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Because of its fascinating electronic properties, graphene is expected to produce 

breakthroughs in many areas of nanoelectronics. For spintronics, its key advantage is 

the expected long spin lifetime, combined with its large electron velocity. In this article, 

we review recent theoretical and experimental results showing that graphene could be 

the long-awaited platform for spintronics. A critical parameter for both 

characterization and devices is the resistance of the contact between the electrodes and 

the graphene, which must be large enough to prevent quenching of the induced spin 

polarization but small enough to allow for the detection of this polarization. Spin 

diffusion lengths in the 100-μm range, much longer than those in conventional metals 

and semiconductors, have been observed. This could be a unique advantage for several 

concepts of spintronic devices, particularly for the implementation of complex 

architectures or logic circuits in which information is coded by pure spin currents. 

 

Introduction 

With hundreds of millions of computer hard drives sold every year, magnetism is currently, 

by far, the main repository of information storage. This dominance will only increase with the 

expected proliferation of data centers for ―cloud‖ access over the Internet. It is the electron 

―spin,‖ the elementary nanomagnet, that carries this information. Beyond storage, spin is 

foreseen as the foundation for a new paradigm for information processing toward low-power-

consumption nonvolatile ―green‖ electronics. This is the aim of spintronics. 

However, despite intense research, a simple device such as the spin transistor proposed in 

1990
1
 has remained elusive. Whereas it was soon realized that fundamental constraints on the 



physics of spin transport would make this concept very difficult to achieve with conventional 

semiconductors such as GaAs or silicon
2
 (indeed, electrical injection of a spin current directly 

into silicon was demonstrated only recently
3
), a suitable material was still sought. 

Recently, because of its fascinating electronic properties, graphene has become the focus of 

expectations for producing breakthroughs in many areas of nanoelectronics.
4–8

 For 

spintronics, graphene’s obvious attraction is mainly the long spin lifetime expected from the 

small spin–orbit coupling of carbon atoms and the absence of nuclear spins for the main 

isotope. The combination of this expected long spin lifetime with a high electron velocity, 

related to the linear dispersion relation of electrons in graphene, underlies the potential of 

graphene for spintronics. The ability to transport spin information efficiently over practical 

distances could further enable complex spintronic devices, such as the reconfi gurable logic 

gate integrating both memory and logic proposed by Dery et al.,
9
 and eventually open the 

way to spin information processing. 

The spin diffusion distances observed in graphene are very long, in the 100-μm range, much 

longer than those in conventional metals and semiconductors. This is a unique advantage for 

several concepts of spintronic devices, particularly for complex architectures in which 

information is coded by pure spin currents and processed by series of logic gates acting on 

their spin polarization. 

Indeed, although a suitable platform for such devices remains to be identified, initial steps in 

this direction have already been taken, such as non-charge-based ―beyond-CMOS‖ memory 

and logic devices highlighted in the Emerging Research Devices chapter of the International 

Technology Roadmap for Semiconductors (ITRS).
10

 Among several other spintronic devices, 

so-called ―all-spin-logic‖ circuits based on the transport and processing of information coded 

by spin currents have been proposed.
11

 

Research on a suitable platform for spin transport started decades ago and focused first on 

conventional inorganic semiconductors and metals. However, these materials have shown 

limited spin signals and/or spin diffusion lengths that are typically in the range of only a few 

tenths of a micrometer at room temperature. Graphene, in contrast, appears to be potentially 

well adapted for the transport of spin information over relatively long distances in the 100-

μm range with limited spin losses. Some organic molecules or carbon nanotubes could also 

be expected to provide this performance, but graphene is more convenient for practical 

devices. 

Although the injection and detection processes still need to be improved and the relaxation 

mechanisms need to be understood, it has been demonstrated that spin-polarized currents in 

graphene can give rise to large electrical signals. In this article, we describe these 

experiments and the theoretical framework that enables their interpretation and optimization. 

In particular, matching the resistance of the tunneling contacts to spin relaxation in graphene 

is key to achieving efficient spin transport. 

 



Early results on exfoliated graphene 

The first experiment on spin transport in graphene was reported in 2006, for a graphene flake 

connected to NiFe electrodes.
12

 The device was a lateral spin valve (LSV), in which a spin 

polarized current injected from one ferromagnetic electrode travels through the graphene 

before being detected by a second electrode. In analogy to optical systems, the ferromagnetic 

electrodes act as a polarizer/analyzer set. The current flowing through the device depends on 

the persistence of the spin polarization and whether the electrodes are magnetically aligned in 

a parallel or antiparallel configuration. This measurement was rapidly followed by several 

other spin-transport measurements on single-layer graphene (SLG) and multilayer graphene 

(MLG).
13–16

 Mainly, two configurations are reported for the measurements: one ―local‖ and 

the other ―nonlocal‖. The local configuration is a simple two-terminal device acting as an 

LSV. In the nonlocal configuration, four terminals are used, in a geometry slightly different 

from that used in conventional fourpoint measurements. Specifically, as seen in Figure 1, the 

current path is separated from the voltage measurement zone. The nonlocal configuration was 

originally developed to extract low signals
18

 in semiconductors and metals, where the non-

spin-aligned current would overwhelm the signal in local LSV measurements. 

