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ABSTRACT 

 

An extended foliar greenness even under post-anthesis drought can be simply called as the stay-green 

phenotype. The maintenance of a balance between nitrogen (N) demand and supply during grain filling 

stage is the key to stay-green phenotype. Chlorophyll catabolic enzymes (CCEs) are responsible for the 

degradation of chlorophyll. When a mutant disrupts the activity of these CCEs, it leads to stay-green 

phenotype. There are five classes of stay-green identified as A, B, C, D and E. The genotype possessing 

these traits can retain more photosynthetically active leaves under water shortages at the grain filling 

stage. Maintaining the greenness of leaves for longer time is the fundamental strategy for increasing 

crop yield and market value. Understanding the physiological and genetic basis of stay-green in relation 

to drought-resistance mechanisms are fundamental to the development of new strains that are better 

adapted to dry conditions.  
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 1 Introduction  

Developing crops having high water use efficiency is one of the 

greatest challenges that crop scientists are facing today. The crops 

especially of semiarid origin such as millet and sorghum are found 

to possess critical adaptive mechanism which help them to escape 

and/or resist acute drought conditions. Maintaining the greenness 

of leaves for longer period is a principle strategy for increasing 

crop production, particularly under water-limited conditions 

(Abdelrahman et al., 2017). The pigment composition of plants is 

controlled by genetic and environmental stimuli and is the 

consequence of a balance between de novo synthesis and 

degradation (Barry, 2009). Stay-green is the ability of a plant to 

remain green and maintain photosynthesis for longer period of 

time, thereby contributing photosynthates for an extended time 

towards grain development (Borrell et al., 2001). Stay-green 

means heritable delayed yellowing or delayed foliar senescence in 

crop plant species (Thomas & Howarth, 2000; Thomas & 

Ougham, 2014), but this trait can actually be undesirable in 

certain circumstance when plants compete for resources 

(Antonietta et al., 2014). The stay-green phenotype is measured as 

green leaf area duration after anthesis, and is highly influenced by 

the time of anthesis, with earliness tending to give an increased 

duration for seed filling depending on environment condition 

(Gregersen et al., 2013). 

Stay-green is categorized into two groups: one is „functional stay-

green‟ where plants photosynthesize for a longer period, which 

can result in higher yield; second is „non-functional/ cosmetic 

stay-green‟ where plants remain green due to lesions in chl 

catabolism, but lack photosynthetic competence (Hortensteiner, 

2009; Tian et al., 2013). Due to its high importance, stay-green 

has been examined in many plants (rice, sorghum, barley, 

soybean, maize, wheat, french bean, tobacco, Arabidopsis, lettuce, 

broccoli, tomato and Capsicum etc.) which are being reviewed by 

Thomas & Smart (1993) and  Luche et al. (2015). The relationship 

of stay-green with useful traits such as greater number of fertile 

tillers (Ahlawat et al., 2008), higher number of grains/ear (Luche 

et al., 2017), tolerance to abiotic (Kassahun et al., 2010; Velasco-

Arroyo et al., 2016) and biotic (Sun et al., 2017) stresses have 

been reported. 

Mutants disrupting chlorophyll (chl) degradation, lead to stay-

green phenotypes which ultimately enhance grain yield especially 

under water stressed environmental condition (Hortensteiner & 

Krautler, 2011). Stay-green mutants have been categorized into 

five groups viz., A, B, C, D and E (Figure 1), using both temporal 

and biochemical characteristics (Thomas & Howarth, 2000). Type 

A arises when leaves and stems prolongs their photosynthetic 

activity, experiencing a delay in plant senescence, but later 

senescence proceeds at a usual rate. Senescence in B type appears 

in normal way, but proceeds at relatively slow rate. Even though a 

 

 
Figure 1: Five ways to stay-green. (Adopted from Thomas & Howarth, 2000). 
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normal rate of senescence with declining photosynthetic activity 

follows in type C (cosmetic stay-green), the chl degradation 

pathway failure retains the greenness. In type D stay-green, green 

colour is retained forever due to killing of the leaf tissue by freezing, 

boiling or drying. Type E is due to highest accumulation of chl in 

photosynthetic tissues, results in delaying of senescence and 

maintains green tissue, even with the reduced ability of fixing CO2. 

