Skip to main content
Log in

Atomistic tight-binding theory of structural and optical properties in PbX (X = S, Se, and Te) nanocrystals

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The computational tool integrating empirical tight binding and full configuration interaction method is utilized to study the structural and optical properties of spherical PbX (X = S, Se, and Te) nanocrystals under various diameters. The nanocrystal architecture plays an essential role in the control of the structural and optical properties. The appearance of the quantum confinement is caused by the reduction of the optical band gaps with the increasing diameters. By changing the chalcogenide types and diameters, the band gaps are modified, with their wavelengths from 380 to 2500 nm, technologically applying for the visible and near-infrared optical devices. The tight-binding band gaps agree well with previously published theoretical and experimental values. The atomistic electron–hole interactions are mainly influenced by the diameters and chalcogenide types. Using the Stokes shift and fine structure splitting, PbS nanocrystal with the immense size may be implemented as a source of entangled photon pairs and optical filter. Finally, the theoretical study reveals the distinctive properties of PbX (X = S, Se, and Te) nanocrystals by changing their architecture for applications in optoelectronic devices and microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. A.L. Rogach, A. Eychmüller, S.G. Hickey, and S.V. Kershaw: Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3, 536 (2007).

    Article  CAS  Google Scholar 

  2. M. Mozafari, F. Moztarzadeh, A. Seifalian, and L. Tayebi: Self-assembly of PbS hollow sphere quantum dots via gas-bubble technique for early cancer diagnosis. J. Lumin. 133, 188 (2013).

    Article  CAS  Google Scholar 

  3. L.O. Cinteza: Quantum dots in biomedical applications: Advances and challenges. J. Nanophotonics 4, 042503 (2010).

    Article  Google Scholar 

  4. K.P. Bhandari, P.J. Roland, H. Mahabaduge, N.O. Haugen, C.R. Grice, S. Jeong, T. Dykstra, J. Gao, and R.J. Ellingson: Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS. Sol. Energy Mater. Sol. Cells 117, 476 (2013).

    Article  CAS  Google Scholar 

  5. S. Emin, S.P. Singh, L. Han, N. Satoh, and A. Islam: Colloidal quantum dot solar cells. Sol. Energy 85, 1264 (2011).

    Article  CAS  Google Scholar 

  6. A.N. Jumabekov, F. Deschler, D. Bo, L.M. Peter, J. Feldmann, and T. Bein: Quantum-dot-sensitized solar cells with water-soluble and air-stable PbS quantum dots. J. Phys. Chem. C 118, 5142 (2014).

    Article  CAS  Google Scholar 

  7. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, and A.L. Efros: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865 (2005).

    Article  CAS  Google Scholar 

  8. R.D. Schaller and V.I. Klimov: High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article  CAS  Google Scholar 

  9. M.T. Trinh, A.J. Houtepen, J.M. Schins, T. Hanrath, J. Piris, W. Knulst, A.P.L.M. Goossens, and L.D.A. Siebbeles: In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713 (2008).

    Article  Google Scholar 

  10. M.C. Beard, A.G. Midgett, M. Law, O.E. Semonin, R.J. Ellingson, and A.J. Nozik: Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 9, 836 (2009).

    Article  CAS  Google Scholar 

  11. R.S. Kane, R.E. Cohen, and R. Silbey: Theoretical study of the electronic structure of PbS nanoclusters. J. Phys. Chem. 100, 7928 (1996).

    Article  CAS  Google Scholar 

  12. M.A. Hines and G.D. Scholes: Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844 (2003).

    Article  CAS  Google Scholar 

  13. A.P. Litvin, P.S. Parfenov, E.V. Ushakova, A.L. Simões Gamboa, A.V. Fedorov, and A.V. Baranov: Size and temperature dependencies of the low-energy electronic structure of PbS quantum dots. J. Phys. Chem. C 118, 20721 (2014).

