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Abstract A  polling inodel  with  n  st,ations  and  switchover  tirnes is consldered.  The  custemers  are of  n

different types, arrive  to the system  according  to the Poisson distributien in batches of random  size,  and  if

they  find the server  unavailable,  they  start  to make  retrials until  succeed  to find a position for serviee.  Each

batch may  contain  customers  ofdifferent  types while  the numbers  of customers  belonging to each  type in a
batch are  distributed accerding  to a  multivariate  general distribution. The  server,  upon  polling a  station,

stays  there  for an  exponential  period oftirne  and  if a  customer  asks  for service  before this time expires,  the

customer  is served  and  a  new  
`fstay

 period" begins. Finally the service  times and  the switchover  times are

both arbitTarily  distributed with  different distributions for the different stations.

  For such  a  model  we  obtain  forrnulas fbr the expected  llumber  of  retrial  customers  in each  station  in a
steady  state.  Our results  can  be easily  adapted  to hold for zero  switchover  times and  also  in the case  of  the

ordinary  exhaustive  service  polling model  with  (without) switchover  tirnes and  correlated  batch arrivals.

In all cases  mentioned  above  (retrial model,  exhaustive  model,  switchover  times, zero  switchover  times) t/o
find the  expected  queue  lengths we  need  finally to solve  a  set  of  only  n  Iinear equations  (O(n3) arithmetic

operations  to compute  the coeficients).

  Tables of  numerical  values  aTe  finally obtained  and  used  to observe  the system  perfbrmance  when  we

vary  the  values  of  the paTameters.

1. Introduction
A polling mode!  is a  system  of  n  quetteing stations  accessed  by a  single  server  i.n a  prescribed

order.  1'ihis kind of  systems  has been proved useful  particularly to model  maintenance

processes, multiproce$sor  comput･ers,  communicaLion  networks  and  manufacturing  systems,

There are  maiiy  varietes  ef  polling rnodels  depending on  the service  disciplines (exha,ustive,
gated, limited et,c;.), the  existence  or  not  of  switchover  times between st･ations,  the capacit･y

of  the bulfers, the order  in which  the  server  polls the statkons  etc.  For a  compiet,e  survey

on  the earliest  works  in poiling s,v, stems  see  Takagi [26]. More  recentjy  we  have to mention

the works  of  Resing [221, Eisenberg [8], Srinivasan et  a,l [24] and  Alt,man &  Yechiali [2].
   .A.s far as  we  know, in all  sLudies  of  pollirig models  appeared  till now  in the Iitera,ture the

customers  are  assumed  to form, upon  arrival,  a  queue  in each  station  and  to wait  there until

the server  selects  them  for servicc.  ,Thus 
the  customer  in such  a  model  does not  have the

chance-  when  he finds, upon  a,'rrival, the server  busy in one  of  t･he stations,  or  performiiig a

switchover  time  - to Ieave the system  and  to retry  individually for service  la.ter,

   Queueing systeriis  with  ret･rial cust･omers  have Tcceived  considerable  atLent,ion  recently

and  are  widely  used  in compuLer  and  communication  net/works  and  in telephone  switching

systems.  They  are  characterized  by the fact that  an  arriving  customer,  who  finds the server
busy, leaves the systein  and  repcats  his demarid after  a  random  amQunt  of  t･ime. A  cornplete

descript,ion of  sit･uations  where  such  queues  arise,  and  extensive  rev{ews  of  the  earli ¢ st  work

on  Lhe. $ub.iect･  may  be found  in Yang  &  
i:emp]eton

 [27] aiid  in Falin [9], We  have also

to mention  here the works  of  Kulka,rni &  Choi [17], Falin &; Fricker [10], Grishechkin [14],
Falin, Art,alejo &  Martin [ll], Langaris &  Moutzoukis  [18], Moutzoukis &  Langaris [2I].
   Both kind of  rnodels  - polling models  and  systems  with  retrial  cnstomers  

-
 have been
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tised  separa,tely,  to moclel  compEex  situations  particularly in cominunication  networks.  Thus
in the field of  Loca,l Area Networks CLANs) one  caii  find a  llumber  of  models  handled as
polling s.v. stems  with  queued  up  customers  (Bux [6], Ferguson &  Aminetzah  [121, Fournier
k  Rosberg [13], Borst [,ll), while  ;m the  same  area,  various  models  wlth  specific  protocoJs
have been discribecl and  analysed  as  retrial  systems  with  a  single  stn,t,lon  ( Kulkarni [l61,
Choi, Shin &  Ahn  [7]).
   In t･he work  here. we  have tried to combine  these  two  characteristics.  a,nd  to studv  a,                                                             t v'
polliTig model  with  retriaJ  cust,omers.  Thus in t･he model  considered,  tbere are  n  t.v, pes oi'
customers  (one for ea,ch  sta,tion)  arriving  in batches of  raridom  size  (a batc;h may  c;oritain

custemers  of  all types) and  making  retrials  in each  station  uii{,il  they  find the server  avai}able.

There is only, one  server  who  polls the stations  in a  cyclic  order  and  stavs  in each  one  of

them  for a  random  amount  of  time  awaiting  for customers  seeking  service'.  
'I'here

 is finall.v
a  switchov(.'r  time when  the  server  passes from a  station  to tlie next.  For t･his model,  wc  will

describe a  method  to obtain  the  inean  number  of  retrial  customers  in each  st･ation  (alld the
mean  waiting  time, through, Little's formula, consequently,  ).
   An  iriteresting feature of  the approach  used  is that we  can  ebta,in  immecliatelv the                                                                       v

corresponding  quantities (queue length. wa,iting  time) in t,he case  of  zere  switchuver  times.
simply  by replacing  in the obtained  final formulas, Lhe mea,n  and  the second  moment  oi
the  switchover  time b.v･ zero.  Moreover by sellding  the mean  retrial  t･ime and  in the sequel
the mean  

"sta}r

 period" to zero  wc  arrive  at  the corresponding  formulae of  the ordinary

exhaust,ive  service  polling inodel  with  or  without  switchover  times and  correlated  bat(:.h
arrivals.

   The mean  queue  lengths (waiting times), in ali rnodels  described above  are  found, b.v
solving  finally a  set  of  only  n  linea,r equatiens,  while  Lhe number  of  arithmetic  operations

required  to derive t,he coeMcients  of these equations  is O(n3) or  less. Note that･, for the
exhaustive  (and gated) polling model  with  switchover  times and  single  independent arrivals,
Sarkar &  Zangwill [23] derived (using the  concept  of 

"system
 time") the expected  waiting

times, by solving  a, set of  n  Iinear equations  (for the variances  of  the cycle  times) too.
The mean  waiting  time in the corresponding  model  with  correlated  batch arrivals  has been
obtained  in Levy Se Sidi l19] as  a  solution  of  a  set  of  n3  linear equations  while  Bexma  [5]
derived fbr the same  model  a  pseudoconservatien la,w for the mean  waiting  times.

   The  paper  is organised  as  fo11ows. After the full description of  the model  in Sect･iop 2.
a  system  of  equations  satisfied  by the steady  state  probabilities are  obtained  in Sect･ion 3.
In Section 4 these equations  are  used  to derive expressions  fbr the mean  number  of  retria]

customers  in each  station.  The case  of  the exhaustive  service  polling model  with  correla,ted
batch arrivals  is investigated in Section 5. Finally in Section 6 numerical  results  are  obtainecl

for the retrial  model  and  used  to observe  the system  performance under  changes  in the values

of  the parameters.

2. TheModel
Consider a  system  consisting  of  n  iitfinite capacity  queueing stations  &  i =  1,2, ,,.,n ar-
ranged  in a  cyclic  order.  There is only  one  server  who  visits  the stations  in a  prescribed
cyclic  order  Si, S2, ･･･, Sn7 Si, S2, ･･･

   Customers arrive  into the system  accordiog  te the Poisson distribution with  parameter
A in batches of  random  size.  Each batch may  contain  customers  of  different types ]l:  i =

1,2,,..,n and  a  U  customer  asks  alway.  s for service  at  the Si station.  If we  denote by Xi
t =

 1,2,...,n the number  of  R  customers  in an  arbitrary  batch, then  we  define

             g(x) =  Pr(Xi =  xh  Xlt ==  x2,  ".  X.  =  x.),  g(O) =O

G(z) =  21 g(x)zX,
      x)o

gj =  i!SI.SFiij lz=iigij' =  :.fll }jexi lz=i7gl.2) =  QIIdSS!i. Iz :i,

        t
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whcre  in general x  ==  (xi, ;x2,..,,x:.)  ancl  zX  =  :-･fiN, 2"2...kA･,//n.

