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Non-targeted (bystander) effects of ionizing radiation are
caused by intercellular signaling; they include production of
DNA damage and alterations in cell fate (i.e. apoptosis, dif-
ferentiation, senescence or proliferation). Biophysical models
capable of quantifying these effects may improve cancer risk
estimation at radiation doses below the epidemiological detec-
tion threshold. Understanding the spatial patterns of bystand-
er responses is important, because it provides estimates of how
many bystander cells are affected per irradiated cell. In a first
approach to modeling of bystander spatial effects in a three-
dimensional artificial tissue, we assume the following: (1) The
bystander phenomenon results from signaling molecules (S)
that rapidly propagate from irradiated cells and decrease in
concentration (exponentially in the case of planar symmetry)
as distance increases. (2) These signals can convert cells to a
long-lived epigenetically activated state, e.g. a state of oxida-
tive stress; cells in this state are more prone to DNA damage
and behavior alterations than normal and therefore exhibit
an increased response (R) for many end points (e.g. apoptosis,
differentiation, micronucleation). These assumptions are im-
plemented by a mathematical formalism and computational
algorithms. The model adequately describes data on bystand-
er responses in the 3D system using a small number of ad-
justable parameters. � 2007 by Radiation Research Society

INTRODUCTION

There is considerable evidence that ionizing radiation af-
fects cells that are located near the site of irradiation but
are not themselves traversed by any particle or photon
tracks (1–5). Such non-targeted radiation effects are diverse
and cell type specific. They include increased mutagenesis
and genomic instability (6, 7), differentiation (8), micro-
nucleus formation (9), and either decreased or increased
response as regards plating efficiency (10), apoptosis or
proliferation (6, 10, 11). These phenomena, which have
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been termed radiation-induced bystander effects, were ob-
served not only in cell culture but also in vivo (12, 13).

Due to the discovery of bystander effects, it is becoming
clear that cells making up an organism respond to ionizing
radiation collectively, as parts of large interconnected
groups, in addition to individually. Radiation-induced dam-
age to any cell within a group will generate signals that
affect many other group members. These bystander signals
can induce DNA damage in cells that have not themselves
been irradiated and can alter their behavior by perturbing
the dynamic equilibrium between becoming committed to
proliferation, apoptosis, quiescence or differentiation. The
molecular identities of the signals have not yet been deter-
mined, but it is known that propagation of bystander signals
from cell to cell can involve diffusion through the extra-
cellular medium (14), migration of molecules directly be-
tween cells through gap junctions (4, 15–17), or both.

The net consequence of bystander phenomena for a mul-
ticellular organism may be either amplification or suppres-
sion of radiation-induced damage to the organism, because
mechanisms favoring both types of responses can be acti-
vated by intercellular signaling [e.g. (18, 19)]. Which
mechanisms dominate appears to be highly dependent on
the cell type and experimental conditions. For example, in
situations where bystander signals induce predominantly
differentiation and apoptosis, thereby removing many po-
tentially damaged cells from the clonogenic pool, a net anti-
carcinogenic effect may occur. Conversely, if bystander-in-
duced mutagenesis is prevalent, a pro-carcinogenic out-
come is expected.

The main goal of the present paper is to translate the
currently available conceptual understanding of the by-
stander effect, such as the role of oxidative stress as a likely
mediator for this effect (20, 21), into a quantitative math-
ematical model. This task was undertaken previously by
several authors, e.g. (14, 22, 23). Our model focuses spe-
cifically on the spatial patterns of the bystander effect. Al-
though describing the details of biochemical signaling path-
ways is beyond the scope of this model, the formalism is
intended to be as mechanistic as possible without undue
complexity.

The data set of Belyakov et al. (9) for bystander respons-
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es in an artificial human three-dimensional skin system is
modeled. In this experiment, only a thin plane of cells was
irradiated with an �-particle microbeam, and bystander ef-
fect end points (apoptosis and micronucleus yield) were
measured in parallel planes located at various distances
from the irradiated one. This particular data set was selected
because it provides rather detailed information on spatial
propagation of the bystander response. In addition, it mea-
sures the bystander effect in a tissue surrogate instead of in
a monolayer culture and therefore may be a better approx-
imation of processes occurring in vivo.