As an example of this nonlocal technique, Figure 1a shows the SLG device studied by 

Popinciuc et al.
17

 Injecting a spin-polarized current at electrode 2 (Figure 1b) creates an out-

of-equilibrium spin population in the graphene layer. 

The difference between the electrochemical potentials of the spin-up and spin-down carriers, 

Δμ = (μ↑ – μ↓), is called the ―spin accumulation‖ [μ↑ (μ↓) = –eV + EF↑ (EF↓) at 0 K] (see 

Figure 1d). This polarization diffuses and is measured below electrodes 3 and 4 away from 

the electrical current (Figure 1b). The spatial spread of the spin polarization in a material is 

characterized by the spin diffusion length, lsf, which is related to the spin–lattice relaxation 

time, τsf (spin lifetime), in that material by lsf = (Dτsf)
1/2

 , where D is the diffusion coefficient. 

An example of a room-temperature nonlocal spin signal associated with the measurement of 

the difference in spin accumulation amplitude between these contacts is shown in Figure 1c. 

The amplitude of the signal depends not only on the length but also on the mean contact 

resistance, Rb, of the tunnel barrier between the graphene and the electrodes. A larger 

resistance prevents spin escape into the electrodes and preserves a larger spin polarization. 

The measurement is usually analysed according to a one-dimensional model based on the 

drift–diffusion equations (see the later section ―Analysis of experimental results on graphene‖ 

for details). In the notation used in this article, the nonlocal spin signal, ΔRnl , can be 

expressed as
17
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where γ is the injection polarization, ρsq is the square (sheet) resistance of the material 

(graphene in this case), lsf is its spin diffusion length, w is its width, and L is the distance 

between injection and detection. 



This expression predicts an exponential decay, exp(–L/lsf), of the spin signal as a function of 

the device length, except when lsf is very long, leading to slower 1/L decay. Based on the 

experimentally observed exponential variation, a spin diffusion length of 1.6 μm was derived 

for the graphene sample.
17

 

The spin-transport parameters can also be extracted using the Hanle effect, in which a 

magnetic field is applied in a direction perpendicular to the spin accumulation and causes 

precession and dephasing of the spins in the lateral channel (see Figure 2a). This eventually 

leads to an oscillating decay of the spin signal, as illustrated by the experimental results of 

Yang et al.
20

 in Figure 2b–c. When the alignment between the applied field and the spin 

polarization suppresses the precession effects, the spin signal is restored. Fitting of the Hanle 

curves with solutions of Bloch equations leads to the determination of the diffusion constant 

D, spin lifetime τsf, and spin diffusion length lsf. For their graphene samples, Popinciuc et al. 

found τsf and lsf values of up to 0.2 ns and 2.2 μm, respectively, at room temperature. Values 

in the same range were also later found by the Kawakami group.
19,21–23

 Indeed, using the 

nonlocal techniques, they found τsf ≈ 1 ns at 4 K and τsf ≈ 0.3 ns at room temperature. Figure 

3 shows the local and nonlocal signals at 4 K and room temperature, illustrating the opposite 

signs of the two types of signal. 

 

Recent results on large-scale graphene 

Whereas most of the spin-transport measurements discussed so far were made on exfoliated 

graphene on SiO2, recent publications have also reported experiments performed on graphene 

grown by chemical vapor deposition (CVD) on copper foils and transferred onto SiO2.
24

 

These experiments showed spin-transport properties similar to those of exfoliated graphene 

and introduced the interesting possibility of large-scale production of spin-transport devices, 

because large areas of CVD graphene can be fabricated easily. 

Another very interesting alternative for large-scale integration is epitaxially grown graphene 

on silicon carbide (SiC). In addition to a large size, epitaxial graphene (EG) samples also 

show very high mobility
25

 (see also the articles in this issue by Ruan et al. and Nyakiti at al.). 

However, graphene layers grown on the silicon-terminated face (Si face) of SiC show 

different structures and properties from those grown on the carbon terminated face (C face), 

and this is also true for spin transport. 

For the Si face, which allows easier control of layer growth, Maassen et al.
26

 performed 

nonlocal spin transport measurements on multilayer epitaxial graphene (MEG). They found 

an average mobility of ~1900 cm
2
V

−1
s

−1
 and τsf values on par with those of the best 

exfoliated samples (up to 2.3 ns at low temperature) but with surprisingly small diffusion 

constants and lsf values in comparison. 

For the C face, Dlubak et al.
27

 explored spin transport on MEG (~10 layers) (see Figure 4). 

