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Regional Stochastic GMPEs in Low-Seismicity Areas: Scaling and

Aleatory Variability Analysis—Application to the French Alps

by Stéphane Drouet and Fabrice Cotton

Abstract We generate stochastic ground-motion prediction equations (GMPEs) for a
wide magnitude range (Mw 3–8) that are adapted to the French Alps. Based on inver-
sions of source, path, and site terms from weak-motion accelerometric data (Drouet
et al., 2010), we build seismological stochastic models to use in conjunction with the
simulation program Stochastic-Method SIMulation (SMSIM) to stochastically simulate
ground-motion response spectral amplitudes. All the input parameters are considered
random variables, and the uncertainty is propagated through simulations by random
sampling of the corresponding distributions. Constant and magnitude-dependent stress
parameter models are compared with variable large-magnitude stress levels. Stochastic
simulations are performed for periods between 0.01 and 3 s,Mw from 3 to 8, epicentral
distances from 1 to 250 km, and two site conditions: rock (VS30 � 800 m=s) and hard
rock (VS30 � 2000 m=s). These synthetic data are then regressed to produce stochastic
GMPEs using an up-to-date regression form, the parameterization of which can be de-
fined in terms of different distance metrics (i.e., epicentral, hypocentral, Joyner–Boore,
or rupture distance). The impact of the uncertainty on each input parameter on the GMPE
standard deviation is determined through sensitivity analysis. The major contributors
to the uncertainty are the site model, both VS30 and κ (the high-frequency parameter),
which affect the within-event standard deviation, and the uncertainty on the stress
parameter, which affects the between-event term. The GMPEs are compared to real data
using statistical analysis of residuals. Two sets of strong-motion data are considered (the
Reference Database for Seismic Ground Motion in Europe [RESORCE] and the world-
wide Next Generation Attenuation databases), as well as weak-motion data recorded in
France. The results show that the magnitude-dependent stress parameter models (for
magnitudes below 4.6) fit the French data better, and a large-magnitude constant stress
parameter of 10 MPa gives a better fit to strong-motion data.

Online Material: Tables of ground-motion prediction equation coefficients.

Introduction

Because of the improvement of accelerometric networks
in low-seismicity areas, moderate earthquakes (withmagnitude
between 3 and 5) can now routinely be recorded by regional
networks. Several studies have shown however that it is not
straightforward to use these new data to develop ground-mo-
tion prediction equations (GMPEs) that are reliable in the range
of magnitudes and distances relevant for the seismic-hazard
analysis. It has been shown that the scaling of ground motions
with magnitude is magnitude dependent (e.g., Bommer et al.,
2007; Cotton et al., 2008), and the direct extrapolation of the
results of regression on data from small-to-moderate magni-
tude earthquakes leads to unsatisfactory predictions.

Moreover, these moderate earthquake records show
regional variations of ground-motion properties (e.g., Malag-

nini et al., 2002; Edwards et al., 2008, 2011; Drouet et al.,
2010), which are not taken into account by classical GMPEs
used for seismic-hazard assessment. Thanks to the exponen-
tial growth in the amount of data and new regression tech-
niques, these regional variations have also been confirmed by
the recent analysis of strong motions (Boore et al., 2014;
Stafford, 2014). To solve these issues of ground-motion scal-
ing and regional variations, several authors (e.g., Toro et al.,
1997; Atkinson and Boore, 2006; Edwards and Fäh, 2013;
Rietbrock et al., 2013) have been developing GMPEs that are
based on stochastic simulations (Boore, 2003) in which
parameters are calibrated using weak-motion records. These
methods have the clear advantage of taking into account a
physics-based scaling of ground motion with magnitude
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and the regional variations of ground-motion attenuation
shown by regional records.

One of the major challenges faced by such studies is,
however, the proper calibration of the simulated ground-
motion variability. Indeed, the random ground-motion predic-
tion variability associated with a given earthquake scenario (a
chosen magnitude–distance pair) strongly influences the
seismic-hazard computation, in particular for long-return peri-
ods (e.g., Bommer and Abrahamson, 2006). The variability of
the simulation results mostly reflects the parametric intrinsic
aleatory variability of the input. To our knowledge, few studies
have discussed ways to calibrate the probability distributions
of the stochastic model inputs, or analyzed in detail the impact
of these distributions on the resulting between-event and
within-event ground-motion variability.

To be of practical use, these stochastic-based GMPEs
need also to fulfill several criteria. They should first be
compared with the strong ground motion data from active
regions. This testing step is essential to evaluate the perfor-
mance of different versions of the stochastic models and,
more precisely, the impact of the chosen magnitude scaling
of the stress drop on the resulting ground motions. Following
the suggestion of Bommer and Akkar (2012), these GMPEs
should also be derived in pairs, one based on a point-source
measure for use with area sources and another using an
extended-source metric for fault sources.

The goal of this study is then to develop stochastic-based
GMPEs in a moderate seismicity area like France. France is a
country of weak-to-moderate seismicity, although analysis of
historical records reveals that destructive earthquakes can
strike the territory (Scotti et al., 2004). Strong ground motion
recordings are lacking in France. Consequently, there is no
specific GMPE based on strong-motion recordings. However,
for about 25 years, the national accelerometric network
(Réseau Accélérométrique Permanent [RAP]) has been record-
ing high-quality data from small events throughout France
(Pequegnat et al., 2008). We built a seismological model for
the French Alps, and stochastic simulations are performed
with Stochastic-Method SIMulation (SMSIM) (using time-
domain simulation and not the random vibration theory op-
tion; see Boore, 2003). Basically, SMSIM uses a point-source
model, although adjustments are included to mimic near-
source and finite-fault effects. Boore (2009) compared SMSIM
with actual finite-fault simulations and showed that the results
are compatible when the motions are averaged over a random
distribution of hypocenters. Our simulations for peak ground
acceleration (PGA), peak ground velocity (PGV), and spectral
accelereration from 0.01 to 3 s are performed for a wide mag-
nitude range from 3 to 8, epicentral distances from 1 to 250 km,
and two rock conditions: standard rock (VS30 � 800 m=s) and
hard rock (VS30 � 2000 m=s). The simulated data are re-
gressed to derive the stochastic GMPEs based on an up-to-
date functional form.

Our approach discusses precisely the way to define
region-based input parameters and capture the probability
distribution of those parameters. We analyze and discuss

the impact of these distributions on the resulting ground-
motion variability for different frequencies and magnitude–
distance pairs. All of the parameters of the seismological
model are random variables, and the propagation of uncer-
tainty in the simulations is carried out through random sam-
pling of the input parameter distributions. A sensitivity study
is performed to assess the impact of the uncertainty of each
input parameter on the final GMPE uncertainty. Finally, the
GMPEs are tested with real data from two international
strong-motion databases (Reference Database for Seismic
Ground Motion in Europe [RESORCE] and Next Generation
Attenuation [NGA]) and with data recorded in France.

Seismological Model

Far-Field Fourier Amplitude Spectra

The far-field acceleration Fourier spectra can be written
as a product of source, path, and site parameters (as used in
Drouet et al., 2010):

Aijk�rij; fk� �
2Rθϕ

4πρV3
S

×
�2πfk�2M0i

�1� �fkfci�
2� × exp

�
−

πrijfk
Q�fk�VS

�

×
1

rγij
× Sj�fk�; �1�

in which rij is the hypocentral distance from earthquake i to
station j and the frequency fk. The source is described using
the usual Brune’s source model (Brune, 1970, 1971) in
which M0i

is the seismic moment and fci is the corner fre-
quency of event i. Attenuation involves anelastic decay and
geometrical spreading, in which Q�fk� � Q0 × fαk is the fre-
quency-dependent quality factor and γ is the exponent of the
geometrical spreading. Sj�fk� is the site effect for station j at
frequency k. VS � 3:5 km=s is the average S-wave velocity
along the path, Rθϕ � 0:55 is the average radiation pattern,
and ρ � 2800 kg=m3 is the density.