Quantitative modeling of the spatial aspect of bystander
effects is particularly relevant in situations where most cells
have only a small probability of suffering any ‘‘hits’’—as
would be the case at low radiation doses and/or low dose
rates and/or high LET. Under such conditions, it is impor-
tant to predict how many bystander cells (i.e. what volume
of tissue) will be affected per each cell directly ‘‘hit’’ by
an ionizing track. The model developed here can provide
such estimates and thus may have important implications
for radiation protection, radiotherapy and understanding ra-
diation-induced carcinogenesis at low doses/dose rates (24–
31).

MODEL HYPOTHESES AND THEIR
MATHEMATICAL IMPLEMENTATION

Based on current data, we propose a plausible sequence of events in-
volved in the bystander effect. Implementing this scenario mathematically
involves the following eight specific assumptions and derivation steps:

1. Molecules Involved in the Bystander Effect

The bystander effect is produced by radiation-induced signals (referred
to here as S) that travel from irradiated cells to their neighbors and, by
molecular mediators, that are induced by these signals in target cells.
Recent studies of bystander effects and patterns of cell signaling in gen-
eral (10, 11, 18, 32–34) suggest that the intercellular signals (S) can be
proteins (e.g. cytokines such as TGF-�), small messengers (e.g. cAMP,
ATP, IP3), or oxidants such as reactive oxygen and nitrogen species (ROS
and RNS). They are released into the medium by irradiated cells and can
act in an autocrine, paracrine or long-range endocrine manner, depending
on the context and on cell properties (e.g. receptor number on a cell
surface) (18, 35–38). The smallest molecules (those that are �1 kDa in
molecular weight) can also migrate directly between neighboring cells
through gap junctions (39, 40).

The net effect of bystander signals on unirradiated cells appears to be
rather persistent induced overproduction of ROS and RNS. These oxidant
molecules are known to play a regulatory role in many biochemical path-
ways by redox signaling (11, 20, 21, 41–45). Specifically, they have been
implicated in radiation-induced bystander effects and genomic instability
(20, 21) and in other ‘‘non-classical’’ radiobiological phenomena that are
observed in some cell lines [i.e. low-dose hypersensitivity/induced radio-
resistance (46–48) and the death-inducing effect (49)].

Signal-induced overproduction of oxidants leads to accelerated accu-
mulation of DNA damage and alterations in cell fate, which are the ex-
perimentally measured bystander responses (here called R). In general, a
moderate elevation in oxidant concentration induces cells to undergo
more rapid turnover (i.e., differentiation and apoptosis of some and com-
pensatory proliferation of others) and migration (11, 50). Progressively
higher oxidant levels cause mutagenesis, cell senescence, and necrosis

[e.g. (42, 43)]. All of these outcomes are observed as forms of the by-
stander effect, depending on the cell type and irradiation conditions.

2. Cell Activation

The bystander signal (or group of signals) S acts in a probabilistic
binary manner by causing cells to switch from an undisturbed background
state (no excess oxidant production, low rate of DNA damage accumu-
lation) to an activated bystander effect state (increased oxidant produc-
tion, elevated rate of DNA damage accumulation). This assumption is
based on experimental results suggesting that excess damage in bystander
cells is approximately independent of dose over a broad range of radiation
doses, i.e. ‘‘on or off’’ in quality [e.g. (51, 52)].

At any time t after irradiation, a bystander cell located at distance x
from the irradiation site will have a probability of being in the activated
state rather than in the background state. This probability, which we de-
note by Pa, is described by the following differential equation:

dP /dt � c S(1 � P ) � c P .a 2 a 3 a (1)

Here c2 and c3 are rate constants for transition between the two states: c2

determines the rate at which the activated state is induced, and c3 deter-
mines the rate of the opposite process, where activated cells revert back
to background. The term c2 S represents our assumption that the proba-
bility per unit time of converting a cell from the background state to the
activated state is proportional to the concentration of the bystander signal
(S) at the given time and location. The term 1 � Pa indicates the prob-
ability that the given cell has not yet undergone this transition and is
therefore available for being activated by the bystander signal. Finally,
the term �c3 Pa indicates that the activated state tends to spontaneously
revert to background at a fixed probability per unit time.