   If an  arrivlng  batch of  cttstomers  finds the scrvcr  in thc Si station  and  idle theri one  of

the  .Pt customers  of  the batch (if any)  commences  servicc  imrnediately and  the remaining
fli customers  j' 

um-
 l,2,...,n join the  eetrial group of  the SJ･ station  respectively  and  seek

for service  individually after  an  exponential]y  distributed (p'arameter ttj- for the Sj station)
amount  of  time.

   Ii' an  arrivii'ig  bak:h finds the server  either  busy in onc  of  the stations  or  performing a
switchover  time  then  all  customers  of  the  ba,tch .ioin the corresponding  retrial  groups.

   1]]he server  upon  polling a  station  stays  thei'e l'or all e,xponeiil,iai  a,iTiount.  of  Liinf] (pa-
ra.ineter  aj- for the  S'j station).  If a, customer  arrives  (either frorn outsidc  ur  fi'oni the. rctrial

group) beforc this time  expires  then  the  customer  is served  and  afterwords  a  new  exponen-

tial 
"st,ay

 period" begins, XVhen for t,he first, time  t,he "stay
 period" ends  before an  arrival

occurs,  t,he server  switches  to the next  st･ation.  A  switch  from one  station  t･o another  always

requires  a switchover  tltne,

   The  serxrice  tiine of  a  customer  in the Si station  is distributed according  to an  arbitrar.v･

distribution with  distribution function (D,F) q･(x), probability density function (p.d.f.)
eii(:")  ivith  finiLe TT]ean  tli aiTd  second  ntoTneTiL  t-t,<2> while  the server  swit,chover  t,iTne between
thU (i -  l)th' aTid  itiL st,at,ion is assuirted  Lo be a]so  arbit.raril.y  dist/ributed with  I').F. T･fl'(:r.),

p.d,tl v,(.e) and  finite mea,n  e, and  second  moment  thl2} for all ･i -- 1, 2, ,.., ･n , All the processes
defined above  are  assnmed  to be indepcnde,nt t,o each  other.

3. System  State Analysis
We  will  start  our  analysis  by considering  firstly a  rnore  general Tnodcl  with arbitramily  dis-
tributed "stay

 periods" instead of  the exponent/ial  ones.  T}nis wc  assuTne  LhaL Lhe "sta]y'

period" of  the server  in station  ,S  i =:  1,2,...,rt follows a  geiieral distribntion with  p,d,f.
bi (t), I).F. Bi (t) ar}d  

'finite
 mean  bi,

   Let now  Li,(t) be the number  of customers  in the ret･rial group of station  Si (the olle in
service-if  any,-is  not- included) at  time  t, and

                           IL Ct) =  (Li (i), L2 (t), r･･? Ln(t))･

I)efine

c(t) =iicivi

if the server  is working  in Si at  t

if the server  is staying  idie in Si at t
if the server  is switching  from  Si-i to  Si at  t,

and  let･

              pi(k,x,t)dx  =  Pr(e(t) ==  li, L{t) =:  k, x  <  Ui(t) S  x+  d:r)

(3.1) g,i(k,x,t)d[v ==  PrCC(t) ==  ci,  L(t) ==  k, x<  Iill,/(t) fx+dx)

              di(k,x,t)dx =  Pr(C(t) =:  vi,  L(t) ='  k, x  <  Vi(t) g x+  dx),

where  Ui(t), Bi('t), Vi(e) are  at･ t, the elapsed  service  time, the elapsed  
"sta,y

 period" and  the

elapsed  switchover  time  respectively.  It is easy  to see  that for x  >  O and  for all  i T- 1 
,
 2, ..., n

                                                        k

   p,(k,x t  d{c,t+ dx) =:  (1 -  Adx -  a,(x)dx)p,(k, x,  t) +  Adx Z  g(k -  m)p,(m,x,t)

                                                       m=0

             qi(k, :: + dx,t +  dx) =  (1 -  Adx -  bi(::)d:: -  k:iitidx)qi(k,x,t)

(3.2) +Ad:rr tt g(m:-)qi(k-m:-,Mit)
                                   m;  -- [)
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                                                           k

          di(k,x +  dx ,, t +  dx) -= Cl -  Adx 
-
 
･Oi(x)dx)di(k,

 x,  t) +  Adx Z  g(k  -  m)di(m,x,  t),
                                                          In=e

       where  we  use  m'i =  (rn･i,...,mi.i,O,m,i+i,..,,m.) and  for any  p.d.f. f(t) with  D.F. F(t) we

       denote by f(t) t,he age-specific  failure rate  i.e･ f"(t) =]  T/.{SSIiTF(,) -

          For x  ==  O finallv

                        k

       C3･3) pt (k, O,t) ==

 A 
.

£
=,gCk

 
-
 m+  li) .LOO qi(m,x, 

t)dx +  (k, + 1)#, Y[oo g,(k + li, m,  t)dx

       (3.4) q,(k, o,t) :=: y:OO pi(k,x, t)a,(x)dx +  
.lgOO

 d,(k,x,t)D,cx)dx

       (3.5) d, (k, 0, t) =  
,1[I
 
OO

 gi thi(k, x, t)B,"i(x)dx,

       where  we  denote by li the n  dimensional  null  row  vector  with  a  uRit  in t･he ith position and
       of  course  if i =  1 then  i -  1 =  n.

          Remark:  If we  put vi(x)  =  tA,i(x) !  6.o, where  6.o is Kronecker's delta, in (3.4) and

       replace  the second  integral of  the right  hand side  (which becomes now  di(k,O,t) ) with  the

       integral in (3.5), t･hen it is easy  to see  that the first- two  relations  in (3.2), relation  (3.3) and

       the new  re}ation  C3.4) describe in fact the model  with  zero  switchover  times. Note that in
       this case  the probability di(k,O,t) in (3.5) corresponds  to the poiiit- in time  at  which  the

       server  polls station  i,

          Assuming now  that a  steady  state  exists  and  defining
                                            '
                                         co

                               R'(Z,X)=k.£
o
 ,l!m.pi(k,x,t)zk

                                         oo

                               Qi(Z,M) 
=ki.,

 ,Iim.. gi(k,x,t)zk
                                         oo

                               
Dt(Z,X)

 
=:

 
kl.2o

 ,ttm.. 
dKk,x,t)zk,

       we  obt･ain  from (3.2)

                          og(z, x)
       (3i6) o. 

+[A(1-(;!(z))+ai(x)IA(z,x)=O,

                 '

       (3.7) 
a(2b(:,

 
x)

 +  pa,., 
a(?s(,z,,x)

 + [A(1 -  (?(.l )) +  b,(.)] (?,(., .)  =  o,

                         ODi (z, x)
       (3･8) a. 

+  [A(1 
-
 (]t(z))+abi(x)IDi(z, m)  

=:

 O.

         Differential equations  (3.6) and  (3.8) can  be solved  imniediately and  give

       (3.9) a(z, x)  ==  ,e (z, O) exp{-(A  -  AG(z))x -  y[X QKy)dy}, i= 1,2, -.n

       (3.10) Di(z,x) =  Di(z,O) exp{-(A  -  AG(z))x -  Y[X O,(y)dy}, i ==  1,2, ...,n,

NII-Electionic  Libiaiy  
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while  to handle equation  (3.7) we  have to consider  (Gross &  Harris [15],p.115 ) the system

                      dz, d. dq,
C3-ll)

 ps,,, 
=

 
-i-

 
=-[A(1-G(z,*))+ai(x)Ri'

   By  solving  this system  in the usual  way,  we  arrive  at

         .", =  [Je":X, (?i(z,x) =  Vexp{-(A  -  AG(z;))x -  y:= B,(y)dy},

where  U  and  V  are  constants.  The generai soiution  of  (3.7) is now  of  the form V =  F(U)
i.e.

              ei(z,x) -:  F(z,e-"'ev)exp{-(A 
-
 AG(zl ))x -  JCX 3,(y)dy}

and  so by putting x  =  O in the above  equatioll  we  obtain  the unknown  function F  as  F(w)  =

{?i((Xi7 --･? Xi-b  W?  7i+t,  ･･･, `vJ.),O). Thus  finally

(3･12) Qi(z, x)  =  ei((xi, ･･･, zi-i,  2ie-"'",  z,+i,  ..., x.),  O) exp{-(A  
-
 A( 

'(z,*))x
 
-
 y[X 8,(y)dy}.

