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Abstract A polling model with n stations and switchover times is considered. The customers are of n
different types, arrive to the system according to the Poisson distribution in batches of random size, and if
they find the server unavailable, they start to make retrials until succeed to find a position for service. Each
batch may contain customers of different types while the numbers of customers belonging to each type in a
batch are distributed according to a multivariate general distribution. The server, upon polling a station,
stays there for an exponential period of time and if a customer asks for service before this time expires, the
customer is served and a new “stay period” begins. Finally the service times and the switchover times are
both arbitrarily distributed with different distributions for the different stations.

For such a model we obtain formulas for the expected number of retrial customers in each station in a
steady state. Our results can be easily adapted to hold for zero switchover times and also in the case of the
ordinary exhaustive service polling model with (without) switchover times and correlated batch arrivals.
In all cases mentioned above (retrial model, exhaustive model, switchover times, zero switchover times) to

find the expected queue lengths we need finally to solve a set of only n linear equations (O(n®) arithmetic
operations to compute the coefficients).

Tables of numerical values are finally obtained and used to observe the system performance when we
vary the values of the parameters.

1. Introduction

A polling model is a system of n queueing stations accessed by a single server in a prescribed
order. This kind of systems has been proved useful particularly to model maintenance
processes, multiprocessor computers, communication networks and manufacturing systems.
There are many varietes of polling models depending on the service disciplines (exhaustive,
gated, limited etc.), the existence or not of switchover times between stations, the capacity
of the buffers, the order in which the server polls the stations etc. For a complete survey
on the earliest works in polling systems see Takagi [26]. More recently we have to mention
the works of Resing [22], Eisenberg [8], Srinivasan et al [24] and Altman & Yechiali [2].

As far as we know, in all studies of polling models appeared till now in the literature the
customers are assumed to form, upon arrival, a queue in each station and to wait there until
the server selects them for service. Thus the customer in such a model does not have the
chance- when he finds, upon arrival, the server busy in one of the stations, or performing a
switchover time - to leave the system and to retry individually for service later.

Queueing systems with retrial customers have received considerable attention recently
and are widely used in computer and communication networks and in telephone switching
systems. They are characterized by the fact that an arriving customer, who finds the server
busy, leaves the system and repeats his demand after a random amount of time. A complete
description of situations where such queues arise, and extensive reviews of the earliest work
on the subject may be found in Yang & Templeton [27] and in Falin [9]. We have also
to mention here the works of Kulkarni & Choi [17], Falin & Fricker [10], Grishechkin [14],
Falin, Artalejo & Martin [11], Langaris & Moutzoukis [18], Moutzoukis & Langaris [21].

Both kind of models - polling models and systems with retrial customers - have been
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used separately to model complex situations particularly in communication networks. Thus
in the field of Local Area Networks (LANs) one can find a number of models handled as
polling systems with queued up customers (Bux [6], Ferguson & Aminetzah [12], Fournier
& Rosberg [13], Borst [4]), while in the same area, various models with specific protocols
have been discribed and analysed as retrial systems with a single station ( Kulkarni [16]
Choi, Shin & Ahn [7]).

In the work here, we have tried to combine these two characteristics, and to study a
polling model with retrial customers. Thus in the model considered, there are n types of
customers (one for each station) arriving in batches of random size (a batch may contain
customers of all types) and making retrials in each station until they find the server available.
There is only one server who polls the stations in a cyclic order and stays in each one of
them for a random amount of time awaiting for customers seeking service. There is finally
a switchover time when the server passes from a station to the next. For this model, we will
describe a method to obtain the mean number of retrial customers in each station (and the
mean waiting time, through Little’s formula, consequently).

An interesting feature of the approach used is that we can obtain immediately the
corresponding quantities (queue length, waiting time) in the case of zero switchover times,
simply by replacing in the obtained final formulas, the mean and the second moment of
the switchover time by zero. Moreover by sending the mean retrial time and in the sequel
the mean "stay period” to zero we arrive at the corresponding formulae of the ordinary
exhaustive service polling model with or without switchover times and correlated batch
arrivals.

The mean queue lengths (waiting times), in all models described above are found, by
solving finally a set of only n linear equations, while the number of arithmetic operations
required to derive the coefficients of these equations is O(n?) or less. Note that, for the
exhaustive (and gated) polling model with switchover times and single independent arrivals,
Sarkar & Zangwill [23] derived (using the concept of "system time”) the expected waiting
times, by solving a set of n linear equations (for the variances of the cycle times) too.
The mean waiting time in the corresponding model with correlated batch arrivals has been
obtained in Levy & Sidi {19] as a solution of a set of n3 linear equations while Boxma [5]
derived for the same model a pseudoconservation law for the mean waiting times.

The paper is organised as follows. After the full description of the model in Section 2,
a system of equations satisfied by the steady state probabilities are obtained in Section 3.
In Section 4 these equations are used to derive expressions for the mean number of retrial
customers in each station. The case of the exhaustive service polling model with correlated
batch arrivals is investigated in Section 5. Finally in Section 6 numerical results are obtained
for the retrial model and used to observe the system performance under changes in the values
of the parameters.

Y

2. The Model
Consider a system consisting of n infinite capacity queueing stations S; i = 1,2,...,n ar-
ranged in a cyclic order. There is only one server who visits the stations in a prescribed
cyclic order 51,55, ..., S,, 51,5, ...

Customers arrive into the system according to the Poisson distribution with parameter
A in batches of random size. Each batch may contain customers of different types P: i =
1,2,...,n and a P; customer asks always for service at the S; station. If we denote by X;
¢ =1,2,...,n the number of P, customers in an arbitrary batch, then we define

g(X) = PI'(Xl = $1,X2 = T3, ,Xn :xn), g(O) =0
2 2
G(Z) = x;()g(X)ZX, g9; = %Zl |Z=17 9i; = %%%} |z=11 92(2) - a_g)szQ'zl |Z:17
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where in general x = (21,22, ...,2,) and 2* = 271252, 2%,

If an arriving batch of customers finds the server in the S; station and idle then one of
the P; customers of the batch (if any) commences service immediately and the remaining
P; customers j = 1,2,...,n join the retrial group of the S5; station respectively and seek
for service 111d1v1dua11v after an exponentially distributed (parameter p; for the S; station)
amount of time.

