Skip to main content
Log in

Development of a Novel Metal Epitaxy Method Towards Ni Based Electro-Magnetic Hybrid Systems

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The epitaxial Ni (111) thin film on the oxide substrate could be obtained by a novel epitaxy method, employing pulsed laser deposition (PLD) of NiO (111) epitaxial film on the sapphire (α-Al2O3 single crystal) substrate and successive hydrogen reduction of NiO. The NiO (111) epitaxial film was deposited on the sapphire (0001) substrate at room-temperature by PLD, and then reduced into the Ni epitaxial film by annealing (300 °C to 500 °C) in the hydrogen-atmosphere. On the other hand, the polycrystalline Ni metal thin film was obtained by reduction of the polycrystalline NiO film, indicating necessity of epitaxial growth for the precursor oxide thin film in the metal epitaxy. The present epitaxy method suggests the possible formation of [Ni/α-Al2O3] epitaxial multilayer via selective reduction of oxide multilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Prinz, Science 282, 1660 (1998).

    Article  CAS  Google Scholar 

  2. S. D. Sarma, J. Fabian, X. Hu, and I. Zutic, Superlattices Microstruct. 27, 95 (2000).

    Article  Google Scholar 

  3. J. D. Boeck and G. Borghs, Tech. Dig. Int. Elec. Dev. Meet. 215–218 (1999).

  4. D. Kumar, H. Zhou, T. K. Nath, V. Kvit, and J. Narayan, Appl. Phys. Lett. 79, 2817 (2001).

    Article  CAS  Google Scholar 

  5. A. Debelle, G. Abadias, A. Michel, C. Jaouen, P. Guérin, M. Marteau, and M. Drouet, Mater. Res. Soc. Symp. Proc. 875, O14.4.1 (2005).

    Article  Google Scholar 

  6. H. C. Kang, S. H. Seo, H. W. Jang, D. H. Kim, and D. Y. Noh, Appl. Phys. Lett. 83, 2139 (2003).

    Article  CAS  Google Scholar 

  7. R. A. Lukaszew, V. Stoica, C. Uher, and R. Clarke, Mater. Res. Soc. Symp. Proc. 648, P3.29.1 (2001).

    Google Scholar 

  8. Z. Zhang, R. A. Lukaszew, C. Cionca, X. Pan, R. Clarke, M. Yeadon, A. Zambano, D. Walko, E. Dufresne, and S. te Velthius, J. Vac. Sci. Technol. A 22, 1868 (2004).

    Article  CAS  Google Scholar 

  9. H. Zhou, D. Kumar, A. Kvit, A. Tiwari, and J. Narayan, J. Appl. Phys. 94, 4841 (2003).

    Article  CAS  Google Scholar 

  10. P. Evans, C. Scheck, R. Schad, and G. Zangari, J. Magn. Magn. Mater. 260, 467 (2003).

    Article  CAS  Google Scholar 

  11. J. M. Rickard, M. Perdereau, and L. C. Dufour, IEEE Trans. Nucl. Sci. 1, 847 (1977).

    CAS  Google Scholar 

  12. A. Sasaki, S. Akiba, A. Matsuda, W. Hara, S. Sato, and M. Yoshimoto, Jpn. J. Appl. Phys. 44, L256 (2005).

    Article  CAS  Google Scholar 

  13. O. Sakata, M. Takata, H. Suematsu, A. Matsuda, S. Akiba, A. Sasaki, and M. Yoshimoto, Appl. Phys. Lett. 84, 4239 (2004).

    Article  CAS  Google Scholar 

  14. S. Akiba, A. Matsuda, H. Isa, M. Kasahara, S. Sato, T. Watanabe, W. Hara, and M. Yoshimoto, Nanotechnol. 17, 4053 (2006).

    Article  CAS  Google Scholar 

  15. Y. Kakehi, S. Nakao, K. Satoh, and T. Kusaka, J. Cryst. Growth 237–239, 591 (2002).

    Article  Google Scholar 

  16. C. Gatel and E. Snoeck, J. Magn. Magn. Mater. 272–276, e823 (2004).

  17. H. Ohta, M. kamiya, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 445, 317 (2003).

    Article  CAS  Google Scholar 

  18. B. Warot, E. Snoeck, P. Baules, J. C. Ousset, M. J. Casanove, S. Dubourg, and J. F. Bobo, J. Cryst. Growth 234, 704 (2002).

    Article  CAS  Google Scholar 

  19. P. Luches, E. Groppo, S. D’Addata, C. Lamberti, C. Prestipino, S. Valeri, and F. Boscherini, Surf. Sci. 566–568, 84 (2004).

    Article  Google Scholar 

  20. T. Maeda, S. Kim, T. Suga, H. Kurosaki, T. Yuasa, U. Yamada, T. Watanabe, K. Matsumoto, and I. Hirabayashi, Phys. C 357–360, 1042 (2001).

    Article  Google Scholar 

  21. P. A. A. van der Heijden, C. H. W. Swuste, W. J. M. de Jonge, J. Gaines, J. T. W. M. van Eemeren, and K. M. Schep, Phys. Rev. Lett. 82, 1020 (1999).

    Article  Google Scholar 

  22. A. Gupta, B. Braren, K. G. Casey, B. W. Hussey, and R. Kelly, Appl. Phys. Lett. 59, 1302 (1991).

    Article  Google Scholar 

  23. M. Yoshimoto, T. Maeda, T. Ohnishi, O. Ishiyama, M. Shinohara, M. Kubo, R. Miura, A. Miyamoto, and H. Koinuma, Appl. Phys. Lett. 67, 2615 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, A., Kasahara, M., Watanabe, T. et al. Development of a Novel Metal Epitaxy Method Towards Ni Based Electro-Magnetic Hybrid Systems. MRS Online Proceedings Library 962, 904 (2006). https://doi.org/10.1557/PROC-0962-P09-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0962-P09-04

Navigation