Skip to main content
Log in

Improved hydrogen uptake of metal modified reduced and exfoliated graphene oxide

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study investigated and compared the extent of structural modification and hydrogen uptake of reduced and exfoliated graphene oxides on addition of platinum, nickel and palladium. The addition of all metals affected structure and improved hydrogen uptake but the extent depended on preparation and type of metal. Surface area and pore volume decreased on addition of metals to RGO but increased for EGO. Dense structure of RGO was not affected by platinum, however, changed significantly to fluffy structure on addition of nickel and palladium. The separation of layers increased on addition of palladium to fluffy EGO resulting in its highest surface area and pore volume of 449 m2/g and 2 cm3/g, respectively. The highest hydrogen uptake of 3.52 wt% was obtained for Pd/EGO (at − 196 °C, 30 bar) and may be attributed to high surface area, pore volume, O/C ratio and dispersion of palladium particles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. N. Bader, A. Ouederni, Optimization of biomass-based carbon materials for hydrogen storage. J Energy Storage 5, 77 (2016)

    Article  Google Scholar 

  2. S. Gadipelli, Z.X. Guo, Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci 69, 1 (2015)

    Article  CAS  Google Scholar 

  3. W.G. Hong, B.H. Kim, S.M. Lee, H.Y. Yu, Y.J. Yun, Y. Jun, J.B. Lee, H.J. Kim, Agent-free synthesis of graphene oxide/transition metal oxide composites and its application for hydrogen storage. Int. J. Hydrogen Energy 37, 7594 (2012)

    Article  CAS  Google Scholar 

  4. C.-C. Huang, N.-W. Pu, C.-A. Wang, J.-C. Huang, Y. Sung, M.-D. Ger, Hydrogen storage in graphene decorated with Pd and Pt nano-particles using an electroless deposition technique. Separ. Purif. Technol. 82, 21 (2011)

    Article  Google Scholar 

  5. J.A. Alonso, I. Cabria, M.J. López, Simulation of hydrogen storage in porous carbons. J. Mater. Res. 28, 589 (2013)

    Article  CAS  Google Scholar 

  6. N. Ismail, M. Madian, M.S. El-Shall, Reduced graphene oxide doped with Ni/Pd nanoparticles for hydrogen storage application. Ind. Eng. Chem. Res 30, 328 (2015)

    Article  CAS  Google Scholar 

  7. V.B. Parambhath, R. Nagar, S. Ramaprabhu, Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28, 7826 (2012)

    Article  CAS  Google Scholar 

  8. A. Klechikov, J. Sun, G. Hu, M. Zheng, T. Wågberg, A.V. Talyzin, Graphene decorated with metal nanoparticles: hydrogen sorption and related artefacts. Microporous Mesoporous Mater. 250, 27 (2017)

    Article  CAS  Google Scholar 

  9. A. Bhattacharya, S. Bhattacharya, C. Majumder, G. Das, Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet. J. Phys. Chem. C 114, 10297 (2010)

    Article  CAS  Google Scholar 

  10. M.S.L. Hudson, H. Raghubanshi, S. Awasthi, T. Sadhasivam, A. Bhatnager, S. Simizu, S. Sankar, O. Srivastava, Hydrogen uptake of reduced graphene oxide and graphene sheets decorated with Fe nanoclusters. Int. J. Hydrogen Energy 39, 8311 (2014)

    Article  Google Scholar 

  11. S. Shaikhutdinov, M. Heemeier, J. Hoffmann, I. Meusel, B. Richter, M. Baumer, H. Kuhlenbeck, J. Libuda, H.-J. Freund, R. Oldman, S.D. Jackson, C. Konvicka, M. Schmid, P. Varga, Interaction of oxygen with palladium deposited on a thin alumina film. Surf. Sci. 501, 270 (2002)

    Article  CAS  Google Scholar 

  12. T. Li, P.B. Balbuena, Computational studies of the interactions of oxygen with platinum clusters. J. Phys. Chem. B 105, 9943 (2001)

    Article  CAS  Google Scholar 

  13. S.B. Singh, M. De, Scope of doped mesoporous (< 10 nm) surfactant-modified alumina templated carbons for hydrogen storage applications. Int. J. Energy Res. 43, 4264 (2019)

    Article  CAS  Google Scholar 

  14. Y. Wang, C.X. Guo, X. Wang, C. Guan, H. Yang, K. Wang, C.M. Li, Hydrogen storage in a Ni–B nanoalloy-doped three-dimensional graphene material. Energy Environ. Sci. 4, 195 (2011)

