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Abstract - The Supercritical Antisolvent (SAS) technique allows for the precipitation of drugs and 
biopolymers in nanometer size in a wide range of industrial applications, while guaranteeing the physical and 
chemical integrity of such materials. However, a suitable combination of operating parameters is needed for 
each type of solute. The knowledge of fluid dynamics behavior plays a key role in the search for such 
parameter combinations. This work presents a numerical study concerning the impact of operating 
temperature and pressure upon the physical properties and mixture dynamics within the SAS process, because 
in supercritical conditions the radius of the droplets formed exhibits great sensitivity to these variables. For 
the conditions analyzed, to account for the heat of mixture in the energy balance, subtle variations in the 
temperature fields were observed, with almost negligible pressure drop. From analyses of the intensity of 
segregation, there is an enhancement of the mixture on the molecular scale when the system is operated at 
higher pressure. This corroborates experimental observations from the literature, related to smaller diameters 
of particles under higher pressures. Hence, the model resulted in a versatile tool for selecting conditions that 
may promote a better control over the performance of the SAS process. 
Keywords: Supercritical Antisolvent; Nanoparticles; Mathematical modeling; Intensity of segregation; CFD. 

 
 
 

INTRODUCTION 
 

The supercritical state of a mixture is obtained 
when its temperature and pressure are above their 

critical values. Techniques for the production of mi-
cro- and nanoparticles using supercritical fluids 
(SCF) have been modified and explored towards 
diverse applications, including the pharmaceutical, 
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cosmetics, and food industries as alternatives to tra-
ditional fine powder production.  

Among such techniques, one can highlight: the 
RESS - Rapid Expansion of Supercritical Solutions 
technique and its variants such as RESOLV, RESSAS 
(Türk and Bolten, 2010), and the SAS technique 
(Supercritical Antisolvent) and some variants such as 
SEDS, GAS and PCA (Bałdyga et al., 2010; Jerzy et 
al., 2004; Martín et al., 2007).  

In the RESS techniques, the solute must be solu-
ble in the supercritical fluid (SCF). They are charac-
terized by a pre-expansion chamber where the mix-
ture of solute and the SCF are pressurized and then 
expanded through a convergent-divergent nozzle 
causing a sudden pressure drop and the precipitation 
of the solute.  

The SAS technique, which is the object of this 
study, is used as an alternative when the solute of 
interest is not soluble in the SCF and such technique 
requires that the organic solvent possess a greater 
affinity for the antisolvent than for the solute. This 
technique generally makes use of CO2 and allows the 
processing of a large variety of high quality indus-
trial products (Martín et al., 2007; Sanguansri and 
Augustin, 2006). An organic solution of solvent/solute 
and the CO2 enter continuously through a coaxial 
capillary into a pressurized precipitation chamber 
pre-charged with antisolvent (CO2). The solution 
interacts with the antisolvent, increasing the diffu-
sion in the organic antisolvent mixture and causing 
the precipitation of the solute. 

Among its applications, we highlight the develop-
ment of biomedical materials based on prolonged 
liberation mechanisms, such as nanoencapsulation 
applied to vaccine production, allergy and even can-
cer treatment, e.g. (Balcão et al., 2013; Cushen et al., 
2012).  

In a supercritical mixture, physical properties 
such as density, and thermodynamic parameters such 
as solubility may be adjusted within a wide range of 
processing conditions through varying pressures, 
flow rate, and temperatures. The rapid transfer of 
mass that occurs upon injecting a solution into a 
fluid such as CO2 under supercritical conditions is 
characterized by an elevated diffusivity and low vis-
cosity. Such characteristics are considered beneficial 
to precipitating tiny spherical particles from the so-
lute (on a nanometric scale) and necessary for their 
industrial application. 

There are several key operational SAS parameters 
such as: solution and antisolvent flow rates; injection 
capillary length and diameter; chamber geometry; 

operational pressure and temperature (T0 and P0); 
these last two have been reported in the literature as 
being of special importance. More specifically, near 
the critical point of the mixture, the droplets formed 
exhibit high sensitivity to the thermodynamic coordi-
nates T0 and P0, which have great influence on the 
morphological changes of the precipitated substances 
(Reverchon et al., 2008; Werling and Debenedetti, 
2000). 

