

Parallel Evolutionary Algorithms and High Dimensional
Optimization Problems

Nadia Abd-Alsabour*

Cairo University, Cairo, Egypt.

Manuscript submitted May 28, 2018; accepted July 20, 2018.
doi: 10.17706/jcp.13.11 1265-1271.

Abstract: Optimization represents a fundamental part of many fields such as industry whose aim is the result

of an optimization problem. The high dimensionality of various optimization problems raises the

requirement for developing new appropriate optimization algorithms. A good instance of these algorithms is

parallel evolutionary algorithms that can viably exploit the capabilities of various structures of parallel

machines. This is investigated in this article through two sorts of experiments using islands algorithms. The

acquired results are explained and analyzed in sections six and seven respectively.

Key words: Parallel computing, optimization problems, parallel evolutionary algorithms, high dimensionality.

1. Introduction

High dimensional optimization problems (due to the increasing volumes of data gathered by

organizations or individuals) which are common in various applications need a lot of efforts to be tackled in

reasonable time. Meanwhile, traditional optimization algorithms experience the computational cost such as

the elapsed computational time. A good example of these algorithms is the evolutionary algorithms.

The principle idea of parallel computing is the concurrent utilization of multiple computing resources to

tackle the given problem which can be separated into several parts to be solved concurrently and

independently (on a multi-core computer or on a cluster of multiple computers). This is to speed up the

computations. In other words, the fundamental thought behind most parallel techniques is to partition a

task into segments and tackle them concurrently utilizing multiple processors. This can be applied to

genetic algorithms (GAs) in an extensive variety of ways [1], [2].

The main idea of genetic algorithms for tackling a given problem is to manipulate a population of

candidate solutions which are evaluated to select the best of them to reproduce and mate so as to form the

next generation. Over a number of generations, good traits dominate the population resulting in an increase

in the quality of the solutions. This is a simulation for Darwinian evolution; bad traits are eliminated from

the population because they appear in individuals which do not survive. The good traits survive and are

mixed by recombination (mating) to form better individuals [1].

Genetic algorithms are very effective and powerful search techniques that have been utilized successfully

for solving practical problems in many disciplines such as engineering, business, and science. Within

appropriate time, they generally can get good solutions [1]. However, when they tackle larger and harder

problems, the time required for finding adequate solutions grows (their execution time can be a restricting

element for utilizing them). This is because a lot of candidate solutions must be evaluated [1], [3].

Consequently, there have been various efforts to quicken GAs which leads to a diversity of options to

accomplish this objective [1]. One of the most encouraging choices is to use parallel implementations.

Journal of Computers

1265 Volume 13, Number 11, November 2018

* Corresponding author. Email: nadia.abdalsabour@cu.edu.eg

mailto:nadia.abdalsabour@cu.edu.eg

Particularly, it is easy to implement parallel GAs and they then guarantee significant gains in performance

[1].

GAs are particularly suitable for parallel computing. This is because they are regarded as embarrassingly

parallel algorithms i.e., they require a large number of independent calculations with negligible

synchronization and communication costs [2]. Besides, parallelism emerges normally when handling many

individuals as each one is an autonomous unit. Therefore, the performance of population-based methods is

extraordinarily improved when running in parallel [4].

We utilized them in this paper since they are the oldest and most established evolutionary algorithms.

They are able to tackle multi-objectives, dynamic components, and non-linear constraints. Since their

advancement, they have been used frequently as alternative techniques to the traditional ones and have

tackled successfully a wide range of optimization problems as well [5].

This paper investigates the viability of utilizing parallel evolutionary algorithms (more particularly

islands genetic algorithms) for high dimensional subset problems. This is accomplished through two types

of experiments; solving the high dimensional knapsack problem utilizing the islands genetic algorithms and

the conventional genetic algorithms.

The remainder of this work is organized as follows. Section 2 addresses the high dimensional

optimization problems and the used one in the experiments. Section 3 highlights the utilized parallel

genetic algorithms. Section 4 shows the carried out experiments and their acquired results. Section 5

analyzes and discusses the acquired results. Section 6 summarizes this paper and points out some work

possible to be performed in future.

2. High Dimensional Optimization Problems

Non-trivial problems need great computational resources. Therefore, an assortment of algorithmic

enhancements have been advanced such as hybrid and parallel algorithms [4]. The latter is explored in this

paper.

