolites detected by LC-MS needs to be confirmed, due to their poor annotation level (1).
Then the reproducibility of these metabolites as metabolic markers for tolerance should be
assessed in other genotypes to confirm the association with thermo-tolerance (2). Before these
metabolic markers can be used to screen a mapping population derived from a cross between
Nagcarlang and MS82 for thermo-tolerance, the robustness of the thermo-tolerance of
Nagcarlang should be determined under more extreme stresses (e.g. longer and stronger heat
stresses) in order to ensure a reliable use of these metabolic markers (3). Although pollen
viability strongly correlates with fruit set, it is pivotal to ensure production of seeded fruit of
Nagcarlang under heat stress before investing into a mapping population (4). Once the above-
mentioned requirements are met, a mapping population can be developed, phenotyped with
metabolic markers and genotypes with molecular markers, in order to identify QTLs and
molecular markers linked with thermo-tolerance (5). The identified molecular markers can then
be used to screen for plant tolerance at the seedling level (6). The association of these genetic
loci linked with thermo-tolerance can be further screened with their traits of interest (e.g. pollen
viability and fruit production) in a broader panel of known thermo-tolerant genotypes to assess
their use in other germplasms (7). At last, chromosomal regions associated with thermo-
tolerance found in the mapping population can be introgressed by marker-assisted backcrossing
into M82 in order to improve the tolerance of the M82 genotype.

Our study was carried out under highly controlled environmental conditions (climate chamber)
while a large part of the world’s tomato production is done in the field, especially for processing
tomatoes and partly for fresh tomatoes. The tolerance to high temperatures is a complex trait
that is influenced by different factors which makes high temperature tolerance a very difficult
trait to breed for (Chapter 2). In view of climate change, the heat waves do not come alone but
are highly associated with drought, and the combination of these two stresses leads to more
severe effects than the individual stresses alone (Lipiec et al. 2013). Hence, the exploration of
stress combinations seems to be essential to ensure the tomato production under global warming
conditions. This topic should be addressed in follow-up research. For instance, to what extent
is the genotype Nagcarlang able to tolerate high temperatures? We have only assessed mild
chronic heat stress for two weeks, but the stability of Nagcarlang under more variable climate
conditions with stronger heat waves or in combination with another stress, such as drought,
remains to be explored.

SPOT-ITN converges to a similar result: Microsporogenesis is an important cellular
process

As previously mentioned in the general introduction, our project is part of a European
Consortium (http://spot-itn.eu/) that aimed to improve the understanding of tomato pollen
thermo-tolerance by investigating different levels of organization including transcripts, proteins
and metabolites. As described above our metabolomic data strongly suggested that the
microsporogenesis is a pivotal step of the pollen development to ensure fertility of the mature
pollen grain. Our collaboration with the partners of Frankfurt University (Germany) who are
focused on the mechanistic response of Heat Shock Factors (HSFs) and Heat Shock Proteins
(HSPs) led to similar conclusions. The exposure of pollen to short heat stress of antisense
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HSFA2 tomato plants (cv. Moneymaker) led to a reduction of pollen viability only when the
stress was applied during meiosis and microsporogenesis (Fragkostefanakis et al. 2016). The
results demonstrated that these young developmental stages had a lower ability to induce a
proper heat stress response (HSR). Besides, the metabolic study of these young anthers showed
that the antisense HSFA2 tomato plants accumulated lower levels of specific sugars compared
with the non-transgenic control, both under control conditions and after a short heat stress
(Fragkostefanakis et al. 2016). When comparing one thermo-sensitive and one thermo-tolerant
genotype, we found a similar relationship between sugar abundance and temperature tolerance
supporting the hypothesis that lower accumulation of energy resources might lead to a higher
sensitivity to high temperatures. Interestingly, other partners from Radboud University (The
Netherlands) overexpressed HSFA2 in tomato plants (cv. MicroTom) under control of a
tapetum cell-specific promoter. This led to a higher expression of HSFA2 at microspore stage
and a better pollen viability of the transgenic plants compared to the control line when exposed
to high temperatures (Li 2015). Hence, improving the tolerance of the microspore stage is a
valuable strategy to improve pollen quality under adverse environmental conditions. In parallel,
Vienna University (Austria) and Volcani Centre Agricultural Research Organization (Israel)
performed a proteome analysis of post-meiotic pollen (combination of microspore and
polarized pollen cells) and mature pollen stages of tomato (cv. Hazera 3017) under control and
short heat stress conditions. These experiments also led to the conclusion that microspore and
polarized pollen stages are crucial in the heat stress responses (Chaturvedi et al. 2015). At this
specific stage, they found accumulation of proteins linked with the ROS scavenger ascorbate
peroxidase which is in line with the strong accumulation of flavonoid antioxidants we found in
the polarized pollen stage of the cv. MicroTom after short heat stress. Although all these studies
were performed in different tomato genotypes they all converged into the same direction,
indicating that microsporogenesis is pivotal for pollen fertility under high temperatures and that
targeting this stage for improvement can lead to a better pollen performance under high
temperatures.