With respect to the variation of particle size, con-
tradictory behavior can be found in the relevant liter-
ature. For example, increased operational pressure of 
the system may result in gains (Franceschi, 2009), 
losses (Miguel et al., 2006), or in practically no no-
ticeable impact upon the precipitated particles 
(Chang et al., 2008). As to increases in operational 
temperature, some solutes diminish in size while 
others expand. These discrepancies among results 
depend on the physical nature of the solute and re-
quire further and more profound study (Erriguible et 
al., 2013b).  

Modulation of the operating pressure and tem-
perature directly influences the variation of density. 
In turn, this influences the dimensions or the sizes of 
the precipitated particles, which thus depend upon 
the differences in density between regions rich in 
organic solvent and CO2-rich regions. 

Concerning density differences, Werling and 
Debenedetti (2000) utilized toluene as an organic 
solvent and CO2 as an antisolvent and reported an 
increase in size of the particles when the solvent is 
denser than the antisolvent; otherwise, the particles 
decrease in size. This indicates a faster mass transfer 
from the solution to the surrounding CO2. 

Some published studies have intended to evaluate 
the impact of thermodynamic coordinates on precipi-
tated particle size (Franceschi, 2009; Franceschi et 
al., 2008; Imsanguan et al., 2010; Lengsfeld et al., 
2000; Martín and Cocero, 2008; Miguel et al., 2006; 
Reverchon and De Marco, 2011). In their majority, 
they are experimental and designed for solute sys-
tems with specific physical-chemical properties. 
They are also designed for experimental adequacy to 
obtain good T0 and P0 limits for a determined system 
(for particular combinations of solutes and organic 
solvents), given the time expended to carry out sev-
eral experimental runs and high material costs 
(Erriguible et al., 2013b). Beyond this, under high 
pressure, optical measurements to observe the flow 
patterns (as shadowgraphs or schlieren techniques) 
of the precipitation process may be obscured by tem-
perature gradients, species concentration, and large 



 
 
 
 

The Effect of System Temperature and Pressure on the Fluid-Dynamic Behavior of the Supercritical Antisolvent Micronization Process              75 
 

 
Brazilian Journal of Chemical Engineering Vol. 33,  No. 01,  pp. 73 - 90,  January - March,  2016 

 
 
 
 

numbers of very small particles that accompany flow 
in the precipitation chamber (Jerzy et al., 2004). This 
changes the way in which light passes through the 
flow, since the density variation may interfere with 
refractive indices and cause delay associated with 
non-homogeneity in the mid-section (Raffel et al., 
1998).  

Experimentally, with respect to the influence of 
T0 and P0 upon the size and formation of particles, 
one knows that: increased temperature keeping all 
other variables constant (solvent and CO2 flows, 
pressure, and chamber geometry) increases the ten-
dency to agglomerate; irregular particles (Boschetto, 
2013), expanded microparticles and fibers, as well as 
increased particle size prevail (Reverchon and De 
Marco, 2011). It has also been shown that pressure 
increases favor obtaining smaller sized particles and 
a narrower distribution of sizes, given that, with in-
creased pressure, the intermolecular distances dimin-
ish, in turn augmenting CO2 density (viz. Table 1). 
The difference in density between pure ethanol and 
pure CO2 decreases which results in a better mixture 
between the solution and the SCF, forming smaller 
particles (Boschetto, 2013; Franceschi et al., 2008; 
Reverchon et al., 2007). Contradictorily, according 
to Franceschi (2009) the increased pressure can re-
sult in larger particles when low levels of solvent and 
CO2 flow rate are considered, as well as low initial 
concentration of solute in the organic solvent.  