If an arriving batch finds the server either busy in one of the stations or performing a
switchover time then all customers of the batch join the corresponding retrial groups.

The server upon polling a station stays there for an exponential amount of time (pa-
rameter a; for the 5; station). If a customer arrives (either from outside or from the retrial
group) before this time expires then the customer is served and afterwords a new exponen-
tial "stay period” begins. When for the first time the 7stay period” ends before an arrival
occurs, the server switches to the next station. A switch from one station to another always
requires a switchover time.

The service time of a customer in the 5; station is distributed according to an arbitrary
distribution with distribution function (D.F) U;(z), probability density function (p.d.f.)
u;(2) with finite mean @; and second moment ’ELEZ) while the server switchover time between
the (i — 1)* and i** station is assumed to be also arbi‘rraril 7 distributed with D.F. V(z),

p.d.f. v;(2) and finite mean v; and second moment v, @ for all ¢ = 1, 2,...,n. All the processes
defined above are assumed to be independent to each other.

3. System State Analysis
We will start our analysis by considering firstly a more general model with arbitrarily dis-
tributed "stay periods” instead of the exponential ones. Thus we assume that the "stay
period” of the server in station S; ¢ = 1,2,...,n follows a general distribution with p.d.f.
b; (t), D.F. B;(t) and finite mean b;.

Let now L;(t) be the number of customers in the retrial group of station S; (the one in
service-if any- is not included) at time ¢, and

L(t) = (La(t), L2(2), ., La(t))-

Define
l; if the server is working in S; at ¢
E(t) =13 ¢ if the server is staying idle in S; at ¢
V5 if the server is switching from 5;_; to .S; at ¢,
and let
pilk,z,t)dz = Pr(€(t) = I;, L(t) =k, z < U;(t) < = + dz)
(3.1) gi(k,z,t)dz = Pr(é(t) = ¢;, L(t) =k, = < B;(t) < = + dx)

di(k,z,t)dz = Pr(&(t) = v, L(t) =k, z < V;(t) < z + dz),

where U;(t), B;(t), V.(t) are at ¢, the elapsed service time, the elapsed ”stay period” and the
elapsed switchover time respectively. It is easy to see that for x > 0 and for alli = 1,2,....n

y .
pi(k,z +dz,t + dz) = (1 — Ade — di(a)de)pi(k, z,t) + Mz Y g(k — m)p;(m, z,t)

m=0
gi(k,z +dz,t +dz) = (1 — )\da: — b (z)dx — kipidz)qi(k, z,t)
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k
di(k,z 4 dz,t + dz) = (1 — Mz — 0;(z)dz)di(k, z,t) + Mz Y g(k — m)d;(m,z,1),

m=0

where we use m? = (my,...,m;_1,0,m1,...,m,) and for any p.d.f. f(¢) with D.F. F(t) we
denote by f(t) the age-specific failure rate i.e. f(t) = 1—% :
For z = 0 finally

k 0o o)
(3.3) pi(k,0,t) =X > gk —m+ li)/o gi(m, z,t)dz + (k; + 1);%-/0 ¢k + 1;,z,t)dz
m=0

(3.4) ¢:(k,0,1t) :/0 pi(k,z,t)u dx—{-/ ik, z,t)0(z)dz

(3.5) di(k, 0,8) = /0 Y gk, 2, by (2)da

where we denote by 1; the n dimensional null row vector with a unit in the :** position and
of course if : = 1 then z — 1 = n.

Remark: If we put v;(z) = 9(x) = 6,0, where 8,0 is Kronecker’s delta, in (3.4) and
replace the second integral of the right hand side (which becomes now d;(k,0,¢) ) with the
integral in (3.5), then it is easy to see that the first two relations in (3.2), relation (3.3) and
the new relation (3.4) describe in fact the model with zero switchover times. Note that in
this case the probability d;(k,0,¢) in (3.5) corresponds to the point in time at which the
server polls station .

Assuming now that a steady state exists and defining

P(z,z)= 5. lim pi(k,z,t)zk
k=0
Qi(Z,JZ) = > lim qz(k € t)

kooo t—o00
Di(z,z) = Y lim di(k,z,t)z"
k=0 —°°
we obtain from (3.2)
(3.6) D) | 1 - G(a)) + (@) Pz, 2) =
| 8 i\Z,T i\Z,Z2 A
an 2B 00T L G o) + belede ) =0,

?_D_gz_’ﬂ +[M1 = G(2)) + 9:(2)] Di(z, z) = 0.

Differential equations (3.6) and (3.8) can be solved immediately and give

(3.8)

(3.9)  Pi(z,2) = Pi(2,0)exp{—(} — A\G(2))e — /0 ay)dy), i=1,2,..,n

(3.10) Di(z,z) = Di(z,0) exp{—(\ — \G(2))z — /0 “bi(y)dy), i=1,2,..,n,
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while to handle equation (3.7) we have to consider (Gross & Harris [15],p.115 ) the system

(3.11) dz _de Qi .
pizi 1 M1 — G(2})) + bi(2)]Qi

By solving this system in the usual way, we arrive at

= Uere, Qu(z,2) = Vexp{~(A = AG(z)z — [* hiy)dy},
where U and V are constants. The general solution of (3.7) is now of the form V = F(U)
Le.

Qi(z2) = Pz )exp{~(A = AG(z})e — [ bily)dy)

and so by putting z = 0 in the above equation we obtain the unknown function F' as F(w) =

Qi((21, ey Zic1, W, Zig1,y -y Zn), 0). Thus finally

(3.12) Qi(z, ) = Qi((21, ..., zic1, 2:€7*7, Zig1, .., 2), 0) exp{— (A — AG(z]))z — /Ox bi(y)dy}.

