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Abstract: wireless sensor networks include small-sized sensor nodes with limited resources (energy, 

memory, etc.). Considering this limitation and their placement in unsupervised locations, e.g. military areas, 

and since this type of networks does not rely on a fixed infrastructure, security becomes a complex and 

considerable issue in these networks. Providing data and communication security requires appropriate 

encryption protocols. Key management is one of the most important mechanism used to secure encryption 

keys and their safe distribution among sensor nodes. Recently, many key management schemes have been 

proposed, each with its own particular strengths, weaknesses, and applications under certain 

circumstances. This paper investigates special requirements of distributed dynamic key management 

schemes in wireless sensor networks. Subsequently, modern distributed dynamic key management 

schemes are compared and finally, several relevant recommendations are made. 
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1. Introduction 

A wireless sensor network consists of a large number of battery supplied sensor nodes, as well as sensor 

components, data processing, and short-range radio communications [1]. This type of networks has 

applications from environmental surveillance and intelligent homes to sensitive cases in military or security 

areas, including surveilling battlefields, targeting, and tracking. 

Security in wireless sensor networks is challenging since they do not rely on a fixed infrastructure. These 

networks include wireless connection, close interaction of sensor nodes, unsupervised operations without 

human intervention and lack of physical protection. Therefore, wireless sensor networks are vulnerable 

against an extensive set of attacks at network level, as well as physical damages [2]. Although sensor nodes 

can possess built-in anti-tampering mechanisms, memory chipsets are vulnerable to various damages of 

reading their memories. 

Key management is a fundamental mechanism to insure security in network services and wireless sensor 

network applications. Key management can be defined as a set of processes and mechanisms, which 

support key establishment and key related interactions between authorized nodes, which is based on 

security policy making [3]. Since sensor nodes have limited computational power and memory capability, 

security approaches designed for contingency and wired networks are not appropriate for wireless sensor 

networks. key management in wireless sensor networks aims to solve the problem of creating, distributing, 

and maintaining a secret key. Therefore, techniques for reliable key distribution and management are highly 
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important in the security of wireless sensor networks. 

Due to their importance, key management systems have always attracted the interest of researchers and 

an increasing regard in the scientific literature. Recently, many key management schemes have been 

proposed for wireless sensor networks [4]-[8]. These schemes can be categorized into static and dynamic 

methods based on their capability in updating the encryption key at runtime (rekeying) [9]. 

static key management is limited to key pre-distribution and keys are constant during the network`s 

lifetime. However, if an encryption key is used for a long period, it becomes significantly more likely to be 

attacked. In contrast, dynamic key management regenerates keys during network`s lifetime. Therefore, 

dynamic key management is known to be more promising in wireless sensor networks. dynamic key 

management is a set of processes used to rekeying, whether periodically or per network`s demand. Since 

the keys of compromised nodes are revoked during the rekeying process, dynamic key management 

schemes highly improve the survivability and resilience of wireless sensor networks. 

Generally, depending on whether a centralized key controller is involved in generating or distributing a 

new key, almost all dynamic key management techniques can be divided into distributed or centralized 

schemes. This paper only discusses distributed key management schemes. 

2. Basic Requirements and Evaluation Metrics 

Dynamic key management can be considered a branch of key management. All key management schemes 

should satisfy the following traditional security requirements: confidentiality, authentication, freshness, 

integrity, and non-repudiation. These requirements should be satisfied by dynamic key management 

schemes as well. Moreover, features and the application environment of the dynamic key management 

scheme highlight certain evaluation measurements. Therefore, this section defines the most common 

metrics used to evaluating dynamic key management in wireless sensor networks. In [10], evaluation 

metrics to manage key pre-distribution are divided into security, efficiency, and flexibility. This 

categorization is based on the constraints of sensor nodes and networking limitations. Accordingly, basic 

requirements and evaluation metrics are proposed based on this categorization and the unique features of 

dynamic key management. We must note that among the following metrics, node revocation, forward and 

backward secrecy, collusion resistance and key connectivity are only applicable for dynamic key 

management schemes and other metrics can also be applied to static key management schemes. 

2.1. Security Metrics 

Dynamic key management schemes should provide secure encryption keys, such that the activities of 

malicious nodes are prevented within the network. When a compromised sensor node is detected, the 

current secret key of the compromised sensor node must be revoked and a new key generated and 

distributed among related nodes. The dynamic key management scheme should possess forward and 

backward secrecy, as well as collusion resistance between newly joined and compromised nodes. Moreover, 

resilience should be provided after capturing and replication nodes. 