2 Chl degradation pathway in higher plants 

Chl degradation is a highly controlled sequential process that 

converts fluorescent chl molecules into non-fluorescent 

catabolites, via a highly conserved multistep pathway termed as 

the „PAO (pheophorbide a oxygenase)‟ pathway, that are stored 

within vacuole (Figure 2). Chl degradation is of vital importance 

to plant development for its detoxifying activity of the photo-

toxicity of chl molecules once they are freed from their binding 

proteins (Li et al., 2017). In higher plants, there are two forms of 

chl molecules, chl a and chl b, out of which chl a is the 

degradable form. Chlorophyllide a, pheophorbide a, red chl 

catabolite and primary fluorescent chl catabolites are the 

intermediates responsible for this conversion. There are six types 

of CCEs encoded by chlorophyll catabolic genes (CCGs) involved 

in chl catabolism, viz. chlorophyll b reductase (CBR),                        

7-hydroxymethyl chlorophyll a reductase (HCAR), Mg
2+

-

dechelatase, pheophytinase (PPH), PAO and red chlorophyll 

catabolite reductase (RCCR)   (Hortensteiner & Krautler, 2011). 

Chl b is synthesized from Chl a by oxygenation of its C-7 methyl 

group into a formyl group. In the degradation process of Chl, Chl 

b has to be converted to Chl a, because chl derivatives with C-7 

formyl groups are not catalyzed in the later steps of chl 

degradation (Hortensteiner et al., 1995). The conversion of chl b 

to chl a proceeds by two successive reductions. The formyl group 

of chl b is reduced by CBR to a hydroxymethyl group to produce 

7-hydroxymethyl chlorophyll a. Then the reduction of                     

7-Hydroxymethyl chlorophyll a by HCAR produces chl a. Mg 

from chl a is then removed by Mg
2+

-dechelatase to convert chl a 

to pheophytin a. The phytyl group of pheophytin a is then 

hydrolyzed by PPH to produce pheophorbide a and the 

tetrapyrrole ring structure of pheophorbide a is opened by PAO, 

resulting in oxidized red chl catabolite (RCC), which is 

subsequently catalyzed by catabolite reductase RCCR to generate 

primary fluorescent chl catabolite (pFCC) (Krautler, 2016). This 

pFCC is further modified and transported into the vacuole where 

the acidic pH isomerize it to non-fluorescent products (Suzuki et 

al., 2005; Tanaka & Tanaka, 2006; Balazadeh, 2014).  

For the expression of stay-green, three steps in the chl degradation 

pathway is mainly known to be affected. Conversion of chl b to 

chl a is the first step in the pathway affected in which the activity 

of the CBR and HCAR are reduced to an extent that the greenness 

of the leaf remains unaffected. The second step to be affected is 

the conversion of pheophorbide a into RCC by PAO enzyme 

(Hortensteiner, 2009). And the final step which is thought to be 

 
Figure 2: The chlorophyll degradation pathway 
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 affected is the conversion of RCC to pFCC catalyzed by the 

enzyme RCCR. Change in the level of activity of these enzymes 

(downregulation) in the stay-green mutant is responsible for 

expression of the trait. 

3 The stay-green gene 

Defects in chl degradation are a cause of delayed leaf senescence. 

In many plant species, stay-green mutants have been identified 

that show retention of Chl during senescence. Mutations in NYC1 

[(NON-YELLOW COLORING1) show such stay-green 

phenotypes in Arabidopsis and rice. CBR enzyme, a CCE is 

encoded by 2 isozyme genes NYC1 and NYC1-LIKE (NOL). 

