Skip to main content
Log in

Current sensing supercapacitor electrodes based on chitosan/poly-o-toluidine hydrogel composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A faradaic supercapacitor electrode capable of sensing current is presented for the first time using chitosan/poly-o-toluidine composites. The semiconducting and highly electroactive composites have an agglomerated nano granular morphology with sufficient porosity enabling efficient electrochemical reaction. A moderately high specific capacitance of 425 F g−1 was achieved for the composite at a scan rate of 5 mV s −1. The sensing abilities monitored through chronopotentiometry show that the consumed electrical energy during reactions varied as a linear function of the applied current which proves that the composites can function as a current sensing supercapacitor. The sensitivity with regard to current increases as the specific capacitance increases. The sensing ability is imparted through the electrochemical reaction of poly-o-toluidine, whose reaction rate (and potential) responds to and senses the electrical working condition (current). This finding suggests that any device based on conducting polymers driven by electrochemical reactions is capable of sensing electrical working conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Holdcroft, Patterning π-conjugated polymers. Adv. Mater. 13(23), 1753–1765 (2001). https://doi.org/10.1002/1521-4095(200112)13:23%3c1753::AID-ADMA1753%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  2. M. Angelopoulos, Conducting polymers in microelectronics. IBM J. Res. Dev. 45(1), 57–75 (2001). https://doi.org/10.1147/rd.451.0057

    Article  CAS  Google Scholar 

  3. R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10(6), 2341–2353 (2014). https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  Google Scholar 

  4. Y. Jiang, Z. Chen, B. Xin, Y. Liu, L. Lin, Fabrication and characterization of flexible electrochromic membrane based on polyaniline/reduced graphene oxide. J. Mater. Res. 34, 1302–1308 (2019). https://doi.org/10.1557/jmr.2019.110

    Article  CAS  Google Scholar 

  5. S. Liu, H. Xu, J. Ou, Z. Li, S. Yang, J. Wang, A feasible approach to the fabrication of gold/polyaniline nanofiber composites and its application as electrocatalyst for oxygen reduction. Mater. Chem. Phys. 132(2–3), 500–504 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.060

    Article  CAS  Google Scholar 

  6. K. Saranya, M. Rameez, A. Subramania, Developments in conducting polymer based counter electrodes for dye-sensitized solar cells–an overview. Eur. Polym. J. 66, 207–227 (2015). https://doi.org/10.1016/j.eurpolymj.2015.01.049

    Article  CAS  Google Scholar 

  7. M. Zhang, X. Zhang, P. Guo, J. Lv, X. Wang, J. Tong, Y. Xia, Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers. J. Mater. Res. 34(12), 2057–2066 (2019). https://doi.org/10.1557/jmr.2019.81

    Article  CAS  Google Scholar 

  8. S. Ghani, R. Sharif, S. Shahzadi, N. Zafar, A. Anwar, A. Ashraf, A.A. Zaidi, A.H. Kamboh, S. Bashir, Simple and inexpensive electrodeposited silver/polyaniline composite counter electrodes for dye-sensitized solar cells. J. Mater. Sci. 50(3), 1469–1477 (2015). https://doi.org/10.1007/s10853-014-8708-z

    Article  CAS  Google Scholar 

  9. T.F. Otero, E. Angulo, J. Rodriguez, C. Santamaria, Electrochemonechanical properties from a bilayer: polypyrrole/non-conducting and flexible material-artificial muscle. J. Electroanal. Chem. 341(1–2), 369–375 (1992). https://doi.org/10.1016/0022-0728(92)80495-P

    Article  CAS  Google Scholar 

  10. E.W. Jager, E. Smela, O. Inganäs, Microfabricating conjugated polymer actuators. Science 290(5496), 1540–1545 (2000). https://doi.org/10.1126/science.290.5496.1540

