Skip to main content
Log in

A novel terbium doping effect on physical properties of lead sulfide nanostructures: A facile synthesis and characterization

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lead sulfide (PbS) is having tremendous applications in the field of optoelectronics. Hence, a facile low temperature synthesis of PbS with different contents of terbium (Tb) has been achieved and investigated for structure–optic–dielectric–electrical properties. The structure confirmation was observed through the X-ray diffraction and Rietveld refinement process which approved a monophasic cubic structure. Rietveld refinement gives a best-fitting profile of the prepared products. The crystallite size was estimated to be in range of 15–21 nm. FT-Raman study also approved the single-phase PbS with all characteristic modes. For further confirmation of composition, homogeneity, and Tb in the final product, the EDX/SEM e-mapping was carried out. The morphological investigation was carried out through SEM which revealed that the shape and size are greatly influenced by Tb content addition in PbS. The energy gap (Eg) was estimated in the range of 1.42–1.62 eV for all Tb@PbS, and the largest Eg value was observed for 0.5 wt% Tb@PbS. The dielectric constant values are calculated in the range of 16–25 in the tested frequency region. The ac electrical conductivity was enhanced with frequency, and a charge transport mechanism is related to a correlated barrier hoping model in the prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
TABLE 1:
TABLE 2:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. X. Liu and M. Zhang: Studies on PbS and PbSe detectors for IR system. Int. J. Infrared. Millim. 21, 1697 (2000).

    Article  Google Scholar 

  2. O. Madelung: Semiconductors: Data Handbook (Springer Science & Business Media, New York, 2012).

    Google Scholar 

  3. S. Pawar, J. Shaikh, R. Devan, Y. Ma, D. Haranath, P. Bhosale, and P. Patil: Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties. Appl. Surf. Sci. 258, 1869 (2011).

    Article  CAS  Google Scholar 

  4. A. Kutsenko, S. Maloletov, S.Y. Kuchmii, V. Lyakhovetskii, and V. Volkov: Third-order nonlinear optical response of a new PVA composite with PbS nanocrystals theor y. Exp. Chem. 38, 173 (2002).

    Article  CAS  Google Scholar 

  5. A. Souici, N. Keghouche, J. Delaire, H. Remita, A. Etcheberry, and M. Mostafavi: Structural and optical properties of PbS nanoparticles synthesized by the radiolytic method. J. Phys. Chem. C 113, 8050 (2009).

    Article  CAS  Google Scholar 

  6. Y. Wang: Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc. Chem. Res. 24, 133 (1991).

    Article  CAS  Google Scholar 

  7. R. Kane, R. Cohen, and R. Silbey: Theoretical study of the electronic structure of PbS nanoclusters. J. Phys. Chem. 100, 7928 (1996).

    Article  CAS  Google Scholar 

  8. P. Gadenne, Y. Yagil, and G. Deutscher: Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition. J. Appl. Phys. 66, 3019 (1989).

    Article  CAS  Google Scholar 

  9. A. Rogalski: History of infrared detectors. Opto-Electron. Rev. 20, 279 (2012).

    Article  Google Scholar 

  10. Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, and Z. Xu: PbS crystals with clover-like structure: Preparation, characterization, optical properties and influencing factors crystal research and technology. J. Exp. Ind. Crystallogr. 39, 200 (2004).

    CAS  Google Scholar 

  11. J.J. Peterson and T.D. Krauss: Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett. 6, 510 (2006).

    Article  CAS  Google Scholar 

  12. K.C. Preetha and T.L. Remadevi: Behavior of chemically deposited PbS thin films subjected to two different routes of post deposition annealing. Mater. Sci. Semicond. Process. 16, 605 (2013).

    Article  CAS  Google Scholar 

  13. Q. Wan, Q. Huang, M. Liu, D. Xu, H. Huang, X. Zhang, and Y. Wei: Aggregation-induced emission active luminescent polymeric nanoparticles: Non-covalent fabrication methodologies and biomedical applications. Appl. Mater. Today 9, 145 (2017).