NYC1 expression has consistent correlation with leaf senescence 

(Kusaba et al., 2007). Rice or Arabidopsis NYC1 mutants exhibit 

a stay-green phenotype with high retention of light harvesting 

complex II (LHCII) subunits and Chl b during senescence. An 

increasing number of natural or experimentally created stay-green 

mutants have been identified in plants such as bell pepper, tomato 

(Barry et al., 2008), rice(Park et al., 2007), Arabidopsis (Ren et 

al., 2007) termed as NON-YELLOWING 1 (NYE1)/ STAY-

GREEN1(SGR1) as well as Gregor Mendel‟s famous green 

cotyledon mutant of pea (Sato et al., 2007). Even though the 

functional activity of SGR proteins in sgr missense mutants are 

critically dependent on several amino acid residues, but they may 

not affect the expression level of SGR genes (Barry et al., 2008). 

The SGR proteins are generally classified into two distinct 

subfamilies named as SGR and SGR-like (SGRL), both of which 

exist in both monocotyledonous and dicotyledonous plants (Barry, 

2009). The Arabidopsis thaliana genome encodes 3 SGRs namely 

SGR1/NYE1, SGR2/NYE2 and SGRL. They contain a variable 

N-terminal domain including the putative chloroplast transit 

peptide, a conserved central domain called the SGR domain, and a 

variable C-terminal region. A cysteine rich motif of unknown 

function is present in the C-terminal part of SGR which 

distinguishes it from SGRL proteins (Aubry et al., 2008). 

Shimoda et al. (2016) reported about the photosystem degradation 

capacity of NYE1/SGR1 during senecsence by producing a Mg
2+ 

dechelatase that means the CCE Mg
2+

-dechelatase is encoded by 

SGR1. The products of all these genes exert an important 

regulatory role in chl degradation during senescence, destabilizing 

protein-pigment complexes and increasing availability of chl for 

cleavage by CCEs (Qian et al., 2016). The physical interactions 

between CCEs and light-harvesting complexes (LHCs) is the main 

reason for degradation of Chl (Sakuraba et al., 2012). Sakuraba et 

al. (2014a) and Sakuraba et al. (2014b) also reported about the 

positive regulation (enhances leaf senescence) of Chl degradation 

by SGR1 and SGRL during senescence, whereas the process is 

negatively regulated (limits leaf senescence) by SGR2. SGRL is 

expressed in the developmental stage and catalyzes a reaction 

from chl a and chlorophyllide a to pheophytin a and pheophorbide 

a, respectively, whereas SGR is expressed in the senescent stage 

and catalyzes a reaction only from chl a to pheophytin a. Both 

subfamilies do not use chl b as substrate. Chl b tightly holds Mg 

(Saga & Tamiaki, 2012), and SGR is thus not able to extract Mg 

from chl b. Conversion of chl b to chl a is thus important to 

loosen the Mg
2+ 

and eventually the Mg is extracted by SGR. The 

overexpression of SGR1 in Arabidopsis resulted early leaf 

yellowing but the “STAY-GREEN” phenotype was expressed in 

sgr1 mutants (Sakuraba et al., 2014a). On the contrary, SGR2 

over expression resulted in “STAY-GREEN” phenotype whereas 

premature leaf senescence phenotype was expressed by by sgr2 

null mutants under both the dark and abiotic stress conditions in 

Arabidopsis. Expression of SGR1 is weak in pre-senescent leaves, 

but is induced during developmental and dark-induced senescence 

(Ren et al., 2007). SGR proteins from different species are highly 

similar and localize to the chloroplast‟s thylakoid membrane (Park 

et al., 2007). In Arabidopsis, the interaction between SGR1, six 

plastid-localized CCEs and LHCII proteins results in SGR1–

CCE–LHCII protein complexes required for chl degradation 

(Sakuraba et al. 2015). However, the binding affinity of SGR2 for 

CCEs is much lower than for SGR1 (Sakuraba et al. 2014b). So, 

the hetero-dimerization of SGR1 and SGR2 can obstruct SGR1 

and CCEs interactions, limiting the SGR1–CCE–LHCII protein 

complex formation and finally chl degradation. 

4 Mechanism of stay-green trait 

In order to improve stay-green traits, understanding the 

mechanism of the traits has received much attention in plant 

science world. Chl content and level of photosynthetic activity of 

the leaves in water limiting conditions determines the expression 

of stay-green traits. Any mutation in the steps of chl biosynthesis 

and degradation pathway leads to expression of the trait.  

