AccScience Publishing / IJB / Volume 2 / Issue 2 / DOI: 10.18063/IJB.2016.02.003
Cite this article
18
Download
565
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
PERSPECTIVE ARTICLE

Advancing cancer research using bioprinting for tumor-on-a-chip platforms

Stephanie Knowlton1 Ashwini Joshi1 Bekir Yenilmez2 Ibrahim Tarik Ozbolat3,4 Chee Kai Chua5 Ali Khademhosseini6,7,8 Savas Tasoglu1,2*
Show Less
1 Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
2 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
3 Engineering Science and Mechanics Department, Pennsylvania State University, University Park, PA 16802, USA
4 The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
5 Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue 639798, Singapore
6 Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
7 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
8 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
Published: 26 June 2016
© 2016 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

There is an urgent for a novel approach to cancer research with 1.7 million new cases of cancer occurring every year in the United States of America. Tumor models offer promise as a useful platform for cancer research without the need for animal models, but there remains a challenge to fabricate a relevant model which mimics the structure, function and drug response of human tumors. Bioprinting can address this need by fabricating three-dimensional constructs that mimic tumor heterogeneity, vasculature and spheroid structures. Furthermore, bioprinting can be used to fabricate tissue constructs within microfluidic platforms, forming “tumor-on-a-chip” devices which are ideal for high-throughput testing in a biomimetic microenvironment. Applications of tumors-on-a-chip include facilitating basic research to better understand tumor development, structure and function as well as drug screening to improve the efficiency of cancer drug discovery.

Keywords
bioprinting
cancer
tumor-on-a-chip
microfabrication
microfluidics
drug screening
References