    Article  CAS  Google Scholar 

  15. A. Yadav, M. Faisal, A. Subramaniam, N. Verma, Nickel nanoparticle-doped and steam-modified multiscale structure of carbon micro-nanofibers for hydrogen storage: effects of metal, surface texture and operating conditions. Int. J. Hydrogen Energy 42, 6104 (2017)

    Article  CAS  Google Scholar 

  16. H. Oh, T. Gennett, P. Atanassov, M. Kurttepeli, S. Bals, K.E. Hurst, M. Hirscher, Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons. Microporous Mesoporous Mater. 177, 66 (2013)

    Article  CAS  Google Scholar 

  17. D. Giasafaki, A. Bourlinos, G. Charalambopoulou, A. Stubos, T. Steriotis, Synthesis and characterisation of nanoporous carbon–metal composites for hydrogen storage. Microporous Mesoporous Mater. 154, 74 (2012)

    Article  CAS  Google Scholar 

  18. V.B. Parambhath, R. Nagar, K. Sethupathi, S. Ramaprabhu, Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J. Phys. Chem. C 115, 15679 (2011)

    Article  CAS  Google Scholar 

  19. Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv, B. Yang, High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res. Lett. 8, 1 (2013)

    Article  Google Scholar 

  20. N.-W. Pu, C.-A. Wang, Y. Sung, Y.-M. Liu, M.-D. Ger, Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater. Lett. 63, 1987 (2009)

    Article  CAS  Google Scholar 

  21. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282 (2006)

    Article  CAS  Google Scholar 

  22. I.R. Kottegoda, X. Gao, L.D. Nayanajith, C.H. Manorathne, J. Wang, J.-Z. Wang, H.-K. Liu, Y. Gofer, Comparison of few-layer graphene prepared from natural graphite through fast synthesis approach. J. Mater. Sci. Technol. 31, 907 (2015)

    Article  CAS  Google Scholar 

  23. Y.-E. Shin, Y.J. Sa, S. Park, J. Lee, K.-H. Shin, S.H. Joo, H. Ko, An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale 6, 9734 (2014)

    Article  CAS  Google Scholar 

  24. P. Divya, S. Ramaprabhu, Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism. Phys. Chem. Chem. Phys. 16, 26725 (2014)

    Article  Google Scholar 

  25. L.J. Wang, J. Zhang, X. Zhao, L.L. Xu, Z.Y. Lyu, M. Lai, W. Chen, Palladium nanoparticle functionalized graphene nanosheets for Li–O2 batteries: enhanced performance by tailoring the morphology of the discharge product. RSC Adv. 5, 73451 (2015)

    Article  CAS  Google Scholar 

  26. H. Tao, X. Sun, S. Back, Z. Han, Q. Zhu, A.W. Robertson, T. Ma, Q. Fan, B. Han, Y. Jung, Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO. Chem. Sci. 9, 483 (2018)

    Article  CAS  Google Scholar 

  27. S.R. de Miguel, I.M.J. Vilella, P. Zgolicz, S.A. Bocanegra, Bimetallic catalysts supported on novel spherical MgAl2O4-coated supports for dehydrogenation processes. Appl. Catal. A 567, 36 (2018)

    Article  Google Scholar 

  28. M. Baca, K. Cendrowski, W. Kukulka, G. Bazarko, D. Moszyński, B. Michalkiewicz, R.J. Kalenczuk, B. Zielinska, A comparison of hydrogen storage in Pt, Pd and Pt/Pd alloys loaded disordered mesoporous hollow carbon spheres. Nanomaterials 8, 639 (2018)

    Article  Google Scholar 

  29. B.D. Adams, C.K. Ostrom, S. Chen, A. Chen, High-performance Pd-based hydrogen spillover catalysts for hydrogen storage. J. Phys. Chem. C 114, 19875 (2010)

    Article  CAS  Google Scholar 

  30. S.B. Singh, M. De, Thermally exfoliated graphene oxide for hydrogen storage. Mater. Chem. Phys. 239, 122102 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Central Instrument Facility (CIF) of Indian Institute of Technology Guwahati for providing instrumental support required for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahuya De.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2024 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.B., De, M. Improved hydrogen uptake of metal modified reduced and exfoliated graphene oxide. Journal of Materials Research 36, 3109–3120 (2021). https://doi.org/10.1557/s43578-021-00331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00331-1

Keywords

Navigation