Skip to main content
Log in

Assembly of Nanomaterials using Polymers and Biomaterials: Sensing and Electronic Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The hybrid assembly of inorganic nanomaterials upon chemical and biological bonding has occupied attentions to yield manifold optical and electromagnetic properties. Nanomaterials that can be virtually conjugated with any other nanomaterials by ligand-receptor / antigen-antibody reactions, polymer tethering, and DNA hybridization are of importance for fundamental comprehension of electronic process in nano-scale regime as well as for development of advanced sensing and imaging devices. Semiconducting nanoparticles(NPs)/ nanowires(NWs) like CdTe that have compatibly narrow range of strong photoluminescence (PL) with broad range of absorbance band stand in the spotlight of imaging and sensing materials. Optical effects in noble metallic NPs such as Au and Ag have been worth noticing due to localized surface plasmons. These optical modes lead to highly localized electromagnetic fields outside the particles that take advantage of the development of novel system such as surface enhanced Raman spectroscopy (SERS) and highly compacted optoelectronic devices and sensors. In particular, it is known that metallic NPs has stronger plasmon field than the surface of bulky metals, leading to potent interactions to adjacent materials in secured conjugated superstructures that induce non-linear optical properties. In this report, we review on a novel biological / polymeric inspired hybrid superstructures between semiconducting CdTe nanowires and Au or Ag nanoparticles. This superstructure demonstrates remarkable optical effects i.e., PL en-hancement of NWs, sensing application for temperature and solvents stemming from SERS-like collective interactions of NPs and NWs., and light harvest from Förster resonance energy tra-nsfer (FRET).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaebeom Lee, Alexander O.Govorov & Nicholas A.Kotov. Bioconjugated Superstructures of CdTe Nanowires and Nanoparticles: Multi-Step Cascade Fluorescence Resonance Energy Transfer. Nano Letter 5, 2063–2069 (2005).

    Article  CAS  Google Scholar 

  2. Jaebeom Lee, Alexander O.Govorov & Nicholas A.Kotov. Nanoparticle Assemblies with Molecular Springs: Nanoscale Thermometer. Angewandte Chemie Inter. Ed. 117, 7605–7608 (2005).

    Article  Google Scholar 

  3. Lee,J., Govorov,A.O., Dulka,J. & Kotov,N.A. Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon-Exciton Interactions, Luminescence Enhancement, and Collective Effects. Nano Letter 4, 2323–2330 (2004).

    Article  CAS  Google Scholar 

  4. McDonald,S.A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials 4, 138–142 (2005).

    Article  CAS  Google Scholar 

  5. Sukhorukov,G.B. et al. Nanoengineered polymer capsules: Tools for detection, controlled delivery, and site-specific manipulation. Small 1, 194–200 (2005).

    Article  CAS  Google Scholar 

  6. Govorov,A.O. & Kalameitsev,A.V. Optical properties of a semiconductor quantum dot with a single magnetic impurity: photoinduced spin orientation. Physical Review B: Condensed Matter and Materials Physics 71, 035338-1-035338/5 (2005).

    Article  CAS  Google Scholar 

  7. Govorov,A.O. Spin-Forster transfer optically-excited quantum dots. Physical Review B: Condensed Matter and Materials Physics, in press. (2005).

  8. Umezu,I. et al. Recombination process of CdS quantum dot covered by novel polymer chains. Physica E: Low-Dimensional Systems & Nanostructures (Amsterdam, Netherlands) 21, 1102–1105 (2004).

  9. Rong,M.Z., Zhang,M.Q., Liang,H.C. & Zeng,H.M. Surface derivatization of nano-CdS clusters and its effect on the performance of CdS quantum dots in solvents and polymeric matrices. Applied Surface Science 228, 176–190 (2004).

    Article  CAS  Google Scholar 

  10. Bjoerk,M.T. et al. Few-Electron Quantum Dots in Nanowires. Nano Letters 4, 1621–1625 (2004).

    Article  CAS  Google Scholar 

  11. Nagasaki,Y. et al. Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot. Langmuir 20, 6396–6400 (2004).

    Article  CAS  Google Scholar 

  12. Skaff,H., Sill,K. & Emrick,T. Controlled dispersion and assembly of quantum dots using polymers: Poly(para-phenylene)-quantum dot composites. 2004. Abstracts of Papers, 228th ACS National Meeting, Philadelphia, PA, United States, August 22–26, 2004.