Although it is possible for expensive hardware (such as GPU computing and computing disciplines

involving natural elements like quantum systems and molecules) to handle these problems, this has a

tendency to be unpractical because of many reasons engaged with getting such computation tools such as

their costs. Besides, utilizing the GPU computing for example involves re-design and implementation issues

in order to use islands models with them which is still investigated in many recent researches [6]-[8] . Thus,

it is far more realistic and frugal to utilize computing resources that can be utilized simply in practice and in

the same time provide adequate results.

Unfortunately, the performance of the vast majority of the current optimization algorithms degrades as

the number of dimensions in the given optimization problem increases (greater than or equals to 100

dimensions like the majority of the real-world and industrial problems and this is the practical situation to

have high dimensionality in such optimization problems) and hence using these algorithms for handling

these optimization problems become intractable [6], [9]. This is because the solution space of the given

optimization problem exponentially increases with the dimensionality which affects the search ability of

the utilized optimization algorithm as it cannot fully investigates such a solution space within a reasonable

computation time. This is known in machine learning as the curse of dimensionality problem (the amount

of the required data increments exponentially with the dimensionality). High dimensionality not only

influences the performance of optimization algorithms but also affects numerous predictors such as the

nearest neighbors classifier despite the fact that they perform efficiently in low dimensional applications.

This is because when the input attributes increase, the spread of the data increments also which results in

the difficulty of handling such data) [10]-[13].

Journal of Computers

1266 Volume 13, Number 11, November 2018

In the experiments, we utilized the high dimensional 0-1 knapsack (KP) problem as it is so crucial for

many real-world problems by being the basis for such problems. Moreover, it is a good example of subset

problems that represent a variety of real-world problems. As problems may be tackled in various ways

such as being handled as subset problems, this raises the significance of subset problems. Because of the

critical uses of these optimization problems, they have been broadly investigated recently [7], [14], [15].

The 0-1 knapsack problem (known also as the binary KP, the rucksack problem, and the backpack

problem) is the problem of selecting a subset out of n elements into a knapsack with the main aim to

maximize their gained profits and keeping their total weights within the knapsack capacity as depicted in

Fig. 1. It is known as 0-1 KP since every component can be included or not in the knapsack i.e., it can be

added to the knapsack no more than once.

Fig. 1. The KP problem [18].

It is an NP (non-polynomial); it can't be solved in linear amount of time. Recently, various metaheuristics

have been broadly used for dealing with hard optimization problems including the knapsack problem. This

is on the grounds that they have demonstrated their success in solving a variety of real-world optimization

problems in short time [7], [16].

Newly, this optimization problem has been widely investigated due to its enormous practical

applicability in a wide range of fields like operations research, management, finance, and computer sciences.

Numerous industrial and real-world problems from different fields can be dealt with as a knapsack

problem. In addition, it has a variety of direct applications such as shipping organizations whose aim is to

pick as much package volume into a transport plane without surpassing the weight limit [7], [16], [17].

The KP's model is:

Maximize 


n

i

ii xp
1

 (1)

Subject to cxw
n

i

ii 
1

, ix {0, 1} (2)

where

xi is a binary variable equals to 1 if element i is included in the knapsack, and it equivalents to 0 if not

included.

The previous equations are the fitness function to be maximized and the capacity constraint respectively

[18].

Journal of Computers

1267 Volume 13, Number 11, November 2018

c = the most extreme limit of the backpack.

wi = the weight of element i.

pi = the profit of element i.

=

i i.

i i.

3. The Islands Model

At present, several parallel approaches have been proposed such as the islands and master–slave ones.

These models utilize the merit of parallel computing (the advantage of multitasking characteristics of

multi-core machines) by separating an extensive size population into smaller partitions and performing

concurrent random searches among them as shown in Fig. 2. These models significantly enhance the issues

of premature convergence or convergence to local optimal solutions in the conventional GA techniques,

where a single large population is utilized. These models execute parallel computing by allocating

unutilized cores with the sub-populations that has not yet been worked. Many parallel genetic algorithms

were introduced to avoid the shortcoming of the conventional genetic algorithms [19].

It has been shown that the islands models have preferred performance over the single population ones

[19]. They are so sophisticated and it has been noticed that utilizing them frequently prompts speedier

algorithms as well as superior performance. This is on the grounds that they can converge quickly because

the chromosomes' number of the sub-populations is not as much as the one of the entire population used

by the conventional GAs [2]. In addition, each island can seek in varied parts of the whole search space and

in this way enhancing the exploratory posture of these algorithms. They are greatly well known [2], [3].