To find now the unknown quantities in (3.9), (3.10) and (3.12) we will use the boundary
conditions (3.3)-(3.5). Let us define

(3.13) Q) = | Qza)de
0
Then from (3.3) by forming the generating functions we obtain after manipulations

0Qi(2) , ,G(z) = G(=)

(3.14) i — Q,(z) = P(z,0), i=1,2,...,n
while from (3.4), using (3.9) and (3.10)
(3.15) Pi(z,0)u; (A — AG(2)) + Di(z,0)v} (A — M\G(2)) = Q:(2,0),

with u}(-), vf(-) the Laplace transforms (L.T) of u;(-), vi(-) respectively. Finally from (3.5)
(3.16) D;(z,0) :/ Qi-1(z,2)bi_y(z)dz.
0

Let us consider now the generating function @;(z). By substituting Q;(z, z) from (3.12)
0 (3.13) and evaluate the integral we arrive at

— R L= = AG(2)) + ki)
Qi(z) - Z ) — )\G( )+ kuz

k=0

(3.17) g:(k, 0)z%

with 6%(-) the L.T. of b;(-). In a similar manner (using (3.12) again)

(3.18) /0‘” Qi(z )bi(z)de = 3 B(A — AG(z2) + kops)ai(k, 0)2
k=0
From (3.17) and (3.18) we obtain
0Qi(z)

(3.19) pizi—g =+ A1 = G(2]))Qi(z) = Qi(z,0) — /Ooo Qi(z,2)bi(z)dz.
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Substituting finally (;(z,0) and F;(z,0) from (3.19) and (3.14) to (3.15) and using (3.16),

we arrive at

pilz = uf(A = AG(2)) 222 + [\ = AG(z7) — A A2z (0 - 0G(2))]Qi(2)
= Di(z,0)v (A — AG(2)) — Dit1(z,0).
A Modified Model: Let us consider now a different "staying” policy in which the
server is not allowed to repeat the "stay period” each time a customer completes service but
now the total time he is allowed to spend in an idle mode, from the instant he polls the

station until the instant he leaves it, is an arbitrarily distributed r.v. with p.d.f b;(¢) and
D.F. B;(t) for the 7** station respectively. In this case, let us replace the first and second of

(3.1) by
P,y 2, Odedy = PrE(t) =, L(t) =k, y < BY(t) <y +dy, o < Tilt) < = 4 de],

gi(k,y,z, t)dedy = Prlé(t) = ¢;, L(t) =k, y < Bi(t) <y+dy, = < B/(t) < z + da]

where now Bj(t) is the total time the server already spent in an idle mode before commencing

his more recent service and B; (t) is the elapsed "stay period” counting from the last epoch
the server becomes idle. If now we repeat the previous analysis then, for z > 0, we obtain

Pl(2,y,2) = P/(,9,0)exp{~(A = AG(2)o — [ as(w)dw}

(3:21) Di(z,2) = Di(z,0)exp{~(A = AG(z))a — [ ou(y)dy}

QU1 2) = QU(21y oy 20m1, 2567, 2041, 20),0,0) exp{—(A=AG(a0) o= [ bily-u)dul,

while from the boundary conditions

Hi 8C§iz) + )\G(Z) ;G(ZI)QQ(Z) = F{(z,0)
Qi(2,9,0) = F(z,y,0)ui(A — AG(2)), y>0
(3.22) Qi(2,0,0) = Di(z, 0)07 (A — \G(z))

A

D;(z,0) :_/0 /o Qi_1(z,y,2)b;_1(z + y)dzdy.

with Qi(z) = [§° [5° Qiz,y, x)dzdy, P/(z,0) = [5° P!/(z,y,0)dy. If now we write for Q/(z)
and [° [&° Qz,y, x)bi(z + y)dxdy expressions similar to (3.17) and (3.18) we arrive again,
after manipulations, at the basic relation (3.20) (with Q!(z), D'(z,0) instead of Q;(z)
D.(z,0) respectively).

Note here that from the second and third of (3.22)

9

Qiz,0) = [ Qi(z,,0)dy = Di(2,0)07(\ = AG(2)) + P/(z,0)ui (A ~ AG(2))

which is (3.15). Comparing (3.21), (3.22) with the corresponding relations in the original
model, one realizes that the differences between the two models lie in fact in the formulae
giving Q4(z,y,z), Di(z,0), where the term b (y +-) does not allow a simple integration with
respect to y. It is now clear that if we assume exponential "stay periods” then this term
becomes a constant and, as it is expected, the two models become completely equivalent.
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—a;t

“Exponential stay periods: Let us assume now that b;(t) = a.e i.e. we assume

exponential "stay periods”. In this case from (3.9) and (3.10) we obtain

N s I —ur(A = AG(2))
(3.23) Pi(z) = /0 Pi(s,)dr = Pi(2,0) "=

N N e GRSl ¢))
(3.24) Di(z) = /0 D(z,z)dz = D;(z,0) N = G() ,

‘while from the boundary conditions (3.14), (3.16) we get

(3.25) Miag;(‘z) 4 )‘G(z) ;G(zf)

(3.26) Di(2,0) = a;1Q;_4(2).
Substituting finally from (3.26) to (3.20) we arrive, for all ¢ = 1,2, ..., n, at

Z?Z(Z) = Pi(Z,O), 1= 1,2,...,71

pi(zi — uwi(h — AG(2))2%@ 1 [\ — AG(z7) — AE2ZEE) 2\ — AG(2)) + a]Qi(2)
(3.27) ’ '

= a;i.10; (A = AG(2))Q;4(2)-
Note that, as one can see from (3.21), (3.22), relations (3.23)-(3.27) are also satisfied by

P!(z), Qi(=), Di(z), where P!(z) = [ [¢° P!(z,y,z)dydz.

Note also that by putting v*(-) = 1 in (3.23)-(3.27) we obtain immediately the corre-
sponding formulae for the model with zero switchover times.

4. Mean Queue Lengths in steady state
We will try here to derive expressions for the expected number of retrial customers in each
station for the case of exponential "stay periods”.

Before starting our analysis we will obtain a necessary condition for the stability (bound-
edness in probability of the total amount of work in the system at any time ¢ ) of our model.
Let us define

pi = Agit;, 1=1,2,..,n, o= Zp“
=1
then

Theorem 4.1 A necessary condition for stability is
p <1

Proof: The proof follows the steps of that in Theorem 3.1 in Altman & Levy [3].
Suppose that our system is stable and p > 1. Consider, as an alternative system (System
0), the ordinary exhaustive service polling model without switchover periods. System 0 is
a system with greedy (the server never idles at a nonempty queue) and exhaustive service
policy and one can easily understand (see Liu & Nain [20] ) that at every moment ¢ the
amount of unfinished work at this system is less than or equal to that of our original retrial
model. Moreover it is known (see for example Altman et al [1] ) that a necessary (and
sufficient) condition for the stability of System 0 is p < 1. Thus, for p > 1, the amount of
work in System 0 converges in distribution to infinity and this is true consequently for our
original retrial model too. It contradicts of course to the hypothesis that the retrial model
is stable, and this proves the theorem.