Although the number of layers is more difficult to control, this type of graphene is composed 

of uncoupled monolayer graphene sheets (it is not simply a thin graphite layer), leading to 



better transport properties. They found very high mobilities of ~17,000 cm
2
V

−1
s

−1
. In these 

samples, cobalt/alumina tunnel junctions of very large resistance, in the megaohm range, 

were used as injectors and detectors.
28

 

Local magnetoresistance (MR) curves obtained with MEG
27

 are shown in Figure 4c with 

local spin signals (ΔR) in the megaohm range. These observed spin signals, much larger than 

the resistances of the cobalt electrodes and graphene channel, are the largest spin signals ever 

observed with graphene. In Figure 5b, the variation ΔR/R ∝ 1/LRb identifies the regime 

expected for a very large tunnel barrier resistance compared to the spin resistance of the 

graphene channel (defined as    
  = ρsqlsf/w) and the electrode resistances and a very large lsf 

value compared to L. The corresponding physics depends on the ratio between the electron 

dwell time (also called transit time) which is proportional to LRb and τsf. The impressive spin 

signals of these devices can be explained only by lsf in the 100-μm range and above. Such 

spin diffusion lengths, much longer than those reported previously, are probably related to the 

very high mobility and high quality of C-face SiC epitaxial graphene. 

 

Spin relaxation in graphene 

Considering spin relaxation mechanisms, it was observed by the van Wees group
29

 that lsf 

increased linearly with the diffusion constant (proportional to τp, the momentum scattering 

time). This led the authors to suggest that, for their samples at least, the mechanism of spin 

relaxation was of the Elliot–Yafet (EY) type.
30

 This mechanism predicts that, for each carrier 

momentum scattering event, there is a small probability (related to spin–orbit coupling) of 

spin flip and hence spin information loss. Thus, τsf is expected to increase with τp. 

Another interesting result was more recently obtained for MLG by the same group.
31

 They 

found that τsf increased with the number of layers. In the framework of the EY mechanism,
30

 

this increase in τsf can be attributed to better screening of the external scattering potentials, as 

reported for suspended graphene.
32

 

In agreement with the conclusions of the van Wees group,
29

 the Kawakami group found a 

decrease in τsf as τp decreased, suggesting the dominance of EY
30

 spin relaxation. However, 

interestingly, in experiments on bilayer graphene (BLG), they found the opposite behavior: a 

τsf value of up to 6.2 ns at low temperature and close to 1 ns at room temperature.
22

 

(Concurrently, a similar τsf value of 2 ns at room temperature was also found by Yang et al.;
19

 

see Figure 2b). Compared to the experiments on SLG by the same group, surprisingly, this 

inverse dependence on τp suggests the dominance of the Dyakonov–Perel (DP)
33

 mechanism, 

which relates spin flips to the accumulation of lattice-induced precession of the spin between 

scattering events. Thus, increased τp leads to increased τsf. Yang et al. also found
23

 that 

organic-ligand-bound gold nanoparticles, although introducing faster momentum scattering 

by localized charges, had no effect on τsf. 

More recently, the interpretation of the observed variation of τsf with τp and its relationship to 

the two mechanisms has been investigated. In most experiments, the variation of τp (which is 



proportional to μ, the mobility) is controlled through the variation of the charge density n 

through a gate, for which τp ∝ 1/n . However, it was shown
34

 that, away from the Dirac point, 

for the EY mechanism, τsf ∝ 1/τp, and the EY mechanism could lead to DP-like behavior. In 

addition, it was suggested that the DP mechanism could in some cases lead to EY-like 

behavior.
35

 

As discussed in the following section, however, the value of τsf observed in experiments 

corresponds to the fastest relaxation pathway in the devices. This pathway might not 

necessarily be in the graphene channel, as relaxation can occur through spin escape to the 

electrodes, where relaxation is much faster. For example, it was shown that at least a 

threefold increase in τsf could be obtained by replacing pinhole contacts with tunnel contacts, 

which better isolate the channel from the electrodes.
19

 

With contradictory results for τsf for different types of samples, the mechanism of spin 

relaxation in graphene is not yet clear, and it appears that no straightforward distinction can 

be made between the Elliot–Yafet and Dyakonov–Perel mechanisms with the available 

experimental data. One direction for future work is the study (both theoretical and 

experimental) of EG samples for which the longest τsf (a few hundred nanoseconds) and lsf (a 

few hundred micrometers) were found.
27

 

 

 

Theoretical model and device physics 

We now present a theoretical picture of spin transport in a graphene LSV and show how it 

can be applied to the experimental determination of τsf or lsf . 