Some security metrics of dynamic key management schemes are as follows: 

 Node revocation: when compromised sensor nodes are detected, an effective approach must 

immediately eliminate (invalidate) them from the network. Such mechanisms are used to 

prevent compromised nodes from deviating the network`s behavior by injecting false data or 

manipulating the data of trusted nodes. 

 Forward and backward secrecy: forward secrecy is used to prevent a node from using an old key 

to decrypting new messages [11]. On the contrary, backward secrecy is used to prevent a node 

with a new key from returning to a previous state and decipher previously received messages, 

which are encrypted with prior keys [11]. Both forward and backward secrecy are used to defeat 
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node capturing attacks. 

 Collusion Resistance: an intruder may compromising several nodes to attack the network and 

force them to collude and collaborate to control all systems keys and eventually, the entire 

network. A good dynamic key establishment technique should resist the collaboration of newly 

joined and compromised nodes. 

 Resilience: resilience is a measure that indicates how much resistance there is against node 

capturing. It means that this factor measures the impact of a captured node on the rest of the 

network when an intruder attacks a physical sensor node and tries to recover secret information 

from its memory. Recovery of a network is high if the intruder cannot affect any node other than 

the captured one. On the contrary, resilience is low if capturing one node leads to compromise 

the entire network. 

2.2. Efficiency Metrics 

The number of exchanged messages to change a key, the number of required encryption keys, the amount 

of operations, and the size of encryption keys should be as low as possible. This prevents limiting available 

nodes` energy resources and storage capacity, as well as network size. Since nodes inherently have limited 

resources, the dynamic key distribution itself should be impose a large load as follows: 

 Memory: the mount of required memory to store security credentials, e.g. keys (public or private, 

pairwise keys), user certificate (e.g. ID), and trusted certificates (e.g. neighboring nodes' 

reputation). 

 Bandwidth: the number and size of messages exchanged in the key generation process, node 

replenishment, and node eviction. 

 Energy: the consumed energy in the process of key agreement, transmission, and data reception, 

as well as the computational procedure of generating and distributing new keys. 

2.3. Flexibility Metrics 

Key deployment techniques should be flexible enough to perform well in an extended set of wireless 

sensor network applications. The most important flexibility metrics include: 

 Mobility: most network topologies assume that sensor nodes are stationary. However, mobility of 

base stations, sensor nodes, or both are required in certain applications [12]. Therefore, key 

deployment should distribute new keys to moved nodes, so that they can communicate with their 

new neighbors. Key generation and distribution are more challenging for mobile nodes, since in 

addition to energy and bandwidth, mobility capacity also becomes an important issue. 

 Scalability: the number of sensor nodes deployed in a region may be hundreds to even thousands. 

Moreover, during the network lifetime, sensor nodes can be joined or removed. Therefore, 

dynamic key management techniques should be scalable to different network sizes. While, 

security and efficiency features in small networks should be maintained when applying to larger 

networks. 

 Key connectivity: key connectivity is defined as the probability that two (or more) nodes can 

deploy a key after rekeying it. Local connectivity refers to the connectivity of each pair of 

neighbor nodes. In contrast, global connectivity means connecting to the entire network. In order 

to provide continued security, high key connectivity is required after each rekeying process. 

3. Distributed Dynamic Key Management Schemes in Wireless Sensor Networks 

This section discusses main distributed dynamic key management schemes, which are proposed to date 

for wireless sensor networks and specifies security and efficiency specifications. Depending on different 
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basic encryption operations, based on which existing distributed dynamic key management schemes are 

proposed, they can be divided into the following three groups [9]. Fig. 1 presents the categorization of 

distributed dynamic key management schemes. 

Distributed dynamic key management is a set of processes in which there is no centralized key controller, 

such as a base station or third party, involved in the rekeying process by sensor nodes. In contrast, key 

management is performed by multiple controllers, which can be predetermined or dynamically assigned. 

Distributed dynamic key management schemes prevents a single point of failure and allows better 

network scalability. However, they are prone to design errors, since captured sensor nodes can participate 

in the node eviction process. 

 

Fig. 1. Distributed dynamic key management schemes. 
 

 
Fig. 2. SHELL key management scheme. 

