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Measuring the Performance of Ground-
Motion Models: The Importance of Being
Independent

ABSTRACT

The results of data-driven evaluation of ground-motion models
could be ambiguous if the test data are not independent of all
the evaluated models. In such a case, the results describe both
the explanatory and the predictive powers of the models. As an
example, we demonstrate how a superseded ground-motion
model appears to perform better than its successor, an anti-
intuitive result. We hope to raise the awareness of the seismic-
hazard community on the importance of data independence
when conducting and interpreting a data-driven evaluation
of ground-motion models. The evaluation can still be useful
even if test data cannot be made entirely independent. but
the result should be interpreted with care.

DATA-DRIVEN EVALUATION: EXPLANATORY OR
PREDICTIVE?

Selecting one or multiple ground-motion models (GMMs)
suitable for a seismic-hazard model is a consequential task for
a seismic-hazard modeler. GMMs are often selected by a group
of experts after carefully evaluating the merits and shortcom-
ings of each shortlisted model (not too different from the proc-
ess of filling an important tenure-track position, albeit
reference letters may not be available). Criteria have been pro-
posed to guide this selection process (Cotton et al., 2006;
Bommer et al., 2010). Recently, data-driven (i.e., empirical)
GMM evaluations have become popular (see Table 1 for an
incomplete survey; see also table 1 of Mak et al., 2017).
Data-driven GMM evaluations could inform the selection
process by providing objective evidence about the performance
of a GMM. Some studies of this kind aim at highlighting the
difference between models to help the hazard modeler to cap-
ture epistemic uncertainty; others aim at identifying reasons
for good/poor model performance that will lead to model im-
provements.

It is the predictive power of a GMM, not its explanatory
power, that is relevant to seismic hazard (Bindi, 2017). A
model that explains the physics well does not necessarily pre-
dict the future well (Shmueli, 2010). Therefore, a strict GMM
evaluation should ideally be based only on prospective data (i.e.,

data collected after the GMM is created; see Schorlemmer and
Gerstenberger, 2007, for examples of prospective test).
Ground-motion observations are always scarce. Meeting the
strict definition of prospectiveness (as used in, say, the Collab-
oratory for the Study of Earthquake Predictability; Jordan,
2006) is difficult. Data that are independent of the GMM
(i.e., data not used in creating the GMM, although the earth-
quakes may occur before the GMM is created) are a pragmatic
choice to demonstrate the predictive power of a GMM.

The applicability of foreign models to a local region is
often the focus of a data-driven GMM evaluation (Table 1)
because models specifically developed for a region are often
not available. For studies of this purpose, data independence is
less controversial because the models and the test data are
naturally independent. Similarly, some studies compare the
ground-motion observations with the predictions from simu-
lation-based stochastic GMMs. If the parameters of the GMMs
are prescribed instead of empirically derived, then the issue of
data independence is also irrelevant. It is not uncommon, how-
ever, that the test data have been used in developing some of
the candidate GMMs (Table 1). The interpretation of the re-
sults of this kind of evaluation could be problematic because
the resulting performances of some of the candidate models
represent their predictive powers (i.e., for independent data),
whereas those for other candidate models represent their
explanatory powers (i.e., for data used to develop the model).
It is inappropriate to directly compare these two types of
performance.

In this article, we demonstrate, by an example based on
real data and models, what could happen if the issue of data
independence is ignored. We hope to raise the awareness of the
seismic-hazard community on this issue when conducting
evaluation studies and interpreting the results of such studies.

EXAMPLE: PREDECESSOR VERSUS SUCCESSOR

Among the five GMMs developed under the Next Generation
Attenuation (NGA) project (2008), four of them are updated
versions of GMMs used in the 1996 version of the U.S. Geo-
logical Survey National Seismic Hazard Model. For example,
Boore and Atkinson (2008; hereafter, 2008BA) is an update of
Boore et al. (1997; hereafter, 1997BJF). The NGA-West2
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flatfile (see Data and Resources) includes the data used to de-
velop 1997BJF (hereafter, the subset pre-97; these data were
also used, together with many other new data, to develop
2008BA), as well as a subset of data that have not been used
in both 1997BJF and 2008BA (hereafter, the subset post-

NGA). We used this pair of GMMs and data subsets to dem-
onstrate the importance of data independence in data-driven
GMM evaluations. 1997BJF is the only predecessor of the
NGA GMMs that provides the complete dispersion informa-
tion regarding the within- and between-event sigmas, so that a

