Skip to main content
Log in

The First Principles Study on Light Emitting Properties of Semiconducting Metal Silicides

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Semiconducting metal silicides are potential candidates of silicon-based light emitting materials. In order to carry out screening of the candidates, we calculated the oscillator strength between the valence and excited states near the band gap for various silicides. The electronic states were obtained by the full-potential linear augmented-plane-wave method (FLAPW) based on the local density approximation (LDA). The results show Ru2Si3 and Ca2Si have direct gap at t point, but the values of the oscillator strength across the gap are evaluated to be zero. Among the indirect gap semiconductors, β-FeSi2, OsSi, and OsSi2 have several peaks and valleys facing each other near the band gap. Among the combinations, we obtained the biggest value of oscillator strength 0.3 at X point for OsSi with the transition energy of 0.42 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Vining, in Proceedings of the 9th International Conference on Thermoelectrics, edited by C.B. Vining (California Institute of Technology, Pasadena 1991), p. 249.

  2. D. Leong, M. Harry, K.J. Reeson, and K.P. Homewood, Nature, 387, 686 (1997).

    Article  CAS  Google Scholar 

  3. H. Lange, W. Henrion, B. Selle, G.-U. Reinsperger, G. Oertel, and H. von Kinel, Appl. Surf. Sci. 102, 169 (1996).

    Article  CAS  Google Scholar 

  4. M. Tanaka, Y. Kumagai, T. Suemnasu, and F. Hasegawa, Jpn. J. Appl. Phys. 36, 3620 (1997).

    Article  CAS  Google Scholar 

  5. S.J. Clark, H.M. Al-Allack, S. Brand, and R.A. Abram, Phys. Rev. B 58, 10389 (1998).

    Article  CAS  Google Scholar 

  6. M.C. Bost and J.E. Mahan, J. Appl. Phys. 63, 839 (1988).

    Article  CAS  Google Scholar 

  7. R.G. Long, M.C. Bost, and J.E. Malian, Thin Solid Films 162, 29 (1988).

    Article  CAS  Google Scholar 

  8. M.C. Bost and J.E. Mahan, J. Vac. Sci. Technol. B 4, 1336 (1986).

    Article  Google Scholar 

  9. H. Lange, W. Henrion, E. Jahne, M. Giehler, O. Giinther, and J. Schumann, Mat. Res. Soc. Proc. 320, 479 (1994).

    Article  CAS  Google Scholar 

  10. G.V. Samsonov, Plenum Press Hand Books of High-Temperature Materials No. 2 - Properties Index, (Plenum, New York, 1964).

    Google Scholar 

  11. L. Schellenberg, H.F. Braun, and J. Muller, J. Less-Common Met. 144, 341 (1988).

    Article  CAS  Google Scholar 

  12. W. Wolf, G. Bihlmayer, and S. Bliigel, Phys. Rev. B 55, 6918 (1997).

    Article  CAS  Google Scholar 

  13. A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, V.E. Borisenko, and H. Lange, Appl. Phys. Lett. 70, 976 (1997).

    Article  CAS  Google Scholar 

  14. P.Y. Dusausoy, J. Protas, R. Wandji, and B. Roques, Acta Cryst. B 27, 1209 (1971).

    Article  CAS  Google Scholar 

  15. L.F. Mattheiss, Phys. Rev. B 43, 12549 (1991).

    Article  CAS  Google Scholar 

  16. T. Siegrist, F. Hulliger, and G. Travaglini, J. Less-Common Met. 92, 119 (1983).

    Article  CAS  Google Scholar 

  17. D.J. Poutcharovsky and E. Parthe, Acta Cryst. B 30, 2692 (1974).

    Article  Google Scholar 

  18. W.L. Korst, L.N. Finnie, and A.W. Searcy, J. Phys. Chem. 61, 1541 (1957).

    Article  CAS  Google Scholar 

  19. I. Engström, Acta Chen. Scandinavica, 24, 2117 (1970).

    Article  Google Scholar 

  20. B. Lebech, J. Bernhard, and T. Freltoft, J. Phys.: Condens. Mat. 1, 6105 (1989).

    CAS  Google Scholar 

  21. G. Brauer and H. Haag, Zeitschrift fier Anorg. Alleg. Chem. 267, 198 (1952).

    Article  CAS  Google Scholar 

  22. I. Engström, T. Lindsten, and E. Zdansky, Acta Chem. Scandinavica, Series A., 41 A, 237 (1987).

    Article  Google Scholar 

  23. J.G. Barlock and L.F. Mondolfo, Zeitschrift fuer Met. 66, 605 (1975).

    CAS  Google Scholar 

  24. G. Bruzzone and Franceschi, J. Less-Common Met. 57, 210 (1978).

    Article  Google Scholar 

  25. H. Schäfer, K.H. Janzen, and A. Weiss, Angewanmdte Chem. Internat. ed. 2, 393 (1963).

    Article  Google Scholar 

  26. P. Blaha, K. Schwarz, and J. Luitz, WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties, (Karlhmeinz Schwarz, Techn. Univ.Wien, Vienna 1999)

    Google Scholar 

  27. Updated version of P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comp. Phys. Comimun. 59, 399, (1990).

    Article  CAS  Google Scholar 

  28. M.P.C.M. Krijn and R. Eppenga, Phys. Rev. B, 44, 9042 (1991).

    Article  CAS  Google Scholar 

  29. F. Aymerich and G. Mula, Phys. Stat. Sol. (b), 42, 697 (1970).

    Article  CAS  Google Scholar 

  30. R. Eppenga, J. Appl. Phys. 68, 3027 (1990).

    Article  CAS  Google Scholar 

  31. H.W.A.M. Rompa, R. Eppenga, and M.F.H. Schmrnmans, Physica, 145B, 5 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, K., Mizushima, K. & Sassa, K. The First Principles Study on Light Emitting Properties of Semiconducting Metal Silicides. MRS Online Proceedings Library 579, 215–220 (1999). https://doi.org/10.1557/PROC-579-215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-579-215

Navigation