Skip to main content
Log in

Global warming potential of drained and undrained peatlands in estonia: A synthesis

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We estimated the global warming potential of Estonian peatlands (transitional fens and ombrotrophic bogs) based on greenhouse gases (GHG) CO2, CH4, and N2O and carbon (C) accrual in biomass, and the effects of drainage on these processes. Data were derived from a review of the literature of boreal peatlands. Areal estimates of peatland types were multiplied with the values of the interquartile range of literature-derived GHG fluxes. The effect of drainage and radiative forcing of Estonian peatlands were also evaluated. Annual emission of CO2, CH4, and N2O is estimated to be 278 to 1,056×103 of CO2 equivalent (eq), of which CO2 makes up 22 to 44%, CH4 53 to 73%, and N2O 3 to 5%. The annual efflux is 419 to 676×103 CO2 eq year−1 from drained peatlands, and 2141 to 380×103 CO2 eq year−1 from the undrained peatlands. The annual loss of C from peatlands is estimated to be 38 to 86 tons C×103 year−1. Thus due to drainage, Estonia’s transitional fens and ombrotrophic bogs have gone from being sinks to sources of C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alm, J., N. J. Shurpali, K. Minkkinen, L. Aro, J. Hytönen, T. Laurila, A. Lohila, M. Maljanen, P. J. Martikainen, P. Mäkiranta, T. Penttilä, S. Saarnio, N. Silvan, E.-S. Tuittila, and J. Laine. 2007. Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Environment Research 12:191–209.

    CAS  Google Scholar 

  • Arold, I. 2005. Estonian Landscapes. Tartu University, Tartu, Estonia (In Estonian).

    Google Scholar 

  • Aurela, M., T. Laurila, and J.-P. Tuovinen. 2004. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters 31, L16119, doi:10.1029/ 2004GL020315.

    Article  Google Scholar 

  • Bos, R. M., K. Huissteden, and O. Plassche. 2003.Amodel-based of CO2 and CH4 fluxes in coastal peatlands (western Netherlands) for different climate and management scenarios.In R. M. van den Bos (ed.) Human influences on carbon fluxes in coastal peatlands; process analysis, quantification and prediction. Ph.D. Dissertation. Vrije Universiteit, Amsterdam, Netherlands.

    Google Scholar 

  • Bridgham, S. D., J. P. Megonigal, J. K. Keller, N. B. Bliss, and C. Trettin. 2006. The carbon storage of North American wetlands. Wetlands 26:889–916.

    Article  Google Scholar 

  • Broadmeadow, M. and R. Matthews. 2003. Forests, carbon and climate change: the UK contribution. Forestry Commission, Edinburgh, UK. FCIN048/FG(ECD)/BTH-2.5K/JUN03

    Google Scholar 

  • Cleary, J., N. T. Roulet, and T. R. Moore. 2005. Greenhouse gas emissions from Canadian peat extraction, 1990–2000: a lifecycle analysis. Ambio 34:456–61.

    PubMed  Google Scholar 

  • Crill, P., K. Hargreaves, and A. Korhola. 2000. The role of peat in Finnish greenhouse gas balances. Ministry of Trade and Industry, Helsinki, Finland.

    Google Scholar 

  • Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. van Dorland. 2007. Changes in atmospheric constituents and in radiative forcing. p. 129–234.In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.

    Google Scholar 

  • Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable response to climatic warming. Ecological Applications 2:182–95.

    Article  Google Scholar 

  • Hainla, V. 1957. Siirdesoomännikute kuivendamise tulemustest Eestis. Metsanduslikud Uurimused 1:5–78. (In Estonian).

    Google Scholar 

  • Huttunen, J., H. Nykänen, J. Turunen, and P. J. Martikainen. 2003. Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmospheric Environment 37:147–51.

    Article  CAS  Google Scholar 

  • Ilomets, M. 1996. Temporal changes of Estonian peatlands and carbon balance. p. 65–75.In J.-M. Punning (ed.) Estonia in the System of Global Climate Change. Institute of Ecology, Tallinn, Estonia.

    Google Scholar 

  • Ilomets, M. 2005. Peat growth in Estonian mires. Tallinn University, Institute of Ecology, Tallinn, Estonia. (In Estonian).

    Google Scholar 

  • Ilomets, M. and R. Kallas. 1995. Estonian mires — past, present and future alternatives. Gunneria 70:117–26.