Thus, given the experimental complexity, the use 
the numerical simulation arises as a suitable alterna-
tive to determine the influence of operational pa-
rameters in the fluid dynamic behavior of flows 
within the SAS process, increasing its performance. 
This is an innovative approach concerning the FSC 
precipitation process, and it demands low cost and 
has the advantage of obtaining satisfactory results 
over a short time period (Bałdyga et al., 2010; 
Martín and Cocero, 2004; Sierra-Pallares et al., 
2012; Werling and Debenedetti, 2000). 

The numerical studies employing Computational 
Fluid Dynamics (CFD) seek to find appropriate con-
ditions for spherical particle precipitation on a nano-
metric scale (Bałdyga et al., 2010; Cardoso et al., 
2008; Erriguible et al., 2013b). However, within this 
scope there remains a lack of specific publications 
referring to the influence of operational temperature 
and pressure parameters upon the dynamics of the 
supercritical mixture. Some authors do consider the 
SAS process in the isothermal regime (Cardoso et 
al., 2008; Erriguible et al., 2013a; Martín and 
Cocero, 2004), while others have emphasized the 

influence of temperature variation (Jerzy et al., 2004; 
Sierra-Pallares et al., 2012).  

In this sense, Martín and Cocero (2004) describe 
the SAS process according to a two-dimensional 
isothermal regime approach, modeling it as a turbu-
lent mixture employing the standard k-ε turbulence 
model of completely miscible fluids, coupled to a 
model that predicts particle growth. In so doing, they 
evidenced that the flow rates and the mixture dynam-
ics strongly influence the precipitation that occurs in 
an environment of great compositional variance. 

 Sierra-Pallares et al. (2012) also proposed a two-
dimensional and non-isothermal mathematical model 
coupled with a populational balance equation (PBE) 
associated with a closure model for the micromixing 
to describe particle sizes of β-carotene and con-
cluded that temperature is quickly homogenized 
upon capillary exit. In that region there is approxi-
mately 4 K of variation; the flow pattern near the 
capillary exit is determined by the solution injection 
velocity; and the vortex generated in this region pro-
motes the formation of intense mixture and is 
responsible for the mixture on macro scales.  

Based on a non-isothermal approach coupled with 
a PBE and comparing with experimental data, 
Henczka and Shekunov (2005) pointed out the im-
portance and better accuracy of models to predict 
particles sizes that consider the micro-mixing when 
compared to simulations that do not consider this 
physical process.  

According to Erriguible et al. (2013b) in their 
study on the influence of pressure in subcritical con-
ditions, increasing pressure has moderate impacts 
upon viscosity and significant impacts upon mixture 
density. They conjecture that this effect tends to re-
main under supercritical conditions. However, there 
are works in computational simulation which have 
modeled the SAS process in an incompressible re-
gime (Cardoso et al., 2008; Erriguible et al., 2013a). 
Thus, the compressibility of the mixture in the pro-
cess, as well as the impacts of pressure and tempera-
ture upon physical properties and flow patterns, has 
not yet been sufficiently examined and outlined.  

In the cited numerical studies, there is no refer-
ence to modeling of the physical properties of the 
mixture, except Cardoso et al. (2008) who consider 
the dependence of the viscosity with the mass frac-
tions of the solvent and the antisolvent; Sierra-Pal-
lares et al. (2012) employed the method of Chung et 
al. (1988) for the thermal conductivity and the vis-
cosity and the method of He and Yu (1998) for the 
diffusivity. However, there are no reports about the 
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influence of these assumptions on the flow dynamics 
or the size of the precipitated particles. 

In particular, small diameter particle precipitation 
is directly associated with low viscosity (Bałdyga et 
al., 2010), and high levels of mixture diffusivity and 
thermal conductivity is required for proper thermal 
fields (Yamamoto et al., 2011). Thus, given the lack 
of relevant literature references concerning this as-
pect, it becomes important to investigate the influ-
ence of T0 and P0 upon these properties.  

