Skip to main content
Log in

Preparation of multicolored carbon quantum dots using HNO3/HClO4 oxidation of graphitized carbon

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure of carbon quantum dots (CQDs) has a great influence on their fluorescence properties. Here, different microstructures of CQDs were synthesized by the selective oxidation of graphitized activated carbon using HNO3/HClO4 as the oxidant. We characterized the microstructure and surface chemistry of the CQDs, and the results show that the degree of graphitization of activated carbon has a significant effect on the structure and fluorescence properties of the obtained CQDs. The fluorescence of the CQD solution can be tuned from yellow to green by regulating the degree of graphitization of the activated carbon by heat treatment at high temperature (up to 2500 °C). Moreover, the increased degree of graphitization of the raw carbon precursor is beneficial for significantly reducing the fluorescence self-absorption quenching of the concentrated CQD solution. Importantly, the as-prepared CQDs have no cytotoxicity and can be used as bioimaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, and W.A. Scrivens: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004).

    Article  CAS  Google Scholar 

  2. J. Hua, J. Yang, Y. Zhu, C. Zhao, and Y. Yang: Highly fluorescent carbon quantum dots as nanoprobes for sensitive and selective determination of mercury(II) in surface waters. Spectrochim. Acta. Part A. 187, 149 (2017).

    Article  CAS  Google Scholar 

  3. Q. Zhuang, P. Guo, S. Zheng, Q. Lin, Y. Lin, Y. Wang, and Y. Ni: Green synthesis of luminescent graphitic carbon nitride quantum dots from human urine and its bioimaging application. Talanta 188, 35 (2018).

    Article  CAS  Google Scholar 

  4. H. Ding, F. Du, P. Liu, Z. Chen, and J. Shen: DNA–carbon dots function as fluorescent vehicles for drug delivery. ACS Appl. Mater. Interfaces. 7, 6889 (2015).

    Article  CAS  Google Scholar 

  5. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, and G. Chen: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738 (2012).

    Article  CAS  Google Scholar 

  6. S. Pei, J. Zhang, M. Gao, D. Wu, Y. Yang, and R. Liu: A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. J. Colloid Interface Sci. 439, 129 (2015).

    Article  CAS  Google Scholar 

  7. Z.C. Yang, M. Wang, A.M. Yong, S.Y. Wong, X.H. Zhang, H. Tan, and J. Wang: Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 47, 11615 (2011).

    Article  CAS  Google Scholar 

  8. J. Zhou, P. Lin, J. Ma, X. Shan, H. Feng, C. Chen, and C. Qian: Facile synthesis of halogenated carbon quantum dots as an important intermediate for surface modification. RSC Adv. 3, 9625 (2013).

    Article  CAS  Google Scholar 

  9. Q. Liu, N. Zhang, H. Shi, W. Ji, X. Guo, W. Yuan, and Q. Hu: One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ions in aqueous solution. New J. Chem. 42, 3097 (2018).

    Article  CAS  Google Scholar 

  10. Z.A. Qiao, Y. Wang, Y. Gao, H. Li, T. Dai, Y. Liu, and Q. Huo: Ommercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 46, 8812 (2010).

    Article  CAS  Google Scholar 

  11. M. Liu, Y. Xu, F. Niu, J.J. Gooding, and J. Liu: Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141, 2657 (2016).

    Article  CAS  Google Scholar 

  12. S. Hu, J. Liu, J. Yang, Y. Wang, and S. Cao: Laser synthesis and size tailor of carbon quantum dots. J. Nanopart. Res. 13, 7247 (2011).

    Article  CAS  Google Scholar 

  13. J. Xu, S. Sahu, L. Cao, P. Anilkumar, K.N. Tackett, H. Qian, and Y.P. Sun: Carbon nanoparticles as chromophores for photon harvesting and photoconversion. ChemPhysChem 12, 3604 (2011).

    Article  CAS  Google Scholar 

  14. K.P. Loh, Q. Bao, G. Eda, and M. Chhowalla: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015 (2010).

    Article  CAS  Google Scholar 

  15. S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, and B. Yang: Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 13, 10 (2017).

    Article  CAS  Google Scholar 

  16. Z. Liang, L. Zeng, X. Cao, Q. Wang, X. Wang, and R. Sun: Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation. J. Mater. Chem. C. 2, 9760 (2014).

    Article  CAS  Google Scholar 

  17. H. Zheng, Q. Wang, Y. Long, H. Zhang, X. Huang, and R. Zhu: Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 47, 10650 (2011).