Why is pollen so sensitive to high temperatures?

Many studies focused on elucidating the factors leading to a decrease of pollen viability under
high temperatures. Our approach showed that the loss of tomato pollen fertility under mild
chronic heat stress is associated with alterations in metabolite accumulation during
microsporogenesis. This provides new leads, in addition to the range of already existing factors
that might contribute to the sensitivity of pollen to high temperatures. However, one question
always remains: why the pollen grain, the carrier of precious genetic material and therefore an
important contributor of the survival of species is the most sensitive organ to high temperatures?
Recently, Muller and Rieu (2016) suggested what causes the failure of developing a mature and
fertile pollen grain under high temperatures including (i) a nutrition failure, a reason that we
can support with the results from our study in Chapter 5, in which we observed a drop of hexoses
in the microspore stage anthers of the sensitive genotype and (ii) a less efficient heat stress
response (HSR), since several heat shock proteins do not accumulate as much in pollen as they
do in leaves under heat stress. In general, I can think of three major reasons why the pollen
viability of tomato is so sensitive to high temperatures: (i) Domestication - Tomato originated
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from South America where a range of diverse climatic variation exists, including extreme warm
temperatures (Bergougnoux 2014). Over time, humans have domesticated tomatoes by focusing
on traits of interest such as yield, shape, and pest resistance (Bergougnoux 2014). Such
extensive breeding has narrowed the genetic variation of the cultivated tomato compared to
wild tomato species (Viquez-Zamora et al. 2013). The lower diversity of domesticated tomatoes
might have led to a loss of temperature tolerance. This hypothesis is supported by the
observation that wild relatives are in general more tolerant to abiotic stresses than domesticated
crops (Driedonks et al. 2015). Besides, we cannot exclude that the thermo-tolerance trait might
be linked with unfavourable traits that were selected against during domestication lowering the
stress tolerance of domesticated tomato. (ii) High pollen viability is not necessary to the survival
of tomato in its natural habitats, or it is not the only strategy to withstand extreme heat. In the
screening presented in Chapter 5, we observed that some wild species of tomato accumulated a
large number of pollen with a rather low pollen viability (e.g. LA1580). It is tempting to
speculate that the production of higher numbers of cells might be energetically cheaper for a
plant than producing a larger proportion of viable cells filled with protective metabolites (e.g.
sugars, antioxidant). Hence, the low fraction of remaining viable pollen might be enough to
produce seeded fruit and ensure the survival of a population — the task for which the plant
generative system originally evolved for in nature, and later has been put at the service of
feeding mankind. (iii) To enlarge genetic diversity under unfavourable conditions — The female
gamete is known to be less vulnerable to high temperatures (Zinn et al. 2010). We observed
that under heat stress conditions, flowers can present a stigma extension (data not-shown) that
might impair the self-pollination of the flowers which is the common reproduction mechanism
of tomato. Hence, the low production of viable pollen cells might cost less to the plant than
promoting cross-fertilization which at the same time can prevent the fixation of genes and
maintain a greater genetic diversity (Hedhly et al. 2005).