  13. Hoshino,A. et al. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Letters 4, 2163–2169 (2004).

    Article  CAS  Google Scholar 

  14. Shiohara,A., Hoshino,A., Hanaki,K.i., Suzuki,K. & Yamamoto,K. On the cyto-toxicity caused by quantum dots. Microbiology and Immunology 48, 669–675 (2004).

    Article  CAS  Google Scholar 

  15. Smith,A.M., Gao,X. & Nie,S. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochemistry and Photobiology 80, 377–385 (2004).

    Article  CAS  Google Scholar 

  16. Green,M. Semiconductor quantum dots as biological imaging agents. Angewandte Chemie, International Edition 43, 4129–4131 (2004).

    Article  CAS  Google Scholar 

  17. Karrai,K. et al. Hybridization of electronic states in quantum dots through photon emission. Nature (London, United Kingdom) 427, 135–138 (2004).

  18. Ribeiro,E., Govorov,A.O., Carvalho,W., Jr. & Medeiros-Ribeiro,G. Aharonov-Bohm Signature for Neutral Polarized Excitons in Type-II Quantum Dot Ensembles. Physical Review Letters 92, 126402 (2004).

    Article  CAS  Google Scholar 

  19. Wang,Y., Tang,Z., Tan,S. & Kotov,N.A. Biological Assembly of Nanocircuit Prototypes from Protein-Modified CdTe Nanowires. Nano Letters 5, 243–248 (2005).

    Article  CAS  Google Scholar 

  20. Jaebeom Lee & Nicholas A.Kotov. Bioconjugates of CdTe Nanowires and Au Nanoparticles:pH dependence of photoluminescence and its reversibility. In preparation (2005).

  21. Sun,X.H. et al. Reductive Self-assembling of Pd and Rh Nanoparticles on Silicon Nanowire Templates. Chemistry of Materials 16, 1143–1152 (2004).

    Article  CAS  Google Scholar 

  22. Tan,S., Tang,Z., Liang,X. & Kotov,N.A. Resonance Tunneling Diode Structures on CdTe Nanowires Made by Conductive AFM. Nano Letters 4, 1637–1641 (2004).

    Article  CAS  Google Scholar 

  23. Liang,X., Tan,S., Tang,Z. & Kotov,N.A. Investigation of Transversal Conductance in Semiconductor CdTe Nanowires with and without a Coaxial Silica Shell. Langmuir 20, 1016–1020 (2004).

    Article  CAS  Google Scholar 

  24. Wang,Y., Tang,Z., Liang,X., Liz-Marzan,L.M. & Kotov,N.A. SiO2-coated CdTe nanowires: bristled nano centipedes. Nano Letters 4, 225–231 (2004).

    Article  CAS  Google Scholar 

  25. Mao,C. et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science (Washington, DC, United States) 303, 213–217 (2004).

  26. Cai,L.T. et al. Nanowire-Based Molecular Monolayer Junctions: Synthesis, Assembly, and Electrical Characterization. Journal of Physical Chemistry B 108, 2827–2832 (2004).

    Article  CAS  Google Scholar 

  27. Zheng,G., Lu,W., Jin,S. & Lieber,C.M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Advanced Materials (Weinheim, Germany) 16, 1890–1893 (2004).

  28. Barrelet,C.J., Greytak,A.B. & Lieber,C.M. Nanowire Photonic Circuit Elements. Nano Letters 4, 1981–1985 (2004).

    Article  CAS  Google Scholar 

  29. Qian,F. et al. Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics. Nano Letters 4, 1975–1979 (2004).

    Article  CAS  Google Scholar 

  30. Mikkelsen,A. et al. Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy. Nature Materials 3, 519–523 (2004).

    Article  CAS  Google Scholar 

  31. Patolsky,F., Weizmann,Y. & Willner,I. Actin-based metallic nanowires as bio-nanotransporters. Nature Materials 3, 692–695 (2004).

    Article  CAS  Google Scholar 

  32. Jaebeom Lee, Alexander O.Govorov, John Dulka & Nicholas A.Kotov. Fluorescence enhancement and energy transport from bioconjugation between nanowires and nanoparticles. Proc. SPIE Int. Soc. Opt. Eng. 5513, 226 (2004).

