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A Hybrid Technique for Thickness-Map Visualization of the Hip
Cartilages in MRI

Mahdieh KHANMOHAMMADI†, Reza AGHAIEZADEH ZOROOFI†∗a), Takashi NISHII††,
Hisashi TANAKA†††, Nonmembers, and Yoshinobu SATO†††, Member

SUMMARY Quantification of the hip cartilages is clinically important.
In this study, we propose an automatic technique for segmentation and vi-
sualization of the acetabular and femoral head cartilages based on clinically
obtained multi-slice T1-weighted MR data and a hybrid approach. We fol-
low a knowledge based approach by employing several features such as the
anatomical shapes of the hip femoral and acetabular cartilages and corre-
sponding image intensities. We estimate the center of the femoral head by a
Hough transform and then automatically select the volume of interest. We
then automatically segment the hip bones by a self-adaptive vector quanti-
zation technique. Next, we localize the articular central line by a modified
canny edge detector based on the first and second derivative filters along
the radial lines originated from the femoral head center and anatomical
constraint. We then roughly segment the acetabular and femoral head car-
tilages using derivative images obtained in the previous step and a top-hat
filter. Final masks of the acetabular and femoral head cartilages are auto-
matically performed by employing the rough results, the estimated articular
center line and the anatomical knowledge. Next, we generate a thickness
map for each cartilage in the radial direction based on a Euclidian distance.
Three dimensional pelvic bones, acetabular and femoral cartilages and cor-
responding thicknesses are overlaid and visualized. The techniques have
been implemented in C++ and MATLAB environment. We have evaluated
and clarified the usefulness of the proposed techniques in the presence of
40 clinical hips multi-slice MR images.
key words: bone segmentation, singular value decomposition, Hough
transform, directional derivative filters, cartilage segmentation, vector
quantization, edge detection, thickness map visualization

1. Introduction

Hip joint has a main role in human locomotion and bear-
ing the body weight [1], [2]. The main functions of the hip
joint articular cartilage include distribution of weight, fric-
tionless motion and shock absorption. Consumption of drug
and alcoholic liquor, senescence, inheritance and abnormal
pressure results in deficiency of the normal functionality of
the cartilage. The common causes of articular cartilage le-
sion are osteoarthritis and dysplasia. Late diagnosis of the
osteoarthritis and dysplasia may result in limitation of the
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joint function and painful stiffness [1]. Three dimensional
visualization of the cartilage thickness is clinically useful
for clinician and orthopedic surgeon to study the pathogene-
sis of joint dysfunction. This evaluation might be effective in
diagnosis, treatment, planning and assessment of the ortho-
pedic surgery [2], [3]. MR imaging is regarded as the clin-
ical choice for cartilage imaging because of high contrast
in soft tissue [4]. Cartilage imaging is often acquired by
a fast suppressed T1-weighted 3D-gradient-echo sequence
(SPGR). However, tissues with close gray level appear with
different intensity in images obtained from MRI [5]–[12]. A
normal hip joint is formed by the round ball-like upper end
of the femur, the femoral head and a socket-like cavity, the
acetabulum. The head of the femur is reinforced in its po-
sition by very powerful ligament [10]. The articular space
between the femoral head and the acetabular cartilage is not
explicitly distinguishable in normal joints. To allow clear
separation of these cartilages on MR images, the original
leg traction technique was used during MR imaging [12],
[13]. Many research efforts have attempted to measure ar-
ticular cartilage thickness using MRI data. However, most
of them worked on knee joint and patellae and tibia carti-
lages [12]–[17]. In our previous attempts, we applied three
dimensional directional derivative filters to enhance the car-
tilages boundaries [18]. We also developed an automatic
technique for femoral head center estimation [10]. We seg-
mented hip bony tissue based on Otsu’s adaptive threshold-
ing [19], and 3D morphological operations [20]. We classi-
fied the acetabular cartilage by a second order directional
derivative and a B-Spline snake [20]. Based on the pre-
vious works, the purpose of this study is to develop tech-
niques for thickness-map visualization of the acetabular and
femoral head cartilages [9] below. In our approach, we first
determine the central line of the articular space by exert-
ing the canny edge detector operator on smoothed hip MR
images in a slice by slice manner. We then segment the
pelvic bones, i.e., the femoral head and acetabulum based
on a vector quantization technique [21]–[27]. The articu-
lar cartilages are roughly segmented using a top-hat filter
and Otsuádaptive thresholding [28], [29]. We then employ
the roughly segmented cartilages and articular central line
to segment the hip cartilages from each other. Details of
the proposed techniques are given in Sect. 2. In Sect. 3, we
assess the techniques in the presence of the actual MR hip
datasets. Discussions, concluding remarks and future direc-
tions are made in Sect. 4.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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2. Proposed Techniques