    Google Scholar 

  • IPCC 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (edited by S. Solomon, D. Qin, and M. Manning). http://ipccwg1. ucar.edu/wg1/wg1-report.html (10.04.2009).

  • Joosten, H. and D. Clarke (eds.). 2002. Wise use of mires and peatlands. Background and principles including a framework for decision-making. International Mire Conservation Group, International Peat Society, Saarijärvi, Finland.

    Google Scholar 

  • Kettunen, A., V. Kaitala, J. Alm, J. Silvola, H. Nykänen, and P. J. Martikainen. 2000. Predicting variations in methane emissions from boreal peatlands through regression models. Boreal Environment Research 5:115–31.

    CAS  Google Scholar 

  • Knowles, R. and T. R. Moore. 1990. Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry 11:45–61.

    Google Scholar 

  • Kurvits, V. 1999. Above-ground production of a middle-aged Scots pine (Pinus sylvestris L.) stand). Metsanduslikud Uurimused 31:84–89. (In Estonian).

    Google Scholar 

  • Laasimer, L. 1965. Vegetation of Estonian SSR. Valgus, Tallinn, Estonia. (In Estonian).

    Google Scholar 

  • Lafleur, P. M., N. T. Roulet, and S. W. Admiral. 2001. Annual cycle of CO2 exchange at a bog peatland. Journal of Geophysical Research 106:3071–82.

    Article  CAS  Google Scholar 

  • Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykänen, and H. Vasander. 1996. Effect of waterlevel drawdown in global climatic warming: northern peatlands. Ambio 25:179–84.

    Google Scholar 

  • Maljanen, M., A. Liikanen, J. Silvola, and P. J. Martikainen. 2003a. Nitrous oxide emissions from boreal organic soil under different land use. Soil Biology and Biochemistry 35:689–700.

    Article  CAS  Google Scholar 

  • Maljanen, M., A. Liikanen, J. Silvola, and P. J. Martikainen. 2003b. Methane fluxes on agricultural and forested boreal organic soils. Soil Use and Management 19:73–79.

    Article  Google Scholar 

  • Malkki, H. and Frilander, P.. 1997. Life cycle assessment of peat utilisation in Finlands. VTT Publication 333. Technical Research Centre of Finland, Espoo, Finland.

    Google Scholar 

  • Martikainen, P. J., H. Nykänen, P. Crill, and J. Silvola. 1993. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366:51–53.

    Article  CAS  Google Scholar 

  • Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine. 2002. Carbon balance and radiative forcing of Finnish peatlands 1900–2100 — the impact of forestry drainage. Global Change Biology 8:785–99.

    Article  Google Scholar 

  • Minkkinen, K. and J. Laine. 2006. Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant and Soil 285:289–304.

    Article  CAS  Google Scholar 

  • Minkkinen, K., T. Penttilä, and J. Laine. 2007a. Tree stand volume as a scalar for methane fluxes in forestry-drained peatlands in Finland. Boreal Environment Research 12:127–32.

    CAS  Google Scholar 

  • Minkkinen, K., J. Laine, N. J. Shurpali, P. Mäkiranta, J. Alm, and T. Penttilä. 2007b. Heterotrophic soil respiration in forestrydrained peatlands. Boreal Environment Research 12:115–26.

    CAS  Google Scholar 

  • Mosier, A. D., D. Schimel, D. Valentine, K. Bronson, and W. Parton. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350:330–332.

    Article  CAS  Google Scholar 

  • Nilsson, M., C. Mikkelä, I. Sundh, G. Granberg, B. H. Svensson, and B. Ranneby. 2001. Methane emission from Swedish mires: National and regional budgets and dependence on mire vegetation. Journal of Geophysical Research 106(D18):20847–60.

    Article  CAS  Google Scholar 

  • Nykänen, H., J. Alm, J. Silvola, K. Tolonen, and P. J. Martikainen. 1998. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles 12:53–69.

    Article  Google Scholar 

  • Orru, M. 1992. Estonian Peat Resources. Teaduste Akadeemia Kirjastus, Tallinn, Estonia. (In Estonian).

    Google Scholar 

  • Paal, J. 1998. Rare and threatened plant communities of Estonia. Biodiversity and Conservation 7:1027–49.

