Skip to main content
Log in

Viscosity prediction of fresh cement asphalt emulsion pastes

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Cement asphalt emulsion (CA) composite materials are becoming promising building materials in recent years. Assessing their rheological behavior is crucial for the success of a particular application. Fresh CA pastes with different asphalt emulsion to cement mass ratios (AE/C) have significantly different compositions, and design of their rheological properties is not an easy task. The minimum apparent viscosity of CA pastes with different AE/C is predicted by a viscosity prediction model. The model parameters include maximum particle packing density (ϕ m) and an adjusting factor b. A predictive model of CA composite particles is proposed, in which the maximum particle packing density of CA pastes can be determined by the maximum particle packing density of cement paste, the maximum particle packing density of asphalt emulsion, and the volume fraction of asphalt in asphalt-cement system. The predictive model requires different adjusting factor b for CA pastes with anionic and cationic asphalt emulsion when the predicted ϕ m is used for viscosity prediction. The proposed viscosity prediction equations do offer a simple and reliable method for the viscosity prediction of CA pastes with a wide AE/C range, and can be used to design the rheological properties of CA pastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schmidt RJ, Santucci LE, Coyne LD (1973) Performance characteristics of cement modified asphalt emulsion mixes. Proc AAPT 42:300–319

    Google Scholar 

  2. Brown S, Needham D (2000) A study of cement modified bitumen emulsion mixtures. Proc AAPT 69:92–121

    Google Scholar 

  3. Bocci M, Grilli A, Cardone F et al (2011) A study on the mechanical behaviour of cement–bitumen treated materials. Constr Build Mater 25(2):773–778

    Article  Google Scholar 

  4. Oruc S, Celik F, Akpinar MV (2006) Effect of cement on emulsified asphalt mixtures. J Mater Eng Perform 16(5):578–583

    Article  Google Scholar 

  5. Li G, Zhao Y, Pang S et al (1998) Experimental study of cement–asphalt emulsion composite. Cem Concr Res 28(5):635–641

    Article  Google Scholar 

  6. Song H, Do J, Soh Y (2006) Feasibility study of asphalt-modified mortars using asphalt emulsion. Constr Build Mater 20(5):332–337

    Article  Google Scholar 

  7. Tan Y, Ouyang J, Lv J et al (2013) Effect of emulsifier on cement hydration in cement asphalt mortar. Constr Build Mater 47:159–164

    Article  Google Scholar 

  8. Ouyang J, Tan Y, Li Y et al (2015) Demulsification process of asphalt emulsion in fresh cement-asphalt emulsion paste. Mater Struct 48(12):3875–3883

    Article  Google Scholar 

  9. Rutherford T, Wang Z, Shu X et al (2014) Laboratory investigation into mechanical properties of cement emulsified asphalt mortar. Constr Build Mater 65:76–83

    Article  Google Scholar 

  10. Bouveta A, Ghorbela E, Bennacer R (2010) The mini-conical slump flow test: analysis and numerical study. Cem Concr Res 40(10):1517–1523

    Article  Google Scholar 

  11. Cremonesi M, Ferrara L, Frangi A et al (2010) Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach. J Non-Newton Fluid 165(23–24):1555–1563

    Article  MATH  Google Scholar 

  12. Ferrara L, Cremonesi M, Tregger N, Frangi A, Shah SP (2012) On the identification of rheological properties of cement suspensions: rheometry, computational fluid dynamics modeling and field test measurements. Cem Concr Res 42(8):1134–1146

    Article  Google Scholar 

  13. Saak AW, Jennings HM, Shah SP (2001) New methodology for designing self-compacting concrete. ACI Mater J 98(6):429–439

    Google Scholar 

  14. Roussel N (2006) A theoretical frame to study stability of fresh concrete. RILEM Mater Struct 39(1):75–83

    MathSciNet  Google Scholar 

  15. Tregger N, Gregori A, Ferrara L, Shah SP (2012) Correlating dynamic segregation of self-consolidating concrete to the slump-flow test. Constr Build Mater 28(1):499–505

    Article  Google Scholar 

  16. Kong X, Liu Y, Zhang Y et al (2014) Influences of temperature on mechanical properties of cement asphalt mortars. Mater Struct 47(1–2):285–292

    Article  Google Scholar 

  17. Tan Y, Ouyang J, Li Y (2014) Factors influencing rheological properties of fresh cement asphalt emulsion paste. Constr Build Mater 68:611–617

    Article  Google Scholar 

  18. Peng J, Deng D, Yuan Q et al (2014) Study of the rheological behavior of fresh cement emulsified asphalt paste. Constr Build Mater 66(15):348–355

    Article  Google Scholar 

  19. Hu S, Wang T, Wang F et al (2009) Adsorption behaviour between cement and asphalt emulsion in CA mortar. Adv Cem Res 21:11–14

    Article  Google Scholar 

  20. Zhang Y, Kong X, Hou S (2012) Study on the rheological properties of fresh cement asphalt paste. Constr Build Mater 27(1):534–544

    Article  Google Scholar 

  21. Chong JS, Christiansen EB, Baer AD (1971) Rheology of concentrated suspensions. J Appl Polym Sci 15(8):2007–2021

    Article  Google Scholar 

  22. Liu D (2000) Particle packing and rheological property of highly-concentrated ceramic suspensions: ϕ m determination and viscosity prediction. J Mater Sci 35:5503–5507

    Article  Google Scholar 

  23. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam

    MATH  Google Scholar 

  24. Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3(1):137–152

    Article  MATH  Google Scholar 

  25. Liu D (2002) Theoretical determination of floc size in highly-concentrated zirconia-wax suspensions. Acta Mater 39(14):3121–3137

    Google Scholar 

  26. Soua Z, Larue O, Vorobiev E et al (2006) Estimation of floc size in highly concentrated calcium carbonate suspension obtained by filtration with dispersant. Colloid Surf A 274(1–3):1–10

    Article  Google Scholar 

  27. Phan TH, Chaouche M, Moranville M (2006) Influence of organic admixtures on the rheological behaviour of cement pastes. Cem Concr Res 36(10):1807–1813

    Article  Google Scholar 

  28. Barnes HA (1989) Shear-thickening ‘dilatancy’ in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33:329–366

    Article  Google Scholar 

  29. Tregger NA, Pakula ME, Shah SP (2010) Influence of clays on the rheology of cement pastes. Cem Concr Res 40(3):384–391

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the support of China Scholarship Council and the fundamental research fund from Dalian University of Technology [DUT15RC(3)083].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, J., Tan, Y., Corr, D.J. et al. Viscosity prediction of fresh cement asphalt emulsion pastes. Mater Struct 50, 59 (2017). https://doi.org/10.1617/s11527-016-0897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0897-2

Keywords

Navigation