In this section, we propose a hybrid multi-step technique
for thickness-map visualization of the hip articular carti-
lage. In Sect. 2.1, based on our previous work [10], we
introduce several preprocessing steps including dataset re-
sampling and femoral head center estimation to obtain the
hip volume of interest for further operations. A vector quan-
tization approach for hip bones segmentation is proposed in
Sect. 2.2. Details of the developed technique for articular-
space central line estimation are explained in Sect. 2.3. In
Sect. 2.4, based on the previous steps, we propose a method
for femoral and acetabular cartilage segmentation. Carti-
lage thickness-map estimation and visualization are given
in Sect. 2.5. Flow chart of the proposed techniques of this
section is given in Fig. 1.

2.1 Preprocessing

In a typical MR data set of a hip joint, acetabular and

Fig. 1 Flowchart of the proposed techniques. See Sect. 2 for details.

femoral cartilages are attached to each other. To allow clear
separation of acetabular and femoral cartilage on MR im-
ages, the original continuous leg traction technique was per-
formed during MR imaging [9]. The voxel dimensions of
the MR data in our study were non-cubic: 0.625 × 0.625 ×
1.5 mm3. We thus up-sampled the data in the sagittal direc-
tion by a Sinc interpolation, i.e., zero expansion (zero fill-
ing) in the frequency domain. The new voxel was a size of
0.625 × 0.625 × 0.625 mm3. To provide sub-pixel accuracy
for segmentation procedures, the obtained volume was up-
sampled by a factor of two in all directions which resulted in
new voxel size of 0.3125 × 0.3125 × 0.3125 mm3 [20]. Fig-
ure 2 shows one slice of a typical data set after re-sampling.

The femoral head typically has a spherical shape with
radius of around 20 to 25 mm. The center of the sphere ap-
proximated femoral head is found by utilizing this constraint
in a Hough transform as follows

(X − X0)2 + (Y − Y0)2 + (Z − Z0)2 = a2 (1)

where (X0,Y0,Z0) is the coordinate of femoral head center
and a is the sphere radius.

In our method, the gradient vector and the restriction
of the femoral head radius range are incorporated in the vot-
ing processes of the Hough transform. At each voxel po-
sition, when the gradient magnitude is large, the voting is
performed to the candidate positions within distances be-
tween 20 and 30 mm toward the gradient vector direction.
As shown in Fig. 2, in the acquired MR data, cartilage is
of higher intensity than that of nearby bones. We calcu-
late the first and second directional derivatives in the radial
directions originating from the femoral head center [18] as
follows.

∂ = fxrx + fyry + fzrz, (2)

∂2 = fxxrxrx + fyyryry

+ fzzrzrz + fxyrxry + fxzrxrz + fyzryrz, (3)

where ∂ and ∂2 are the first and second radial derivatives; fx,
fy, and fz are the first derivatives in the x, y and z directions,
respectively;

fi j is the second derivatives value along i j direction.
The vector r = (rx, ry, rz) originates from the center toward
the radial line of the sphere. We employed the normalized

Fig. 2 Typical hip cartilage data sets acquired under continous leg trac-
tion. Figures (a) to (c) are assocaited with three different datasets where
traction was perfomed well, moderate, and poor, respectively. These
datasets were regarded as GOOD, MODERATE, and POOR datasets in
the experiments.
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Fig. 3 Profile of femoral and acetabular cartilages and corresponding
first and second derivatives along a radial line with respect to femur center
are shown. As seen, the bony tissues appear dark and the soft tissues such
as cartilages and mucsels, appear bright.

in the operations. In this case, the magnitude of the gra-
dient vector in the boundary of the femoral head and car-
tilage is large in the radial direction originating from the
from femoral head center. Figure 3 illustrates the profile
of femoral and acetabular cartilages and corresponding first
and second derivatives along a radial line with respect to fe-
mur center. The center is estimated using the orientation of
the gradient vector at each voxel and the possible range of
the femoral head radius by a Hough transform [18].