3.1. EBS Based Schemes 

Exclusion Basis System (EBS) [13] is a combinatorial formulation of the key group management problem 

in wireless sensor networks. In EBS based schemes, k keys of a set with size 𝑃 = 𝑘 + 𝑚 (𝑚 < 𝑛. 1 < 𝑘) is 

assigned to each node 𝑛𝑖 , where n is the number of sensor nodes in the network. Rekeying is called 

periodically or when one or more keys are captured (or are suspected of being captured). In the rekeying 

process, replacement keys are generated and encrypted with all the m keys, which are unknown to the 
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captured node. Finally, these keys are distributed to other nodes. In total, these nodes are aware of these m 

keys [14]. 

An EBS based distributed key management scheme which is scalable, hierarchical, efficient, 

location-aware, and light [15]. SHELL groups sensor nodes in clusters 𝐶𝑖  (0 < 𝑖 ≤ 𝑛, where n is the 

number of nodes in a cluster). Rekeying is only performed within these clusters. The network considered in 

SHELL consists of command nodes, cluster heads (CHs), gateways, and sensor nodes. Fig. 2 presents this 

scheme. 

It is assumed that the command node is resources-rich and cannot be compromised. After bootstrapping 

the gateway, SHELL determines how many administrative keys are required for a cluster. Subsequently, the 

list of nodes and the EBS table, which includes key combinations, are sent to the command node. Command 

node determine a number of gateways for each cluster C𝑖  to generate administrative keys. After 

generation, the key generation gateway encrypts these keys and sends them to head cluster 𝐺𝑐𝑕 [𝑖]. The 

head cluster decrypts these messages and sends their content to the cluster member nodes. 

In order to refresh communication keys, cluster head 𝐺𝑐𝑕 [𝑖] sends new communication keys to its two 

key generation gateways. These gateways encrypt these keys with the administrative keys of sensor nodes 

and send the encrypted message to 𝐺𝑐𝑕 [𝑖]. Finally, 𝐺𝑐𝑕 [𝑖] forwards new communication keys to the nodes 

of its cluster. Administrative keys can also be changed in a similar way. When a gateway is compromised, 

regeneration can be managed by whether deploying a new gateway or redistributing cluster nodes with the 

compromised gateway among safe clusters. If a sensor node fails or compromised in a cluster, data keys 

should be changed for the entire cluster. The EBS-based rekeying process to eliminate compromised sensor 

nodes. However, EBS-based key management is vulnerable to collusion attacks [16]. This is particularly 

true when the value of m is selected to be relatively small (to minimize rekeying traffic). SHELL proposes a 

heuristic key assignment to prevent collusion and increase the number of colluding nodes to capture the 

entire network. Nodes with physically smaller distances are assigned key combinations with lower 

Hamming distance. In order to prevent assigning key combinations with a large Hamming distance to two 

neighbor nodes with the same parent, key combinations are exchanged between the considered node and 

any node with predetermined combinations. 

Despite the successful rekeying and collusion prevention of, SHELL also poses some weaknesses. First, 

the structure and operations are very complex, since there are various node operations and several types of 

keys (about 7) are used. Due to complexity, energy consumption and encryption overhead is higher than 

those of other schemes. Second, it is assumed that nodes have specific physical locations. However, location 

information in high density networks are not necessarily available. Third, by swapping key combinations, it 

is more likely to have two neighbor sensor nodes with the same parent to have the same key combinations, 

since these combinations have minimum Hamming distance. This increases the number of colluding 

neighbor nodes. Therefore, capturing a small number of nodes exposes most keys and leads to capturing the 

entire network [7]. Hamming distance based dynamic key management is proposed to solve this problem. 

Finally, SHELL exploits a centralized key generation gateway to perform rekeying. therefore, capturing key 

generation gateways provides a larger number of sensor nodes to the intruder in comparison to when 

ordinary sensor nodes are captured. 

Localized Combinatorial Keying (LOCK) is another EBS-based dynamic key management scheme. This 

wireless sensor network model consists of a three level hierarchy, the base station at the top, then cluster 

leaders (CLs), and finally, regular sensor nodes. Fig. 3 presents the LOCK key management scheme. 

LOCK employs no location information in generating new keys. In the initialization phase, sensor nodes of 

each cluster create a set of backup keys, which are shared with the base stations and are hidden from the 

cluster-leader. When a node is captured, other nodes of that cluster rekeying their keys by a local rekeying 
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mechanism, such that the compromised node cannot communicate with them. If the compromised node is a 

cluster head, the base station initiates rekeying at the cluster head level. Similarly, nodes in a cluster 

governed by the compromised cluster leader are rekeyed with the base station. In contrast to other dynamic 

key management schemes, in LOCK, capturing a node (including the cluster leader) has no effect on the 

common operations of other clusters. Since, nodes locally rekeyed, LOCK can reduce time delay and energy 

consumption used for the cluster key generation and renewal.  

