Skip to main content
Log in

Pressure Waves in Microscopic Simulations of Laser Ablation Leonid

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Laser ablation of organic solids is a complex collective phenomenon that includes processes occurring at different length and time scales. A mesoscopic breathing sphere model developed recently for molecular dynamics simulation of laser ablation and damage of organic solids has significantly expanded the length-scale (up to hundreds of nanometers) and the time-scale (up to nanoseconds) of the simulations. The laser induced buildup of a high pressure within the absorbing volume and generation of the pressure waves propagating from the absorption region poses an additional challenge for molecular-level simulation. A new dynamic boundary condition is developed to minimize the effects of the reflection of the wave from the boundary of the computational cell. The boundary condition accounts for the laser induced pressure wave propagation as well as the direct laser energy deposition in the boundary region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cleri, S. R. Phillpot, D. Wolf, and S. Yip, J. Am. Ceram. Soc. 81, 501 (1998).

    Article  CAS  Google Scholar 

  2. S. Kohlhoff, P. Gumbsch, and H. F. Fischmeister, Phil. Mag. A 64, 851 (1991).

    Article  Google Scholar 

  3. E. B. Tadmor, M. Ortiz, and R. Phillips, Phil. Mag. A 73, 1529 (1996).

    Article  Google Scholar 

  4. H. Rafii-Tabar, L. Hua, and M. Cross, J. Phys.: Condens. Matter 10, 2375 (1998).

    CAS  Google Scholar 

  5. O. Shenderova, D. W. Brenner, A. Nazarov, A. Romanov, and L. Yang, Phys. Rev. B. 57, R3181 (1998).

    Article  CAS  Google Scholar 

  6. Proceedings of the 4th International Conference on Laser Ablation, edited by R. E. Russo, D. B. Geohegan, R. F. Haglund Jr, and K. Murakami, Appl. Surf. Sci. 127–129 (1998).

    Google Scholar 

  7. L. V. Zhigilei, P. B. S. Kodali, and B. J. Garrison, J. Phys. Chem. B 101, 2028 (1997); J. Phys. Chem. B 102, 2845 (1998).

    Article  CAS  Google Scholar 

  8. L. V. Zhigilei, P. B. S. Kodali, and B. J. Garrison, Chem. Phys. Lett. 276, 269 (1997).

    Article  CAS  Google Scholar 

  9. L. V. Zhigilei and B. J. Garrison, Appl. Phys. Lett., in press, 1999.

    Google Scholar 

  10. L. V. Zhigilei and B. J. Garrison, Appl. Phys. Lett. 71, 551, (1997); Rapid Commun. Mass Spectrom., 12, 1273 (1998).

    Article  CAS  Google Scholar 

  11. L. V. Zhigilei and B. J. Garrison, Appl. Surf. Sci. 127-129, 142 (1998); Laser-Tissue Interaction IX, edited by S. L. Jacques (SPIE Proceedings Series, Vol. 3254, Washington, 1998), p. 135.

    Article  CAS  Google Scholar 

  12. D. Kim and C. P. Grigoropoulos, Appl. Surf. Sci. 127-129, 53 (1998).

    Article  CAS  Google Scholar 

  13. V. Venugopalan, N. S. Nishioka, and B. B. Mikic, Biophysical Journal. 70, 2981 (1996).

    Article  CAS  Google Scholar 

  14. B. L. Holian and R. Ravelo, Phys. Rev. B 51, 11275 (1995).

    Article  CAS  Google Scholar 

  15. M. Moseler, J. Nordiek, and H. Haberland, Phys. Rev. B 56, 15439 (1997).

    Article  CAS  Google Scholar 

  16. J. A. Smirnova, L. V. Zhigilei, and B. J. Garrison, Comput. Phys. Commun., in press, 1999.

    Google Scholar 

  17. R. S. Dingus and R. J. Scammon, Laser-Tissue Interaction IX, edited by S. L. Jacques (SPIE Proceedings Series, Vol. 1427, Washington, 1991), p. 45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhigilei, V., Garrison, B.J. Pressure Waves in Microscopic Simulations of Laser Ablation Leonid. MRS Online Proceedings Library 538, 491–496 (1998). https://doi.org/10.1557/PROC-538-491

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-538-491

Navigation