Skip to main content
Log in

Chemical and physical transformations of carbon-based nanomaterials observed by liquid phase transmission electron microscopy

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article addresses recent advances in liquid phase transmission electron microscopy (LPTEM) for studying nanoscale synthetic processes of carbon-based materials that are independent of the electron beam—those driven by nonradiolytic chemical or thermal reactions. In particular, we focus on chemical/physical formations and the assembly of nanostructures composed of organic monomers/polymers, peptides/DNA, and biominerals. The synthesis of carbon-based nanomaterials generally only occurs at specific conditions, which cannot be mimicked by aqueous solution radiolysis. Carbon-based structures themselves are also acutely sensitive to the damaging effects of the irradiating beam, which make studying their synthesis using LPTEM a unique challenge that is possible when beam effects can be quantified and mitigated. With new direct sensing, high frame-rate cameras, and advances in liquid cell holder designs, combined with a growing understanding of irradiation effects and proper experimental controls, microscopists have been able to make strides in observing traditionally problematic carbon-based materials under conditions where synthesis can be controlled, and imaged free from beam effects, or with beam effects quantified and accounted for. These materials systems and LPTEM experimental techniques are discussed, focusing on nonradiolytic chemical and physical transformations relevant to materials synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Similar content being viewed by others

References

  1. P. Bhattacharya, D. Du, Y. Lin, J. R. Soc. Interface 11, 20131067 (2014).

    Google Scholar 

  2. C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, ACS Nano 7, 2891 (2013).

    Google Scholar 

  3. L.P. Datta, S. Manchineella, T. Govindaraju, Biomaterials 230, 119633 (2020).

    Google Scholar 

  4. Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Acc. Chem. Res. 49, 483 (2016).

    Google Scholar 

  5. A. Arakaki, K. Shimizu, M. Oda, T. Sakamoto, T. Nishimura, T. Kato, Org. Biomol. Chem. 13, 974 (2015).

    Google Scholar 

  6. C.E. Callmann, M.P. Thompson, N.C. Gianneschi, Acc. Chem. Res. 53, 400 (2020).

    Google Scholar 

  7. N. Stock, S. Biswas, Chem. Rev. 112, 933 (2012).

    Google Scholar 

  8. E.G. Kelley, R.P. Murphy, J.E. Seppala, T.P. Smart, S.D. Hann, M.O. Sullivan, T.H. Epps, Nat. Commun. 5, 3599 (2014).

    Google Scholar 

  9. J.P. Patterson, Y. Xu, M. Moradi, N.A.J.M. Sommerdijk, H. Friedrich, Acc. Chem. Res. 50, 1495 (2017).

    Google Scholar 

  10. Y. Liu, G.J. Vancso, Prog. Polym. Sci. 104, 101232 (2020).

    Google Scholar 

  11. L. Xiao, Z.D. Schultz, Anal. Chem. 90, 440 (2018).

    Google Scholar 

  12. J.P. Patterson, M.P. Robin, C. Chassenieux, O. Colombani, R.K. O'Reilly, Chem. Soc. Rev. 43, 2412 (2014).

    Google Scholar 

  13. D.A. Jacques, J. Trewhella, Protein Sci. 19, 642 (2010).

    Google Scholar 

  14. J. Li, A. Jiao, S. Chen, Z. Wu, E. Xu, Z. Jin, J. Mol. Struct. 1165, 391 (2018).

    Google Scholar 

  15. N.C. Santos, M.M. Domingues, Front. Chem. 6, 237 (2018).

    Google Scholar 

  16. M.J. Williamson, R.M. Tromp, P.M. Vereecken, F.M. Ross, Nat. Mater. 2, 532 (2003).

    Google Scholar 

  17. F.M. Ross, Liquid Cell Electron Microscopy (Cambridge University Press, Cambridge, UK, 2016).

    Google Scholar 

  18. L.R. Parent, E. Bakalis, M. Proetto, Y. Li, C. Park, F. Zerbetto, N.C. Gianneschi, Acc. Chem. Res. 51, 3 (2018).

    Google Scholar 

  19. H. Wu, H. Friedrich, L.P. Patterson, N.A.J.M. Sommerdijk, N. de Jonge, Adv. Mater. 2001582 (2020), doi:10.1002/adma.202001582.