   To  find now  the unknown  quantkies in (3.9), (3.10) and  (3.12) we  will use  the boundary
conditions  (3.3)-(3.5). Let us  define

(3.13) Q,(z) -:  L"O e,(z,x)dx,

Then  from (3.3) by forming the generat.ing functions we  obtain  after manipulations

(3.i4) iti 
OQa't(,Z)

 +AG'(Z) i, 
G(Zz"'

 
)e,

 (z) =  Ri (z, o), i=  i, 2, ".,n

while  from (3.4), using  (3.9) and  (3,10)

(3.15) e(z, O)u,*･ (A -  A(](z)) +  Di (z, O)v,'･ (A -  AG(z)) =  Oi (z, O),

with  u,'(･), v,'(･) the Laplace transforms (L.T) of  u,(･),  v,(･)  respectively,  Finally from  (3.5)

(3.16) D, (z, O) =  Loo O,-i(z, x)3i-i(x)dx,

   Let us consider  now  the generating function Qi(z). By  substituting  Qi(z,x) frorn (3.12)
to (3.13) and  evaluate  the integral we  arrive  at

(3-i7) Qi(z) -=

 i?
"

I
O

I..i,
i-k:'

 X-,;,A(.G::Zil/)kl.ikpsi)gi(k,o)zk,
with  b:- (･) the L,T. of  bi(･). In a  similar  manner  (using (3.12) again)

(3.ls) y[Oe (?,(.,.)a,(.)d. 
=

 
,EO=

O

,
 b:. (A - AGcz;.)+ fo",)g,ck,o)zk.

   From  (3.17) and  (3.18) we  obtain

                            '

(3.lg) pa,.,aeo,t(,z) + Ao  -  G(.;. ))e,(.) ..  Q,(., o) - y[oo e,(.,.)s,(.)d..

NII-Electionic  Libiaiy  
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Substituting fillally Qi(z,0) and  F}(z.O) fruin (3.19) and  (3.14) to (3,15) and  using  (3.16).
we  arnve  at,

      tti(-xi 
-
 u:･ (A -  AC?(z))) !ftlitYliZ) +  [A -  AG(z,'. ) -  AG(Z)ii. 

]i(Zt"'
 
)u,*.

 (A -  AG(z))]e,(z)

(3.20)
                      =  Di(z, 0)v;(A -  ACI(z)) -  Di.i(z, O).

   A  Modified  Model:  Let us  consider  now  a  different 
"sta,.v･ing"

 policy in which  the

server  is not  allowed  to repeat  t,he "st,ay
 period" each  time  a  custorner  completes  service  but

now  the total tinie he is allowed  to spend  in an. idle mode,  from the inst･ant he polls the
station  until  the instaiit he leaves it, is an  arbitrarily  distribtited r.v.  with  p.d.f biCt) and

D.F, Bi(t) for t･he ith station  respectively,.  Ill this case,  let us  replace  the first and  sec6nd  of

C3.1) by

   pl(k,y,x,t)dxdy =  Prle(t) =  ti, L(t) =  k, y <  BI,(t) f{I y+  dy, x  <  ZTJiCt) E{ x+  dxl,

   gl(k,y,x,t)dxdy  =i  PrlC(t) =::  ci, L(t) ==  k, y <  i]"C(t) gy+  dy, x  <  Bl-'ct) Sx+  dxl

where  now  Bl (t) is the  totai time  the server  already  spent  in an  idle mode  before commencing
his more  recent  serxrice  alld  Bl･'(t) is the elapsed  

"stay
 period" counting  from the last epoch

the server  becomes idle. If now  we  repeat  the previous analysis  then, for :u >  O, we  obtaiii

(3,21)

PY(z,y,x)

D;. (z, x)

:=: fl'(z, y, O) exp{-(A  
-
 AG(z))x 

-
 
.1:X

 tl,(w)dtv}

==  Dl(z, o) exp{-(A  
-
 Aa(z))x -  llX bi(y)dy}

 QI･(z, y, x)  
=

 Q;･((xi , ..., xi-i,  xie-"'`",  xi+i,  ..., x.),  y, O) exp{-(A-A(](z;･  ))x-LX 3i, (y+?i)du},
while  from the boui]darv condit･ions

                   :

               ",,OQo
'

;C,z) +  A(;'(z) i.,G(z:' 
)e:.(.)

 -=  ny(z,o)

               q:(z,y,O) -=  nyCz,y,O)ttl(A-AG(z)), y>O

(3.22) (21.(z, O, O) -  PI. (z, O)v] (A-AG(z))

              Dl(.,o) =  y[OC 
,LOO

 Q:-,(., y,.)Si-,(. + y)dxdy.

with  Qi(z) i  J6'O jl?O 91(z,y,x)durdy, ny(z,O) i  J190 jll'(z,y,e)dy.  If now  we  write  for Q:-(z)
and  Jli" ff Q[･(z, y,x)bi(x+  y)dxdy  expressions  similar  to (3.17) and  (3.18) we  arrive  again,

a,fter manipulatioiis,  at  the basic :elation  (3.20) (with e:(z), Df(z,O) instead of  Qi(z),
D.(z,O) respecLively).

   Note here that- from the second  and  third  of  (3.22)

el-(z, 0) .-. L'O C2I･(z,y, O)dy -=  Dl (z, O)v,'- (A -  AG(z)) + ny(z, O)u,'- (A -  AG(z))

which  is C3,15). Comparing (3,21), (3.22) with  the corresponding  relatiens  in the original
model,  orie  realizes  that t･he differ'ences between the two  models  Iie in fact in the formulae
giving Ql-(z,y.x), Dl(z, O), where  the term  B.Cy+ ･) does not  allow  a  simple  lntegraSion with
respect  to y. It is now  clear  tha.t if we  assume  exponential  

"stay
 periods" then  this term

becom¢ s a  constant  arid,  as  it, is expected,  the two  rnodels  beceme  cornpletely  equivalent.
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   Exponential  stay  periods: Let us  assume  now  that bi(t) =  aie-ait i.e. we  assurne

exponential  
"stay

 periods". In this case  from  (3.9) and  (3.10) we  obtain

(3.23) 7s,(z) =- ,? 
OO

 e(z,m)dm ==  "(z.o)i 
-

 
'it:EtAA-GA(,G)(Z))

(3.24) b,(.) ,, jlOO D,(,,.)d. 
-m
 D,(.,o)1 

`

 
?Kt'-(AA-GA(.G)(Z)),

while  frQm the boundary coiiditions  (3.l4), (3.16) we  get

                      G(z) 
-

 G(z:)             0q,(z)(3･25) Lti o., 
+A  ., 

Te,(z)

 
=

 
I?i
 (z, O), i=

 
1,
 
2,
 
".,n

(3.26) Di(z,g) ==  ai-iei-i(Z)-

Substituting finally frorn (3.26) to (3.20) we  a,rrive,  for all i ==  1,2,...,n, at

     pai(zi -  u:･ (A -  AG(z))) al.Yi, +  [A -  A(;r(z: ) -  AG(Z):G(Z;)uxA -  AG(z)) +  ai]e,(z)

(3.27)
                          =  ai-iv,"- (A -  AG(z))(?i-i(z)･
                              '

   Note. that, as  one  can  see  from (3.21), (3.22), relatioiis  (3.23)-(3.27) are  also  satisfied  by

ny(z), Ql･(z), O;･(z), where  PY(z) ii JIS'O J80 .l]V(z,y,x)dydx.
   Note also  that by putting v;(･)  =  1 in (3.23)-(3.27) we  obLain  immediately the corre-
sponding  fomnulae for the model  wit･h  zero  switchover  times.

