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Abstract: Salinity affects more than 6% of the world’s total land area, causing massive losses in crop yield. Salinity 
inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations 
through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl−. Currently, there are no practical, 
economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. 
Germination is the stage in a plant’s life cycle most adversely affected by salinity. Barley, the fourth most important 
cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics 
of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional 
genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have 
been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene 
families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, 
somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show 
great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to 
this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of 
action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars 
for field production in saline soil. 
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1  Introduction 
 

Salinity affects about 6% of the world’s total 
land area, including 20% of arable land and 33% of 
irrigated land (Shrivastava and Kumar, 2015; Ma-
chado and Serralheiro, 2017; Kuang et al., 2019; 
Safdar et al., 2019), causing estimated yield losses of 
20% (Ashraf and Harris, 2005; Pirasteh-Anosheh et al., 

2016). Furthermore, land salinisation is increasing, 
with 10 million ha of agricultural land destroyed an-
nually by salt accumulation (Pimentel et al., 2004) 
due to several factors including the use of contami-
nated irrigation water, intensive farming and poor 
drainage, and climate change (Machado and Serral-
heiro, 2017; Isayenkov, 2019). Without proper and 
sustainable control, salinity-affected areas will in-
crease to more than 50% of the world’s total arable 
land by 2050 (Ashraf, 2009; Anosheh et al., 2011; 
Jamil et al., 2011; Emam et al., 2013). 

According to Pirasteh-Anosheh et al. (2016), 
plants experience four types of stress under saline 
conditions: (1) salinity reduces water uptake due to 
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the low water potential of the soil which interferes 
with the osmotic gradient (Munns and Tester, 2008); 
(2) the absorbed salt reaches a level that causes severe 
cellular toxicity due to low sequestration of Na+ into 
vacuoles (Nawaz, 2007); (3) the salt interacts with 
minerals causing nutrient imbalance and deficiency 
(Nawaz, 2007); and (4) salinity accelerates the pro-
duction of active oxygen radicles, such as H2O2 (hy-
drogen peroxide), •O2

− (superoxide), ¹O2 (singlet ox-
ygen), and •OH− (hydroxyl radicle), which can damage 
or even kill plants (Hernández et al., 2001). Greenway 
and Munns (1980) classified plants into two major 
categories based on their salinity tolerance, namely  
(1) halophytes and (2) glycophytes. Halophytes have 
an exceptional ability to produce heteromorphic seeds 
that have diverse dormancy and germination capacity 
under saline conditions (Liu RR et al., 2018). Seed 
germination in glycophytes is severely inhibited un-
der salinity due to both osmotic stress and ionic tox-
icity stress, unlike in halophytes that are less affected 
by osmotic pressure (Romo and Haferkamp, 1987; 
Dodd and Donovan, 1999; Zhang et al., 2010). Hal-
ophytes can better regulate the ion-gate-controlled 
NaCl influx into seed cells (Glenn et al., 1999; Huang 
et al., 2018). However, salinity-tolerant glycophytes 
have a lower osmotic potential than sensitive glyco-
phytes, enabling them to absorb more water from the 
soil during germination (Zhang et al., 2010). 

Barley, the fourth most important cereal in the 
world (Schulte et al., 2009; Visioni et al., 2019), is a 
glycophyte, but its salinity tolerance varies among 
genotypes (Mano and Takeda, 1997; Flowers and 
Hajibagheri, 2001; Xue et al., 2009; Debez et al., 
2019). Some barley genotypes are able to thrive in 
saline conditions (Harlan, 1995; Shen et al., 2018). 
Salinity-tolerant barley genotypes exhibit halophytic 
features such as excluding Na+ from uptake (Chen ZH 
et al., 2007) and accumulating Na+ in tissues (Munns 
et al., 1988; Munns and Tester, 2008). Tolerant gen-
otypes sequester Na+ in their intracellular vacuoles, 
thereby maintaining high K+/Na+ levels in the cytosol 
while reducing damage from Na+ toxicity (Shabala  
et al., 2010; Mian et al., 2011; Fu et al., 2018; Han  
et al., 2018; Ishikawa and Shabala, 2019). They can 
also synthesize compatible solutes in the cytoplasm  
to balance the osmotic potential of vacuolar Na+ 
(Widodo et al., 2009). Salinity tolerance is controlled 
by multiple genes that are expressed differently dur-

ing different growth phases (Qiu et al., 2011; Ahmed 
et al., 2013a). Germination, which determines seed-
ling vigour and the plant population, is the most im-
portant growth stage, but is sensitive to salinity stress 
(Zhang et al., 2010; Bewley et al., 2013). 

Several genes have association with enhanced 
salinity tolerance in barley (Wu et al., 2011) and are 
grouped into four classes based on their function 
(Walia et al., 2006; Wu et al., 2011; Yin et al., 2018). 
(1) Genes that enhance osmotic protection, such as 
HvPIP2;5 (Alavilli et al., 2016), HVA1 (Lal et al., 
2008), HvDREB1, HvCBF4, HvWRKY38 (Gürel et al., 
2016), and reactive oxygen species (ROS)-scavenging 
genes that include osmoregulatory trehalose synthesis, 
mannitol-1-phosphate dehydrogenase (M1PD), and 
pyrroline-5-carboxylase synthetase (P5CS). (2) Genes 
controlling Na+ and K+ transport, such as the high- 
affinity potassium transporter (HKT) family (e.g. 
HvHKT1;5 (Hazzouri et al., 2018; Huang et al., 2019), 
HvHKT1;1 (Han et al., 2018), HvHKT2;1 (Mian et al., 
2011; Assaha et al., 2017), HvHAK1 (Mangano et al., 
2008), HvHKT1, HvHKT2 (Qiu et al., 2011)), the 
Na+/H+ exchanger (NHX) family (HvNax4 (Rivandi  
et al., 2011), and salt overly sensitive (SOS) engaged 
Na+/H+ antiporters (HvSOS1 (HvNHX7), HvSOS2 
(HvCIPK24), HvSOS3 (HvCBL4), HvNHX1, HVA) 
(Yousefirad et al., 2018; Wu et al., 2019). (3) Genes 
that produce regulatory proteins, such as the CBF/ 
DREB (C-repeat-binding protein/dehydration-responsive 
element-binding protein) family (e.g. HvRAF (Jung  
et al., 2007), HvAP2/ERF (ethylene response factor) 
(Guo et al., 2016), HvDREB1 (Xu et al., 2009), 
HvCBF4, HvWRKY38 (Gürel et al., 2016), HvDRF1 
(Xue and Loveridge, 2004)) in the signalling path-
ways of long distance and downstream gene expres-
sion. Salinity and drought stresses induce the expres-
sion of root abundant factor (RAF), CBF3, and CBF4 
from the CBF/DREB gene family in most plants. 
Twenty CBF genes have been identified in barley, 
which enhance tolerance to drought, salinity, and  
low temperature (Wu et al., 2011). (4) Genes that 
induce jasmonate (JA) biosynthesis, such as late em-
bryogenesis abundant (LEA) protein genes (e.g. 
HVA1 expressed in response to water and salinity 
stresses, HVA22 expressed in response to dehydration, 
extreme temperatures, abscisic acid (ABA) secretion, 
and salinity stress (al-Yassin and Khademian, 
2015)). 
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2  Seed germination process and roles of 
hormones 