4.1 Carbon-Nitrogen Transition 

The Carbon (C)-capture phase of leaf function is succeeded by a 

phase of net organic N remobilization (Thomas & Ougham, 

2014). This C-N transitional period is actually the functional 

initiation of senescence and it is either delayed or runs slowly in 

functional stay-green (Thomas & Howarth, 2000). Chl is made up 

of C, N, Mg and other constituents. Therefore, C: N ratio is very 

important in the regulation of heat induced leaf senescence. For 

example, Borrell & Hammer (2000) showed that senescent and 

stay-green sorghum hybrids are differed for N demand: supply 

balance, where stay-green having a shortfall in N that is about 

25% lower than that in senescent hybrids, and explaining a slower 

rate of leaf senescence in the stay-green genotypes. Jespersen et 

al. (2015) reported about the improved protein level, 

photosynthesis and delayed senescence in creeping bent grass 

(Agrostis stolonifera) by spraying of carbonyldiamide as a source 
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of N. The stay-green expression can be considered as the 

equilibrium of N demand and supply during the stage of grain 

filling. The current research revealed that an increase in N uptake 

during grain filling maintain high photosynthetic activity in the 

leaves for longer period. Until and unless the C accumulation 

remains lesser than the sink capacity, prolonged photosynthesis 

keep on contributing C in crops by functional stay-green trait 

(Thomas & Ougham, 2014). 

4.2 Chlorophyll Biosynthesis pathway 

Chl biosynthesis pathway can be divided into 4 phases 

(Hortensteiner, 2009; Figure 3). In the first phase, Glutamic acid 

is converted to 5-Aminolevulinic acid (ALA) in the presence of 

Glutamyl tRNA reductase (GluTR). Two molecules of ALA are 

condensed to form porphobilinogen (PBG). Again four PBG 

molecules are linked to form protoporphyrin IX, which converted 

into Monovinyl protochlorophyllide a by the action of enzyme 

Mg
2+

-chelatase. A light dependent reaction takes place in the 

presence of NADPH and Protochlorophyllide oxidoreductase 

(POR) that lead to the formation of chlorophyllide. Attachment of 

phytol tail by the action of Chl synthetase completes the process 

by forming chl a.  

In this pathway, mainly two steps i.e. conversion of Glutamic acid 

to ALA and Monovinyl Protochlorophyllide a to Chlorophyllide a 

are influenced for the expression of stay-green trait                      

(Thomas & Ougham, 2014). In both the steps, the action                       

of enzymes responsible for the conversion is over expressed                   

or maintained for a longer period of time for the expression                    

of stay-green phenotype. 

5 Relation of phyto-hormones with stay-green trait 

The initiation and progression of senescence in leaves involve 

complicated hormonal crosstalk (Kim et al., 2011 a; Khan et al., 

2014; Kim et al., 2015; Schippers et al., 2015). Plant senescence is 

influenced by some major hormones such as Abscisic acid (ABA), 

Cytokinins (CKs), ethylene and strigolactones (SLs) which 

induces antagonistic and synergistic signaling effects (Thomas & 

Ougham 2014). Leaf senescence is regulated by nuclear and 

chloroplast signals. Expression of senescence-associated 

transcription factors (TFs) are induced by positive and negative 

stimuli in the nucleus. Positive stimuli are ethylene, ABA, 

jasmonic acid (JA), salicylic acid (SA), brassinosteroids (BR), 

SLs, stress, dark and ageing, whereas the only negative stimuli are 

the CKs (Kusaba et al., 2013).„„Positive TFs‟‟ induce the 

expression of senescence associated genes (SAGs) that promote 

leaf senescence whereas „„negative TFs‟‟ induce SAGs that 

repress leaf senescence. Thus nucleus born senescence-associated 

TFs regulates chloroplast senescence. On the other hand, retention 

of chloroplast activity represses the expression of senescence 

inducible genes, indicating that signals from the chloroplast can 

regulate nuclear derived programs of senescence. 