4. Mean  Queue Lengths  in steady  state

IVe wi]1  1,ry here to derive expressions  for the expected  number  of  retrial  custorners  in each
station  for the case  of  exponential  

"stay
 periods",

   Before starting  our  analysis  we  will  obtain  a  necessary  condition  for the stability  (bound-
edness  in probability of  the total a,mount/  of  work  in the system  at  any  time  t ) of  our  model.

].et us  define 
'

                                                      n

                 pi =  Agiii, i=  1, 2, ...,  
'rt
 , p= £ pi,

                                                     ･i=1

thell

Theoreni  4.l A  necessa,ry  condi(,ion  for stabilit,y  is

                                   p<L

   Proof: The  proof follows the steps  of  t,hat in Theorem  3.1 ill Altma,n &  Levy [3].
Suppose that our  syst･em  is stable  and  p 2  l. Consider, as  an  alternative  system  (System
O), t,he ordinary  exhaiivtive  sarvicc  polling i'riodel  witheut  switchover  periods. System O is
a  systeiTi  wit,h  greedy  <t,he servcr  i'ievc',r idles at  a  nonempty  queue) and  exhaustive  service

policy  and  onc  caii  easily  understand  (sce. .Liu &  Nain [20] ) tha,t'･ at  every  moment  t the
amount･  of  unfinished  work  at  this system  is less than  or  equal  to that of  our  original  retrial

model.  Moreover it is known (see for exa,mple  Altman  et al [1] ) that a  necessary  (and
suficient)  condition  for the stability  of  Systern O is p < 1. 

'1ihus,

 for p }l 1, t,he amount,  or

work  in Syst,em 0 conve,rges  in clist,vibi]i;ion  to in£ nity  and  this is true consequently  for our
original  retrial  model  too. It contradicts  of  course  to the hypot･hesis that the retrial  model

is stable,  and  t･his proves the  theorem.

   Frorn here on  and  all through  the following sections  we  wil}  assume  p<  1. We  continue,

the analysis  pruvii'ig the following lerrima.
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 Lemma  4.1 The  generating functions ]F2(z),Qi(z),Di(z)  at  the point z  =  1 are  given by

 (4,1) R(1)=pi

(4 2) Qt(i) ==

 a, z)x.i,i.P+E})

(4 3) D,(i)= 
£ z:t((iv.

-

 +P),l:,)

   Proof: We  will  prove the lemma  under  more  general assumptions  on  the $ysteni  char-

 acteristics  using  arguments  similar  to that used  in section  5 of  Altman  et  al [1].
   Let us  consider  the inore  general model  with  arbitrary  stationary:  total stay  periods,
 switchover  times, interarrival times with  batch arrival  rate  A (gi is the mean  number  of  R･
 customers  per arrival)  and  service  times with  mean  ai for the  ith queue. Suppose also  that

 the workload  is $tationary  and  that the model  admits  a  steady  state,

   Let finally ... <  TLi <  [Ib (  O <  71 <  71] <  ... be the time  epoches  the server  arrives  at

 queue 1, N(t) the point process that･ counts  the  number  of  these arrivals  until  time  t, PO  the

 Palm  probability related  to N, EO the expectation  with  respect  to (w.r.t.) PO, u  >  O the

 intensity of  N(t) and  C. -:  7},+i -  [l}, the n`h  cycle  time. We  assum'e  that the cycle  times

 are  stationary  and  ECo  <  oo.

   The  slope  of  the workload  Wk(t) in queue k at  timetis  equal  to -1  if the server  is

 working  in queue  k a,t t and  equal  to O in all  ot,her  cases.  
'Thus

 using  Miyazawa's rat,e

 conservation  principle and  observing  that the mean  magnitude  of  the jump of  i"(t) is gkak,
 we  realize  that

                    U(1) : P(e(O) =  li) ==  
-li]IIi}+(O)

 -  Agiai,

 where  C(t) has been defined in page 3 and  Wl+(･) means  the right  derivativeof IVI (･). Thus
(4.1)     holds.

   Define now  the sequences  {aA}, {7h}, {6A} m  =:  O, 1, 2, ... where  ah,  orh is the time  spent

 by thg server  at  the mth  visit  to queue  i, in a  busy mode  and  in an  idle mode  respect･ively

 and  6S, is the switchover  time between (i -  1)th and  ith queue  (at the mth  visit  to queue i).

 Following t･he st･eps  of  Proposition 5.2 ill Altman  et  al [1] we  arrive  easily  at

          p:(1) 
=  p(e(o) =  li) -  uEOa6,  ei(1) =  p(e(o) =  ci)  =  uEoors

 (4.4) Di(1)-p(e(o);vi)-yE066

 But the cycle  time Co can  be writ･ten  as  Cb =  El=,(ag +  or6 +  6g) and  as  uEOCb  ::= 1 we

obtain

(4.s) "=  
£ ,n=,(iory

-

,t
 
P+
 Eo6G)'

Using (4.4) and  (4.5) we  arrive,  in the case  of  our  original  retrial  model,  at  (4.2), (4.3) and

the lemma  has             been proved.

   Define now,  for all i =  l, 2, ,,,,n

     L,R･ =  E(L,;C=  ti), L9' =i  ,E](L,i;g  =ci),  L,D-'= E(L,;C-  vi),

where  Lti represents  the number  of retrial  customers  in station  j' (in a  steady  state)  and

C =,ttm..
 e(t) is defined in page 3. Let also  R,j ==  Ag,-(l + a,ti,  + AaiTD with  xi  =  (1 -  C(1,')).

We  shall  prove the fo11owing

NII-Electionic  Libiaiy  
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[rheorem  4.2 The  mean  numbers  of  retrial  customers  LjQ',LJD;. i,J' =  1,2,...,n are  given
by.

                         (1 -  p)x,               A
(4'6) 

LS'g'
 

=

 
-L,-,
 [9t 

-
 ., z] ;,=,(v,. + E},;,)]i 

i==
 
1,
 
2t
 
''',
 
'e

(4･7) LjQ' =

 [ii' L9S + ll; 
,.;,.,(Agslaa.LSI'"

 +"i.R."Zj c-2i(1)), 
i'j'
 

=i

 //2J., 
-""

(4.s) L.Dit= fiiai-,L9, '-i  + 
)`g'I

-

l"5'2) aic?i(i),  i,j' -- 1,2,･･･,n

where  qi(l) is known from (4,2).

   Proof:B.v putt.ing z  =  1 in C3,27) we  obtain  aiC2i(1)  =  ai-iC?i.i(1)  or

(4.g) Qi(1)= g' c?i(1), i=  1, 2, ."n
                            ai

while  from (3.23), it is easy  to see  that

(4.lo) R(1)=a,R(1, O), i=  1, 2, ".  n.

Then  from (3.25) using  (4,10) we  obt･ain

(4.11) A(1)= tiilaL9･'+ AaiTi c?' ,(1).

Using finally (4.1),(4.2) in (4.II) we  arrive  at  (4.6) easily.

   Differentiating now  relation  (3.27) w.r.t.  xti (j' 7E i) at  the point z  =  1 we  obtain

(4,12) -  AIiigj u-,Ll  '
 + a,L9'  -  a,-iL9t-i  =  Ag, ll +  a,V{  +  Aa,r,iC>d(1)

                                        i,j'=1,2,...,n, i4j'.

and  so  by putting J' -  k instead of  i in (4.12) we  arrive  at

(4.13) L9,.j-k =  
"j-h-iL,Q.J-k-i

 + 
1
 (Agip,-ha,,-kL91Rk +  

"iR･iLh"

 (L?,(1)).
                 aj-k                               aj-fo                                                       ap･mle

Putting le ==  
-1

 in the above  relation  we  obtain  (4.7) for i =j+1.  Putting k =  
-2,

 and

using  (4.7) with  i- =  j' +  1, we  obtain  (4,7) for' i =  j +  2, It is clear now  t･hat we  can  obtain,

in the same  way,  relation  (4.7) for all i, j' 
--

 1,2, ..., rt, i fi
   [[b derive finally relation  (4.8) we  will  use  (3.26) and  (3.24). Thus  from (3.26)

                  
aDs(.Z,,O)

 l...,- a,-,e9S-.ij(Z)  1.=,= a,rm,L9- 
t-i,

a,nd  it is easy  to see  that

     
b"t"(A

 o-,,AG(Z)) 1...,= Agj ,J,, 
02V;

 
(Ai.?AG(Z))

 1..i= A2g,2' fi52) + Aoig52)･

By  taking now  derivatives in (3.24) we  obtain  (4.8) and  t,he theorern has been proved.