A typical example of the femoral head center-
estimation is shown in Fig. 4. Based on our previous
work [20], we employ the estimated center as the center of
a cube for selecting the region of interest. The size of the
cube sides is determined as follows. As explained earlier,
the femoral head typically is of a spherical shape with a ra-
dius of less than 25 mm. This is equivalent to a size of 80
(25/0.03125) slices in the re-sampled data sets. The car-
tilage thickness in typical cases is less than 5 mm, that is
equivalent to a size of 16 (5/0.03125) slices in the resam-
pled data sets [12]. Therefore, a cube with the estimated
center location and dimensions of ((80 + 16) × 2)3, i.e.,
192× 192× 192 voxels is regarded as the volume of interest
for further operations.

2.2 Segmentation of Femoral Head and Acetabulum

In the previous works, 3D-filtering techniques and second
directional derivative images were used to segment the ac-
etabular and femoral head cartilages. However, the perfor-
mance, computational cost and feasibility of the techniques
were not adequately demonstrated [18], [20]. The proposed
approach is a multi step algorithm based on the anatomical
knowledge about the hip joint cartilages and bones. The
hip cartilages are surrounded by the acetabulum and the
femoral head. In many joint diseases, the cartilage damage
is very common [30]–[36]. We have assumed that the edges
of bones in the hip are more consistent than those of hip car-
tilages. For this reason, we first segment the bony tissues
in the hip, i.e., the acetabulum and the femoral head. The

Fig. 4 Automatic estimation of femoral head center using the Hough
transform and anatomical constraint of hip joint bones and cartilages [18].
(a) and (b) are associated with two typical MR slices of a hip joint in the
early and middle locations of a sagittal dierction. (c) and (d) are the hough
spaces corresponding to (a) and (b), respectively. (e) The Hough transform
in (d) and overlaid center with (b). This result demonstrates the effective-
ness of the customized Hough transform of Sect. 2.1 in femoral head center
estimation.

results are then employed for acetabular and femoral carti-
lage segmentation in later stages. Different segmentations
techniques are reported in the literature [37]–[40]. In this
research, we employ a singular value decomposition (SVD)
technique [21]–[27]† to segment the femoral head and the
acetabulum in the hip. The steps of the proposed algorithm
are explained in the following. Flowchart of the SVD tech-
nique is shown in Fig. 5.

2.2.1 Feature Analysis of Image Data

An MR data set is often affected by a partial volume effect.
In this regard, we choose a local volume for each voxel [21].
We consider the gray values of each voxel and its surround-
ing neighbors to create a vector of 23 members. Such a
vector is shown in Fig. 6. We aim to classify the hip bony
tissues based on the corresponding feature vectors. To re-
duce the computational cost, a feature analysis of the local
vectors is necessary [23]. We apply the principal component
analysis (PCA) [24] to determine the effective dimension of

†This technique is a vector quantization clustering technique
and is established based on the principle component analysis
(PCA).
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Fig. 5 Flowchart of the SVD algorithm discussed in Sect. 2.2.

the feature vectors by the associated orthogonal transforma-
tion matrix [i.e., the Karhunen-Loeve (K-L) transformation
matrix]. In the available datasets, we have found that the to-
tal variance associated with the first five eigenvectors were
equivalent to 92% of all Eigen vectors. Hence, a vector di-
mension of 5 is selected in the rest of operations. In a data
set, calculating the K-L matrix for all voxels is very time
consuming. We hence determine a general K-L matrix by
employing several training samples. We then apply the re-
sult to segment all datasets acquired from the same source.