There are alternative names as they are sometimes referred to as distributed GAs since they are

commonly executed on distributed PCs. Additionally, they are called islands GAs and multiple-demes as

they are like the islands model in population genetics that treats separated demes. Furthermore, they are

occasionally known as coarse-grained GAs as the communication ratio is generally large [2], [20].

Fig. 2. Multiple-population GA.

The islands GA has multiple populations interconnected in a specific topology (like hyper-cube and ring;

a unidirectional ring topology is easy to implement and analyze [19]) performing sparse migrations of

information (commonly individuals) between its islands [20]. In other words, the population of

chromosomes is separated into a few blocks. Each one has a specific likelihood for individuals' relocation

between islands; individuals having larger fitness have larger chances of migration [19]. It is distinguished

by a large computation/communication rate [5].

Whilst the master-slave technique does not influence the behavior of the algorithm, the islands model

technique alters the way the GA works. For instance, in master-slave GAs, selection considers all the

population but in the islands model, it investigates only a division of chromosomes. Additionally, in the

master-slave any two individuals can mate (random mating), but in the islands model it is limited to a

subset of individuals [2].

4. Computational Experiments

In the experiments, we present a simple case study using traditional hardware resources that shows how

the computational time with a parallel GA drops dramatically to approximately the half with the

Journal of Computers

1268 Volume 13, Number 11, November 2018

Journal of Computers

1269 Volume 13, Number 11, November 2018

conventional GA at low cost. The experiments were completed on the 0-1 knapsack problem. So as to gain

reliable results, distinctive test instances were utilized where the number of items was varied.

4.1. Method

Two kinds of experiments were carried out:

 Tackling the utilized optimization problem by the islands approach (with two islands each has

100 individuals), and

 Tackling them by traditional genetic algorithm.

In order to guarantee that the experiments are independent of any external factors, we used single

machine having multiple cores instead of many machines. This helps maintains a strategic distance from

contrasts in the behavior of the used islands. The same setting for the GA parameters is utilized in both of

the experiments.

In the experiments, we recorded the elapsed time. Both of these experiments were executed on various

instances of high dimensional benchmark 0-1 knapsack problems. These instances are from [21] with the

following details appeared in Table 1.

Table 1. The Details of the Utilized Problems

 Problem instance No. of items Knapsack Capacity

i1 100 2732

i2 250 6536

i3 500 13743.5

i4 750 20351.5

4.2. Results

Table 2 depicts the acquired results that represent the average of ten independent runs (as stochastic

methods have to be repeated several times to get reasonable outcomes). The experiments were run on a PC

with 2 GHz CPU and 3 GB RAM using R language [22]. The binary format was utilized because it is the most

appropriate one for tackling knapsack problems [10], [11]. The obtained results are appeared in the

following table.

Table 2. The Obtained Results
Problem instance Average time (traditional GA) Average time (Parallel GA)

i1 16.279 16.686

i2 33.634 34.961

i3 62.019 65.48

i4 91.737 95.347

The second and third columns in Table 2 are the average computational time (in seconds) of a traditional

GA and a parallel GA respectively which shows how much gain in the computational time with the use of

the islands models. The results in the third column represent the average of ten independent runs for

getting two solutions (as we used two islands) which are around two times the computational time in the

case of the traditional evolutionary algorithms.

5. Discussion

The paper explores the significance of parallel algorithms for high dimensional optimization problems at

low cost which was accomplished by performing two kinds of experiments utilizing several high

dimensional knapsack instances using low cost computational recourses. Although there are many recent

researches about tackling high dimensional optimization problems using non traditional computational

resources (such as GPUs [1], [4]), the experiments were performed using an affordable PC to show that

even in this case, we can gain much speed in getting the results.

Using parallel evolutionary algorithms help avoid the main drawback of evolutionary algorithms which is

the large computational time. Moreover, this gain in the speed can be greatly increased with the use of

more islands.

6. Conclusions and Future Work

The target of this work was examining the importance of parallel computing and more particular islands

models for tackling high dimensional optimization problems . This is accomplished by implementing two

kinds of experiments (using parallel and traditional optimization algorithms) utilizing diverse instances of

high dimensional 0-1 knapsack problems . The main motivation for this work was to answer this question:

can we increasing the use of islands models by investigating more their capabilities for tackling high

dimensional optimization problems instead of using other unaffordable recent computational tools such as

GPUs?

The availability of a variety of parallel hardware capabilities encourages us to move further towards

developing software systems to benefit from these capabilities and eventually achieve the crucial aim of

numerous users which is the low computational time.