NII-Electionic  Libiaiy  



The Operations Research Society of Japan

NII-Electronic Library Service

The  OpeiationsReseaich  Society  of  Japan

498  CLEm.oai7's

   To finish our  analysis  we  have to evaluate  Ljl =ge.,  
)
 lz=i . Y]rom (3.25),

                           o2ei(z)            oe(z,o)                                                     eo,(z)(4･14) o,,, lz=i=p`i o.io,., [z=i+AzvijOi(1)+A7rt o., Fz=i?

where

(4 ls) wij =(  g, -gSGo
-(.z,;rr)i

 1.=, ;7=4 2Z

By taking now  derivatives in (3,23) w.r.t.  zj at  z  =  1 and  using  (4,10) and  (4.1) we  finally
arrlve  at

                                                    Ag,aS･2)p,(4.16) 
L,Pi

 
--
 pait-t,Llj'+AaiT,L9-:+Aa,w,j-9-t(i)+ 2ti, 

:

where  LS･ji =  
ll;.S5!iT2,a.,

 fz..i . [I]hus to evaluate  Lsl we  lleed  the n2  quantities LSti' for all

i,j' -- 1,2,...,n. We  will  try to find them  in the sequel.

   Different･iating relation  (3.27) twice w.r.t.  2i at  z ==  1 we  arrive  at

(4.17) [2pi(1 -  pi)+ad  Lfftt -a,miL9t'mi  =  Hi (i), i=  1,2, ･.･, n7

with

(4･isYii(i'=!Z".:.,i;
';,k".2

:.;g;tt1.",zagP/s7er.',"..3gg,s(?l'LL:･1,1,2f,g.l,Sf`kik,:･iJ,i,,',-[,,i(f52'
while  by differentiating (3.27) twice w.r.t.  z,･ (j l i) at  z  =  1 we  obtain

(4.19) 
-
 2",Ag, EiL9･j' +  a,LZ-'  

-
 a,niLS-,･i-i ==  ll2(i,j'), 

i'j
 i // /.""' 

'rV

 ,

with

c4･2o)ff2(i'j)==.',"5,i,;i//,aii
'l','.i..Si.gfZ'

,),L,//ILr3,2i)g;.;i,:-l",/"-?'3,L.

Q,,",,)2i//;..i}g,gS-

]z,L,-;

q

(;)

i

,

   If now  we  put j' -  k instead of  i in C4.19) we  obtain

(4,21) aj-kL,Q･,-"-" =  2A",-kg,a,-kL,Q･ #,"･ +  atirkTiL;,--  
k-i

 + "2 (j' -  k, j'),

                               k =  l, 2, ,",.i -  1, J' -  n,  j' -  n  +  1, .", -l.

Summing the above  equations  for all  k and  adding  the result  in (4.17) we  arrive,  fer all

i =  17 2: ."i n7  at

                             n n

e.22) 2ti,LS,' 
-2Ag,

 E  pt,. i-L.LaT  =  ffi (i) + 2  ff2(m, i),
                            vn=1  7n=1

                                                 rft\i

which  are  the first n  equations  in the n2  unknowns  L9Jt, [l]o derive the remaining  (n -  1)rt
equations  we  will  tise  a,gain  relation  C3.27). Differentiating twice (3.27) w.r.t.  i,/ and  ij'

(i f j') we  get,

(4･23) Ips,(1 
-
 p,)+  a,]L,O,t 

-
 p,Ag,-u',L9,'- ai-,LF,'"i  i=  ",(i,2'), 

i,j
 i 

lf,
 
2jr''"
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with

     H3(i,.D =  [pti(A2g,g,,¢･2) + AE,yi,) +  Ag,(1 + ATiu-,)ILI 
t

 +  ACTvii +  T,p,)L9t

(4.24) +ai-  Azrr,, (g, L,Qt-i + g, L9'-i) +  A[gi, (1 + ATi u-, +  a, fi,) -  w,,(1  -  pi)

              +Agig, (Ar,fiS2) +  a,v,(2)) +  iviiAg,  ?-,,] e,(1),
while  differentiating (3.27) twice w.r.t.  :s･ and  2k  <J' 7C k l i) we  obtain

(4.25) 
-
 paiAg,uiL:kt 

-nAgptiL,(jt
 +aiL9,t 

-ai-iL,Q,r-i
 =  U4(i,p', fo), 

i'j',t
 
ki,t-J,

 ?'k''n
with

        H4(i,J', k) =  Apt,(Agkg, 
'a52)

 + ?-,,g,k)L9'  +  A(l +  ATiu-i)(g, LPt + g,L,Q. 
')

(4.26) +Aa,-iij,(g,Lff"-i+gkL,ep"i)+A[g,k(1+ATiu-,+a,Oi)

                   +Aa,(wtjsh  +  w,kgj  ) +  Agkg, (ATii'S･2) +  aiv52))]e,(1).

   From  (4.25), by puttillg k -  r  instead o'f i, we  obtain

     ak-.L:l,kLr  :=:  AFtkH.itk-.(g,-L2fi;k' + ghLllli;,T) +  ak-.hiLSI,kir-i  +  H4(h -  r, j', fo),

                                      r  =::  l,2, ..., k-  j' -  1.

Summiiig the above  relations  for all r and  adding  the result  in (4.23) we  arrive  at

                                           ･i-l

(4.27) [u,(1 -  p,) + ai]L9,'  -  ttiAg, a,L9,t -  ai  L.Qii' -  A E  pa.a.  (gi LM  +  gtiL2? )
                                          m=tl+1

                       z-1

            
=Hh(i,1')+.;,.,

 Hli(m,j',i), 
ii
 
J'
 
'-i

 // 2j? -･"n.
with  Z]lIrmli A.  iii O fbr any  quantity A.. Equations (4.22) and  (4.27) constitute  a  system  ef

n2  equations  from which  the n?  unknowns  L9]t i,1' -- 1,2,...,n can  be found.

   From  here on  we  will  t/ry to make  the computations,  required  to derive LjP- , simpler,  by
reducing  the number  of  equations  in (4.22) and  (4.27). Let us define
               n

          Nl =  2  pa ,,,am  L2:･', Aij =  pap' (ai + pai(i -  pi)) +ajpi
              m:=1

                                i-1  j-1

(4.`28) Ki,･-H,(i,j')+lig(ii)+ 2  IL,(m,,J',i)+ Z  H},(m,i,]')
                               nL=.i+1  m=:i+1

                                       '                                                  '

          aj =  
Agg

 
'ai
 (H, (i) + Si] ffle (., i)) +  H, (i, s･) +  Siiii u, (m, j', i)

                 
"

 
'rn=1

 m=j+t

                            m\i

       A41j =
 psiai(pa,-I'i,- +  ajKiD,  K･,･ :::  psj,-t,-[(k(1 

-
 pb  +  ai)Ki,･  

-
 paiaj],

and  collsider  the two  sets  of  indices A.=  {(k,i) : k =  1,2,･･･,in(Z!'i!-i), i ==  172,･･･7n}7

   =  {(k,i) : k: u- 5', i =  1,2,...,g, n  even}  where  in(rn) means  the integer part of' m.BnConsider
 also  for all  (le,i) c A. U B. the recurrent  relations

      hS･L'Z 
k)

 :=  A,l-,  [c;,-k +  ptigti-k(A?-t,g,Tk 
...l

£1'k+, hSl','/Z) + p, 
.//

£

-,i-.

 hl･Z";i-k} )]

      h5Zk") =:  A,l-, [d:,-h 
--
 ;tipti-h(pi-k 

.=',Elrk+,
 hS-fli;t) + Ai,,Tkg, 

./"

£

-,`-.

 hS'r";i-k) )]
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(4,29)

where

c:･,---

Note here
T=  3,
  z-r

  £
m--i-k+1

hSi,i

 Ag･iu-igj･(ao･ +  psjpi) r  ==  O

      pipiai r=k  ,

        O otherwise

   that the indices are  inoving  iu

 k ==  5 then Lti-r !i Pt-2 i  ILn-2

 hl,-M;i) i! St' hgM7i) i, hY･i) +  hg8,i)
        m=-3

hSi,i-k)

hSe-k,t)

) EO,

                    C  Lairgaris

                               r=O,1,2,

                          t-1

 
=

 A,l-, [M}i-k +  
Atti-klttai

 
.=i-k+,(gi-fohSM'i)

                           t-1

 
=

 A,l-,[}';i-k-ALttt`i-kai-k..,Z.k+,(gi-khSMiO

Ei;-i-!iA,. ii O for all i and  fbr any  quantity A.,

d:.j =

cyclic  order,

=  St8, Pi-k

and  so  oR.