2.2.2 Vector Quantization Algorithm

As we discussed in Sect. 2.2.1, we apply the K-L transfor-
mation to the local vector series. In the K-L domain, the
feature vectors are formed by the first five principal com-
ponents from the transformed vector series. There are sev-
eral approaches to classify the vectors [25]. We employ an
unsupervised self-adaptive vector quantization (VQ) algo-
rithm for handling the classification task. In the hip MR data
sets, four classes including cartilage, muscle, bone and ar-
ticular space are available. The partial volume effect (PVE)
between nearby tissues should be considered as additional

Fig. 6 The feature vector selected for bone segmentation. We selected 22
neighbors for each voxel in the datasets. Hence, a vector of 23 dimensions
was employed for vector quantization algorithm. Details are discussed in
Sect. 2.2.1.

Fig. 7 Gradual variation of the intensity in nearby tissues denoted as A
and B, respectively. The overlapped area associated with the partial volume
effect. See Sect. 2.2.2 for details.

classes. Figure 7 illustrates an example of the (PVE). In the
available MR data sets, muscle, bones, cartilages, and artic-
ular space are adjacent to each other. In this case, we have
considered four additional classes in the operations. There-
fore, a value of eight was assigned to the maximum class
numbers and denoted as K. A threshold value of T, i.e., the
vector similarity criteria, is another factor for discriminat-
ing the classes from each other. In the datasets, we have
experimentally found that the square root of the component
with the maximum variance in the feature vector is a good
estimate for T. This allows the VQ algorithm to achieve the
minimum class number with the maximum variance. Since
T is estimated from the data, the employed VQ algorithm
can be regarded as a self-adaptive algorithm. The VQ al-
gorithm is similar to an unsupervised clustering algorithm.
The number of classes and the representative vectors are up-
dated continuously when more vectors are included in the
calculation.

2.2.3 Bone Segmentation

In the employed data sets, the partial volume effect is found
negligible. Therefore, after classification, the hip dataset
is labeled into four classes including bone, PVE between
bone and muscle, cartilage, and PVE between cartilage and
bone. These four classes are enumerated as 1 to 4, respec-
tively. Classes #1 and #3 are associated with the lowest
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Fig. 8 Bone segmentation using the SVD technique. (a) Typical MR
slices in two different locations of a hip joint are shown. (b) and (c) are
associated with segmented acetabulum and femoral head, respectively. (d)
The result is overlaid with original image.

and the highest intensities, respectively. These classes are
hence easily segmented. Class #1 contains the acetabulum
and femoral head. The next step is to segment these bones
from each other. We follow the approach of our previous
work [20] to address this problem. We fit a circle with the
same center obtained in Sect. 2.1 to each slice of the data
set. The extent of a femoral head is known in typical clin-
ical cases [1]. The largest 3D component that is connected
to the estimated center and is inside the estimated circle is
automatically regarded as the femoral head. For segment-
ing the acetabulum, after excluding the femoral head from
the whole binary data set, the largest and closest connected
component corresponding to the femoral head upper bound-
ary is segmented as acetabulum. Figure 8 shows typical ex-
amples applying the proposed SVD algorithm.

2.3 Localization of the Articular Space

The Canny operator was used to be an optimal edge de-
tector to tracked intensity discontinuities [41]. The track-
ing process of canny exhibits hysteresis controlled by two
thresholds: T1 and T2 with T1 > T2. This hysteresis helps
to ensure that noisy edges are not broken up into multiple
edge fragments. We apply a Canny operator to the results
obtained from the first radial derivative in Sect. 2.1. We
have experimentally found that the Canny operator is also
effective to track the intensity discontinuities in the articu-
lar space [41], [42]. In the available datasets, the normalized
thresholds of T1=0.4 and T2=0.2 are utilized to enhance the
edges. The mentioned filter is applied to the original data,
first and second directional derivative images which results
in binary images containing bony and soft tissue’s edges.
Then, a multi-step technique including the simple logical
operations and morphological operations with the concern
of the anatomical constraints (the femoral head center po-
sition and the extent of the hip joint space in the datasets)
is employed to localize the articular space central line. The

Fig. 9 Articular central line localization using the Canny edge detector
and logical operation.

detailed algorithm is shown in Fig. 9 and a typical result is
shown in Fig. 10.

