Skip to main content
Log in

A silicon structure for electrical characterisation of nanoscale elements

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The problem of mass manufacturing electrode structures suitable for contacting nanoscale elements lies primarily in the difficulty of fabricating a nanometre-scale gap between two electrodes in a well controlled, highly parallel manner. In ULSI circuit production, the gate and substrate in MOSFETs are routinely fabricated with a precise vertical spacing of 3 nm between them. In this work, we have investigated a number of highly parallel methods for the generation of nanogaps, including reconfiguration of the ubiquitous MOS device structure. The silicon dioxide layer that provides vertical separation and electrical insulation between two regions of silicon (the crystalline substrate and the poly-crystalline gate) gives a leakage current of 1 nA μm−2 at 1 V for an oxide thickness of 2 nm [1]. This will enable objects the size of single molecules that are held across this layer to be detected electrically if they provide currents on the nanoampere scale, assuming a parasitic area for leakage between gate and substrate of order 1 µm2. In the future this kind of device has the potential to provide a bolt-on technology for the fabrication of ULSI circuits in which conventional CMOS devices are directly hybridised with functional nanoscale elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hirose, M. Koh, W. Mizubayashi, H. Murakami, K. Shibahara and S. Miyazaki, Semicond. Sci. Technol. 15, 485 (2000).

    Article  CAS  Google Scholar 

  2. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin and J.M. Tour, Science 278, 252 (1997).

    Article  CAS  Google Scholar 

  3. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II and J.M. Tour, Appl. Phys. Lett. 71, 611 (1997).

    Article  CAS  Google Scholar 

  4. D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos and P.L. McEuen, Nature 389, 699 (1997).

    Article  CAS  Google Scholar 

  5. J. Chen, M.A. Reed. A.M. Rawlett and J.M. Tour, Science 286, 1550 (1999).

    Article  CAS  Google Scholar 

  6. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddard and J.R. Heath, Science 289, 1172 (2000).

    Article  CAS  Google Scholar 

  7. M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl and P.L. McEuen, Science 288, 494 (2000).

    Article  CAS  Google Scholar 

  8. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung and C.M. Lieber, Science 289, 94 (2000).

    Article  CAS  Google Scholar 

  9. X. Duan, Y. Huang, Y. Cui, J. Wang and C.M. Lieber, Nature 409, 66 (2001).

    Article  CAS  Google Scholar 

  10. Y. Huang, X. Duan, Q. Wei and C.M. Lieber, Science 291, 630 (2001).

    Article  CAS  Google Scholar 

  11. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo and T.E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000).

    Article  CAS  Google Scholar 

  12. P.J.A. Sazio, C.J.B. Ford, N.C. Greenham, D.J. Paul, A.G. Davies and P.J. Lundgren, British Patent Application 0026471.3 “Small-scale structures”.

  13. G. Philipp, T. Weimann, P. Hinze, M. Burghard and J. Weis, Microelectronic Engineering 46, 157 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazio, P.J.A., Berg, J., See, P. et al. A silicon structure for electrical characterisation of nanoscale elements. MRS Online Proceedings Library 679, 23 (2001). https://doi.org/10.1557/PROC-679-B2.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-679-B2.3

Navigation