    Article  CAS  Google Scholar 

  11. T.T. Khanh, A. Kesküla, Z. Zondaka, M. Harjo, A. Kivilo, M.S. Khorram, T. Tamm, R. Kiefer, Role of polymerization temperature on the performance of polypyrrole/dodecylbenzene sulphonate linear actuators. Synth. Met. 247, 53–58 (2019). https://doi.org/10.1016/j.synthmet.2018.11.013

    Article  CAS  Google Scholar 

  12. Y.A. Ismail, S.R. Shin, K.M. Shin, S.G. Yoon, K. Shon, S.I. Kim, S.J. Kim, Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization. Sens. Actuators B 129(2), 834–840 (2008). https://doi.org/10.1016/j.snb.2007.09.083

    Article  CAS  Google Scholar 

  13. S. Mahalakshmi, V. Sridevi, Conducting, crystalline, and electroactive polyaniline-Au nanocomposites through combined acid and oxidative doping pathways for biosensing applications: detection of dopamine. Mater. Chem. Phys. 235, 121728 (2019). https://doi.org/10.1016/j.matchemphys.2019.121728

    Article  CAS  Google Scholar 

  14. M. Gerard, A. Chaubey, B. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002). https://doi.org/10.1016/S0956-5663(01)00312-8

    Article  CAS  Google Scholar 

  15. J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2(1), 19–24 (2003). https://doi.org/10.1038/nmat768

    Article  CAS  Google Scholar 

  16. C.H. Wang, C.C. Chen, H.C. Hsu, H.Y. Du, C.P. Chen, J.Y. Hwang, L.C. Chen, H.C. Shih, J. Stejskal, K.H. Chen, Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells. J. Power Sources 190(2), 279–284 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.125

    Article  CAS  Google Scholar 

  17. J. Yang, P.K. Shen, J. Varcoe, Z. Wei, Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. J. Power Sources 189(2), 1016–1019 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.076

    Article  CAS  Google Scholar 

  18. S. Geetha, K.K. Satheesh, C.R. Rao, M. Vijayan, D. Trivedi, EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009). https://doi.org/10.1002/app.29812

    Article  CAS  Google Scholar 

  19. Y.A. Ismail, J. Chang, S.R. Shin, R.S. Mane, S.H. Han, S.J. Kim, Hydrogel-assisted polyaniline microfiber as controllable electrochemical actuatable supercapacitor. J. Electrochem. Soc. 156(4), A313 (2009). https://doi.org/10.1149/1.3077597

    Article  CAS  Google Scholar 

  20. H. Huang, J. Yao, L. Li, F. Zhu, Z. Liu, X. Zeng, X. Yu, Z. Huang, Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors. J. Mater. Sci. 51(18), 8728–8736 (2016). https://doi.org/10.1007/s10853-016-0137-8

    Article  CAS  Google Scholar 

  21. H.E. Katz, P.C. Searson, T.O. Poehler, Batteries and charge storage devices based on electronically conducting polymers. J. Mater. Res. 25, 1561–1574 (2010). https://doi.org/10.1557/JMR.2010.0201

    Article  CAS  Google Scholar 

  22. M.M. Gvozdenović, B.Z. Jugović, B.M. Jokić, E.S. Džunuzović, B.N. Grgur, Electrochemical synthesis and characterization of poly (o-toluidine) as high energy storage material. Electrochim. Acta 317, 746–752 (2019). https://doi.org/10.1016/j.electacta.2019.06.046

    Article  CAS  Google Scholar 

  23. H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Dev. 1(3), 225–255 (2016). https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

  24. Y.A. Inamuddin, Ismail, Synthesis and characterization of electrically conducting poly-o-methoxyaniline Zr(IV) molybdate Cd(II) selective composite cation-exchanger. Desalination 250(2), 523–529 (2010). https://doi.org/10.1016/j.desal.2008.06.033

    Article  CAS  Google Scholar 

  25. Y.Z. Long, M.M. Li, C. Gu, M. Wan, J.L. Duvai, Z. Liu, Z. Fan, Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 36(10), 1415–1442 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.001