Given viscosity, thermal conductivity, and the dif-
fusivity coefficient in the region near the Critical 
Point of the Mixture (CPM) as well as where 1 < Trm 

< 1.5 and P > Pcm (as the conditions considered in 
this study), pressure exerts an effect on the mixture 
viscosity, which may diminish with increased tem-
peratures. Increases in thermal conductivity in the 
supercritical mixture also showed themselves to be 
particularly sensitive to increases in pressure and 
diminished with temperature increases. The diffusivity 
coefficient is significantly affected by variations in 
mixture composition and high pressures with respect 
to the ideal gas condition (Poling et al., 2004). Thus, 
in typical supercritical conditions, it is important to 
investigate if the fluidynamic modeling of the SAS 
process requires consideration of adequate models in 
order to describe the mixture's physical properties. 

In this work a mathematical model is presented to 
describe the SAS process fluid dynamics coupled to 
the turbulence model k-ε. Initially, based on Peng-
Robinson's cubic equation solution, this study pre-
sents the density dependence of the mixture with 
respect to incremental pressure and temperature vari-
ations around their operational values. Then, based 
on the model's solution, the influence of values P0 
and T0 on transport properties and upon the dynamic 
of flow of the binary mixture of CO2 and ethanol was 
analyzed. In such analysis, the process is operated in 
the region of the phase diagram above CPM. In this 
region the mixture is found as a single phase. Finally, 
analysis is provided concerning the sensitivity to T0 
and P0 on a molecular level.  
 
 

METHODOLOGY 
 

The model is represented by the system of Equa-
tions (1)-(19) in order to describe the flow from the 
SAS process in steady state, considering it as com-
pressible, non-isothermal, and in the turbulent re-
gime because the transition from a laminar jet to a 
turbulent jet occurs at low Reynolds numbers 

(Silveira-Neto, 2002). Under the conditions con-
sidered in this study: 300Re   for the ethanol inlet 
and 1500Re   for the CO2 inlet. ANSYS FLUENT 
13.0 software was used to solve the system of equa-
tions. The chamber utilized in this study has cylindri-
cal geometry and couples with a capillary tube in the 
center of the lid in a coaxial system in order to inject 
the ethanol and CO2. A two-dimensional axis-sym-
metric approach was considered due to the geometric 
circumferential symmetry, with a non-uniform carte-
sian mesh composed of 115.5 thousand of elements. 
A preliminary comparison with a three-dimensional 
approach employing a tetrahedral mesh with ap-
proximately 4.2 million elements presented a pro-
hibitive computational effort in a serial run due to 
computational time. In a parallel run, with 5 parti-
tions of a cluster, it took almost 90 hours when com-
pared with the two-dimensional mesh, which took 16 
hours in a serial run on a single Intel Core-
i5@2.5GHz CPU and 4GB of RAM memory. 
 
Equation of State PVT 
 

The density of the CO2 and ethanol mixture was 
described by the Peng-Robinson equation of state 
(PREOS), employing the van der Waals quadratic 
mixing rule.  
 

 
,

( )
m

m m m m

aRT
P

V b V V b b V b
 
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      (1) 

 
where P is the absolute pressure, V [m3 mol-1] is the 
molar volume, T is the temperature, am and bm are the 
PREOS mixing parameters calculated using the fol-
lowing rule of mixture: 
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where  , 1,2i j , yi is the mole fraction of compo-

nent i and the parameters aij and bij are calculated 
using the following combination rules: 
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kij and lij are the binary interaction parameters. Here, 
the following literature values obtained from 
(Franceschi, 2009) were used: k12=0.0703 and l12= 
-0.0262. In the above equations, ai and bi are the pa-
rameters of the pure species. These parameters were 
determined using: 
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2 20.45723553

,

0.07779607
,

i i
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i
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a T
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         (4) 

with 
 

    2

2

,

0.37464+1.54226 - 0.26993

1 1

,

i

i

i

i i

ik TrT
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
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where Tc and Pc are the critical temperature and 
pressure of species i, respectively; i iTr T Tc  is the 

reduced temperature; and i  is the acentric factor of 
species i. 
 
Viscosity 
 

Each component's viscosity was calculated for 
each T0 and P0 as displayed in Table 1 based on 
Chung's rule as described by Chung et al. (1988). 
Chung's method takes density and high pressures 
into consideration. The mixing rule given by Equa-
tion (6) (Bałdyga et al., 2010) was employed in order 
to obtain the mixture viscosity. 
 