    Article  Google Scholar 

  14. R. Jiang, M. Liu, T. Chen, H. Huang, Q. Huang, J. Tian, Y. Wen, Q.-y. Cao, X. Zhang, and Y. Wei: Facile construction and biological imaging of cross-linked fluorescent organic nanoparticles with aggregation-induced emission feature through a catalyst-free azide-alkyne click reaction. Dyes Pigm. 148, 52 (2018).

    Article  CAS  Google Scholar 

  15. F.G. Hone and F.B. Dejene: Six complexing agents and their effects on optical, structural, morphological and photoluminescence properties of lead sulphide thin films prepared by chemical route. J. Lumin. 201, 321 (2018).

    Article  CAS  Google Scholar 

  16. W. Xu, Y. Shen, A. Xie, and F. Huang: Synthesis and characterization of PbS nanorods in W/O microemulsion system. Russ. J. Phys. Chem. A 83, 2297 (2009).

    Article  CAS  Google Scholar 

  17. S.F. Wang, F. Gu, and M.K. Lü: Sonochemical synthesis of hollow PbS nanospheres. Langmuir 22, 398 (2006).

    Article  CAS  Google Scholar 

  18. A.D. Antu, Z. Jiang, S.M. Premathilka, Y. Tang, J. Hu, A. Roy, and L. Sun: Bright colloidal PbS nanoribbons. Chem. Mater. 30, 3697 (2018).

    Article  CAS  Google Scholar 

  19. N. Zhukov, A. Rokakh, and M. Shishkin: Properties of lead-sulfide nanoparticles in a multicrystalline structure. Semiconductors 52, 755 (2018).

    Article  CAS  Google Scholar 

  20. E. Akbay and T.G. Ölmez: Sonochemical synthesis and loading of PbS nanoparticles into mesoporous silica. Mater. Lett. 215, 263 (2018).

    Article  CAS  Google Scholar 

  21. M. Shkir, A. Khan, M. Hamdy, and S. AlFaify: A facile microwave synthesis of PbS: Sr nanoparticles and their key structural, morphological, optical, photoluminescence, dielectric and electrical studies for optoelectronics. Mater. Res. Express 6, 1250e6 (2020).

    Article  CAS  Google Scholar 

  22. J.-S. Chen, H. Zang, M. Li, and M. Cotlet: Hot excitons are responsible for increasing photoluminescence blinking activity in single lead sulfide/cadmium sulfide nanocrystals. Chem. Commun. 54, 495 (2018).

    Article  CAS  Google Scholar 

  23. T. Xu, J. Hu, P. Wei, X. Qin, T. Huang, L. Chen, and H. Wu: Octahedron shaped lead sulfide nanocrystals as counter electrodes for quantum dot sensitized solar cells. Funct. Mater. Lett. 11, 1850025 (2018).

    Article  CAS  Google Scholar 

  24. A.P. Gaiduk, P.I. Gaiduk, and A.N. Larsen: Chemical bath deposition of PbS nanocrystals: Effect of substrate. Thin Solid Films 516, 3791 (2008).

    Article  CAS  Google Scholar 

  25. T. Saraidarov, R. Reisfeld, A. Sashchiuk, and E. Lifshitz: Nanocrystallites of lead sulfide in hybrid films prepared by sol–gel process. J. Sol-Gel Sci. Technol. 34, 137 (2005).

    Article  CAS  Google Scholar 

  26. L. Koao, F.G. Hone, and F. Dejene: Synthesis and characterization of PbS nanowires doped with Tb3+ ions by using chemical bath deposition method. J. Nanostruct. Chem. 10, 1 (2020).

    Article  CAS  Google Scholar 

  27. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, and S. AlFaify: A facile synthesis of Bi@PbS nanosheets and their key physical properties analysis for optoelectronic technology. Mater. Sci. Semicond. Process 107, 104807 (2020).