2.4 Segmentation of Acetabular and Femoral Head Carti-
lages

In this step, to segment the cartilages the top-hat transform
combined with first derivative of the images. Wiener fil-
tering is a nonlinear operation often used for reducing the
noise and preserve edge simultaneously [28], [29]. The im-
age is viewed as a surface, with mountain (high intensity)
and valleys (low intensity). It is desirable to maximize the
contrast of objects of interest for minimizing the number of
valleys. The contrast enhancement technique is the com-
bined use of the top-hat transforms. The opening operation
is anti-extensive, i.e. grey scale of every pixel in the opening
processed image is not greater than that in the original im-
age, and lighter objects smaller than structuring element will
be erased by opening operation. So the residual between
original image and opening image can be defined as top-hat
transform. The structure element in this approach defined
as a flat, disk-shaped; with radius 3 that is shown in Fig. 11.
The disk-shaped structuring element is approximated by a
sequence of N periodic-line structuring elements. When N
equals 0, no approximation is used, and the structuring el-
ement members consist of all pixels whose centers are no
greater than R away from the origin. In this approach N
was specified 4. The top-hat image contains the “peaks”
of objects that fit the structuring element. To maximize the
contrast between the objects and the gaps that separate them
from each other, the “top-hat” image is subtracted from the
“original” image. Applying the top-hat filter to the origi-
nal images lead to the rough segmentation of the regions
with high contrast included the femoral head and acetabu-
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Fig. 10 Articular space central line localization. (a) Typical MR slice of
a hip joint. (b) A Canny edge detector was applied to the filtered image ob-
tained by calculating the first directianal derivative introduced in Sect. 2.1.
(c) Localized central line of the articular space by utilizing the anatomical
constraint. (d) The localized articular space central line is overlaid with
original image. See Sect. 2.3 for details.

lar cartilages and scattered pixels which are corresponded
to the mussels. The scattered points can easily be removed
from the images considering the restriction of the anatom-
ical position of the hip joint cartilages. After that, the re-
sult is the segmented acetabular and femoral head cartilages
which are connected to each other. Consequently, employ-
ing the articular space central line which is in the middle of
the cartilages and applying two simple if conditions on the
radius and angle of the segmented pixels originating from
the femoral head center, lead to separation of the cartilages.
The results of this step are shown in Fig. 12.

2.5 Thickness Map Generation of the Cartilages

Having the edges of acetabular and femoral head cartilages,
the inner and outer boundaries of them are provided. Con-
cerning the spherical shape of femoral head and this fact that
the cartilages are bonded in the united center spheres, esti-
mation of the thickness along the radial direction is more
accurate than measuring it along normal directions of each
pixel [43]. Thus, the thickness of each cartilage is estimated
applying the Euclidian distance transform along the femoral
head radial direction. To visualize the thickness map of the
cartilages, the lightening and color were assigned to each
voxel of the cartilages according to their thickness. The

Fig. 11 The structure element defined as a flat, disk-shaped and a radius
of 3 pixels in Sect. 2.4.

Fig. 12 Segmentation of the hip cartilages. (a) A hip joint slice. (b)
The localized central line of articular space. (c) Rough segmentation of
the hip joint cartilages. (d) and (e) show segmented acetabular and femoral
cartilages, respectively. In (f) and (g) the original image is overlaid with
the cartilages.

range of the color changes is from blue to red to show low
and high thicknesses.
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3. Results