This kind of very simple model has been used to analyze
weak-motion events in many regions (Malagnini et al., 2007;
Edwards et al., 2008; Drouet et al., 2010) and is also used for
stochastic simulations of ground motion (Boore, 2003). Still,
using Brune’s model, stress drop (in Pa) can be related to
corner frequency and seismic moment (in N·m):

Δσ � 7

16
M0

�
fc

0:37VS

�
3

: �2�

In the next subsections, we will describe the seismologi-
cal model used for the simulations based on the results of the
Fourier spectra analysis of Drouet et al. (2010). Figure 1
shows the events, stations, and paths used in that study.

Stress Parameter Model

The question of the variations of the stress drop (or stress
parameter as we should call it, i.e., Atkinson and Beresnev,
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1997) with magnitude is a highly debated topic, and there are
contradictory studies in the literature (see Ide et al., 2003,
and reference therein). Whether or not the stress drop varies
with the earthquake size, a magnitude-dependent stress
parameter is often needed to reproduce Fourier spectra of
small-magnitude events (Edwards et al., 2008; Drouet et al.,
2010; Edwards et al., 2011).

Drouet et al. (2010, 2011) inverted Fourier acceleration
spectra to deconvolve the source, the path, and the site terms
based on data from the French metropolitan area and the
French West Indies. Both datasets have been collected by the
same instrumental network (the French accelerometric net-
work, RAP) and are associated to shallow crustal earthquakes,
which justify their common use to evaluate the magnitude
scaling of stress drops. Figure 2 (top) shows the obtained
stress drops versus magnitude for the Alps and the French
West Indies. The values for the Alps present a large variability
and slight variations with magnitude. However, the magnitude
range is very limited. The data from the French West Indies,
analyzed using the same method, span a much wider magni-
tude range and suggest an increasing stress drop with magni-
tude up to a kink point aroundMw 4.6, above which the stress
drop remains constant with magnitude. A very similar transi-
tion point was also suggested by data used in Edwards and
Fäh (2013) and Rietbrock et al. (2013).

For larger magnitudes, most of the global studies of large
earthquakes have shown that the stress parameter remains con-
stant (Kanamori and Anderson, 1975; Allmann and Shearer,
2009). Allmann and Shearer (2009) demonstrated some
regional variations in the stress drop, with a mean value of
approximately 3 MPa for the interplate regions and 6 MPa
for intraplate regions. The data obtained in the Pacific Earth-
quake Engineering Research–Next Generation Attenuation
(PEER NGA; see Data and Resources) project give some
stress-drop values for large events varying roughly between
0.1 and 10 MPa. These data are plotted in Figure 2 (bottom).

Our stress parameter model is built in the following man-
ner. At the small-magnitude end, the model is anchored to the
reference point shown in Figure 2 (top), defined as the average
magnitude and average base 10 logarithm of stress drop for the
Alps. At the large-magnitude end, we assume a constant stress
drop and test three values: 2.5, 5, and 10 MPa. Finally, using a
kink point at Mw 4.6, we draw a two-segment linear model.
The three models tested for the Alps are described by
equation (3) and shown in Figure 2 (bottom):

ln�Δσ� �
�
a� b×Mw; if Mw <4:6
cste; if Mw ≥4:6 with Δσ inMPa:

�3�
The parameters a, b, and cste are given in Table 1. Three other
models characterized by a constant stress parameter of 2.5, 5,
and 10 MPa over the entire magnitude range are also tested to
allow for the possibility of self-similarity.

Regarding the standard deviation of the stress parameter,
Cotton et al. (2013) used Brune’s source model (Brune,
1970, 1971) and random vibration theory (McGuire and
Hanks, 1980) to estimate the relationship between the stan-
dard deviation of stress drop and that of the PGA:

σstress drop �
6

5
σPGA: �4�

Considering various empirical GMPEs, the authors estimated
the standard deviations of the stress parameter to be between
0.26 and 0.59 in natural log units (between 0.11 and 0.26 in
log10 units). They also showed that the stress parameter vari-
ability indicated in studies using spectral analysis of
Fourier spectra is 3–4 times larger, which may be linked to
the uncertainties in corner-frequency measurements that lead
to large uncertainties in the stress parameter. Some GMPEs
(e.g., Abrahamson and Silva, 2008; Chiou and Youngs, 2008)
have included a variable total uncertainty with magnitude,
with smaller events showing larger uncertainty. This issue is
still not resolved and might simply be an effect of poor quan-
tification of predictive variables for the small events (e.g.,
magnitude, distance; Bommer et al., 2007) rather than reflect-
ing a real difference in the physical process(es) between large
and small events. In this study, we will assume a constant un-
certainty of 0.3 in log10 units, which is an upper bound of the
Cotton et al. (2013) results. As a comparison, Rietbrock et al.
(2013) used a magnitude-dependent uncertainty for the stress
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Figure 1. Map showing the earthquakes (circles), stations (tri-
angles), and paths (gray lines) used in Drouet et al. (2010). The
localization of the Alps region within France is also shown.
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parameter that varies between 0.3 for large-magnitude events
and 0.6 for small-magnitude events.

Site Model

The site model uses the generic site amplification func-
tions of Boore and Joyner (1997), which are parameterized in
terms of VS30 (average shear-wave velocity over the top
30 m) as in Cotton et al. (2006). Two VS30 values are con-
sidered: 800 and 2000 m=s, because we focus on rock sites.
However, as a site with the same VS30 can have different

amplifications at different frequencies, we used various site
amplification functions, scaling up and down the generic
functions by a constant factor lognormally distributed. This
procedure may not be very realistic because, in reality, some
frequencies may be amplified and others are not, but this is
an easy way to introduce some site-effect variability.

The value of the standard deviation (sigma) used in this
process was fixed as 0.2 in log10 units, based on visual com-
parisons with the site transfer functions from Drouet et al.
(2010) shown in Figure 3 (top row). The gray curves are
identical in the two panels and show the responses of all the
stations analyzed, whereas the black curves show the stations
located on rock according to two different classifications:
EC8 (Eurocode 8, 2004) class A (left), and reference stations
(RS) of Drouet et al. (2010) (right). There is very large vari-
ability in the observed amplifications, and the rock sites ac-
cording to EC8 show as much variation as all the stations. It
should be noted that EC8 classes for the French RAP stations
are estimated using data from various approaches, and these
are neither very homogeneous nor very precise (Régnier
et al., 2010). The RS defined as good rock sites in Drouet
et al. (2010) show less variability.

The high-frequency attenuation parameter κ (Hanks,
1982) is determined from the Van Houtte et al. (2011) cor-
relation between κ and VS30. A lognormal distribution is also
used to propagate uncertainties with a standard deviation of
0.2 in log10 units, which covers the observations from Van
Houtte et al. (2011). For VS30 � 800 m=s, the correlation
leads to κ � 0:03 s (hereafter, standard-rock conditions), and
for VS30 � 2000 m=s to κ � 0:01 s (hereafter, hard-rock
conditions). The resulting site amplifications and kappa
values used in the simulations are shown in Figure 3.