5.1 Ethylene 

Ethylene acts as a positive regulator of senescence in ethylene 

insensitive 2 (EIN2) mutants by controlling the timing of leaf 

senescence (Pierik et al., 2006). The N-terminal transmembrane 

domain (a type of endoplasmic reticulum membrane-bound 

receptor), which includes ethylene response sensors (ERS1 and 

ERS2), ethylene response factors (ETR1 and ETR2) and ethylene 

 

 
Figure 3: The chlorophyll biosynthesis pathway 
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 insensitive factors (EIN2, EIN3 and EIN4) (Iqbal et al., 2017) 

perceive the ethylene induced signals. In the absence of ethylene, 

these ethylene receptors function redundantly, negatively 

regulating ethylene responses via direct binding to constitutive 

triple response1 (CTR1), which is a key negative regulator of the 

ethylene signal transduction pathway. Grbic´ & Bleecker (1995) 

observed that the leaves of etr1-1 mutants remain unresponsive to 

ethylene treatment and express stay-green phenotype. Even during 

leaf senescence, EIN2 and EIN3 mutants exhibit a severe stay-

green phenotype. Li et al. (2013) also proved the positively 

regulation of EIN3 towards two important senescence regulatory 

genes ORE1 and NAP either directly or indirectly via negatively 

regulating miR164. Ethylene treatment may induce the expression 

of NYC1, NYE1 and PAO in Arabidopsis leaves but may repress 

them in ein3eil1 double mutant (Qiu et al. 2015). Yin et al. (2016) 

recently identified positive regulation of an ethylene responsive 

factor CitERF13, for CitPPH (a CCG gene) promoter during 

citrus fruit degreening. 

5.2 Abscisic Acid 

Senescing leaves are characterized by an increase in ABA levels 

which promotes chloroplast degradation (Xue-Xuan et al., 2010; 

Sah et al., 2016). ABA plays a dual role by repressing chloroplast 

biosynthesis genes and inducing genes that promote chl 

degradation during senescence. ABA positively regulates 

degreening during leaf senescence via an AtNAP-SAG113 (a 

PP2C family protein phosphatase) regulatory module which is 

involved in the movement of stomata (Zhang & Gan, 2012). Lee 

et al. (2011) reported that prk1, an Arabidopsis mutant exhibited a 

stay-green phenotype during natural senescence, and was 

characterized by delayed senescence specifically in response to 

ABA among several senescence-inducing treatments. Liu et al. 

(2016a) found that after treatment with ABA, abig1 (ABA 

Insensitive Growth 1, TF) mutants remain greener and produce 

more leaves than comparable wild-type (WT) plants, whereas 

when challenged with drought, abig1 mutants have fewer yellow, 

senesced leaves than WT. Conclusively, ABA induced by drought 

increases ABIG1 transcription which promotes leaf senescence 

and restricts new shoot growth.  

Gao et al. (2016), three ABA responsive element (ABRE) binding 

TFs namely ABF2, ABF3 and ABF4 act as key regulators in 

mediating ABA-triggered chl degradation and leaf senescence in 

general in Arabidopsis. 

5.3 Jasmonic Acid 

JA is another plant hormone that modulates defense responses, 

growt hand development, and is also proposed to mediate leaf 

senescence (Kim et al., 2015). Many JA biosynthesis genes are 

differentially regulated, as some are up-regulated and others are 

down regulated in the progression of leaf senescence (He et al., 

2002). Exogenous application of JA on WT Arabidopsis promotes 

leaf senescence and induces the expression of several SAGs, 

including JA biosynthesis genes. Castillo & Leon (2008) reported 

that a loss of function mutant of COI1 [encoding the co-receptor 

of JA and the antisense transgenic plant of 3-ketoacyl-CoA 

thiolase 2 (KAT2)] involved in JA synthesis have a stay-green 

phenotype in response to a dark incubation. In a recent study, Zhu 

et al. (2015) identified Arabidopsis MYC2/3/4 basic helix-loop-

helix proteins (the key JA signaling components) to direct 

transcriptional regulation of CCGs like PAO, NYE1 and NYC1 

by binding to their promoters. Further, the PAO promoter activity 

was found to get enhanced by over expression of MYCs in 

Arabidopsis protoplasts and also by methyl jasmonate (MeJA) 

treatment in WT Arabidopsis plants. Though, the MYCs over 

expression lines showed accelerated leaf yellowing, the 

myc2myc3myc4 triple mutants showed a severe stay-green 

phenotype. These findings advocate that MYC2/3/4 proteins may 

directly activate CCGs for mediating JA-induced chl degradation. 