3.1 Data Set

MR imaging was performed with fat-suppressed 3D fast
spoiled gradient echo (SPGR) sequence using a unilateral
surface coil (TORSO, General Electric, Milwaukee, WI) on
a 1.5-T MR system (Horizon, General Electric). Imaging
parameters were as follows: TR/T E, 24.4/5.7 ms; flip an-
gle, 20 degrees, section thickness, 1.5 mm; in-plane reso-
lution, 0.625 mm; imaging matrix, 256 × 256; signal ac-
quisition, 2; imaging direction, sagittal. Imaging time was
10 min and 17 seconds. The proposed method applied to
40 sets (2400 images) of in-vivo MR data of normal and
diseased hip joints. We classified the datasets into three cat-
egories of GOOD, MODERATE and POOR datasets based
on considering several factors such as the quality of traction
during data acquisition, anatomical constraint such as vicin-
ity of the pelvis and the femur, shape and level of femoral
head malformation, non-uniformity of bone intensity, level
of discrimination between the femoral and acetabular carti-
lages and the contrast between the different tissues. In this
study, we developed the techniques described in Sect. 2.1
in C++ language and the techniques of Sects. 2.2 to 2.5 in
MATLAB. The experiments were performed on a Pentium
IV (3 GHz, 512 Mbytes of RAM and 120 GB of memory)
personal computer (PC). The time required for each step of
the process is indicated in Table 1.

3.2 Assessment of the Method

We employed the proposed techniques to segment and vi-
sualize the hip cartilage. As mentioned in Section [2] the
flowchart of the assessments is shown in Fig. 1. We evalu-
ated the performance of the developed techniques on 40 hip
joints of actual patients. Typical GOOD, MODERATE and
POOR dataset are shown in Fig. 2. As seen, in a GOOD
dataset traction was performed well and the hip articular
space is well differentiated with respect to nearby cartilages.
In a POOR dataset, the image has low contrast in the hip
joint and traction failed to obtain successful results. In ad-
dition, in some POOR datasets the femoral head bone has
unusual shape. In this case, femur center estimation based
on assuming a spherical surface for femoral head is not ap-
propriate. In practice, we employed 5 GOOD and 28 MOD-
ERATE datasets for the experiments and remaining POOR
datasets were not participated in the evaluation procedures.
The various steps of the algorithm are evaluated separately.

Table 1 Required time for the technique in the study.

Proposed techniques Time (s)
Preprocessing 310

Bone segmentation 80
Articular central line localization 50

Cartilage segmentation 70
Cartilage thickness estimation and visualization 400

First to evaluate the applied algorithm for bone segmenta-
tion, we compared it with the previous method [20] based
on Otsu’s adaptive thresholding [19] according to the man-
ual segmentations, in ROC diagrams. Manual segmentation
of 40 hip joints (20 × 2) was conducted by two experts. The
success and failure of the algorithm is measured by finding
the true positive rate (TPR) and false positive rate (FPR) in
comparison with the previous method. In order to find the
TPR we have to verdict the value of the true positive (TP)
and the false negative (FN) and to define the FPR we have
to decide the true negative (TN) and the false positive (FP).
These values were corresponding to the four following types
of tissues: (1) TP pixels (PT P): correctly segmented bone
tissues; (2) FP pixels (PFP): non bone tissues recognized as
bone tissues due to the failure of the technique; (3) FN pixels
(PFN) missed bone tissues; (4) TN pixels (PT N): correctly
did not segment as bone tissues. The examples of typical
counting the FP, TP, FN and TN pixels are shown in Fig. 13.

A cube of dimensions 205 × 20 × 140 assumed as a
frame to count these parameters for each dataset. This re-
gion of interest is an area that has the most probability of
consisting bony tissues. Thus in a typical dataset we have to-
tally 5,883,500 pixels which are used for estimating the TP,
FP, TN and FN. Tables 2, 3 and 4 show the defined param-
eters for optimal threshold in SVD algorithm in 5 GOOD,
8 MODERATE and ALL data sets respectively. To draw
the ROC curve for the proposed algorithm, T is changed
from 0.1 to its optimum value mentioned in Sect. 2.2 part
B and for previous method [20] we draw it by increasing
the window size of filters from 3 to 15 by double steps.
The TPR and FPR are measured with the below formulas:

Fig. 13 Estimating the TP, FP, TN and FN parameters. (a) The result of
the SVD algorithm, (b) The manual segmentation of the bony tissues and
(c) The overlay of (a) and (b) that showed the TP in red, FP in blue and FN
in green.
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Table 2 Assessment of the bone segmentation with the proposed SVD
algorithm is shown. Five GOOD datasets with optimal threshold T were
selected in the experiments.