To conclude our results show that we can design ways to improve the thermo-tolerance of
plants with the aim to safeguard fruit production under changing climate conditions. This
research not only offers possibilities for such improvements in tomato but due to its general
nature also for improvement in other crops.
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Tomato, the second most produced vegetable of the world, is threatened by climate change and
more specifically the accompanying heat wave increases. The tomato production is highly
dependent on temperatures since high temperatures lead to a decrease of pollen fertility and
therefore fruit set. Evidence is accumulated that the loss of fertility is linked to an alteration of
the pollen metabolome. However, most of the studies on pollen were performed using targeted
biochemical approaches. We used untargeted metabolomics approaches such as LC-MS to
broaden the detection of pollen metabolites and metabolites associated with the tolerance to
high temperatures.

At first, we reviewed the state of the art of the pollen metabolome during development and
under heat stress, we confirmed the association of sugars, flavonoids and polyamines in the
protection to high temperatures (Chapter 2). We hypothesised that using untargeted
metabolomics analysis will allow to discover more metabolites associated with pollen
thermotolerance that can be used as metabolic marker in breeding program. Since metabolomics
analysis are not common approaches in pollen we focused on the reliability of standard pollen
isolation method applicable to metabolomics analysis. The main concerns of the reliability were
based on the rehydration of dry pollen during isolation procedures, contamination from anther
tissue and unwanted enzymatic activities during sample preparation (Chapter 3). We have
shown that (i) isolating pollen in a solution leads to pollen rehydration and metabolic changes
including the amino acid serine, glutamine glutamate, and the phenol kaempferol glucoside
rhamnoside, its aglycone form and the 5-caffeoyl quinic acid, (ii) despite the filtration and
washing steps the pollen sample isolated with anther squeezing is not exempt of anther
contamination (e.g. alkaloids) and (iii) that lyophilising rehydrated pollen prevents sugar
conversion that can occur during metabolite extraction. From this study, we have concluded
that the current methods used to assess the pollen metabolome are suboptimal, but necessary to
isolate young microspores. Therefore, effort should be put in attempts to develop an isolation
method that prevents the drawbacks of current used methods, and that pollen isolated in solution
should be qualified as imbibed since its metabolic state differs from the one of dry pollen. We
have applied the method used in Chapter 3, by limiting the incubation time in solution and
preventing sugar conversion, to assess the secondary metabolic profile of developing tomato
pollen (Chapter 4) under control and short heat stress. We used a short heat stress to prevent
pollen from undergoing physiological death and assessed changes that might be associated with
acquired thermotolerance. We found that developing pollen accumulate a high abundance of
flavonoids and showed a slight decrease of polyamines. The short heat stress did not lead to a
strong metabolic response since only the total abundance of flavonoids were affected by the
heat stress. Hence, we decided to use a longer but milder heat stress to determine the metabolites
that might be associated with pollen thermotolerance. We first screened under high
temperatures different tomato genotypes for pollen quality by recording pollen numbers and
pollen viability (Chapter 4). We found that pollen numbers and pollen viability are not
associated but that a combination of both traits might be an advantage to ensure fertilization
under high temperatures. From the screening, we selected M82 as sensitive genotype and
Nagcarlang as tolerant genotype. Instead of pursing our work on pollen we chose to assess the
metabolome of the whole anther, since under short heat stress the pollen showed a weak
response while we had evidence that the metabolome of anthers was strongly affected by short
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heat stress. We first determined which developmental stage is the weakest to high temperatures
and lead to the drop of pollen viability of M82 (Chapter 5). We found that in both genotypes
the pollen development was delayed under high temperatures, but that in M82 the pollen
viability started to drop during microsporogenesis and was at its minimum at polarization stage
whereas in Nagcarlang such a drop did not occur and the polarization was faster than under
control condition. We found that the drop of pollen viability might be due to a low amount of
hexoses that might alter the availability of energy required under heat stress, and a lower
antioxidant and osmolyte protection (e.g. flavonoids, polyamines and proline). We were able to
confirm known metabolites to be associated with the tolerance such as the sugars and the amino
acid proline, and to detect new metabolites that might be associated with the tolerance to high
temperatures such as specific flavonoids, polyamines and the alkaloids. After confirmation of
these metabolites as general metabolites associated with tolerance, we suggest their use as
markers in a breeding program to develop and identify genotypes tolerant to high temperatures,
that might ensure the production of tomato fruits under global warming conditions.
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