 

General discussion 

The analysis of spin transport developed for metal or semiconductor LSVs has to be adapted 

to describe similar experiments with graphene (or carbon nanotubes). Because the spin 

relaxation in graphene is considerably slower than that in metals, a strong relaxation-rate 

mismatch occurs between the graphene channel and the ferromagnetic electrodes. Hence, to 

prevent the escape and relaxation of spin accumulation into the electrodes (also called 

backflow
17,36

) and to obtain a large spin signal, it is necessary to isolate the lateral channel 

from the electrodes by interface resistances (usually tunnel barriers). However, if the 

interface resistances are too large, the electron dwell time in the lateral channel becomes 

longer than τsf, and the spin signal drops. In the next section, we show that large spin signals 

occur only within a narrow window of interface resistances. 

The spin accumulation, and thus the spin signal, can be preserved even more by considerably 

reducing the volume available for spin relaxation, that is, by working in geometries where the 

distance L between the current and voltage contacts is much shorter than lsf . Spreading and 



relaxation of spin accumulation outside the active region can be prevented by working with 

devices with a confined geometry (see Figure 6). 

The propagation of spin currents in lateral devices can generally be described within the 

framework of the drift–diffusion equations first introduced by van Son et al.
37

 and Johnson 

and Silsbee
38

 and then extended by Valet and Fert
39

 for the interpretation of giant 

magnetoresistance, in which the current flow is perpendicular to the layers. Solution of the 

drift–diffusion equations
40

 gives the typical exponentially decaying electrochemical potential 

profiles μ↑ and μ↓ shown in Figure 1 and, thus, Δμ = (μ↑ – μ↓). The spin signal is expressed as 

ΔV (or ΔR = ΔV/I), the difference in voltage (or resistance) between the parallel and 

antiparallel magnetic configurations, which scales with Δμ/e (or Δμ/eI ). The amplitude of Δμ 

is controlled by the balance between the injected spin current (proportional to the current I) 

and the relaxation of the spin accumulation in the whole device, including the channel and, 

importantly, the magnetic electrodes. 

Indeed, the typical situation of a much higher relaxation rate in the electrodes (cobalt, iron, 

etc.) than in the channel (here, graphene) impacts the device physics. We define the spin 

resistance of the two-dimensional, nonmagnetic channel as    
  = ρsqlsf/w. The corresponding 

spin resistance of the ferromagnetic electrodes is   
  = ρF   

 /A, where ρF and    
  are the 

resistivity and spin diffusion length in the electrode, respectively, and A is the cross section 

of the current flow path. We note that the condition   
     

  almost always applies and 

hence is assumed in the following discussion. The mean contact resistance Rb and barrier spin 

polarization coefficient γ characterize the spin contact resistances R± = 2(1 ± γ)Rb. 

In a simple physical description, the spin accumulation, Δμ , and the spin signal, ΔR = ΔV/I ≈ 

Δμ/eI, are controlled by γ, the spin asymmetry coefficient of the interface, and by the ratio 

Rb/   
 . This ratio fixes the proportion between the two main relaxation paths: (1) spin 

escape/backflow to the electrodes, where the spin quickly relaxes, leading to an overall 

relaxation rate proportional to 1/Rb (blue zone in both plots of Figure 7), and (2) intrinsic spin 

relaxation in the lateral channel, which is proportional to 1/   
  for the open channels in 

Figure 6a–b or to (L/lsf)   
  for the confined channels in Figure 6c–d (red zone in both plots 

of Figure 7). 

The nonlocal open (NLO), local open (LO), and local confi ned (LC) (nonlocal confined 

[NLC] is similar to LC) curves in Figure 7 show what is expected for the variation of the spin 

signals of the devices in Figure 6 in the aforementioned limit   
     

 . The curves of ΔR = 

ΔV/I (Figure 7a) and ΔR/   = ΔV/     
 

 (Figure 7b, where    is the resistance between the 

source and drain in the parallel magnetic configuration) as functions of Rb/   
  are shown for 

L = lsf/5. 

To explain this behavior, we first consider the simplest geometry, LC, shown in Figure 6c, 

consisting of two contacts and confined spin accumulation (within L). The expressions for ΔR 

and ΔR/   (in the limit   
   Rb) are

27,40
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These equations give a steplike curve for ΔR, as seen in Figure 7a (curve LC), and a bell-like 

curve for ΔR/  , as seen in Figure 7b (curve LC), as functions of log(Rb/   
 ). Three zones 

can be defined: Rb   (L/lsf)   
 , (L/lsf)   

   Rb    (lsf/L)   
 , and Rb   (lsf/L)   

 . 

On the left (tinted blue), for Rb   (L/lsf)   
  [which is the conventional channel resistance, 

i.e., Rch = (L/lsf)   
 ], the interface resistance, Rb, is too low, corresponding to the reported 

―impedance-mismatch‖ regime. The physical interpretation is that, at low Rb, the relaxation 

occurs mainly through spin escape. In this case, the spin signal is very low, ΔR ≈ 2γ
2
Rb

2
/Rch, 

and decreases with decreasing Rb. Because the device resistance is dominated by the channel 

resistance,    ≈ Rch, one obtains ΔR/   ≈ 2γ
2
Rb

2
/Rch

2
. 

