Skip to main content
Log in

Phenolic antioxidant-incorporated durable perovskite layers and their application for a solar cell

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The incorporation of small amounts of phenolic antioxidants, such as 2,6-di-tert-butyl-4-cresol and pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], into photovoltaic organo-lead halide perovskite layers significantly suppressed the degradation of the perovskite compounds via light irradiation in the presence of ambient oxygen. While the facile incorporation of the antioxidants did not decrease both the quality of the formed perovskite crystal grains and the photovoltaic conversion performance of the cells, it enhanced the antioxidizing property and water repellency of the perovskite layer owing to the elimination of superoxide anion radical and hydrophobic molecular structure and improved the durability of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Table I
Figure 2

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).

    Article  CAS  Google Scholar 

  2. H.J. Snaith: Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372 (2018).

    Article  CAS  Google Scholar 

  3. K. Suwa, L. Cojocaru, K. Wienands, C. Hofmann, P.S.C. Schulze, A.J. Bett, K. Winkler, J.C. Goldschmidt, S.W. Glunz, and H. Nishide: Vapor-phase formation of a hole-transporting thiophene polymer layer for evaporated perovskite solar cells. ACS Appl. Mater. Interfaces 12, 6496 (2020).

    Article  CAS  Google Scholar 

  4. T.W. Kim, S. Uchida, T. Matsushita, L. Cojocaru, R. Jono, K. Kimura, D. Matsubara, M. Shirai, K. Ito, and H. Matsumoto: Self-organized superlattice and phase coexistence inside thin film organometal halide perovskite. Adv. Mater. 30, 1705230 (2018).

    Article  Google Scholar 

  5. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui: NH2CH = NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485 (2014).

    Article  CAS  Google Scholar 

  6. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016).

    Article  CAS  Google Scholar 

  7. F. Bella, G. Griffini, J.P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri, and C. Gerbaldi: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 203 (2016).

    Article  CAS  Google Scholar 

  8. L. Cojocaru, S. Uchida, Y. Sanehira, J. Nakazaki, T. Kubo, and H. Segawa: Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells. Chem. Lett. 44, 674 (2015).

    Article  CAS  Google Scholar 

  9. X. Guo, C. Mccleese, C. Kolodziej, A.C.S. Samia, Y. Zhao, and C. Burda: Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Trans. 45, 3806 (2016).

    Article  CAS  Google Scholar 

  10. M.I. Asghar, J. Zhang, H. Wang, and P.D. Lund: Device stability of perovskite solar cells—a review. Renew. Sustain. Energy Rev. 77, 131 (2017).

    Article  CAS  Google Scholar 

  11. G. Niu, X. Guo, and L. Wang: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970 (2015).

    Article  CAS  Google Scholar 

  12. N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, and S.A. Haque: The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208 (2015).

    Article  CAS  Google Scholar 

  13. R. Wang, M. Mujahid, Y. Duan, Z. Wang, and J. Xue: A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019).

    Article  CAS  Google Scholar 

  14. B. Dimitrios: Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 17, 505 (2006).

    Article  CAS  Google Scholar 

  15. M.C. Foti: Chemistry and biology of antioxidants antioxidant properties of phenols. J. Pharm. Pharmacol. 59, 1673 (2007).

    Article  CAS  Google Scholar 

  16. F.A. Villamena, A. Das, and K.M. Nash: Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med. Chem. 4, 1171 (2012).

    Article  CAS  Google Scholar 

  17. F. Shahidi, P.K. Janitha, and P.D. Wanasundara: Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32, 67 (1992).

    Article  CAS  Google Scholar 

  18. E.J. Lien, S. Ren, H.-H. Bui, and R. Wang: Quantitative structure–activity relationship analysis of phenolic antioxidants. Free Radic. Biol. Med. 26, 285 (1999).

    Article  CAS  Google Scholar 

  19. K. Suwa, K. Oyaizu, H. Segawa, and H. Nishide: Anti-oxidizing radical polymer-incorporated perovskite layers and their photovoltaic characteristics in solar cells. ChemSusChem 12, 5207 (2019).

    Article  CAS  Google Scholar 

  20. S. Kumar, Y. Choi, S. Kang, N.K. Oh, J. Lee, J. Seo, M. Jeong, H.W. Kwon, S.I. Seok, C. Yang, and H. Park: Multifaceted role of a dibutylhydroxytoluene processing additive in enhancing the efficiency and stability of planar perovskite solar cells. ACS Appl. Mater. Interfaces 11, 38828 (2019).

    Article  CAS  Google Scholar 

  21. K. Suwa, S. Tanaka, K. Oyaizu, and H. Nishide: Arylamine polymers prepared via facile paraldehyde addition condensation: an effective hole-transporting material for perovskite solar cells. Polym. Int. 67, 670 (2018).

    Article  CAS  Google Scholar 

  22. H. Maruo, Y. Sasaki, K. Harada, K. Suwa, K. Oyaizu, H. Segawa, K. Carter, and H. Nishide: Hole-transporting diketopyrrolopyrrole-thiophene polymers and their additive-free application for a perovskite-type solar cell with an efficiency of 16.3%. Polym. J. 51, 91 (2019).

    Article  CAS  Google Scholar 

  23. W. Okada, T. Suga, K. Oyaizu, H. Segawa, and H. Nishide: Perovskite/TiO2 interface passivation using poly(vinylcarbazole) and fullerene for the photovoltaic conversion efficiency of 21%. ACS Appl. Energy Mater. 2, 2848 (2019).

    Article  CAS  Google Scholar 

  24. H.M. Peshavariya, G.J. Dusting, and S. Selemidis: Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic. Res. 41, 699 (2007).

    Article  CAS  Google Scholar 

  25. L. Benov, L. Sztejnberg, and I. Fridovich: Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic. Biol. Med. 25, 826 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by “Research and Development of Innovative New Structure Solar Cells” from NEDO, Japan. K.S. acknowledges the Leading Graduate Program in Science and Engineering at Waseda University from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Nishide.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwa, K., Suga, T., Oyaizu, K. et al. Phenolic antioxidant-incorporated durable perovskite layers and their application for a solar cell. MRS Communications 10, 312–316 (2020). https://doi.org/10.1557/mrc.2020.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.25

Navigation