From here on and all through the following sections we will assume p< 1. We continue
the analysis proving the following lemma.
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Lemma 4.1 The generating functions P;(z), Q:(z), D;(z) at the point z = 1 are given by

(4.1 P(1) = pi

o A iy 1—p

(42) Qz(l)— aiZZ:x(ﬁm‘F;l;)
‘ =y O(l—=p)

(4.3) Di(1) = s ooy

Qm

Proof: We will prove the lemma under more general assumptions on the system char-
acteristics using arguments similar to that used in section 5 of Altman et al [1].

Let us consider the more general model with arbitrary stationary: total stay periods,
switchover times, interarrival times with batch arrival rate A (g; is the mean number of P;
customers per arrival) and service times with mean %; for the ** queue. Suppose also that
the workload is stationary and that the model admits a steady state.

Let finally ... <T_; < T < 0 < Ty < T, < ... be the time epoches the server arrives at
queue 1, N(t) the point process that counts the number of these arrivals until time ¢, P° the
Palm probability related to N, E° the expectation with respect to (w.r.t.) P° v > 0 the
intensity of N(t) and C,, = T,41 — T, the n'* cycle time. We assume that the cycle times
are stationary and FCjy < oo.

The slope of the workload Wi(t) in queue k at time t is equal to —1 if the server is
working in queue k at t and equal to 0 in all other cases. Thus using Miyazawa’s rate
conservation principle and observing that the mean magnitude of the jump of Wy(t) is gy,
we realize that

P,(1) = P((0) = ;) = —EW(0) = Agiis,

where {(¢) has been defined in page 3 and W (-) means the right derivativeof W, (-). Thus
(4.1) holds.

Define now the sequences {7, }, {'ym} {6i }m=0,1,2,... where 6! , vi is the time spent
by the server at the m®* visit to queue 4, in a busy mode and in an idle mode respectively
and &, is the switchover time between (z —1)* and ** queue (at the m?" visit to queue 7).
Followmg the steps of Proposition 5.2 in Altman et al [1] we arrive easily at

P,(1) = P(§(0) = L) = vE°ay, Qi(1) = P(£(0) = &) = vE’y
(4.4) D;(1) = P(£(0) = v;) = vE°S}
But the cycle time Co can be written as Co = 37 (0} + 74 + 8}) and as vE°Cy = 1 we
obtain
(4.5) | v = Sl

i (B9 + E°6;)

Using (4.4) and (4.5) we arrive, in the case of our original retrial model, at (4.2), (4.3) and
the lemma has been proved.

Define now, for all 7 = 1,2,...,n

L} =EB(L;; ¢=1), LF=El;;t=c), LY = E(L; 5 € =),

J

where L; represents the number of retrial customers in station j (in a steady state) and
¢ =lim f( ) is defined in page 3. Let also Ri; = Ag;(1 + a;0; + Awm;) with m; = (1 — G(17)).
We shall prove the following
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Theorem 4.2 The mean numbers of retrial customers LQ’ Lf , 1,9 = 1,2,...,n are given
by
A (1 —p)m; :
(4.6) . LY = —[gi — 1, 1=1,2,...,n
[hi a; Yo (O + 5)
a9, 1 a1Rp; - i,j=1,2,..,n
4.7) L9 = Y% 4 AG; fom i LO™ 1 ) =12,
(4.7) J a; +aim§j:+1(gjﬂu +— @ @1(1)), i 4]
, /\g-z_)@) =
(4.8)  LP =50, L7 + o a@i(1), ,i=1,2,...,n

where ();(1) is known from (4.2).
Proof:By putting z = 1 in (3.27) we obtain ¢;Q;(1) = a;—1Q;_(1) or
(4.9) Q:(1) = %Ql(n, i=1,2..n
while from (3.23), it is easy to see that
(4.10) P,(1) = 4;P(1,0), v=1,2,...,n.
Then from (3.25) using (4.10) we obtain
(4.11) | P(1) = @i L2 + MagmiQi(1).

Using finally (4.1),(4.2) in (4.11) we arrive at (4.6) easily.
Differentiating now relation (3.27) w.r.t. z; (j # ¢) at the point z = 1 we obtain

(4.12) — )\/J,,'gjﬂi[/?i -+ aiL?" — ai_leQ"_l = /\gj[l + a;7; + )\ﬂﬂ(‘,‘]@i(l)

i i=1,2,n, i
and so by putting j — k instead of ¢ in (4.12) we arrive at

alRJ —kj A

@1(1))-

Qj—k Aj—k—1 1 Qj_k—1 ' - Qj—x
4.13 L7 = % ST T hil
( ) J aj_x + aj—k( giti—kUj—p L2 + ,7——k

Putting £ = —1 in the above relation we obtain (4.7) for ¢ = j + 1. Putting k¥ = —2, and
using (4.7) with : = j 4+ 1, we obtain (4.7) for ¢ = j + 2. It is clear now that we can obtain,
in the same way, relation (4.7) for all 4,5 = 1,2,...,n, 7 # j.

To derive finally relation (4.8) we will use (3.26) and (3.24). Thus from (3.26)

8Qi—1(z)
82‘]'

8D,v(z, 0)

_ Qi1
0z; lz=1= @i L7,

[z=1: a;—1

and it is easy to see that

QA=AG@) | 8% (\ — \G(z))
aZj z=1— gjvﬂ 62]2

lz=1= /\29]2 @ 4 \p; g(z).