H.k

+g,h8mTi-k) )]

+ gihSm･t-k) )],

           and

 ptj'pj'(pm+ai-2piliD r=O

Agi itji' 
,'(ssi(1

 -  pi) +  ai)  r  =  k

         O other'Tvi,se.

   i.c, if for example  n  =  10, i =  1,

  Ei ps6, a,-k E  a6, hSi:t,Lk) i  hgl,6),

   Remark:  Fer k =
 1, one  can  easily  see,  that all sums  in (4.29) are  empty  aiid  so  the

quantities h!"') are,  for le =  i and  all i, r, completely  known. Using these quantities in (4.29)
again,  we  get irnmediately the h!':') 

's
 for'k ==  2 and  all i, r (each sum  has now  at  most  one,

completely  known, term  ). Continuing in the same  way  we  obtain  recursively  the qttantities
h!'") for all k, i, r. Let us  denote now  the sums  as

                        t-r  ･i-1

(4,30) eSk)(i,r) ii 2  hi･Il?t), eSk)(i,r)i Z  hS-Ti.'`-h).
                      m=:i-h+1  mh-i-r

lrhen the sums,  appeared  in (4.30), have together no  more  than  fo (g in(:)) terms  and,  it
is easy  to see  that, fbr al1 i, r,  fo

         eSk)(i, r)  =  eSfo-i)(i, r)  +hl･t' 
-.(k-i)'

 
'I,
 aik)(i, k) =o

         aSfo)(i, r)  ==  eSk-')(i -  i,r -  i) +  hE,tr,?1 (giJ,'l-(lemi)], eSk)(i, o) =  o.

Thus when  we  pass from k -  1 to k in (4.29) we  need  in fact･ to perfbrm  only  one  addition

(of two  completely  knewn, from the case  k -  1, terms) to construct  the new  sum  E!k)(i,r).

            to calculate  each  h!"') in (4.29) we  need  to perform  at  most  seven  mult･iplica-Consequently,
tionldivisions and  four additionfsubtractions  and  so  the number  of  arithmetic  operations

Tequired  to obtain  all h('") is O(n3) or  less. Similar observations  hold fbr hS"') where  now

the number  of  arithmetic  operations  is O(n?) or  less.

Define finaily

et=(

then
    'Th
   eorem

(4.31)

in(g)in("ii

4.3

      n

L,P, ii £ L,i-l and
     t±1

     i =  1, 2, ..., in(

) i=in(})+1,..

For our

L,P

z2.1)n)

e-t= (in("i'L)in(-:) i =  1, 2, ..., in(e)
i =

 in(g) +  l,, ..., n,

retrial  polling model,  Li is given fbr al1 j' =  1,2,,..,n by

=  & + i.l;.,(AuiTiL9z + Aaiwi,･e,(1) + 
A9j2//(2

,

 
)Pt)
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where  the rt quantities fV}･ .i =  1,2,.,.,n caii  be found as  the solution  of  the system  of

linear equations

                n  ei ei  ei  et

g32) IO -  pi) 
-  Z  hl･M'`']Ni -  :EI) 1sc-. Z  hSL-.k'i) -  2  isc+, 2hS･#'.k'2) -[  (}Z･ ,

               m=1  r=1  k=r T=1  k=r
                mlt

 with  i =  1, 2, ..., n  and

                  
- 'n ei e't

              Ol 
:-

 
IS'
 (lli (i) + 

.]li.1)-,
 
ff2Cm,i))

 +  
,>.[I)m,

 
hS'-fo･t)

 +  
,Z.-,

 
h8i+k･').

                           mft

  Proof: Relation (4.31) can  be obtained  frorn (4.16) easily.  Also from (4.22)

(4.33) Lge,t ==  
E)i/?,i
 fvAl+ 2}, (Hi (i) + 

.2" .,

 H2(m,i)),                                                  i=1,2,".n

                                  mit

and  substit･uting  in (4.27) we  arrive  at

                                         i-1

(4.34) [pi(l -  p, ) +  a,IL9,'  -  a,L9,"  =  Agj p, Nis +  A E  pt.Q.(g,L27  + gj Lq.'," ) +  IJ}j,
                                        m=.1+1

                                      i,j'=1,2,".n, iXj',

while  from (4.27) by interchanging i and  j' and  adding  the obtained  equation  to (4.27) we

get,

g3s) ge,L9,"+ tt, L9-,' -  Ag, i"]i -  Ag, i"h -  llKi),  
J･
 -Ii;･ .l/'i21 i41' 

"2,Il.

 .l ..

   Equation$ (4.34) and  (4.35) ca,n  be written  (with s' 
--

 i -  1) in a  matrix  form as

       ( tti(i -x)+ai  
-",tli

 ) ( ,L,l
q

lt,4i ) -  ( ,,,,-,i"rrg,'-;.PSCi,i-;)<ei.i+iK,,-, )
and  so

         ec:./1'f,'ii,,//,S''Li-L'stt.iil,i),(,li
(Ll-

,

i'

sNI'r,"),t,,esc
-

)i,(i-i,,) i-i727-･-7ri

or, by putting i +  1 instead ofi  in the first

        ,,tlVLV/ft:'1･i=--hlr/,/-XIj//'';',',c,--h,il
'

gk･'ti.',ig?(Cts>i' i-i,2,...,.,

where  the quantities h{"'> are  given by (4.29). Now  it is clear  that we  call  repeat  the

procedure using  again  (4.34) and  (4.35) with  j' 
--
 i-2,i-3,  ... to obtain  for all i =  1, 2, ..･,n,

 tti+,i,i+,L9;Zs =  hl･4+kk･i)1<r,+k + hS4+,k:'[) i"l.fo-, + ... + hi.t+k･t)IVL +  h8i+k:t) fo =  1, 2, ..., e,

 th-ia,-iL2--t,"," =  hS'-k'i} i"k +  hS-!-,k'i)NIM, + .., +  hlLr,lt'i) Mn, + hSi-k･i) k ==
 1, 2, ･･･, ei,

Using finally the a,bove  relations  and  the definitien of  f"}･ (the first of  (4,28)) we  arrive  at

the  system  of  linear equations  (4.32) and  the theorem  has been preved.
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5. The  case  of  exhaustive  service

Let us  suppose  now  t･hat pai -i ps, ai !  a  for a.11 i =  1, 2, ...,n. If we  assume  that･ tt -  oo  then
the  retrial  chara.cteristic;s  of  our  model  are  swept  otit and  the  model  becomes an  exhaustive

service  polling sy. stem  wit-h  
"stay

 periods". If we  assume  in the sequel  t･hat a. -  oo  then
we  get t,he ordinary  polling model  with  exhaustive  servi{:e.  switchever  times and  correlated

}2atch
 arrivais,  XNre will try i'n the presellt section  to obtain  the mean  queue  lengths ZpQt, Z.Di 

',

L,P , of  this polling model  with  exhaust,ive  service,  as  limits ef the corresponding  quantities
LS 

t,

 LjD', LjP of  the retrial  system,  when  st -  oo,  a  --, oo.