Attenuation Model

Drouet et al. (2010) also computed attenuation parame-
ters for three regions in metropolitan France, including the
Alps. Their inversions provided a geometrical decay exponent,
using a single segment for the whole distance range (1=Rγ),
and a frequency-dependent quality factor (Q�f� � Q0 × fα).
Drouet et al. (2010) provided some estimates of uncertainty,
but only based on the a posteriori covariance matrix. These
errors are modeling errors, are very small, and are not repre-
sentative of the true observed variability.

To better define the uncertainties associated with the
attenuation parameters, a bootstrap method is implemented.
In this study, we randomly selected 80% of the earthquakes
and 80% of the records of each of these earthquakes, and we
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Figure 2. Top: Inverted stress drop versus moment magnitude
from Drouet et al. (2010) and Drouet et al. (2011) for the Alps (red
diamonds) and French West Indies (gray dots). The large square
denotes the average stress drop and moment magnitude for the Alps,
and the dotted line shows the scaling from the Alps data only. Bot-
tom: Models for the stress parameter built from the average stress
drop for small-magnitude events and three stress parameter values
for large magnitudes (plateau at 2.5, 5, and 10 MPa). The stress
drops included in the Next Generation Attenuation (NGA) database
(see Data and Resources) are also indicated (dark dots).

Table 1
Stress Model Parameters to Use in Equation (3)

a b cste (MPa)

6.7032 2.0467 10
8.2722 1.5549 5
9.8410 1.0632 2.5
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duplicated some of the data to keep almost the same amount
of total data compared to the original dataset. This operation
is done 100 times, and for each dataset we ran the inversion
method of Drouet et al. (2010).

In this way, we end up with 100 sets of parameters, from
which we can draw distributions that represent the observed
variability (Fig. 4). It can be noted that the distributions can
be fitted by normal distributions. The attenuation parameters
determined with the bootstrap technique are given in Table 2.
The median values of the parameters are very close to those
from Drouet et al. (2010), but the standard deviations from
the bootstrap analysis are much larger here and are assumed
to better represent the true variability. Formally, the param-

eters are not independent and correlations should be taken
into account for the analysis of the standard deviations; how-
ever, for the sake of simplicity and to remain conservative,
we assume independent attenuation parameters.

Duration Model

The last parameter needed for the simulations of ground
motion is the path duration function. The total duration re-
sults from the combination of the source duration, assumed
to be the reciprocal of the source-corner frequency (Boore,
2003), the effect of path propagation and scattering, and
other effects linked with the site condition or complex source
effects such as directivity (Kempton and Stewart, 2006).

0.1

1

10

am
pl

itu
de

0.01 0.1 1 10

frequency (Hz)

0.1

1

10

0.01 0.1 1 10

frequency (Hz)

0.1

1

10

am
pl

itu
de

0.01 0.1 1 10

frequency (Hz)

0

2000

4000

nu
m

be
r 

of
 v

al
ue

s
0.001 0.01 0.1

kappa (s)

0.1

1

10

am
pl

itu
de

0.01 0.1 1 10

frequency (Hz)

0

2000

4000

nu
m

be
r 

of
 v

al
ue

s

0.001 0.01 0.1

kappa (s)

Figure 3. (Top row) Site amplification curves for the Réseau Accélérométrique Permanent (RAP) stations, as given in Drouet et al.
(2010) (gray curves). EC8 class A stations (top left) and reference stations selected in Drouet et al. (2010) (top right) for the Alps are indicated
(black curves). (Middle and bottom row) Site models used in the simulations for a standard rock site VS30 � 800 m=s, κ � 0:03 s (middle)
and a hard rock site VS30 � 2000 m=s, κ � 0:01 s (bottom), for the generic amplification (left: gray curves are the individual models, black
squares and lines show the median and median �σ amplifications, respectively), and the distribution of the κ values (right).
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Various definitions of duration exist (Bommer and
Martínez-Pereira, 1999), but one category is widely used: the
significant duration is defined as the time interval across
which a specified amount of energy is dissipated. Energy can
be represented as the integral of the squared velocity or ac-
celeration, and usually one selects duration as the interval
including 5%–75% or 5%–95% of the total energy. Edwards
and Fäh (2013) and Bora et al. (2014) showed that the
duration of the stochastically simulated data using SMSIM
lies between the two measures defined above.

Duration of ground motion was not studied in Drouet
et al. (2010). Consequently, we computed duration using
exactly the same dataset, from both velocity and acceleration
data, and using the two criteria 5%–75% and 5%–95% of the
energy. We computed the integrals of the squared accelera-
tion and velocity within a time window defined by the
S-wave onset and the S-wave onset plus 50 s. We limited the
integration to 50 s due to the heterogeneity of the total length
of the time series within the dataset, and we used only
S waves to be consistent with SMSIM, which simulates
S waves. We subtracted the source duration (computed as
1=fc, in which fc is the source-corner frequency as given
in Drouet et al., 2010, for each event) from the total duration
to estimate the path duration, which is the required parameter
for the stochastic simulation program SMSIM.

Figure 5 shows the computed path durations based on
the two energy criteria and using both velocity and acceler-
ation. Obviously path durations computed from the 5%–75%
criteria are shorter than those based on the 5%–95% criteria.
One can also observe that acceleration and velocity lead to
very similar results. Figure 5 shows that as a first approxi-
mation, a two-segment linear model fits fairly well the aver-
age data per distance bins, with a kink point at 70 km for the

5%–75% energy model and at 60 km for the 5%–95% energy
model. We tried to identify any dependence on site condi-
tions, but due to the large dispersion and poor characteriza-
tion of the French accelerometric stations, the tests were not
conclusive. Consequently, we used all the data to build the
path duration model, although we are interested in simula-
tions for rock sites.

To check the consistency between the input duration
model and the output durations computed from the stochas-
tically simulated time series, we ran a number of simulations
for various magnitude and distance combinations (see the
Simulation Settings section for details on the simulation set-
tings). The propagation of uncertainty on the duration is car-
ried out using a uniform distribution on the duration value at
the kink point as well as on the slope of the second segment.
Figure 6 compares the input (T input

path ) and output (T
output
path , com-

puted on the simulated acceleration time series) path dura-
tions. It shows that Toutput

path computed from the 5%–95%
energy criteria are close to the input durations. However,
the output durations are systematically smaller than the input
durations and the greater the magnitude, the larger the differ-
ence. Using only the small magnitudes, to be consistent with
our input real data, we found a relationship: Toutput

path �
0:95 × T input

path . The same results were found by Edwards and
Fäh (2013), but they did not notice any magnitude depend-
ence, and they adjusted their input path duration model to
account for those differences (about 8%). Here, we also
adjust our input model, based on the 5%–95% criteria, up
by 1.05.

The final duration model can be written as

Tp �
�
Rh × 18:20=60; if Rh < 60 km
18:2� 0:05 × �Rh − 60�; if Rh ≥ 60 km

: �5�

We modeled uncertainties using uniform distributions for
the duration at the kink point, with a standard deviation
of 8 s, and on the slope of the last segment, using a standard
deviation of half its value, consistent with the observations in
Figure 5.
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Figure 4. Distributions for the attenuation parameters for the Alps, after applying the bootstrapping method to the results of Drouet et al.
(2010) and associated Gaussian models: (left) γ; (middle) log10�Q0�; (right) α.

Table 2
Attenuation Model Parameters

γ log10�Q0� α

1.04 ± 0.07 2.52 ± 0.12 0.28 ± 0.08
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Simulations and GMPEs

Simulation Settings

Simulations are performed for moment magnitudes from
3 to 8, using 0.5 unit steps. For each magnitude, a random fault
orientation is defined (i.e., strike and dip, with the dip con-
strained to be greater than 10°). A fictitious focal mechanism
is assigned based on the dip angle (reverse mechanism for a
dip lower than 40°, strike-slip mechanism for a dip greater
than 75°, and normal mechanism otherwise). There is no clear
evidence of predominant focal mechanisms in the Alps region
as defined here, except maybe a predominant extensional re-
gime in the inner Alps (Sue et al., 1999). However, because
we do not intend to include the focal mechanism as a predictor
variable, and because the fault orientation is only used for
computing fault dimensions (see below) and the various dis-
tance metrics, we use a uniform distribution for the dip angle.

The hypocentral depth is estimated based on the updated
earthquake catalog for France (Cara et al., 2015). The depth
distribution for the Alps has a peak around 7 km, a couple of
events with negative depth and tend to 0.0 below 20 km.
Considering the large errors in the depth distribution, we
choose to define a distribution with a plateau between 5 and
10 km, and cosine tapers between 2 and 5 km, as well as
between 10 and 13 km.

Fault dimensions (length and width) are estimated from
the Wells and Coppersmith (1994) relationships:

log10�W�

�
8<
:
−0:76� 0:27 ×Mw for strike-slip events

−1:14� 0:35 ×Mw for normal-faulting events

−1:61� 0:41 ×Mw for reverse-faulting events

�6�
and

log10�L�

�
8<
:
−2:57� 0:62 ×Mw for strike-slip events

−1:88� 0:50 ×Mw for normal-faulting events

−2:42� 0:58 ×Mw for reverse-faulting events

;

�7�
in which L is the subsurface fault length in kilometers, andW
is the subsurface fault width in kilometers. To include addi-
tional variability in the fault dimensions, for each simulation,
the input moment magnitude used in the above equations is
modified randomly using a normal distribution with standard
deviation 0.3. This procedure allow us to simulate fault
planes of different dimensions for the same magnitude. The
Wells and Coppersmith (1994) relationships are extrapolated
beyond their validity range, especially for small magnitudes.
This does not have a strong influence on the simulations due
to the very small fault extension for small magnitude and
because the fault extension is only used to compute the
different distance metrics.

Forty different mechanisms are simulated for each
moment magnitude. Figure 7 shows the fault length and width
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versus magnitude for all the simulated events, as well as the
distributions of the focal depths and the depths to the top-of-
rupture. For a given mechanism, epicentral distances from 1 to
250 km and source-to-site azimuths from 0° to 360° are simu-
lated. Given the synthetic fault parameters and a randomly
chosen hypocenter position on the fault, three other types of
distances commonly used in GMPEs are computed: the
Joyner–Boore distance (RJB; closest horizontal distance to
the surface projection of the fault plane), the rupture distance
(Rrup; closest distance to the fault plane), and the hypocentral
distance (Rhyp). Kaklamanos et al. (2010) developed a com-
putation scheme to compute Rrup from RJB. We slightly modi-
fied the Kaklamanos et al. (2010) relationships to compute
(from geometrical considerations) all of the distance types
based on the epicentral distance and on the source-to-site azi-
muth. The distances metrics are compared in Figure 8, which
shows that, as expected, Repi is always greater than or equal to
RJB, and Rhypo is always greater than or equal to Rrup.

Figure 9 shows the simulated spectral accelerations at
0.01 s for the Alps (using the variable stress model with a pla-
teau value of 10 MPa and for standard-rock conditions) versus
the Joyner–Boore and rupture distances and for Mw 4.5 and
6.0. The medians of some recent GMPEs are compared to
the stochastic data. Models for Europe and the Middle East
are selected: the Akkar and Bommer (2010) model (herefater,
AB10) and the Bommer et al. (2007) model (hereafter, B2007),
which is based on the same functional form and data as the
previous one but also includes small-magnitude data. World-
wide models for active regions are also selected: the Boore and
Atkinson (2008) (hereafter BA2008) and Chiou and Youngs

(2008) (hereafter CY2008) models (mainly for California and
Taiwan) and the Cauzzi and Faccioli (2008) model (hereafter
CF2008). We also include one model for a stable continental
region: the Atkinson and Boore (2006) model (hereafter
AB2006) for eastern North America. Modifications of some
of these GMPEs exist to account for small-magnitude data.
Atkinson and Boore (2011) adjusted BA2008 and AB2006
(hereafter BA2008 modif. 2011 and AB2006 modif. 2011, re-
spectively) and Chiou et al. (2010) adjusted CY2008, includ-
ing data from two Californian subregions (hereafter CY2008
modif. 2010). The AB10 model implemented here includes
the high-frequency extension of Bommer et al. (2012). The
parameters for each GMPE are chosen to reflect the standard-
rock conditions. Figure 9 shows that the simulated median
amplitudes are consistent with those predicted from empirical
models for small and moderate magnitudes.

Regression Analysis

Stochastic GMPEs are built from the stochastically simu-
lated data using regression analysis, as is done for the analysis
of real data. The functional form adopted is the following:

ln�y� � b1 � b2 × �Mw − 8�� b3 × �Mw − 8�2

� �b4 � b5 ×Mw�× ln
� �����������������

R2 � b26

q �
� b7 ×R; �8�

in which y is the ground motion in meters per second squared;
R is either the epicentral, the hypocentral, the Joyner–Boore,
or the rupture distance; and the coefficients b1 to b7 are ob-
tained from the regression. The adopted functional form takes
into account a squared-magnitude term (Fukushima, 1996;
Douglas and Jousset, 2011) and magnitude-dependent dis-
tance scaling (Bommer et al., 2007; Cotton et al., 2008).

Two regression techniques were compared: standard
least-squares (LS) and random-effect maximum-likelihood
(ML) regressions. The main advantage of the second tech-
nique is to take into account systematic differences between
events through partitioning the residuals (Abrahamson and
Youngs, 1992; Stafford, 2014). Given the roughly even
distribution of the simulated data in terms of magnitude and
distance, the two methods lead to the same results. However,
the ML method is preferred because it gives the within-event
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and between-event uncertainties. To achieve rapid conver-
gence of the ML method, we use the preliminary results
of the LS method as the input for the ML method.

Some tests were also performed regarding the functional
form; the “−8” in the magnitude terms only helps to have
absolute values of the coefficients that are more homo-
geneous between the different terms (other values could have
been chosen). The b6 term (pseudodepth) appears to be nec-
essary to account for the near-source saturation that is in-
cluded in the simulations, even for distance metrics that
already take into account some depth information. However,
the absolute value of b6 is smaller when the hypocentral dis-
tance is used, followed by the rupture distance, and then by
the Joyner–Boore and epicentral distances, all of the other
coefficients being similar.

Figure 10 compares the various versions of the stochastic
GMPEs for the Alps: the variable stress parameter models
(with plateau values of 2.5, 5, and 10 MPa), the constant stress
parameter models (5 MPa for all magnitudes) for standard-
rock sites, and the variable stress parameter model (plateau
value of 5 MPa) for hard-rock sites. For large magnitudes,
the variations linked with the large-magnitude stress parameter

values are obvious, as is the similarity of the constant and var-
iable stress model (i.e., the variable stress models are only var-
iable for small magnitudes). In contrast, for small magnitudes
(Mw 3), the three variable stress parameter models are similar
and the constant stress parameter model leads to higher values.
These results are clearly expected from the input stress param-
eter model (see Fig. 2). The differences are more pronounced
for short periods than for long periods. The hard-rock site
model leads to slightly higher and lower amplitudes at short
and long periods, respectively, compared to the rock model for
the same parameters (i.e., variable stress parameter with a
large-magnitude value of 5 MPa). One important difference
concerns the standard deviation, which is reduced and is
shifted to a lower period peak for the very-hard-rock model
compared to the rock model.

Sensitivity Analysis

All the input parameters are described by distributions,
and the uncertainties on these input parameters are
propagated through the simulations using random sampling
of the distributions. One very important piece of information
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is how these uncertainties affect the final GMPE uncertainty.
Consequently, a set of nine GMPEs were computed, taking
into account the uncertainty on each parameter, one by
one (all of the others set to their median values):

1. SMSIM uncertainty: vertical faults with fixed strike
(north), hypocenter located at 50% of the fault length
and 70% of the fault width;

2. uncertainty on duration;
3. uncertainty on the fault plane: random orientation and

random hypocenter position;
4. uncertainty on anelastic attenuation: Q0 and α;
5. uncertainty on geometric attenuation;
6. uncertainty on κ;
7. uncertainty on site amplification;
8. uncertainty on stress parameter; and
9. all uncertainties.

The coefficients determined with each of these models are
almost identical. However, the standard deviations vary a lot
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depending on the model (Fig. 11). The major contributions to
the total uncertainty come from the site amplification and κ
(which affect the within-event term, i.e., the record-to-record
variability) and from the stress parameter (which affects the
between-event term, i.e., the event-to-event variability). The
shape of the within-event term is mainly controlled by κ.
The uncertainty of κ introduces a peak centered at a period
of around 0.05 s and influences periods from 0.01 to
about 0.2–0.3 s. For long periods (>1 s), its influence is neg-
ligible. The results using hard-rock site conditions show that
the amplitude and the dominant period of this peak decrease
(see Fig. 10, bottom left). The between-event term, controlled
by the stress parameter uncertainty, also varies with period,
with a slow decrease for periods above 0.1–0.2 s, although
it remains a large contributor to the total uncertainty for all
of the periods. The attenuation parameters also influence
the within-event term. The influence of the anelastic attenua-
tion parameter uncertainty varies with the period and shows a
peak around 0.1 s, where its influence is as large as that of γ.
At smaller and larger periods, its influence decreases and

becomes negligible for long periods (>1 s). The influence
of γ remains constant for all periods. Comparatively, the un-
certainties linked with the duration, the fault-plane orientation,
and the hypocenter location on the faults have very little
impact on the total GMPE uncertainty.

Figure 12 compares the standard deviations for various
GMPEs (empirical for active regions, Europe and Japan, and
stochastic for the United Kingdom and Switzerland) and
shows that the spread is considerable from 0.6 to 1.0 in natu-
ral logarithm units. The shapes of the curves are also highly
variable. Most of the models show large standard deviations
at short periods, except for the Akkar and Bommer (2010)
and Boore and Atkinson (2008) models, which show in-
creases at long periods. It can be noted that the Boore and
Atkinson (2008) GMPE compared to the other NGA models
has a low-reported standard deviation and can be seen as a
lower bound for the NGA models set.

Figure 12 shows that, excluding the Rietbrock et al.
(2013) model, thewithin-event sigma appears slightly less var-
iable than the total sigma. The Rietbrock et al. (2013) model
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does not consider variability for the site conditions, which
explains the very low within-event sigma. The peak in the
within-event sigma is located between 0.04 s and 0.08 s for
the Edwards and Fäh (2013) model, as well as for the model
presented in this study. Both models use similar rock reference
conditions and comparable κ. On the other hand, the Rietbrock
et al. (2013) model uses very hard-rock reference conditions
and might have a peak below 0.03 s, which is confirmed by
our tests using the very hard-rock site conditions, but which
does not appear clearly in Figure 12 due to the missing data at
short periods for Rietbrock et al. (2013).

Looking at the empirical GMPEs, the Rodriguez-Marek
et al. (2011) model has the same kind of shape, with decreas-
ing sigma with period, and a wide peak extending from about
0.04 s to 0.3 s. They used a dataset from Japan that was char-
acterized by a VS30 distribution that ranged from 200 to
1000 m=s, with a peak at 500 m=s (Rodriguez-Marek et al.,
2011). Consequently, their site reference condition is close to
soft-rock sites. Regarding the Boore and Atkinson (2008) and
Akkar and Bommer (2010) models, there is no visible peak in
the within-event terms, and their shapes are also different. One
explanation might be that these models include data that cover
a wide range of site conditions, as well as events from various
regions, which can cause variations in attenuation character-
istics. Chiou et al. (2008) presented the NGA database, and the
VS30 distribution shows that most stations have VS30 lower
than 500 m=s, with a peak around 200 m=s. Akkar and
Bommer (2007) reported the proportions of the rock (National
Earthquake Hazards Reduction Program [NEHRP] class A
and B) as stiff, soft, and very soft site conditions, which were
33%, 41%, 24%, and 2%, respectively; this classification was
used in Akkar and Bommer (2010). However, there is still a
0.1–0.2 difference in the within-event term from these models
compared to the others.

Regarding the between-event sigma, the models that
include small-magnitude events (Rodriguez-Marek et al.,
2011; Edwards and Fäh, 2013; Rietbrock et al., 2013) have
higher between-event sigmas (approximately 0.5) than the
models that include mostly events with Mw >5 (Boore
and Atkinson, 2008; Akkar and Bommer, 2010), which lead
to between-event sigmas of approximately 0.3. This differ-
ence decreases for periods greater than approximately 2 s.
The Rietbrock et al. (2013) models, which use large uncer-
tainty on the stress parameter (from 0.3 up to 0.6, depending
on magnitude), present very high between-event sigmas. The
shape and the low-period level of the between-event sigma is
controlled by the uncertainty of the stress parameter.

Comparison with Real Data

The residuals between observed and predicted spectral
ground-motion amplitudes are analyzed here using the meth-
ods described in Scherbaum et al. (2004, 2009). Normalized
residuals with respect to a given GMPE are computed as
shown in equation (4):

res � log10�yobs� − μ

σ
; �9�

in which μ and σ are the median and standard deviation of the
logarithm of the ground motion predicted by the GMPE, and
yobs is the observed ground-motion value. The mean, median,
and standard deviations of the distribution of the normalized
residuals are computed as well as the median of the likeli-
hood (LH) distribution, and the combination of this informa-
tion can be used to rank (in a subjective way) the ability
of the GMPE to fit the data distribution (Scherbaum et al.,
2004). Also, the log-likelihood (LLH) criterion (see Scher-
baum et al., 2009) is estimated, which is a measure of the
quality of the fit, or more precisely, a measure of the relative
distance between the GMPEs and the data.

Large-Magnitude Data

One of the questions is how to choose the large-magni-
tude stress parameter, which can take on three different val-
ues (2.5, 5.0, and 10 MPa). To quantify the fit between these
models and the real data, we used two recent databases of
strong ground motions: the RESORCE database (Akkar et al.,
2014), which was built in the context of the SeIsmic Ground-
Motion Assessment (SIGMA), and the PEER NGA data-
base, which includes recordings from many active regions
around the world (Chiou et al., 2008).

Only data corresponding to Mw ≥5 (in order to sample
the constant stress part of our models which starts atMw 4.6)
and to VS30 ≥ 750 m=s (to be consistent with the definition of
our models for rock sites) are used. After the selection, data
from Mw 5–7.6, and RJB � 0–278 km (Rrup � 2–279 km)
from RESORCE, and Mw � 5:2–7:9 and RJB � 0–152 km
(Rrup � 2–152 km) from NGA, were kept. Here, 18 periods
between 0.01 and 3 s were used, as well as PGA and PGV,
which resulted in a total of 513 and 1420 data points for
RESORCE and NGA, respectively.

The results of the residuals analysis are shown in Table 3.
There is generally good agreement between the models and
the data, as good ranking scores are achieved (A or B, see
Scherbaum et al., 2004, for the definition of the ranks) and
the LLH are relatively small. Beauval et al. (2012) quantified
the interval of variation of the LLH using synthetic tests. They
showed, based on synthetic data, that an LLH of approximately
1.5–1.6 indicates an almost perfect fit, whereas for values
>3–4, the normalized residual distribution, which for a per-
fect fit would be Gaussian with zero mean and unitary stan-
dard deviation (a standard Gaussian distribution), moves away
from the standard Gaussian distribution. In real applications,
an LLH value below 2.5 indicates a reasonable fit.

For the RESORCE and the NGA data, the model using a
stress parameter of 10 MPa leads to a better fit than the other
two options. It is interesting to note that using the 5 MPa
model, the mean and median of the residuals distributions
are positive, whereas they turn negative with the 10 MPa
model. For the NGA data, they are only slightly negative.
This result suggests that an intermediate stress parameter
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value may perform even better. One can also note that the
ranking and the LLH values vary depending on the distance
metrics used, but we could not determine any systematic
trend. This may strongly depend on the quality of the fi-
nite-fault information for the real data. It is also interesting
to note that the standard deviations of the normalized residual
distributions are close to 1, which indicates that the GMPE
standard deviations are consistent with the real data
dispersion. In turn, it shows that the uncertainties on the in-
put parameters were well calibrated.

Low-Magnitude Data

In this section, we use the data recorded by the RAP in
the Alps regions (Drouet et al., 2010). For this data, the site
conditions are not known with precision, information is
heterogeneous, and only a couple of VS30 are available with
precision. Régnier et al. (2010) made a big effort to compile
the available data and to classify the stations according to the
EC8 classes (Eurocode 8, 2004). Two other classifications
are considered in this study: one is based on the inverted site
transfer functions of Drouet et al. (2010) (stations showing
amplifications <2 over the whole frequency band are clas-
sified as rock sites; flat response [FR] condition); and the
other uses the reference sites chosen in the inversions pre-
sented in Drouet et al. (2010), which are assumed to be the
best rock sites in the dataset (RS condition). Table 4 shows
that the magnitudes and the distance ranges remain similar

regardless of the site classification, although the amount of
data available varies considerably.

Table 5 shows the results of the residuals analysis for the
Alps. Both types of models, with variable or constant stress
parameter, were tested. For each type, three plateau values
were considered: 2.5, 5, and 10 MPa (see Fig. 2). Testing
is also performed for the different site classifications
(EC8, FR, and RS). The results vary depending on the site
condition used, but one can note that a better fit is achieved
with the variable stress models (regardless of the large-mag-
nitude plateau) or with the constant stress model at 2.5 MPa;
the lowest LLH values are obtained in those cases. The con-
stant stress models using 5 or 10 MPa overpredict the data as
can be seen by the large means and medians of the residuals
distributions. This was expected because the inverted stress
parameters for the small events in the Alps are low (see
Fig. 2). The results using the EC8 classification always lead
to a poorer fit than the other two classifications. As shown in
Figure 3, the stations classified as EC8 rock sites present a
very large variability. We believe that the other two classifi-
cations are more representative of rock sites. The RS condi-
tion should even be closer to hard-rock site conditions.
Consequently, we also tested the hard-rock version of the
stochastic GMPEs (Table 5), but the results are similar to
those obtained with the standard-rock model. Using different
distance metrics does not impact the results much, which was
expected, due to the small fault extension for weak-motion
data. Figure 13 compares the variable stress parameter model
(large-magnitude level 10 MPa) with recorded rock data for
period 0.01 s. Both distance and magnitude scaling are well
reproduced.

Comparison with Other European Stochastic Models

Two stochastic models have been recently developed for
the United Kingdom (Rietbrock et al., 2013) and for Switzer-
land (Edwards and Fäh, 2013; Cauzzi et al., 2015). Rietbrock

Table 3
Results of the Comparison between the Real Data from the Reference Database for Seismic Ground Motion in Europe (RESORCE)

and Next Generation Attenuation (NGA) Databases and the Stochastic Ground-Motion Prediction Equations (GMPEs)

Data
Large-Magnitude
Stress Parameter

Distance
Metric Mean NR (rank)* Median NR (rank)* Std NR (rank)* Median LH (rank)* Rank* LLH

RESORCE data Stress 10 MPa Rrup −0.134 (A) −0.208 (A) 1.029 (A) 0.512 (A) A 2.101
Stress 5 MPa Rrup 0.357 (B) 0.303 (B) 1.048 (A) 0.514 (A) B 2.208

RJB 0.334 (B) 0.285 (B) 0.958 (A) 0.542 (A) B 2.067
Rhypo 0.347 (B) 0.303 (B) 0.976 (A) 0.540 (A) B 2.098
Repi 0.266 (B) 0.234 (A) 0.943 (A) 0.548 (A) B 2.017

Stress 2.5 MPa Rrup 0.918 (D) 0.870 (D) 1.057 (A) 0.350 (B) D 2.739
NGA data Stress 10 MPa Rrup −0.071 (A) −0.027 (A) 0.858 (A) 0.585 (A) A 1.860

Stress 5 MPa Rrup 0.522 (C) 0.559 (C) 0.883 (A) 0.467 (A) C 2.084
RJB 0.521 (C) 0.558 (C) 0.865 (A) 0.472 (A) C 2.061
Rhypo 0.779 (D) 0.786 (D) 0.955 (A) 0.388 (B) D 2.422
Repi 0.357 (B) 0.303 (B) 1.048 (A) 0.514 (A) B 2.208

Stress 2.5 MPa Rrup 1.212 (D) 1.261 (D) 0.904 (A) 0.204 (C) D 2.974

NR, normalized residuals; LH, likelihood; LLH, log likelihood.
*The ranking categories are those defined in Scherbaum et al. (2004).

Table 4
Parameters of the Dataset for France for the Different Site

Classification Schemes

Site Classification Rrupmin
Rrupmax

Mwmin
Mwmax

Ndata*

EC8 17 329 2.6 4.4 7625
Flat response 21 251 2.6 4.4 1932
Reference stations 19 251 2.6 4.4 4514

*From 20 periods between 0.01 and 3 s.
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et al. (2013) used a variable stress parameter model that was
based on observed data from stable continental regions, and
they also used a constant stress parameter model. Edwards
and Fäh (2013) used various variable stress parameter models,
varying the large-magnitude level and the magnitude cutoff.
The uncertainty associated with the models is estimated in
two different ways. Rietbrock et al. (2013) propagated the un-
certainties on the input parameters in the simulations, whereas
Edwards and Fäh (2013) used only median input parameters
and subsequently determined the uncertainty by analysis of the
residuals based on the recorded data in Switzerland. Cauzzi
et al. (2015) performed a regression analysis on the stochastic
simulation results of Edwards and Fäh (2013) to build a GMPE
given a functional form. They only report modeling uncertain-
ties and suggest using the uncertainty given in Edwards and
Fäh (2013) to compute the uncertainty of the Swiss GMPE.
Also, the site conditions are slightly different in the two mod-
els. Rietbrock et al. (2013) used VS30 � 2300 m=s, whereas
Edwards and Fäh (2013) and Cauzzi et al. (2015) used
VS30 � 1105 m=s. The standard deviations, which are an im-
portant part of the models, have already been compared above,
and thus we focus here on the medians.

Figures 14 and 15 compare the stochastic model devel-
oped for France in the present study with the stochastic mod-
els for the United Kingdom (constant and variable stress

parameter models) and with the Swiss stochastic model,
for a stress parameter of 6 MPa, which is the suggested best
value by Edwards and Fäh (2013) and Cauzzi et al. (2015).
Regarding the large uncertainties in the estimation of the in-
put parameters from the analysis of the weak-motion data,
the different assumptions, and the different predictive varia-
bles (distance and site, in the present case), there is good
agreement between the model characteristics. The spread
in the median predictions is similar to that which is observed
in comparisons of empirical GMPEs.

Our model and the Rietbrock et al. (2013) model are quite
different for large magnitude at short distances (below 20 km)
and for small magnitudes at short and long distances. The near-
fault attenuation is much stronger in the Rietbrock et al. (2013)
model, but it shows a slower attenuation with distance, which is
further enhanced by the segmented geometrical attenuation
model they used. The magnitude scaling is, on the other hand,
stronger in our model, regardless of the distance. We believe
that the differences are not only due to the difference in rock-
site conditions (hard rock versus rock) because Figure 10 shows
that there is little difference between the models derived for the
two rock conditions. Rather it may be linked with regional at-
tenuation characteristics because the United Kingdom can be
classified as a stable continental region, whereas the Alps re-
gion is a more active one.

Table 5
Results of the Comparisons between the Real Data Recorded in the Alps and the Stochastic GMPEs

Model Type
Large-Magnitude
Stress Parameter

Distance
Metric

Site
Class *

Mean NR
(rank)†

Median NR
(rank)†

Std NR
(rank)†

Median LH
(rank)† Rank† LLH

Small-magnitude
variable stress

EC8 0.595 (C) 0.488 (B) 1.330 (C) 0.401 (A) C 2.856

Stress 10 MPa Rrup FR 0.041 (A) 0.037 (A) 1.145 (B) 0.515 (A) B 2.272
RS 0.226 (A) 0.140 (A) 1.139 (B) 0.501 (A) B 2.299

Rrup EC8 0.615 (C) 0.490 (B) 1.341 (C) 0.396 (B) C 2.896
Stress 5 MPa Rrup FR 0.046 (A) 0.007 (A) 1.155 (B) 0.503 (A) B 2.289

Rrup RS 0.235 (A) 0.150 (A) 1.147 (B) 0.494 (A) B 2.314
RJB RS 0.232 (A) 0.138 (A) 1.102 (A) 0.509 (A) A 2.241
Rhypo RS 0.244 (A) 0.164 (A) 1.125 (A) 0.497 (A) A 2.281
Repi RS 0.235 (A) 0.159 (A) 1.095 (A) 0.509 (A) A 2.230

Stress 5 MPa (HR‡) Rrup RS 0.417 (B) 0.353 (B) 1.152 (B) 0.483 (A) B 2.409
RJB RS 0.408 (B) 0.329 (B) 1.098 (A) 0.505 (A) B 2.316

EC8 0.698 (C) 0.572 (C) 1.349 (C) 0.378 (B) C 2.989
Stress 2.5 MPa Rrup FR 0.122 (A) 0.081 (A) 1.159 (B) 0.495 (A) B 2.305

RS 0.314 (B) 0.221 (A) 1.154 (B) 0.481 (A) B 2.357
Small-magnitude
constant stress

Rrup EC8 −0.268 (B) −0.349 (B) 1.311 (C) 0.371 (B) C 2.616

Stress 10 MPa Rrup FR −0.847 (D) −0.865 (D) 1.195 (B) 0.300 (B) D 2.873
Rrup RS −0.654 (C) −0.682 (C) 1.107 (A) 0.361 (B) C 2.518
Rrup EC8 −0.039 (A) −0.129 (A) 1.326 (C) 0.386 (B) C 2.595

Stress 5 MPa Rrup FR −0.630 (C) −0.667 (C) 1.191 (B) 0.368 (B) C 2.635
Rrup RS −0.434 (B) −0.480 (B) 1.121 (A) 0.409 (A) B 2.368
Rrup EC8 0.164 (A) 0.075 (A) 1.319 (C) 0.407 (A) C 2.601

Stress 2.5 MPa Rrup FR −0.424 (B) −0.485 (B) 1.173 (B) 0.428 (A) B 2.448
Rrup RS −0.229 (A) −0.279 (B) 1.119 (A) 0.447 (A) B 2.266

NR, normalized residuals; LH, likelihood; LLH, log likelihood.
*Site classification schemes: FR, flat response; RS, reference stations.
†The ranking categories are those defined in Scherbaum et al. (2004).
‡HR, model for hard-rock conditions.
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Figure 14. Comparison of stochastic model for the United Kingdom (Rietbrock et al., 2013) and the model derived in this study using
variable stress drop with a plateau of 10 MPa for rock sites.
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The model for Switzerland uses only a variable stress
model but presents two versions, one for the Foreland region
and the other for the Alpine region of Switzerland (Edwards
and Fäh, 2013). Although Edwards and Fäh (2013) also used a
segmented geometrical spreading model, the variations with
distance have been smoothed by the regression using polyno-
mial distance terms in Cauzzi et al. (2015). The models for
Switzerland present a very good agreement with that of this
article; both distance and magnitude scaling are very similar.
We also note that our model is closer to the Alpine version of
the model for Switzerland, which makes sense because the
regions analyzed in the two studies are neighboring.

Discussion and Conclusions

Regional stochastic GMPEs have been developed for a
broad magnitude range (Mw 3–8) for the French Alps. The
models were built in two steps: first, synthetic ground-

motion data was computed using SMSIM (Boore, 2003),
based on a set of seismological parameters determined from
the Fourier spectral analysis of regional data and second, the
synthetic data were regressed to build the GMPE.

Most of the input parameters were taken from Drouet
et al. (2010). Their stress parameter values are used with
the results of Drouet et al. (2011) to build a stress parameter
model which increases with magnitude up to a cut-off mag-
nitude (Mw 4.6), above which stress drop remains constant.
Three levels of the plateau value for large magnitude are
tested (2.5, 5, and 10 MPa). These levels are supposed to
represent average stress-drop levels for large earthquakes
(Kanamori and Anderson, 1975; Allmann and Shearer,
2009). The attenuation parameters are also taken from
Drouet et al. (2010), but a bootstrap technique was used
to better characterize the uncertainties of those parameters.
Two site conditions are considered: standard-rock sites
(VS30 � 800 m=s and κ � 0:03 s) and hard-rock sites
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Figure 15. Comparison of stochastic models for Switzerland (Edwards and Fäh, 2013; Cauzzi et al., 2015) and the model derived in this
study using variable stress drop with a plateau of 10 MPa for rock sites.
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(VS30 � 2000 m=s and κ � 0:01 s), using generic rock
amplification curves (Boore and Joyner, 1997; Cotton et al.,
2006) and VS30–κ correlation (Van Houtte et al., 2011).
Additionally, a duration model is built using the same dataset
as used in Drouet et al. (2010).

Stochastic simulations are carried out using SMSIM
(Boore, 2003), which uses a point-source model, but the
effective distance adjustment allows extended fault effects to
be mimicked, along with near-source attenuation. Time-
domain simulations are used, as opposed to the random
vibration theory option that is also available in SMSIM (see
Boore, 2003). Simulations were carried out forMw 3–8, epi-
central distances from 1 to 250 km, and 20 spectral periods
between 0.01 and 3 s, as well as for PGA and PGV. For each
simulated magnitude, 40 earthquake scenarios were con-
structed, varying the fault orientations and dimensions (com-
pletely random due to the lack of information about
focal mechanisms in France), the hypocenter depth using a
simplified distribution based on observed depths in the Alps,
and the hypocenter location on the fault (note that this
information is only used to compute the different distance
metrics), as well as the stress parameter. For each record
simulated, random attenuation parameters, site amplification,
κ values, and durations were selected.

All of the parameters used as input in the stochastic
simulations are considered as random variables, and the
uncertainty is propagated to the synthetic ground motion
through random sampling of the input parameter distribu-
tions. One critical aspect of this study is the standard devia-
tions used for the input parameters. We tried to base our
choices on observations, that is, the results of Cotton et al.
(2013) for the stress parameter or on observed data for the
site condition and duration. There is, of course, some sub-
jectivity in those choices. However, the standard deviations
that are coming out of our stochastic GMPEs are consistent
with those from empirical GMPEs, and testing our GMPE
against various data gives good results.

Sensitivity analysis was carried out to understand the
influence of the uncertainty on each input parameter to
the total GMPE standard deviation. This sensitivity analysis
is complementary to the Molkenthin et al. (2014) study,
which analyzed the influence of each seismological param-
eter on the response spectra amplitude. Here, we focus on the
uncertainties for the same parameters. The major contribu-
tors to the total uncertainty are the stress parameter model
and the site model (both site amplification and κ). The un-
certainties for the attenuation parameters have second-order
influence, and those linked with duration, fault orientation,
and hypocenter location are negligible compared to the others.
Stress parameter uncertainty directly maps into between-event
variability, whereas the uncertainties of the other parameters
mainly influence the within-event term. The simulated total
ground-motion standard deviation is comparable to that ob-
tained in empirical GMPEs (especially those that include
small-magnitude events) under the ergodic assumption (vari-

ability of ground motion, including various sites and various
sources, Al Atik et al., 2010).

Al Atik et al. (2010) showed that the single-station
sigma (the standard deviation of the ground motion at a single
site) can be used as a lower-bound value to the standard devia-
tion that would be used in site-specific probabilistic seismic-
hazard analysis (PSHA). Rodriguez-Marek et al. (2011) and Ed-
wards and Fäh (2013) computed single-station sigmas made up
of single-station within-event (ϕSS) and between-event (τ) terms.
The ϕSS terms are compared in Figure 16, together with the
within-event terms from Rietbrock et al. (2013). Because Riet-
brock et al. (2013) did not consider uncertainty for the site term
input to the simulations, their within-event standard deviation
can be considered as a lower bound for the ϕSS. Figure 16 also
shows the within-event standard deviations of the Alps model
for standard rock, from which the part of the uncertainty propa-
gated through the generic site amplification, or κ (see Fig. 11), or
both, has been removed. When both are removed, the amplitude
of the within-event term gets close to the within-event term from
Rietbrock et al. (2013), although the shape is different. This dif-
ference can be found in the different attenuation models used:
depth-dependent Q and segmented geometrical spreading in
Rietbrock et al. (2013) and frequency-dependent Q and
constant geometrical spreading in this study. Figure 11 shows
that besides κ, Q has a strong influence on the shape of the
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Figure 16. Single-station within-event standard deviation from
Rodriguez-Marek et al. (2011) (green), Edwards and Fäh (2013)
(red), and Rietbrock et al. (2013) for the constant stress parameter
model (solid blue curve) and the variable stress parameter model
(dashed blue curve) compared to the results of this study: within-event
variability when the effect of the kappa variability has been removed
(dotted black line), within-event variability when the effect of the
generic amplification variability has been removed (dashed black
line), and within-event variability when both the κ and the generic
amplification variabilities have been removed (solid black line).
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within-event standard deviation. The results in Figure 16 show
that depending on the level of knowledge of the site character-
istics, the site-specific standard deviations can be computed
using the methodology presented in this study. This result
is consistent with studies that have suggested that the GMPEs
ground-motion variability estimation may depend on the
choice of the site condition proxy (e.g., Chiou et al., 2008).

Parametric GMPEs were built by regression of the
synthetic data using a state-of-the-art functional form for the
four distance metrics considered: Repi, Rhypo, RJB, and Rrup.
Bommer and Akkar (2012) recommended that GMPEs are de-
veloped for at least one extended-fault metric (RJB or Rrup) and
one point-source metric (Repi or Rhypo) for two reasons: not all
of the PSHA commercial codes include simulation of fault
planes (with is computationally extensive) to use GMPEs with
their native distance metric; for rapid ShakeMap estimations,
when the fault model is not available, point-source metrics
have to be relied upon. Testing using the Rrup or RJB distance
metrics gives a better fit for the NGA data (lower LLHs; see
Table 3), whereas for the RESORCE data, the quality of the fit
is almost the same, regardless of the distance metric. This
could indicate that the fault models are poorly constrained
for the European database, which leads to different qualities
of the estimated distances.

The stochastic GMPEs are compared with strong ground
motion data from the RESORCE database (Akkar et al., 2014)
for the Euro-Mediterranean region and from the PEER NGA
database (Chiou et al., 2008), which includes worldwide data,
although mainly fromCalifornia and Taiwan. Statistical analy-
sis of the residuals following the methods of Scherbaum et al.
(2004, 2009) allowed us to compare the performances of the
different versions of the stochastic models (variations in the
stress parameters for large events). It appears that a stress
parameter of 10 MPa (in conjunction with the values of the
other parameters of the model) is a good choice to achieve
a good fit between the models and the real data.

The stochastic models are also compared to the small-
magnitude data recorded in the French Alps. Because of the
poorly known site conditions for the RAP stations, three clas-
sifications are used to identify rock sites. The GMPEs using
high-constant stress parameter values do not fit well the data
that, combined with the previous results, support the variable
stress parameter models. Beauval et al. (2012) also per-
formed testing using data from France compared to popular
empirical GMPEs and identified those leading to the lowest
LLH values. The stochastic GMPE developed in the present
study leads to even lower LLH values, that is, a better fit. As a
result of the testing against both strong-motion and weak-
motion data, the best version of the stochastic GMPEs is the
one using a variable stress parameter with a plateau at 10 MPa.
Ⓔ The coefficients of this model are given in Tables S1–S4
(available in the electronic supplement to this article) for epi-
central distance, hypocentral distance, Joyner–Boore distance,
and rupture distance, respectively.

In the context of seismic-hazard analysis for France, the
parametric models presented in the present study provide user-

friendly options for logic-tree branches that are calibrated on
locally recorded data in the low-magnitude range and consis-
tent with pan-European models in the large-magnitude range.
The methods used to define and calibrate the input parameters
probability distributions of these stochastic-based GMPEs may
be of interest for ground-motion models developments in mod-
erate seismicity areas where weak-motion data are available.

Data and Resources

The Stochastic-Method SIMulation (SMSIM) program is
freely available from David M. Boore’s website (http://www
.daveboore.com/; last accessed July 2014). Illustrations were
made using the open source Generic Mapping Tools programs
(http://gmt.soest.hawaii.edu/; last accessed July 2014). The
data used in this article are from the French accelerometric
network (Réseau Accélérométrique Permanent, http://
rap.resif.fr; last accessed June 2015), the Pacific Earthquake
Engineering Research–Next Generation Attenuation (PEER
NGA) project (http://peer.berkeley.edu/nga/; last accessed July
2014), and the Reference Database for Seismic Ground Mo-
tion in Europe (RESORCE; Akkar et al., 2014). The SeIsmic
Ground-Motion Assessment (SIGMA) project is available at
www.projet-sigma.com (last accessed July 2014).
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