We next focus on the zone corresponding to the beginning of the steepest slope of the steplike 

curve of ΔR (Figure 7a) and the maximum of the bell-like curve of ΔR/R (Figure 7b). This is 

the regime in which (L/lsf)   
   Rb   (lsf/L)   

 . The physical interpretation of ΔR at this 

point is that the increase of the interface resistance Rb progressively reduces the spin escape 

to the electrodes as 1/Rb , thus increasing the spin accumulation and ΔR in proportion to Rb 

with ΔR = 2γ
2
Rb. With both ΔR and the device resistance,    ≈ 2(1 − γ

2
)Rb (which holds for 

Rb   Rch), increasing in proportion to Rb, ΔR/   ≈ (ΔR/R)max ≡ γ
2
/(1 − γ

2
) becomes 

practically constant. This corresponds to the peak of ΔR/   in the LC curve in Figure 7b. 

The data for carbon nanotubes in Reference 41, represented by crosses in Figure 7b, are 

approximately in this regime because ΔR approximately follows the increase in the interface 

resistance (   increasing from 33 MΩ to 150 MΩ), whereas the values of ΔR/   remain in a 

narrow range between 58% and 72%. It is worth noting that, as explained earlier, in this 

regime, the spin relaxation mainly occurs through spin escape to the high-relaxation-rate 

electrodes. Hence, for example, Hanle experiments performed in this range mainly determine 

τsf linked to spin escape to the electrodes and not relaxation in the channel. 

We finally focus on the third zone for the curves. This corresponds to the right of the step of 

the ΔR curve and the right of the ΔR/R bell curve (crossover and red tint in Figure 7). For Rb 

  (lsf/L)   
 , the competition between the two relaxation mechanisms is inverted. The 

limiting factor for spin accumulation is no longer spin relaxation by spin escape (∝ 1/Rb) but 

rather spin relaxation in the length L of the channel [∝ (lsf/L)   
 ]. Then, as seen in Figure 7a, 

ΔR progressively saturates at the value of ΔR = 4γ
2
Rb/sinh(L/lsf). In the limit lsf    L of the 



figure, this leads to ΔR = 4γ
2   

 (lsf/L). Whereas ΔR saturates,    ≈ 2Rb(1 – γ
2
) still increases 

in proportion to Rb, so ΔR/   decreases as 1/Rb, as shown in Figure 7b (also see Equation 4 

in the next section). In the variation as 1/LRb, the proportionality to 1/L is related to the 

confinement of the spin relaxation within L. It is only after this saturation of ΔR that the 

Hanle effect becomes directly related to the spin relaxation inside the channel. 

The experimental data on graphene reported in Reference 27, characterized by a decrease in 

ΔR/   as 1/Rb (see Equation 4), are distributed between the second and third zones, as 

represented by the triangle symbols in Figure 7. 

We have presented the most interesting case of lsf   L. However, this highly favorable case 

does not correspond to many earlier experiments, where lsf was found to be on the order of L. 

As L increases and approaches lsf, the range (L/lsf)   
   Rb   (lsf/L)   

  of the ideal regime 

(top of the bell curve) shrinks. In other words, the window of large MR in Figure 7 

progressively narrows. The cosh and sinh functions in Equations 2 and 3 can no longer be 

approximated as 1 and L/lsf, respectively. This restores the less favorable exponential 

variations of ΔR as a function of L/lsf that are usually reported
42

 in place of the linear 

dependences on L, reflecting the balance between the spin relaxation in the channel L and the 

spin escape of Equation 4, for example. 

We now turn to the open (unconfined) configurations in Figure 6a–b (curves NLO and LO in 

Figure 7), in which the spin accumulation/relaxation is not confined between the electrodes 

but spreads a distance lsf on both sides of the device. In this case, the channel relaxation rate 

is no longer driven by (L/lsf)   
  (the ratio L/lsf arises from the confinement over 

approximately L) but rather exhibits the higher rate of 1/   
 , as generally L/lsf   1 or, at 

most, L/lsf ≈ 1. Hence, as one can see for curves LO and NLO in Figure 7, the crossover to 

the regime controlled by relaxation inside the channel occurs earlier as a function of 

increasing Rb at about Rb/   
  ≈ 1. Accordingly, the level of the saturation plateau now scales 

with    
  instead of (L/lsf)   

 . We found saturation at ΔR = γ
2   

  for curve NLO 

(configuration in Figure 6a) and ΔR = 2γ
2   

  for curve LC (configuration in Figure 6c), in 

agreement with the standard expressions of Takahashi and Maekawa
42

 (or the relevant limit 

of Equation 1). This is well below the saturation level ΔR ≈ 4γ
2   

 lsf/L of curve LC 

(configuration in Figure 6c) for a confined geometry. It is then not surprising to find that the 

previously reported ΔR values were much smaller than the ΔR values expected from a 

confined geometry (curve LC), in the device-favorable situation of lsf   L. This is also true 

for the nonlocal confined (NLC) case in Figure 6d. For example, when the distance between 

the outer contacts is 3L , the spin signal ΔR (not represented in Figure 7) still saturates to ΔR 

≈ γ
2   

 lsf/L, well above the saturation level of the nonconfined LSVs,
37

 again showing the 

amplification factor of lsf/L due to the confinement. An example of similar amplification by 

confinement can be found in Reference 43 for a metallic LSV. 