   From (4.6), (4.7) it is easy  to  see  that

(5.1)

lim"-too

lim"･-oe

L9.t-O,

L,Q, =

X3ij .lima-+oo

Ma
  tEm=j+1

a(  lim
  ge.oo

linip-co

[P･m +

L,qt) =

"LPi =  Ag, -  rp
           n+a  2] fim
              m=1

(1+ae.) 
'-,p

 ]
        n+a  E  tiTn

           rn=1

      i

 Agj Z] Ipm +  Ur. -Si=ZEL-]

    
m=3'+1

 Ei,m
                m=1

o

ifi71j

ifi=i

Thus, as  it isexpected,for all i, j'

L,Qt .lim  
'
 li in

aHDo  #-ooL9t
 :=  o,

whileusing(5.1)  in(4.8)

(5.2) Z,Dt .lima-toolimps-+coLPt =
 jAgjfiS,2)

 1-p

2
 n

£  fimm=1+
 "i/3imli.

   Il" now  we  use

.IL"..  
,ILm..

 ff.(') as(5.1)

 in(4.18),( 4.20),(4.24)and(4.26),  we  obtain  thequantitiesR.(.)  .

(5.3)

Hli(i,j',k)= A2gi(Agigkaf･

 +  (A2g,gk･ffi2)2)
 +  aigjfo) +  A?-,,(gj

+AVigJ'k) .i-"

        mE.ittm

fii-ik +  gk ,Bi-iD

i?'i (i) -fa  (i: i: i)',E)･,(i,j･) ..fiL,(i,j,j),]itl,(i,j)  ...E)4(i,  i, i),

and  from
are

(5.4)

   By(k,

 i) E

(4.28)

defining

v4n  U  Bn

t･hecorresponding
    '

finallv    -

quantities. ill   'thecase  of  theexhaustive  service

  
- 1rv  jN

 Ki,=  E  ILi(m,j,i)+ E] H4(rn,i,jl
       m=j+1  m=i+1

L,.= i"i!s{iig" :ll] fi,(m,i)+ i A4(･m,j,i).
           m=1  m=o'+1

h(･･-) ilima.-oclim  h(-i･)
Sl-OO  

'andtakinglintits  in(4.29) weobtain.

model.     '

for aJ]
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         hS･!'tluk) ==  a,'-,-k+ ,-',,(Ait,gi-k.=11-i,.,hS-!IFi)  +pi./.E-,i.hS･rlPt-k) )

         nSLT.k'i) =  dde,Ti-k 
-
 ,-',, (pi-k 

..,l

£Ji,., 7il- rr 
')

 +  JXgitii-h 
./-

£

-,i.

 iiS･II} 
t-k)

 )

(5.5) r=  O, 1, 2, ...,k

                             i-1

    jiSi'i-k} 
=

 ,l,,[ail-i}i-k+Aai,..,l.lil-,.,(g,-kii8M't}  +giiSM'i-k) )]

    n8inek,i) =  iti.kk,,-,  
-
 ,-i,,[tiieki;;i-k+Atii-k.=ti

rik+,(gi-,nSm,t)

 +g,hrv8m,t-k) )],

where  hl･i'i) ii O, £ in-li A.  iii O for all i and  fbr any  quantity A.,  and

         ,:,,=1
'

 
:"!iy;f!ULgpf

 
r=O

 
,
 di.,,.,..1

'

 
tPt[iiISi!!tg,i

,tli･i.'
 ;:';2

              t O otherwise  t O otherwise.

  Note  that the observation  concerning  the cyclic  movement  of  the indices in (4.29) and

the Remark  following it hold for (5.5) too. Now  we  are  ready  to state  the theorem

Theorem  5.1 For the exhaustive  service  polling model,  LjP- is given, fbr ali j' =  1,2,...,n,
by

(s.6) L,P･ -f<)s+Agj  }i S
2

..'f.i
where  the n  quantities IV] j -- 1,2,...,n can  be found as  the solution  of  the system  of  Iinear
equatlons

                  n  ei ei  ei  ei

(s.7) [(i -  pi) 
-  E  nS-M'i']fg)l -  £  NtL. 2) nS-t-.k'i) -  £  fVt.. Znl-4',"'t) -  Ot ,

                 m=1  r=1  k=:r r=1  k=r
                  m4{

 with  i =  1, 2, ..., n  and

                      
-- Tl ei e'i

                 a 
-

 IS' 
.Z.)de,

 A2Cm,i) +  
,Z=,

 nSi-k･i) + 
,2=,

 nSd+k･".

  Relations (5.2) and  (5.6) allow  us  to calculate  the mean  queue  length in each  station

                             n

                   zs- =z,p  +2  z,D- 
t,

 j' -- i, 2, ...,.
                            i=1

for the exhaustive  service  pol}ing  model  with  switchover  tlmes  and  corre}ated

batch  arrivals.

  Note that, for this rnodel  with  correlated  batch arrivals,  numerical  calculations  have
shown  that our  results  for the mean  waiting  time  (excluding service)

                              E(ag) =-  3fgll,
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coiiiside  with  the results  obtalned  from Levy &  S2di l19] formulae (n3 linear equations),
while  if we  assume  that G(z) =  ::･irm., Ai2U EI=, Ai, then we  get results  fbr the model  with

X'i.'gi.e.1",ae,PnvSe,n.`,ililZV.a,'S,X'.t,b.,8,Irk':,i,aa,`e,i%:',.St,?ii,O,",',',L'9i,:h.g,r218eel,,:f.S,Srgar,IO"8J
   Remark:  Froin the observation  made  in the  end  of  Section 3 a,nd  the analysis  in Section
4 it is easy  to understand  that to obtain  the correspending  results  for the retrial  polling
model  with  zero  switchover  times  and  correlated  batch  arrivals  we  ha,ve only  to

put fii 
--
 fi52) =  O, in Lemma  4.1, Theorem  4.2 and  in (4.l8), (4.20), (4.24), (4.26) of  Sectioll

't'

   In a  similar  way  by putting V, =  vi2} =  0 in Section 4 and  assuming  in the seqtiel

ps-+ co,  a  -  oo  we  obtain  result･s  for the  exhaustive  service  pelling model  with  zero

switchover  times  and  correlated  batch  arrivals.  In this case  it is easv  to  see  that the                                                             tt
mean  queue length in sta-tion  2' is given by

               n

ZS ==  4P. =tw. £ (
              z==1A?-tiwi,-(1

 -  p)
           +Ag,･i'S-2)pi

n 2tii)

where  the  quantities IW satisfy  again  system  (5.7), AS't') satisfy  (5.5), kd,･,A,･ are  given by

(5.4) and

R4(i,j',k) =  A2gi(Ag,-

4 h

E,(i) -･  liLi(i.,i., i),

  -(2)gkui

A,(i

+  aigjk) +  (Agtik +  AwikT;j +  Awi,･ [l2k･) 
!i'IEi"

     A A A
,j')=E4(i,ij),  Ell](i,i=l-I/,(i,J',il,

with  TLj =  Agjiti -  6ij- (6ij' is Kronecker's delta). If finally we  assume,  in the  above  model,

single  independent  arrivals  i,e. if we  put above  tviti ==  gij- =  O, Agi =  Ai, theri numerical
calcuiations  have shown  that our  results  for the mea,n  waiting  time  (excluding sei'vice),  in
this case  of  zero  swit-chover  times, coinside  with  the results  obtained  from Takagi[25].