3. Spatial Propagation of Bystander Signals

Propagation of S in space (i.e. from cell to cell) and induction of the
activated state by S occur rapidly, on the scale of a few minutes to a few
hours. For example, measurement of production of DNA double-strand
breaks in bystander fibroblasts by visualizing �-H2AX complex forma-
tion showed that new complexes are being formed as soon as 2–10 min
after irradiation in cells as distant as 5–7.5 mm away from irradiated ones
(16). These data suggest that the processes of S propagation and Pa in-
duction proceed at a speed of �8 	m/s. Other studies [e.g. (53)] found
that supra-background �-H2AX complexes began to appear in bystander
cells somewhat more slowly, 30 min to a few hours after irradiation.

4. Accumulation of DNA Damage in Bystander Cells

Once bystander cells have been activated, they accumulate DNA dam-
age at an abnormally high rate, until they revert to the background state.
The return to background (which can be called deactivation) happens
relatively slowly, on the scale of many hours to days—much more slowly
than initial activation.

These conclusions are supported by measurements of various DNA
damage-related end points (e.g. �-H2AX foci, fractions of apoptotic and
micronucleated cells) in the bystander effect context, which indicates that
these end points typically do not return to background levels for several
days (53). A similar temporal pattern is observed in directly irradiated
cells, where these same damage markers remain elevated for days to
weeks after exposure to radiation, particularly to high-LET � particles
(54). Other phenomena, which may share some common causes with
bystander effects, e.g. genomic instability in multiple generations of cul-
tured descendants of irradiated cells (55, 56) and persistence of an in-
flammatory state in animal organs irradiated in vivo (57–59), have an
even longer duration.

These observations are consistent with measurements of ROS levels in
irradiated cell cultures, which also show that a return to baseline oxidant
concentration occurs only many days to weeks after irradiation (20, 56).
It is likely that elevated ROS levels are sustained by a positive feedback
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loop, where oxidants stimulate their own production, e.g. by damaging
mitochondria and inducing genes like COX2 (60), whose products act in
ROS-generating pathways.

Our interpretation of these findings is that DNA damage accumulates
more rapidly than normal as long as the activated state (i.e. a state of
oxidative stress) is maintained. Although opposing processes (such as
DNA repair and removal of dead cells) also operate continually, damage
levels cannot return completely to background for at least as long as the
cells remain activated and DNA continues to be attacked at an elevated
rate.

5. Temporal Patterns of the Bystander Effect

The data cited to support assumptions 3 and 4 imply that the processes
of bystander signaling (i.e. induction of cells into the activated state) and
bystander response (i.e. persistence of cells in the activated state before
reversion to the background state) can be thought to operate on different
time scales.

After an acute radiation exposure, directly hit cells emit the signal S,
which quickly propagates outward to bystander cells and begins to acti-
vate them. Soon it reaches its maximal spatial range. Most bystander cells
that are located within the range of S propagation (and are susceptible to
being activated) will be converted to the activated state, and those outside
this range will remain mostly unaffected.

The time necessary for these processes to occur, which we call T, is,
as previously cited experiments suggest, no more than a few minutes or
hours long. In contrast, the typical time needed for bystander cells to
revert to the background state, i.e. 1/c3, where c3 is as defined in Eq. (1),
is much longer—many hours to several weeks. These differences in time
scale between signal propagation/cell activation and persistence of the
activated state indicate that in Eq. (1), the term representing the first set
of processes, i.e. c2S(1 � Pa), is numerically much larger than the term
representing the second process, c3Pa. Therefore, the smaller term c3Pa

can be neglected, and Eq. 1 can be reduced to the following:

dP /dt � c S(1 � P ).a 2 a (2)

This approximate formulation reflects the intuitive conclusion that if the
damage-inducing activated state is long-lasting, brief delays in its incep-
tion caused by kinetics of S propagation/cell activation can be disregard-
ed, as if all activated cells were activated simultaneously.

Equation (2) can be solved to yield the following expression for Pa:

T

P � 1 � exp c S(t) dt . (3)a 2�[ ]
0

This approximation holds as long as T K 1/c3, as experimental data
suggest. It shows that Pa does not depend on S directly, but is affected
only by the time integral of S [i.e. ], and thus this time integralT

# S(t) dt0

is what determines the maximal spatial range of S.

