Skip to main content
Log in

Multiscale Simulations of the RF Diode Sputtering of Copper

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The morphology and microstructure of RF diode sputter deposited materials is a complicated function of many parameters of the reactor operating conditions. Using a combination of computational fluid dynamics (CFD), RF plasma, molecular dynamics (MD) sputter, and direct simulation Monte Carlo (DSMC) transport models, a multiscale approach has been used to analyze the RF diode sputtering of copper. The CFD model predicts the velocity and pressure distribution of the working gas flows in the deposition chamber. The plasma model uses these CFD results to compute ion energies and fluxes at the target and substrate. The MD model of sputtering is used to determine the initial energy distribution of sputtered atoms and reflected neutral working gas atoms and both of their angular distributions. A DSMC transport model then deduces the target atom deposition efficiency, the spatial distribution of the film thickness, the target and reflected neutral atoms energy and impact angle distributions given reactor operating input conditions such as background pressure, temperature, gas type, together with the reactor geometry. These results can then be used in atomistic growth models to begin a systematic evaluation of surface morphology, nanoscale structure, and defects dependences upon the reactor design and its operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Levy, J. Magn. Magn. Mater., 140-144, 485(1995).

    Article  CAS  Google Scholar 

  2. M. D. Stiles, Phys. Rev., B48, 7238(1993).

    Article  Google Scholar 

  3. W. H. Butler, X. G. Zhang, D. M. C. Nicholson and J. M. MacLaren, Phys. Rev., 52B, 13399(1995).

    Article  Google Scholar 

  4. J. Daughton, J. Brown, E. Chen, R. Beech, A. Pohm and W. Kude, IEEE Trans. Magn., 30, 4608 (1994).

    Article  Google Scholar 

  5. C. Tsang, R. E. Fontana, T. Lin, D. E. Heim, V. S. Speriosu, B. A. Gurney and M. L. Williams, IEEE Trans. Magn., 30, 3801 (1994).

    Article  CAS  Google Scholar 

  6. J. L. Simonds, Phys. Today, April, 26(1995).

    Google Scholar 

  7. X. W. Zhou and H. N. G. Wadley, J. Appl. Phys. 84, 2301 (1998).

    Article  CAS  Google Scholar 

  8. E. E. Fullerton, D. M. Kelly, J. Guimpel and I. K. Schuller, Phys. Rev. Lett., 68, 859 (1992).

    Article  CAS  Google Scholar 

  9. M. L. Yan, W. Y. Lai, Y. Z. Wang, S. X. Li and C. T. Yu, J. Appl. Phys., 77, 1816 (1995).

    Article  CAS  Google Scholar 

  10. T. L. Hylton, K. R. Coffey, M. A. Parker and J. K. Howard, J. Appl. Phys., 75, 7058 (1994).

    Article  CAS  Google Scholar 

  11. S. Honda, S. Ohmoto, R. Imada and M. Nawate, J. Magn. Magn. Mater., 126, 419 (1993).

    Article  CAS  Google Scholar 

  12. R. J. Pollard, M. J. Wilson and P. J. Grundy, J. Magn. Magn. Mater., 146, L1 (1995).

    Article  CAS  Google Scholar 

  13. H. Zhang, R. W. Cochrane, Y. Huai, M. Mao, X. Bian and W. B. Muir, J. Appl. Phys., 75, 6534 (1994).

    Article  CAS  Google Scholar 

  14. T. R. McGuire, J. M. Harper, C. Cabral Jr and T. S. Plaskett, J. Appl. Phys., 76, 6601 (1994).

    Article  CAS  Google Scholar 

  15. J. D. Kim, A. K. Petford-Long, J. P. Jakubovics, J. E. Evetts and R. Somekh, J. Appl. Phys., 76, 6513 (1994).

    Article  CAS  Google Scholar 

  16. D. H. Mosca, F. Petroff, A. Fert, P. A. Schroeder, W. P. Pratt Jr and R. Laloee, J. Magn. Magn. Mater., 94, L1 (1991).

    Article  CAS  Google Scholar 

  17. S. S. P. Parkin, Z. G. Li and D. J. Smith, Appl. Phys. Lett., 58, 2710 (1991).

    Article  CAS  Google Scholar 

  18. H. Sato, Y. Kobayashi, Y. Aoki, R. Loloee and W. P. Pratt Jr, J. Magn. Magn. Mater., 140-144, 567(1995).

    Article  CAS  Google Scholar 

  19. R. J. Highmore, W. C. Shih, R. E. Somekh and J. E. Evetts, J. Magn. Magn. Mater., 116, 249 (1992).

    Article  CAS  Google Scholar 

  20. K. Kagawa, H. Kano, A. Okabe, A. Suzuki and K. Hayashi, J. Appl. Phys., 75, 6540 (1994).

    Article  CAS  Google Scholar 

  21. K. Meguro, S. Hirano, M. Jimbo, S. Tsunashima and S. Uchiyama, J. Magn. Magn. Mater, 140-144, 601(1995).

    Article  CAS  Google Scholar 

  22. J. C. S. Kools, J. Appl. Phys., 77, 2993 (1995).

    Article  CAS  Google Scholar 

  23. T. C. Anthony, J. A. Brug and S. Zhang, IEEE Trans. Magn., 30, 3819 (1994).

    Article  CAS  Google Scholar 

  24. Y. Yang, R. A. Johnson and H. N. G. Wadley, Acta Mater., 45, 1455 (1997).

    Article  CAS  Google Scholar 

  25. H. H. Andersen, H. L. Bay and H. E. Roosendaal, in Topics in Applied Physics, Sputtering by Particle Bombardment I, edited by R. Behrisch (Springer-Verlag, Berlin Heidelberg, 1981), Vol. 47, p. 145; 219.

    Article  Google Scholar 

  26. W. O. Hofer, in Topics in Applied Physics, Sputtering by Particle Bombardment III, edited by R. Behrisch and K. Wittmaack (Springer-Verlag, Berlin Heidelberg, 1991), Vol. 64, p. 15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadley, H.N.G., Zou, W., Zhou, X.W. et al. Multiscale Simulations of the RF Diode Sputtering of Copper. MRS Online Proceedings Library 538, 323–328 (1998). https://doi.org/10.1557/PROC-538-323

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-538-323

Navigation