     2
2

,
CO ethanol

y y
m CO ethanolT P  

.
      (6) 

 
Thermal Conductivity 
 

To calculate the thermal conductivity of the mix-

ture, 1 1[ ]mk W m K  , Chung's method was used 
(Chung et al., 1988), as it considers density at high 
pressures and viscosity at low pressures: 
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2 1/2
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, ,mk T P Ay qBy Tr G

M G

   
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where M is the molecular weight of the mixture, 

0[ . ]Pa s  is the low pressure viscosity; ωm the acen-
tric factor of the mixture and cv is the heat capacity at 

constant volume; R is the universal constant for 
gases; 6y Vc V  with Vc being the critical volume 
of the mixture in [cm3 mol-1]. The factors 

 , , , , ,v m cc R T T     , , ,c cq q T M V   2 2 , iG G y D  

are correction functions described in Chung et al. 
(1988), and Di are functions dependent on the mix-
ture's acentric factor, as well as a correction factor 
for polar substances as described in Poling et al. 
(2004).  
 
Diffusivity  
 

According to Riazi-Whitson's equation (Riazi and 
Whitson, 1993), one can determine the diffusivity 
coefficient. This relationship, which considers vis-
cosity of the mixture µm as in Eq. (6), density of the 
mixture at low ρ0 and density of the mixture at high 
pressures ρ, is given by: 
 

 
 0 0
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, 1.07 ,

rmb cP

m

m

D
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      (8) 

 

where 0.27 0.38 mb     and 0.05 0.1 mc    , 

1 1 2 2mPc x Pc x Pc   and 1 1 2 2m x x    . Here x1 
and x2 are the mole fractions of ethanol and CO2, 
respectively. Also, in Eq. (8) Pcm is the critical pres-
sure of the mixture, D0 is the diffusivity coefficient 
of the mixture at low pressure. For simplicity, the 
mixture density at high pressures was established 
using Eq. (1), setting the operational pressure and the 
temperature to be T0 and P0 for each case of Table 1 
and varying the mixture composition. Then, each 
case was described by a sixth-degree polynomial as a 
function of the CO2 mole fraction obtained by poly-
nomial interpolation.  
 
Governing Transport Equations 
 

With the intent to describe the SAS process, a 
model based on the mass-weighted Reynolds-aver-
aged Navier-Stokes equations (RANS) was proposed. 
Some fundamental assumptions can be taken into 
account to correctly describe the fluidynamics of the 
formed jet and the mass transfer: 
 the supercritical fluid phase under turbulence 

conditions can be represented by the mass-weighted 
Reynolds-averaged Navier-Stokes equations (mass-
weighted RANS); 
 the compressible flow can be analyzed under 

steady-state; 
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 there is a complete miscibility between the or-
ganic solvent and antisolvent; 
 the eddy viscosity hypothesis is assumed; 
  energy and chemical species balance equa-

tions were included; 
  a Newtonian fluid was considered. 
It is convenient for compressible flow, to consider 

the density-weighted Favre average. Given a ϕ flow 

variable, one considers  ( )
( )

x
x




 , where   

represents the Reynolds temporal average for den-
sity. The field variable can be decomposed as the 
sum of its mean value and its fluctuation 

" '         (Wilcox, 1993), Based on the hy-
potheses presented above, the conservation equations 
are given as follows: 

Continuity Equation 
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where   represents the density of the mixture and 


iu  are the velocity vector coordinate. 

Momentum Balance Equation 
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effective viscosity is defined as eff T    , where 

T  is the eddy viscosity given by the turbulence 

model; ' 2

3
P P k   and P  is the static pressure 

(gauge pressure); it is the difference between of the 
absolute pressure and operating pressure, absP 

 
0 gaugeP P ; k  is the turbulent kinetic energy.  