    Article  CAS  Google Scholar 

  26. H. Meng, J. Hu, A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli. J. Intell. Mater. Syst. Struct. 21(9), 859–885 (2010). https://doi.org/10.1177/1045389X10369718

    Article  CAS  Google Scholar 

  27. T.F. Otero, Reactions drive conformations. Biomimetic properties and devices, theoretical description. J. Mater. Chem. B 1(31), 3754–3767 (2013). https://doi.org/10.1039/C3TB20112K

    Article  CAS  Google Scholar 

  28. F.G. Córdova, Y.A. Ismail, J.G. Martinez, A.S. Al Harrasi, T.F. Otero, Conducting Polymers Are Simultaneous Sensing Actuators (Proc SPIE, Electroactive Polymer Actuators and Devices (EAPAD), 2013). https://doi.org/10.1117/12.2009609

    Book  Google Scholar 

  29. F. García-Córdova, L. Valero, Y.A. Ismail, T.F. Otero, Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations. J. Mater. Chem. 21(43), 17265–17272 (2011). https://doi.org/10.1039/C1JM13374H

    Article  Google Scholar 

  30. T.F. Otero, J.G. Martinez, L. Valero, K. Asaka, Y.A. Ismail, One actuator and several sensors in one device with only two connecting wires: mimicking muscle/brain feedback. Adv. Sci. Technol. 79, 16–25 (2013)

    Article  CAS  Google Scholar 

  31. J.G. Martinez, T.F. Otero, Biomimetic dual sensing-actuators: theoretical description. Sensing electrolyte concentration and driving current. J. Phys. Chem. B 116(30), 9223–9230 (2012). https://doi.org/10.1021/jp302931k

    Article  CAS  Google Scholar 

  32. Y.A. Ismail, J.G. Martínez, T.F. Otero, Fibroin/polyaniline microfibrous mat; preparation and electrochemical characterization as reactive sensor. Electrochim. Acta 123, 501–510 (2014). https://doi.org/10.1016/j.electacta.2014.01.073

    Article  CAS  Google Scholar 

  33. T.F. Otero, J.J. Sanchez, J.G. Martinez, Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature. J. Phys. Chem. B 116(17), 5279–5290 (2012). https://doi.org/10.1021/jp300290s

    Article  CAS  Google Scholar 

  34. E.N. Zare, P. Makvand, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J. Med. Chem. 63(1), 1–22 (2019). https://doi.org/10.1021/acs.jmedchem.9b00803

    Article  CAS  Google Scholar 

  35. M. Jaymand, Recent progress in chemical modification of polyaniline. Prog. Polym. Sci. 38(9), 1287–1306 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.015

    Article  CAS  Google Scholar 

  36. A. Bhattacharya, B. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci. 29(8), 767–814 (2004). https://doi.org/10.1016/j.progpolymsci.2004.05.002

    Article  CAS  Google Scholar 

  37. A.I. Yahya, A. Ahmad, F. Mohammad, Electrical, electronic and thermal studies on poly [(aniline) co (p-methoxyanlline)] and poly [(o-toluidine) co (p-methoxyaniline)]. Indian J. Chem. 43A, 07 (2004)

    Google Scholar 

  38. Y.A. Ismail, A. Ahmad, F. Mohammad, Synthesis, electrical, electronic and charge transport properties of poly (aniline-co-p-toluidine). J. Macromol. Sci. A 45(8), 650–657 (2008). https://doi.org/10.1080/10601320802168868

    Article  CAS  Google Scholar 

  39. Y.A. Ismail, F. Mohammad, A. Ahmad, Synthesis, electrical conductivity, spectral and thermal stability studies on poly (aniline-co-o-nitroaniline). J. Macromol. Sci. A 48(11), 952–961 (2011). https://doi.org/10.1080/10601325.2011.614871