 
Seed germination requires optimum environ-

mental factors, including water, oxygen, and temper-
ature. Other environmental factors, such as light and 
nitrates, can also affect seed germination (Finch- 
Savage and Leubner-Metzger, 2006; Rajjou et al., 
2012). The process of germination occurs in three 
main phases regulated by hormones, reactive nitrogen 
species, and ROS (Ma et al., 2017). The first phase 
involves the expression of genes that play a major role 
in cell wall metabolism. The second phase encom-
passes significant stimulation of hormonal and en-
zyme activity by genes involved in amino acid syn-
thesis, starch metabolism, nucleic acid synthesis, 
protein synthesis and transport (Weitbrecht et al., 
2011). The third phase involves the induction of 
genes for photosynthetic metabolism after radicle 
protrusion (Ma et al., 2017). Hormonal imbalance, 
caused by factors such as low temperature, drought, 
and salts (saline and sodic) that increase ground os-
motic pressure (Bartels and Nelson, 1994), can affect 
the seed germination process (Lopez-Molina et al., 
2001; Belin and Lopez-Molina, 2008). 

Several hormones produced by plant and soil 
microorganisms such as bacteria play a role in in-
ducing or breaking seed dormancy and thus contrib-
ute to the germination process (Bewley, 1997; Baskin 
and Baskin, 2001; Koornneef et al., 2002; Hoyle et al., 
2015). Interestingly, as much as gene expression 
controls plant hormone activity, the reverse can be 
true with some hormones regulating gene expression 
(Miransari and Smith, 2014). For example, ABA 
usually induces dormancy at seed maturation and 
gibberellins (GAs) break dormancy during germina-
tion (Fig. 1) (Bentsink and Koornneef, 2008; Hau-
vermale et al., 2012). When an environmental stress 
such as salinity occurs during germination, ABA is 
produced in the seeds (Weyers and Paterson, 2001) to 
upregulate transcription factors (TFs) such as AB13 and 
AB15 that stimulate genes encoding the osmotoler-
ance protein and block the germination process (Fe-
doroff, 2002; Lopez-Molina et al., 2002; Graeber et al., 
2010; Miransari and Smith, 2014). However, ABA is 
negatively regulated by ABA-INSENSITIVE1 (ABI1) 
and ABI2 and the expression of the HvABA8′OH-1 
gene (Ma et al., 2017). GAs release seeds from  
 

dormancy by stimulating the production of hydrolases 
for the germination process (Miransari and Smith, 
2014; Abido et al., 2019). The embryo synthesizes 
GA after imbibing water (Diaz-Mendoza et al., 2019). 
The GA binds to receptors to promote the breakdown 
of repressor of GA-like2 (RGL2), a DELL factor 
suppressing germination, the expression of several 
genes (GAMYB, HvPTR, WRKY, PP2C, GATA, and 
HvKAO1), and the production of essential proteins 
during germination in stress environments (Marrs, 
1996; Sun and Gubler, 2004; Ma et al., 2017). The 
effect of GA is terminated by the expression of GA 
2-oxidase 1 (HvGA2ox), which is responsible for its 
inactivation (Fig. 1) (Ma et al., 2017). 

During germination, the concentration of eth-
ylene increases (Yang and Hoffman, 1984; Pennazio 
and Roggero, 1991; Petruzzelli et al., 2000), which 
reduces plant growth under saline conditions in the 
presence of ABA (Matilla, 2000; Rinaldi, 2000; Jalili 
et al., 2009). Auxins (indole-3-acetic acids (IAAs)) 
are essential for cell elongation, and radicle and em-
bryo growth during germination (Popko et al., 2010; 
Hauvermale et al., 2012). Brassinosteroids (BRs) and 
IAA on the other hand stimulate the secretion of eth-
ylene which works in conjunction with GAs to induce 
germination (Arora, 2005; Miransari and Smith, 
2014). Auxins reduce seed sensitivity to ABA by 
overexpressing microRNAs (Liu et al., 2007) and 
interacting with GAs to counteract ABA suppression 
during germination (Chiwocha et al., 2005; Hentrich 
et al., 2013). Cytokinins interacting with ethylene 
enhance cell division and alleviate abiotic stresses 
like salinity during germination (Chiwocha et al., 
2005; Subbiah and Reddy, 2010; Peleg and Blumwald, 
2011; Miransari and Smith, 2014). BRs, in conjunc-
tion with GAs and ethylene, improve seed resistance 
to abiotic stress, enhance embryo growth out of the 
seed, and reduce the effects of ABA (Bajguz and 
Hayat, 2009; Miransari and Smith, 2014; Procházka 
et al., 2015) and salt stress (Vázquez et al., 2019) 
during germination. JAs are signalling molecules for 
plant defence against osmotic stress caused by salt 
(Kazan and Manners, 2012; Nguyen et al., 2019). 
They obstruct the production of two primary ABA 
biosynthesis genes (TaNCED1 and TaNCED2) with 
acetylsalicylic acid (ASA) in stress germination in 
wheat (Xu et al., 2016).  
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3  Salinity versus sodicity 
 
Saline soils predominantly contain sodium (Na+) 

cations and chloride (Cl−) anions and, in some cases, 
Ca2+, Mg2+, SO4

2−, but not HCO3
− or CO3

2− (Abrol  
et al., 1988). Saline soils have good structure, an 
advantage for proper tillage and crop cultivation, and 
usually an electric conductivity extract (ECE) higher 
than 4 dS/m (40 mmol/L), an exchangeable water- 
soluble sodium of >15%, and a pH of <8.5 but >7. 
However, when the surface of the ground appears 
black, hard, and dry, the soil is sodic. In this case, the 
predominant cation is Na+, but the primary anions are 
Cl−, SO4

2−, HCO3
− and a small amount of CO3

2−. 
Sodic soils have an exchangeable Na+ of >15%, an 
ECE of >4 dS/m, and a pH of >8.5 (Abrol et al., 
1988). 

3.1  Causes and types of salinity 

Soil salinity is caused by (1) natural or primary, and 
(2) secondary or human-induced events (Manchanda 
and Garg, 2008; Parihar et al., 2015) and is either  
(1) groundwater-associated (dryland salinity), (2) non- 
groundwater-associated (transient salinity), or (3) 
irrigation-associated (Ghassemi et al., 1995; Rengasamy, 
2006; Majeed and Muhammad, 2019). Transient  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
salinity fluctuates with soil depth and its effect on 
plant growth is dependent on rainfall. It occurs in 
semi-arid environments where there is insufficient 
rain to leach the soil. Clay layers below the topsoil 
hinder the movement of water and salts, leading to ion 
accumulation on the soil surface (Rengasamy, 2002, 
2006). Most of Western Australia is characterized by 
a temperate climate. Ion accumulation in the topsoil 
following dry, hot summers can result in high salinity 
at sowing, which affects seed germination. These ions 
can be leached only by rainfall or irrigation. Dry- 
seeding or seeding with the first rain increases the 
likelihood that germinating seeds will be affected by 
salinity stress.  