1. Cancer statistics n.d., viewed February 9, 2015, http://www.cancer.gov/about-cancer/what-is-cancer/statistics
2. Ridky T W, Chow J M, Wong D J, et al. 2010, Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nature Medicine, vol.16(12): 1450–1455. http://dx.doi.org/10.1038/nm.2265 
3. Kim B J, Hannanta-anan P, Chau M, et al. 2013, Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS One, vol.8(7): e68422. http://dx.doi.org/10.1371/journal.pone.0068422 
4. Loessner D, Stok K S, Lutolf M P, et al. 2010, Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials, vol.31(32): 8494–8506. http://dx.doi.org/10.1016/j.biomaterials.2010.07.064 
5. Zhao Y, Yao R, Ouyang L, et al. 2014, Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, vol.6(3): 035001. http://dx.doi.org/10.1088/1758-5082/6/3/035001 
6. Friedl P and Wolf K, 2010, Plasticity of cell migration: A multiscale tuning model. Journal of Cell Biology, vol.188(1): 11–19. http://dx.doi.org/10.1083/jcb.200909003 
7. Li C L, Tian T, Nan K J, et al. 2008, Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro. Oncology Reports, vol.20(6): 1465–1471. http://dx.doi.org/10.3892/or_00000167 
8. Chopra V, Dinh T V and Hannigan E V, 1997, Three-dimensional endothelial-tumor epithelial cell interac-tions in human cervical cancers. In Vitro Cellular & Developmental Biology-Animal, vol.33(6): 432–442. http://dx.doi.org/10.1007/s11626-997-0061-y 
9. Knowlton S, Onal S, Chu H Y, et al. 2015, Bioprinting for cancer research. Trends in Biotechnology, vol.33(9): 504–513. http://dx.doi.org/10.1016/j.tibtech.2015.06.007 
10. Huh D, Hamilton G A and Ingber D E, 2011, From 3D cell culture to organs-on-chips. Trends in Cell Biology, vol.21(12): 745–754. http://dx.doi.org/10.1016/j.tcb.2011.09.005 
11. Huh D, Torisawa Y S, Hamilton G A, et al. 2012, Microengineered physiological biomimicry: organs-on- chips. Lab on a Chip, vol.12(12): 2156–2164. http://dx.doi.org/10.1039/c2lc40089h 
12. Chang S F, Chang C A, Lee D-Y, et al. 2008, Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proceedings of the National Academy of Sciences of the United States of America, vol.105(10): 3927–3932. http://dx.doi.org/10.1073/pnas.0712353105 
13. Polacheck W J, Charest J L and Kamm R D, 2011, Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proceedings of the National Academy of Sciences of the United States of America, vol.108(27): 11115–11120. http://dx.doi.org/10.1073/pnas.1103581108 
14. Varani J, 1982, Chemotaxis of metastatic tumor cells. 
Cancer Metastasis Reviews, vol.1(1): 17–28. http://dx.doi.org/10.1007/BF00049478 
15. Ghaemmaghami A M, Hancock M J, Harrington H, et al. 2012, Biomimetic tissues on a chip for drug discovery. Drug Discovery Today, vol.17(3–4): 173–181. http://dx.doi.org/10.1016/j.drudis.2011.10.02 
16. Dababneh A B and Ozbolat I T, 2014, Bioprinting technology: A current state-of-the-art review. Journal of Manufacturing Science and Engineering, vol.136(6): 061016. http://dx.doi.org/10.1115/1.4028512 
17. Junttila M R and de Sauvage F J, 2013, Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, vol.501(7467): 346–354. http://dx.doi.org/10.1038/nature12626 
18. Xu F, Celli J, Rizvi I, et al. 2011, A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnology Journal, vol.6(2): 204–212. http://dx.doi.org/10.1002/biot.201000340 
19. Weiss L E, Amon C H, Finger E D, et al. 2005, Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering. Computer-Aided Design, vol.37(11): 1127–1139. http://dx.doi.org/10.1016/j.cad.2005.02.004 
20. Keenan T M and Folch A, 2008, Biomolecular gradients in cell culture systems. Lab on a Chip, vol.8(1): 34–57. http://dx.doi.org/10.1039/B711887B 
21. Nagy J A, Chang S H, Dvorak A M, et al. 2009, Why are tumour blood vessels abnormal and why is it important to know? British Journal of Cancer, vol.100(6): 865–869. http://dx.doi.org/10.1038/sj.bjc.6604929 
22. Huang T Q, Qu X, Liu J, et al. 2014, 3D printing of biomimetic microstructures for cancer cell migration. Biomedical Microdevices, vol.16(1): 127–132. http://dx.doi.org/10.1007/s10544-013-9812-6 
23. Chauhan V P, Stylianopoulous T, Martin J D, et al. 2012, Normalization of tumour blood vessels improves the de-livery of nanomedicines in a size-dependent manner. Nature Nanotechnology, vol.7(6): 383–388. http://dx.doi.org/10.1038/nnano.2012.45 
24. Hirschhaeuser F, Menne H, Dittfeld C, et al. 2010, Multicellular tumor spheroids: an underestimated tool is catching up again. Journal of Biotechnology, vol.148(1): 3–15. http://dx.doi.org/10.1016/j.jbiotec.2010.01.012 
25. Hribar K C, Finlay D, Ma X, et al. 2015, Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab on a Chip, vol.15(11): 2412–2418. http://dx.doi.org/10.1039/c5lc00159e
26. Vidi P A, Maleki T, Ochoa M, et al. 2014, Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab on a Chip, vol.14(1): 172–177. http://dx.doi.org/10.1039/c3lc50819f 
27. Rizvi I, Gurkan U A, Tasoglu S, et al. 2013, Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proceedings of the National Academy of Sciences, vol.110(22): E1974–E1983. http://dx.doi.org/10.1073/pnas.1216989110 
28. Albanese A, Lam A K, Sykes E A, et al. 2013, Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nature Communications, vol.4: 2718. http://dx.doi.org/10.1038/ncomms3718 
29. Kwak B, Ozcelikkale A, Shin C s, et al. 2014, Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. Journal of Controlled Release, vol.194: 157–167. http://dx.doi.org/10.1016/j.jconrel.2014.08.027 
30. Chang R, Nam J and Sun W, 2008, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Engineering Part C Methods, vol.14(2): 157–166. http://dx.doi.org/10.1089/ten.tec.2007.0392 
31. Snyder J, Son A R, Hamid Q, et al. 2015, Fabrication of microfluidic manifold by precision extrusion deposition and replica molding for cell-laden device. Journal of Manufacturing Science and Engineering, vol.138(4): 041007. http://dx.doi.org/10.1115/1.4031551 
32. Hamid Q, Wang C, Zhao Y, et al. 2014, A three-dimensional cell-laden microfluidic chip for in vitro drug metabolism detection. Biofabrication, vol.6(2): 025008. http://dx.doi.org/10.1088/1758-5082/6/2/025008 
33. Hamid Q, Wang C, Synder J, et al. 2015, Maskless fabrication of cell-laden microfluidic chips with localized surface functionalization for the co-culture of cancer cells. Biofabrication, vol.7(1):015012. http://dx.doi.org/10.1088/1758-5090/7/1/015012 
34. An Uphill Battle, n.d., viewed February 18, 2016, http://www.brightfocus.org/sites/default/files/An%20Uphill%20Battle.jpg 
35. PR Tufts CSDD 2014 Cost Study, 2014, viewed Febru-
ary 18, 2016, <http://csdd.tufts.edu/news/complete_story/pr_tufts_csdd_2014_cost_study> 
36. Unger C, Kramer N, Walzl A, et al. 2014, Modeling human carcinomas: Physiologically relevant 3D models to improve anti-cancer drug development. Advanced Drug Delivery Reviews, vol.79–80: 50–67. http://dx.doi.org/10.1016/j.addr.2014.10.015 
37. Singh M, Morris C P, Ellis R J, et al. 2008, Micro-sphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Engineering Part C—Methods, vol.14(4): 299–309. http://dx.doi.org/10.1089/ten.tec.2008.0167 
38. He Z Q and Xiong L Z, 2011, Fabrication of poly(D, L-lactide-co-glycolide) microspheres and degradation characteristics in vitro. Journal of Macromolecular Science Part B—Physics, vol.50(9): 1682–1690. http://dx.doi.org/10.1080/00222348.2010.543036 
39. Bertassoni L E, Cardoso J C, Manoharan V, et al. 2014, Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, vol.6(2): 024105. http://dx.doi.org/10.1088/1758-5082/6/2/024105 
40. Tasoglu S and Demirci U, 2013, Bioprinting for stem cell research. Trends in Biotechnology, vol.31(1): 10–19. http://dx.doi.org/10.1016/j.tibtech.2012.10.005 
41. Durmus N G, Tasoglu S and Demirci U, 2013, Bio-printing: functional droplet networks. Nature Materials, vol.12(6): 478–479. http://dx.doi.org/10.1038/nmat3665 
42. Ozbolat I T and Yu Y, 2013, Bioprinting toward organ fabrication: challenges and future trends. IEEE Transactions on Biomedical Engineering, vol.60(3): 691–699. http://dx.doi.org/10.1109/TBME.2013.2243912 
43. Kolesky D B, Truby R L, Gladman A S, et al. 2014, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, vol.26(19): 3124– 3130. http://dx.doi.org/10.1002/adma.201305506 
44. Drug Discovery, 2015, InvivoSciences, viewed February 18, 2016, http://invivosciences.com/products-services/drug-discovery/

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing