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Abstract: Optimization represents a fundamental part of many fields such as industry whose aim is the result 

of an optimization problem. The high dimensionality of various optimization problems raises the 

requirement for developing new appropriate optimization algorithms. A good instance of these algorithms is 

parallel evolutionary algorithms that can viably exploit the capabilities of various structures of parallel 

machines. This is investigated in this article through two sorts of experiments using islands algorithms. The 

acquired results are explained and analyzed in sections six and seven respectively. 
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1. Introduction 

High dimensional optimization problems (due to the increasing volumes of data gathered by 

organizations or individuals) which are common in various applications need a lot of efforts to be tackled in 

reasonable time. Meanwhile, traditional optimization algorithms experience the computational cost such as 

the elapsed computational time. A good example of these algorithms is the evolutionary algorithms.  

The principle idea of parallel computing is the concurrent utilization of multiple computing resources to 

tackle the given problem which can be separated into several parts to be solved concurrently and 

independently (on a multi-core computer or on a cluster of multiple computers). This is to speed up the 

computations. In other words, the fundamental thought behind most parallel techniques is to partition a 

task into segments and tackle them concurrently utilizing multiple processors. This can be applied to 

genetic algorithms (GAs) in an extensive variety of ways [1], [2].  

The main idea of genetic algorithms for tackling a given problem is to manipulate a population of 

candidate solutions which are evaluated to select the best of them to reproduce and mate so as to form the 

next generation. Over a number of generations, good traits dominate the population resulting in an increase 

in the quality of the solutions. This is a simulation for Darwinian evolution; bad traits are eliminated from 

the population because they appear in individuals which do not survive. The good traits survive and are 

mixed by recombination (mating) to form better individuals [1].  

Genetic algorithms are very effective and powerful search techniques that have been utilized successfully 

for solving practical problems in many disciplines such as engineering, business, and science. Within 

appropriate time, they generally can get good solutions [1]. However, when they tackle larger and harder 

problems, the time required for finding adequate solutions grows (their execution time can be a restricting 

element for utilizing them). This is because a lot of candidate solutions must be evaluated [1], [3].  

Consequently, there have been various efforts to quicken GAs which leads to a diversity of options to 

accomplish this objective [1]. One of the most encouraging choices is to use parallel implementations. 
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Particularly, it is easy to implement parallel GAs and they then guarantee significant gains in performance 

[1]. 

GAs are particularly suitable for parallel computing. This is because they are regarded as embarrassingly 

parallel algorithms i.e., they require a large number of independent calculations with negligible 

synchronization and communication costs [2]. Besides, parallelism emerges normally when handling many 

individuals as each one is an autonomous unit. Therefore, the performance of population-based methods is 

extraordinarily improved when running in parallel [4]. 

We utilized them in this paper since they are the oldest and most established evolutionary algorithms. 

They are able to tackle multi-objectives, dynamic components, and non-linear constraints. Since their 

advancement, they have been used frequently as alternative techniques to the traditional ones and have 

tackled successfully a wide range of optimization problems as well [5].  

This paper investigates the viability of utilizing parallel evolutionary algorithms (more particularly 

islands genetic algorithms) for high dimensional subset problems. This is accomplished through two types 

of experiments; solving the high dimensional knapsack problem utilizing the islands genetic algorithms and 

the conventional genetic algorithms.  

The remainder of this work is organized as follows. Section 2 addresses the high dimensional 

optimization problems and the used one in the experiments. Section 3 highlights the utilized parallel 

genetic algorithms. Section 4 shows the carried out experiments and their acquired results. Section 5 

analyzes and discusses the acquired results. Section 6 summarizes this paper and points out some work 

possible to be performed in future.  

2. High Dimensional Optimization Problems 

Non-trivial problems need great computational resources. Therefore, an assortment of algorithmic 

enhancements have been advanced such as hybrid and parallel algorithms [4]. The latter is explored in this 

paper.  

Although it is possible for expensive hardware (such as GPU computing and computing disciplines 

involving natural elements like quantum systems and molecules) to handle these problems, this has a 

tendency to be unpractical because of many reasons engaged with getting such computation tools such as 

their costs. Besides, utilizing the GPU computing for example involves re-design and implementation issues 

in order to use islands models with them which is still investigated in many recent researches [6]-[8] . Thus, 

it is far more realistic and frugal to utilize computing resources that can be utilized simply in practice and in 

the same time provide adequate results.  

Unfortunately, the performance of the vast majority of the current optimization algorithms degrades as 

the number of dimensions in the given optimization problem increases (greater than or equals to 100 

dimensions like the majority of the real-world and industrial problems and this is the practical situation to 

have high dimensionality in such optimization problems) and hence using these algorithms for handling 

these optimization problems become intractable [6], [9]. This is because the solution space of the given 

optimization problem exponentially increases with the dimensionality which affects the search ability of 

the utilized optimization algorithm as it cannot fully investigates such a solution space within a reasonable 

computation time. This is known in machine learning as the curse of dimensionality problem (the amount 

of the required data increments exponentially with the dimensionality). High dimensionality not only 

influences the performance of optimization algorithms but also affects numerous predictors such as the 

nearest neighbors classifier despite the fact that they perform efficiently in low dimensional applications. 

This is because when the input attributes increase, the spread of the data increments also which results in 

the difficulty of handling such data) [10]-[13]. 
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In the experiments, we utilized the high dimensional 0-1 knapsack (KP) problem as it is so crucial for 

many real-world problems by being the basis for such problems. Moreover, it is a good example of subset 

problems that represent a variety of real-world problems. As problems may be tackled in various ways 

such as being handled as subset problems, this raises the significance of subset problems. Because of the 

critical uses of these optimization problems, they have been broadly investigated recently [7], [14], [15]. 

The 0-1 knapsack problem (known also as the binary KP, the rucksack problem, and the backpack 

problem) is the problem of selecting a subset out of n elements into a knapsack with the main aim to 

maximize their gained profits and keeping their total weights within the knapsack capacity as depicted in 

Fig. 1. It is known as 0-1 KP since every component can be included or not in the knapsack i.e., it can be 

added to the knapsack no more than once.  

 

 
Fig. 1. The KP problem [18]. 

 

It is an NP (non-polynomial); it can't be solved in linear amount of time. Recently, various metaheuristics 

have been broadly used for dealing with hard optimization problems including the knapsack problem. This 

is on the grounds that they have demonstrated their success in solving a variety of real-world optimization 

problems in short time [7], [16].  

Newly, this optimization problem has been widely investigated due to its enormous practical 

applicability in a wide range of fields like operations research, management, finance, and computer sciences. 

Numerous industrial and real-world problems from different fields can be dealt with as a knapsack 

problem. In addition, it has a variety of direct applications such as shipping organizations whose aim is to 

pick as much package volume into a transport plane without surpassing the weight limit [7], [16], [17]. 

The KP's model is:  

Maximize 
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where 

 

xi is a binary variable equals to 1 if element i is included in the knapsack, and it equivalents to 0 if not 

included. 

The previous equations are the fitness function to be maximized and the capacity constraint respectively 

[18].  
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3. The Islands Model 

At present, several parallel approaches have been proposed such as the islands and master–slave ones. 

These models utilize the merit of parallel computing (the advantage of multitasking characteristics of 

multi-core machines) by separating an extensive size population into smaller partitions and performing 

concurrent random searches among them as shown in Fig. 2. These models significantly enhance the issues 

of premature convergence or convergence to local optimal solutions in the conventional GA techniques, 

where a single large population is utilized. These models execute parallel computing by allocating 

unutilized cores with the sub-populations that has not yet been worked. Many parallel genetic algorithms 

were introduced to avoid the shortcoming of the conventional genetic algorithms [19].  

It has been shown that the islands models have preferred performance over the single population ones 

[19]. They are so sophisticated and it has been noticed that utilizing them frequently prompts speedier 

algorithms as well as superior performance. This is on the grounds that they can converge quickly because 

the chromosomes' number of the sub-populations is not as much as the one of the entire population used 

by the conventional GAs [2]. In addition, each island can seek in varied parts of the whole search space and 

in this way enhancing the exploratory posture of these algorithms. They are greatly well known [2], [3]. 

There are alternative names as they are sometimes referred to as distributed GAs since they are 

commonly executed on distributed PCs. Additionally, they are called islands GAs and multiple-demes as 

they are like the islands model in population genetics that treats separated demes. Furthermore, they are 

occasionally known as coarse-grained GAs as the communication ratio is generally large [2], [20]. 

  

 
Fig. 2. Multiple-population GA.  

 

The islands GA has multiple populations interconnected in a specific topology (like hyper-cube and ring; 

a unidirectional ring topology is easy to implement and analyze [19]) performing sparse migrations of 

information (commonly individuals) between its islands [20]. In other words, the population of 

chromosomes is separated into a few blocks. Each one has a specific likelihood for individuals' relocation 

between islands; individuals having larger fitness have larger chances of migration [19]. It is distinguished 

by a large computation/communication rate [5].  

Whilst the master-slave technique does not influence the behavior of the algorithm, the islands model 

technique alters the way the GA works. For instance, in master-slave GAs, selection considers all the 

population but in the islands model, it investigates only a division of chromosomes. Additionally, in the 

master-slave any two individuals can mate (random mating), but in the islands model it is limited to a 

subset of individuals [2]. 

4. Computational Experiments 

In the experiments, we present a simple case study using traditional hardware resources that shows how 

the computational time with a parallel GA drops dramatically to approximately the half with the 
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conventional GA at low cost. The experiments were completed on the 0-1 knapsack problem. So as to gain 

reliable results, distinctive test instances were utilized where the number of items was varied.  

4.1. Method 

Two kinds of experiments were carried out: 

 Tackling the utilized optimization problem by the islands approach (with two islands each has 

100 individuals), and  

 Tackling them by traditional genetic algorithm.  

In order to guarantee that the experiments are independent of any external factors, we used single 

machine having multiple cores instead of many machines. This helps maintains a strategic distance from 

contrasts in the behavior of the used islands. The same setting for the GA parameters is utilized in both of 

the experiments.  

In the experiments, we recorded the elapsed time. Both of these experiments were executed on various 

instances of high dimensional benchmark 0-1 knapsack problems. These instances are from [21] with the 

following details appeared in Table 1. 

 

Table 1. The Details of the Utilized Problems  

 Problem instance  No. of items Knapsack Capacity  

i1 100 2732 

i2 250 6536 

i3 500 13743.5 

i4 750 20351.5 

 

4.2. Results 

Table 2 depicts the acquired results that represent the average of ten independent runs (as stochastic 

methods have to be repeated several times to get reasonable outcomes). The experiments were run on a PC 

with 2 GHz CPU and 3 GB RAM using R language [22]. The binary format was utilized because it is the most 

appropriate one for tackling knapsack problems [10], [11]. The obtained results are appeared in the 

following table.  
 

Table 2. The Obtained Results 
Problem instance  Average time (traditional GA)   Average time (Parallel GA) 

i1 16.279 16.686 

i2 33.634 34.961 

i3 62.019 65.48 

i4 91.737 95.347 

 

The second and third columns in Table 2 are the average computational time (in seconds) of a traditional 

GA and a parallel GA respectively which shows how much gain in the computational time with the use of 

the islands models. The results in the third column represent the average of ten independent runs for 

getting two solutions (as we used two islands) which are around two times the computational time in the 

case of the traditional evolutionary algorithms.    

5. Discussion 

The paper explores the significance of parallel algorithms for high dimensional optimization problems at 

low cost which was accomplished by performing two kinds of experiments utilizing several high 



  

dimensional knapsack instances using low cost computational recourses. Although there are many recent 

researches about tackling high dimensional optimization problems using non traditional computational 

resources (such as GPUs [1], [4]), the experiments were performed using an affordable PC to show that 

even in this case, we can gain much speed in getting the results. 

Using parallel evolutionary algorithms help avoid the main drawback of evolutionary algorithms which is 

the large computational time. Moreover, this gain in the speed can be greatly increased with the use of 

more islands. 

6. Conclusions and Future Work 

The target of this work was examining the importance of parallel computing and more particular islands 

models for tackling high dimensional optimization problems . This is accomplished by implementing two 

kinds of experiments (using parallel and traditional optimization algorithms) utilizing diverse instances of 

high dimensional 0-1 knapsack problems . The main motivation for this work was to answer this question: 

can we increasing the use of islands models by investigating more their capabilities for tackling high 

dimensional optimization problems instead of using other unaffordable recent computational tools such as 

GPUs? 

The availability of a variety of parallel hardware capabilities encourages us to move further towards 

developing software systems to benefit from these capabilities and eventually achieve the crucial aim of 

numerous users which is the low computational time.  

As for the future work, much testing have to be performed with the utilization of various optimization 

problems. Besides, much optimization for the parameters of the islands models can enhance their 

performance. Generally speaking, islands models still need much research in order to use them further in 

practice.   
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