Good Dataset TPR FPR
1 0.91352 0.45955
2 0.91345 0.46042
3 0.91321 0.46111
4 0.91289 0.46197
5 0.91250 0.46287

Average 0.91312 0.46118

Table 3 Explanation is the same as Table 2. Eight MODERATE datasets
with optimal threshold T were selected in the experiments.

Moderate Datase TPR FPR
1 0.90470 0.56003
2 0.90438 0.56165
3 0.90405 0.56262
4 0.90386 0.56340
5 0.90360 0.56403
6 0.90334 0.56504
7 0.90302 0.56603
8 0.90256 0.56699

Average 0.90369 0.56373

Table 4 Explanation is the same as Table 2. ALL datasets with optimal
threshold T are participated in the experiments.

ALL Datasets TPR FPR
Final Average 0.90731 0.52428

Fig. 14 The comparison between the SVD method and the Outso’s adap-
tive thresholding algorithm [20] applied to the 5 GOOD and 28 MODER-
ATE data sets.

T PR = T P
(T P+FN) ; f PR = FP

(FP+T N) . The diagram is shown in
Fig. 14 compares the SVD method proposed for bone seg-
mentation with our previous method [20].

The ROC diagrams are shown in Fig. 15 for GOOD,
MODERATE and ALL data sets separately. As can be
seen in the diagrams the results of the proposedalgorithm
are in general better than the previous one because the en-
tire method is done in 3D manner on the voxels. Also, the
results illustrate the supremacy of the vector quantization
(SVD) technique in some slices which had inaccurate results
in the previous method. In SVD technique, for segmenting
the bone, we have defined two constraints: a threshold for
classification (T) and the maximum number of the classes
(K). With these two constraints we considered the distance
restriction on the feature vectors and the image attribute. To
assess the algorithm used for the articular central line lo-
calization and cartilage segmentation, we used the TP, FP,

Fig. 15 The ROC curve to compare the SVD algorithm ilustrated in
Sect. 2.1 and previous method based on otsu’s adaptive thresholding [20].
The blue curves correspond to the SVD method and green curves show the
result of thresholding method in (a) GOOD, (b) MODETARE, and (c) ALL
datasets. The red line is x=y.

TN and FN pixels to measure the SUCCESS and ERROR
of the algorithm as follow: (1) Success rate of segmentation
technique was computed by S UCCES S = ( PT P

Pre f
) × 100. (2)

Error was determined by ERROR = ( FFP+FFN

Pre f
) × 100.

Hence, for each slice of a data set, the localized cen-
tral line/ cartilages pixels, that was selected by all two ex-
perts as the articular space central line/ cartilages, were
used as the reference and denoted as . 3) Central line lo-
calization/ cartilages segmentation performance was classi-
fied into one of the three groups: good, moderate, and poor.
If (S UCCES S > 90%) and (ERROR < 10%), localiza-
tion performance was good. If (S UCCES S > 70%) and
(ERROR < 20%), localization performance was moderate.
Otherwise localization performance was poor. The capabil-
ity of the technique for localizing the articular space central
line and segmenting the cartilages are illustrated in Tables 5
and 6. The algorithm is not well done in some slices of the
data sets. The reasons are as follows: 1. The bad traction
that makes it difficult to separate the acetabular and femoral
head cartilages very carefully.

2. The deformable femoral head and acetabulum in the
joints; the fully automatic method discussed in this paper is
based on the anatomical constraint like femoral head cen-
ter, thus in the data sets that the femoral head is too de-
form this technique may failed. 3. The noise of imaging is
the other problem: In segmentation approaches were illus-
trated we used smoothing filter to reduce the noise, but in
some data sets the noise is too much that these filters can
not solve our problem. 4. The ligament that reinforces the
femoral head in its place, has the same intensity with car-
tilage and may cause reduction of accuracy in segmenting
the cartilages [1]. Table 7 summarizes the performance of
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Table 5 Assessment of the proposed method for articular space central line localization in the pres-
ence of 5 GOOD datasets and 28 MODERATE datasets. For each dataset, 140 slices was participated
in the experiments.