    Google Scholar 

  20. R.F. Egerton, P. Li, M. Malac, Micron 35, 399 (2004).

    Google Scholar 

  21. M. Textor, N. de Jonge, Nano Lett. 18, 3313 (2018).

    Google Scholar 

  22. N. de Jonge, L. Houben, R.E. Dunin-Borkowski, F.M. Ross, Nat. Rev. Mater. 4, 61 (2019).

    Google Scholar 

  23. Q. Chen, C. Dwyer, G. Sheng, C. Zhu, X. Li, C. Zheng, Y. Zhu, Adv. Mater. 32, 1907619 (2020).

    Google Scholar 

  24. A.R. Faruqi, G. Mcmullan, Nucl. Instrum. Methods Phys. Res. A 878, 180 (2018).

    Google Scholar 

  25. W. Baumeister, Ultramicroscopy 9, 151 (1982).

    Google Scholar 

  26. A. Engel, Y. Lyubchenko, D. Müller, Trends Cell Biol. 9, 77 (1999).

    Google Scholar 

  27. M.A. Touve, A.S. Carlini, N.C. Gianneschi, Nat. Commun. 10, 1 (2019).

    Google Scholar 

  28. H. Wang, B. Li, Y.J. Kim, O.H. Kwon, S. Granick, Proc. Natl. Acad. Sci. U.S.A. 117, 1283 (2020).

  29. M. Liu, Q. Zhang, B. Kannan, G.A. Botton, J. Yang, L. Soleymani, J.D. Brennan, Y. Li, Angew. Chem. Int. Ed Engl. 130, 12620 (2018).

    Google Scholar 

  30. Y. Yamazaki, Y. Kimura, P.G. Vekilov, E. Furukawa, M. Shirai, H. Matsumoto, A.E.S. Van Driessche, K. Tsukamoto, Proc. Natl. Acad. Sci. U.S.A. 114, 2154 (2017).

  31. F. Nudelman, N.A.J.M. Sommerdijk, Angew. Chem. Int. Ed. Engl. 51, 6582 (2012).

    Google Scholar 

  32. S. Bentov, J. Erez, Geochem. Geophys. Geosyst. 7, 1 (2006).

    Google Scholar 

  33. M.J. Root, Calcif. Tissue Int. 47, 112 (1990).

    Google Scholar 

  34. S. Bentov, S. Weil, L. Glazer, A. Sagi, A. Berman, J. Struct. Biol. 171, 207 (2010).

    Google Scholar 

  35. Z. Zou, X. Yang, M. Albéric, T. Heil, Q. Wang, B. Pokroy, Y. Politi, L. Bertinetti, Adv. Funct. Mater. 30, 2000003 (2020).

    Google Scholar 

  36. G. Fu, S. Valiyaveettil, B. Wopenka, D.E. Morse, Biomacromolecules 6, 1289 (2005).

    Google Scholar 

  37. A.S. Schenk, I. Zlotnikov, B. Pokroy, N. Gierlinger, A. Masic, P. Zaslansky, A.N. Fitch, O. Paris, T.H. Metzger, H. Cölfen, Adv. Funct. Mater. 22, 4668 (2012).

