Skip to main content
Log in

Characterization of the orientation profile of steel fiber reinforced concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The orientation of fibers has a pronounced influence on the tensile behavior of steel fiber reinforced concrete (SFRC) and, consequently, this aspect should be considered in modeling the material constitutive law. Previous works have shown that the tensile strength of SFRC is directly related to the average orientation of the fibers. However, few studies have investigated the correlation between the variation of distribution of fiber orientation and material strength. This paper introduces a new concept of orientation profile in order to characterize fiber orientation through an unambiguous method. From the investigation on experimental data it could be observed that fiber orientation follows a Gaussian law and that the distribution and average values of single fiber orientations are correlated with each other. Conclusions from this paper are particularly relevant for the development of micromechanical models for SFRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Naaman AE, Reinhardt HW (2003) High performance fiber reinforced cement composites—HPFRCC4. In: RILEM proceedings, PRO 30. RILEM Publications SARL, Bagneaux, France

  2. Walraven J (2007) Fibre reinforced concrete: a material in development. In: Proceedings from conference in structural applications of fiber reinforced concretes. Barcelona, pp 199–213, www.bmbupc.org

  3. Aguado A (2007) Tendencias del hormigón con fibras en construcciones subterráneas. Cemento hormigón 904:44–54

    Google Scholar 

  4. Di Prisco M, Plizzari G, Vandewalle L (2009) Fibre reinforced concrete: new design perspectives. Mater Struct 42:1261–1281

    Article  Google Scholar 

  5. CNR-DT 204 (2006) Guidelines for design, construction and production control of fibre reinforced concrete structures. National Research Council of Italy, Italy

  6. EHE (2008) Instrucción del Hormigón Estructural, Comisión Permanente del Hormigón, Ministerio de Fomento

  7. Vandewalle L et al (2003) Recommendation of RILEM TC 162-TDF: test and design methods for steel fibre reinforced concrete: s-ε design method (final recommendation). Mater Struct 36:560–567

  8. Bernard ES (2000) Behavior of round steel fibre reinforced concrete panels under point loads. Mater Struct 33(3):181–188

    Article  Google Scholar 

  9. Tschegg EK, Linsbauer HN (1986) Testing procedure for determination of fracture mechanics parameters, Patentschrift no. A-233/86, Östereichisches Patentamt

  10. Barragán BE, Gettu R, Martín MA, Zerbino RL (2003) Uniaxial tension test for steel fibre reinforced concrete—a parametric study. Cement Concr Compos 25:767–777

    Google Scholar 

  11. Molins C, Aguado A, Saludes S (2009) Double punch test to control the energy dissipation in tension of FRC (Barcelona test). Mater Struct 42(4):415–425

    Article  Google Scholar 

  12. Barragán BE (2002) Failure and toughness of steel fiber reinforced concrete under tension and shear. PhD Thesis, Universitat Politècnica de Catalunya

  13. Mora F (2008) Distribución y orientación de fibras en dovelas aplicando el ensayo de Barcelona. PhD Thesis, Universitat Politècnica de Catalunya

  14. Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. PhD Thesis, Delft University of Technology, The Netherlands

  15. Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27:391–398

    Article  Google Scholar 

  16. Gettu R, Gardner DR, Saldívar H, Barragán BE (2005) Study of the distribution and orientation of fibers in SFRC specimens. J Mater Struct 38(1):31–37

    Article  Google Scholar 

  17. Soroushian P, Lee C (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5):433–439

    Google Scholar 

  18. Lappa L (2007) High strength fibre reinforced concrete: static and fatigue behavior in bending. PhD Thesis, Delft University of Technology, The Netherlands

  19. Robins PJ, Austin SA, Jones PA (2003) Spatial distribution of steel fibres in sprayed and cast concrete. Mag Concr Res 55(3):225–235

    Article  Google Scholar 

  20. Van Gysel A (2000) Study of the pullout behavior of steel fibers embedded in cement-bonded matrix with application on fiber reinforced concrete in bending. PhD Thesis, University of Ghent, Belgium (in Dutch)

  21. Vandewalle L, Heriman G, van Rickstal F (2008) Fibre orientation in self-compacting fibre reinforced concrete. In: Proceedings of the 7th RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008). Chennai, India, pp 719–728

  22. Molins C, Martinez J, Arnáiz N (2008) Distribution of steel fibers in prismatic concrete samples. In: CD-ROM from the 4th international structural concrete congress (ACHE). Valencia, Spain (in Spanish)

  23. Stähli P, Van Mier JGM (2007) Manufacturing, fibre anisotropy and fracture of hybrid fibre concrete. Eng Fract Mech 74:223–242

    Article  Google Scholar 

  24. Ferrara L, Park Y, Shah SP (2008) Correlation among fresh state behavior, fiber dispersion and toughness properties of SFRCs. J Mater Civil Eng 20(7):493–501

    Article  Google Scholar 

  25. Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36:1653–1660

    Article  Google Scholar 

  26. Torrents JM, Juan-García P, Patau O (2007) Quality control of fiber reinforced concrete. In: Proceedings from conference on structural applications with fiber reinforced concrete. Barcelona, Spain, pp 87–96 (in Spanish) www.bmbupc.org

  27. Roqueta G, Romeu J, Jofre L, Aguado A. Microwave Non-destructive fiber content imaging of steel fiber reinforced concrete (submitted to Advanced in Civil Engineering, Hindawi Publishing Corporation)