3.2  Effect of salinity on germination 

Salinity affects the seed germination process by 
altering water imbibition, changing enzymatic activi-
ties causing ionic toxicity, interfering with protein 
metabolism, causing hormonal imbalances, and re-
ducing the possibility of seeds using their reserves, all 
of which delay and reduce the number of sprouting 
seeds (Läuchli and Grattan, 2007; Bordi, 2010; 
Munns et al., 2012; Parihar et al., 2015; Debez et al., 
2019). Saline conditions create an external osmotic 
stress that reduces water availability and uptake 

Fig. 1  Interactions among the hormones and gene regulatory pathways in barley during germination under salinity stress
Blue lines indicate hormonal regulation, while black lines are for genes and transcription factor expression. Red double-arrowed 
dotted line shows the negative interaction between ABA and GA during germination, while blue double-arrowed line shows the 
positive interaction among the hormones. Blue dotted lines show the stimulation outcome of the hormonal interactions, while 
black dotted lines show the regulatory interactions of genes. GAMYB: GA-induced Myb (myeloblastosis)-like protein; HvPTR: 
barley scutellar peptide transporter; HvKAO1: barley kaurenoic acid oxidase 1; HvGA2ox: barley GA 2-oxidase 1; HvNCED: 
barley nine-cis-epoxycarotenoid dioxygenase; PP2C: protein phosphatase type 2C; ABI1: ABA-insensitive 1; HvABA8′OH-1: 
barley ABA 8' hydroxylase; HvCBL: barley calcineurin B-like protein; HvSERK: barley somatic embryogenesis receptor-like 
kinase; HvCBF: barley C-repeat-binding protein; HvDREB: barley dehydration-responsive element-binding protein; HvRAF: 
barley root abundant factor; HvPIP2;5: barley aquaporin 2;5 
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(Bernstein, 1963; Bliss et al., 1986; Sayar et al., 2010; 
Sabagh et al., 2019) and increases the toxic absorption 
of ions (Hampson and Simpson, 1990), which de-
creases seed germination (Dodd and Donovan, 1999; 
Luan et al., 2014; Narsing Rao et al., 2019; Polash  
et al., 2019). 

3.3  Salinity tolerance mechanisms 

Plants overcome salinity stress through various 
mechanisms that involve osmotic adjustment, Na+ 
exclusion, and tissue tolerance (Munns and Tester, 
2008; Liang et al., 2018; Miransari and Smith, 2019). 
These encompass biochemical, physiological, and 
molecular mechanisms of variable complexity (Han 
et al., 2015; Pirasteh-Anosheh et al., 2016; Kumari  
et al., 2019). During germination, plants become 
saline-tolerant by (1) excluding salts from seed cells 
while maintaining high osmotic potential using or-
ganic solutes, or (2) accumulating salt ions in seed 
cells to increase osmotic potential while putting 
mechanisms in place to mitigate toxicity (Zhang et al., 
2010). Seeds of salt-tolerant barley genotypes take up 
sodium to increase osmotic potential to absorb water 
during germination under salinity stress (Zhang et al., 
2010), while minimising K+ losses (al-Karaki, 2001). 
The vacuole is a vital cell organelle for compound 
deposition during osmotic stress regulation, and its 
size is a measure of salinity tolerance (Lauchli and 
Epstein, 1990; Volkmar et al., 1998; Yarra, 2019; 
Yarra and Kirti, 2019). 

3.3.1  Indicators of salinity tolerance 

Salinity tolerance indicators in plants can be  
divided into three main groups: (1) agronomic/ 
morphological, (2) physiological, and (3) biochemical. 
3.3.1.1  Agronomic/morphological indicators 

Salinity tolerance is expressed externally through 
visible morphological/agronomic traits as a result of 
several physio-chemical processes that take place 
inside the plant. They are a reflection of genetic and 
physiological mechanisms influenced by the envi-
ronmental effect on the plant that confer salinity tol-
erance (Ashraf and Harris, 2004). They occur at the 
whole plant or organ level and are mostly physically 
visible. These indicators are easy to measure and 
include germination percentage, yield, survival rate/ 
percentage, plant height, leaf area, leaf injury, relative 
growth rate, and relative growth reduction. Distin-

guishing between tolerant and non-tolerant plants 
using agronomic indicators can be subjective. 
3.3.1.2  Physiological indicators 

Like the other indicator groups, physiological 
indicators are the result of processes that take place 
inside plant tissues, organs, cells, and organelles 
when exposed to salinity stress. They include the 
transportation of excess ions to the vacuole or se-
questering them in older tissues. This group of indi-
cators is measured by traits that include relative 
growth rate, germination speed, ion homeostasis, 
photosynthesis, transpiration, and senescence (Negrão 
et al., 2017). They provide more objective infor-
mation than morphological indicators when com-
bined with knowledge of the genetic model of salinity 
tolerance (Ashraf and Harris, 2004). Sodium ions are 
transported and compartmentalized in the vacuoles 
using two types of H+ pumps (V-ATPase and H+- 
ATPase) and vacuolar pyrophosphatase (V-PPase). 
The pumps are facilitated by SOS pathways with 
three types of proteins (SOS1, SOS2, and SOS3). SOS1 
is essential for regulating Na+ efflux at the cellular 
level and enhancing Na+ transportation in the orga-
nelles and tissues. The SOS2 can not only interact 
with SOS3 and subsequently activate SOS1, but also 
increases transport activity of proteins such as NHX 
(Gupta and Huang, 2014). Electron transport chains 
in mitochondria can overflow, deregulate, or become 
disrupted by salinity stress leading to the accumula-
tion of toxic compounds. Antioxidant enzymes and 
nonenzymatic compounds are essential for detoxify-
ing ROS, which include helicase proteins, catalase 
(CAT), peroxidase, polyphenol, flavonoid, ascorbate, 
and glutathione (Gupta and Huang, 2014). 
3.3.1.3  Biochemical indicators 

Biochemical indicators are chemical solutes that 
build up inside plants in response to salt stress (Ashraf 
and Harris, 2004). The accumulation of low molecu-
lar weight organic solutes, inorganic ions, compatible 
osmolytes, soluble sugars, soluble proteins, amino 
acids and amides, quaternary ammonium compounds, 
polyamines (PAs), polyols, antioxidants, and ATPases 
is associated with tolerance to salinity stress. Secre-
tion of biochemical compounds occurs during healthy 
growth and germination; hence it is not easy to tell 
whether a chemical is a reaction or tolerance to sa-
linity stress, or an adaptive plant mechanism (Ashraf 
and Harris, 2004). Plant compatible osmolytes are 
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organic compounds synthesized by various plant 
species which accumulate in variable amounts and are 
soluble in cells and do not disturb cellular activities at 
high or low concentrations (Hanin et al., 2016). These 
compounds, including proline, glycine betaine, sugars, 
and polyols, increase within the cell in response to 
salinity stress, and are sustained by permanent syn-
thesis and/or degradation. Accumulation of these 
compounds is proportional to the surrounding osmo-
larity, and they function to shield the cell structure 
and maintain osmotic balance through constant water 
entry (Hasegawa et al., 2000; Mansour and Ali, 2017; 
Alhasnawi, 2019). 