    Article  CAS  Google Scholar 

  14. J. Zhang, R.W. Crisp, J. Gao, D.M. Kroupa, M.C. Beard, and J.M. Luther: Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 6, 1830 (2015).

    Article  CAS  Google Scholar 

  15. Y. Pan, Y.R. Li, Y. Zhao, and D.L. Akins: Synthesis and characterization of quantum dots: A case study using PbS. J. Chem. Educ. 92, 1860 (2015).

    Article  CAS  Google Scholar 

  16. U. Kumar, S.N. Sharma, S. Singh, M. Kar, V.N. Singh, B.R. Mehta, and R. Kakkar: Size- and shape-controlled synthesis and properties of colloidal PbSe nanocrystals. Mater. Chem. Phys. 113, 107 (2009).

    Article  CAS  Google Scholar 

  17. I. Kang and F.W. Wise: Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14, 1632 (1997).

    Article  CAS  Google Scholar 

  18. R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A.J. Houtepen: Optical investigation of quantum confinement in PbSe nanocrystals at different points in the brillouin zone. Small 4, 127 (2008).

    Article  CAS  Google Scholar 

  19. R. Leitsmann and F. Bechstedt: Characteristic energies and shifts in optical spectra of colloidal IV–VI semiconductor nanocrystals. ACS Nano 3, 3505 (2009).

    Article  CAS  Google Scholar 

  20. T. Mokari, M. Zhang, and P. Yang: Shape, size, and assembly control of PbTe nanocrystals. J. Am. Chem. Soc. 129, 9864 (2007).

    Article  CAS  Google Scholar 

  21. J.E. Murphy, M.C. Beard, A.G. Norman, S.P. Ahrenkiel, J.C. Johnson, P. Yu, O.I. Mićić, R.J. Ellingson, and A.J. Nozik: PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241 (2006).

    Article  CAS  Google Scholar 

  22. B. Zhang, J. He, and T.M. Tritta: Size-selective high-yield growth of lead telluride (PbTe) nanocrystals using a chemical vapor deposition technique. Appl. Phys. Lett. 88, 043119 (2006).

    Article  CAS  Google Scholar 

  23. M. Korkusinski and P. Hawrylak: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310 (2013).

    Article  CAS  Google Scholar 

  24. M. Zieliński: Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. J. Phys.: Condens. Matter 25, 465301 (2013).

    Google Scholar 

  25. F.A. Reboredo, A. Franceschetti, and A. Zunger: Dark excitons due to direct Coulomb interactions in silicon quantum dots. Phys. Rev. B 61, 13073 (2000).

    Article  CAS  Google Scholar 

  26. E.L. de Oliveira, E.L. Albuquerque, J.S. de Sousa, G.A. Farias, and F.M. Peeters: Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals. J. Phys. Chem. C 116, 4399 (2012).

    Article  CAS  Google Scholar 

  27. W. Sukkabot: Excitonic fine structure splitting in ZnTe/ZnX (X = S and Se) core/shell nanocrystals: Atomistic tight-binding theory. Superlattices Microstruct. 91, 208 (2016).

    Article  CAS  Google Scholar 

  28. W. Sukkabot: Atomistic tight-binding computations of excitonic fine structure splitting in CdSe/ZnSe type-I and ZnSe/CdSe invert type-I core/shell nanocrystals. Mater. Sci. Semicond. Process. 47, 57 (2016).

    Article  CAS  Google Scholar 

  29. W. Sukkabot: Atomistic tight-binding computations in structural and optical properties of CdSe/ZnSe/ZnS core/multi-shell nanocrystals. Superlattices Microstruct. 95, 71 (2016).

    Article  CAS  Google Scholar 

  30. Y. Wang, A. Suna, W. Mahler, and R. Kasowski: PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 87, 7315 (1987).

    Article  CAS  Google Scholar 

  31. H. Weller: Quantized semiconductor particles: A novel state of matter for materials science. Adv. Mater. 5, 88 (1993).