    Google Scholar 

  33. Li,Z. et al. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Letters 4, 245–247 (2004).

    Article  CAS  Google Scholar 

  34. Lee,Y.H. et al. Coulomb blockade devices of Co dot arrays on tungsten-nanowire templates fabricated by using only a thin film technique. Applied Physics Letters 82, 3535–3537 (2003).

    Article  CAS  Google Scholar 

  35. Yan,H., Park,S.H., Finkelstein,G., Reif,J.H. & LaBean,T.H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science (Washington, DC, United States) 301, 1882–1884 (2003).

  36. Vayssieres,L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials (Weinheim, Germany) 15, 464–466 (2003).

  37. Zhong,Z., Wang,D., Cui,Y., Bockrath,M.W. & Lieber,C.M. Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems. Science (Washington, DC, United States) 302, 1377–1380 (2003).

  38. Tang,Z., Kotov,N.A. & Giersig,M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. SCIENCE 297, 237–240 (2002).

    Article  CAS  Google Scholar 

  39. Harnack,O., Ford,W.E., Yasuda,A. & Wessels,J.M. Tris(hydroxymethyl)phosphine-capped gold particles templated by DNA as nanowire precursors. Nano Letters 2, 919–923 (2002).

    Article  CAS  Google Scholar 

  40. Penner,R.M. Mesoscopic Metal Particles and Wires by Electrodeposition. Journal of Physical Chemistry B 106, 3339–3353 (2002).

    Article  CAS  Google Scholar 

  41. Ford,W.E., Harnack,O., Yasuda,A. & Wessels,J.M. Platinated DNA as precursors to templated chains of metal nanoparticles. Advanced Materials (Weinheim, Germany) 13, 1793–1797 (2001).

  42. Cui,Y., Wei,Q., Park,H. & Lieber,C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. SCIENCE 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  43. Gates,D.P. Inorganic and organometallic polymers. Annual Reports on the Progress of Chemistry, Section A: Inorganic Chemistry 100, 489–508 (2004).

    Article  CAS  Google Scholar 

  44. Lucarelli,M. et al. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. European Cytokine Network 15, 339–346 (2004).

    CAS  Google Scholar 

  45. Lakowicz,J.R. et al. Increased sensitivity of fluorescence detection: using metallic nanoparticles. PharmaGenomics 3, 38, 42, 44, 46 (2003).

  46. Vo-Dinh,T. Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC, Trends in Analytical Chemistry 17, 557–582 (1998).

    Article  CAS  Google Scholar 

  47. Gaponik,N. et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. Journal of Physical Chemistry B 106, 7177–7185 (2002).

    Article  CAS  Google Scholar 

  48. Jana,N.R., Gearheart,L. & Murphy,C.J. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17, 6782–6786 (2001).

    Article  CAS  Google Scholar 

  49. Raveendran,P., Fu,J. & Wallen,S.L. Completely green synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society 125, 13940–13941 (2003).

    Article  CAS  Google Scholar 

  50. Liu,Z. et al. Favored structure of Ag nanoparticles embedded in SiO2 by implantation: single crystal with contracted (111) lattice. Journal of Materials Research 15, 1245–1247 (2000).

    Article  CAS  Google Scholar 

  51. Katz,E. & Willner,I. Nanobiotechnology: integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie, International Edition 43, 6042–6108 (2004).

    Article  CAS  Google Scholar 

  52. Beek,W.J.E., Wienk,M.M. & Janssen,R.A.J. Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials (Weinheim, Germany) 16, 1009–1013 (2004).

  53. Pagba,C. et al. Hybrid Photoactive Assemblies: Electron Injection from Host-Guest Complexes into Semiconductor Nanoparticles. Journal of the American Chemical Society 126, 9888–9889 (2004).

    Article  CAS  Google Scholar 

  54. Tian,S., Liu,J., Zhu,T. & Knoll,W. Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chemistry of Materials 16, 4103–4108 (2004).

    Article  CAS  Google Scholar 

  55. Du,J. & Chen,Y. Organic-inorganic hybrid nanoparticles with a complex hollow structure. Angewandte Chemie, International Edition 43, 5084–5087 (2004).

    Article  CAS  Google Scholar 

  56. Bhat,R.R., Genzer,J., Chaney,B.N., Sugg,H.W. & Liebmann-Vinson,A. Controlling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients. Nanotechnology 14, 1145–1152 (2003).

    Article  CAS  Google Scholar 

  57. Roy,D. & Fendler,J. Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials. Advanced Materials (Weinheim, Germany) 16, 479–508 (2004).