Table 1
Ground-Motion Model Evaluation Studies

Study Region Independent Data?*
Lee et al. (2000) Southern California No
Bindi et al. (2006) Umbria–Marche, Italy Yes; foreign models
Douglas et al. (2006) French Antilles Yes; foreign models
Drouet et al. (2007) Pyrenees, Spain Yes; foreign models
Hintersberger et al. (2007) Central Europe Yes; foreign models
Stafford et al. (2008) Euro-Mediterranean No
Delavaud et al. (2009) California No
Douglas and Mohais (2009) French Antilles Yes; foreign models
Scasserra et al. (2009) Italy No
Nishimura (2010) Japan Yes
Shoja-Taheri et al. (2010) Iran Yes; foreign models
Çağnan et al. (2011) Turkey No
Kaklamanos and Baise (2011) California Yes
Ornthammarath et al. (2011) South Iceland No
Uchiyama and Midorikawa (2011) Japan Yes; foreign models
Arango et al. (2012) South and Central America Yes
Beauval et al. (2012) Southern and Eastern France Yes; foreign models
Delavaud et al. (2012) Global No
Joshi et al. (2012) Himalaya Yes; foreign models
Massa et al. (2012) Italy No
Mousavi et al. (2012) Iran No
Vilanova et al. (2012) Southwestern Iberia Yes; foreign models
Edwards and Douglas (2013) Cooper Basin, Australia Yes; stochastic models
Vacareanu et al. (2013) Eastern Romania Yes; foreign models
Mousavi et al. (2014) Iran Yes; foreign models
Ogweno and Cramer (2014) Central and Eastern United States No
Zafarani and Mousavi (2014) Ahar–Varzaghan, Iran No
Allen and Brillon (2015) Haida Gwaii, Canada Yes; foreign models
Drouet and Cotton (2015) France Alps Yes; stochastic models
Haendel et al. (2015) Northern Chile Yes
Mak et al. (2015) Italy Yes†

Danciu et al. (2016) Middle East No
Roselli et al. (2016) Italy No
Salic et al. (2017) Western Balkan Yes; foreign models
Van Houtte (2017) New Zealand No
Zafarani and Farhadi (2017) Iran No

*“No” indicates studies in which a significant portion of the test data has been used to develop some of the evaluated models.
“foreign models” indicates that foreign models are evaluated using local tests, so the data are naturally independent of the
models; similarly for “stochastic models.”
†Regarding Mak et al. (2015), the dataset for small and moderate (respectively, large) earthquake data was independent

(respectively, not independent) of the evaluated models.
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fair comparison between the predecessor–successor pair (see a
detailed discussion in Mak et al., 2017) is possible. We, there-
fore, use only the 1997BJF–2008BA pair in our analysis.

We compared the relative performance of 1997BJF and
2008BA (for peak ground acceleration prediction) using these
two datasets. Because 1997BJF is designed for magnitudes
above 5.5, we removed events smaller than this threshold from
the two subsets. We also used only the records within 40 km
from the rupture plane for two reasons. First, near-field records
are more relevant than far-field records for most engineering
interests. Second, although the modelers of 1997BJF specified
that their model is applicable for distance within 80 km and
about half of the data they used to develop the model are of
distance greater than 40 km, the majority (∼90%) of the far-
field records comes from only two earthquakes (Loma Prieta
and Landers; see Boore et al., 1997, their table 5 and fig. 1). A
model developed from such a highly unbalanced far-field data-
set is not expected to perform well in the far field. To avoid the
effect of distance distribution on the model performance and
focus our discussion on the effect of data independence, we
used only near-field data. The filtered subsets pre-97 and
post-NGA contained 123 records from 11 events and 264 re-
cords from 7 events, respectively (Table 2).

The performance evaluation based on the subset post-
NGA is a true test of the predictive power of the two GMMs,
whereas the evaluation based on the subset pre-97 is expected
to favor 1997BJF because the test data overlap much with the
data that were used to develop the model. 1997BJF was origi-

nally developed from 23 earthquakes containing 271 records
(Boore et al., 1997, their table 5); the subset pre-97 is about
half the size of the original dataset. The discrepancy between
the sizes of the test data and the original data 1997BJF used is
due to our exclusion of far-field data. On the other hand,
2008BA was originally developed from 58 earthquakes con-
taining 1674 records (Boore and Atkinson, 2008, their table 1);
the size of the subset pre-97 is less than one-tenth of the size of
the original dataset.

The evaluation method we used follows Mak et al. (2017).
This approach is based on the multivariate logarithmic score,
an extension of the widely used log-likelihood score (Scher-
baum et al., 2009) to include the correlation structure of a
GMM, so that the information carried by the within- and be-
tween-event sigmas can be fully incorporated. It also uses the
cluster bootstrap to assess the variability of the evaluation re-
sult. It shows the relative performance of two models by the
distinctness index (DI), a value ranging from −1 to 1. A pos-
itive (respectively, negative) DI means one GMM is more (re-
spectively, less) often better than the other, given the variability
of the available data. The extreme case of DI � 1 (respectively,
−1) means a model is always better (respectively, worse) than
the other. The use of the multivariate logarithmic score, similar
to the widely used mixed-effect model for GMM development,
has the advantage that the result will not be dominated by well-
recorded earthquakes. This is important for our analysis be-
cause the data we used are somewhat unbalanced (Table 2).