As we demonstrate next, the regime of the LC curve in Figure 7 can be clearly identified in 

experimental results on epitaxial graphene. Other results, on structures of types NLO and LO 

in Figure 6a–b, correspond to the behavior illustrated for LO in Figure 7. 



 

Analysis of experimental results on graphene 

In this section, we analyze the experimental results obtained by Dlubak et al.
27

 on high-

mobility MLG grown epitaxially on C-face SiC. A schematic of the LC-type device, with a 

graphene channel in contact with two cobalt electrodes through alumina the devices analyzed, 

with channel lengths of 0.8 μm or 2 μm and tunnel resistances Rb varying between 3 MΩ and 

75 MΩ , are listed in Table I, together with the corresponding experimental results. 

As indicated previously, the variation of the spin signals in Table I (represented in Figure 5b) 

is characteristic of the crossover from a regime in which the relaxation is dominated by the 

interface barrier to one in which it is dominated by the channel. Here, ΔR is expected to 

progressively saturate, and ΔR/R is expected to drop to zero as 1/LRb in the limit of large Rb, 

as shown by Equation 4 in the next paragraph. This variation is consistent with the 

experimental results shown in Figure 5. The data from Table I are also represented by the 

triangle symbols in Figure 7a–b. 

The experimental results of Table I and Figure 5 were analyzed in Reference 27 on the basis 

of the general expression in Equation 3. To obtain better insight into the parameters involved 

in the analysis, we rewrite the asymptotic limit of this equation at large Rb as 

  

  
 

   

    

      
 

   
 

   

    
   

    

    
                                    (4) 

where the graphene square resistance is ρsq ≈ 1 kΩ (from independent measurements on the 

same graphene layer) and w is the width of the channel. The two unknown parameters are γ 

and lsf, with ΔR/   being an increasing function of both. Dlubak et al.
27

 assumed the largest 

value found in previous experiments on cobalt/alumina junctions, namely, γ = 0.32, to derive 

a lower bound for lsf. The best fits between Equation 3 and the experimental results for the 

different samples were found for the spin diffusion lengths listed in Table I, all in the 100-μm 

range or slightly above. Additionally, relative to the maximum magnetoresistance of MR = 

γ
2
/(1 – γ

2
) expected for a symmetric double tunnel junction without any spin relaxation in the 

intervening conducting material, the MR values of samples with smaller values of Rb 

correspond to an efficiency close to 80%. 

It should be emphasized that the lsf values listed in Table I are only lower bounds. Smaller 

values of the spin injection parameter γ, such as those reported in many experiments with 

graphene, or use of standard expressions that are valid for non-confined geometries
42

 would 

lead to greater lsf values. Nevertheless, it is also important to rule out potential spurious 

effects. First, the resistances of the graphene channel and electrodes are in the kiloohm and 

ohm ranges, respectively; hence, they are several orders of magnitude smaller than the 

experimentally observed ΔR values. Second, some contact effect, such as an anisotropic MR 

effect of the tunnel resistances, would be expected to increase with the tunnel resistance, in 

contradiction to the observations. 



One might also ask whether spin signals could be observed in much longer devices, say, 50 or 

100 μm. As explained in the earlier section ―Analysis of experimental results on graphene‖ 

(also see Figure 7), large values of ΔR/R can be observed only in the window (L/lsf)   
   Rb  

  (lsf/L)   
 . When L increases and tends progressively to lsf, this window shrinks 

considerably. For moderate values of L such as L = lsf/10, the maximum MR value can still be 

obtained but at the cost of precise tuning of the interface resistance, which is not always 

possible experimentally. For L above this range, the maximum value of MR, γ
2
/(1 – γ

2
), is no 

longer achievable even with very precise tuning of the barrier. This is illustrated in Figure 5a, 

where one can see that, for devices similar to those described in Reference 27 but with L ≈ 

lsf/2, a large MR (although not as large as the maximum value) can be obtained only with 

highly tunable tunnel resistances that are several orders of magnitude smaller than that of the 

experiment. 

We finally discuss the origin of the much greater lsf value found for MEG in Table I, through 

comparisons with other experiments. One cannot exclude the possibility that the smaller lsf 

values in some other experiments could be due to lower-quality tunnel barriers. Another 

origin of the discrepancy could be incorrect interpretation of Hanle measurements when spin 

relaxation is mainly due to spin escape (backflow) and not to intrinsic spin relaxation in 

graphene. However, the main difference arises from the superior properties of MEG grown 

on C-face SiC compared to graphene obtained by chemical vapor deposition or exfoliation. 

