Skip to main content
Log in

Adhesion of Polysilicon Microbeams in Controlled Humidity Ambients

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We characterize in-situ the adhesion of surface micromachined polysilicon beams subject to controlled humidity ambients. Beams were freed by supercritical CO2drying. Consistent adhesion results were obtained using a post-treatment in an oxygen plasma which rendered the microbeams uniformly hydrophilic. Individual beam deformations were measured by optical interferometry after equilibration at a given relative humidity (RH). Validation of each adhesion measurement was accomplished by comparing the deformations with elasticity theory. The data indicates that adhesion increases exponentially with RH from 30% to 95%, with values from 1 mJ/m2 to 50 mJ/m2. Using the Kelvin equation, we show that the data should be independent of RH if a smooth interface is considered. By modeling a rough interface consistent with atomic force microscopy (AFM) data, the exponential trend is satisfactorily explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. C. H. Mastrangelo and C. H. Hsu, Proc. IEEE Solid-State Sensor & Actuator Workshop (Hilton Head), 208 (1992).

  2. C. H. Mastrangelo and C. H. Hsu, J. MEMS 2 (1), 33 (1993).

    Article  CAS  Google Scholar 

  3. C. H. Mastrangelo and C. H. Hsu, J. MEMS 2 (1), 44 (1993).

    Article  CAS  Google Scholar 

  4. M. P. de Boer and T. A. Michalske, Mater. Res. Soc. Proc. 444, (1997).

  5. M. P. de Boer and T. A. Michalske, J. Appl. Phys., (to be submitted).

  6. R. L. Alley, G. J. Cuan, R. T. Howe and K. Komvopoulos, Proc. IEEE Solid-State Sensor & Actuator Workshop (Hilton Head), 202 (1992).

  7. K. Deng, R. J. Collins, M. Mehregany and C. N. Sukenik, J. Electrochem. Soc. 142 (4), 1278 (1995).

    Article  CAS  Google Scholar 

  8. B. P. Gogoi and C. H. Mastrangelo, J. MEMS 4 (4), 185 (1995).

    Article  Google Scholar 

  9. R. L. Alley, P. Mai, K. Komvopoulos and R. T. Howe, Proc. Int. Conf. Solid-State Sensors & Actuators (Transducers ’93), 288 (1993).

  10. M. R. Houston, R. Maboudian and R. T. Howe, Proc. IEEE Solid-State Sensor & Actuator Workshop (Hilton Head), 42 (1996).

  11. C. H. Mastrangelo and G. S. Saloka, Proc. IEEE MEMS (Ft. Lauderdale), 77 (1993).

  12. U. Srinivasan, M. R. Houston, R. T. Howe and R. Maboudian, Proc. Int. Conf. Solid-State Sensors & Actuators (Transducers ’97) 2, 1399 (1997).

    Article  CAS  Google Scholar 

  13. Y. Yee, K. Chun and J. D. Lee, Proc. Int. Conf. Solid-State Sensors & Actuators (Transducers ’95), 206 (1995).

  14. G. T. Mulhern, D. S. Soane and R. T. Howe, Proc. Int. Conf. Solid-State Sensors & Actuators (Transducers ’93), 296 (1993).

  15. E. M. Russick, C. L. J. Adkins and C. W. Dyck, in Supercritical Fluids, Extraction and Pollution Prevention, M. A. Abraham and A. K. Sunol, ed. (American Chemical Society, Washington, DC, 1997), vol. 670, pp. 255–269.

    Article  CAS  Google Scholar 

  16. M. R. Houston, R. T. Howe and R. Maboudian, J. Appl. Phys. 81 (8), 3474 (1997).

    Article  CAS  Google Scholar 

  17. H. L. Ewalds and R. J. H. Wanhill, Fracture Mechanics, 82–84 (Edward Arnold and Delftse Uitgevers Maatschapij, London, 1991).

    Google Scholar 

  18. E. Garcia and J. Sniegowski, Sensors and Actuators A 48, 203 (1995).

    Article  CAS  Google Scholar 

  19. LabVIEW, National Instruments, Austin, TX, 78730, http://www.natinst.com/.

  20. Analysis performed on using the public domain NIH image program, available from the NIH Image Web site (http://rsb.info.nih.gov/nih-image/).

  21. H. Naono, R. Fujiwara and M. Yagi, J. Colloid Interface Sci. 76 (1), 74 (1980).

    Article  CAS  Google Scholar 

  22. A. W. Adamson, Physical Chemistry of Surfaces, (John Wiley & Sons, New York, 1990).

    Google Scholar 

  23. T. A. Michalske and E. R. Fuller, J. Am. Ceram. Soc. 68 (11), 586 (1985).

    Article  CAS  Google Scholar 

  24. J. Israelachvili, Intermolecular and Surface Forces, (Academic Press, New York, 1992).

    Google Scholar 

  25. J. A. Greenwood and J. B. P. Williamson, Proc. Roy. Soc. Lond. A. 295, 300 (1966).

    Article  CAS  Google Scholar 

  26. X.F. Tian, and B. Bhushan, J. Phys. D. Appl. Phys 29 (1), 163 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. de Boer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, M.P., Clews, P.J., Smith, B.K. et al. Adhesion of Polysilicon Microbeams in Controlled Humidity Ambients. MRS Online Proceedings Library 518, 131–136 (1998). https://doi.org/10.1557/PROC-518-131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-518-131

Navigation