Skip to main content
Log in

Surface Immobilization of Synthetic Proteins Via Plasma Polymer Interlayers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Coatings of biologically active molecules on synthetic “bulk” materials are of much interest for biomedical applications since they can in principle elicit specific, predictable. controlled responses of the host environment to an implanted device. However, issues such as shelf life. storage conditions, biological safety, and enzymatic attack in the biological environment must be considered; synthetic proteins may offer advantages. In this study we investigated the covalent immobilization onto polymeric materials of synthetic proteins which possess some properties that mimic those of the natural protein collagen, particularly the ability to form triple helical structures, and thus may provide similar bio-responses while avoiding enzymatic degradation. In order to perform immobilization of these collagen-like molecules (CLMs) under mild reaction conditions, the bulk materials are first equipped with suitable surface groups using rf plasma methods. Plasma polymer interlayers offer advantages as versatile reactive platforms for the immobilization of proteins and other biologically active molecules. Application of a thin plasma polymer coating from an aldehyde monomer is particularly suitable as it enables direct immobilization of CLMs by reaction with their terminal amine groups, using reductive amination chemistry. An alternative route is via plasma polymer layers that contain carboxylic acid groups and using carbodiimnide chemistry. A third route makes use of alkylamme plasma polymer interlayers, which are less process sensitive than aldehyde and acid plasma coatings. A layer of poly-carboxylic acid compounds such as carboxylic acid terminated PAMAM-starburst dendrimers or carboxymethylated dextran is then attached by carbodiimide chemistry onto the amine plasma layer. Amine-terminated CLMs can then be immobilized onto the poly-carboxylic acid layer. Surface analytical methods have been used to characterize the immobilization steps and to assess the surface coverage. Initial cell attachment and growth assays indicate that the biological performance of the CLMs depends on their amino acid sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Primaria. A uniquely modified tissue culture surface that mimics in vivo conditions - in vitro”. Product information sheet, Becton Dickinson Labware, Lincoln Park, NJ. USA, 1986.

  2. P. Nicolson et al., US Patent 5 760 100 (1995).

    Google Scholar 

  3. J.J. Grzesiak, M.D. Pierschbacher, M.F. Amodeo, T.I. Malaney, and J.R. Glass, Biomaterials 18, 1652 (1997).

    Article  Google Scholar 

  4. A. El-Ghannam, L. Starr, and J. Jones, J. Biomed. Mater. Res. 41, 30 (1998).

    Article  CAS  Google Scholar 

  5. J.A. Neff, K.D. Caldwell, and P.A. Tresco. J. Biomed. Mater. Res. 40, 511 (1998).

    Article  CAS  Google Scholar 

  6. H-B. Lin, C. Garcia-Echeverria, S. Asakura, W. Sun, D.F. Mosher, and S.L. Cooper, Biomaterials 13, 905 (1992).

    Article  CAS  Google Scholar 

  7. S.P. Massia and J. A. Hubbell, Anal. Biochem. 187, 292. (1990).

    Article  CAS  Google Scholar 

  8. K.C. Olbrich, T.T. Andersen, F.A. Blumenstock and R. Bizios. Biomaterials 17, 759. (1996).

    Article  CAS  Google Scholar 

  9. M. Huber, P. Heiduschka, S. Kienle, C. Pavlidis, J. Mack, T. Walk, G. Jung, and S. Thanos, J. Biomed. Mater. Res. 41, 278 (1998).

    Article  CAS  Google Scholar 

  10. R.J. Simon, R.S. Kania, R.N. Zuckermann, V.D. Huebner, D.A. Jewell, S. Banville. S. Ng, L. Wang, S. Rosenberg, C.K. Marlowe, D.C. Spellmeyer, R. Tan, A.D. Frankel, D.V. Santi, F.E. Cohen, and P. A. Bartlett, Proc. Natl. Acad, Sci. USA 89, 9367 (1992).

    Article  CAS  Google Scholar 

  11. M. Goodman, G. Melancini, and Y. Feng, J. Amer. Chem. Soc. 118, 10928 (1996).

    Article  CAS  Google Scholar 

  12. G. Melacini, Y. Feng, and M. Goodman, J. Amer. Chem. Soc. 118, 10725 (1996).

    Article  CAS  Google Scholar 

  13. Y. Feng, G. Melancini, J. Taulane, and M. Goodman, Biopolymers 39, 859 (1996).

    Article  CAS  Google Scholar 

  14. Y. Feng, G Melancini, and M. Goodman, Biochemistry 36, 8716 (1997).

    Article  CAS  Google Scholar 

  15. G.J. Beumer, R.C. Chatelier, H.A.W. St. John, and H.J. Griesser, Proc. 5th World Biomater. Congr., May 29- June2, Toronto, Canada. 1-881 (1996).

    Google Scholar 

  16. X. Gong and H.J. Griesser, Plasmas & Polym. 2, 261 (1997).

    Article  CAS  Google Scholar 

  17. H.J. Griesser and R.C. Chatelier, J. Appl. Polym. Sci: Appl. Polym. Symp. 46, 361 (1990).

    Article  CAS  Google Scholar 

  18. T.R. Gengenbach, Z.R. Vasic, R. C. Chatelier, and H.J. Griesser, J. Polym. Sci.. Pt A.: Polym. Chem. 32, 1399 (1994).

    Article  CAS  Google Scholar 

  19. T.R. Gengenbach, R.C. Chatelier, and H.J. Griesser, Surf. Interf. Anal. 24, 271 (1996).

    Article  CAS  Google Scholar 

  20. T.R. Gengenbach, R.C. Chatelier, and H.J. Griesser, Surf. Interf. Anal. 24, 611 (1996).

    Article  CAS  Google Scholar 

  21. P. Kingshott, H.A.W. St John, R.C. Chatelier, and H.J. Griesser, J. Biomed. Mater. Res., submitted (1998).

    Google Scholar 

  22. M.D.M. Evans and J.G. Steele, Exp. Cell Res. 233, 88 (1997).

    Article  CAS  Google Scholar 

  23. P.A. Underwood and F.A. Bennett, J. Cell Sci. 93, 641 (1989).

    CAS  Google Scholar 

  24. K.M. McLean, S.L. McArthur, R.C. Chatelier, P. Kingshott, and H.J. Griesser, Coll. Surf. B: Biointerfaces, submitted (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Griesser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griesser, H.J., McLean, K.M., Beumer, G.J. et al. Surface Immobilization of Synthetic Proteins Via Plasma Polymer Interlayers. MRS Online Proceedings Library 544, 9–20 (1998). https://doi.org/10.1557/PROC-544-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-544-9

Navigation