One of the advantages of this type of graphene comes from the screening of substrate induced 

scattering in the top layers of the MLG. This is also the probable origin of the very high 

mobility achieved without treatment or suspension of the graphene. The second point is that 

graphene multilayers are flatter and have less corrugation than monolayers. This should 

reduce ripple-induced spin-orbit coupling and its contribution to spin relaxation and might 

also explain the longer τsf values found in samples with increasing numbers of layers. 

Actually, the 100-μm range for the samples in Reference 27 should not be the upper limit of 

lsf values in graphene. Improvements in the quality of epitaxial graphene, substrates with lead 

to greater lsf values and further increase the potential of graphene for large-scale spintronic 

devices, such as spin-only logic circuits. 

 

Conclusions 

Graphene has been experimentally identified as a pertinent medium for the transport of spin 

information over macroscopic distances with limited losses, thus enabling further work on 

more complex spin architectures (see Figure 8). The next step in developing graphene for 

spintronics applications is a thrilling challenge and concerns gate manipulation of the spin 

information transported in the graphene channel. However, a pertinent implementation has 

yet to be identified. Several theoretical predictions have been formulated, and experimental 

testing of these predictions has begun. A few interesting proposals are interfaces with 

ferromagnetic materials or impurities,
50,51

 interfaces with large spin-orbit or Rashba 

interactions,
34,52,53 

and also structural tuning of magnetic properties (using nanoribbon edges, 



nanomeshes, etc.).
54–57

 Other interesting types of control of electronic properties are also 

offered by the Dirac character of the electronic states and their associated pseudospin.
58–60

 

Experimentalists will now have to test the implementation of several possible concepts of 

graphene-based spin logic gates, and this will certainly keep them busy for some time. 

Nevertheless, the prospects are highly promising for green spin-based low-power memory 

and logic devices, as well as a global graphene-based electronics platform, fitting a ―More 

than Moore‖ scenario in the short term and augmenting classic scaling of silicon  

complementary metal-oxide semiconductor (CMOS), as well as a long-term beyond-CMOS 

vision. 

 

 

 

Table 1 

Sample L (μm)    (MΩ) 

 

Rb (MΩ) 

 

ΔR (MΩ) 

 

MR (%) lsf (μm) 

 

A 2 136 75.8 1.5 1.1 285 

B 2 70 39 0.4 0.7 160 

C 2 29 16.2 0.35 1.2 138 

D 2 3.8 2.1 0.12 3.4 95 

E 0.8 5.8 3.2 0.55 9.4 246 

 

Spin diffusion lengths lsf in the channel of epitaxial graphene lateral spin valves (LSVs) 

obtained by fitting Equation 3 to experimental results
27

 with only l sf as a free parameter. All 

other parameters (except γ) extracted from sample measurements. The calculations were 

performed with γ = 0.32, the maximum value of γ found
27

 for the spin polarization of 

tunneling from cobalt through alumina in similar devices, and provide only a lower bound of 

lsf. L, device length;   , device resistance in the parallel magnetic configuration of the cobalt 

electrodes; Rb, interface resistance as defined in the text; ΔR , spin signal (i.e., the absolute 

change in device resistance between the parallel and antiparallel magnetic configurations); 

MR = ΔR/  , magnetoresistance. 
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Figures captions 

 

Figure 1. (a) A four-terminal LSV device based on a single-layer exfoliated graphene flake 

showing the graphene shape. (b) Nonlocal measurement geometry of a graphene spin-valve 

device. The current I is injected between electrodes 3 and 4, and a voltage V is detected 

between electrodes 1 and 2. (c) A nonlocal spin signal appears as a difference in the nonlinear 

resistance Rnl = V/I in different parallel and antiparallel configurations of the magnetic 

electrodes as the magnetic field H is swept. These measurements were made at room 

temperature in a 600-nm-wide device with a 3-μm interelectrode spacing between central 

electrodes 2 and 3. (d) Schematic representation of the spin-dependent chemical potentials μ↑ 

and μ↓ induced by injecting a spin-polarized current from a ferromagnetic electrode into the 

graphene lateral channel of the device in (b). The difference μ↑ – μ↓ is the spin accumulation 

giving rise to the measured spin signal. The arrows indicate the magnetization directions of 

the electrodes. The green (red) dots correspond to the chemical potential being probed with 

the magnetization pointing downward (upward). Adapted from Reference 17. 