6. Mechanism of Bystander Signal Propagation

To generate an explicit solution for Pa, the mathematical form of the
time integral of S [i.e. ] needs to be specified. We assume thisT

# S(t) dt0

integral to be an exponentially decreasing function of distance in the case
of interest here, where the system effectively has planar symmetry, so
that analyzing the gradient involves equations in just one fixed spatial
direction (x).

This exponential function is intended to represent spatial kinetics ob-
served in juxtacrine or paracrine signal relay systems, for example cal-
cium wave propagation (61–63). While we do not propose that calcium
waves are responsible for the bystander effect, the modes of cell-to-cell
signaling operating in calcium wave and bystander processes are probably
similar. There appears to be some justification for making this mechanistic
analogy, because signal propagation velocities identified by studies of
physical injury-induced calcium waves and radiation-induced bystander
effects are quite consistent—approximately 10 	m/s (16, 61–65). In ad-

dition, calcium fluxes were directly observed in the bystander experiment
context in cells exposed to conditioned medium from irradiated cells (10).

In many tissue types, stimulation of one or several cells by agents such
as physical injury produces a non-regenerative signaling wave that
spreads outward by the ‘‘fire-diffuse-fire’’ mechanism to neighboring
cells, decreasing in amplitude over time and distance (33, 34): A stimu-
lated cell ‘‘fires’’, releasing the signal, the signal diffuses locally to reach
the adjacent cell through the extracellular medium or through gap junc-
tions, and the adjacent cell responds by ‘‘firing’’ its own burst of signal.

Perhaps the simplest way of describing this type of process mathe-
matically is to assume that each time the signal passes from an activated
cell to its immediate neighbor, its intensity is reduced by a constant frac-
tion F. In cases of planar symmetry, the signal intensity (Fs) reaching a
cell located i cell diameters away from the initial source of the stimulus
is therefore Fs � (1 � F)i. If the attenuation factor F is �0, a finite
number of cells will be affected (i.e. the signal will have a finite spatial
range). If F approaches 0, the range will approach infinity. For a signal
source in the (y, z) plane (i.e. the plane x � 0), this simple function can
be rewritten to accommodate distances in micrometers rather than cell
diameters: Fs � exp(�c1x), where x is distance in micrometers, the ad-
justable parameter c1 � �ln(1 � F)/d, and d is the average cell diameter
in micrometers.

By combining this expression with our previous assumptions, the fol-
lowing equation for the spatial dependence of the time integral of S is
produced:

T

S(t) dt � Nf (D) exp(�c x). (4)� 1

0

Here N is the number of irradiated cells located in the plane x � 0 that
are capable of producing S. The function f(D) represents the dependence
of S on radiation dose/dose rate (D). So far there are insufficient data to
specify the shape of this functional dependence, which may, for example,
be linear or saturating. For the purposes of this paper, where a data set
based on a single-dose acute exposure is used, we treat the function f(D)
as a constant. Finally, the parameter c1, as defined previously, represents
the logarithmic rate at which the time integral of S decreases with dis-
tance.

7. Approximate Explicit Solution for Probability of Cell Activation

By substituting Eq. (4) into Eq. (3), an explicit solution approximating
the probability (Pa) that a bystander cell at distance x away from the
irradiated plane will be induced into the activated state can be generated:

P � 1 � exp[�c Nf(D) exp(�c x)].a 2 1 (5)

8. Complete Mathematical Form of the Model

According to our assumptions, while a bystander cell is in the activated
state, it accumulates DNA damage at an abnormally high rate. However,
the rate of damage production is not the only determinant of observed
damage yield that is reported in experimental studies. There are multiple
other concurrent processes (e.g. damage repair, cell cycle progression,
elimination of apoptotic cells from the tissue). These processes interact
with damage production, for example by removing damage (e.g. repair
of DNA double-strand breaks) or, alternatively, making the damage ob-
servable (e.g. onset of apoptosis after cell cycle checkpoints are reached).
Consequently, each type of damage (e.g. �-H2AX foci, apoptosis, mi-
cronucleation, DNA hypomethylation) has its own temporal kinetics in
activated bystander cells (53).

