Skip to main content
Log in

First-Principles Study of the Etching Reactions of HF and H2O with Si/SiO2 Surfaces

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

First-principles quantum chemical techniques are used to unravel the mechanism leading to hydrogen-terminated silicon surfaces upon etching. Our calculations on model compounds indicate that kinetic rather than thermodynamic considerations are responsible for the H-passivation. In the etching reactions of HF, the initial oxide removal leads to F-termination of the surface dangling bonds. Subsequent HF attack of the Si–Si back-bonds then leads to the final H-terminated surface. The principal driving force is the ionic nature of the Si–F bond which polarizes the Si–Si back-bonds. This polarization facilitates reactions with HF resulting in efficient removal of fluorine-bonded surface silicon as SiF4 leaving behind hydrogen. Analogous etching reactions of water involve larger barriers and can only be seen at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kern, J. Electrochem. Soc. 137, 1887 (1990).

    Article  CAS  Google Scholar 

  2. T. Buck and F.S. McKim, J. Electrochem. Soc. 105, 709 (1958).

    Article  CAS  Google Scholar 

  3. For a recent review, see: G.S.Higashi and YJ. Chabal, in Handbook of Semiconductor Cleaning Technology, W. Kern, Ed. (1993).

  4. S. I. Raider, R. Flitsch, and M.J. Palmer, J. ELectrochem. Soc. 122, 413 (1975).

    Article  CAS  Google Scholar 

  5. B.R. Weinberger, G.G. Peterson, T.C. Eschrich, and H.A. Krasinski, J. Appl. Phys. 60, 3232 (1986).

    Article  CAS  Google Scholar 

  6. H. Ubara, T. Imura, and A. Hiraki, Solid State Comm. 50, 673 (1984).

    Article  CAS  Google Scholar 

  7. E. Yablonovitch, D.L. Aliara, C.C. Chang, T. Gmitter, and T.B. Bright, Phys. Rev. Lett. 57, 249 (1986).

    Article  CAS  Google Scholar 

  8. M. Grundner and J. Jacob, Appl. Phys. A39, 73 (1986).

    Google Scholar 

  9. V.A. Burrows, Y.J. Chabal, G.S. Higashi, K. Raghavachari and S.B. Christman, Appl. Phys. Lett. 53, 998 (1988).

    Article  CAS  Google Scholar 

  10. Y.J. Chabal, G.S. Higashi, K. Raghavachari and V.A. Burrows, J. Vac. Sci. Technol. A7, 2104 (1988).

    Google Scholar 

  11. P. Dumas and Y. J. Chabal, Chem. Phys. Lett. 181, 537 (1991).

    Article  CAS  Google Scholar 

  12. G.S. Higashi, Y.J. Chabal, G.W. Trucks, and K. Raghavachari, Appl. Phys. Lett. 56, 656 (1990).

    Article  CAS  Google Scholar 

  13. P. Jakob and Y.J. Chabal, J. Chem. Phys. 95, 2897 (1991).

    Article  CAS  Google Scholar 

  14. S. Watanabe, N. Nakayama, and T. Ito, Appl. Phys. Lett. 59, 1458 (1991).

    Article  CAS  Google Scholar 

  15. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and K. Suma, Appl. Phys. Lett. 55, 562 (1989).

    Article  CAS  Google Scholar 

  16. GJ. Pietsch, U. Köhler, and M. Henzler, Chem. Phys. Lett. 197, 346 (1992).

    Article  CAS  Google Scholar 

  17. G.W. Trucks, K. Raghavachari, G.S. Higashi, and YJ. Chabal, Phys. Rev. Lett. 65, 504 (1990).

    Google Scholar 

  18. For information on basis sets and correlation methods used in this study, see WJ. Hehre, L. Radom, P.v.R. Schleyer, and J.A. Pople, Ab Initio Molecular Orbital Theory (J. Wiley, New York, 1986).

  19. P.C. Hariharan and J.A. Pople, Chem. Phys. Lett. 66, 217 (1972). M.M. Francl, W.J. Pietro, WJ. Hehre, J.S. Binkley, M.S. Gordon, DJ. DeFrees and J.A. Pople, J. Chem. Phys. 77, 3654(1982).

    Article  Google Scholar 

  20. C. Mtfller and M.S. Plesset, Phys. Rev. 46, 618 (1934).

    Article  Google Scholar 

  21. J.S. Binkley and J.A. Pople, Int. J. Quant. Chem. 9, 229 (1975).

    Article  CAS  Google Scholar 

  22. J.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Int. J. Quant. Chem. Symp. 13, 255 (1979).

    Google Scholar 

  23. J.A. Pople, M. Head-Gordon and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).

    Article  CAS  Google Scholar 

  24. R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  CAS  Google Scholar 

  25. A.D. McLean and G.S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  26. J.S. Judge, J. Electrochem. Soc. 118, 1772 (1971).

    Article  CAS  Google Scholar 

  27. Pattern etching in vapors from aqueous HF yields comparable results to liquid etching at reasonable etch rates, see P.J. Holmes and J.E. Snell, Microelec. and Reliab. 5, 337 (1966).

  28. R.E. Novak, Solid State Technol. (March 1988) p 39.

    Google Scholar 

  29. B.J. Garrison and W.A. Goddard, III, Phys. Rev. B36, 9805 (1987).

    Google Scholar 

  30. C.G. Van de Walle, F.R. McFreely, and S.T. Pantelides, Phys. Rev. Lett. 61, 1867 (1988).

    Article  Google Scholar 

  31. F.R. McFeely, J.F. Morar, and F.J. Himpsel, Surf. Sci. 165, 277 (1986).

    Article  CAS  Google Scholar 

  32. S.M. Hu and D.R. Kerr, J. Electrochem. Soc. 114, 414 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavachari, K., Higashi, G.S., Chabal, Y.J. et al. First-Principles Study of the Etching Reactions of HF and H2O with Si/SiO2 Surfaces. MRS Online Proceedings Library 315, 437–446 (1993). https://doi.org/10.1557/PROC-315-437

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-315-437

Navigation