Skip to main content
Log in

The Metallic State of Conducting Polymers: Microwave Dielectric Response and Optical Conductivity

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Recent advances in processing of polyaniline and polyacetylene have resulted in a new generation of conducting polymers with higher dc conductivities. We present the temperature (T) dependent microwave frequency dielectric constant, dc conductivity, and Kramers-Kronig analysis of conducting polyaniline and polyacetylene. The low temperature dielectric constant, ε, increases with the square of the x-ray crystalline domain length for preparations of HC1 protonated polyaniline. For the highest crystalline polyaniline samples, ε increases dramatically with increasing T, supporting formation of three-dimensional (3-D) coupled “ mesoscopic” metallic regions. A “metallic” negative ε is observed for d,1-camphor sulfonic acid doped polyaniline prepared in m-cresol. Optical studies show a linear increase in reflectivity below 7000 cm−1 Below 600 cm−1 the reflectance increases rapidly. Kramers-Kronig analysis of the ir-visible results are presented. Highly conducting polyaniline is shown to have two plasma frequencies, one at ~1.1 eV involving all the conduction band electrons, and one at ~0.015 eV (120 cm−1) that is suggested to arise from the most delocalized electrons. The concept of inhomogeneous disorder is introduced. The results for polyaniline are compared to those of highly doped polyacetylene which also show metallic negative ε demonstrating the intrinsic metallic nature of the new generation of conducting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. See, for example, Proc. Mat. Res. Soc. 247 (1992); Proc. Int. Conf. on Sei. and Tech.of Synth. Met., Göteborg, Sweden, 12–18 August 1992, Synth. Met. 55–57 (1993).

  2. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, AJ. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).

    Article  CAS  Google Scholar 

  3. G. Liesing, Phys. Rev. B 38, 10313 (1988).

    Article  Google Scholar 

  4. H. S. Woo, D. B. Tanner, N. Theophilou, and A. G. MacDiarmid, Synth. Met. 41–43, 159 (1991).

    Article  Google Scholar 

  5. J. Tanaka, S. Hasegawa, T. Miyamae, and M. Shimizu, Synth. Met. 41–43, 1199 (1991).

    Article  Google Scholar 

  6. A. G. MacDiarmid, Y. Min, J. M. Wiesinger, E. J. Oh, E. M. Scherr, and A. J. Epstein, Synth. Met. 55, 753 (1993).

    Article  CAS  Google Scholar 

  7. E. J. Oh, Y. Min, J. M. Weisinger, S. K. Manohar, E. M. Scherr, P. J. Prest, A. G. MacDiarmid, and A. J. Epstein, Synth. Met. 55, 977 (1993).

    Article  CAS  Google Scholar 

  8. A. G. MacDiarmid and A. J. Epstein, Faraday Discuss. Chem. Soc. 88, 317 (1989)

    Article  CAS  Google Scholar 

  9. K. R. Cromack, M. E. Jozefowicz, J. M. Ginder, R. P. McCall, G. Du, J. M. Leng, K. Kim, C. Li, Z. H. Wang, A. J. Epstein, M. A. Druy, P. J. Glatkowski, E. M. Scherr, and A. G. MacDiarmid, Macro molecules 28, 4157 (1991).

    Article  Google Scholar 

  10. A. G. MacDiarmid, J. M. Weisinger, and A. J. Epstein, Bull. Am. Phys. Soc. 38, 311 (1993)

    Google Scholar 

  11. A. G. MacDiarmid and A. J. Epstein, Trans. 2nd Congresso Brazileiro de Polimeros, São Paulo, Brazil, Oct. 5–8, 1993, p. 544

  12. Y. Min, A. G. MacDiarmid, and A. J. Epstein, Polymer Preprints, in press; A. G. MacDiarmid and A. J. Epstein, these proceedings.

  13. A. J. Epstein, J. Joo, C. Y. Wu, A. Benatar, C. F. Faisst, Jr., J. Zegarski, and A. G. MacDiarmid, in Intrinsically Conducting Polymers: An Emerging Technology, p. 165 (1993), ed. by M. Aldissi, Kluwer Academic Publishers.