The secretion of PAs has a diverse function in 
healthy plant growth, including seed germination, and 
is critical for abiotic stress adaptation, including sa-
linity. Diamine putrescine (PUT), tetra-amine sperm-
ine (SPM), and triamine spermidine (SPD) are some 
typical PAs found in plants (Shu et al., 2012) and 
whose increase has been associated with salinity 
stress (Gupta and Huang, 2014). Nitric oxide (NO) 
regulates several plant growth and developmental 
activities, stress signalling molecules and stress re-
sponses, including salinity and the activation of an-
tioxidant enzymes (superoxide dismutase (SOD), 
CAT, guaiacol peroxidase (GPX), ascorbate peroxi-
dase (APX), and glutathione reductase (GR)), and 
triggers the expression of various redox-regulated 
genes that enhance germination and root growth un-
der salinity stress (Gupta and Huang, 2014). Salinity 
stress mitigation by NO is due to its antioxidant 
functions, modulation of the ROS detoxification 
system (Mishra et al., 2011) associated with an in-
crease in antioxidant enzymes, such as SOD, CAT, 
GPX, APX, and GR (Zhao et al., 2004; Ali et al., 
2018), and suppression of malondialdehyde (MDA) 
production during lipid peroxidation (Nalousi et al., 
2012). NO offers a force for Na+/H+ exchange, 
providing the H+ gradient to stimulate H+-ATPase 
(H+-PPase) and contributing to K+ and Na+ homeo-
stasis (Zhang et al., 2006; Gupta and Huang, 2014).  

Other biochemical indicators include the pro-
duction of several hormones in response to salinity 
stress, including ABA in roots and shoots, which 
mitigates the antagonistic effect of salinity stress on 
physiological processes (Popova et al., 1995; Jaschke 
et al., 1997). ABA accumulation triggers the expres-
sion of salinity stress tolerance enhancing genes in 

cultivated barley (HVP1, HVP10, and HvVHA-A) and 
wheat (MAPK4-like, TIP 1, and GLP 1) (Keskin et al., 
2010). Salicylic acid (SA) concentration, along with 
the SA biosynthetic enzyme, increases under salinity 
stress in rice seedlings (Jayakannan et al., 2013). 
Application of BR promotes antioxidant enzyme 
(SOD, POX, APX, and GPX) activity and the accu-
mulation of salinity stress mitigating nonenzymatic 
antioxidant compounds, such as tocopherol, ascorbate, 
and reduced glutathione (Ashraf et al., 2010; el- 
Mashad and Mohamed, 2012; Gupta and Huang, 
2014). 

3.3.2  Salinity stress signalling pathways and molecules 

The response to salinity stress in plants involves 
three types of signalling pathway: (1) ionic and os-
motic stress signalling (homeostasis) essential for the 
re-establishment of cellular homeostasis, (2) detoxi-
fication signalling that regulates and repairs damage, 
and (3) cell division and expansion signalling (Zhu, 
2001). Homeostatic signalling governs detoxification 
leading to tolerance by reducing the response of 
growth inhibitors (Zhu, 2002). The signalling infor-
mation flows in a way that ionic (Na+), osmotic 
(turgor pressure change), and detoxification are stress 
input, while salinity-induced damage, control, and 
repair are output (response) (Xiong and Zhu, 2001; 
Zhu, 2002). The outcomes of osmotic signalling in-
clude gene expression or activation of osmolyte bio-
synthesis enzymes and the water and osmolyte 
transport system (Zhu, 2001). Detoxification signal-
ling changes induced by salt include phospholipid 
hydrolysis, changes in the expression of LEA/dehydrin- 
type genes, molecular chaperones, and proteinase to 
remove denatured proteins, and the activation of en-
zymes for the generation and removal of ROS and 
other detoxification proteins (Zhu, 2001, 2002).  

Signalling molecules are crucial components for 
salinity stress tolerance in plants, and they determine 
downstream actions involving protein phosphoryla-
tion, dephosphorylation, phospholipid metabolism, 
and calcium ion (Ca2+) sensing (Agarwal et al., 2013). 
Ca2+ signalling is one of the first responses to salt 
stress and is essential for ion homeostasis (Zhu, 2003; 
Reddy and Reddy, 2004). It is sensed by calcineurin 
B-like proteins (CBLs) that are involved in the salt 
stress indication transduction pathway and govern the 
influx and efflux of Na+. CBLs increase germination 
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under salinity stress in tobacco (Pardo et al., 1998), 
Arabidopsis (Liu and Zhu, 1998), and maize (Wang 
MY et al., 2007). Other molecules include mitogen- 
activated protein kinase (SAPK) (Diédhiou et al., 
2008), CBL-interacting protein kinase (CIPK), nu-
cleoside diphosphate kinase (NDPK), and mitogen- 
activated protein (MAP) kinase (MPK) (Moon et al., 
2003), whose overexpression enhances salinity tol-
erance capacity by increasing seed germination. Ini-
tiation of the MPK cascade is the second response to 
decode external salinity stress into cellular responses 
(Teige et al., 2004). This includes signalling modules 
that phosphorylate particular serine/threonine resi-
dues on amide protein substrates that regulate several 
cellular processes (MAPK Group et al., 2002). 
Overexpression of MAP in rice (Xiong and Yang, 
2003; Jeong et al., 2006) and maize MAP in Ara-
bidopsis (Kong et al., 2011) enhances salinity toler-
ance and activates transcriptional factors controlling 
downstream genes such as COR47, RD29A, P5CS2 
(Wurzinger et al., 2011), and CDPK (Capiati et al., 
2006). 