Ref. [17] proposed a batch key scheme, which defines three operations for member nodes, including join, 

leave with collusion-resistance, and leave with collusion-free. 
 

 
Fig. 3. The LOCK key management scheme. 

3.2. PCGR Based Schemes 

Polynomial Secret-Sharing-Based Rekeying (PCGR) [18] is a family of collaboration-based and 

pre-distribution group rekeying, which was proposed to solve the problem of node compromise. In 

PCGR-based scheme, sensor nodes are randomly assigned to several groups and the nodes of each group 

share a unique key. Accordingly, the two Basic PCGR-based (B-PCGR) and Cascading PCGR-based (C-PCGR) 

rekeying schemes were proposed. In B-PCGR, neighbors in a one-hop distance must collaborate to protect 

the polynomials of their group`s key. However, if a node like u and a number of its one-hop neighbors based 

on a specific threshold (𝑢 + 1, where u is a parameter picked by u) are compromised, the group key 

polynomial is revealed. In the C-PCGR, the share of a node is distributed among its multi-hop neighbors, 

was proposed to address the above mentioned limitation of B-PCGR and achieve higher resistance against 

node compromise. 

In the B-PCGR, before the deployment of sensor nodes, a setup server determines the total number of 

groups and every node is preloaded with the group key polynomial (a unique s-degree univariate 

g-polynomial) of its group. After detecting neighbors, sensor u randomly picks a bivariate e-polynomial 

(called encryption polynomial, e.g. 𝑒𝑢(𝑥. 𝑦)) to encrypt its g-polynomial, (e.g. g(x)), which result in the 

encrypted g-polynomial: g'-polynomial (e.g. 𝑔’(𝑥)). Encryption is performed in form of 𝑔’(𝑥) = 𝑔(𝑥) +

𝑒𝑢(𝑥. 𝑦). After encryption, node u distributes shares of 𝑒𝑢(𝑥. 𝑦) to its direct neighbors 𝑣𝑖 , (0 ≤ 𝑖 < 𝑛 

where n is the number of neighbors). Specifically, each neighbor 𝑣𝑖  receives a share 𝑒𝑢(𝑥. 𝑣𝑖) from node u. 

after the shares distribution process, each node u keeps 𝑔’(𝑥) in its memory and removes 𝑒𝑢(𝑥. 𝑦) and 

𝑔(𝑥). 

The PCGR is assumed that to be loosely time synchronized and group rekeying is lunched by each node 
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periodically. Each node keeps a variable called the current group key version (denoted as c), which is 

initialized as 0 when the node is deployed. When it is time to update group keys, each innocent node 𝑣𝑖  

increases its current group key version by one, and returns its share 𝑒𝑢(𝑐. 𝑣𝑖), to each trusted node u. 

After receiving 𝜇 + 1 shares, which are denoted as   𝑣𝑖 . 𝑒𝑢 𝑐. 𝑣𝑖  . 𝑖 = 0. … . 𝜇 , u constructs a unique 

µ-degree polynomial, and finally, computes the new group key 𝑔(𝑐) = 𝑔’(𝑐) − 𝑒𝑢(𝑐. 𝑢). 

The C-PCGR was proposed based on B-PCGR-based, however, it differs from B-PCGR in the encryption 

and distribution of the polynomial shares and key updating phase. In the C-PCGR, the e-polynomial shares 

of a sensor node u is distributed to its multi-hop neighbors, while e-polynomial shares are distributed or 

collected in a cascading way. By using a polynomial-based signature and authentication [18], PCGR can 

effectively detect false shares injected by an adversary. 

The PCGR schemes have five important weaknesses. First, each node has to store the secret shares of its 

direct neighbors e-polynomials, PCGR may not be applicable to networks with a dense deployment of 

sensor nodes. Second, although PCRGR can reduce the amount of traffic and relieve traffic congestions by 

employing a return probability for its neighbors` share [18], the communication consumption is still too 

high to be applied to large-scale networks. Third, if a certain number of compromised sensor nodes 

continuously return false polynomial shares to a sensor node u, a DoS attack can be lunched. Fourth, if a 

large fraction of a sensor node`s neighbors are compromised and new sensor nodes are not deployed 

around it, this sensor node may not be able to update its group key and thus be isolated. Fifth, in order to 

allow nodes to send information during the updating process, the previous group key is still used to 

communication among sensor nodes during a threshold time interval after the rekeying operation. In other 

words, a revoked node can still use the previous group key to decrypt new messages. Therefore, forward 

secrecy is not guaranteed. 