Total Energy Balance Equation 
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where h  is the enthalpy of mixture, ,
ref

T

p
T

h c dT   

with 273.15KrefT  . kT is the turbulent thermal 

conductivity with PrT p T Tk c  and Pr 0.85T   is 

the turbulent Prandtl number, eff m TK k k 
 
is the 

effective thermal conductivity and kJ  is the diffu-
sive flux of the species. In this study, the energy vari-
ation due to the mixture enthalpy variation is ac-
counted for in Eq. (11) by the source term Sh (Jerzy 
et al., 2004):  
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The dependence of mixture heat Qm with the con-

centration is calculated using the Peng-Robinson 
equation. Sh is inserted as part of the energy equation 
in a subroutine as a user defined function (UDF) 
(ANSYS, 2010). 

Chemical Species Balance Equation 
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where Yi is mass fraction of the iih specie,

1,2 ,eff TD D D   D1,2 is the molecular diffusivity 

coefficient,

 

T
T

T

D
Sc




  is the turbulent diffusivity 

coefficient, ScT is the turbulent Schmidt number 
equal to 0.7. The turbulence model incorporates two 
differential transport equations into the resulting 
system of equations, one is for turbulent kinetic en-
ergy k and the other is for the dissipation rate of tur-
bulent kinetic energy ε (Wilcox, 1993), for the k-ε 

turbulence model 2 .T k    In Eq. (13) ,T iD  is 

the thermal (Soret) diffusion coefficient of the iih 
specie. 

Transport equation for the mixture fraction 
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In Eq. (14) f is the mixture fraction, which repre-

sents the mass fraction of fluid fed into the system 
from a chosen point (Fox, 2003) and is given by: 
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where 

2,COY  
and ,solY are the mass fractions of CO2 

in the CO2 inlet and in the solvent inlet, respectively.  

Mixture fraction variance, 2 , can be understood 
as the deviation from the locally perfect mixture 
state, that is, the mixing process can be understood 
as the dissipation of such variance (Fox, 2003; Jerzy 

et al., 2004). The transport equations 2  are consid-
ered and inserted into the system of equations as user 
defined scalar –UDS - transport equations (ANSYS, 
2010). Such equations are given, respectively, by:  

Transport equation for the mixture fraction variance 
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    (16) 

 
The term S in Eq. (16) was entered via a subrou-

tine as a UDF in the ANSYS FLUENT software. 
The k-ε turbulence model transport differential 

equations based on turbulent viscosity are (Launder 
and Spalding, 1974): 

Turbulent kinetic energy equation k 
 

 j T
k

j j k j

ku k
P

x x x
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   (17) 

 

and 

Dissipation rate of turbulent kinetic energy ε 
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k k
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      (18) 

 
In Eqs. (17 and (18) Pk is a production term of 

turbulence due to the viscous forces; the constants, 

1 21.44,    1.92,C C   0.09,C  1.0k  , and 

 1.3   are closure constants found based on the 
correlation of experimental data. All mathematical 
derivations and the physical basis of the model can 
be found in detail in Rezende, R. V. d. P. (2008). 
 
Operational Conditions and Boundary Conditions 
 

Operational temperature values were considered 
in the range of 308 - 320 K. Operational pressure 0P  
was tested at 80 bar and 120 bar per conditions dis-
played in Table 1. The values for density calculated 
using the Peng-Robinson equation employed in Eq. 
(8) of the diffusivity coefficient and the values calcu-
lated for pure component viscosities, using the 
Chung method for Eq. (6) of the mixture viscosity 
are also listed in Table 1. 

Under all cases, inlet boundary conditions con-
sidered were operating temperature T0 and mass 
flows rate: 1.1x10-4 kg/s for CO2 and 1.2x10-5 kg/s 
for ethanol and the outlet boundary condition was 
considered to be zero pressure. Turbulence intensity 
was considered to be 5% (medium intensity) as the 
inlet and outlet boundary conditions. 

 
Table 1: Operating conditions (T0, P0), density values, and viscosity values for the pure components. 