    Article  CAS  Google Scholar 

  28. A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, and C. Mathieu: Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO: Al thin films. Results Phys. 6, 133 (2016).

    Article  Google Scholar 

  29. G.L. Pearson and J. Bardeen: Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys. Rev. 75, 865 (1949).

    Article  CAS  Google Scholar 

  30. M. Shkir, S. AlFaify, I.S. Yahia, V. Ganesh, and H. Shoukry: Microwave-assisted synthesis of Gd3+ doped PbI2 hierarchical nanostructures for optoelectronic and radiation detection applications. Physics B 508, 41 (2017).

    Article  CAS  Google Scholar 

  31. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, and S. AlFaify: Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189 (2019).

    Article  CAS  Google Scholar 

  32. S. AlFaify, and M. Shkir: A facile one pot synthesis of novel pure and Cd doped PbI2 nanostructures for electro-optic and radiation detection applications. Opt. Mater. 88, 417 (2019).

    Article  CAS  Google Scholar 

  33. M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, and M. Wahab: Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047 (2009).

    Article  CAS  Google Scholar 

  34. M. Shkir, I.M. Ashraf, K.V. Chandekar, I.S. Yahia, A. Khan, H. Algarni, and S. AlFaify: A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. Sens. Actuators, A 301, 111749 (2020).

    Article  CAS  Google Scholar 

  35. M. Shkir, M.T. Khan, I.M. Ashraf, S. AlFaify, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, and A. Khan: Rapid microwave-assisted synthesis of Ag doped-PbS nanoparticles for optoelectronic applications. Ceram. Int. 45, 21975 (2019).

    Article  CAS  Google Scholar 

  36. M. Shkir, M.T. Khan, A. Khan, A.M. El-Toni, A. Aldalbahi, and S. AlFaify: Facilely synthesized Cu:PbS nanoparticles and their structural, morphological, optical, dielectric and electrical studies for optoelectronic applications. Mater. Sci. Semicond. Process 96, 16 (2019).

    Article  CAS  Google Scholar 

  37. S. Sagadevan, K. Pal, E. Hoque, and Z.Z. Chowdhury: A chemical synthesized Al-doped PbS nanoparticles hybrid composite for optical and electrical response. J. Mater. Sci.: Mater. Electron. 28, 10902 (2017).

    CAS  Google Scholar 

  38. Z.Q. Mamiyev and N.O. Balayeva: Preparation and optical studies of PbS nanoparticles. Opt. Mater. 46, 522 (2015).

    Article  CAS  Google Scholar 

  39. S. Kanimozhi, D. Vishnushankar, and V. Veeravazhuthi: Structural properties of PbS nanoparticles prepared by photo chemical synthesis. Adv. Mater. Res. 678, 136 (2013).

    Article  CAS  Google Scholar 

  40. D. Liang, S. Tang, J. Liu, J. Liu, X. Lv, and L. Kang: Large scale hydrothermal synthesis of PbS nanorods. Mater. Lett. 62, 2426 (2008).

    Article  CAS  Google Scholar 

  41. C.D. Sai, M.Q. Luu, P.M. Nguyen, N.H. Pham, V.T. Nguyen, X.Q. Nguyen, Q.K. Doan, and T.H. Tran: Fast synthesis of PbS nanoparticles for fabrication of glucose sensor with enhanced sensitivity. J. Electron. Mater. 46, 3674 (2017).

    Article  CAS  Google Scholar 

  42. U. Priyanka, K. M. Akshay Gowda, M. Elisha, and N. Nitish: Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int. Biodeterior. 119, 78 (2017).

    Article  CAS  Google Scholar 

  43. G.D. Smith, S. Firth, R.J. Clark, and M. Cardona: First-and second-order Raman spectra of galena (PbS). J. Appl. Phys. 92, 4375 (2002).