3.3.3  Salinity stress tolerance: transcriptional regu-
lation and gene expression 

Salt stress prompts the induction of various genes 
that fall into two broad groups: (1) single function 
genes that facilitate the production of protective me-
tabolites, and (2) regulatory genes that control the 
expression of downstream genes (Agarwal et al., 
2013). Single function genes promote the release of 
compounds such as transporters/channel proteins, 
osmolytes, lipid biosynthesis genes, antioxidative 
enzymes, and PAs, while DREB, bZIP, NAC, and MYC/ 
MYB (myelocytomatosis/myeloblastosis) are regu-
latory genes (Shinozaki and Yamaguchi-Shinozaki, 
2007; Agarwal and Jha, 2010). Many of these genes 
from both groups play different roles in enhancing 
the adaptation process, and are further categorized 
into functional groups that include: (1) senescence- 
associated genes (SAGs), (2) ion transport or home-
ostasis genes (SOS, HKT, AtNHX1, and H+-ATPase), 
(3) molecular chaperones (HSP genes), and (4)  
dehydration-related TFs (DREB) (Hasegawa et al., 
2000; Liu et al., 2000; Shi et al., 2000; Yen et al., 
2000). Under osmotic pressure from salinity stress, 
plants synthesize novel proteins that increase the 

expression of genes, such as osmotic regulation (OR) 
genes, at the cell level to aid their adaptation. The OR 
genes are categorized into nine groups, namely LEA 
genes, osmolyte biosynthesis genes, transporter genes, 
OR genes that encode regulatory proteins, photosyn-
thetic genes, OR genes encoding proteins involved in 
protein synthesis processes and degradation, heat 
shock protein genes, osmotins, and other protein 
genes (Zhu et al., 1997; Turan et al., 2012). Other OR 
genes include those encoding RNA-binding proteins, 
putative lipid transfer, RD29A, RD29B, Kin1, and 
Kin2. Considerable variation among factors such as 
plant tissue type, age, and developmental stage also 
affects the expression of OR genes (Zhu et al., 1997). 

Transcription factors (TFs), including bZIP, 
WRKY, AP2, NAC, C2H2 zinc finger gene, and DREB, 
are the most important regulators of gene expression 
under salinity stress (Gupta and Huang, 2014). They 
interact with diverse cis-elements in the promoter 
regions of many downstream genes and modify their 
expression. There are many different types of TFs in 
the plant kingdom (Shiu et al., 2005) with more than 
50 families distinguished by their DNA-binding do-
mains (Riechmann et al., 2000). Several TFs have 
been identified in Arabidopsis, including a basic- 
leucine zipper, AP2/ERF (APETALA2/ethylene- 
responsive factor), MYC, HD-ZIP (homeodomain- 
leucine zipper), MYB, and different classes of zinc 
finger domains (Shinozaki and Yamaguchi-Shinozaki, 
2000). The expression of a given number of genes 
occurs through TF interactions with non-DNA-binding 
proteins and/or cis-regulatory elements (Grotewold, 
2008). On the same transduction pathways, ABA, SA, 
ethylene, BR, and JA regulate TF expression (Agarwal 
et al., 2006; Seo et al., 2008; Agarwal and Jha, 2010; 
Gürel et al., 2016). The four classes of TFs are:  
(1) ABA-dependent (CBF/DREB proteins), (2) ABA- 
independent (MYC, MYB, ABA-responsive element- 
binding protein (AREB), ABA-binding factor protein 
(ABF)) (Agarwal and Jha, 2010; Liu SW et al., 2018), 
(3) ABA-dependent and -independent (no apical me-
ristem, ATAF1,2 and cup-shaped cotyledon (NAC)) 
(Agarwal et al., 2013; Joshi et al., 2016), and (4) TFs 
that do not belong to any of the first three groups, 
including homeodomain TFs osmotically responsive 
gene 9 (HOS9) and an R2R3-type MYB protein 
(HOS10) (Zhu et al., 2004, 2005). 
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4  Genetics of salinity tolerance at germina-
tion in barley 

4.1  QTLs for salinity tolerance in barley and the 
homologous genes from Arabidopsis, soybean, 
maize, wheat, and rice at the germination stage 

At the germination stage, salinity tolerance is 
controlled by various loci (Mano and Takeda, 1997), 
indicating that it is polygenic. Angessa et al. (2017) 
reported transgressive phenotypic segregation for 
germination percentage in a doubled haploid (DH) 
population developed from salinity-tolerant genotype 
CM72 and the sensitive commercial Australian barley 
cultivar Gairdner. Using 150 and 300 mmol/L NaCl, 
Angessa et al. (2017) mapped two stable quantitative 
trait loci (QTLs) to chromosome 2H, close to the 
sodium concentration QTL reported by Xue et al. 
(2009). A third QTL reported by Angessa et al. (2017) 
at 300 mmol/L NaCl was mapped to chromosome 5H, 
but slightly distant from the potassium concentration- 
linked QTL of Xue et al. (2009). Mano and Takeda 
(1997) reported QTLs controlling ABA response on 
chromosomes 2H, 3H, 1H, and 5H in Steptoe/Morex 
DH lines, and 2H and 5H in Harrington/TR306 DH 
lines. In both crosses, chromosome 5H was very close 
to the position of the salinity tolerance QTL. A QTL 
analysis of the Oregon Wolf Barley mapping popula-
tion (DOM×REC) by Witzel et al. (2010) at the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

germination stage identified two chromosomal re-
gions on 5H, one on 7H, and one on 2H associated 
with the salt stress response. A single chromosomal 
region on 5H, responsible for 42% of the variation in 
the phenotype, was constant across all NaCl concen-
trations (Table 1). 

Protein sequences of functional salinity toler-
ance genes during germination in Arabidopsis, soy-
bean, maize, wheat, and rice were extracted from the 
National Center for Biotechnology Information (NCBI) 
website (https://www.ncbi.nlm.nih.gov/protein) (Ben-
son et al., 2013). The protein sequences in FAST 
formats were blasted on BARLEX (https://apex.ipk- 
gatersleben.de/apex/f?p=284:10) to identify homol-
ogous genes from the barley genome with the highest 
percentage match depending on length and expression 
levels in tissues at different growth stages (Colmsee  
et al., 2015). There were 63 functionally characterized 
genes (Arabidopsis (13), maize (4), rice (12), soybean 
(7), and wheat (27)) for salinity tolerance at the ger-
mination stage (Table 2). Overall, 65 homolog genes 
were identified in barley, with the percentage match 
ranging from 100% (between wheat gene TaPLDα 
(phospholipase D) and barley homolog gene HORVU 
1Hr1G048970.4 (phospholipase D P2)) to 30% (be-
tween rice gene OsOPT10 (oligopeptide transporter 
family homolog) and barley’s HORVU6Hr1G067430.2 
(oligopeptide transporter 4)) (Table 2). Generally, the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Reported quantitative trait loci (QTLs) for salinity tolerance in barley during germination 

Trait at  
germination 

Salt level Mapping population 
Analysis 

type 
QTL number 
and location 

Percentage 
explained 

Reference 

Germination 
percentage 

150 mmol/L NaCl 103-DH of CM72/Gairdner Bi-Parent 1 (2H) 21.8 Angessa et al., 2017

300 mmol/L NaCl 103-DH of CM72/Gairdner Bi-Parent 1 (2H) 16.1 Angessa et al., 2017

300 mmol/L NaCl 103-DH of CM72/Gairdner Bi-Parent 1 (5H)  10.0 Angessa et al., 2017

Germination 
speed 

250 mmol/L NaCl 149-DH of Steptoe/Morex Bi-Parent 2 (2H), 3 (3H),  
and 7 (5H) 

7.6–20.3 Mano and Takeda, 
1997 

300 mmol/L NaCl 146-DH of Harrington/ 
TR306 

Bi-Parent 1 (7H), 6 (6H),  
and 7 (5H) 