5.4 Cytokinin 

CKs are a class of hormones which has dominant adversary effect 

on senescence (Wilkinson et al., 2012; Zwack & Rashotte, 2013). 

Kim et al. (2006) and Kim et al. (2012) reported that AHK3 and 

ARR2, which are components of CK signaling pathway, are 

constitutively expressed in Arabidopsis stay-green line ore12-1 

(gain-of-function mutant) consequently supervening a stay-green 

phenotype. These reports unfold the influential contribution of 

AHK3 and ARR2 in the hormonal regulation of senescence. A 

wheat stay-green mutant tasg1 exhibited a significantly delayed 

senescence and high photosynthetic capacity than the WT plants, 

the examination of which revealed that concentration of soluble 

sugars were higher in the flag leaves and grains of tasg1 than in 

WT plant due to the altered metabolism and transport of soluble 

sugars regulated by CKs (Wang et al., 2016a; Wang et al., 2016b). 

Similarly, Yang et al. (2016) also reported an increased heat 

tolerance and grain yield in wheat cultivar “Wennong 6” 

(retaining the “STAY-GREEN” trait) with post anthesis CKs 

treatment. 

Kim et al. (2011b) found that over expression of a gene 

(YUCCA6) coding for the rate-limiting enzyme of auxin synthesis 

(Indole 3 acetic acid- IAA) results in a stay-green phenotype. 

Based on microarray data from rice flag leaves during early 

senescence, Liu et al. (2016 b) identified W-box and G-box cis-

elements as positive regulators of senescence in the important rice 

variety Minghui 63. The W-box is the cognate cis-element for 

WRKY proteins, while the G-box is the cognate cis-element for 

bZIP, bHLH and NAC proteins. To investigate the potential 

relationship between flag leaf early senescence and hormone 

signaling, they surveyed the responses of TF genes to ABA, BR, 

CK, auxin, JA and gibberellic acid (GA) using data from 
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RiceXPro database. The result showed that the four TF families 

were affected by various hormones to varying degrees and also 

demonstrated that ABA, BR and CK-mediated signaling might 

converge on the same TFs. Zhang et al. (2016) reported that 

LpPPH gene [encoding pheophytin pheophorbide hydrolyase 

(PPH) that breaks down chl during leaf senescence in Lolium 

perenne L.] could be a direct downstream target of TFs in ABA 

and CK signaling pathways, as the breakdown could be regulated 

positively by ABA and ethylene, and negatively by CK. 

6 Breeding for stay-green trait 

Breeders have made great progress, supplying food to the growing 

human population through the release of more efficient cultivars, 

showing adaptation to environmental improvements such as 

irrigation and increased N input (Dias, 2015). However, the world 

population will be approximately 9.2 billion in 2050 (Jaggard et 

al., 2010) and to sufficiently feed all these people, the total food 

production will have to increase 60% to 70% (Tilman et al., 2011; 

FAO, 2012; Alexandratos & Bruinsma, 2012; Pardey et al., 2014). 

Thus in the context of present agriculture situation where food 

demand is on the surge, and there is also menacing impact of 

global warming and extreme environmental desecration from 

professional agricultural operations, plant breeders are 

anticipating and devoting time not only to improve yield but also 

to select and specify foremost genotypes having outstanding 

productivity, through technical know-how of stress adaptation 

physiology (Araus et al., 2008). 

Stay-green is characterized by delaying of leaf senescence in the 

last stage of plant maturity. Maintenance of grain filling for a 

longer period of time due to delayed senescence allows plants  to 

accumulate greater photosynthates toward the end of maturation 

which result in the increase of grain size. In addition, association 

of stay-green with different biotic (Rosenow & Clark 1981; Joshi 

et al., 2007) and abiotic stresses (Kassahun et al., 2010) has 

suggested potential for genetic improvement of several crops to 

promote stress tolerance and grain yield. However, breeding 

approaches are limited in the cases involving polygenic traits, 

significant environmental influences and low genetic variance. 