In addition, it is likely that there is a sensitive subpopulation of cells
(which we call the susceptible population) in which the bystander re-
sponse is induced at greater likelihood than in other cells exposed to the
same amount of signal (31). This assumption is supported by findings of
multiple experiments, where only a few percent of cells exhibit bystander
effect end points even at high radiation doses [e.g. (6, 9)]. The actual
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properties that make cells within this group susceptible to the bystander
signal (perhaps position in the cell cycle) are not fully understood and
do not affect the structure of our model.

These factors of heterogeneous susceptibility to bystander effects and
damage-specific temporal kinetics are beyond the scope of our model,
which is concerned primarily with the spatial patterns of bystander re-
sponses. We account for the effects of these factors indirectly by assum-
ing that the probability (Rn) that a bystander cell will exhibit a particular
damage end point (n) at the time of experimental observation (Tobs) is
proportional to the probability that this cell had previously been activated
(Pa). Using Eq. (5) for Pa, this assumption is represented mathematically
as follows:

R � K (1 � exp[�c Nf(D) exp(�c x)]).n n 2 1 (6)

Here Kn is a damage end point-specific and observation time-specific
proportionality constant.

Equation (6) is consistent with the intuitive conclusion that at the time
of observation (Tobs), the spatial region where the maximum incidence
of the damage of interest (e.g. apoptosis, micronucleation) is found is the
same region where the maximum fraction of cells were induced into the
activated state by bystander signals.

PARAMETER ESTIMATION

Equation (6) contains three parameters: c1, c2Nf(D), and
Kn. The current level of knowledge about bystander phe-
nomena does not make it feasible to specify the exact na-
ture of bystander signals and the activation process and
therefore provide reliable bounds on these parameters from
sources independent of the modeled data set. Consequently,
parameter values were adjusted to fit the data of Belyakov
et al. (9).

The parameter c1, which represents the decay rate of the
time integral of S with distance away from irradiated cells,
can vary over a very wide biologically plausible range, de-
pending on the molecular nature of the signal, cell type and
extracellular environment. For example, soluble ligands for
the epidermal growth factor receptor (EGFR), which are
produced after injury and irradiation, have a mean travel
range of �5 to tens of micrometers depending on receptor
number and rate of endocytosis (38). Injury-induced inter-
cellular calcium waves are not observed at all in some cell
types, but in others they propagate over tens to hundreds
of micrometers, or even over much larger distances (32,
61–64, 66). Bystander effect studies reveal a similar vari-
ability in signal range. In vitro experiments involving con-
fluent cell monolayers covered by a liquid medium suggest
essentially infinite propagation distances, where the signal
reached the edges of the culture dish hundreds to thousands
of micrometers away from the irradiation site in times as
short as 10 min (16). However, measurements of bystander
effect propagation in three-dimensional tissue-like systems,
such as the data set of Belyakov et al. (9) used here, show
a finite spatial range of several hundred micrometers. A
larger finite range of several millimeters was found in some
in vivo studies involving partial-body irradiation of mice
(13). Because of this variability, and because the identity
of the bystander signals is not specified in the model, we
allowed c1 to be freely adjusted to the data.

The combination c2Nf(D) also plays an important role in
the spatial dependence of the bystander response. The num-
ber of cells directly hit by radiation (N) could be estimated
from the experiment of Belyakov et al. (9): It was equal to
400–800 cells per 8-mm length of the irradiated plane. We
chose the mid-range estimate of 600 cells/8 mm, or 75
cells/mm. All of these cells were assumed to produce S.
The dose/dose-rate-dependent function f(D), however, can-
not be determined from this data set, which involves only
a single acute irradiation of 10 � particles/cell over 
2 min.
Because the value of f(D) is absorbed into the value of the
product c2 Nf(D), for convenience we assigned it to 1.0 con-
centration � h. The remaining constant c2, with units of
(concentration � h)�1, was allowed to be freely adjustable
to the data.

The damage/time-specific proportionality constants Kn,
where n � 1 for apoptosis and 2 for micronucleation, rep-
resent the maximum excess fractions of cells expressing
these damage end points measured at the observation time
Tobs � 72 h. They were adjusted to produce the optimum
fit to the data.