    Article  CAS  Google Scholar 

  40. H. Ahmad, M.A. Ali, M.M. Rahman, M.A. Alam, K. Tauer, H. Minami, R. Shabnam, Novel carboxyl functional spherical electromagnetic polypyrrole nanocomposite polymer particles with good magnetic and conducting properties. Polym. Int. 65(10), 1179–1186 (2016). https://doi.org/10.1002/pi.5169

    Article  CAS  Google Scholar 

  41. G.D. Storrier, S.B. Colbran, D.B. Hibbert, Chemical and electrochemical syntheses, and characterization of poly (2, 5-dimethoxyaniline) (PDMA): a novel, soluble, conducting polymer. Synth. Met. 62(2), 179–186 (1994). https://doi.org/10.1016/0379-6779(94)90309-3

    Article  CAS  Google Scholar 

  42. L. Mattoso, S. Manohar, A. MacDiarmid, A. Epstein, Studies on the chemical syntheses and on the characteristics of polyaniline derivatives. J. Polym. Sci. A 33(8), 1227–1234 (1995). https://doi.org/10.1002/pola.1995.080330805

    Article  CAS  Google Scholar 

  43. R.S. Bobade, Polythiophene composites: a review of selected applications. J. Polym. Eng. 31(2–3), 209–215 (2011). https://doi.org/10.1515/polyeng.2011.044

    Article  CAS  Google Scholar 

  44. F. Teles, L. Fonseca, Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater. Sci. Eng. C 28(8), 1530–1543 (2008). https://doi.org/10.1016/j.msec.2008.04.010

    Article  CAS  Google Scholar 

  45. A. Chithrambattu, Y.A. Ismail, Large scale preparation of polyaniline/polyvinyl alcohol hybrid films through in-situ chemical polymerization for flexible electrode materials. J. Adhes. Sci. Technol. 34(24), 2685–2702 (2020). https://doi.org/10.1080/01694243.2020.1781352

    Article  CAS  Google Scholar 

  46. H. Yan, K. Kou, Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J. Mater. Sci. 49(3), 1222–1228 (2014). https://doi.org/10.1007/s10853-013-7804-9

    Article  CAS  Google Scholar 

  47. Y.A. Ismail, A.K. Shabeeba, M.P. Sidheekha, L. Rajan, Conducting polymer/hydrogel systems as soft actuators, in Actuators: Fundamentals, Principles, Materials and Applications. ed. by A. Inamuddin, R. Boddula, A.M. Asiri (Wiley, Hoboken, 2020), pp. 211–252

    Chapter  Google Scholar 

  48. S. Xing, G. Zhao, Morphology, structure, and conductivity of polypyrrole prepared in the presence of mixed surfactants in aqueous solutions. J. Appl. Polym. Sci. 104(3), 1987–1996 (2007). https://doi.org/10.1002/app.25912

    Article  CAS  Google Scholar 

  49. R.D. Pyarasani, T. Jayaramudu, A. John, Polyaniline-based conducting hydrogels. J. Mater. Sci. 54(2), 974–996 (2019). https://doi.org/10.1007/s10853-018-2977-x

    Article  CAS  Google Scholar 

  50. S. Mu, J. Kan, Energy density and IR spectra of polyaniline synthesized electrochemically in the solutions of strong acids. Synth. Met. 98(1), 51–55 (1998). https://doi.org/10.1016/S0379-6779(98)00147-7

    Article  CAS  Google Scholar 

  51. M.V. Kulkarni, A.K. Viswanath, U. Mulik, Studies on chemically synthesized organic acid doped poly (o-toluidine). Mater. Chem. Phys. 89(1), 1–5 (2005). https://doi.org/10.1016/j.matchemphys.2004.01.031

    Article  CAS  Google Scholar 

  52. J. Brugnerotto, J. Lizardi, F. Goycoolea, W. Argüelles-Monal, J. Desbrieres, M. Rinaudo, An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8), 3569–3580 (2001). https://doi.org/10.1016/S0032-3861(00)00713-8