By taking now derivatives in (3.24) we obtain (4.8) and the theorem has been proved.
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To finish our analysis we have to evaluate Lf‘ :?—I;%Z—l |z=1 - From (3.25),

0Pi(z,0) 0*Qi(2) 3@( )
4.14 — Aw; ;
( ) 82‘7 [Z 1= M azza IZ 1 + u)JQ ( ) aZJ IZ =1
where .
9i — z J=1

(4.15) i { 9 =B |, j#i
By taking now derivatives in (3.23) w.r.t. z; at z =1 and using (4.10) and (4.1) we finally
arrive at

P . ) _ Aga(z)pz
(4.16) LF = pi, L 4 Nagm L? + Magw;Qi(1) + o

where LS" = %—Q |z=1 . Thus to evaluate Lf " we need the n? quantities Lg’ for all
1025
1,7 =1,2,...,n. We will try to find them in the sequel.

Differentiating relation (3.27) twice w.r.t. z; at z = 1 we arrive at
(4.17) 2ui(1 = pi) + @] LT — ;1 L3 = Hy (i), i=1,2,...n,
with

(4 18)H1(i) = [20wy; + 202105 + pa(N2g2ul® + A 9(2))]13@6 +2a; 1 Mgt LY 4 [ Mg
‘ ~2wg) + 2hwiip; + Ami( Vg2l + Aaig?) + a;(\2g25? + Aoy Qi(1)

while by differentiating (3.27) twice w.r.t. z; (j # i) at z = 1 we obtain
0. : : . 2,7 =1,2, ...
(419) = 2uAg;uLy + ;LY — ai LY = Hy(3, 4), L R

with

(4.20) Hy(i,5) = ﬂé(/\2g]2ﬂ,(2) + )\ﬁgg](?))L?i +2Ag; (1 + )\ﬂ-iai)[)?l 4 2)\ai—1gj’l7iL?i_l
+’\[9§2)(1 + Amitl; + ai0;) + 2 w;; 9, + )\912'(/\7&-&1('2) + a5 Qi(1).

If now we put j — k instead of ¢ in (4.19) we obtain
(4.21) a5k L™ = 2t kst kLG + i L5 4 Ha(j — i, 5),

k=1,2.,j~1,j—nj—n+l,.. 1.

Summing the above equations for all k¥ and adding the result in (4.17) we arrive, for all
1=1,2,...,n, at

(4.22) 2L —20gi 3 pmtn L7 = Hi(6) + Y Hy(m, 1),
m=1 m=1
m#s

which are the first n equations in the n? unknowns L?'. To derive the remaining (n — 1)n
equations we will use again relation (3.27). Differentiating twice (3.27) w.r.t. 2z and z;

(¢ # J) we get

3 — : i —1 PR '.. ) = 1’
(4.23) [wi(1 = pi) + @)L — pidg;w L3 — a; 1 L3 = Hal(i, §), b=
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with
()= [0+ dg) + 001 M L+ Mo+ g L
(4.24) +az_1)\vz(£/zLJ T g L) 4 Algis (1 4+ Mmiths + aivi) — wij (1 — pi)

+Agig; (Al + a5) + widg;w:]Q:(1),
while differentiating (3.27) twice w.r.t. z; and 2k (J # k # ¢) we obtain

? j,k—l,. n

(4.25) — pidg;ui L3 — pidgehil e + ;L% ai—lL?ki_l = Hi(z,5,k), 77 ey
with \ , 4 '
Ha(i, 5, k) = Ma(Agrgiit? + ﬂz'gjk)LzQ‘ + AL+ M) (g, L + gu LFY)
(4.26) FAai1Ti(g; L2 + g L? ) + Aggr(1 + A + a;5;)
it wijgi + wirg;) + Agrgs (Mriaf? + i) Qi(1).

From (4.25), by putting k& — r instead of ¢, we obtain
ak~7‘L§jk~r - }‘/l'k ruk r(gngk +gkLQk T) + ak—'/‘—ll;]%knr_1 + H4(k - Taja k)7

k—rj

r=1,2..k—j—1

Summing the above relations for all  and adding the result in (4.23) we arrive at

(121) [0 — ) + % — gL — L% A S i (0:127 4 g;127)

m=j+1
1—1 Z ] :1 2 .
=H3(¢,5)+ Y. Hi(m,j,1), N 1,2 n
m=j+1 7

with $2'-1. A,, = 0 for any quantity A,,. Equations (4.22) and (4.27) constitute a system of
n? equa,tlons from which the n? unknowns Lgf 1,7 = 1,2,...,n can be found.

From here on we will try to make the computations, required to derive Lf , simpler, by
reducing the number of equations in (4.22) and (4.27). Let us define

Ni= 3 pman L7, Aij = pi(ai + pi(l — pi)) + a;p
m=1
(4.28) Ki; = Hs(v,5) + Hs(j,0) + Z Hy(m,j,0) + Z Hy(m,1,7)
m=j+1 m=i+1
/\gjaz' i—1
Fij:——"é—(ﬂ +ZH2mz))+H3(zy+ZH4m]z)
7;&1#;1 m=j3+1
Mij = pitii(p; iy + a; Kij), Vi = puil(pa(l = pi) + ai) Kij — pakiy),

and consider the two sets of indices A,= {(k,7) : k = 1,2,...,in(%51), « = 1,2,...,n},
B, = {(k,i) : k = 5,4 =1,2,...,%, n even} where in(m) means the integer part of m.

Consider also for all (k,7) € A, U B,, the recurrent relations

=7

BETH = T Gk st (Aigi _EH WD+ i Z R
R = iy — pipiek(pii _}_:kﬂ R 4 Nag_rg; _Z_,hz(Tf_k) )l
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(4.29) r=0,1,2,....k
. i—1 ) .
RS R = T Mo + Mg pi _ZkH(gz'—khém’z) +gih§™ )
i—ky ~ il m, m,t—
I T Yaiek — Muaptir@i_ _Z_:]H_l(gi—kh(() D4 g kR ),
where hgi’i) =0, Y1 A, =0 for all 7 and for any quantity 4,,, and
Auitiigs(a; + pjpi) r=0 #ipi(pi + ai — 2pip;) r=0
;= WipiQ; r=k , d; =1 Aipitu;(p(l — pi) + a;) r=k
0 otherwise 0 otherwise.