As for the future work, much testing have to be performed with the utilization of various optimization

problems. Besides, much optimization for the parameters of the islands models can enhance their

performance. Generally speaking, islands models still need much research in order to use them further in

practice.

References

Journal of Computers

1270 Volume 13, Number 11, November 2018

[1] Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseauxet Systems

Repartis, 10(2), 141-171.

[2] Luque, G., & Alba, E. (2011). Parallel Genetic Algorithms: Theory and Real World Applications. Springer.

[3] Pospichal, P., Schwarz, J., & Jaros, J. (2010). Parallel genetic algorithm solving 0/1 knapsack problem

running on the GPU. Proceedings of 16th International Conference on Soft Computing MENDEL: Vol.

2010. (p. 64).

[4] Luong, T., Melab, N., & Talbi, E. (2010). GPU-based island model for evolutionary algorithms.

Proceedings of GECCO’10, Portland, Oregon, USA.

[5] Roeva, O., Fidanova, S., & Paprzycki, M. (2013). Influence of the population size on the genetic

algorithm performance in case of cultivation process modeling. Proceedings of the 2013 Federated

Conference on Computer Science and Information Systems (FEDCSIS) (pp. 371-376).

[6] Nananukul, N. (2017). Parallel algorithm for combinatorial optimization problem. Journal of

Telecommunication, Electronic and Computer Engineering.

[7] Fidanova, S. (2007). Ant colony optimization and multiple knapsack problem. In J. Rennard (Ed.),

Handbook of Research on Nature Inspired Computing for Economics and Management (pp. 498-509).

[8] Abd-Alsabour, N. (2017). Nature as a source for inspiring new optimization algorithms. Proceedings of

the 9th International Conference on Signal Processing Systems (pp. 51-56).

[9] Abd-Alsabour, N. (2018). On the role of dimensionality reduction. Journal of Computers, 13(5), 2018.

[10] Olariu, S., & Zomaya, A. Y. (2005). Handbook of Bio-inspired Algorithms and Applications. London:

Chapman & Hall/CRC.

Journal of Computers

1271 Volume 13, Number 11, November 2018

[11] Gorunescu, F. (2011). Data Mining-Concepts, Models and Techniques. Springer-Verlag Berlin Heidelberg.

[12] Maimon, O., & Rokach, L. (2005). Data Mining and Knowledge Discovery Handbook. Springer.

[13] Yang, P., Tang, K., & Yao, X. (2018). Turning high-dimensional optimization into computationally

expensive optimization. IEEE Transactions on Evolutionary Computation, 22(1), 143-156.

[14] Abd-Alsabour, N. (2015). Binary ant colony optimization for subset problems. In S. Dehuri, A. K.

Jagadev, & M. Panda (Eds.), Multi-objective Swarm Intelligence- Theoretical Advances and Applications,

Studies in Computational Intelligence (pp. 105-121).

[15] Maniezzo, V., & Roffilli, M. (2008). Very strongly constrained problems: An ant colony optimization

approach. Cybernetics and Systems: An International Journal, 39(4), 395-424.

[16] Syarif, A., Aristoteles, A. D., & Malinda, R. (2016). Performance evaluation of various genetic algorithm

approaches for knapsack problem. ARPN Journal of Engineering and Applied Sciences, 11(7),

4713-4719.

[17] Guler, A., Berberler, M., & Nuriyev, U. G. (2016). A new genetic algorithm for the 0-1 knapsack problem.

APJES IV-III, 9-14.

[18] Yaghini, M. (2009). Genetic Algorithms Part 2: The Knapsack Problem.

[19] Li, C. C., Lin, H., & Liu, J. C. (2017). Parallel genetic algorithms on the graphics processing units using

island model and simulated annealing. Advances in Mechanical Engineering, 9(7).

[20] Madera, J., Alba, E., & Ochoa, A. (2006). A Parallel island model for estimation of distribution algorithms.

In J. A. Lozano, P. Larranaga, I. Inza, & E. Bengoetxea (Eds.), Towards a New Evolutionary Computation.

[21] KNAPSACK0-1 — Data for the 0-1 Knapsack problems. Retrieved from

http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/

[22] R: A language and environment for statistical computing. Retrieved from http://www.R-project.org. R

Foundation for Statistical Computing.

Nadia Abd-Alsabour (BSc, MSc, and PhD) is an assistant professor at Cairo University, Cairo, Egypt. Her

research interests are swarm intelligence, optimization, data mining, machine learning, artificial intelligence

and software engineering. Dr. Abd-Alsabour is a publicity chair, session chair, PC member, guest editor, and a

reviewer in many international conferences and journals.