    Article  CAS  Google Scholar 

  44. H. Cao, G. Wang, S. Zhang, and X. Zhang: Growth and photoluminescence properties of PbS nanocubes. Nanotechnology 17, 3280 (2006).

    Article  CAS  Google Scholar 

  45. M. Shkir and S. AlFaify: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).

    Article  CAS  Google Scholar 

  46. T.D. Krauss and F.W. Wise: Raman-scattering study of exciton-phonon coupling in PbS nanocrystals. Phys. Rev. B 55, 9860 (1997).

    Article  CAS  Google Scholar 

  47. K. Nanda, S. Sahu, R. Soni, and S. Tripathy: Raman spectroscopy of PbS nanocrystalline semiconductors. Phys. Rev. B 58, 15405 (1998).

    Article  CAS  Google Scholar 

  48. T.D. Krauss, F.W. Wise, and D.B. Tanner: Observation of coupled vibrational modes of a semiconductor nanocrystal. Phys. Rev. Lett. 76, 1376 (1996).

    Article  CAS  Google Scholar 

  49. M. Shkir, S. AlFaify, V. Ganesh, and I.S. Yahia: Facile one pot synthesis of PbS nanosheets and their characterization. Solid State Sci. 70, 81 (2017).

    Article  CAS  Google Scholar 

  50. M. Shkir and S. AlFaify: A facile low-temperature synthesis of nanosheets assembled PbS microflowers and their structural, morphological, optical, photoluminescence, dielectric and electrical studies. Mater. Res. Express. 6, 105013 (2019).

    Article  CAS  Google Scholar 

  51. M. Shkir, I.S. Yahia, and S. AlFaify: A facilely one pot low temperature synthesis of novel Pt doped PbS nanopowders and their characterizations for optoelectronic applications. J. Mol. Struct. 1192, 68 (2019).

    Article  CAS  Google Scholar 

  52. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, and A. Gedanken: A novel sonochemical method for the preparation of nanophasic sulfides: Synthesis of HgS and PbS nanoparticles. J. Solid State Chem. 153, 342 (2000).

    Article  CAS  Google Scholar 

  53. F.E. Kruis, H. Fissan, and B. Rellinghaus: Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater. Sci. Eng. B 69, 329 (2000).

    Article  Google Scholar 

  54. D. Berhanu, K. Govender, D. Smyth-Boyle, M. Archbold, D.P. Halliday, and P. O'Brien: A novel soft hydrothermal (SHY) route to crystalline PbS and CdS nanoparticles exhibiting diverse morphologies. Chem. Commun. 45, 4709 (2006).

    Article  CAS  Google Scholar 

  55. M. Li, Y. Yang, X. Yuan, Y. Liu, and L. Zhang: A new two-liquid-phase system to synthesize PbS nanoparticles with narrow size distribution. Mater. Lett. 149, 62 (2015).

    Article  CAS  Google Scholar 

  56. Z. Jiang, K. Subedi, G. Bhandari, Y. He, M. Leopold, N. Reilly, H.P. Lu, A. Zayak, and L. Sun: Thickness-controlled synthesis of colloidal PbS nanosheets and their thickness-dependent energy gaps. Bull. Am. Phys. Soc. 59 (2014).

  57. M. Aerts, T. Bielewicz, C. Klinke, F.C. Grozema, A.J. Houtepen, J.M. Schins, and L.D. Siebbeles: Highly efficient carrier multiplication in PbS nanosheets. Nat. Commun. 5.1, 1–5 (2014).

    Google Scholar 

  58. M.M. Ramin Moayed, T. Bielewicz, H. Noei, A. Stierle, and C. Klinke: High-performance n-and p-type field-effect transistors based on hybridly surface-passivated colloidal PbS nanosheets. Adv. Funct. Mater. 28, 1706815 (2018).

    Article  CAS  Google Scholar 

  59. K.V. Chandekar, M. Shkir, A. Khan, and S. AlFaify: An in-depth study on physical properties of facilely synthesized Dy@CdS NPs through microwave route for optoelectronic technology. Mater. Sci. Semicond. Process. 118, 105184 (2020).