  58. Ishii,T., Otsuka,H., Kataoka,K. & Nagasaki,Y. Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by a-Biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)]. Langmuir 20, 561–564 (2004).

    Article  CAS  Google Scholar 

  59. Willner,I. & Willner,B. Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure and Applied Chemistry 74, 1773–1783 (2002).

    Article  CAS  Google Scholar 

  60. Bauer,L.A., Birenbaum,N.S. & Meyer,G.J. Biological applications of high aspect ratio nanoparticles. Journal of Materials Chemistry 14, 517–526 (2004).

    Article  CAS  Google Scholar 

  61. West,J.L. & Halas,N.J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annual Review of Biomedical Engineering 5, 285–292, 4 (2003).

    Article  CAS  Google Scholar 

  62. Jin,R., Wu,G., Li,Z., Mirkin,C.A. & Schatz,G.C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society 125, 1643–1654 (2003).

    Article  CAS  Google Scholar 

  63. Parak,W.J. et al. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Letters 3, 33–36 (2003).

    Article  CAS  Google Scholar 

  64. Storhoff,J.J., Elghanian,R., Mirkin,C.A. & Letsinger,R.L. Sequence-Dependent Stability of DNA-Modified Gold Nanoparticles. Langmuir 18, 6666–6670 (2002).

    Article  CAS  Google Scholar 

  65. Nam,J.M., Stoeva,S.I. & Mirkin,C.A. Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity. Journal of the American Chemical Society 126, 5932–5933 (2004).

    Article  CAS  Google Scholar 

  66. Kraemer,S. et al. Preparation of Protein Gradients through the Controlled Deposition of Protein-Nanoparticle Conjugates onto Functionalized Surfaces. Journal of the American Chemical Society 126, 5388–5395 (2004).

    Article  CAS  Google Scholar 

  67. Bruchez,M., Jr., Moronne,M., Gin,P., Weiss,S. & Alivisatos,A.P. Semiconductor nanocrystals as fluorescent biological labels. SCIENCE 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  68. Nie,S. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and methods of use. (Advanced Research and Technology Institute, Inc. USA. 99-US21793(2000029617), 45-20000525. WO. 9-24-1999.

  69. Dubertret,B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science (Washington, DC, United States) 298, 1759–1762 (2002).

  70. Shavel,A., Gaponik,N. & Eychmueller,A. Efficient UV-Blue Photoluminescing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals. Journal of Physical Chemistry B 108, 5905–5908 (2004).

    Article  CAS  Google Scholar 

  71. Hai,X. et al. Preparation and a time-resolved fluoroimmunoassay application of new europium fluorescent nanoparticles. Analytical Sciences 20, 245–246 (2004).

    Article  CAS  Google Scholar 

  72. Ye,Z., Tan,M., Wang,G. & Yuan,J. Novel fluorescent europium chelate-doped silica nanoparticles: preparation, characterization and time-resolved fluorometric application. Journal of Materials Chemistry 14, 851–856 (2004).

    Article  CAS  Google Scholar 

  73. Zhao,X., Tapec-Dytioco,R. & Tan,W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society 125, 11474–11475 (2003).

    Article  CAS  Google Scholar 

  74. Wang,S., Mamedova,N., Kotov,N.A., Chen,W. & Studer,J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Letters 2, 817–822 (2002).

    Article  CAS  Google Scholar 

  75. Sano,T., Vajda,S. & Cantor,C.R. Genetic engineering of streptavidin, a versatile affinity tag. Journal of Chromatography, B: Biomedical Sciences and Applications 715, 85–91 (1998).

    Article  CAS  Google Scholar 

  76. Mamedov,A.A., Belov,A., Giersig,M., Mamedova,N.N. & Kotov,N.A. Nanorainbows. Graded semiconductor films from quantum dots. Journal of the American Chemical Society 123, 7738–7739 (2001).

    Article  CAS  Google Scholar 

  77. Franzl,T., Klar,T.A., Schietinger,S., Rogach,A.L. & Feldmann,J. Exciton Recycling in Graded Gap Nanocrystal Structures. Nano Letters 4, 1599–1603 (2004).

    Article  CAS  Google Scholar 

  78. Schmidt-Mende,L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. SCIENCE 293, 1119–1122.

  79. Berggren,M., Dodabalapur,A., Slusher,R.E. & Bao,Z. Light amplification in organic thin films using cascade energy transfer. Nature (London) 389, 466–469 (1997).