Table 2
Data Used in This Study

Earthquake ID* Subset Earthquake Name* Date (yyyy/mm/dd) Magnitude N †

6 pre-97 Imperial Valley-02 1940/05/19 6.95 1
12 pre-97 Kern County 1952/07/21 7.36 1
25 pre-97 Parkfield 1966/06/28 6.19 4
30 pre-97 San Fernando 1971/02/09 6.61 15
33 pre-97 Point Mugu 1973/02/21 5.65 1
45 pre-97 Santa Barbara 1978/08/13 5.92 2
48 pre-97 Coyote Lake 1979/08/06 5.74 10
50 pre-97 Imperial Valley-06 1979/10/15 6.53 31
53 pre-97 Livermore-01 1980/01/24 5.80 5
118 pre-97 Loma Prieta 1989/10/18 6.93 39
125 pre-97 Landers 1992/06/28 7.28 14
176 post-NGA Tottori, Japan 2000/10/06 6.61 18
177 post-NGA San Simeon, California 2003/12/22 6.50 6
179 post-NGA Parkfield-02, California 2004/09/28 6.00 74
180 post-NGA Niigata, Japan 2004/10/23 6.63 20
278 post-NGA Chuetsu-oki 2007/07/16 6.80 68
279 post-NGA Iwate 2008/06/13 6.90 56
280 post-NGA El Mayor–Cucapah 2010/04/04 7.20 22

*As given in the Next Generation Attenuation (NGA)-West2 flatfile.
†Number of records within 40 km from the rupture plane.
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Based on this evaluation method, the performance of
1997BJF was found to be better than 2008BAwhen the subset
pre-97 was used (DI � 0:72 for 1997BJF with respect to
2008BA). When using the subset post-NGA, however,
2008BA was found to perform better (DI � −0:83 for
1997BJF with respect to 2008BA). We reiterate that the subset
pre-97 is not independent of 1997BJF, and the subset post-
NGA is independent of both GMMs.

THE IMPORTANCE OF BEING INDEPENDENT

The presented example is, of course, not of practical impor-
tance in its specific sense, because superseded GMMs are often
not considered better than their successors and so should not
be used (Bommer et al., 2010). The focus here is the effect of
data independence in a data-driven GMM evaluation.
Although 2008BA has better predictive power, as demon-
strated by the test using the post-NGA subset (which is both
independent and prospective), an opposite (and, presumably,
incorrect) result could occur if the test data are not indepen-
dent of 1997BJF.

GMM evaluations (Table 1) often involve both foreign
and local models, whereas the test data are often local.
Although the test data are seldom identical to that used for
developing the evaluated models, it is not uncommon for
the two datasets to significantly overlap. Because large earth-
quakes are rare, it is understandably difficult to compile a
set of completely independent data of engineering significance
(e.g., large magnitude and short distance) when the model
comparison involves local models. Even with nonindependent
data, data-driven GMM evaluation could still be useful: if a
local model, when favored by the local data, is not found to
be unambiguously better than a foreign one, it will be a strong
argument for the good performance of the foreign model (e.g.,
Stafford et al., 2008). The problem is in the opposite case that
the local model is shown to be better (e.g., Mousavi et al., 2012;
Zafarani and Farhadi, 2017). In such a case, the data-driven
evaluation may be inconclusive.

A data-driven GMM evaluation informs model selection.
It is, however, seldom sufficient to select models and assign
weights (assume using the logic-tree approach) purely based
on empirical evidence because the available data seldom cover
all situations of practical interest. Nevertheless, a data-driven
evaluation helps to clearly separate the portion of the decision
made based on empirical evidence from that based on expert
judgment, enhancing the transparency of the decision-making
process. When the test data are not independent of the evalu-
ated models, the evaluation result should be interpreted with
care and should not be taken entirely as empirical evidence.

This article focuses on the issue of data independence of
data-driven evaluation of GMMs. The principle of the need to
use independence data also applies to the data-driven evalu-
ation of seismic-hazard models (e.g., Mak and Schorlemmer,
2016). The issue of data independence, however, may be less
critical for evaluating seismic-hazard models because hazard
models, unlike common GMMs, are often not direct products

of statistical model fittings. The seismicity model used in a seis-
mic-hazard model may rely heavily on geological and geodetic
information that is largely independent of the test data, which
is ground-motion observation.

DATA AND RESOURCES

The Next Generation Attenuation (NGA)-West2 flatfile was
downloaded from http://peer.berkeley.edu/ngawest2/
databases/ (last accessed January 2017). The ground-motion
model (GMM) computation was conducted using OpenQuake
Hazard Library (https://github.com/gem/oq-hazardlib, last
accessed January 2017). An accelerograph records three-com-
ponent time series. A peak ground acceleration (PGA) value is
derived from combining the peak values of the two horizontal
time series. The details of how this combination is done in the
NGA-West2 flatfile, the data used in Boore and Atkinson
(2008; hereafter, 2008BA), and the data used in Boore et al.
(1997; hereafter, 1997BJF) are different. Moreover, some re-
cords in the flatfile may have been reprocessed so that they
are different from what has been used in 2008BA and
1997BJF. We assume these differences did not affect our analy-
sis.
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