    Article  CAS  Google Scholar 

  32. J.M. An, A. Franceschetti, and A. Zunger: The excitonic exchange splitting and radiative lifetime in PbSe quantum dots. Nano Lett. 7, 2129 (2007).

    Article  CAS  Google Scholar 

  33. P. Liljeroth, P.A. Zeijlmans van Emmichoven, S.G. Hickey, H. Weller, B. Grandidier, G. Allan, and D. Vanmaekelbergh: Density of states measured by scanning-tunneling spectroscopy sheds new light on the optical transitions in PbSe nanocrystals. Phys. Rev. Lett. 95, 086801 (2005).

    Article  CAS  Google Scholar 

  34. C.B. Murray, S. Sun, W. Gaschler, H. Doyle, T.A. Betley, and C.R. Kagan: Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47 (2001).

    Article  CAS  Google Scholar 

  35. K. Gong, Y. Zeng, and D.F. Kelley: Extinction coefficients, oscillator strengths, and radiative lifetimes of CdSe, CdTe, and CdTe/CdSe nanocrystals. J. Phys. Chem. C 117, 20268 (2013).

    Article  CAS  Google Scholar 

  36. J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, and M. Califano: Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468 (2009).

    Article  CAS  Google Scholar 

  37. W. Sukkabot: Atomistic tight-binding calculations of near infrared emitting CdxHg1−xTe nanocrystals. Comput. Mater. Sci. 138, 166 (2017).

    Article  CAS  Google Scholar 

  38. J. Butler: Advanced Topics in Forensic DNA Typing: Methodology, 1st ed. (Academic Press, San Diego, CA, 2011).

    Google Scholar 

  39. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000).

    Article  CAS  Google Scholar 

  40. M. Califano, A. Franceschetti, and A. Zunger: Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots. Phys. Rev. B 75, 115401 (2007).

    Article  CAS  Google Scholar 

  41. V.A. Fonoberov and A.A. Balandin: Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect. Phys. Rev. B 70, 195410 (2004).

    Article  CAS  Google Scholar 

  42. A. Kigel, M. Brumer, G. Maikov, A. Sashchiuk, and E. Lifshitz: The ground-state exciton lifetime of PbSe nanocrystal quantum dots. Superlattices Microstruct. 46, 272 (2009).

    Article  CAS  Google Scholar 

  43. K.K. Zhuravlev, J.M. Pietryga, R.K. Sander, and R.D. Schaller: Optical properties of PbSe nanocrystal quantum dots under pressure. Appl. Phys. Lett. 90, 043110 (2007).

    Article  CAS  Google Scholar 

  44. A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  45. S. Lee, F. Oyafuso, P. von Allmen, and G. Klimeck: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316 (2004).

    Article  CAS  Google Scholar 

  46. C.S. Lent, M.A. Bowen, J.D. Dow, R.S. Allgaier, O.F. Sankey, and E.S. Ho: Relativistic empirical tight-binding theory of the energy bands of GeTe, SnTe, PbTe, PbSe, PbS, and their alloys. Superlattices Microstruct. 2, 491 (1986).

    Article  CAS  Google Scholar 

  47. W. Sheng, S-J. Cheng, and P. Hawrylak: Multiband theory of multi-exciton complexes in self-assembled quantum dots. Phys. Rev. B 71, 035316 (2005).

    Article  CAS  Google Scholar 

  48. S. Lee, L. Jonsson, J.W. Wilkins, G.W. Bryant, and G. Klimeck: Electron–hole correlations in semiconductor quantum dots with tight-binding wave functions. Phys. Rev. B 63, 195318 (2001).

    Article  CAS  Google Scholar 

  49. A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger: Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 60, 1819 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the support from Department of Physics, Faculty of Science, Ubon Ratchathani University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worasak Sukkabot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukkabot, W. Atomistic tight-binding theory of structural and optical properties in PbX (X = S, Se, and Te) nanocrystals. Journal of Materials Research 35, 1190–1195 (2020). https://doi.org/10.1557/jmr.2020.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.46

Navigation