8.7–15.3 Mano and Takeda, 
1997 

Salt tolerance 250 mmol/L NaCl 149-DH of Steptoe/Morex Bi-Parent 4 (4H), 6 (6H),  
and 7 (5H) 

6.8–46.7 Mano and Takeda, 
1997 

300 mmol/L NaCl 146-DH of Harrington/ 
TR306 

Bi-Parent 5 (1H) and 7 (5H) 17.4–41.1 Mano and Takeda, 
1997 

1.5%* 94-DH of DOM/REC Bi-Parent 1 (5H) and 1 (7H) 42 Witzel et al., 2010 

2.0% 94-DH of DOM/REC Bi-Parent 1 (5H) and 1 (7H) 42 Witzel et al., 2010 

2.5% 94-DH of DOM/REC Bi-Parent 1 (5H) and 1 (7H)  Witzel et al., 2010 

1.5% 94-DH of DOM/REC Bi-Parent 1 (2H)  Witzel et al., 2010 

1.5%–2.5% 94-DH of DOM/REC Bi-Parent 2 (5H), 1 (7H),  
and 1 (2H) 

 Witzel et al., 2010 

* 1%=0.01 g/mL 
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wheat genes had the highest match with barley 
homologs, averaging 90.93%, followed by maize 
(83.00%), rice (67.58%), soybean (59.43%), and 
Arabidopsis (57.94%). Apart from homolog connec-
tions, gene expression patterns in tissues can suggest 
the function of particular genes. For instance, the 
expression levels of the 65 barley homologs for the 
first three development stages (4-d embryo (EMB), 
root from seedlings (ROO1; 10 cm shoot stage), and 
shoot from seedling stage (LEA; 10 cm shoot stage)) 
were more than zero for all except HORVU1Hr 
1G080820.6 (CBL protein 8). The aquaporin-like 
superfamily protein (HORVU2Hr1G096360.13) had 
the highest expression levels in the EMB, ROO1, and 
LEA stages at 1305.90, 1094.39, and 1133.08 frag-
ments per million kb, respectively (Table S1) (The 
International Barley Genome Sequencing Consortium, 
2012; Colmsee et al., 2015; Mascher et al., 2017). 

4.2  Barley salinity tolerance characterized tran-
scriptional factors and genes during germination 

A highly positive correlation has been reported 
between salinity stress and polyethylene glycol 
treatments, indicating that salt stress in germinating 
seed is mostly osmotic (Mano et al., 1996). Therefore, 
osmoprotection is the likely early response in barley 
geminating seeds (Walia et al., 2006). 

4.2.1  6PGDH and Glc/RibDH 

Salinity tolerant lines at germination in a map-
ping population containing 94 DH lines of DOM/ 
REC expressed a higher level of 6-phosphogluconate 
dehydrogenase (6PGDH) and glucose/ribitol dehy-
drogenase (Glc/RibDH) in mature seeds (Witzel et al., 
2010). Overexpression of the two enzymes in yeast 
enhanced the growth of transformed cells in saline 
media (Witzel et al., 2010). Cytosolic 6PGDH is an 
enzyme participating in the pentose phosphate path-
way, which provides reduced nicotinamide adenine 
dinucleotide phosphate (NADPH) as an electron do-
nor in the reductive biosynthetic process, and is im-
portant for the ascorbate–glutathione synthesis phase 
in the plant antioxidant protection system (Corpas  
et al., 1998). This protein concentration is increased 
under salinity stress in olive (Valderrama et al., 2006) 
and rice (Huang et al., 2003; Hou et al., 2007). 
Transcripts and protein Glc/RibDH are short alcohol 

dehydrogenases (Jornvall et al., 1984) found in de-
veloping barley embryos, whose level of transcription 
reduces with germination (Alexander et al., 1994), 
and which catalyse the oxidation of D-glucose to syn-
thesize sugars for osmoprotective functions (Witzel  
et al., 2010). 

4.2.2  Dehydrins 

Dehydrins (DHNs), a subfamily of LEA proteins 
from Hordeum vulgare (aba2), enhanced seed ger-
mination in transgenic lines of Arabidopsis under 
salinity stress, relative to the wild type (Calestani et al., 
2015). Similar protein-coding genes have been iden-
tified in wheat (Dhn5) and maize (Rab17) with com-
parable results when overexpressed in transgenic Ara-
bidopsis plants (Figueras et al., 2004; Brini et al., 2011). 
DHNs are thought to be involved in protecting the em-
bryo through seed desiccation and rehydration (Skriver 
and Mundy, 1990; Blackman et al., 1991; Tunnacliffe 
and Wise, 2007) by increasing their contents during the 
last phase of seed development, and in dormant em-
bryos. DHN content decreases when imbibition and 
germination begin as seeds lose their capacity to with-
stand desiccation (Blackman et al., 1991; Han et al., 
1997). DHNs also facilitate water uptake during seed 
germination on media with low osmotic potential 
(Hara, 2010), and may act as a hydration buffer inside 
cells in the presence of sugars (Walters et al., 1997; 
Hara, 2010). Moreover, they are likely to play a role 
in cellular detoxification because they contain lipids 
and metal-binding capacity that can prevent lipid 
peroxidation (Cheng et al., 2002; Krüger et al., 2002; 
Alsheikh et al., 2003; Koag et al., 2003, 2009). 

4.2.3  CBLs 

Rice transgenic lines with CBL protein 8 
(HsCBL8) transferred from wild barley homolog to 
HvCBL8 of cultivated barley improved seed germi-
nation, reduced Na+ uptake, adjusted K+ concentra-
tion in tissues, provided in vivo water protection of 
the plasma membrane, and accumulated more proline 
under salt stress (Guo et al., 2016). The build-up of 
compatible osmolytes, like proline, is linked to stress 
tolerance in plants (Ahmed et al., 2013b; Mekawy et al., 
2015). Phylogenetic analysis of HsCBL8 showed that 
it encodes proteins of the CBL group modified with 
only N-myristoylation or S-acylation (Batistič et al.,  



Mwando et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2020 21(2):93-121 102

 



Mwando et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2020 21(2):93-121 103

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Mwando et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2020 21(2):93-121 104

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Mwando et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2020 21(2):93-121 105

2012). Such proteins are involved in relationships 
with the transmembrane (TM) helix (Kleist et al., 
2014) including HvCBL8. Reports about other CBLs 
from different plant species reflected similar trends to 
that of HsCBL8, such as transgenic Arabidopsis 
having 35S-AtCBL5 (Cheong et al., 2010) and poplar 
harbouring 35S-PeCBL10 (Li DD et al., 2013).  
OsCBL2 is likely to be involved in GA-signalling that 
facilitates the vacuolation of aleurone cells (Hwang  
et al., 2005), and AtCBL1 is involved in upregulation 
of GA (Li ZY et al., 2013) and downregulation of 
ABA (Pandey et al., 2008) during seed germination. 