   Note that, in all  models  studied  in the present work,  to find the mean  queue  lengths one
has te calculate  first the quantities hf'") (O(n3) arithmetic  operations),  and  in the seque!  to

solve  a  set  of  n  linear equations  ( O(n3) operations  again).  
Fl"hus

 the total complexity  to
obtain  the mean  queue  lenghts is fillally, O(n3),

6. Numerical  resu}ts
'I'he

 mean  number  of  retrial  customers  in the jth station  of  the original  retrial  polling model
is given by
                           TL

(6.1) £
, 

=.  L,P. +2(L9t+L,D.t),  j'-1,2,..,,it,
                          t=:1

and  from (4,6), (4.7), (4.8) and  (4,31) it is complet･ely  knowii. "I'o
 observe  the way  in whieh

this mean  value  £･j- is affected  when  we  vary  the va]ues  of  the  parameters, we  give here 
'Fables

1 and  2. To construct  the tables we  assumed  that n  ==  5, i.e, that we  have a  pollillg modcl

with  five stations,  and  that the service  times and  the switchover  times follow exponentia]
distributioiis
          7

ui(x)  ==  ie-"- X:

       
･ui

vi(x)  =:  le-tx,
       vi

i=1,2,..,,n.
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We  a,ssurne  further that, if Y  denotes the batch size  and  Xmi i -- ],2,...,5 the nuinber  of

type  i customers  in a  batch of  size  rrt, then

             1
Pr(Y  

=
 M)  

=
 E;,;J,"Pr(Xmi  ==  ki,･-･i Xms  =  ks) =m!fo,L,k,!Pki...pg5,m  =:  1, 2, ...

with  ki +  k2 +  ... +  ks ==  7'n and  pi +  p2 +  --･ +  ps =:  1･

a,･xa, O.1 O.2 O.5 1 2 5 20

O.2A:=O,1A=O,2
A==O.4

1.t174.29110.49O.9or2.7771.27O.66l.9349.640.601.7,r)45,59O.64l.8849.54O.902.6771.072.457.21189.81

e.sA=O.1A=O.2
A=O.4

3.129.11236.451.81o".29137.231.0,53,0679.600.822.4263.55O.782.3261.50l.oe2.9879.432.537.44196.37

1
A=O.1
A=02A=O.4

5.8717.16446.383.249.49247.161,694,95129,531.203.5493,491.033.0581.431.173.4893.362,6i)7.83207.30

2
A=0.1
A=O.2
A=O.4

11.3633.25866.256.1017,88467.032r978.73229.40I.965.78153.3ov1.c524.53121,301.514.49-121232,918.61229.17

10A=O.1A=O.2
A=:=0.4

55.30161.94

4225.18

28.9985.04

2225.96

l3.2338.96

1028.33

8.0123.71632,29t.).4716.30440,234.19l2.57344.174,9614.854O･.1.IO

Table 1: Valiies of  Zi for iti ==:  1.2, t-ii =2.0  and  pi =O,2  i=  1,2,...,5,

                        AS

   Table 1 give$ values  of  Li (EiiL, i =  1,2, ..,5) for the symmetric  system  (all parameters
are  sLatistically,  identical for ail stations).  We  have used  the symmetric  system  so  as  to have
a  clearer  picture of  the way  in which  our  n.iodels  affected  frorn changes  in the rnean  stay

period  ai =  1/ai, and  in the  mea,n  retrial  time  Pi =  1!va, particularly when  the  arrival  ra,te

A increa,ses. In t,his t,able one  ca,n  observe  the large increase of  L when  we  pass firom A :=  O.1
t,o A ==  O.2 a,nd  particularly to A =  O.4, a,n increase which  is more  apparent  for large values  of

fii. Thus,  fbr a,i :=  0.2 for example,  L increases frorn O.95 to 71.27 whcn  we  pass from  A ==  0.]
Lu A =  O.4 in the case  ef  Bi =  O.2, while  the corresponding  values  foT pti =:  lO are  28.99 and
2225.96. 

'Vhis

 means  that in such  kind of  models,  we  should  be careful  wit,h  t,he permitt,ed
h'ipi".. Somet,imes, even  small  changes  in the arrival  rate,  could  increase dramatically the
number  of  the  retrial  customers  in the system.

   Aii interesting phenemenon  here is the behavior of  L when  we  increase t,he mean  stay

period ai. It seems  that,  a,t th, e  beginning, when  the rnean  stay  period increases it helps the
retrial  customers  to find t,he server  idle and  t,o st,art, their service.  which  results  ef  course                                                          '
to a  smaller  Z. This behavior continues  uiitil ai becomes equal  to a  critical  value.  From
this point and  after  any  increase to ai cea$es  t･o be usefu11  for the system,  on  the contrary

it prevent t･he scrvc:'  t,o d(',part and  to start  serving  in the next･  station  and  so  iy starts  to
increase, again  and  becomes la･rge fbr large values  of  ai. Thus  there is all optimal  valuc,  a,,'･
say,  ef  ai, a  valtie  with  which  we  can  achieve  the  minimal  possible rnean  length L,
   

'To
 observe  in rnore  details this optimal  value  of  ai and  the  way  in wh  .ich it depends on  the

mean  retria,1 time  p"ci we  present here F'igures 1-4. In all figures we  have used  Mathematica
to ptot L against  ai, using  tbr ft11 i, A ==  O.2, il{ =  1.2, t-,i =  2.0 and  p{ =:  O.2. In Fgr.l, where

fr,/ :A'  O.2, we  (:an see  that the optimal  value.  of  fii is al -- l.06 and  minL  :=  1.75. In Fgr.2,
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with  pi -- o.s, a;
increases to Pi --
a;･ =  s.os, minL  ==

                   (] Langan's

=  1.66 and  minL  =  2.30, while  in Fgr. 3 where  the mean  retrial  time
2.0, a;･ =  3.2 and  minL  ==  4.30. In Fgr.4 final]y, fii 

--
 5.0 and  we  have

7.52. In all figures one  observes  a  fast reduction  of  L, when  ai increases

3

2

AL

Fc.r.1-ECret.r)zO  2

E[stay]

4

3

2

1
Fgr.2:ECretr)=-.O  s

E(stay]

 G,14

1210

86

Fgr.3:E(retr)=2.0

E{stay)

'i

Fgr.4;E(retr)=S  O

2

Figures

4

1-4:

6

PIot

810

of  £  fbr A=: o.2, ai --1.2, Oi =  2.0,pi =  O.2, i=  1,2, ...,5.

E(stay)

tiixfii O.5 1.5 3 5 le 20

Ll= O.36O.73 1.292.043.92 7.68
Z2= e.711.452.574.077.8215.31

O.2Z3=:1.002.103.786.0211.6222.84

Z4= 3.316.9312.4019.7137.9974.57

L,=4.018.82l6.1025.8150.1198.73
Ll= O.631.222.ll3.316.29l2.27

L,==1.252.424.196.5512.4724.30
O.6L,= 1.783S26.159.6718.4636.05

i4= 5.7011.3919.9631-3959.99117.21

L,==7.0714.5725.8540.9178.57153.92
Ll= 9.5417.4029.2044.9384.26162.92

L,=[18.6934.le57.2288.05165.12319.28
L2L,=27.4350.1084.13129.50242.93469.80

L,=84.70155.17260.91401.91754.431459.47
L,=107.86198.e6333.41513.89965.121867.58

Table2: Values of  Lifbr A ==  O.4,

  and  Pr
 a 

=
 (o.2, o.2, o.s, l, 2), a ==

(o.os,o.1,o.ls,e,3,o.4).
(e.2,O.2,O.5,O.5,1)

{
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frorn srna,]l va,lue,s  to this optirnal  value  a,*･ , Frefi] t',his peiTii, and  after,Z  starts  to incrcase
a,gain,  but in a  srnoother  way  now.  

'l'he
 g{mera] obse.rvation  here is that the first thing  that

we  have t,o do, i'l' we  operate  a  such  1<ind of  n']ode!,  is to discover nurnerically.  this opt,imal  a//,
and  to a,rrange  Lhe inean  time  we  will  a]low  the server  to stay  in cac;h  station,  accordinglvv･,

   Table Lt, finaJly, represent,s  values  of  L.i i =  1, 2, ..., 5 for an  asymmet･ric  system  now,  with

A =:  o.4 and  p, =.-  (o.2, o.2, o.s, 1, 2), a =  (o.2,e.2, o,,rn,o.s, l), p =  (o.o,"),o.1, o.1,r),o.3, o.･a,), i,e.
a  s.yst･ein  with  sinall  va]ucs  of  t]he parameters  for the, first two  amd  larger for the reinaining
three sLations.

   In t,his tabje one  can  observe  thc "'a.y. in wh]'ch  the  inean  retrial  ]engths Li are  afFhct,ed

frorn changes  in t,he mean  service  tii'ne.s 't-ti and  ln t･he mean  swit/chover  t･irnes Vi (we have
ttsecl the same  value  of  ai and  of  T,i for all statious).  [I]hus, ibr 'Ui =  0.5, Li increases from
O.:S6 to 9,･54 wheii  we  increase the rnean  service  tiirie frorn e.2 to l.2 whi]e  the correspo]idiitg
values  for the East statioii  are  Zs =  4.03 and  Z,s =  107.86 respectively.  Similar observations
hold for changes  in the  rnea,n  switchover  t,imes.
                          '
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