Skip to main content
Log in

Adsorption mechanism of acid orange 7 on photocatalytic materials based on TiO2

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The degradation of organic molecules in an aqueous medium using heterogeneous photocatalysis depends on the chemical composition and concentration of the organic compound, the crystalline and morphological nature of the photocatalyst, the pH of the dye dilution, and the reaction temperature. Since photocatalytic degradation is a process that occurs on the surface of the catalytic material, it is desirable to induce maximum adsorption of the organic compound. One strategy to achieve this is to functionalize the surface of the catalyst to retain the molecule of interest. In this work, we studied the interaction of acid orange 7 (AO7) with commercial TiO2-anatase powder catalyst, and with a catalyst synthesized in house using titanium tetrachloride and ethanolamine (TiO2-et). Our results indicate that there is no adsorption of the AO7 dye on the TiO2-et particles. The infrared spectrum of the TiO2-et particles is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.C. Yu, W. Ho, J. Lin, H. Yip and P.K. Wong Environ. Sci. Technol, 37(10), 2296 (2003).

    Article  CAS  Google Scholar 

  2. S. Kayano, K. Yoshihiko, H. Kazuhito and F. Akira, Environ. Sci. Technol, 33(5), 726 (1998).

    Google Scholar 

  3. M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann Chem. Rev., 95, 69 (1995).

    Article  CAS  Google Scholar 

  4. A.O. Ibhadon, P. Fitzpatrick Catalysis, 3, 189 (2013).

    CAS  Google Scholar 

  5. A. Makowski, W. Wardas Current Topics in Biophysics, 25(1), 19 (2001).

    CAS  Google Scholar 

  6. M. Abdennouri et al. Journal of Saudi Chemical Society, 19, 485 (2015).

    Article  Google Scholar 

  7. L. Lhomme, S. Brosillon, D. Wolbert Chemosphere, 70(3), 381 (2008).

    Article  CAS  Google Scholar 

  8. Fosso-E. Kankeu, F. Waanders, M. Heldenhuys 7th International Conference on Latest in Engineering and Technology, ISBN 978-93-84422-58-2, (2015).

    Google Scholar 

  9. B.R. Eggins, F.L. Palmer, J.A. Byrne Water Research, 31(5), 1223 (1997).

    Article  CAS  Google Scholar 

  10. J.C. Colmenares ed. and Y. Xu Springer, 1st ed., (2016).

    Google Scholar 

  11. M. Tasbihi et al. Journal of Photochemistry and Photobiology A: Chemistry, 366, 72 (2018).

    Article  CAS  Google Scholar 

  12. H. Einaga, T. Ibusuki, S. Futamura Environ. Sci. Technol., 38, 285 (2004).

    Article  CAS  Google Scholar 

  13. M. Bowker, Sharpe R. Catalysis, Structure & Reactivity., 3(1), 140 (2015).

    Article  Google Scholar 

  14. L.C. Chen and C.M. Huang Journal of Molecular Catalysis A: Chemical, 265(1-2), 133 (2007).

    Article  CAS  Google Scholar 

  15. S. Klosek and D. Raftery J. Phys. Chem. B, 105(14), 2815 (2001).

    Article  CAS  Google Scholar 

  16. Q. Wang et al. Journal of Nanoparticle Research, 19(2), 72 (2017).

    Article  CAS  Google Scholar 

  17. N. Serpone J. Phys. Chem. B, 110(48), 24287 (2006).

    Article  CAS  Google Scholar 

  18. D. Zhang Acta Chimica Slovaca, 6(1), 141 (2013).

    Article  CAS  Google Scholar 

  19. D. Kanakaraju, S. Ravichandar, Y.C. Lim Journal of Environmental Sciences, 55, 214 (2017).

    Article  Google Scholar 

  20. F. Riboni, L.G. Bettini, D.W. Bahnemann and E. Selli Catalysis Today, 209, 28 (2013).

    Article  CAS  Google Scholar 

  21. T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama Environ. Sci. Technol., 30(4), 1275 (1996).

    Article  CAS  Google Scholar 

  22. H.B. Hadjltaief, M.E. Galvez, M.B. Zina and Da P. Costa Arabian Journal of Chemistry, 1, (2014).

  23. P. Bénézeth, D.J. Wesolowski J. Solution Chem, 38, 925 (2009).

    Article  CAS  Google Scholar 

  24. S.V. Mattigod et al. Environ. Sci. Technol., 39, 7306 (2005).

    Article  CAS  Google Scholar 

  25. K. Bourikas, M. Stylidi, D.I. Kondarides and X.E. Verykios Langmuir, 21, 9222 (2005).

    Article  CAS  Google Scholar 

  26. J. Lützenkirchen et al. Croat. Chem., 85(4), 391 (2012).

    Article  CAS  Google Scholar 

  27. T. Kotsokechagia, F. Cellesi, A. Thomas, M. Niederberger and N. Tirelli Langmuir, 24, 6988 (2008).

    Article  CAS  Google Scholar 

  28. U. Schubert Acc. Chem. Res., 40, 730 (2007).

    Article  CAS  Google Scholar 

  29. M.J. Velasco, F. Rubio, J. Rubio, J.L. Oteo Spectroscopy Letters, 32(2), 289 (1999).

    Article  CAS  Google Scholar 

  30. P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 117, 622 (2014).

    Article  CAS  Google Scholar 

  31. E. Iravani, S.A. Allahyari, Z. Shojaei, T. Mostaedi, J. Braz. Chem. Soc., 26(8), 1608 (2015).

    CAS  Google Scholar 

  32. Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu Catalysts, 9(5), 430 (2019).

    Article  CAS  Google Scholar 

  33. M. Stylidi, D.I. Kondarides, X.E. Verykios Applied Catalysis B. Environmental, 47, 189 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arteaga-Jiménez, A., Caudana-Campos, A.I., García-García, A.L. et al. Adsorption mechanism of acid orange 7 on photocatalytic materials based on TiO2. MRS Advances 4, 3399–3405 (2019). https://doi.org/10.1557/adv.2019.481

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.481

Navigation