In our actual calculations, holding Kn c2 Nf(D) fixed while
varying Kn and c2 Nf(D) inversely to each other produced
almost no change in the results as long as Kn remained
within the range consistent with the data. Consequently, the
number of adjustable parameters was, to good approxima-
tion, 2 instead of 3.

DATA-FITTING PROCEDURE

The excess (compared with background) fractions of ap-
optotic and micronucleated cells among bystander cells lo-
cated at various distances away from the irradiated plane
were determined from Belyakov et al. [(9), Fig. 5]. At each
section through the tissue model (starting at 200 	m and
continuing until 1100 	m away from irradiated cells, at
100-	m intervals), the background apoptosis or micronu-
cleus yields were subtracted from the corresponding exper-
imental data points. Combined error bars were calculated
by taking the square root of the sum of squares of error
bars for irradiated and background samples.

Best fits to the resulting apoptosis and micronucleation
data sets were produced using the approximate solution for
Rn (Eq. 6). Fitting was accomplished by a customized ran-
dom-restart simulated annealing algorithm written in the
FORTRAN programming language, using 10,000 random
initial conditions and 10,000 iterations per initial condition.
The function that was minimized to obtain a best fit ( f )
had the following form:

2 2W (R � A) W (R � M)1 1 2 2f � � . (7)� [ ]dA dM

Here A and M are the measured excess apoptotic and mi-
cronucleated cell fractions, dA and dM are their error bars,
R1 and R2 are the approximate solutions given by Eq. (6)
using corresponding constants K1 and K2, W1 and W2 are
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TABLE 1
Parameter Fitting Results

Parameter Meaning

Best-fit value
for combined

data sets

Best-fit value
for apoptosis

data only

Best-fit value for
micronucleation

data only

c1 Spatial decay rate of time integral of S, 	m�1 0.0208 0.0122 0.00648
ln[c2 N f(D)] Natural logarithm of the rate constant for cell activation by S 19.2 11.6 4.07
K1 Proportionality constant for bystander signal-induced apoptosis 0.0283 0.0281 —
K2 Proportionality constant for bystander signal-induced micronucleation 0.00856 — 0.0117

FIG. 1. Measured and predicted excess fractions of apoptotic cells.
FIG. 2. Measured and predicted excess fractions of micronucleated

cells.

the respective weights for the two types of data, and the
summation is over all experimental tissue sections from 200
to 1100 	m away from the irradiated plane. The weight
coefficients were defined as

1 1
W � , W � . (8)1 2A M� �

dA dM

Fitting was performed for the apoptosis data alone (by set-
ting W2 � 0), for the micronucleation data alone (by setting
W1 � 0), and for both data sets combined (by keeping W1

and W2 as defined).

RESULTS

The best-fit parameter values generated by our algorithm
for each of the two data sets and for the combined data are
shown in Table 1. Adequate fits were produced in all cases,
with the predicted curves intersecting most of the data
points/error bars (Figs. 1 and 2).

The best-fit values of parameter c1 were 0.0208 	m�1 for
combined data sets, 0.0122 	m�1 for the apoptosis data
alone, and 0.00648 	m�1 for the micronucleation data
alone. Thus signal (S) propagation efficiency should de-
crease by half at a distance of 
30–110 	m and drop to
10% of maximum at 
110–360 	m, depending on the data
set. Spatial decay rates of this order of magnitude are rea-

sonable for juxtacrine/paracrine signaling by small mole-
cules. For example, in keratinocytes, the mean distance to
which a calcium wave could be propagated was measured
at 90–100 	m (32).

Our model fits the data by generating an almost step-
function-like dependence of Rn on distance from the irra-
diated plane (Figs. 1 and 2). At distances below 
800 	m
(using the fit for combined data sets as an example), a pla-
teau region is established where essentially all susceptible
cells are activated by the bystander signal (i.e. Pa 
 1). By
the time damage is scored (Tobs � 72 h), this plateau re-
gion exhibits the maximum yield of excess damage end
points (Rn). At greater distances (e.g. 1200–1400 	m), ob-
served excess damage decreases virtually to zero. This pu-
tatively occurs because the initial signal S failed to propa-
gate this far away from the irradiated plane and failed to
activate the cells present in this more distant region.