  28. Lataste JF, Behloul M, Breysse D (2008) Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT&E Int 41:638–647

    Article  Google Scholar 

  29. Bentur A, Mindess S (1985) Cracking processes in steel fiber reinforced cement paste. Cem Concr Res 15:331–342

    Article  Google Scholar 

  30. Li VC, Stang H, Krenchel H (1993) Micromechanics of crack bridging in fiber reinforced concrete. Mater Struct 26:486–494

    Article  Google Scholar 

  31. Laranjeira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. PhD Thesis, Universitat Politècnica de Catalunya, Spain

  32. AFGC-SETRA (2002) Ultra high performance fibre-reinforced concretes. Interim recommendations. AFGC Publication, France

  33. UNI 11188 (2004) Design, production and control of steel fibre reinforced structural elements. Italian Board of Standardization, Italy

  34. Brandt AM (1985) On the optimal direction of short metal fibres in brittle matrix composites. J Mater Sci 20(11):3831–3841

    Article  MathSciNet  Google Scholar 

  35. Brandt AM (2009) Cement-based composites: materials, mechanical properties and performance, 2nd edn. Taylor and Francis, Philadelphia, pp 238–243

  36. Armelin HS, Banthia N (1997) Predicting the flexural postcracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Mater J 94:18–31

    Google Scholar 

  37. Banthia N, Trottier J (1994) Concrete reinforced with deformed steel fibers, part I: bond-slip mechanisms. ACI Mater J 91:435–446

    Google Scholar 

  38. Bartos PJM, Duris M (1994) Inclined tensile strength of steel fibres in a cement-based composite. Composites 25(10):945–952

    Article  Google Scholar 

  39. Cunha VMCF, Barros JAO, Sena-Cruz JM (2007) Pullout behavior of hooked-end steel fibres in self-compacting concrete, Report 07-DEC/E06. University of Minho, Portugal

  40. Robins P, Austin S, Jones P (2002) Pull-out behavior of hooked steel fibres. Mater Struct 35:434–442

    Article  Google Scholar 

  41. Markovic I, Walraven JC, Van Mier JGM (2004) Tensile response of hybrid-fibre concrete. In: Proceedings from the 6th RILEM symposium on fibre-reinforced concretes (BEFIB 2004). Varenna, Italy, pp 1341–1352

  42. Prudencio Jr L, Austin S, Jones P, Armelin H, Robins P (2006) Prediction of steel fibre reinforced concrete under flexure from an inferred pull-out response. Materials and Structures 39:601–610

    Google Scholar 

  43. Krenchel H (1975) Fibre spacing and specific fibre surface. In: Neville A (ed) Fibre reinforced cement and concrete. The Construction Press, UK, pp 69–79

    Google Scholar 

  44. Schönlin K (1988) Determination of the orientation, the content and the distribution of the fibres in fibre reinforced concrete. Beton- und Stahlbetonbau 6:168–171 (in German)

    Google Scholar 

  45. Grünewald S, Walraven JC (2002) Self-compacting fibre reinforced concrete-orientation and distribution of steel fibres in beams. Report 24.5-02-3 2002. Delft University of Technology, The Netherlands

  46. Behloul M (1996) Analyse et Modelisation du Comportament d’un Materiau a Matrice Cimentaire Fibree a Ultra Hautes Performances (Beton des Poudres Reactives). PhD Thesis, Ecole Normale Superieure du Cachan, France

  47. Laranjeira F, Aguado A, Molins C (2009) Predicting the pullout response of inclined straight steel fibers. Mater Struct. doi:10.1617/s11527-009-9553-4)

  48. Laranjeira F, Molins C, Aguado A (2010) Predicting the pullout response of inclined hooked steel fibers. Cem Concr Res 40(10):1471–1487

    Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the grant SFRH/BD/36248/2007 provided by the Fundação para a Ciência e a Tecnologia (FCT) from Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Laranjeira.

Appendices

Appendix 1

Table 2

Table 2 Features of the experimental data

Appendix 2

Table 3

Table 3 Results from the non-parametric tests

Appendix 3

Table 4

Table 4 coefficients of determination (R 2)

Appendix 4

Figures 15, 16, 17, and 18.

Fig. 15
figure 15

Statistical orientation laws (θ = 10º). Experimental distribution: Dot-dark circle line, Gumbel distribution: dot-dashed line, and Gaussian distribution: grey line

Fig. 16
figure 16

Statistical orientation laws (θ = 10º). Experimental distribution: Dot-dark circle line, Gumbel distribution: dot-dashed line, and Gaussian distribution: grey line

Fig. 17
figure 17

Statistical orientation laws (θ = 10º). Experimental distribution: Dot-dark circle line, Gumbel distribution: dot-dashed line, and Gaussian distribution: grey line

Fig. 18
figure 18

Statistical orientation laws (θ = 10º). Experimental distribution: Dot-dark circle line, Gumbel distribution: dot-dashed line, and Gaussian distribution: grey line

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laranjeira, F., Grünewald, S., Walraven, J. et al. Characterization of the orientation profile of steel fiber reinforced concrete. Mater Struct 44, 1093–1111 (2011). https://doi.org/10.1617/s11527-010-9686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9686-5

Keywords

Navigation