    Article  CAS  Google Scholar 

  60. M. Shkir, K.V. Chandekar, B.M. Alshehri, A. Khan, S. AlFaify, and M.S. Hamdy: A remarkable enhancement in photocatalytic activity of facilely synthesized terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10, 1811 (2020).

    Article  CAS  Google Scholar 

  61. M. Nowak, B. Kauch, and P. Szperlich: Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. 80, 046107 (2009).

    Article  CAS  Google Scholar 

  62. P. Kubelka and F. Munk: A contribution to the optics of pigments. Z. Tech. Phys. 12, 593 (1931).

    Google Scholar 

  63. G. Kortüm and J. Vogel: Die theorie der diffusen reflexion von licht an pulverförmigen stoffen1. Z. Phys. Chem. 18, 110 (1958).

    Article  Google Scholar 

  64. B.M. Alshehri, M. Shkir, T.M. Bawazeer, S. AlFaify, and M.S. Hamdy: A rapid microwave synthesis of Ag2S nanoparticles and their photocatalytic performance under UV and visible light illumination for water treatment applications. Phys. E Low Dimens. Syst. Nanostruct. 121, 114060 (2020).

    Google Scholar 

  65. G. Kortüm, W. Braun, and G. Herzog: Principles and techniques of diffuse-reflectance spectroscopy. Angew. Chem. Int. 2, 333 (1963).

    Article  Google Scholar 

  66. F. Urbach: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953).

    Article  CAS  Google Scholar 

  67. M. Shkir: Effect of titan yellow dye on morphological, structural, optical, and ielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31, 1046 (2016).

    Article  CAS  Google Scholar 

  68. A. Khan, M. Shkir, M.A. Manthrammel, V. Ganesh, I.S. Yahia, M. Ahmed, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, and S. AlFaify: Effect of Gd doping on structural, optical properties, photoluminescence and electrical characteristics of CdS nanoparticles for optoelectronics. Ceram. Int. 45, 10133 (2019).

    Article  CAS  Google Scholar 

  69. J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng, and Y.D. Li: Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior. Chem. Eur. J. 11, 1889 (2005).

    Article  CAS  Google Scholar 

  70. M. Cardona and D.L. Greenaway: Optical properties and band structure of group IV-VI and group V materials. Phys. Rev. 133, A1685 (1964).

    Article  Google Scholar 

  71. L. Hu, W. Wang, H. Liu, J. Peng, H. Cao, G. Shao, Z. Xia, W. Ma, and J. Tang: PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells. J. Mater. Chem. A 3, 515 (2015).

    Article  CAS  Google Scholar 

  72. R. Palomino-Merino, O. Portillo-Moreno, L. Chaltel-Lima, R.G. Pérez, M. de Icaza-Herrera, and V. Castaño: Chemical bath deposition of PbS: Hg2+ nanocrystalline thin films. J. Nanomater. 2013, 45 (2013).

    Article  CAS  Google Scholar 

  73. S. Mohd, I.M. Ashraf, and S. AlFaify: Surface area, optical and electrical studies on PbS nanosheets for visible light photo-detector application. Phys. Scr. 94, 025801 (2019).

    Article  CAS  Google Scholar 

  74. E. Roduner: Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006).

    Article  CAS  Google Scholar 

  75. S. Jana, R. Thapa, R. Maity, and K. Chattopadhyay: Optical and dielectric properties of PVA capped nanocrystalline PbS thin films synthesized by chemical bath deposition. Phys. E: Low-Dimens. Syst. Nanostruct. 40, 3121 (2008).

    Article  CAS  Google Scholar 

  76. M. Brza, S.B. Aziz, H. Anuar, and M.H.F. Al Hazza: From green remediation to polymer hybrid fabrication with improved optical band gaps Intern. J. Mol. Sci. 20, 3910 (2019).