From the structure of Eq. (5), it can be deduced that the
exponential slope (Slope) with which the bystander acti-
vation probability Pa decreases at distances beyond the pla-
teau range is linearly dependent on constant c1. The extent
of the plateau range (Range) is inversely proportional to c1

and logarithmically dependent on c2 Nf(D). Mathematical
expressions describing the roles of these parameters are:
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TABLE 2
Calculations of Signal Propagation Efficiency and Range using Best-Fit Parameter Values

Parameter meaning Mathematical definition

Best-fit value
for combined

data sets

Best-fit value
for apoptosis

data only

Best-fit value for
micronucleation

data only

Fraction by which S decreases after traversing 1
cell diameter (10 	m)

F � 1 � exp[�10 c1] 0.188 0.115 0.0627

Distance at which Pa drops to 0.5, 	m R0.5 � ln[c2 N f(D)/ln(2)]/c1 938 978 685

FIG. 3. Probability of cellular activation (Pa) as a function of distance
from the irradiated plane (x, in 	m) and parameter c1 (in 	m�1), with all
other parameters set to best-fit values for the combined data sets.

FIG. 4. Probability of cellular activation (Pa) as a function of distance
away from the irradiated plane (x, in 	m) and parameter c2 Nf(D), with
all other parameters set to best-fit values for the combined data sets.

Slope � c (1 � P)ln(1 � P);1

Range � ln{c Nf (D)/ln[1/(1 � P)]}/c . (9)2 1

Here P is a chosen threshold value. For example, when P
� 0.5, Range will represent the depth in tissue at which
the activation probability (or excess cell damage) drops by
half. This range (R0.5) is calculated using best-fit parameters
for the combined and separate data sets and is shown in
Table 2.

Slope can be more conveniently expressed as the fraction
(F) by which the bystander signal is reduced from cell to
cell, as defined above. For a typical cell diameter of 10
	m, F is calculated using best-fit parameters for the com-
bined and separate data sets and is also shown in Table 2.

A pictorial representation of model behavior in response
to changes in parameter values is shown in Figs. 3 and 4.
When only c1 is varied, with c2Nf(D) and all other param-
eters held constant (Fig. 3), the range and slope are both
strongly altered. In contrast, when c2Nf(D) is varied, leav-
ing everything else unchanged (Fig. 4), the slope is unaf-
fected and the range is modified only slightly. To increase
the range significantly, c2Nf(D) needs to be increased dra-
matically (e.g. 10-fold), because range depends on c2Nf(D)
in a logarithmic manner (Eq. 9). This can be done, for
example, by increasing the number of irradiated cells (N)
by increasing the thickness of the tissue section exposed to
radiation.

As assumed previously (Eq. 6), the bystander response
probability Rn is proportional to the activation probability
Pa. Consequently, Rn has the same step-function-like spatial
pattern as Pa. It is worth noting that whereas the range
expression is the same for Rn as for Pa, the slope of Rn

depends not only on c1 but also on Kn. Thus, to obtain the
slope for Rn, the Slope formula in Eq. (9) needs to be mul-
tiplied by Kn.

The quality of the fit of model predictions to the data
depends strongly on Kn and Range (i.e. R0.5). As is evident
from Eq. (9), Range can remain essentially unchanged as
long as ln[c2 Nf(D)] and c1 are multiplied by a common
factor. Consequently, the fit depends substantially on the
ratio of ln[c2 Nf(D)]/c1 but only weakly on the individual
values of these parameters. For example, the best fit for the
combined data sets was obtained by c2Nf(D) � 2.07 � 108

(i.e. ln[c2 Nf(D)] � 19.2) and c1 � 0.0208 	m�1, i.e. the
ratio of ln[c2Nf(D)]/c1 � 921 	m (Table 1). This combi-
nation produced R0.5 � 938 	m (Table 2). Seemingly very
different combinations of c2Nf(D) � 5.10 � 105 (i.e.
ln[c2 Nf(D)] � 13.1) with c1 � 0.0141 	m�1, and c2Nf(D)
� 100 (i.e. ln[c2 Nf(D)] � 4.61) with c1 � 0.00520 	m�1,
in fact generated quite similar ln[c2 Nf(D)]/c1 ratios of 932
and 886 	m, respectively. The values of R0.5 produced by
these combinations (958 and 956 	m) were also similar to
the best-fitting R0.5.