    Article  CAS  Google Scholar 

  53. A.G. Yavuz, A. Uygun, V.R. Bhethanabotla, Substituted polyaniline/chitosan composites: synthesis and characterization. Carbohydr. Polym. 75(3), 448–453 (2009). https://doi.org/10.1016/j.carbpol.2008.08.005

    Article  CAS  Google Scholar 

  54. T. Thanpitcha, A. Sirivat, A.M. Jamieson, R. Rujiravanit, Preparation and characterization of polyaniline/chitosan blend film. Carbohydr. Polym. 64(4), 560–568 (2006). https://doi.org/10.1016/j.carbpol.2005.11.026

    Article  CAS  Google Scholar 

  55. C.H. Chen, Thermal studies of polyaniline doped with dodecyl benzene sulfonic acid directly prepared via aqueous dispersions. J. Polym. Res. 9(3), 195–200 (2002). https://doi.org/10.1023/A:1021395726060

    Article  CAS  Google Scholar 

  56. S. Sinha, S. Bhadra, D. Khastgir, Effect of dopant type on the properties of polyaniline. J. Appl. Polym. Sci. 112(5), 3135–3140 (2009). https://doi.org/10.1002/app.29708

    Article  CAS  Google Scholar 

  57. D. Kumar, Poly (o-toluidine) polymer as electrochromic material. Eur. Polym. J. 37(8), 1721–1725 (2001). https://doi.org/10.1016/S0014-3057(01)00018-0

    Article  CAS  Google Scholar 

  58. B. Pandit, D.P. Dubal, P. Gómez-Romero, B.B. Kale, B.R. Sankapal, V2 O5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci. Rep. 7, 43430 (2017). https://doi.org/10.1038/srep43430

    Article  Google Scholar 

  59. T.O. Magu, A.U. Agobi, L. Hitler, P.M. Dass, A review on conducting polymers-based composites for energy storage application. J. Chem. Rev. 1(1), 19–34 (2019)

    Article  Google Scholar 

  60. A.A. Ganash, N.A. Alhebshi, N.H. Alyoubi, Fabrication of a poly (o-toluidine-co-aniline)/SiO2 nanocomposite for an electrochemical supercapacitor application. J. Appl. Electrochem. 50(10), 1019–1035 (2020). https://doi.org/10.1007/s10800-020-01456-7

    Article  CAS  Google Scholar 

  61. F. Barzegar, A. Bello, O. Guellati, D.Y. Momodu, A. Harat, J.K. Dangbegnon, M. Guerioune, N. Manyala, Effect of addition of different carbon materials on hydrogel derived carbon material for high performance electrochemical capacitors. Electrochim. Acta 186, 277–284 (2015). https://doi.org/10.1016/j.electacta.2015.10.189

    Article  CAS  Google Scholar 

  62. W. Wang, W.Y. Xie, F.X. Zhou, L. Chen, M. Zhou, G.X. Wang, W. Xu, E. Liang, Three-dimensional nitrogen-doped graphene hydrogel-based flexible all-solid-state supercapacitors. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-020-00022-3

    Article  Google Scholar 

  63. T. Zhang, H. Yue, X. Gao, F. Yao, H. Chen, X. Lu, Y. Wang, X. Guo, High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes. Dalton Trans. 49(10), 3304–3311 (2020). https://doi.org/10.1039/D0DT00100G

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thankfully acknowledge Dr. Mohamed Shahin Thayyil, Department of Physics, University of Calicut, for providing facilities for measuring electrical conductivity. The authors gratefully acknowledge CSIF, University of Calicut, for providing research facilities. Madari Palliyalil Sidheekha and AK Shabeeba gratefully acknowledge UGC, India, for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya A. Ismail.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidheekha, M.P., Rajendran, G.E., Shabeeba, A.K. et al. Current sensing supercapacitor electrodes based on chitosan/poly-o-toluidine hydrogel composites. Journal of Materials Research 36, 1914–1926 (2021). https://doi.org/10.1557/s43578-021-00241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00241-2

Keywords

Navigation