Note here that the indices are moving in cyclic order, i.e. if for example n =10, =1,
r = 3, k = 5 then Himr = 2 = fn—2 = Ug, Mi—r = Ue, Uiy = ’126, hl(z_ifk) = hgl’e),

-7 . -2
R = 5 pml) = p0D 4 B8 and so on.

m=i—k+1 m=-3

Remark: For k£ = 1, one can easily see, that all sums in (4.29) are empty and so the
quantities k() are, for k = 1 and all ¢, r, completely known. Using these quantities in (4.29)
again, we get immediately the 2(+) ’s for k = 2 and all 7, (each sum has now at most one,
completely known, term ). Continuing in the same way we obtain recursively the quantities
) for all k, i, r. Let us denote now the sums as

i : i1 ‘
(4.30) égk)(z}r) = Z h&:nr,z)’ égk)(i,r) = Z hgai,z—k) ‘
m=i—k+1 m=g—r

Then the sums, appeared in (4.30), have together no more than k (< in(%)) terms and, it
is easy to see that, for all 7,7, k

eP,r) = V(i r) 4 G0 eP@, k) =0
e(i,r) = eV — 1,r — 1) + A ED=GDL 6B 0y = 0,

Thus when we pass from £ — 1 to & in (4.29) we need in fact to perform only one addition
(of two completely known, from the case k — 1, terms) to construct the new sum é¢®) (s, r).
Consequently, to calculate each h(+) in (4.29) we need to perform at most seven multiplica-
tion/divisions and four addition/subtractions and so the number of arithmetic operations
required to obtain all 2() is O(n®) or less. Similar observations hold for A§™) where now
the number of arithmetic operations is O(n?) or less.

Define finally LJP = i Lf * and

1=1

Theorem 4.3 For our retrial polling model, L]P is given for all j = 1,2,...,n by

N LA ) _ = /\g'ﬂgz)pi
(4.31) Lf =N, + Z()\umiL?’ + Az;wi;Qi(1) +—]2?‘)

=1

NI | -El ectronic Library Service



The Operations Research Society of Japan

A Polling Modcl with Retrial Customers 501

where the n quantities N] 7 = 1,2,...,n can be found as the solution of the system of
linear equations

(432) (0= )= 32 A= 3 R, SAER = 3 A = 6
"77"— k=r r=1 k=r

with2=1,2,...,n and

Cyi: U; + EH2 m Z))"{"Zh(z k2)+zh(2+ki)
m=1
m#e

Proof: Relation (4.31) can be obtained from (4.16) easily. Also from (4.22)

Agi »

(4.33) LY = N>+ E:Hﬂmz i=1,2,..,n
i z m#'
and subsﬁituting in (4.27) we arrive at
1—1
(4.34) [l — po) + @]l — a; L% = AgipiNi + A > pimim(9: L7 + g;L37) + Fij,
m=j+1

i?j:1727“'7n7 Z%]?

while from (4.27) by interchanging 7 and j and adding the obtained equation to (4.27) we
get

(4.35) pl &+ u L% = AgiN; — Ag; Ni = K, i=1,2...n—1

F=i41,i42,.m
Equations (4.34) and (4.35) can be written (with j =¢ —1) in a matrix form as

pi(l —pi) +a; —aiy L9, _ Agia pilN; + Fiia
i Wic1 ) Lﬁfl‘i‘ AGiN;i—1 + Agioa N; + Kiiq

it Lgll _hzz-—l)N _{_h(zz 1)N 1+h(“ 1)

and so

: 1 =1,2,...,n
i L 1Lz 11 hgz 1, l)Nz + hg(:]l Z)N1_1 + h(()z—l,z)
or, by putting 7 + 1 instead of ¢ in the first
Hit1 az-{-le-i-nlz hz(:jil Z)N + h (i1, 1)N + h(Z-H ) i :'1’ 2’ ey T

Hi— 1uz—1L1 1 _h(l 11)N +hz 11)N1 1+h(z 1,i)

where the quantities hl+) are given by (4.29). Now it is clear that we can repeat the
procedure using again (4.34) and (4.35) with y =¢—2,7—3,...toobtainforall: =1,2,...,n

f’z+1uz+1Lz+kz hff:;ck Z)Nz-{—k + hgj‘:;ck 1)Nz+k 1 + .. + h(H-k Q)N + h(i+k 2 k= 17 27 . 7éz
MHi— 1?12 1lek;”—h kl)N —|—h§zlk2)Nl 1+ +h kZ)N k+h( kl) k:1727- > €4

Using finally the above relations and the definition of N; (the first of (4.28)) we arrive at
the system of linear equations (4.32) and the theorem has been proved.
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5. The case of exhaustive service

Let us suppose now that y; =y, a; = a for all i = 1,2, ..., n. If we assume that [t — oo then
the retrial characteristics of our model are swept out and the model becomes an exhaustive
service polling system with "stay periods”. If we assume in the sequel that @ — oo then
we get the ordinary polling model with exhaustive service, switchover times and correlated
batch arrivals. We will try in the present section to obtain the mean queue lengths i%‘, if n

LV:JP , of this polling model with exhaustive service, as limits of the corresponding quantities
L?i, L?", Lf of the retrial system, when u — oo, a — oo.
From (4.6), (4.7) it is easy to see that

lim LY =0, lim ul? = Ag; — AU=p)m
K00 preo nta Y m
. m=1
Jm L3 =22 3 [pw ot (14 aty) —E52—]
o0 m=j+1 nta Y m
(5.1) p m=1
Agj 2 lpm+oma] i
— 1 : Qi m=5+1 2. Tm
fij = lim a(}ggo Ly) = ma1
0 ifz =j.