In [19], proposed a cluster-based key management scheme. Instead depending on the collaboration of 

neighboring nodes to acquire the group key, this scheme lets CHs generate and distribute the group key to 

the nodes within the cluster. The total number of groups is determined by the sink node. For each group, a 

unique 2t-degree bivariate polynomial 𝑔(𝑥. 𝑦) is constructed, and each node (including the CH) u is loaded 

with its personal secret 𝑔(𝑢. 𝑦). After deployment, the algorithm proposed in [20] is adopted to help with 

CH election and cluster formation. Each CH uses an one-way hash function and the identifier (ID) of its 

member nodes to construct hierarchical keys, which are then unicasted to its corresponding member nodes. 

When a CH wants to derive the current group key, it broadcasts a request message to the nodes within its 

cluster. When this request message is received, each node u, willing to trust the CH returns its personal 

secrets 𝑔(𝑢. 𝑦), where y is the current group key version. After successfully receiving t personal secrets, CH 

derives the current group key by following the threshold secret sharing scheme [21]. Subsequently, CH 

unicasts the current group key to its members using the hierarchical keys. 

When a compromised CH is detected, the sink node informs the members of the compromised cluster to 

begin a new CH selection process. If a normal node A is compromised, first its CH deletes the hierarchical 

key shared with it, then, the CH of the compromised node sends a group rekeying message to other CHs in 

the same group to invoke the key update process. [19] addressed the problem of node isolation suffering in 

[18] and [22]. When a CH cannot reconstruct the group polynomial, it sends a cluster dissolving message to 

the sink node and its innocent members. Subsequently, it deletes all its hierarchical keys with its members, 

and then unicasts a joining message (including all IDs of its innocent members) to other CHs. However, 

when a new node is added, it may use an absolute group key, as the new node is not synchronized with the 

group rekeying process. On the other hand, without time-synchronization, the group key used for 

communication between two arbitrary nodes may be inconsistent. Moreover, it does not indicate how to 

select the parameter t appropriately to achieve the desired level of security and reliability. Furthermore, a 
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normal node under the control of an adversary may return false shares to the CH. 

Using the analysis results of the rekeying protocol [22], [23] proposed a robust pairwise rekeying 

protocol for hierarchical wireless sensor networks to prevent node capture attacks. The characteristic of the 

perturbation polynomial [24] is exploited for the proposed rekeying scheme. In [23], the rekeying protocol 

can be divided into three phases, system initialization, pre-distribution of perturbed polynomials and key 

establishment and rekeying.  

In the system initialization phase, a large prime number q and the minimal integer l, which satisfy 2𝑙 > 𝑞, 

are chosen based on the size of the network. An offline authority arbitrarily constructs a bivariate 

symmetric polynomial 𝑓(𝑥. 𝑦). Subsequently, the method described in [24] is used to construct the 

legitimate ID set S for sensor nodes and generate the perturbation polynomial set Φ. Regarding a positive 

integer r  𝑟 < 𝑙 , any polynomial Φ(𝑥)𝜖𝜙 must satisfy: 

∀𝑥 ∈ 𝑆. 𝜙 𝑥 ∈ 0.… . 2𝑟 − 1                                 (1) 

In the pre-distribution of perturbed polynomials phase, before deployment, each cluster head 𝑙 needs to 

be loaded with a unique ID, 𝐶𝐻𝑙 ∈ 𝑆 and a perturbed polynomial: 

𝑔
𝐶𝐻𝑙

 𝑦 = 𝑓(𝐶𝐻𝑙 . 𝑦) + 𝜙𝐶𝐻𝑙
 𝑦 = 𝑔𝐶𝐻𝑙

 𝑦 + 𝜙𝐶𝐻𝑙
 𝑦                       (2) 

Similarly, each sensor node (SN) m is also preloaded with a unique ID 𝑆𝑁𝑚 ∈ 𝑆 and a perturbed 

polynomial: 

𝑔
𝑆𝑁𝑚

 𝑦 = 𝑓 𝑆𝑁𝑚 . 𝑦 + 𝜙𝑆𝑁𝑚
 𝑦 = 𝑔𝑆𝑁𝑚

 𝑦 + 𝜙𝑆𝑁𝑚
 𝑦                      (3) 

In addition to the unique ID and the perturbed polynomial, all sensor devices (SNs or CHs) are equipped 

with an one-way hash function, 𝐻𝑘 𝑥 , the returned hashed value of which is based on the most significant 

𝑘 bits of 𝑥.  