4.2.4  SERKs 

Three orthologs of somatic embryogenesis  
receptor-like kinase (SERK) genes (HvSERK1/2/3) 
isolated from barley were induced in microspore- 
derived embryogenic callus under salt stress (Li et al., 
2016), indicating their protective role for developing 
embryos during salinity stress. SERKs are a subfam-
ily of the leucine-rich repeat receptor-like kinase II 
group (LRR-RLKII) with proline-rich SPP motifs 
between the LRRs and the TM domain (Hecht et al., 
2001). These genes are present during somatic em-
bryogenesis in plants before declining in later stages 
(Schmidt et al., 1997; Somleva et al., 2000; Nolan  
et al., 2003; Singla et al., 2008; Li, 2010). They have 
been characterized in many plants, including maize 
(Baudino et al., 2001), wheat (Singla et al., 2008), 
soybean (Yang et al., 2011), rice (Singla et al., 2009), 
cotton (Pandey and Chaudhary, 2014), and Ara-
bidopsis (Hecht et al., 2001). In rice (Oryza sativa L.), 
BRs reverse the inhibitory effect of salinity during 
germination (Anuradha and Rao, 2001), and in Ara-
bidopsis are reportedly signalled by SERK1, SERK3, 
and SERK4 (Albrecht et al., 2008), while ABA stim-
ulates OsSERK1 during stress (Hu et al., 2005). 

4.2.5  DREBs 

A gene that encodes DREB proteins in H. vul-
gare (HvDREB1) is induced by exogenous ABA to 
enhance germination and early root growth in Ara-
bidopsis plants under salinity stress (Xue et al., 2004). 
TF HvDREB1 is a member of the AP2 group of the 
DREB subfamily that is vital for regulating responses 
to various stresses (Agarwal et al., 2006; Xu et al., 
2008b) and reportedly improves salt, drought, and 
cold responses in transgenic plants (Oh et al., 2007). 

Overexpressing rice OsDREB1A in Arabidopsis en-
hanced tolerance to drought and freezing stresses 
(Dubouzet et al., 2003), and barley’s HvCBF4 in rice 
transgenes increased drought, salt, and cold stress 
tolerance (Oh et al., 2007). DREB proteins isolated 
from several plants including rice, maize, soybean, 
and wheat are involved in several signal transduction 
pathways during abiotic stress (Dubouzet et al., 2003; 
Agarwal et al., 2006). Of particular interest are those 
belonging to the A-2 group that respond to dehydra-
tion and salinity stress (Liu et al., 1998; Dubouzet  
et al., 2003) and regulate ABA-independent gene 
expression in target plants under stress (Chinnusamy 
et al., 2006; Nakashima and Yamaguchi-Shinozaki, 
2006). It is possible that HvDREB1 may take part in 
both ABA-independent and -dependent pathways 
concurrently (Xue et al., 2004). 

4.2.6  ERFs 

Barley ERF-type TF HvRAF improved seed 
germination and root growth under salinity stress but 
was not induced by ABA treatment in transgenic 
Arabidopsis plants (Jung et al., 2007). TF HvRAF is a 
member of the AP2 group in the ERF family (Sakuma 
et al., 2002; Gutterson and Reuber, 2004), which  
is involved in regulating both biotic and abiotic 
stress-responsive genes in plants (Lee et al., 2004; Yi 
et al., 2004). However, the response of Arabidopsis 
transgenic lines with HvRAF was specific to salinity 
stress, where it acted as a regulator for ABA- 
independent signalling in root growth and seed ger-
mination (Jung et al., 2007). Similar ABA regulation 
responses to salinity have been documented in Ara-
bidopsis for DREB2A and DREB2B (Chinnusamy  
et al., 2005). A tolerance response in terms of root 
growth and seed germination was observed when 
CaERFLP1 and JERF1 from pepper and tomato, 
respectively, were overexpressed in transgenic to-
bacco plants in response to salt stress (Lee et al., 2004; 
Zhang et al., 2004). 

4.2.7  Aquaporin genes 

Overexpression of a barley aquaporin gene 
HvPIP2;5 in yeast enhanced salt and osmotic stress 
tolerance, and transgenic Arabidopsis with the gene 
showed better seed germination and root growth than 
the wild type under salinity stress (Alavilli et al., 
2016). Aquaporins form part of the major intrinsic 
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proteins (MIPs) found in living organisms that enable 
the transportation of water and small nonpolar mol-
ecules across living membranes (Zardoya et al., 2002; 
Maurel et al., 2015). In plants, all but the GlpF-like 
intrinsic proteins show water-specific channel move-
ment. Hence, the collective name for MIPs in plants is 
aquaporins (Maurel et al., 2008), even though they 
can transport additional small molecules such as CO2 
and ammonia inside cells (Uehlein et al., 2003; Jahn 
et al., 2004). There are five groups of aquaporins in 
plant genomes, reflective of their diverse physiolog-
ical roles. Of importance are the plasma membrane 
intrinsic proteins (PIPs) that are further subdivided 
into PIP1 and PIP2, each with several isoforms (Javot 
et al., 2003; Postaire et al., 2010). Overexpression of 
PIP genes from various plants (O. sativa, Nicotiana 
tabacum, Vicia faba, Arabidopsis, and Triticum aes-
tivum) enhanced dehydration stress tolerance in their 
respective transgenic lines (Alavilli et al., 2016). 

4.3  Diversity of barley salinity tolerance genes at 
germination 

In this review, we have compared studies to de-
termine whether any of the eight genes (Table 3) that 
have been reported and functionally characterized for 
salinity tolerance in barley at germination are unique 
or similar to their homologs from wheat and rice. All 
the sequences producing a significant match, based on 
length and total relationship hits, were downloaded 
and recorded. The following total significant homo-
log hits from barley, wheat, and rice were recorded: 
dehydrins (17), dehydrogenase/reductase SDR family 
member 4 (20), 6PGDH, (29), ERFs (31), CBL pro-
tein (72), DREB protein (164), SERKs (215), and 
aquaporin gene (227). 

Three genes families—DREB protein, SERKs 
and aquaporin gene—were considered for further 
analysis based on their high numbers of hits. The 
proteins from the three genes were blasted on the 
Phytozome (https://phytozome.jgi.doe.gov/pz/portal. 
html) to download matched homologs (>30%) in 40 
different plant species. Mega software (https://www. 
megasoftware.net) was used to align the 40 species’ 
sequences, and a phylogenetic tree was constructed to 
estimate the evolutionary distances between the genes 
using MEGA-X software (https://www.megasoftware. 
net) (Kumar et al., 2018). Gene alignments showed 
three distinct regions across the sequences of the gene 

families. The start and end sections of the sequences 
were more divergent than the middle segments. The 
phylogenetic tree of the DREB proteins divided the 
genes into two major groups that were further divided 
into two subgroups (Fig. 2a). The groups were dis-
tinguished by the presence or absence of genes from 
wheat, barley, and rice. Among the four sub-groups, 
barley genes appeared three times in two categories 
while genes from the three cereals were missing  
in two sub-groups (Fig. 2a). The phylogenetic tree 
shows that DREB proteins are no more diverse in 
barley than in wheat or rice. The SERK phylogenetic 
tree (Fig. 2b) was similar to that of the DREB proteins, 
but with more hits. However, the four subgroups 
contained genes from the three cereals with five hits 
for barley and wheat, and three hits for rice. The aq-
uaporin gene phylogenetic tree differed from the 
other two trees in which the genes were first divided 
into three major groups, two small and one major, 
containing representative genes from the three cereals 
(Fig. 3). 