    Google Scholar 

  38. L. Addadi, J. Moradian, E. Shay, N.G. Maroudas, S.A. Weiner, Proc. Natl. Acad. Sci. U.S.A. 84, 2732 (1987).

  39. S. Kashyap, T. Woehl, X. Liu, S.K. Mallapragada, T. Prozorov, ACS Nano 8, 9097 (2014).

    Google Scholar 

  40. X. Wang, J. Yang, C.M. Andrei, L. Soleymani, K. Grandfield, Commun. Chem. 1, 1 (2018).

    Google Scholar 

  41. Z. Liu, Z. Zhang, Z. Wang, B. Jin, D. Li, J. Tao, R. Tang, J.J. De Yoreo, Proc. Natl. Acad. Sci. U.S.A. 117, 3397 (2020). 10.1073/pnas.1914813117

  42. H. Su, B.L. Mehdi, J.P. Patterson, N.A.J.M. Sommerdijk, N.D. Browning, H. Friedrich, J. Phys. Chem. C 123, 25448 (2019).

    Google Scholar 

  43. R. Kröger, A. Verch, Minerals 8, 21 (2018).

    Google Scholar 

  44. K.S. Dae, J.H. Chang, J.M. Yuk, J.Y. Lee, Microsc. Microanal. 23, S1 (2017).

    Google Scholar 

  45. P.J.M. Smeets, K.R. Cho, R.G.E. Kempen, N.A.J.M. Sommerdijk, J.J. De Yoreo, Nat. Mater. 14, 394 (2015). 10.1038/nmat4193

    Google Scholar 

  46. M.H. Nielsen, S. Aloni, J.J. De Yoreo, Science 345, 1158 (2014).

    Google Scholar 

  47. M.H. Nielsen, D. Li, H. Zhang, S. Aloni, T.Y.-J. Han, C. Frandsen, J. Seto, J.F. Banfield, H. Cölfen, J.J. De Yoreo, Microsc. Microanal. 20, 425 (2014).

    Google Scholar 

  48. M. Jehannin, A. Rao, H. Cölfen, J. Am. Chem. Soc. 141, 10120 (2019).

    Google Scholar 

  49. H.H. Teng, P.M. Dove, C.A. Orme, J.J. De Yoreo, Science 282, 724 (1998).

    Google Scholar 

  50. B. Cantaert, D. Kuo, S. Matsumura, T. Nishimura, T. Sakamoto, T. Kato, ChemPlusChem 82, 107 (2017).

    Google Scholar 

  51. D. Wang, A.F. Wallace, J.J. De Yoreo, P.M. Dove, Proc. Natl. Acad. Sci. U.S.A. 106, 21511 (2009). 10.1073/pnas.0906741106

  52. C. Shao, R. Zhao, S. Jiang, S. Yao, Z. Wu, B. Jin, Y. Yang, H. Pan, R. Tang, Adv. Mater. 30, 1704876 (2018). 10.1002/adma.201704876

    Google Scholar 

  53. S. Matsumura, S. Kajiyama, T. Nishimura, T. Kato, Small 11, 5127 (2015).

    Google Scholar 

  54. D. Li, M.H. Nielsen, J.R.I. Lee, C. Frandsen, J.F. Banfield, J.J. De Yoreo, Science 336, 1014 (2012). 10.1126/science.1219643

    Google Scholar 

  55. H. Zheng, R.K. Smith, Y.-W. Jun, C. Kisielowski, U. Dahmen, P. Alivisatos, Science 324, 1309 (2009). 10.1126/science.1172104

    Google Scholar 

  56. E.D. Eanes, J.D. Termine, M.U. Nylen, Calcif. Tissue Res. 12, 143 (1973). 10.1007/BF02013730

    Google Scholar 

  57. J.P. Patterson, P. Abellan, M.S. Denny, C. Park, N.D. Browning, S.M. Cohen, J.E. Evans, N.C. Gianneschi, J. Am. Chem. Soc. 137, 7322 (2015). 10.1021/jacs.5b00817