    Article  CAS  Google Scholar 

  80. Tsang,W.T. A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam. Applied Physics Letters 39, 134–137 (1981).

    Article  CAS  Google Scholar 

  81. Rosenthal,S.J. et al. Targeting Cell Surface Receptors with Ligand-Conjugated Nanocrystals. Journal of the American Chemical Society 124, 4586–4594 (2002).

    Article  CAS  Google Scholar 

  82. Li,M. & Mann,S. DNA-directed assembly of multifunctional nanoparticle networks using metallic and bioinorganic building blocks. Journal of Materials Chemistry 14, 2260–2263 (2004).

    Article  CAS  Google Scholar 

  83. Kaplan,D.L., Davey,M.J. & O’Donnell,M. Mcm4,6,7 Uses a \”Pump in Ring\” Mechanism to Unwind DNA by Steric Exclusion and Actively Translocate along a Duplex. Journal of Biological Chemistry 278, 49171–49182 (2003).

    Article  CAS  Google Scholar 

  84. Shin,J.H., Jiang,Y., Grabowski,B., Hurwitz,J. & Kelman,Z. Substrate Requirements for Duplex DNA Translocation by the Eukaryal and Archaeal Minichromosome Maintenance Helicases. Journal of Biological Chemistry 278, 49053–49062 (2003).

    Article  CAS  Google Scholar 

  85. Li,M., Wong,K.K.W. & Mann,S. Organization of Inorganic Nanoparticles Using Biotin-Streptavidin Connectors. Chemistry of Materials 11 , 23–26 (1999).

    Article  Google Scholar 

  86. Li,M. & Mann,S. DNA-directed assembly of functional nanoparticle networks using metallic and bioinorganic building blocks. Journal of Materials Chemistry 14, 2260–2263 (2004).

    Article  CAS  Google Scholar 

  87. Li,M., Schnablegger,H. & Mann,S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature (London) 402, 393–395 (1999).

    Article  CAS  Google Scholar 

  88. Foerster,T. Intermolecular energy transference and fluorescence. Ann. Physik 2, 55–75 (1948).

    Article  Google Scholar 

  89. Chen,S. & Kimura,K. A new strategy for the synthesis of semiconductor-metal hybrid nanocomposites: electrostatic self-assembly of nanoparticles. Chemistry Letters 233–234 (1999).

  90. Gueroui,Z. & Libchaber,A. Single-Molecule Measurements of Gold-Quenched Quantum Dots. Physical Review Letters 93, 166108-1-166108/4 (2004).

    Article  CAS  Google Scholar 

  91. Gao,X., Cui,Y., Levenson,R.M., Chung,L.W.K. & Nie,S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  92. Mirkin,C.A., Letsinger,R.L., Mucic,R.C. & Storhoff,J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  93. Park,S., Taton,T.A. & Mirkin,C.A. Array-based electrical detection of DNA with nanoparticle probes. SCIENCE 295, 1503–1506 (2002).

    Article  CAS  Google Scholar 

  94. Cao,Y.C., Jin,R. & Mirkin,C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science (Washington, DC, United States) 297, 1536–1540 (2002).

  95. Nam,J., Thaxton,C.S. & Mirkin,C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. SCIENCE 301, 1884–1886 (2003).

    Article  CAS  Google Scholar 

  96. Maxwell,D.J., Taylor,J.R. & Nie,S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society 124, 9606–9612 (2002).

    Article  CAS  Google Scholar 

  97. Chan,W.C.W. et al. Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology 13, 40–46 (2002).

    Article  CAS  Google Scholar 

  98. Koktysh,D.S. et al. Biomaterials by design: Layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring. Advanced Functional Materials 12, 255–265 (2002).

    Article  CAS  Google Scholar 

  99. Mamedova,N.N., Wang,S. & Kotov,N.A. Protein-CdTe nanoparticle bioconjugates: Preparation, structure, and resonance energy-transfer. Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18–22, 2002 HYS-253 (2002).

  100. Mamedova,N.N., Kotov,N.A., Rogach,A.L. & Studer,J. Albumin-CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect. Nano Letters 1, 281–286 (2001).