    Article  Google Scholar 

  • Paal, J., M. Ilomets, M. Fremstad, A. Moen, E. Børset, V. Kuusemets, L. Truus, and E. Leibak. 1999. Estonian Wetland Inventory 1997. Publication of the Project “Estonian Wetlands Conservation and Management”. Eesti Loodusfoto, Tartu, Estonia.

    Google Scholar 

  • Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, and R. Pipatti. 2003. Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies, Kanagawa, Japan.

    Google Scholar 

  • Regina, K., H. Nykanen, J. Silvola, and P. J. Martikainen. 1996. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry 35:401–18.

    Article  CAS  Google Scholar 

  • Repola, J. 2006. Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fennica 40:673–85.

    Google Scholar 

  • Saarnio, S., M. Morero, N. J. Shurpali, E.-S. Tuittila, M. Mäkilä, and J. Alm. 2007. Annual CO2 and CH4 fluxes of pristine boreal mires as a background for the lifecycle analyses of peat energy. Boreal Environment Research 12:101–13.

    CAS  Google Scholar 

  • Salm, J.-O. 2007. Emission of greenhouse gases CO2, CH4, and N2O from Estonian bogs: changes in the ecosystem services. B.Sc. Thesis. University of Tartu, Estonia. (In Estonian, with summary in English).

    Google Scholar 

  • Silvola, J., J. Alm, U. Ahlholm, H. Nykänen, and P. J. Martikainen. 1996. CO2 fluxes from peat in boreal mires under varying temperature and soil moisture conditions. Journal of Ecology 84:219–28.

    Article  Google Scholar 

  • Sjörs, H. 1981. The zonation of northern peatlands and their importance for the carbon balance of the atmosphere. International Journal of Ecology and Environmental Science 7:11–14.

    Google Scholar 

  • Strack, M., J. M. Waddington, E. Kellner, J. S. Price, and L. Rochefort. 2003. Methane storage and emissions at a natural and drained fen in central Quebec. In E. Järvet and E. Lode (eds.), Proceedings of the International Conference on Ecohydrological Processes in Northern Wetlands. Tallin, Estonia (June 30–July 03, 2003). Tartu University Press, Tallinn, Estonia.

    Google Scholar 

  • Uppenberg, S., L. Zetterberg, and M. Ahman. 2001. Climate impact from peat utilisation in Sweden. Mitigation and Adaptation Strategies for Global Change 9:37–76.

    Google Scholar 

  • Valk, U. 2005. Estonian Bogs. Eesti Põllumajandusülikool, Tartu, Estonia. (In Estonian).

    Google Scholar 

  • Viilma, K., J. Öövel, U. Tamm, P. Tomson, T. Amos, I. Ostonen, P. Sørensen, and R. Kuuba. 2001. Network of protected forests in Estonia. Triip Grupp, Tartu, Estonia. (In Estonian).

    Google Scholar 

  • Von Arnold, K., B. Hånell, J. Stendahl, and L. Klemedtsson. 2005a. Greenhouse gas fluxes from drained organic forestland in Sweden. Scandinavian Journal of Forest Research 20:400–11.

    Article  Google Scholar 

  • Von Arnold, K., M. Nilsson, B. Hånell, P. Weslien, and L. Klemedtsson. 2005b. Fluxes of CO2, CH4 and N2O from drained organic soils in decidous forests. Soil Biology and Biochemistry 37:1059–71.

    Article  Google Scholar 

  • Von Arnold, K., P. Weslien, B. H. Svensson, and L. Klemedtsson. 2005c. Fluxes of CO2, CH4 and N2O from drained coniferous forests on organic soils. Forest Ecology and Management 210:239–54.

    Article  Google Scholar 

  • Werner, C., D. Kenneth, P. Bakwin, C. Yi, D. Hurts, and L. Lock. 2003. Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forest. Global Change Biology 9:1251–61.

    Article  Google Scholar 

  • Widen, B. 2001. CO2 exchange within Swedish coniferous forests: spatial and temporal variation. Agricultural and Forest Meteorology 111:283–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Mander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salm, JO., Kimmel, K., Uri, V. et al. Global warming potential of drained and undrained peatlands in estonia: A synthesis. Wetlands 29, 1081–1092 (2009). https://doi.org/10.1672/08-206.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-206.1

Key Words

Navigation