  14. Y. Cao, P. Smith, and A. J. Heeger, Synth. Met. 48, 91 (1992)

    Article  CAS  Google Scholar 

  15. Y. Cao and A. J. Heeger, Synth. Met. 52, 193 (1992).

    Article  CAS  Google Scholar 

  16. J. Tsukamoto, A. Takahashi, and K. Kawasaki, Jpn. J. Appl. Phys. 29, 125 (1990).

    Article  CAS  Google Scholar 

  17. F. Zuo, M. Angelopoulos, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev. B 36, 3475 (1987).

    Article  CAS  Google Scholar 

  18. Z. H. Wang, A. Ray, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev. B 43, 4373 (1991).

    Article  CAS  Google Scholar 

  19. Z. Wang, C. Li, A. J. Epstein, E. M. Scherr, and A. G. MacDiarmid, Phys. Rev. Lett. 66, 1745 (1991).

    Article  CAS  Google Scholar 

  20. Z. H. Wang, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev. B 45, 4190 (1992).

    Article  CAS  Google Scholar 

  21. J. Joo and A. J. Epstein, to be published.

  22. R. P. McCall, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein, to be published.

  23. R. S. Kohlman, Y. Min, A. G. MacDiarmid, and A. J. Epstein, to be published.

  24. M. E. Jozefowicz, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P. Pouget, X. Tang, and A.G. MacDiarmid, Phys. Rev. B 39, 12, 958 (1989).

    Google Scholar 

  25. J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid, Macromolecules 24, 779 (1991).

    Article  CAS  Google Scholar 

  26. M. F. Jozefowicz, A. J. Epstein, J. P. Pouget, J. G. Masters, A. Ray and A. G. MacDiarmid, Mac romolecules 25, 5863 (1991).

    Article  Google Scholar 

  27. M. Laridjani, J. P. Pouget, E. M. Scherr, A. G. MacDiarmid, M. E. Jozefowicz, and A. J. Epstein, Macromolecules 25, 4106 (1992).

    Article  CAS  Google Scholar 

  28. J. Joo, Z. Oblakowski, G. Du, J. P. Pouget, E. J. Oh, J. M. Wiesinger, Y. Min, A. G. MacDiarmid and A. J. Epstein, to be published.

  29. V. N. Prigodin and K. B. Efetov, Phys. Rev. Lett. 70, 2932 (1993).

    Article  CAS  Google Scholar 

  30. N. F. Mott and M. Kaveh, Adv. Phys. 34, 329 (1985).

    Article  CAS  Google Scholar 

  31. K. Lee, A. J. Heeger, and Y. Cao, to be published.

  32. P. Phillips and H. L. Wu, Science 252, 1805 (1991).

    Article  CAS  Google Scholar 

  33. K. Mizoguchi, M. Nechtschein, J. P. Travers, and C. Menardo, Phys. Rev. Lett. 63, 66 (1989).

    Article  CAS  Google Scholar 

  34. J. M. Ginder, A. F. Richter, A. G. MacDiarmid, and A. J. Epstein, Solid State Commun. 63, 97 (1987).

    Article  CAS  Google Scholar 

  35. J. P. Pouget, Z. Oblakowski, Y. Nogami, P. A. Albouy, M. Laridjani, E. J. Oh, Y. Min, A. G. MacDiarmid, J. Tsukamuto, T. Ishiguro, and A. J. Epstein, Synth. Met., in press.

  36. J. Joo, G. Du, J. Tsukamoto, and A. J. Epstein, to be published.

Download references

Acknowledgments

The authors gratefully acknowledge stimulating discussions with V. N. Prigodin and D. Stroud. This work was supported in part by ONR Grant No. N00014-92-J1369, NSFINT. Grant No. 90-16586, by an International Joint Research Project from NEDO, and by an ‘Action Incitative CNRS-NSF.’

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, A.J., Joo, J., Kohlman, R.S. et al. The Metallic State of Conducting Polymers: Microwave Dielectric Response and Optical Conductivity. MRS Online Proceedings Library 328, 145–156 (1993). https://doi.org/10.1557/PROC-328-145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-328-145

Navigation