Genetic improvement for traits having high heritability is more 

effective. The stay-green trait is governed by only one gene 

having two alleles (Silva et al., 2001). The trait is positively 

heritable and controlled by four genes that are segregated 

independently, with strong contribution of additive effects (Joshi 

et al., 2007). Therefore, efficacious phenotypic selection and 

genetic manipulation for this trait will be most successful in early 

generations.  

The stay-green genotypes in sorghum and wheat were reported have 

better grain filling in drought, high stem carbohydrate content, 

reduced lodging better grain weight and resistance to charcoal stem 

rot (McBee et al., 1983; Rosenow, 1984; Borrell et al., 2000a; Silva 

et al., 2001; Burgess et al., 2002). Greenness during the final stage 

of leaf development is an essential trait in increasing source strength 

in grain production. And reported that stay-green japonica rice 

„SNU-SG1‟ had a good seed setting rate and grain yield (Yoo et al., 

2007). Thus, the stay-green trait is considered as an important 

determinant of grain yield. For increasing grain yield, persistence of 

high photosynthetic capacity and efficient N remobilization at the 

time of grain filling are the principle factors (Gentinetta et al., 1986; 

Thomas & Rogers, 1990; Rajcan & Tollenaar, 1999; Yamaya et al., 

2002; Spano et al., 2003; Abdelkhalik et al., 2005). Stay-green 

phenotype and related traits has been reported to enhance grain yield 

especially under post-anthesis drought conditions in wheat 

(Christopher et al., 2008; Adu et al., 2011; Bogard et al., 2011; 

Lopes & Reynolds, 2012; Kipp et al., 2014; Christopher et al., 

2016), sorghum (Xu et al., 2000; Borrell et al., 2000b; Borrell et al., 

2012; Jordan et al., 2012; Borrell et al., 2014a; Borrell et al., 2014 

b), maize (Bolanos & Edmeades, 1996; Kamara et al., 2003; Zheng 

et al., 2009; Wang et al., 2012) and rice (Jiang et al., 2004; Hoang & 

Kobata, 2009; Fu et al., 2009). Stay-green is thus widely honoured 

as a drought adaptation tool in cereals (Cattivelli et al., 2008; 

Gregersen et al, 2013). Thus, this association could be used as a 

basis for selection of high-yielding stay-green genotypes, especially 

for water-limited environments. Evangelista & Tangonan (1990) 

reported about the good association of stay-green phenotype with 

resistance to stem rot in sorghum. Similar association was also 

reported by Joshi et al. (2007) with resistance to spot blotch in 

spring wheat. Some of the stay-green wheat cultivars viz. CN12, 

CN17 and CN18 from southwest China are high yielding and 

resistant to stripe rust (Luo et al. 2009). These are the clear 

evidences for the persistence of stay-green phenotype which can 

remain photosynthetically active even at the influences of various 

biotic stresses. 

The improvement of stay-green phenotype is predicted to be much 

higher if information about the presence of stay-green 

genes/QTLs (quantitative trait loci) in the promising genotypes 

can be gathered with the help of linked molecular markers. QTLs 

studies in cereals have unveiled the value of functional stay-green 

in improving stress tolerance. Several QTLs associated with stay-

green have been identified in different cereals like, fourteen QTLs 

(sg1.1.1, sg1.6.1, sg2.1.1, sg2.1.2, sg2.2.1, sg2.3.1, sg2.5.1, 

sg2.8.1 sg3.1.1, sg3.2.1, sg3.5.1, sg3.9.1, sg4.1.1 and sg4.2.1) in 

maize (Zheng et al., 2009), four QTLs (StgB, Stg1, Stg3 and Stg4) 