Figure 2. Hanle effect: (a) Application of an external magnetic field perpendicular to the 

electrode’s magnetization (i.e., perpendicular to the channel plane) forces the precession of 

the polarization of the spin current. Top: Spin current is conserved in the absence of a 

perpendicular field. Bottom: The applied field is just strong enough to induce one-half 

precession during channel transport. (b–c) Room-temperature Hanle curves recorded by Han 

et al.
19

 (on nonlocal open devices as shown in Figure 5a) in both the parallel and antiparallel 

states of electrode magnetization. Oscillating and decaying device resistances as a function of 

the applied field are observed. The spin lifetime τsf and diffusion constants were extracted 

from fits of the data. The results in (b) reflect direct ferromagnet/graphene contact, whereas 

in (c), the contact resistance is increased by the insertion of a tunnel barrier. An increase in 

spin lifetime from 84 ps to 448 ps was obtained when tunnel barriers were used, showing the 

importance of spin escape to the electrodes (see description in text). 

Figure 3. (a) Schematic illustration of the measurement configurations for LSVs, contrasting 

the nonlocal configuration (top), in which the current I is injected between two neighboring 

electrodes and the voltage V = IRnl is measured at two other electrodes, and the local 

configuration (bottom), in which the voltage V = IR is measured between the same electrodes 

in which the current is injected. (b) Typical signals reported for local measurements at 4 K, 

with observed ΔR values limited to the 100-Ω range. Reproduced with permission from 

Reference
19

. ©2012, Elsevier. (c) Similar results obtained at room temperature. Reproduced 

with permission from Reference
17

. ©2007, Nature Publishing Group. Note that signals that 

are clear in the nonlocal configuration become noisier in the local configuration for the same 

sample. 

Figure 4. LSV device presented in Reference 27: (a) Plan-view scanning electron microscope 

image of a two-terminal local LSV. The width of the epitaxial graphene (EG) channel (gray) 

on SiC (blue) is 10 μm, and the distance between the two Al2O3/Co electrodes (red) is L = 2 

μm. (b) Optical image of the entire structure, including contact pads. (c) Large local ΔR spin 

signals measured at 4 K. Note that the arrows indicate the sweep directions. Reproduced with 

permission from Reference
27

. ©2012, Nature Publishing Group. 

Figure 5. (a) Expected evolution of ΔR/R, normalized to the maximum achievable value 

γ
2
/(1–γ

2
), as a function of barrier-to-channel spin resistance ratio, Rb/   

 , as derived from 



Equation 2 in the LC case. Two scenarios are given: L = lsf/125 (blue), which corresponds to 

the range of data in Reference
27

 for which the maximum γ
2
/(1 – γ

2
) can be achieved, and L = 

lsf/2 (purple), which corresponds to an extrapolation to much larger devices (for the same 

other parameters) for which the maximum γ
2
/(1 – γ

2
) is no longer achievable. The colored 

oval represents the experimental data range from Reference 27. An example is given of how 

the efficiency of a representative device drops (dashed arrow) if its length is changed from lsf 

= 125L (blue circle) to lsf = 2L (purple circle) with all other parameters remaining constant. 

The solid horizontal arrow shows how one needs to tune Rb precisely to recover a high signal 

efficiency. The width of the high-efficiency window (the range of resistance) scales with lsf/L. 

(b) Data from Table 1 of Reference 27, shown together with plots of Equation 4 expressed as 

a function of the product of Rb and L for lsf values of 4 μm (average literature value), 50 μm, 

150 μm, and 250 μm. 

Figure 6. Schematic representations of the different types of LSVs on a graphene (or other) 

channel: (a) nonlocal detection and open (nonconfined) channel (NLO), (b) local detection 

and open channel (LO), (c) local detection and confined channel (LC), and (d) nonlocal 

detection and confined channel (NLC). In all cases, L is the distance between injection 

electrode and the detection electrode. 

Figure 7. Expected variations of (a) the total spin signal, ΔR , and (b) the relative spin signal, 

MR = ΔR/  , as functions of the ratio between the interface resistance, Rb, and the channel 

spin resistance,    
 , for the LSV configurations in Figure 6a–c. The calculation was 

performed using Equation 2 with L = lsf/5. The symbols indicate—schematically, not 

quantitatively—the experimental results on carbon nanotubes (crosses) and graphene 

(triangles) discussed in the text. The curves for the NLC LSV of Figure 5 are similar to the 

LC curves and are not shown. The blue and red colors indicate the zones where the behavior 

is dominated by spin relaxation by escape to the electrodes and relaxation within the channel, 

respectively. 

Figure 8. Comparison of device performance (ΔR) versus channel properties (lsf) for different 

spin-transport media (metals, semiconductors, carbon allotropes), as reported in the literature 

in the case of simple local or nonlocal lateral-spin-transport devices. The dark gray arrow 

indicates the increasing lsf requirement for large signals, from spin transistors to more 

complex spin circuits. Appelbaum et al. also reported interesting results on silicon, with spin-

information propagation over distances in the 100-μm range.
48

 However, those devices used 

multiterminal hot-electron structures that allowed the transmission of only a very small 

fraction (<10
−4

) of the injected current, giving spin signals not comparable with those 

reported here.
49
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