Thus, as it is expected, for all ¢, 5

PO n @i
L7 = lim lim L7 =0,

a—00 p—+00

while using (5.1) in (4.8)

(5.2) LP = lim lim LP' =

7 a—00 p—00 2

Ag;oP 1 — _
Ml
> Um

m=1

If now we use (5.1) in (4.18), ( 4.20), (4.24) and (4.26), we obtain the quantities H()=
lim lim H(-) as

A4—+00 Y-—+00

H,(i,5,k) = Ngi(Ag;grl? + Uigik) + A0i(g; Bic1k + grBii1;)
+ (\g;0:0.7 + Avigj) =2
(5.3) >

m=1

(i) = Hy(i,3,0), (i) = HaG5,5,5),  Ha(i,g) = Hy(i,5,%),

and from (4.28) the corresponding quantities, in the case of the exhaustive service model,
are '

‘ J ~
]{ij = 4(m7j7 Z) + Z H4(m7i7j)
(54) m=3+1 m=i+1
2(myt)+ Y ﬁ4(m,j,i).

m=1 m=7+1

By defining finally A(+) = Jim ,}Lrgo h(+) and taking limits in (4.29) we obtain, for all
(ki) € A, UB,
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BT = ot g T BT 4 TR
m=1—k+1 m=i—r
o R ~ i—7 ~ , i—1 . .
RER) = d - (e = BT 4 dgie £ ATH)
m=t—k+1 m=i—r
(5.5) r=0,1,2,....k
. . i1 Y Y
AR = T (@i Fiig + M Ek 1(9i—kh(()m’z) + g:h§m R )
* m=i—k+
i i-1 . o
R = g Ky — [u,_an k+ AUik _.Zkﬂ(gi—khgm”) + g:himiR ),
where ﬁﬁ"’i) =0, "1 A, =0 for all ¢ and for any quantity A,,, and
Auig,pi r=20 pi(1—2p;) r=20
o 1—p; . 1-p;
C; = ; di; = Agit; r==k
0 otherwise 0 otherwise.

Note that the observation concerning the cyclic movement of the indices in (4.29) and
the Remark following it hold for (5.5) too. Now we are ready to state the theorem

Theorem 5.1 For the exhaustive service polling model, LP is given, for all y = 1,2,.

by
~p ~ n ﬂ(2)p1
(5.6) LY = Nj+Xg; Y —=
i—1 2?1,;

where the n quantities Nj 7 =1,2,...,n can be found as the solution of the system of linear
equations

51 (- p)— Y B, - ZN”Zh" ) ZN+rZh£:t’°“—

m=1 r=1 k=r

withz =1,2,....,n and
Z Hz(m i +Zh(1 kz)_l_zh(z-!—kz)
m=1

Relations (5.2) and (5.6) allow us to calculate the mean queue length in each station
L'-:Zf+2i;’?", i=1,2,...,n

for the exhaustive service polling model with switchover times and correlated
batch arrivals.

Note that, for this model with correlated batch arrivals, numerical calculations have
shown that our results for the mean waiting time (excluding service)

r
/\gJ

E(W;) =
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coinside with the results obtained from Levy & Sidi [19] formulae (rn® linear equations),
while if we assume that G(z) = 3°7 ; Aiz/ 5.7, Ai, then we get results for the model with
single independent arrivals (\; the arrival rate in ** station), i.e. the model of Ferguson &
Aminetzah [12] (n? linear equations), Sarkar & Zangwill [23] (n linear equations), etc.

Remark: From the observation made in the end of Section 3 and the analysis in Section
4 1t is easy to understand that to obtain the corresponding results for the retrial polling
model with zero switchover times and correlated batch arrivals we have only to
put 7; = 5. = 0, in Lemma 4.1, Theorem 4.2 and in (4.18), (4.20), (4.24), (4.26) of Section
4.

In a similar way by putting v; = 1')2(2) = 0 in Section 4 and assuming in the sequel
p— o0, a — oo we obtain results for the exhaustive service polling model with zero
switchover times and correlated batch arrivals. In this case it is easy to see that the
mean queue length in station j is given by

i zn: wm (1—0p) )\gjﬂ?)ﬂi)

- . 2,

where the quantities N]' satisfy again system (5.7), h(+) satisfy (5.5), ];’ij,ﬁij are given by
(5.4) and ‘

Hi(3, 5, k) = Ngi(0gigntil? + Wige) + (Agin + MwieTij + Awy; Tiy) 1=

A

f{l(z) = ﬁ‘l(i?i?i)v f{2(2>]) = f{‘l(injv]')a H3(27.7) - ﬁ4(i7jai))

with T;; = Ag;u; — 6;; (6;; is Kronecker’s delta). If finally we assume, in the above model,
single independent arrivals i.e. if we put above w;; = ¢;; = 0, Ag; = \;, then numerical
calculations have shown that our results for the mean waiting time (excluding service), in
this case of zero switchover times, coinside with the results obtained from Takagi[25].

Note that, in all models studied in the present work, to find the mean queue lengths one
has to calculate first the quantities 2 (O(n?) arithmetic operations), and in the sequel to
solve a set of n linear equations ( O(n®) operations again). Thus the total complexity to
obtain the mean queue lenghts is finally O(r?).

6. Numerical results
The mean number of retrial customers in the j* station of the original retrial polling model
‘is given by

A

(6.1) Ly=1LP +Z(L§9f+L£='), j=1,2,....n,
1=]

and from (4.6), (4.7), (4.8) and (4.31) it is completely known. To observe the way in which
this mean value L; is affected when we vary the values of the parameters, we give here Tables
1 and 2. To construct the tables we assumed that n = 5, i.e. that we have a polling model

with five stations, and that the service times and the switchover times follow exponential
distributions,
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We assume further that, if ¥ denotes the batch size and X,,; + = 1,2,...,5 the number of
type 7 customers in a batch of size m, then

1 !
Pr(Y =m) = —,  Pr(Xpi = kuy ooy Xpns = ks) = —pbt phe m=1,2, ...
o Tl k)
with by + ko + ...+ ks=mand p1 +ps + ... + ps = 1.
AR 0.1 0.2 05 1 2 5 20

A=0.1 1.47 0.95 0.66 0.60 0.64 0.90 2.45
0.2 | A=0.2 4.29 277 1.93 1.75 1.88 2.67 7.21
A=04] 110.49 71.27 49.64 | 45.59 | 49.54 | 71.07 | 189.81
A=0.1 3.12 1.81 1.05 0.82 0.78 1.00 2.53
0.5 | A=0.2 9.11 5.29 3.06 2.42 2.32 2.98 7.44
A=0.4] 23645 | 137.23 79.60 | 63.55 | 61.50 | 79.43 | 196.37
A=0.1 5.87 3.24 1.69 1.20 1.03 1.17 2.65
1 A=0.2 17.16 9.49 4.95 3.54 3.05 3.48 7.83
A=04]| 446.38 | 247.16 | 129.53 | 93.49 | 81.43 | 93.36 | 207.30
A=0.1 11.36 6.10 2.97 1.96 1.52 1.51 291
2 A=10.2 33.25 17.88 8.73 5.78 4.53 4.49 8.61
A=0.4] 866.25 | 467.03 | 229.40 | 153.35 | 121.30 |121.23 | 229.17
A=0.1 55.30 28.99 13.23 8.01 5.47 4.19 4.96
10 | A=02] 161.94 85.04 38.96 | 23.71 | 16.30 | 12.57 | 14.85
A=0.4|4225.18 | 2225.96 | 1028.33 | 632.29 | 440.23 | 344.17 | 404.10

Table 1: Values of I; for @ = 1.2, 9; = 2.0 and pi=02 2:2=1,2,...,5.