in sorghum (Kassahun et al., 2010; Vadez et al., 2013), three 

QTLs (QSg.bhu-1A, QSg.bhu-3B and QSg.bhu-7D) in wheat 

(Kumar et al., 2010), six QTLs (csfl2/tcs2, tcs4, tcs5, csfl6, 

csfl9/tcs9 and csfl12) in rice (Fu et al., 2011) and ten QTL 

(HGSQ, HSPFLQ1, HSPFLQ2, HSPFL1Q, HLAUGQ1, 

HLAUGQ2, WGSQ, WGFL1Q1, WGFL1Q2, WLAUGQ) in 
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 barley (Gous et al., 2016) etc. The identified QTLs affecting stay-

green may be a promising target for marker-assisted introgression 

of the functional stay-green trait into the breeding materials for 

yield improvement. Wang et al. (2018) recently fine mapped a 

stay-green mutant in Brassica campestris L. ssp. chinensis, which 

they termed “nye”. Genetic analysis revealed that the stay-green 

trait is controlled by a single recessive gene, Brnye1. Using the 

BSA-seq method, a 3.0-Mb candidate region identified as the 

Brnye1 gene was mapped on chromosome A03. They identified 

12 genes in this region, 11 of which were annotated based on the 

B. rapa annotation database. They identified Bra019346, a 

homolog of the Arabidopsis AtNYE1gene, as a potential candidate 

gene responsible for the stay-green trait. It was supposed that 

characterization of this stay-green mutant and cloning of the stay-

green gene will provide a foundation for unraveling the molecular 

mechanism of the stay-green trait in B. campestris L. ssp. 

chinensis. 

Now-a-days, high-throughput phenotyping technologies like 

Greenseeker®, Phenomobile®, ArduCrop® have allowed 

researchers to accurately select stay-green traits by using methods 

like Normalised Difference Vegetative Index (NDVI), Light 

Detection And Ranging (LiDAR), Single Photon Avalanche 

Diode (SPAD) etc (Kipp et al., 2014; Rebetzke et al., 2016). The 

most relevant phenotypic parameters in this regard, such as the 

deviations in leaf area, greenness and photosynthetic capacity can 

now be easily followed and documented thoroughly by utilizing 

these advanced machineries. Hence, a hefty breeding population 

also can be screened very easily and the most suitable (only the 

functionally active stay-green) germplasm can be selected 

precisely (Christopher et al., 2014). 

7 Ideotype of stay-green genotype 

To be an ideal stay-green genotype and to produce potential 

economic yield, genotypes are assumed to have some ideal 

characteristics especially under drought environmental condition. 

Firstly, spread and deep root system is important as it enable the 

plant to uptake more N to maintain active source-sink relationship 

during the grain filling stage. Moreover stay-green genotypes also 

have the ability to uptake more silicon from soil which reflected 

as lodging resistance (Kashiwagi et al., 2007; Luyckx et al., 

2017). Genotypes with stay-green should exhibit a slow rate of chl 

degradation as it leads to prolong the duration of leaf senescence. 

As a consequence minimum chl content will be retained in the 

leaves for photosynthesis even during the period of senescence. 

The third assumption is that genotypes should have more total 

plant leaf area, so that the total green leaf area at the maturity 

stage will be more and it is an excellent indicator of stay-green. 

Thus, it is feasible to develop an ideal stay-green cultivar through 

pyramiding all these traits from potential sources using 

conventional or molecular breeding approaches.  

Conclusion 

During the last few years there have been tremendous increases in 

the understanding of the mechanisms and processes that control 

chl degradation in higher plants. Stay-green genotypes retained 

high photosynthetic competence, mesophyll conductance and 

photochemical efficiency as well as leaf chl content throughout 

grain filling as compared with other genotypes. From several 

findings, it has been suggested that a functional stay-green trait 

can be utilized for improving crop yield potential through the 

improved dry matter production during grain filling. There is a 

positive correlation between stay-green and yield as observed in 

several studies. Molecular techniques can be used to identify QTL 

controlling stay-green and its location in the chromosome. Finally 

it can be concluded that based on physiological, morphological 

and molecular characteristics, stay-green genotypes can be 

isolated and used in advanced breeding programmes for genetic 

crop improvement. 
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