Skip to main content
Log in

Nonlinear Optical Polymers for Electrooptical Devices

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Although organic crystals may be used to experimentally verify the large nonlinearities and short response times of organics, such crystals are not acceptable for device applications due to significant fabrication difficulties. Further, the bulk material nonlinearity is a function of molecular orientation and symmetry which may not be controlled during the crystallization process.

Nonlinear optical polymers have been synthesized at Hoechst Celanese for which the active NLO unit is attached to the polymer backbone as a pendant side chain. Control of orientation and symmetry of the unit is achieved by poling in an external electric field at elevated temperatures resulting in second order susceptibilities larger than inorganic crystals. The polymers have attractive secondary properties (i.e., optical transparency, high glass transition temperatures which are controlled by adjusting the side chain length and nature of the polymer backbone, low dielectric constants, and flat frequency respose). Further, single mode waveguides may be fabricated by spin coating. Deposition of electrodes on the waveguide permits application of an external field which changes the material’s index of refraction due to the linear electrooptical effect. Thus, a host of electrooptical waveguide devices may be constructed which operate at low voltages and very high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Optical Computing, Proc. SPIE, 4, 5, 6, J. Neff, Editor (1984).

  2. “Organo-Optics: Non-Linear Optical Properties of Organic Small Molecules and Polymers”, A. Buckley, E. W. Choe, J. P. Riggs, D. Stuetz, Technical Proposal by the Celanese Research Company, submitted to DARPA, December 1983.

  3. G. F. Lipscomb, A. F. Garito, R. S. Narang, J. Chem. Phys., 75, 1509 (1981).

    Article  CAS  Google Scholar 

  4. B. F. Levine, C. E. Bethea, C. D Thurmmond, R. T. Lynch, and J. L. Bernstein, J. Chem. Phys, 50, 2523 (1979).

    CAS  Google Scholar 

  5. A. F. Garito, K. D. Singer, and C. C. Teng, ACS Symposium Series No. 223, 1 (1983).

    Article  Google Scholar 

  6. Principles of Optics, M. Born and E. Wolf, Chap. VII, Pergamon Press, New York (1980).

  7. R. C. Alferness, IEEE Trans MTT, 30, No. 8, 1121 (1982).

    Article  Google Scholar 

  8. O. K. Kwon, R. F. W. Pease, and M. R. Beasley, “Superconductors as Very High Speed System-Level Interconnects”, submitted to Electron Device Letters (1987).

  9. A. Buckley, E. W. Choe, R. N. DeMartino, T. M. Leslie, G. V. Nelson, J. B. Stamatoff, D. Stuetz, H. N. Yoon, ACS Symposium on Solid State Polymerization, 54, 502 (1986).

    CAS  Google Scholar 

  10. J. B. Stamatoff, A. Buckley, G. Calundann, E. W. Choe, R. N. DeMartino, G. Khanarian, T. M. Leslie, G. V. Nelson, D. Stuetz, C. C. Teng, H. N. Yoon, Proc. SPIE, 682, 85 (1986).

    Article  Google Scholar 

  11. R. N. DeMartino, E. W. Choe, G. Khanarian, D. Haas, T. M. Leslie, G. V. Nelson, J. B. Stamatoff, D. Stuetz, C. C. Teng, H. N. Yoon, ACS Symposium, April 1987, Denver, CO, in press.

  12. T. M. Leslie, R. N. DeMartino, E. W. Choe, G. Khanarian, D. Haas, G. V. Nelson, J. B. Stamatoff, D. Stuetz, C. C. Teng, H. N. Yoon; Mol. Cryst. and Liquid Cryst., Special edition on the First International Conference on Liquid Crystal Polymers, in press, (1987).

  13. K. D. Sawyer, T. E. Sohn, and S. T. Lalama, Appl. Phys. Lett., 49, 248

  14. G. V. Nelson and J. B. Stamatoff, Ordered Polymer Contract Review, Oct. 28–31, 1986, Dayton, Ohio.

  15. J. P. Riggs and J. B. Stamatoff, DARPA/DSO Program Review, Feb. 10–13, 1987, Leesburg, Virginia.

  16. L. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of Molecular Arrays with Nonlinear Optical Properties - Second Harmonic Generation by Covalently Functionalized Glassy Polymers”, Macromolecules, in press, (1987).

  17. G. Khanarian, T. M. Che, R. N. DeMartino, D. Haas, T. M. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, H. N. Yoon, Proc. SPIE, 824, in press (1987).

  18. G. Khanarian, Thin Solid Films, 152, 265 (1987).

    Article  CAS  Google Scholar 

  19. G. Khanarian, A. Artigliere, R. Keosian, E. W. Choe, R. N. DeMartino, D. Stuetz, C. C. Teng, Proc. SPIE, 682, 153 (1986).

    Article  Google Scholar 

  20. R. Lytel, G. F. Lipscomb, J. I. Thackara, Proc. SPIE, 824, in press (1987).

  21. S. J. Lalama and A. F. Garito, Phys., Rev., A20, 1179 (1979).

    Article  Google Scholar 

  22. A. F. Garito, C. C. Teng, K. Y. Wong, O. Zamani-Khamini, Mol. Cryst. and Liquid Cryst., 106, 219 (1984.)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeMartino, R., Haas, D., Khanarian, G. et al. Nonlinear Optical Polymers for Electrooptical Devices. MRS Online Proceedings Library 109, 65–76 (1987). https://doi.org/10.1557/PROC-109-65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-109-65

Navigation