    Google Scholar 

  58. Y. Zhu, J. Ciston, B. Zheng, X. Miao, C. Czarnik, Y. Pan, R. Sougrat, Nat. Mater. 16, 53 (2017).

    Google Scholar 

  59. C. Wiktor, M. Meledina, S. Turner, O.I. Lebedev, R.A. Fischer, J. Mater. Chem. A 5, 14969 (2017).

    Google Scholar 

  60. N.M. Schneider, M.M. Norton, B.J. Mendel, J.M. Grogan, F.M. Ross, H.H. Bau, J. Phys. Chem. C 118, 22373 (2014).

    Google Scholar 

  61. T.J. Woehl, P. Abellan Baeza, J. Microsc. 265, 135 (2017). 10.1111/jmi.12508

    Google Scholar 

  62. F.S. Dainton, G.A. Salmon, P. Wardman, Proc. R. Soc. Lond. A Math. Phys. Sci. 313, 1 (1969).

  63. J.H. Baxendale, P. Wardman, The Radiolysis of Methanol: Product Yields, Rate Constants, and Spectroscopic Parameters of Intermediates, National Standard Reference Data Series, National Bureau of Standards, 54 (1975).

  64. C. Park, T.J. Woehl, J.E. Evans, N.D. Browning, IEEE Trans. Pattern Anal. Mach. Intell. 37, 611 (2015). 10.1109/TPAMI.2014.2346202

    Google Scholar 

  65. B.J. Smith, L.R. Parent, A.C. Overholts, P.A. Beaucage, R.P. Bisbey, A.D. Chavez, N. Hwang, C. Park, A.M. Evans, N.C. Gianneschi, W.R. Dichtel, ACS Cent. Sci. 3, 58 (2017).

    Google Scholar 

  66. B.J. Smith, W.R. Dichtel, J. Am. Chem. Soc. 136, 8783 (2014).

    Google Scholar 

  67. A.M. Evans, L.R. Parent, N.C. Flanders, R.P. Bisbey, E. Vitaku, M.S. Kirschner, R.D. Schaller, L.X. Chen, N.C. Gianneschi, W.R. Dichtel, Science 361, 52 (2018).

    Google Scholar 

  68. B.J. Smith, N. Hwang, A.D. Chavez, J.L. Novotney, W.R. Dichtel, Chem. Commun. 51, 7532 (2015).

    Google Scholar 

  69. A.M. Evans, L.R. Parent, N.C. Flanders, R.P. Bisbey, E. Vitaku, M.S. Kirschner, R.D. Schaller, L.X. Chen, N.C. Gianneschi, W.R. Dichtel, Science 361, 52 (2018).

    Google Scholar 

  70. M.A.H. De Penhoat, T. Goulet, Y. Frongillo, M.J. Fraser, P. Bernat, J.P. Jay-Gerin, J. Phys. Chem. A 104, 11757 (2000). 10.1021/jp001662d

    Google Scholar 

  71. K.M. Vailonis, K. Gnanasekaran, X.B. Powers, N.C. Gianneschi, D.M. Jenkins, J. Am. Chem. Soc. 141, 10177 (2019). 10.1021/jacs.9b04586

    Google Scholar 

  72. J. Lyu, X. Gong, S. Lee, K. Gnanasekaran, X. Zhang, M.C. Wasson, X. Wang, P. Bai, X. Guo, N.C. Gianneschi, O.K. Farha, J. Am. Chem. Soc. 142, 4609 (2020). 10.1021/jacs.0c00542

    Google Scholar 

  73. J.T. Early, K.G. Yager, T.P. Lodge, ACS Macro Lett. 9 (5), 756 (2020). 10.1021/acsmacrolett.0c00273

    Google Scholar 

  74. C. Li, C.C. Tho, D. Galaktionova, X. Chen, P. Král, U. Mirsaidov, Nanoscale 11 (5), 2299 (2019).

    Google Scholar 

  75. L.R. Parent, E. Bakalis, A. Ramirez-Hernandez, J.K. Kammeyer, C. Park, J. de Pablo, F. Zerbetto, J.P. Patterson, N.C. Gianneschi, J. Am. Chem. Soc. 139 (47), 17140 (2017). 10.1021/jacs.7b09060

