Skip to main content

Advertisement

Log in

Three-dimensional nitrogen-doped graphene hydrogel-based flexible all-solid-state supercapacitors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, a three-dimensional nitrogen-doped graphene nano-gel electrolyte (3DNG-PDMA nano-gel) for the preparation of high-performance all-solid-state supercapacitors was studied. Our research shows that the gel electrolyte has a stable three-dimensional network structure and good ionic conductivity (0.0625 S cm−1), and the all-solid-state supercapacitors (SCs) prepared by this gel electrolyte present good electrochemical performance. The specific capacitance of supercapacitor is 187.5 F g−1 under the current density of 1 A g−1. Even at the high power density of 5 kW kg−1, the energy density of supercapacitor can still reach 38 Wh kg−1. After 2500 cycles, the specific capacitance remains 84.1% of the initial value, indicating that the material has good cycle stability. Besides, the gel has high mechanical flexibility, the strain reaches 2409.4% under the stress of 1805.48 kPa, and it has excellent swelling performance with the swelling rate of 706% in 5 h.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces 4(5), 2801 (2012)

    Article  CAS  Google Scholar 

  2. M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1(7), 16033 (2016)

    Article  CAS  Google Scholar 

  3. M. Baibarac, P. Gomez-Romero, M. Lira-Cantu, N. Casañ-Pastor, N. Mestres, S. Lefrant, Electrosynthesis of the poly(N-vinyl carbazole)/carbon nanotubes composite for applications in the supercapacitors field. Eur. Polymer J. 42(10), 2302 (2006)

    Article  CAS  Google Scholar 

  4. L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun. 5, 3754 (2014)

    Article  CAS  Google Scholar 

  5. H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Tang, Y. Wang, B. Li, C. Zhi, Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140 (2018)

    Article  CAS  Google Scholar 

  6. Y. Ding, J. Zhang, L. Chang, X. Zhang, H. Liu, L. Jiang, Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv Mater. 29(47), 1704253 (2017)

    Article  Google Scholar 

  7. D. Mawad, E. Stewart, D.L.O. Cer, T. Romeo, P. Wagner, K. Wagner, G.G. Wallace, A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv Funct. Mater. 22(13), 2692 (2012)

    Article  CAS  Google Scholar 

  8. S. Liu, L. Li, Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl Mater Interfaces 9(31), 26429 (2017)

    Article  CAS  Google Scholar 

  9. X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao, Y. Zhang, Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Func. Mater. 25(16), 2395 (2015)

    Article  CAS  Google Scholar 

  10. Q. Rong, W. Lei, J. Huang, M. Liu, Low temperature tolerant organohydrogel electrolytes for all-solid-state-state supercapacitors. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201801967

    Article  Google Scholar 

  11. Z. Niu, W. Zhou, X. Chen, J. Chen, S. Xie, Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 27(39), 6002 (2015)

    Article  CAS  Google Scholar 

  12. E.J. Brandon, M.C. Smart, W.C. West, Low-temperature performance of electrochemical capacitors using acetonitrile/methyl formate electrolytes and activated carbon fabric electrodes. J. Mater. Res. 35(2), 113 (2020)

    Article  CAS  Google Scholar 

  13. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3(9), 1238–1251 (2010)

    Article  CAS  Google Scholar 

  14. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 3, 845 (2008)

    Article  Google Scholar 

  15. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 41(2), 797 (2012)

    Article  CAS  Google Scholar 

  16. F. Meng, Y. Ding, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater. 23(35), 4098 (2011)

    Article  CAS  Google Scholar 

  17. X. Hu, L. Fan, G. Qin, Z. Shen, J. Chen, M. Wang, J. Yang, Q. Chen, Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J. Power Sources 414, 201 (2019)

    Article  CAS  Google Scholar 

  18. Y. Lin, S. Wen, X. Peng, Y. Cai, L. Geng, B. Chen, Interfacial polyelectrolyte complexation spinning of graphene/cellulose nanofibrils for fiber-shaped electrodes. J. Mater. Res. 35(2), 122 (2020)

    Article  CAS  Google Scholar 

  19. J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21(38), 14398 (2011)

    Article  CAS  Google Scholar 

  20. F. Ran, K. Shen, Y. Tan, B. Peng, S. Chen, W. Zhang, X. Niu, L. Kong, L. Kang, Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors. J. Membr. Sci. 514, 366 (2016)