Table 1 gives values of L (-Ej), 1 = 1,2,...5) for the symmetric system (all parameters
are statistically identical for all stations). We have used the symmetric system so as to have
a clearer picture of the way in which our models affected from changes in the mean stay
period a; = 1/a;, and in the mean retrial time fi; = 1/u;, particularly when the arrival rate
) increases. In this table one can observe the large increase of I, when we pass from A = 0.1
to A = 0.2 and particularly to A = 0.4, an increase which is more apparent for large values of
i;. Thus, for a; = 0.2 for example, I increases from 0.95 to 71.27 when we pass from A = 0.1
to A = 0.4 in the case of i; = 0.2, while the corresponding values for fi; = 10 are 28.99 and
2225.96. This means that in such kind of models, we should be careful with the permitted
input. Sometimes, even small changes in the arrival rate, could increase dramatically the
number of the retrial customers in the system.

An interesting phenomenon here is the behavior of [, when we increase the mean stay
period ;. It seems that, at the beginning, when the mean stay period increases it helps the
retrial customers to find the server idle and to start their service, which results of course
to a smaller . This behavior continues until &; becomes equal to a critical value. From
this point and after any increase to a; ceases to be usefull for the system, on the contrary
it prevent the server to depart and to start serving in the next station and so L starts to
increase again and becomes large for large values of G;. Thus there is an optimal value, af
say, of @, a value with which we can achieve the minimal possible mean length L.

To observe in more details this optimal value of @; and the way in which it depends on the
mean retrial time fi; we present here Figures 1-4. In all figures we have used Mathematica
to plot L against &, using for all i, A = 0.2, @; = 1.2, §; = 2.0 and p; = 0.2. In Fgr.1, where
ft: = 0.2, we can see that the optimal value of @; is a¥ = 1.06 and min [ = 1.75. In Fegr.2,
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with fi; = 0.5, & = 1.66 and min L = 2.30, while in Fgr. 3 where the mean retrial time
increases to ji; = 2.0, @ = 3.2 and min L = 4.30. In Fgr.4 finally, i; = 5.0 and we have
at = 5.05, minL = 7.52. In all figures one observes a fast reduction of L, when &; increases

1 i
Fgr.l:E(retr)=0.2 Fgr.2:E(retr)=0.5
S
4
4.5
3.5
4
3
3.5
2.5
E(stay)
1 2 3
\4_// Efstay) 2.5
2 3 4

=Y
=

Fgr.3:E(retr)=2.0 Fgr.4:E(retr)=5.0

35
30
25
20
6 15

E{stay) 10 D E(stay)
2 4 6 8 10 2 4 © 8 10

Figures 1-4: Plot of L for A\=0.2, @; = 1.2, %; = 2.0, p; =0.2, i = 1,2, ....5.

W\ Ui 0.5 1.5 3 5 10 20
| Liy=| 036] 073] 129| 204| 3.92 7.68
Ly=| 071| 145| 257| 4.07] 7.82] 1531

0.2 |{I;=| 1.00] 210| 378| 6.02{ 11.62| 22.84
Ly=| 331| 6.93| 1240 | 19.71 | 37.99 | 7457

Is=| 4.01| 882| 16.10| 2581 | 50.11| 98.73

Ly=| 063| 1.22] 211 331| 629] 1227

Io=1 125| 242| 419] 655| 1247| 2430

06 |L;=| 1.78] 352| 6.15| 9.67| 18.46| 36.05
Ly={ 570| 11.39| 19.96 | 31.39 | 59.99 | 117.21

Ls=| 7.07| 1457 | 25.85| 40.91 | 78.57 | 153.92

Liy=| 954| 1740| 2920 | 44.93 | 84.26 | 162.92

Ly=| 18.69 | 34.10 | 57.22 | 88.05| 165.12 | 319.28
1.2 | Lz3=] 2743 | 50.10 | 84.13 | 129.50 | 242.93 | 469.80
Ly=| 84.70 | 155.17 | 260.91 | 401.91 | 754.43 | 1459.47
Ls = | 107.86 | 198.06 | 333.41 | 513.89 | 965.12 | 1867.58

Table 2: Values of L; for A = 0.4, i = (0.2,0.2,0.5,1,2), & = (0.2,0.2,0.5,0.5, 1)
and p = (0.05,0.1,0.15,0.3,0.4).

Xt
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from small values to this optimal value ;. From this point and after, L starts to increase
again, but in a smoother way now. The general observation here is that the first thing that
we have to do, if we operate a such kind of model, is to discover numerically this optimal &,
and to arrange the mean time we will allow the server to stay in each station, accordingly.

Table 2, finally, represents values of L; i = 1,2,...,5 for an asymmetric system now, with
A=04and = (02,020.5,1,2),a=(0.2,02,0.5,0.51), p = (0.05,0.1, 0.15,0.3,0.4), i.c.
a system with small values of the parameters for the first two and larger for the remaining
three stations. R

In this table one can observe the way in which the mean retrial lengths L; are affected
from changes in the mean service times %; and in the mean switchover times #; (we have
used the same value of u; and of v; for all stations). Thus, for v; = 0.5, [:1 increases from
0.36 to 9.54 when we increase the mean service time from 0.2 to 1.2 while the corresponding
values for the last station are Ls = 4.03 and Ls = 107.86 respectively. Similar observations
hold for changes in the mean switchover times.
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