In [23], the main pairwise key establishment is treated as a rekeying process. After the construction of 

the hierarchical network, 𝐶𝐻𝑙  randomly generates a new t-degree univariate rekeying polynomial function 

𝑃𝐶𝐻𝑙
 𝑦 , at the begin of each rekeying phase. For each of its member sensor nodes 𝑆𝑁𝑚 , 𝐶𝐻𝑙  updates the 

corresponding pairwise key 𝐾𝐶𝐻𝑙 .𝑆𝑁𝑚
= 𝐻𝑙−𝑟(𝑃𝐶𝐻𝑙

 𝑆𝑁𝑖 ). At the same time, 𝐶𝐻𝑙  uses the newly generated 

𝑃𝐶𝐻𝑙
 𝑦  and the preloaded polynomial 𝑔

𝐶𝐻𝑙
 𝑦  to construct a master polynomial: 

𝑤𝐶𝐻𝑙
 𝑦 = 𝑃𝐶𝐻𝑙

 𝑦 + 𝑔
𝐶𝐻𝑙

 𝑦                                (4) 

Subsequently, the CH broadcasts its ID and the master polynomial 𝑤𝐶𝐻𝑙
 𝑦  to all of its member nodes.  

After receiving the broadcast message, each 𝑆𝑁𝑚  evaluates the preloaded polynomial 𝑔
𝑆𝑁𝑚

 𝑦  and the 

received 𝑤𝐶𝐻𝑙
 𝑦  separately. During the evaluation, three candidate keys are calculated [23]. An encoded 

message 𝐸 𝑚𝑠𝑔. 𝐾𝐶𝐻𝑙 .𝑆𝑁𝑚
  is sent using piggybacking from 𝐶𝐻𝑙  to 𝑆𝑁𝑚 . For 𝑆𝑁𝑚 , one of the previously 

calculated candidate keys that can successfully decode this message will be determined as the new pairwise 

key. 

In comparison with traditional polynomial based rekeying protocols, the proposed scheme is achieve 

higher robustness against node capture attacks. Performance analysis results in this work show that their 

proposed protocol outperforms [22] in terms of the total computation complexity and total communication 

overhead. Compared to [22], the compromised-resilient pairwise rekeying scheme achieves both forward 

and backward secrecy. However, it does not indicate a method to revoke captured or compromised nodes, 

especially for the CHs. When a CH is captured, it may lunch a revocation attack, resulting in significant 

traffic congestion and energy depletion. When the pairwise keys are updating, nodes may not be able to 
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send data to their CH, since the pairwise keys known to them (nodes and their CH) may be inconsistent. 

Moreover, this scheme does not indicate how to establish pairwise keys between newly deployed nodes 

and the existing ones.  

3.3. Deterministic Sequence-Number Based Schemes 

After analyzing OMTK [5], which is vulnerable to resource exhausting attacks and DoS attacks, [25] 

proposed an energy-efficient distributed deterministic key management scheme (EDDK) to securely 

establish and maintain the pairwise keys and the local cluster key. It assumes each node A, before 

deployment, is loaded with a network-wide pseudorandom function 𝑓 and a network-wide initial key 𝐾𝑙 . 

Also, node A has a local cluster key which is shared with all its neighbors. The initial key 𝐾𝑙  is used to 

compute the node's individual key, from which a separate encryption key and a message authentication 

code (MAC) key are derived. In EDDK, each node not only needs to store the pairwise keys and the local 

cluster keys but also needs to keep its own public and private keys. In addition, each node also needs to 

store a neighbor table to maintain the keys (including the pairwise key and the local cluster key) and 

sequence numbers. EDDK has three phase: key establishment, data transfer and key maintenance. The last 

phase includes key update, compromised key revocation, new node joining and mobile node joining. 