Good outcome % Moderate outcome % Poor outcome %
Good Data 97(1629/1680) 2(33/1680) 1(18/1680)

Moderate Data 91(2675/2940) 8(235/2940) 1(29/2940)
All Data 93(4304/4620) 6(268/4620) 1(47/4620)

Table 6 Assessment of the proposed cartilage segmentation technique in the presence of 5 GOOD
datasets and 28 MODERATE datasets. For each dataset, 140 slices was participated in the experiments.

Good outcome % Moderate outcome % Poor outcome %
Good Data 88(1474/1680) 10(168/1680) 2(33/1680)

Moderate Data 79(2322/2940) 12(352/2940) 9(264/2940)
All Data 82(3796/4620) 12(520/4620) 6(297/4620)

Table 7 Assessment of the entire steps of proposed technique in the presence of 5 GOOD and 28
MODERATE datasets. For each dataset, 140 slices was participated in the experiments.

Good outcome % Moderate outcome % Poor outcome %
Bone Segmentation 96(32/33 Datasets) 3(1/33 Dataset) 1(46/4620 Slices)

Articular space central line localization 93(31/33 Datasets) 6(2/33 Datasets) 1(46/4620 Slices)
Cartilage Segmentation 82(27/33 Datasets) 12(4/33 Datasets) 6(2/33 Datasets)

Fig. 16 Thickness maps of the segmented acetabular cartilages. (a) A
GOOD data set. (b) A MODERATE dataset. Green (light grey), red (mod-
erate grey) and blue (dark grey) are associated with high (larger than 4 mm),
medium (between 2 to 4 mm) and low thicknesses (lower than 2 mm) of the
cartilage, respectively.

varied steps of the algorithm for all 33 datasets. For each
dataset 140 slices which may consist of cartilages that is
known in typical cases, are selected and the percentages are
shown with division of number of correct slices to all the
dataset’s slices. The 3D visualization of two cartilage thick-
ness maps picked from GOOD, MODERATE data sets are
shown in Fig. 16.

4. Conclusions

We developed an automatic method for segmentation and
surface rendering of hip joint cartilages from MR images.
In the proposed approach, we employed continues leg trac-
tion technique to allow clear separation of the acetabular and
femoral head cartilages. Moreover, we combined the vec-
tor quantization and PCA algorithms for bone segmentation.
We also customized the double thresholding canny edge de-
tector filter and anatomical constraint of the hip joint to lo-
calize the articular space central line. We tailored an accu-
rate localized articular space central line with top-hat filters
to segment the hip joint cartilages. The thickness map of

segmented cartilages was rendered employing the marching
cube algorithm that produces a triangle mesh by comput-
ing iso-surfaces from discrete data. The surface represents
by connecting the patches from all cubes on the iso-surface
boundary. In the presence of available data sets, the results
were promising. We quantify the new method for bone seg-
mentation in ROC diagrams in comparison with the previ-
ous segmentation technique based on Otsut́hresholding [20].
We experimentally showed that the proposed method in the
presence of the available data sets showed effective in 90.5%
of the slices for cartilage segmentation, applying the SUC-
CESS and ERROR formulas. Accurate localization of the
articular space central line is strong point that leads to bet-
ter and more precision cartilage segmentation results. The
evaluation was subjectively made by two experts. The fail-
ure of the algorithm in the remaining slices was mainly due
to poor imaging condition, incomplete traction, and irreg-
ularity in the spherical shape of bony and cartilage tissues.
In such cases, even the judgment of an expert in determin-
ing the exact location of the articular space was uncertain.
The consideration of improving methods of the MR imaging
conditions in the case of low contrast could make a POOR
data set to MODERATE dataset. One major concern of the
developed algorithm is speed. The time required for per-
forming full automatic localization, classification, and visu-
alization of a data set including 192 slices [size: 256×256
pixels] was around 15 minutes. By employing a multi-CPU
machine, and developing a multi-thread programming, this
concern must be addressed in our future work. We as well
need to evaluate the algorithms with more data sets, inte-
grate the proposed technique in a software package for car-
tilage segmentation, cartilage thickness map estimation and
corresponding 3D visualizations that handles clinical tasks
for quantification of hip joint cartilages.
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