    Article  CAS  Google Scholar 

  77. S.B. Aziz: Morphological and optical characteristics of chitosan (1− x): Cuox (4≤ x≤ 12) based polymer nano-composites: Optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials 7, 444 (2017).

    Article  CAS  Google Scholar 

  78. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, and L.S. Schadler: TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21, 18623 (2011).

    Article  CAS  Google Scholar 

  79. S. Mohd, Z.R. Khan, M.S. Hamdy, H. Algarni, and S. AlFaify: A facile microwave-assisted synthesis of PbMoO4 nanoparticles and their key characteristics analysis: A good contender for photocatalytic applications. Mater. Res. Express. 5, 095032 (2018).

    Article  CAS  Google Scholar 

  80. A.H. Khan, S. Pal, A. Dalui, J. Pradhan, D.D. Sarma, and S. Acharya: Solution-processed free-standing ultrathin two-dimensional PbS nanocrystals with efficient and highly stable dielectric properties. Chem. Mater. 29, 1175 (2017).

    Article  CAS  Google Scholar 

  81. O. Kaygili, S.V. Dorozhkin, T. Ates, N.C. Gursoy, S. Keser, F. Yakuphanoglu, and A.B. Selçuk: Structural and dielectric properties of yttrium-substituted hydroxyapatites. Mater. Sci. Eng. C 47, 333 (2015).

    Article  CAS  Google Scholar 

  82. A.K. Jonscher: Theuniversal'dielectric response. Nature 267, 673 (1977).

    Article  CAS  Google Scholar 

  83. M. Shkir, V. Ganesh, I. Yahia, and S. AlFaify: Microwave-synthesis of La3+ doped PbI2 nanosheets (NSs) and their characterizations for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 29, 15838 (2018).

    CAS  Google Scholar 

  84. N. Chakrabarty, A. Mukherjee, S. Sinha, S. Basu, and A. Meikap: Observation of correlated barrier hopping in blue luminescent PbI2 nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. 64, 134 (2014).

    Article  CAS  Google Scholar 

  85. S.M. Sze and K.K. Ng: Physics of Semiconductor Devices (John Wiley & Sons, New Jersey, United States, 2006).

    Book  Google Scholar 

  86. N. Kulshrestha, B. Chatterjee, and P.N. Gupta: Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate. Mater. Sci. Eng. B 184, 49 (2014).

    Article  CAS  Google Scholar 

  87. S.B. Aziz, R.M. Abdullah, M.A. Rasheed, and H.M. Ahmed: Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA: AgNt based polymer electrolytes: Deep insights to ion transport mechanism. Polym er 9, 338 (2017).

    Article  CAS  Google Scholar 

  88. S.B. Aziz and Z.H.Z. Abidin: Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis. J. Appl. Polym. Sci. 132 (2015).

  89. S.B. Aziz, A.Q. Hassan, S.J. Mohammed, W.O. Karim, M.F.Z. Kadir, H.A. Tajuddin, and N. NMY Chan: Structural and optical characteristics of PVA: C-Dot composites: Tuning the absorption of ultra violet (UV) region. Nanomater ials 9, 216 (2019).

    Article  CAS  Google Scholar 

  90. S.B. Aziz: Modifying poly (vinyl alcohol)(PVA) from insulator to small-bandgap polymer: A novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45, 736 (2016).

    Article  CAS  Google Scholar 

  91. H. Rietveld: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).

    Article  CAS  Google Scholar 

  92. L. Lutterotti: Program Maud (version 2.33).

Download references

Acknowledgment

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

There are no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Shkir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkir, M., Chandekar, K.V., Alshahrani, T. et al. A novel terbium doping effect on physical properties of lead sulfide nanostructures: A facile synthesis and characterization. Journal of Materials Research 35, 2664–2675 (2020). https://doi.org/10.1557/jmr.2020.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.216

Navigation