 
 

5  Conclusions and future prospects  
 
Among the most destructive abiotic stresses, sa-

linity causes massive yield losses in crops in arid, 
semi-arid, coastal regions, and humid and sub-humid 
landscapes. Thus, more effort is needed to increase 
crop yields in these areas to produce enough food for 
the increasing global population. Growing salt-adapted 
cultivars requires knowledge of the donating charac-
ters at different growth stages. It involves the use of 
many disciplines to identify and functionally charac-
terize the genes contributing to tolerance, and then to 
transfer them to commercially acceptable cultivars. 
Barley is one of the hardiest crops that can grow in 
saline environments, but its germination is severely 
affected by salinity stress. Development of cultivars 
that can acclimatise to salinity at this stage is essential 
in regions like Western Australia that experience hot 
and dry summers and increasing salt levels in the 
topsoil before sowing in autumn. The identification 
and characterization of salinity tolerance genes, en-
zymes, and compounds during germination in  
barley have been ongoing, and some transgenic 
“salt-tolerant” plants have been developed. However, 
the seeds of these genotypes have had little success in 
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(b) 

Fig. 2  Phylogenetic analyses of barley homolog genes 
(a) Dehydration-responsive element binding proteins. (b) Somatic embryogenesis receptor-like kinases. The unrooted phy-
logenetic trees of 37 (a) and 92 (b) domains comprising four (a) and five (b) domains, respectively, from barley were con-
structed using MEGA-X 
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Table 3  Barley salinity tolerance functional transcriptional factors and genes at germination 

Reported functional barley gene Gene ID in barley Gene name in barley 

6-Phosphogluconate dehydrogenase HORVU7Hr1G006160.4 6-Phosphogluconate dehydrogenase, decarboxylating 1

Glucose/ribitol dehydrogenase HORVU1Hr1G018140.5 Dehydrogenase/reductase SDR family member 4 

Dehydrin HORVU7Hr1G099800.5 Dihydroneopterin aldolase 

Calcineurin B-like protein 8 HORVU1Hr1G064470.4 Calcineurin B-like protein 1 

Somatic embryogenesis receptor-like 
kinase 

HORVU7Hr1G068990.2 Receptor-like protein kinase 4 

Dehydration-responsive element binding 
protein 

HORVU3Hr1G017950.4 Chromodomain-helicase-DNA-binding protein 5 

Ethylene response factor HORVU4Hr1G077310.1 Ethylene-responsive transcription factor 1 

Aquaporin gene HORVU2Hr1G089940.1 Aquaporin-like superfamily protein 

Reported functional barley gene Reported gene ID Chromosome Location Reference 

6-Phosphogluconate dehydrogenase 6PGDH 7 8 000 958–8 002 650 Witzel et al., 2010 

Glucose/ribitol dehydrogenase Glc/RibDH 1 65 592 292–65 593 858 Witzel et al., 2010 

Dehydrin aba2 7 602 554 874–602 555 971 Calestani et al., 2015

Calcineurin B-like protein 8 HvCBL8 1 461 521 906–461 524 442 Guo et al., 2016 

Somatic embryogenesis receptor-like 
kinase 

HvSERK1/2/3 7 366 099 333–366 114 129 Li et al., 2016 

Dehydration-responsive element binding 
protein 

HvDREB1 3 46 482 481–46 494 788 Xue et al., 2004 

Ethylene response factor HvRAF 4 603 804 858–603 809 470 Jung et al., 2007 

Aquaporin gene HvPIP2;5 2 640 763 978–640 768 942 Alavilli et al., 2016 

The protein sequences of identified functional barley genes retrieved from BARLEX (https://apex.ipk-gatersleben.de/apex/f?p=284:10) and 
blasted on barley (https://webblast.ipk-gatersleben.de/barley_ibsc/viroblast.php), wheat (https://urgi.versailles.inra.fr/blast_iwgsc/?dbgroup=
wheat_iwgsc_refseq_v1_chromosomes&program=blastn), and rice (https://www.plantgdb.org/OsGDB) genome explorers 

Fig. 3  Phylogenetic analysis of barley homolog aquaporin genes 
The unrooted phylogenetic tree of 74 domains comprising five domains from barley was constructed using MEGA-X 
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commercial production because they are not equipped 
with holistic genes or the mechanisms required for 
successful germination and growth under saline field 
conditions.  

This review summarized the agronomic/ 
morphological, physiological, and biochemical traits 
related to salinity stress. The best trait or combination 
of traits needs to be identified which can be used to 
accurately screen for salinity stress tolerance at ger-
mination to identify and characterize novel genes. 
Homolog salinity tolerance genes in barley during 
germination have been reported, but they need to be 
validated in barley and other transgenic plants that 
carry them. Functional characterization by blending 
genetic, agronomic, biochemical, and physiological 
indicators can facilitate proof of identity of the genes, 
leading to the development of barley cultivars with 
improved salt tolerance at germination and better 
performance in the field. 
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中文概要 
 

题 目：大麦芽期耐盐相关的同源和候选基因 

概 要：土壤盐害影响了全球 6%以上的陆地面积，并导

致了大量的农作物减产。盐害主要通过渗透和离

子胁迫抑制植物的生长和发育，而植物相应地通

过渗透调节、转移或外排积累的钠和氯离子以增

强适应性。目前，生产上尚未有实用、经济的方

法治理盐害，因而最为可行的途径是增强植物自

身的耐盐性。盐胁迫严重抑制种子萌发，而作为

全球第四大禾谷类作物的大麦与其他谷物相比

耐盐性更强。本文综述了大麦芽期耐盐性的遗传

机制，总结了已报道的相关数量性状位点和功能

基因，比对了拟南芥、大豆、玉米、小麦和水稻

中耐盐候选基因在大麦中的同源基因并映射到

参考基因组。此外，本文还讨论了三个耐盐功能

基因家族的遗传多样性，包括脱水应答元件结合

蛋白（DREB）、类体细胞胚胎发生受体激酶和

水通道蛋白。上述三个基因家族在植物中都存在

丰富的多样性，但 DREB 家族在大麦中的多样性

高于水稻和小麦。后续研究中，芽期耐盐性的简

便筛选方法仍有待开发，耐盐基因及相关机理机

制仍需鉴定、验证，并整合到栽培品种中，以实

现盐土上作物的生产。 

关键词：遗传；大麦；数量性状位点；发芽；耐盐性；同

源基因；多样性 