 
Case T0 [K] P0 [bar] 2CO [kg/m3] Ethanol  [kg/m3] 2CO [Pa.s] Ethanol  [Pa.s] 

1 308.00 80.00 419.44 716.78 3.51x10-5 4.68x10-4 
2 308.00 120.00 741.54 718.55 5.35x10-5 4.77x10-4 
3 313.00 80.00 291.50 712.98 2.94x10-5 4.38x10-4 
4 313.00 120.00 682.66 714.86 4.896x10-5 4.45x10-4 
5 315.00 80.00 273.31 711.44 2.86x10-5 4.26x10-4 
6 315.00 120.00 657.26 713.36 4.72x10-5 4.35x10-4 
7 317.00 80.00 259.40 709.87 2.81x10-5 4.15x10-4

8 317.00 120.00 630.84 711.84 4.56x10-5 4.23x10-4 
9 320.00 80.00 243.19 707.49 2.753x10-5 3.99x10-4 
10 320.00 120.00 589.63 709.53 4.43x10-5 4.07x10-4 
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more effective SAS chamber modeling, deminishing 
both computational time and computational effort. 

Regarding the jet boundary, the results were 
corroborated with analytical outputs comparing with 
the opening angle and the gaussian velocity profile 
given in the relevant literature. In all, these indicate 
the appropriate formulation of the proposed model. 

When the heat of mixture term is added in the 
energy equation, the temperature distribution under-
goes a greater variation (about 5 K) when the lowest 
operational pressure is considered. The greatest vari-
ations of composition, temperature, and physical 
properties under consideration occurred within a 
small region that begins at the capillary exit. 

The physical properties μm, km, and D1,2, depend-
ent upon T, P, and Yi, were considered. Turbulent 
properties dominate the molecular properties in the 
process. With the turbulence model employed under 
the conditions considered, it was concluded that, in this 
case, it is possible to use less complex equations than 
Equations (7), (8) and (9) in the model, reducing the 
computational time, except for the thermal conduc-
tivity under an operating pressure of 120 bar. Within 
the SAS chamber, based on the variable intensity of 
segregation, a good molecular scale mixture was 
observed for all conditions simulated, mainly  at the  
higher operating pressure. 

The model presented herein offers ease and speed 
in obtaining results using only a desktop computer, 
reducing the time and cost of laboratory experiments. 
The next steps of this work will be to apply the 3D 
approach, as well as a study on a larger scale of oper-
ational conditions with variation of the inlet flow rate 
of CO2 and the inlet flow rate of solvent, and im-
prove understanding of the effects of turbulence on 
the mixture process, as well as coupling with a model 
to predict the dynamics of particle growth. In so 
doing, greater understanding is to be gained concern-
ing the precipitation mechanisms, experimental costs 
will significantly reduced, and the SAS process be-
come more efficient. 
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NOMENCLATURE 
 
cv  Heat capacity at constant volume  

[J mol-1K-1] 
D1,2 Molecular diffusion coefficient of the 

mixture [m2/s] 
D0 Diffusion coefficient at low pressure  

[cm2/s]

mk  Thermal conductivity of the mixture  
[ 1 1W m K  ] 

k  Turbulent kinetic energy [m2 s-2] 
M Molecular weight of the mixture [kg/mol] 

2COm  Mass flow rate of CO2 [kg s-1] 

solm  Mass flow rate of Solvent [kg s-1] 

P Pressure [bar]  
P0 Operational Pressure [bar] 
Pcm Critical Pressure of the mixture [bar] 
Pci Critical Pressure of component i [bar] 
Pcm  Critical mixture Pressure [bar] 
R Universal constant for gases [J mol-1.K-1] 
Re Reynolds number 
T Temperature [K] 
Tcm Critical Temperature of the mixture [K] 
Tci Critical Temperature of component i [K] 
T0 Operational Temperature [K] 
Tri Reference Temperature of component i 
Trm Reduced Temperature of the mixture  
V Molar volume [m3 mol-1] 
Vcm  Critical volume of the mixture [cm3 mol-1] 
 
Greek Symbols  
 
ε Turbulent kinetic energy rate of dissipation 

[m2s-3] 
µm Dynamic viscosity of the mixture [Pa.s] 
ρ Mixutre density [kg m-3] 
ωm Acentric factor of the mixture  
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