    Google Scholar 

  76. A. Ianiro, H. Wu, M.M.J. van Rijt, M.P. Vena, A.D.A. Keizer, A.C.C. Esteves, R. Tuinier, H. Friedrich, N. Sommerdijk, J.P. Patterson, Nat. Chem. 11 (4), 320 (2019). 10.1038/s41557-019-0210-4

    Google Scholar 

Download references

Acknowledgments

This manuscript was written with Government support under and awarded by the US Department of Defense through the ARO (W911NF-17–1-0326, W911NF-18–1-0359, and MURI W911NF-15–1-0568). In addition, N.C.G and L.R.P. thank the National Science Foundation (NSF) for support through Grant No. (CHE-1905270). M.V. thanks the NSF for support through the Graduate Research Fellowship Grant No. GRFP (DGE- 1842165). B.J. thanks the support from the US Department of Energy (DOE) Office of Basic Energy Sciences, Physical Sciences Division at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle under Contract No. DE-AC05–76RL01830.

Authors

Appendix

Appendix

Lucas Parent is a staff research scientist at the Innovation Partnership Building and the Center for Advanced Microscopy and Materials Analysis at the University of Connecticut. He received his BS degree in materials science from Rensselaer Polytechnic Institute in 2009, and his PhD degree in materials science from the University of California, Davis, in 2013. His research focuses on the development of in situ electron microscopy to study solution-phase formation, transition, and stimuli-response processes in carbon-based nanomaterials and biomaterials. Parent can be reached by email at lucas.parent@uconn.edu.

Maria Vratsanos is a doctoral candidate in materials science and engineering at Northwestern University. She received her undergraduate degree in polymer engineering with an emphasis on biomaterials at Case Western Reserve University in 2018. She is 2019 National Science Foundation Graduate Research Fellowship Program recipient. Her current research focuses on the investigation of soft-matter dynamics and transformations via liquid phase transmission electron microscopy. Vratsanos can be reached by email at mariavratsanos2023@u.northwestern.edu.

Biao Jin is a postdoctoral research associate at Pacific Northwest National Laboratory. He received his BE degree from Hainan University, China, in 2014, and his PhD degree in chemistry from Zhejiang University, China, in 2019. His current research focuses on nucleation and growth mechanisms of nanomaterials and in situ transmission electron microscopy techniques. Jin can be reached by email at biao.jin@pnnl.gov.

Jim De Yoreo is a chief scientist in materials science at the Physical and Computational Sciences Directorate at Pacific Northwest National Laboratory, and an affiliate professor of materials science and engineering and of chemistry at the University of Washington. He received his PhD degree in physics from Cornell University in 1985. His research focuses on interactions, assembly, and crystallization in inorganic, biomolecular, and biomineral systems. He served as president of the Materials Research Society (MRS) and is a Fellow of both MRS and the American Physical Society. De Yoreo can be reached by email at James.DeYoreo@pnnl.gov.

Nathan C. Gianneschi is the Jacob and Rosaline Cohn Professor of Chemistry, Materials Science and Engineering, Biomedical Engineering and Pharmacology at Northwestern University. He received his BSc degree from The University of Adelaide, Australia, in 1999, and his PhD degree from Northwestern University in 2005. He completed postdoctoral research at The Scripps Research Institute in 2008. He began his career at the University of California, San Diego. Gianneschi can be reached by email at nathan.gianneschi@northwestern.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parent, L.R., Vratsanos, M., Jin, B. et al. Chemical and physical transformations of carbon-based nanomaterials observed by liquid phase transmission electron microscopy. MRS Bulletin 45, 727–737 (2020). https://doi.org/10.1557/mrs.2020.224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.224

Navigation