In the key establishment phase, each node A computes its individual key 𝐾𝑎  generates a sequence 

number 𝑆𝑁𝑎  and broadcasts a network joining message to determine its neighboring nodes. Finally, the 

pairwise key 𝐾𝑎𝑏  between neighboring nodes A and B is established with the individual keys (e.g. 𝐾𝑎  and 

𝐾𝑏) and the random sequence numbers (e.g. 𝑆𝑁𝑎  and 𝑆𝑁𝑏): 

𝐾𝑎𝑏 = 𝑓 𝐾𝑎⨁𝐾𝑏 . 𝑆𝑁𝑎 ⊕ 𝑆𝑁𝑏                               (5) 

In the key maintenance phase, the key update process occurs when one or more nodes are compromised 

or when the lifetime of a pairwise key is reached. The node whose ID is smaller would generate a pairwise 

key rekeying message and invoke the key update process. When the local cluster key of a node reaches its 

lifetime, the node broadcasts a similar key update message. 

When a new node N wants to setup pairwise keys with its neighbors, it broadcast a new join message. 

Upon hearing the broadcasted new join message, each new node W and existing node B verifies the elliptic 

curve digital signature algorithm (ECDSA) [26] signature of node N. After verifying the legality of node N, 

for two new nodes, they can follow the key establishment phase to calculate the pairwise key between them. 

For the pairwise key negotiation between a new node and an existing node, the existing node B broadcasts 

a response message. Subsequently, with their own private key and the other's public key, both nodes N and 

B could independently compute the pairwise key 𝐾𝑛𝑏 = 𝑠𝑛𝑃𝑏 = 𝑠𝑏𝑃𝑛 . If a node A moves to a new location, it 

will broadcast a rejoin message. After verification, all of the three kinds of pairwise key (pairwise key 

between two mobile nodes, pairwise key between a mobile node and a new node and pairwise key between 

a mobile node and an existing node) can be computed using one's private key and the other's public key. 

In EDDK, as long as the ID of a node and the sequence number field are in the neighbor table, reply 

attacks will fail at the receiver node. The Sybil attacks and node replication attacks will also fail because the 

attacker does not possess all information (the sequence numbers and pairwise key) required for message 

authentication. However, as one sensor node must establish the pairwise keys with all its neighbor and keep 

a neighbor table, EDDK may not be applicable in dense networks where each sensor node has many 

neighbors. Moreover, since the number of entries in a neighbor table is limited, there may be cases in which 

a trusted mobile node is unable to establish pairwise keys with its new neighbors and, as a result, cannot 

join the network. In order to defend against selective forwarding attacks, a promiscuous mode is used for 

each node to overhear data transmission among its neighboring nodes. However, higher energy 

consumption is associated with the promiscuous listening mode, which may influence the lifetime of the 
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network. 

4. Comparisons 

Table 1 compares the reviewed distributed dynamic key management schemes according to the security 

metrics. In Table 1, regarding resilience, "High" means that the compromised node cannot affect 

non-compromised nodes, "Medium" refers to the compromised node only affects his neighbors, and "Low" 

denotes the compromise of one node leads to the compromise of the whole network. 
 

Table 1. Comparison of Distributed Dynamic Key Management Schemes According to Security Measures 

Scheme 
Forward and 

backward secrecy 

Collusion 

resistance 
Resilience Node revocation 

SHELL [15] Both Partial 

Dependent on k and the 

probability that two 

nodes share a key 

Revoke a compromised CH through 

cluster reorganization or revoke a 

non-CH node locally 

LOCK [13] Both Partial 

Dependent on k and the 

probability that two 

nodes share a key 

Revoke a compromised CH with the 

BS or revoke a non-CH node locally 

B-PCGR [18] Backward At most μ μ-secure Revoke the group key 

C-PCGR [18] Backward At most μ μ-secure Revoke the group key 

Cluster-based [19] Both At most t t-secure 

Remove the hierarchical key of the 

compromised node and revoke the 

group key 

Compromise-resilient 

[23] 
Both Yes High N/A 

EDDK [25] Both Yes High 
Remove the keys for revoke ID and 

revoke the local cluster key 

Table 2. Comparison of Distributed Dynamic Key Management Schemes According to Efficiency and 

Flexibility Measures 

Scheme Memory Processing Mobility Scalability Key connectivity 

SHELL [15] 𝑘 keys + key identifier m Enc / Dec No Low 
Probability that 
two nodes share a 
key, say 𝑝1 

LOCK [13] 𝑘 keys + key identifier m Enc / Dec No Medium 𝑝1 

B-PCGR [18] 
g' Polynomial + shares of 

neighbor’s e-polynomial 

2n Enc / Dec + 
𝑜( 𝑛 + 1 𝑠2 + 𝜇3) Mul / 
Div 

No High 
100% 

C-PCGR [18] 

g' Polynomial + shares of 

neighbor`s 0 level and 

1-level e-polynomial 

2n Enc / Dec + 

𝑜  2𝑛 + 1 𝑠2 + 2𝜇3  

Mul / Div 
No High 

100% 

Cluster-based [19] 
2 + 1 cluster identifier + 

1 personal secret 

2t Enc / Dec + 
𝑂(𝑡 𝑙𝑜𝑔2𝑡) polynomial 
evaluation 

No High 
100% 

Compromise-resilient 

[23] 