    Article  CAS  Google Scholar 

  101. Kotov,N.A. Bioconjugates of nanoparticles as radiopharmaceuticals. (The Board of Regents for Oklahoma State University, USA. 2001-US17658(2001091808), 26-20011206. WO. 5-31-2001.

  102. Ostrander,J.W., Mamedov,A.A. & Kotov,N.A. Two Modes of Linear Layer-by-Layer Growth of Nanoparticle-Polyelectrolyte Multilayers and Different Interactions in the Layer-by-layer Deposition. Journal of the American Chemical Society 123, 1101–1110 (2001).

    Article  CAS  Google Scholar 

  103. Turro,N.J. Modern Molecular Photochemistry. (1978).

  104. Dulkeith,E. et al. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Physical Review Letters 89, 203002 (2002).

    Article  CAS  Google Scholar 

  105. Biswal,S.L. & Gast,A.P. Mechanics of semiflexible chains formed by poly(ethylene glycol)-linked paramagnetic particles. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 68, 021402 (2003).

    Article  CAS  Google Scholar 

  106. Shimoboji,T., Ding,Z., Stayton,P.S. & Hoffman,A.S. Mechanistic Investigation of Smart PolymerProtein Conjugates. Bioconjugate Chemistry 12, 314–319 (2001).

    Article  CAS  Google Scholar 

  107. Williams,E., Pividori,M.I., Merkoci,A., Forster,R.J. & Alegret,S. Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode. Biosensors & Bioelectronics 19, 165–175 (2003).

    Article  CAS  Google Scholar 

  108. Patel,A.B. et al. Influence of Architecture on the Kinetic Stability of Molecular Assemblies. Journal of the American Chemical Society 126, 1318–1319 (2004).

    Article  CAS  Google Scholar 

  109. Shimizu,K.T., Woo,W.K., Fisher,B.R., Eisler,H.J. & Bawendi,M.G. Surface-Enhanced Emission from Single Semiconductor Nanocrystals. Physical Review Letters 89, 117401 (2002).

    Article  CAS  Google Scholar 

  110. Crooker,S.A., Hollingsworth,J.A., Tretiak,S. & Klimov,V.I. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Physical Review Letters 89, 186802 (2002).

    Article  CAS  Google Scholar 

  111. Levy,R. et al. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. Journal of the American Chemical Society 126, 10076–10084 (2004).

    Article  CAS  Google Scholar 

  112. Niemeyer,C.M. Semi-synthetic DNA-protein conjugates: novel tools in analytics and nanobiotechnology. Biochemical Society Transactions 32, 51–53 (2004).

    Article  CAS  Google Scholar 

  113. Mokari,T., Rothenberg,E., Popov,I., Costi,R. & Banin,U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science (Washington, DC, United States) 304, 1787–1790 (2004).

  114. Talapin,D.V. et al. CdSe and CdSe/CdS Nanorod Solids. Journal of the American Chemical Society 126, 12984–12988 (2004).

    Article  CAS  Google Scholar 

  115. Rogach,A.L. Binary superlattices of nanoparticles: self-assembly leads to \”metamaterials\”. Angewandte Chemie, International Edition 43, 148–149 (2003).

    Article  Google Scholar 

  116. Aussenegg,F.R. et al. The metal island coated swelling polymer over mirror system (MICSPOMS): a new principle for measuring ionic strength. Sensors and Actuators, B: Chemical B29, 204–209 (1995).

    Article  Google Scholar 

  117. Schalkhammer,T. et al. The use of metal-island-coated pH-sensitive swelling polymers for biosensor applications. Sensors and Actuators, B: Chemical B24, 166–172 (1995).

    Article  Google Scholar 

  118. Branca,C. et al. Swelling processes in aqueous polymer solutions by PCS and Raman scattering. Journal of Molecular Structure 482–483, 503–507 (1999).

    Article  Google Scholar 

  119. Branca,C., Magazu,S., Maisano,G., Migliardo,P. & Villari,V. Conformational distribution of poly(ethylene oxide) in molten phase and in aqueous solution by quasi-elastic and inelastic light scattering. Journal of Physics: Condensed Matter 10, 10141–10157 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kotov, N.A. & Govorov, A.O. Assembly of Nanomaterials using Polymers and Biomaterials: Sensing and Electronic Applications. MRS Online Proceedings Library 901, 254 (2005). https://doi.org/10.1557/PROC-0901-Ra22-54-Rb22-54

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0901-Ra22-54-Rb22-54

Navigation