Skip to main content
Log in

Comparison between thermal and deformation-induced structural relaxation in atomic glasses

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Plastic yielding in glassy solids has been interpreted as a strain-biased relaxation process, or, equivalently, as a strain-induced glass transition. In the present work, the atomic motions caused by athermal plastic deformation of a binary Lennard-Jones glass are compared to thermal motion in the liquid in terms of the self part of the intermediate structure factor. We find that like at finite temperature, athermal plastic deformation leads to diffusive atomic motion at all length scales beyond about one interatomic distance, effectively promoting structural relaxation. The present approach allows to study the interplay of deformation-induced and thermal relaxation. Preliminary evidence is presented that these two processes occur independently of each other over a wide range of strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. H. Cottrell , Dislocations and plastic flow in crystals (Clarendon Press, Oxford, 1953).

    Google Scholar 

  2. S. J. Newman , J. Polym. Sci. 27, 563 (1958).

    Article  CAS  Google Scholar 

  3. I. Marshall and A. B. Thompson , Proc. R. Soc. London A221, 541 (1954).

    Google Scholar 

  4. J. S. Lazurkin , J. Polym. Sci. 30, 595 (1958).

    Article  CAS  Google Scholar 

  5. R. E. Robertson , J. Appl. Polym. Sci. 7, 443 (1963).

    Article  CAS  Google Scholar 

  6. V. Khonik , A. Kosilov , V. Mikhailov , and V. Sviridov , Acta Mat. 46, 3399 (1998).

    Article  CAS  Google Scholar 

  7. L. Berthier , J.-L. Barrat , and J. Kurchan , Phys. Rev. E 61, 5464 (2000).

    Article  CAS  Google Scholar 

  8. R. Yamamoto and A. Onuki , J. Chem. Phys. 117, 2359 (2003).

    Article  Google Scholar 

  9. J.-L. Barrat and L. Berthier , Phys. Rev. E 63, 012503/1 (2001).

    CAS  Google Scholar 

  10. D. L. Malandro and D. J. Lacks , Phys. Rev. Lett. 81, 5576 (1998).

    Article  CAS  Google Scholar 

  11. A. L. Liu and S. R. Nagel , Nature 396, 21 (1998).

    Article  CAS  Google Scholar 

  12. L. Berthier and J.-L. Barrat , Phys. Rev. Lett. 89, 095702/1 (2003).

    Article  Google Scholar 

  13. L. Berthier and J.-L. Barrat , J. Chem. Phys. 116, 6228 (2003).

    Article  Google Scholar 

  14. T. A. Weber and F. H. Stillinger , Phys. Rev. B 32, 5402 (1985).

    Article  CAS  Google Scholar 

  15. W. Kob and H. C. Andersen , Phys. Rev. Lett. 73, 1376 (1994).

    Article  CAS  Google Scholar 

  16. W. Kob and H. C. Andersen , Phys. Rev. E 51, 4626 (1995).

    Article  CAS  Google Scholar 

  17. W. Kob and H. C. Andersen , Phys. Rev. E 52, 4134 (1995).

    Article  CAS  Google Scholar 

  18. S. Sastry , P. G. Debenedetti , and F. H. Stillinger , Nature 393, 554 (1998).

    Article  CAS  Google Scholar 

  19. K. Maeda and S. Takeuchi , J. Phys. F 12, 2767 (1982).

    Article  CAS  Google Scholar 

  20. D. L. Malandro and D. J. Lacks , J. Chem. Phys. 110, 4593 (1999).

    Article  CAS  Google Scholar 

  21. P. H. Mott , A. S. Argon , and U. W. Suter , Phil. Mag. A 67, 931 (1993).

    Article  CAS  Google Scholar 

  22. M. Hutnik , A. S. Argon , and U. W. Suter , Macromolecules 26, 1097 (1993).

    Article  CAS  Google Scholar 

  23. D. J. Lacks , Phys. Rev. Lett. 80, 5385 (1998).

    Article  CAS  Google Scholar 

  24. M. Nandagopal and M. Utz , submitted for publication, (2003).

  25. M. Utz , P. G. Debenedetti , and F. H. Stillinger , Phys. Rev. Lett. 84, 1471 (2000).

    Article  CAS  Google Scholar 

  26. O. A. Hasan and M. C. Boyce , Polymer 34, 5085 (1993).

    Article  CAS  Google Scholar 

  27. T. A. Tervoort , Ph.D. thesis, Technical University Eindhoven (1996).

  28. W. Kob , C. Donati , S. J. Plimpton , P. H. Poole , and S. C. Glotzer , Phys. Rev. Lett. 79, 2827 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandagopal, M., Utz, M. Comparison between thermal and deformation-induced structural relaxation in atomic glasses. MRS Online Proceedings Library 754, 45 (2002). https://doi.org/10.1557/PROC-754-CC4.5

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-754-CC4.5

Navigation