1+ 1 secret value + 1 

t-degree perturbed 

polynomial 

O( 𝑛𝑎 − 𝑛𝑐 + 1 𝑡) Mul + 
(𝑛𝑎 − 𝑛𝑐 + 3) hash 
functions 

No N/A 

100% 

EDDK [25] 5 + neighbor table 
1 Enc / Dec + 1 
pseudorandom function 

Yes Low 
100% 

 

Table 2 summarizes the efficiency and flexibility of the reviewed schemes. Here, memory refers to the 

memory consumption per normal node. processing describes operations required per key generation and 

distribution. Speaking of scalability, “high” to that no further cost (storage, communication and computation) 

is induced when one node is added to the network, "Medium" implies the cost induced is reasonable, while 

"Low" means that high costs are generated with the addition of one node. 

Security and efficiency are two contradicting objectives, which should be realized by the distributed 
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dynamic key management scheme. On the one hand, powerful security protocols usually require a larger 

amount of memory and energy. On the other hand, the limitation in hardware resources of the sensor 

platform does not allow equipping sensor nodes with powerful security contributes. Tables (1) and (2) 

summarize the results. There is no solution, which is always the best for distributed dynamic key 

management in wireless sensor networks. however, there are several cases, where distributed dynamic key 

management effectively uses the limited resources of sensor nodes. A clear solution to improve the 

efficiency and scalability of most schemes is to reduce the amount of information exchanged between nodes. 

The cluster-based key regeneration scheme is one of these schemes [27]. In this scheme, it is not required 

to transfer the key of member nodes when generating a new key cluster head key. PCGR and cluster-based 

key management schemes can be improved in this way. Node communications cost more than processing or 

storage in current sensor node platforms [6]. 

Another observation regarding security is using public key encryption, which supports end-to-end 

security. This review shows that only a small number of approaches are based on public key encryption. A 

promising key management scheme in wireless sensor networks combines the capabilities of both 

symmetric and public key encryption techniques. In this scheme, each node has a public key system, which 

is used to establish end-to-end symmetric keys with other nodes, similar to EDDK [25]. Another critical 

issue that arises from this approach is the development of more efficient public key algorithms and their 

implementations which can be widely used on current sensor nodes [28]. 

In most existing schemes, the revocation of a compromised node requires revoking a large number of 

keys [25], [29], [30], which causes serious problems in network connectivity. 

Future research should particularly find techniques to discover compromised nodes and develop efficient 

methods to revoke nodes. In distributed dynamic key management, it is expected that keys are periodically 

updated. However, none of the existing protocols have proposed a decision or analysis about the interval of 

updating keys. this parameter can depend on node failure, selecting compromised nodes, data traffic 

volume, and extra processing load incurred by all nodes. Moreover, dynamic key management in specific 

wireless sensor networks, e.g. sparse WSNs [31] and mobile [32] WSNs are still open research areas. 

Furthermore, the authentication delay introduced in key-chain-based broadcast authentication mechanisms 

cannot satisfy real-time applications. There are many potential ways to disrupt the time-synchronization 

required in broadcast authentication techniques. Therefore, the development of time-synchronization 

independent broadcast authentication mechanisms is another promising domain for researchers. 

5. Conclusion 

This paper reviewed modern distributed dynamic key management schemes in wireless sensor networks. 

With the extensive and vast application of wireless sensor networks, key management has become a 

fundamental security issue considered by industrial researchers for which many schemes have been 

proposed so far. This paper discussed the basic requirements of distributed dynamic key management in 

wireless sensor networks, investigated proposed schemes for these environments, and highlighted the 

security and performance strengths and weaknesses. Finally, these schemes were compared based on the 

considered evaluation metrics. Accordingly, it is not possible to find a flawless scheme, which can perform 

well regarding all evaluation metrics and each pose certain strengths and weaknesses and are appropriate 

for certain applications. Therefore, an appropriate key management scheme should be selected based on 

the circumstances and environments. The main contribution of this research was to encourage more 

researchers to develop and improve potential proposals for distributed dynamic key management in 

wireless sensor networks. 
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