    Article  CAS  Google Scholar 

  21. W. Yang, W. Yang, F. Ding, L. Sang, Z. Ma, G. Shao, Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111, 419 (2017)

    Article  CAS  Google Scholar 

  22. T.Q. Lin, I.W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508 (2015)

    Article  CAS  Google Scholar 

  23. Y. Liu, M. Narayanasamy, C. Yang, M. Shi, W. Xie, H. Wu, C. Yan, H. Hou, Z. Guo, High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system. J. Mater. Res. 34(17), 3030 (2019)

    Article  CAS  Google Scholar 

  24. D. Liu, C. Fu, N. Zhang, H. Zhou, Y. Kuang, Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors. Electrochim. Acta 213, 291 (2016)

    Article  CAS  Google Scholar 

  25. H. Lin, Q. Huang, J. Wang, J. Jiang, F. Liu, Y. Chen, C. Wang, D. Lu, S. Han, Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim. Acta 191, 444 (2016)

    Article  CAS  Google Scholar 

  26. Y. Guo, X. Zhou, Q. Tang, H. Bao, G. Wang, P. Saha, A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. J. Mater. Chem. A 4(22), 8769 (2016)

    Article  CAS  Google Scholar 

  27. S.-M. Li, S.-Y. Yang, Y.-S. Wang, H.-P. Tsai, H.-W. Tien, S.-T. Hsiao, W.-H. Liao, C.-L. Chang, C.-C.M. Ma, C.-C. Hu, N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. J. Power Sources 278, 218 (2015)

    Article  CAS  Google Scholar 

  28. J. Du, R. Liu, Y. Yu, Y. Zhang, Y. Zhang, A. Chen, N-doped ordered mesoporous carbon prepared by solid–solid grinding for supercapacitors. J. Mater. Res. 33(20), 3408 (2018)

    Article  CAS  Google Scholar 

  29. L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, X. Xu, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun. 4, 2923 (2013)

    Article  Google Scholar 

  30. C.-W. Liew, S. Ramesh, A.K. Arof, A novel approach on ionic liquid-based poly(vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int. J. Hydrogen Energy 39(6), 2917 (2014)

    Article  CAS  Google Scholar 

  31. D. Wei, S.J. Wakeham, T.W. Ng, M.J. Thwaites, H. Brown, P. Beecher, Transparent, flexible and solid-state supercapacitors based on room temperature ionic liquid gel. Electrochem. Commun. 11(12), 2285 (2009)

    Article  CAS  Google Scholar 

  32. X. Jin, G. Sun, G. Zhang, H. Yang, Y. Xiao, J. Gao, Z. Zhang, L. Qu, A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 12(5), 1199 (2019)

    Article  CAS  Google Scholar 

  33. W. Wang, H. Wang, Z. Wu, Y. Yu, M. Asif, Z. Wang, X. Qiu, H. Liu, Co/MnO/NC hybrid derived from N-methyl-D-glucamine as efficient bifunctional oxygen electrocatalysts. Electrochim. Acta 281, 486 (2018)

    Article  CAS  Google Scholar 

  34. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, Supercapacitor evices based on graphene materials. J. Phys. Chem. 113, 13103 (2009)

    CAS  Google Scholar 

  35. S. Peng, X. Jiang, X. Xiang, K. Chen, G. Chen, X. Jiang, L. Hou, High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic poly(vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte. Electrochim. Acta 324, 134874 (2019)

    Article  CAS  Google Scholar 

  36. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457 (2007)

    Article  CAS  Google Scholar 

  37. Y. Liao, Y. Huang, D. Shu, Y. Zhong, J. Hao, C. He, J. Zhong, X. Song, Three-dimensional nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as high-performance supercapacitor materials. Electrochim. Acta 194, 136 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (51674117, 51804116, 51972109) and the National Natural Science Foundation of Hunan Province (2019JJ50205, 2020JJ4332). Hunan Province (No. 0011 document of Xiangcai Construction (2019)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Xiang Wang, Wenyuan Xu or Enxiang Liang.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Xie, WY., Zhou, FX. et al. Three-dimensional nitrogen-doped graphene hydrogel-based flexible all-solid-state supercapacitors. Journal of Materials Research 36, 376–386 (2021). https://doi.org/10.1557/s43578-020-00022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00022-3

Keywords

Navigation