Therefore, the data sets analyzed here appear to have
sufficient power to estimate the bystander signal range, but
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they may not be sufficient to specify the individual values
of parameters c1 and c2Nf(D). For the apoptosis data, the
signal range (R0.5) is of the order of 950–1000 	m, and for
the micronucleation data it is substantially smaller at 650–
700 	m. For the combined data sets, R0.5 is apparently dom-
inated by the apoptosis data and is of the order of 930–950
	m. The dominance of the apoptosis data set in the simul-
taneous fit is not an artifact of the fitting procedure, since
both apoptosis and micronucleation data sets were weighted
equally, with a correction for the values of the data points.
Instead, the large value of R0.5 in the combined fit is driven
by the high values of the apoptosis data points at distances
500–800 	m from the irradiated plane.

The substantial difference in signal range between sep-
arate fits to apoptosis and micronucleation data may reflect
the possibility that apoptosis and micronucleation are in-
duced by different bystander signals. Until the nature of
bystander signals is clarified by further research, the si-
multaneous model fit to both data sets combined may be
useful, because the number of adjustable parameters is re-
duced, and the fit quality is still adequate for all data.

DISCUSSION

We have constructed an analytically solvable, simple
quantitative model of the spatial and temporal kinetics of
the radiation-induced bystander effect. The main assump-
tions of this model are based on experimental studies sug-
gesting the existence of at least one (and probably many)
rapidly spreading signal, which is produced by irradiated
cells and induces long-term alterations of the redox balance
(activation) in multiple neighboring cells, leading to accu-
mulation of extra DNA damage and modification of cell
behavior. The initial signal itself may be oxidative or non-
oxidative in nature.

The model describes the selected data sets adequately,
using a limited number of parameters. Only two parameter
combinations [c1 and c2Nf(D)] are required to describe the
shape of the bystander response as a function of distance
away from the irradiated plane, and the rest act as propor-
tionality constants used for normalization of the data. As
new information about the identity of bystander signals and
their properties accumulates, increasingly rigorous testing
of the model can be performed.

Saturation of the fraction of cells expressing any partic-
ular bystander effect end point, which is often observed
experimentally, is accounted for by our model. Such satu-
ration could be due to activation of all susceptible cells
within the region affected by the bystander signal, followed
by expression of the end point by all activated cells. Alter-
natively, activation may not necessarily lead to expression
of the observed end point—a certain probability of expres-
sion, which is less than unity, may be involved. In that case,
the maximal (saturated) fraction of cells displaying the end
point would be the product of three terms: the probability
of activation, the susceptible cell fraction, and the proba-

bility of expressing the end point after activation of a sus-
ceptible cell. Both of these scenarios are consistent with
our model.

It is important to note that the model presented here was
fitted to a data set generated using an artificial 3D human
skin system, which is physiologically much closer to in vivo
tissues than are commonly used cell cultures. This realism
enhances the potential for predicting the spatial ranges of
bystander responses in irradiated human organs.

The ability to quantify these responses is particularly im-
portant in situations of low-dose/dose-rate and/or high-LET
radiation exposure, where not all cells are traversed by ion-
izing tracks during the exposure period. Direct experimen-
tal measurement of risks (e.g. carcinogenesis) associated
with such small doses is not feasible, necessitating the use
of mathematical models.

The currently accepted method of carcinogenesis risk es-
timation at low radiation doses—the linear no-threshold
(LNT) approach—involves direct linear extrapolation from
higher doses. However, bystander effects are likely to pro-
vide a significant pro-carcinogenesis contribution at low ra-
diation doses by increasing the cell turnover and mutation
rates, thereby potentially enhancing clonal expansion of
pre-existing mutant cells and generating new mutant clones.
Such conditions may occur, for example, with cancers in-
duced by radon inhalation (30). The model developed here,
which accounts for bystander damage, may enhance current
low-dose risk estimation approaches.
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