Skip to main content
Log in

Simulations of an Interface Crack Nucleation During Nanoindentaion : Molecular Dynamics and Finite Element Coupling Approach

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We carried out the nanoindentation simulations for the Ru (superlayer) / Cu (film) / SiO2 (substrate) system using the finite temperature MD-FEM coupling method. The calculations are performed for the different adhesion energies of Cu/SiO2 ranging from 0.2 to 0.6 J/m2. During loading, it was found that the interfacial crack nucleation occurs at three to four times the contact radius, driven by the tensile stress acted on the Cu/SiO2 interface. We also show that the asymmetric defect behavior have a great effect on giving birth to the crack nucleation. The observation of our simulation indicates that the mechanism of the crack nucleation strongly depends on the interfacial bonding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Iwasaki , Comput. Mech., 25, 78 (2000)

    Article  Google Scholar 

  2. D. B. Marshall , A. G. Evans , J. Appl. Phys., 56, 2632 (1984)

    Article  CAS  Google Scholar 

  3. M. D. Kriese , W. W. Gerberich , N. R. Moody , J. Mater. Res., 14, 3007 (1999)

    Article  CAS  Google Scholar 

  4. K. J. V. Vliet , J. Li , T. Zhu , S. Yip , S. Suresh , Phys. Rev. B., 67, 104105 (2003)

    Article  Google Scholar 

  5. S. Kohlhoff , Philo. Mag. A, 64, 851 (1991)

    Article  Google Scholar 

  6. S. Qu , V. Shastry , W. A. Curtin , R. E. Miller , Modelling Simul. Mater. Sci. Eng. 13, 1101 (2005).

    Article  CAS  Google Scholar 

  7. http://www.alphaworks.ibm.com/tech/wsmp

  8. S. Primpton , J. Comput. Phys., 117, 1 (1995)

    Article  Google Scholar 

  9. M. D. Kriese , W. W. Gerberich , N. R. Moody , J. Mater. Res., 14, 3019 (1999)

    Article  CAS  Google Scholar 

  10. C. L. Kelchner et. al, Phys. Rev. B, 58, 11085 (1998)

    Article  CAS  Google Scholar 

  11. D. Rodney , J. B. Deby , M. Verdier , Modelling Simul. Mater. Sci. Eng. 13, 427 (2003).

    Article  Google Scholar 

  12. X. W. Zhou , H. N. G. Wadley , R. A. Johnson , D. J. Larson , N. Tabat , A. Cerezo , A. K. Petford-Long , G. D. W. Smith , P. H. Clifton , R. L. Martens , T. F. Kelly , Acta Mater. 49, 4005 (2001).

    Article  CAS  Google Scholar 

  13. J. Lennard-Jones , J. E. Cohesion . Proceedings of the Physical Society 1931, 43, 461–482.

    Article  CAS  Google Scholar 

  14. X. W. Zhou , R. A. Johnson , H. N. G. Wadley , Phys. Rev. B 69, 144113 (2004).

    Article  Google Scholar 

  15. A. A. Volinsky , N. R. Moody , W. W. Gerberich , Acta. Mater., 50, 441 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, S., Izumi, S., Sakai, S. et al. Simulations of an Interface Crack Nucleation During Nanoindentaion : Molecular Dynamics and Finite Element Coupling Approach. MRS Online Proceedings Library 1086, 10860829 (2008). https://doi.org/10.1557/PROC-1086-U08-29

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1086-U08-29

Navigation