    Article  CAS  Google Scholar 

  18. T.F. Yeh, C.Y. Teng, S.J. Chen, and H. Teng: Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26, 3297 (2014).

    Article  CAS  Google Scholar 

  19. Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, and T. Yu: Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. 125, 7954 (2013).

    Article  Google Scholar 

  20. S. Chandra, S. Mitra, D. Laha, S. Bag, P. Das, A. Goswami, and P. Pramanik: Fabrication of multi-structure nanocarbons from carbon xerogel: A unique scaffold towards bio-imaging. Chem. Commun. 30, 8587 (2011).

    Article  Google Scholar 

  21. M. Wu, Y. Wang, W. Wu, C. Hu, X. Wang, J. Zheng, and J. Qiu: Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 78, 480 (2014).

    Article  CAS  Google Scholar 

  22. H. Liu, T. Ye, and C. Mao: Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. 119, 6593 (2007).

    Article  Google Scholar 

  23. Y. Dong, J. Lin, Y. Chen, F. Fu, Y. Chi, and G. Chen: Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 6, 7410 (2014).

    Article  CAS  Google Scholar 

  24. C. Hu, C. Yu, M. Li, X. Wang, J. Yang, Z. Zhao, and J. Qiu: Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection. Small 10, 4926 (2014).

    Article  CAS  Google Scholar 

  25. M. Kang, Y.S. Bae, and C.H. Lee: Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst. Carbon 43, 1512 (2005).

    Article  CAS  Google Scholar 

  26. B. Feng, S.K. Bhatia, and J.C. Barry: Structural ordering of coal char during heat treatment and its impact on reactivity. Carbon 40, 481 (2002).

    Article  CAS  Google Scholar 

  27. M. Miao, S. Zuo, Y. Zhao, Y. Wang, H. Xia, C. Tan, and H. Gao: Selective oxidation rapidly decomposes biomass-based activated carbons into graphite-like crystallites. Carbon 140, 504 (2018).

    Article  CAS  Google Scholar 

  28. J. Zhao, L. Yang, F. Li, R. Yu, and C. Jin: Structural evolution in the graphitization process of activated carbon by high-pressure sintering. Carbon 47, 744 (2009).

    Article  CAS  Google Scholar 

  29. U. Kumar, V. Gaikwad, M. Mayyas, V. Sahajwalla, and R.K. Joshi: Extraordinary supercapacitance in activated carbon produced via a sustainable approach. J. Power Sources 394, 140 (2018).

    Article  CAS  Google Scholar 

  30. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776 (2011).

    Article  Google Scholar 

  31. Y.J. Xu, G. Weinberg, X. Liu, O. Timpe, R. Schlögl, and D.S. Su: Nanoarchitecturing of activated carbon: Facile strategy for chemical functionalization of the surface of activated carbon. Adv. Funct. Mater. 18, 3613 (2008).

    Article  CAS  Google Scholar 

  32. S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, and X. Wang: Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22, 4732 (2012).

    Article  CAS  Google Scholar 

  33. H.N. Cheng, L.H. Wartelle, K.T. Klasson, and J.C. Edwards: Solid-state NMR and ESR studies of activated carbons produced from pecan shells. Carbon 48, 2455 (2010).

    Article  CAS  Google Scholar 

  34. L.S. Chen, L.L. Wang, T.Y. Pan, Z.H.O.U. Yang, Y.Y. Zhang, and D.X. Zhang: Calibration of solid state NMR carbon structural parameters and application in coal structure analysis. J. Fuel Chem. Technol. 45, 1153 (2017).

    Article  CAS  Google Scholar 

  35. S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, and H. Gao: Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 6858 (2011).

    Article  CAS  Google Scholar 

  36. C. Wang, T. Hu, Z. Wen, J. Zhou, X. Wang, Q. Wu, and C. Wang: Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging. J. Colloid Interface Sci. 521, 33 (2018).

    Article  CAS  Google Scholar 

  37. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, and M. Chhowalla: Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505 (2010).

    Article  CAS  Google Scholar 

  38. C. Wu, C. Wang, T. Han, X. Zhou, S. Guo, and J. Zhang: Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv. Healthcare Mater. 2, 1613 (2013).

    Article  CAS  Google Scholar 

  39. C. Zhang, Y. Cui, L. Song, X. Liu, and Z. Hu: Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150, 54 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 31470600) and the Jiangsu natural science youth fund project (Grant No. BK2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songlin Zuo.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Zuo, S., Zhao, Y. et al. Preparation of multicolored carbon quantum dots using HNO3/HClO4 oxidation of graphitized carbon. Journal of Materials Research 34, 3428–3438 (2019). https://doi.org/10.1557/jmr.2019.261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.261

Navigation